Science.gov

Sample records for carboxyl functional groups

  1. Functionalization of carbon nanotube by carboxyl group under radial deformation

    NASA Astrophysics Data System (ADS)

    Lara, Ivi Valentini; Zanella, Ivana; Fagan, Solange Binotto

    2014-01-01

    The dependence of the structural and the electronic properties of functionalized (5, 5) single-walled carbon nanotubes (SWNT) were investigated through ab initio density functional simulations when the carboxyl group is bonded on the flatter or curved regions. Radial deformations result in diameter decrease of up to 20 per cent of the original size, which was the limit reduction that maintains the SWNT functionalized structure. Changes on the electronic structure were observed due to the symmetry break of the SWNT caused by both the carboxyl group and the C-C bond distortions resulted by the radial deformation. It is observed that the functionalization process is specially favored by the sp3 hybridization induced on the more curved region of the deformed SWNT.

  2. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar’s sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam activated biochar having low O/C ratio...

  3. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil.

    PubMed

    Uchimiya, Minori; Bannon, Desmond I; Wartelle, Lynda H

    2012-02-22

    Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar's sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam-activated biochar having a low O/C ratio (0.04-0.06) and high fixed carbon content (~80% dry weight basis) were oxidized using concentrated H(2)SO(4)/HNO(3) and 30% HNO(3). Oxidized and unoxidized biochars were characterized for O/C ratio, total acidity, pH, moisture, ash, volatile matter, and fixed carbon contents, Brunauer-Emmett-Teller surface area, and attenuated total reflectance Fourier transform infrared spectral features. Characterized biochars were amended (2%, 5%, 10%, and 20% in grams of biochar per gram of soil) on a sandy, slightly acidic (pH 6.27) heavy metal contaminated small arms range soil fraction (<250 μm) having low total organic carbon (0.518%) and low cation exchange capacity (0.95 cmol(c) kg(-1)). Oxidized biochars rich in carboxyl functional groups exhibited significantly greater Pb, Cu, and Zn stabilization ability compared to unoxidized biochars, especially in pH 4.9 acetate buffer (standard solution for the toxicity characteristic leaching procedure). Oppositely, only oxidized biochars caused desorption of Sb, indicating a counteracting impact of carboxyl functional groups on the solubility of anions and cations. The results suggested that appropriate selection of biochar oxidant will produce recalcitrant biochars rich in carboxyl functional groups for a long-term heavy metal stabilization strategy in contaminated soils. PMID:22280497

  4. Preparation and Sonodynamic Antitumor Effect of Protohemin-Conjugated Multiwalled Carbon Nanotubes Functionalized with Carboxylic Group.

    PubMed

    Wang, Chuan-Jin; Li, Wei

    2016-05-01

    Preclinical Research Sonodynamic therapy (SDT) is a cutting edge approach to treating cancer that involves necrosis and/or apoptosis. Multiwalled carbon nanotubes functionalized with carboxylic groups (MWCNTs-COOH) due their physicochemical structure represent a novel drug delivery system in the field of nanomedicine. The purpose of the research reported in this paper was to increase the antitumor potency and reduce the potential side effects of protohemin (Ph), a sonosensitizer for SDT, which was noncovalently encapsulated into MWCNTs-COOH (MWCNTs-Ph). The Ph loading efficiency in MWCNTs-COOH carrier was determined as approximately 68.8% (w/w). The growth inhibition rate of MWCNTs-Ph (Ph: 180 μg/mL) was approximately 95 ± 8.5%, whereas Ph-F (Ph: 180 μg/mL) inhibited 58 ± 4.5% of tumor cell. Ph (Ph: 180 μg/mL) alone had no antitumor effect in HepG-2 cells using ultrasound treatment at 1.0 MHz and 0.5 W/cm(2) for 100 s. Assessment of the antitumor effects of MWCNTs-Ph and Ph-F at day 11 after SDT showed that he tumor inhibition ratio for MWCNTs-Ph (6.18 × 10(-2) g·kg(-1) ·d(-1) ) was 82.8%, twice that of Ph-F (6.18 × 10(-2) g·kg(-1) ·d(-1) ) ay 41.8%. In conclusion, MWCNTs-Ph had increased antitumor efficiency and also decreased potential side effects. Drug Dev Res 77 : 152-158, 2016. © 2016 Wiley Periodicals, Inc. PMID:27029561

  5. Electronic and optical response of Ru(II) complexes functionalized by methyl, carboxylate groups: joint theoretical and experimental study

    SciTech Connect

    Tretiak, Sergei

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the complex to the surface of a semiconductor, a linking bridge - a carboxyl group - is added to one or two of the 2,2{prime}-bipyridine ligands. Such changes in the ligand structure, indeed, affect electronic and optical properties and consequently, the charge transfer reactivity of Ru-systems. In this study, we apply both theoretical and experimental approaches to analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the Ru(II) bipyridine complex. First principle calculations based on density functional theory (DFT) and linear response time dependent density functional theory (TDDFT) are used to simulate the ground and excited-state structures of functionalized Ru-complexes in the gas phase, as well as in acetonitrile solution. In addition, an inelaborate Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states. All theoretical results nicely complement experimental absorption spectra of Ru-complexes and contribute to their interpretation. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show a high probability of deprotonation of the carbboxyl group in the Ru-complexes resulted in a slight blue shift and decrease of intensities of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotanated complexes demonstrate strong agreement when acetonitrile solvent is used in simulations. A polar solvent is found to play an important role in calculations of optical spectra: it

  6. Carboxylic-group-functionalized single-walled carbon nanohorns as peroxidase mimetics and their application to glucose detection.

    PubMed

    Zhu, Shuyun; Zhao, Xian-En; You, Jinmao; Xu, Guobao; Wang, Hua

    2015-09-21

    Carboxylic-group-functionalized single-walled carbon nanohorns (SWCNHs-COOH) have been found to possess peroxidase-like activity for the first time. Similar to natural peroxidase, SWCNHs-COOH can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2 to produce a blue color solution. Compared with horseradish peroxidase, SWCNHs-COOH exhibit higher activity and stability under harsh reaction conditions. The catalytic activity of SWCNHs-COOH depends on the concentration of H2O2. A colorimetric method for glucose detection was developed by combining the SWCNH-COOH catalytic reaction and the generation of H2O2 by the enzymatic oxidation of glucose with glucose oxidase. Taking into account the advantages of good stability, high biocompatibility in aqueous solutions, being metal-catalyst free, and high purity, SWCNHs-COOH are expected to have potential applications in biotechnology and clinical diagnostics as enzymatic mimics. PMID:26247806

  7. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    PubMed

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues. PMID:26572799

  8. Carboxyl group participation in sulfate and sulfamate group transfer reactions

    SciTech Connect

    Hopkins, A.; Williams, A.

    1982-04-23

    The pH dependence for the hydrolysis of N-(2-carboxyphenyl)sulfamic acid exhibits a plateau region corresponding to participation of the carboxyl function. A normal deuterium oxide solvent isotope effect indicates that proton transfer from the carboxylic acid is concerted with sulfamate group transfer to water. Hydrolysis of salicylic sulfate and N-(2-carboxyphenyl)sulfamate in /sup 18/O-enriched water yields salicylic acid and anthranilic acids with no enrichment, excluding catalysis by neighboring nucleophilic attack on sulfur by the carboxylate group. Intermolecular catalysis by carboxylic acids is demonstrated in the hydrolysis of N-(1-naphthyl)sulfamic acid; the mechanism is shown to involve preequilibrium protonation of the nitrogen followed by nucleophilic attack on sulfur by the carboxylate anion. Fast decomposition of the acyl sulfate completes the hydrolysis; this mechanism is considered to be the most efficient but is excluded in the intramolecular case which is constrained by the electronic requirements of displacement at the sulfur atom (6-ENDO-tet).

  9. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing.

    PubMed

    Wang, Li; Ye, Yinjian; Zhu, Haozhi; Song, Yonghai; He, Shuijian; Xu, Fugang; Hou, Haoqing

    2012-11-16

    Glucose detection is very important in biological analysis, clinical diagnosis and the food industry, and especially for the routine monitoring of diabetes. This work presents an electrochemical approach to the detection of glucose based on Prussian blue (PB) nanostructures/carboxylic group-functionalized carbon nanofiber (FCNF) nanocomposites. The hybrid nanocomposites were constructed by growing PB onto the FCNFs. The obtained PB-FCNF nanocomposites were characterized by scanning electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The mechanism of formation of PB-FCNF nanocomposites was investigated and is discussed in detail. The PB-FCNF modified glassy carbon electrode (PB-FCNF/GCE) shows good electrocatalysis toward the reduction of H(2)O(2), a product from the reduction of O(2) followed by glucose oxidase (GOD) catalysis of the oxidation of glucose to gluconic acid. Further immobilizing GOD on the PB-FCNF/GCE, an amperometric glucose biosensor was achieved by monitoring the generated H(2)O(2) under a relatively negative potential. The resulting glucose biosensor exhibited a rapid response of 5 s, a low detection limit of 0.5 μM, a wide linear range of 0.02-12 mM, a high sensitivity of 35.94 μA cm(-2) mM(-1), as well as good stability, repeatability and selectivity. The sensor might be promising for practical application. PMID:23090569

  10. Use of carboxylic group functionalized magnetic nanoparticles for the preconcentration of metals in juice samples prior to the determination by capillary electrophoresis.

    PubMed

    Carpio, Azahara; Mercader-Trejo, Flora; Arce, Lourdes; Valcárcel, Miguel

    2012-08-01

    Nowadays food industry demands reliable and precise methods to resolve problems related to quality and security control. The pretreatment steps, prior to sample analysis, are necessary to extract the target analytes because of the complexities of the food samples matrices. In this work, we have studied, for the first time, the potential of carboxylic group functionalized magnetic nanoparticles to preconcentrate metals from liquid samples before CE analysis. For the extraction of metals, 10 mL of an aqueous sample containing the metal mixture was added to 2 mg carboxylic group functionalized magnetic nanoparticles. Metals retained in the nanoparticles were re-extracted with 200 μL solution consisting of 0.8 mM 1,10-phenanthroline and 0.04% hydroxylamine chloride at pH 2. The electrophoretic buffer used in this work to separate different metals (Co, Cu, Zn, Ni, and Cd) consisted of 30 mM hydroxylamine chloride, 0.30 mM 1,10-phenanthroline, 80 mM urea, 15 mM ammonium chloride, and 0.1% methanol at pH 3.6. Finally, measurements were made at 270 nm. Under the optimized conditions, detection limits for Co, Zn, Cu, Ni, and Cd were 0.004, 0.003, 0.004, 0.008, and 0.009 mg L(-1) , respectively. PMID:22887167

  11. Involvement of functional groups on the surface of carboxyl group-terminated polyamidoamine dendrimers bearing arbutin in inhibition of Na⁺/glucose cotransporter 1 (SGLT1)-mediated D-glucose uptake.

    PubMed

    Sakuma, Shinji; Kanamitsu, Shun; Teraoka, Yumi; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Shirasaka, Yoshiyuki; Tamai, Ikumi; Muraoka, Masahiro; Nakatsuji, Yohji; Kida, Toshiyuki; Akashi, Mitsuru

    2012-04-01

    A carboxyl group-terminated polyamidoamine dendrimer (generation: 3.0) bearing arbutin, which is a substrate of Na⁺/glucose cotransporter 1 (SGLT1), via a nonbiodegradable ω-amino triethylene glycol linker (PAMAM-ARB), inhibits SGLT1-mediated D-glucose uptake, as does phloridzin, which is a typical SGLT1 inhibitor. Here, since our previous research revealed that the activity of arbutin was dramatically improved through conjugation with the dendrimer, we examined the involvement of functional groups on the dendrimer surface in inhibition of SGLT1-mediated D-glucose uptake. PAMAM-ARB, with a 6.25% arbutin content, inhibited in vitro D-glucose uptake most strongly; the inhibitory effect decreased as the arbutin content increased. In vitro experiments using arbutin-free original dendrimers indicated that dendrimer-derived carboxyl groups actively participated in SGLT1 inhibition. However, the inhibitory effect was much less than that of PAMAM-ARB and was equal to that of glucose moiety-free PAMAM-ARB. Data supported that the glucose moiety of arbutin was essential for the high activity of PAMAM-ARB in SGLT1 inhibition. Analysis of the balance of each domain further suggested that carboxyl groups anchored PAMAM-ARB to SGLT1, and the subsequent binding of arbutin-derived glucose moieties to the target sites on SGLT1 resulted in strong inhibition of SGLT1-mediated D-glucose uptake. PMID:22352425

  12. Site identification of carboxyl groups on graphene edges with Pt derivatives.

    PubMed

    Yuge, Ryota; Zhang, Minfang; Tomonari, Mutsumi; Yoshitake, Tsutomu; Iijima, Sumio; Yudasaka, Masako

    2008-09-23

    Although chemical functionalization at carboxyl groups of nanocarbons has been vigorously investigated and the identities and quantities of the carboxyl groups have been well studied, the location of carboxyl groups had not previously been clarified. Here, we show that site identification of carboxyl groups is possible by using Pt-ammine complex as a stain. After Pt-ammine complexes were mixed with graphenes in ethanol, many Pt-ammine complex clusters with an average size of about 0.6 nm were found to exist at edges of graphene sheets, indicating that the carboxyl groups mainly existed at the graphene edges. These results will make it easier to add functionalities by chemical modifications for various applications of nanotubes and other nanocarbons. PMID:19206426

  13. A spin-crossover complex based on a 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligand functionalized with a carboxylate group.

    PubMed

    Abhervé, Alexandre; Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; López-Jordà, Maurici

    2014-07-01

    Combining Fe(ii) with the carboxylate-functionalized 2,6-bis(pyrazol-1-yl)pyridine (bppCOOH) ligand results in the spin-crossover compound [Fe(bppCOOH)2](ClO4)2 which shows an abrupt spin transition with a T1/2 of ca. 380 K and a TLIESST of 60 K due to the presence of a hydrogen-bonded linear network of complexes. PMID:24804875

  14. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples.

    PubMed

    Anirudhan, T S; Deepa, J R; Christa, J

    2016-04-01

    A novel adsorbent, poly(itaconic acid/methacrylic acid)-grafted-nanocellulose/nanobentonite composite [P(IA/MAA)-g-NC/NB] with multi carboxyl functional groups for the effective removal of Cobalt(II) [Co(II)] from aqueous solutions. The adsorbent was characterized using FTIR, XRD, SEM-EDS, AFM and potentiometric titrations before and after adsorption of Co(II) ions. FTIR spectra revealed that Co(II) adsorption on to the polymer may be due to the involvement of COOH groups. The surface morphological changes were observed by the SEM images. The pH was optimized as 6.0. An adsorbent dose of 2.0g/L found to be sufficient for the complete removal of Co(II) from 100mg/L at room temperature. Pseudo-first-order and pseudo-second-order models were tested to describe kinetic data and adsorption of Co(II) follows pseudo-second-order model. The equilibrium attained at 120min. Isotherm studies were conducted and data were analyzed using Langmuir, Freundlich and Sips isotherm models and best fit was Sips model. Thermodynamic study confirmed endothermic and physical nature of adsorption of the Co(II) onto the adsorbent. Desorption experiments were done with 0.1MHCl proved that without significant loss in performance adsorbent could be reused for six cycles. The practical efficacy and effectiveness of the adsorbent were tested using nuclear industrial wastewater. A double stage batch adsorption system was designed from the adsorption isotherm data of Co(II) by constructing operating lines. PMID:26844393

  15. The essential activated carboxyl group of inorganic pyrophosphatase.

    PubMed

    Avaeva, S M; Bakuleva, N P; Baratova, L A; Nazarova, T I; Fink, N Y

    1977-05-12

    1. A carboxyl group of high reactivity has been found in inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) from yeast. This group interacts with agents which react neither with carboxyl groups of low molecular weight compounds nor with other carboxyl groups of the protein. 2. The reaction of this activated carboxyl group with inorganic phosphate, hydroxylamine, N-methyl- and O-methylhydroxylamines, and glycine methyl ester has been studied. 3. Homoserine and homoserine lactone were found in the hydrolyzate of phosphorylated and NaBH4-reduced pyrophosphatase, indicating that an aspartyl residue is phosphorylated. 4. Hydroxylamine and other nucleophilic agents cause inactivation of pyrophosphatase as a result of interaction with a carboxyl group. Both diaminobutyric and diaminopropionic acids were seen in the acid hydrolyzate of the protein treated with hydroxylamine and subjected to rearrangement in the presence of carbodiimide. 5. The ways in which the activation of a carboxyl group in the enzyme is achieved and the presumed mechanism of action of inorganic pyrophosphatase are discussed. PMID:16652

  16. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  17. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    SciTech Connect

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  18. IDENTIFICATION AND QUANTIFICATION OF AEROSOL POLAR OXYGENATED COMPOUNDS BEARING CARBOXYLIC AND/OR HYDROXYL GROUPS. 1. METHOD DEVELOPMENT

    EPA Science Inventory

    In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...

  19. Green process for chemical functionalization of nanocellulose with carboxylic acids.

    PubMed

    Espino-Pérez, Etzael; Domenek, Sandra; Belgacem, Naceur; Sillard, Cécile; Bras, Julien

    2014-12-01

    An environmentally friendly and simple method, named SolReact, has been developed for a solvent-free esterification of cellulose nanocrystals (CNC) surface by using two nontoxic carboxylic acids (CA), phenylacetic acid and hydrocinnamic acid. In this process, the carboxylic acids do not only act as grafting agent, but also as solvent media above their melting point. Key is the in situ solvent exchange by water evaporation driving the esterification reaction without drying the CNC. Atomic force microscopy and X-ray diffraction analyses showed no significant change in the CNC dimensions and crystallinity index after this green process. The presence of the grafted carboxylic was characterized by analysis of the "bulk" CNC with elemental analysis, infrared spectroscopy, and (13)C NMR. The ability to tune the surface properties of grafted nanocrystals (CNC-g-CA) was evaluated by X-ray photoelectron spectroscopy analysis. The hydrophobicity behavior of the functionalized CNC was studied through the water contact-angle measurements and vapor adsorption. The functionalization of these bionanoparticles may offer applications in composite manufacturing, where these nanoparticles have limited dispersibility in hydrophobic polymer matrices and as nanoadsorbers due to the presence of phenolic groups attached on the surface. PMID:25353612

  20. Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups.

    PubMed

    Mo, Yinghui; Tiraferri, Alberto; Yip, Ngai Yin; Adout, Atar; Huang, Xia; Elimelech, Menachem

    2012-12-18

    Carboxyls are inherent functional groups of thin-film composite polyamide nanofiltration (NF) membranes, which may play a role in membrane performance and fouling. Their surface presence is attributed to incomplete reaction of acyl chloride monomers during the membrane active layer synthesis by interfacial polymerization. In order to unravel the effect of carboxyl group density on organic fouling, NF membranes were fabricated by reacting piperazine (PIP) with either isophthaloyl chloride (IPC) or the more commonly used trimesoyl chloride (TMC). Fouling experiments were conducted with alginate as a model hydrophilic organic foulant in a solution, simulating the composition of municipal secondary effluent. Improved antifouling properties were observed for the IPC membrane, which exhibited lower flux decline (40%) and significantly greater fouling reversibility or cleaning efficiency (74%) than the TMC membrane (51% flux decline and 40% cleaning efficiency). Surface characterization revealed that there was a substantial difference in the density of surface carboxyl groups between the IPC and TMC membranes, while other surface properties were comparable. The role of carboxyl groups was elucidated by measurements of foulant-surface intermolecular forces by atomic force microscopy, which showed lower adhesion forces and rupture distances for the IPC membrane compared to TMC membranes in the presence of calcium ions in solution. Our results demonstrated that a decrease in surface carboxyl group density of polyamide membranes fabricated with IPC monomers can prevent calcium bridging with alginate and, thus, improve membrane antifouling properties. PMID:23205860

  1. Branched Arylalkenes from Cinnamates: Selectivity Inversion in Heck Reactions by Carboxylates as Deciduous Directing Groups.

    PubMed

    Tang, Jie; Hackenberger, Dagmar; Goossen, Lukas J

    2016-09-01

    A decarboxylative Mizoroki-Heck coupling of aryl halides with cinnamic acids has been developed in which the carboxylate group directs the arylation into its β-position before being tracelessly removed through protodecarboxylation. In the presence of a copper/palladium catalyst, both electron-rich and electron-deficient aryl bromides and chlorides bearing numerous functionalities were successfully coupled with broadly available cinnamates, with selective formation of 1,1-disubstituted alkenes. This reaction concept, in which the carboxylate acts as a deciduous directing group, ideally complements traditional 1,2-selective Heck reactions of styrenes. PMID:27485163

  2. Carboxylic Group Embedded Carbon Balls as a New Supported Catalyst for Hydrogen Economic Reactions.

    PubMed

    Bordoloi, Ankur

    2016-03-01

    Carboxylic group functionalized carbon balls have been successfully synthesized by using a facile synthesis method and well characterized with different characterization techniques such as XPS, MAS NMR, SEM, ICP and N2 physi-sorption analysis. The synthesized material has been effectively utilized as novel support to immobilized ruthenium catalyst for hydrogen economic reactions. PMID:27455763

  3. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    SciTech Connect

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu E-mail: zouguifu@suda.edu.cn; Gao, Peng; Zhang, Ke-Qin E-mail: zouguifu@suda.edu.cn; Du, Dezhuang; Guo, Jun

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  4. In vitro apatite formation on polyamide containing carboxyl groups modified with silanol groups.

    PubMed

    Kawai, Takahiro; Ohtsuki, Chikara; Kamitakahara, Masanobu; Hosoya, Kayo; Tanihara, Masao; Miyazaki, Toshiki; Sakaguchi, Yoshimitsu; Konagaya, Shigeji

    2007-06-01

    Modification of organic polymer with silanol groups in combination with calcium salts enables the polymer to show bioactivity, that is, the polymer forms apatite on its surface after exposure to body environment. However, how modification with silanol groups influences ability of apatite formation on the polymer substrate and adhesive strength between polymer and apatite is not yet known. In the present study, polyamide containing carboxyl groups was modified with different amounts of silanol groups, and its apatite-forming ability in 1.5SBF, which contained ion concentrations 1.5 times those of simulated body fluid (SBF), was examined. The rate of apatite formation increased with increasing content of silanol groups in the polyamide films. This may be attributed to enhancement of dipole interactions. A tendency for the adhesive strength of the apatite layer on the polyamide film to be decreased with increasing content of silanol groups was observed. This may be attributed to swelling in 1.5SBF and having a high degree of shrinkage after drying. These findings clearly show that modification of organic polymers with the functional groups induces apatite deposition, and also determines the adhesive strength of the apatite layer to the organic substrates. PMID:17243002

  5. Characterizing monoclonal antibody structure by carboxyl group footprinting

    PubMed Central

    Kaur, Parminder; Tomechko, Sara E; Kiselar, Janna; Shi, Wuxian; Deperalta, Galahad; Wecksler, Aaron T; Gokulrangan, Giridharan; Ling, Victor; Chance, Mark R

    2015-01-01

    Structural characterization of proteins and their antigen complexes is essential to the development of new biologic-based medicines. Amino acid-specific covalent labeling (CL) is well suited to probe such structures, especially for cases that are difficult to examine by alternative means due to size, complexity, or instability. We present here a detailed account of carboxyl group labeling (with glycine ethyl ester (GEE) tagging) applied to a glycosylated monoclonal antibody therapeutic (mAb). The experiments were optimized to preserve the structural integrity of the mAb, and experimental conditions were varied and replicated to establish the reproducibility of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include aspartic acid (D), glutamic acid (E), and the C-terminus (i.e., the target probes), with the experimental data in order to understand the accuracy of the approach. Data from the mAb were compared to reactivity measures of several model peptides to explain observed variations in reactivity. Attenuation of reactivity in otherwise solvent accessible probes is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. A comparison of results with previously published data by Deperalta et al using hydroxyl radical footprinting showed that 55% (32/58) of target residues were GEE labeled in this study whereas the previous study reported 21% of the targets were labeled. Although the number of target residues in GEE labeling is fewer, the two approaches provide complementary information. The results highlight advantages of this approach, such as the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling, reproducibility of replicate experiments (<2% variation in modification extent), the similar reactivity of the three target probes

  6. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-09-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  7. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-05-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  8. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I‧ region

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin A.; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I‧ band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D2O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  9. Rational design of carboxyl groups perpendicularly attached to a graphene sheet: a platform for enhanced biosensing applications.

    PubMed

    Bonanni, Alessandra; Chua, Chun Kiang; Pumera, Martin

    2014-01-01

    Graphene oxide (GO)-based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen-containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen-containing groups on GO. Herein, we suggest a direct solution to the long-standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free-radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on "classical" GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single-nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron-transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the

  10. Bovine serum albumin with glycated carboxyl groups shows membrane-perturbing activities.

    PubMed

    Yang, Shin-Yi; Chen, Ying-Jung; Kao, Pei-Hsiu; Chang, Long-Sen

    2014-12-15

    The aim of the present study aimed to investigate whether glycated bovine serum albumin (BSA) showed novel activities on the lipid-water interface. Mannosylated BSA (Man-BSA) was prepared by modification of the carboxyl groups with p-aminophenyl α-d-mannopyranoside. In contrast to BSA, Man-BSA notably induced membrane permeability of egg yolk phosphatidylcholine (EYPC)/egg yolk sphingomyelin (EYSM)/cholesterol (Chol) and EYPC/EYSM vesicles. Noticeably, Man-BSA induced the fusion of EYPC/EYSM/Chol vesicles, but not of EYPC/EYSM vesicles. Although BSA and Man-BSA showed similar binding affinity for lipid vesicles, the lipid-bound conformation of Man-BSA was distinct from that of BSA. Moreover, Man-BSA adopted distinct structure upon binding with the EYPC/EYSM/Chol and EYPC/EYSM vesicles. Man-BSA could induce the fusion of EYPC/EYSM/Chol vesicles with K562 and MCF-7 cells, while Man-BSA greatly induced the leakage of Chol-depleted K562 and MCF-7 cells. The modified BSA prepared by conjugating carboxyl groups with p-aminophenyl α-d-glucopyranoside also showed membrane-perturbing activities. Collectively, our data indicate that conjugation of carboxyl groups with monosaccharide generates functional BSA with membrane-perturbing activities on the lipid-water interface. PMID:25449061

  11. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  12. Density Functional Theory Study on the Interactions of Metal Ions with Long Chain Deprotonated Carboxylic Acids.

    PubMed

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Koch, Henrik; Åstrand, Per-Olof; Trinh, Thuat T; Grimes, Brian A

    2015-10-01

    In this work, interactions between carboxylate ions and calcium or sodium ions are investigated via density functional theory (DFT). Despite the ubiquitous presence of these interactions in natural and industrial chemical processes, few DFT studies on these systems exist in the literature. Special focus has been placed on determining the influence of the multibody interactions (with up to 4 carboxylates and one metal ion) on an effective pair-interaction potential, such as those used in molecular mechanics (MM). Specifically, DFT calculations are employed to quantify an effective pair-potential that implicitly includes multibody interactions to construct potential energy curves for carboxylate-metal ion pairs. The DFT calculated potential curves are compared to a widely used molecular mechanics force field (OPLS-AA). The calculations indicate that multibody effects do influence the energetic behavior of these ionic pairs and the extent of this influence is determined by a balance between (a) charge transfer from the carboxylate to the metal ions which stabilizes the complex and (b) repulsion between carboxylates, which destabilizes the complex. Additionally, the potential curves of the complexes with 1 and 2 carboxylates and one counterion have been examined to higher separation distance (20 Å) by the use of relaxed scan optimization and constrained density functional theory (CDFT). The results from the relaxed scan optimization indicate that near the equilibrium distance, the charge transfer between the metal ion and the deprotonated carboxylic acid group is significant and leads to non-negligible differences between the DFT and MM potential curves, especially for calcium. However, at longer separation distances the MM calculated interaction potential functions converge to those calculated with CDFT, effectively indicating the approximate domain of the separation distance coordinate where charge transfer between the ions is occurring. PMID:26331433

  13. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The

  14. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyls play an important role in the chemistry of natural organic molecules (NOM) in the environment, and their behavior is dependent on local structural environment within the macromolecule. We studied the structural environments of carboxyl groups in dissolved NOM from the Pine Barrens (New Jersey, USA), and IHSS NOM isolates from soils and river waters using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. It is well established that the energies of the asymmetric stretching vibrations of the carboxylate anion (COO -) are sensitive to the structural environment of the carboxyl group. These energies were compiled from previous infrared studies on small organic acids for a wide variety of carboxyl structural environments and compared with the carboxyl spectral features of the NOM samples. We found that the asymmetric stretching peaks for all NOM samples occur within a narrow range centered at 1578 cm -1, suggesting that all NOM samples examined primarily contain very similar carboxyl structures, independent of sample source and isolation techniques employed. The small aliphatic acids containing hydroxyl (e.g., D-lactate, gluconate), ether/ester (methoxyacetate, acetoxyacetate), and carboxylate (malonate) substitutions on the α-carbon, and the aromatic acids salicylate ( ortho-OH) and furancarboxylate ( O-heterocycle), exhibit strong overlap with the NOM range, indicating that similar structures may be common in NOM. The width of the asymmetric peak suggests that the structural heterogeneity among the predominant carboxyl configurations in NOM is small. Changes in peak area with pH at energies distant from the peak at 1578 cm -1, however, may be indicative of a small fraction of other aromatic carboxyls and aliphatic structures lacking α-substitution. This information is important in understanding NOM-metal and mineral-surface complexation, and in building appropriate structural and mechanistic models of humic materials.

  15. Assignment of function to Histidines 260 and 298 by engineering the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase complex; substitutions that lead to acceptance of substrates lacking the 5-carboxyl group.†

    PubMed Central

    Shim, Da Jeong; Nemeria, Natalia S.; Balakrishnan, Anand; Patel, Hetalben; Song, Jaeyoung; Wang, Junjie; Jordan, Frank; Farinas, Edgardo T.

    2011-01-01

    The first component (E1o) of the Escherichia coli 2-oxoglutarate dehydrogenase complex (OGDHc) was engineered to accept substrates lacking the 5-carboxylate group by subjecting H260 and H298 to saturation mutagenesis. Apparently, H260 is required for substrate recognition, but H298 could be replaced by hydrophobic residues of similar molecular volume. To interrogate whether the second component would enable synthesis of acyl-coenzymeA derivatives, hybrid complexes consisting of recombinant components of OGDHc (o) and pyruvate dehydrogenase (p) enzymes were constructed, suggesting that a different component is the ‘gatekeeper’ for specificity for these two multienzyme complexes in bacteria, E1p for pyruvate, but E2o for 2-oxoglutarate. PMID:21809826

  16. Palladium(II)-Catalyzed Tandem Synthesis of Acenes Using Carboxylic Acids as Traceless Directing Groups.

    PubMed

    Kim, Kiho; Vasu, Dhananjayan; Im, Honggu; Hong, Sungwoo

    2016-07-18

    A straightforward synthetic strategy for generating useful anthracene derivatives was developed involving palladium(II)-catalyzed tandem transformation with carboxylic acids as traceless directing groups. Carboxyl-directed C-H alkenylation, carboxyl-directed secondary C-H activation and rollover, intramolecular C-C bond formation, and decarboxylative aromatization are proposed as the key steps in the tandem reaction pathway. This novel synthetic route utilizes a broad range of substrates and provides a convenient synthetic tool that allows access to acenes. PMID:27244536

  17. Measuring the concentration of carboxylic acid groups in torrefied spruce wood.

    PubMed

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko

    2012-11-01

    Torrefaction is moderate thermal treatment (∼200-300°C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300°C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction. PMID:22940339

  18. Facile Synthesis of Carboxylic Functionalized MFe2O4 (M = Mn, Co, Zn) Nanospheres.

    PubMed

    Xing, Ruimin; Lu, Li; Huang, Haiping; Liu, Shanhu; Niu, Jingyang

    2015-07-01

    A facile one-pot solvothermal method was developed for the synthesis of carboxylic functionalized MFe2O4 (M = Mn, Co, Zn) nanospheres. Field-emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectrometer, and a superconducting quantum interference device magnetometer were used to characterize the morphologies, compositions and properties of the functionalized materials. Results show that all of the products were cubic spinel structures and exhibited hierarchical sphere-like morphologies, which were composed of primary nanocrystals. The MFe2O4 present advantageous functionality and good water dispensability due to the preferential exposure of uncoordinated carboxylate groups on their respective surfaces. These properties make them ideal candidates for various important applications such as drug delivery, bioseparation, and magnetic resonance imaging. PMID:26373101

  19. Contribution of the gamma-carboxyl group of Glu-43(beta) to the alkaline Bohr effect of hemoglobin A.

    PubMed

    Rao, M J; Acharya, A S

    1992-08-18

    Glu-43(beta) of hemoglobin A exhibits a high degree of chemical reactivity around neutral pH for amidation with nucleophiles in the presence of carbodiimide. Such a reactivity is unusual for the side-chain carboxyl groups of proteins. In addition, the reactivity of Glu-43(beta) is also sensitive to the ligation state of the protein [Rao, M. J., & Acharya, A. S. (1991) J. Protein Chem. 10, 129-138]. The influence of deoxygenation of hemoglobin A on the chemical reactivity of the gamma-carboxyl group of Glu-43(beta) has now been investigated as a function of pH (from 5.5 to 7.5). The chemical reactivity of Glu-43(beta) for amidation increases upon deoxygenation only when the modification reaction is carried out above pH 6.0. The pH-chemical reactivity profile of the amidation of hemoglobin A in the deoxy conformation reflects an apparent pKa of 7.0 for the gamma-carboxyl group of Glu-43(beta). This pKa is considerably higher than the pKa of 6.35 for the oxy conformation. The deoxy conformational transition mediated increase in the pKa of the gamma-carboxyl group of Glu-43(beta) implicates this carboxyl group as an alkaline Bohr group. The amidated derivative of hemoglobin A with 2 mol of glycine ethyl ester covalently bound to the protein was isolated by CM-cellulose chromatography.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1354984

  20. Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.

    2016-01-01

    We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded "heavy" and "light" GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the "heavy" and "light" peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.

  1. Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies.

    PubMed

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E; Gross, Michael L

    2016-01-01

    We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded "heavy" and "light" GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the "heavy" and "light" peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting. PMID:26384685

  2. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.

  3. Visible-Light-Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives.

    PubMed

    Xuan, Jun; Zhang, Zhao-Guo; Xiao, Wen-Jing

    2015-12-21

    Visible-light-induced radical decarboxylative functionalization of carboxylic acids and their derivatives has recently received considerable attention as a novel and efficient method to create CC and CX bonds. Generally, this visible-light-promoted decarboxylation process can smoothly occur under mild reaction conditions with a broad range of substrates and an excellent functional-group tolerance. The radical species formed from the decarboxylation step can participate in not only single photocatalytic transformations, but also dual-catalytic cross-coupling reactions by combining photoredox catalysis with other catalytic processes. Recent advances in this research area are discussed herein. PMID:26509837

  4. Changing reactivity of receptor carboxyl groups during bacterial sensing.

    PubMed

    Stock, J B; Koshland, D E

    1981-11-10

    A microdistillation procedure has been developed to analyze carboxylmethylation of the Mr = 60,000 chemoreceptor proteins involved in chemotaxis of Salmonella typhimurium and Escherichia coli. Methylation levels obtained by this method are substantially higher than those reported in the literature. In highly motile strains under optimal conditions there are approximately 100,000 methylated receptor residues per cell which are entirely composed of gamma-methylglutamyl esters. Whereas with previously used methods only groups which turn over could be detected, the microdistillation assay provides absolute values. Under steady state conditions, approximately one-half the total number of methyl ester residues are continuously hydrolyzed and resynthesized, while the remainder are sequestered. A mechanism has been devised to explain the observed patterns of methyl ester synthesis and hydrolysis. According to this hypothesis, substrate glutamyl residues on the receptor are located in a restricted region near the active sites of transferase and esterase which are bound to the receptor protein. Small, stimuli-induced changes in receptor conformation effect perturbations in receptor methylation by shifting the focus of activity of the modifying enzymes from one pair of closely spaced groups to another. PMID:7026562

  5. Mapping of Fab-1:VEGF Interface Using Carboxyl Group Footprinting Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wecksler, Aaron T.; Kalo, Matt S.; Deperalta, Galahad

    2015-12-01

    A proof-of-concept study was performed to demonstrate that carboxyl group footprinting, a relatively simple, bench-top method, has utility for first-pass analysis to determine epitope regions of therapeutic mAb:antigen complexes. The binding interface of vascular endothelial growth factor (VEGF) and the Fab portion of a neutralizing antibody (Fab-1) was analyzed using carboxyl group footprinting with glycine ethyl ester (GEE) labeling. Tryptic peptides involved in the binding interface between VEGF and Fab-1 were identified by determining the specific GEE-labeled residues that exhibited a reduction in the rate of labeling after complex formation. A significant reduction in the rate of GEE labeling was observed for E93 in the VEGF tryptic peptide V5, and D28 and E57 in the Fab-1 tryptic peptides HC2 and HC4, respectively. Results from the carboxyl group footprinting were compared with the binding interface identified from a previously characterized crystal structure (PDB: 1BJ1). All of these residues are located at the Fab-1:VEGF interface according to the crystal structure, demonstrating the potential utility of carboxyl group footprinting with GEE labeling for mapping epitopes.

  6. Silylesterification of oxidized multi-wall carbon nanotubes by catalyzed dehydrogenative cross-coupling between carboxylic and hydrosilane functions

    NASA Astrophysics Data System (ADS)

    Seffer, J.-F.; Detriche, S.; Nagy, J. B.; Delhalle, J.; Mekhalif, Z.

    2014-06-01

    Surface modification of oxidized carbon nanotubes (O-CNTs) with silicon based anchoring groups (R-SiR3) is a relatively uncommon approach of the CNTs functionalization. Hydrosilane derivatives constitute an attractive subclass of compounds for silanization reactions on the CNTs surface. In this work, we report on the ZnCl2 catalytically controlled reaction (hydrosilane dehydrogenative cross-coupling, DHCC) of fluorinated hydrosilane probes with the carboxylic functions present on the surface of oxidized multi-wall carbon nanotubes. Carbon nanotubes functionalized with essentially alcohol groups are also used to compare the selectivity of zinc chloride toward carboxylic groups. To assess the efficiency of functionalization, X-ray Photoelectron Spectroscopy is used to determine the qualitative and quantitative composition of the different samples. Solubility tests on the oxidized and silanized MWNTs are also carried out in the framework of the Hansen Solubility Parameters (HSP) theory to apprehend at another scale the effect of DHCC.

  7. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  8. Optimization and characterization of a homogeneous carboxylic surface functionalization for silicon-based biosensing.

    PubMed

    Chiadò, Alessandro; Palmara, Gianluca; Ricciardi, Serena; Frascella, Francesca; Castellino, Micaela; Tortello, Mauro; Ricciardi, Carlo; Rivolo, Paola

    2016-07-01

    A well-organized immobilization of bio-receptors is a crucial goal in biosensing, especially to achieve high reproducibility, sensitivity and specificity. These requirements are usually attained with a controlled chemical/biochemical functionalization that creates a stable layer on a sensor surface. In this work, a chemical modification protocol for silicon-based surfaces to be applied in biosensing devices is presented. An anhydrous silanization step through 3-aminopropylsilane (APTES), followed by a further derivatization with succinic anhydride (SA), is optimized to generate an ordered flat layer of carboxylic groups. The properties of APTES/SA modified surface were compared with a functionalization in which glutaraldehyde (GA) is used as crosslinker instead of SA, in order to have a comparison with an established and largely applied procedure. Moreover, a functionalization based on the controlled deposition of a plasma polymerized acrylic acid (PPAA) thin film was used as a reference for carboxylic reactivity. Advantages and drawbacks of the considered methods are highlighted, through physico-chemical characterizations (OCA, XPS, and AFM) and by means of a functional Protein G/Antibody immunoassay. These analyses reveal that the most homogeneous, reproducible and active surface is achieved by using the optimized APTES/SA coupling. PMID:27022864

  9. Adsorption of Co(II) by a carboxylate-functionalized polyacrylamide grafted lignocellulosics.

    PubMed

    Shibi, I G; Anirudhan, T S

    2005-02-01

    A new adsorbent (PGBS-COOH) having carboxylate functional group at the chain end was synthesized by graft copolymerization of acrylamide onto banana stalk, BS (Musa Paradisiaca) using ferrous ammonium sulphate/H2O2 redox initiator system. The efficiency of the adsorbent in the removal of cobalt [Co(II)] from water was investigated using batch adsorption technique. The adsorbent exhibits very high adsorption potential for Co(II) and under optimum conditions more than 99% removal was achieved. The maximum adsorption capacity was observed at the pH range 6.5-9.0. The equilibrium isotherm data were analysed using three isotherm models, Langmuir, Freundlich and Scatchard, to determine the best fit equation for the sorption of Co(II) on the PGBS-COOH. A comparative study with a commercial cation exchanger, Ceralite IRC-50, having carboxylate functional group showed that PGBS-COOH is 2.8 times more effective compared to Ceralite IRC-50 at 30 degrees C. Synthetic nuclear power plant coolant water samples were also treated by the adsorbent to demonstrate its efficiency in removing Co(II) from water in the presence of other metal ions. Acid regeneration was tried for several cycles to recover the adsorbed metal ions and also to restore the sorbent to its original state. PMID:15664619

  10. Removal of transition metals from dilute aqueous solution by carboxylic acid group containing absorbent polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new carboxylic acid group containing resin with cation exchange capacity, 12.67 meq/g has been used to remove Cu2+, Co2+ and Ni2+ ions from dilute aqueous solution. The resin has Cu2+, Co2+ and Ni2+ removal capacity, 216 mg/g, 154 mg/g and 180 mg/g, respectively. The selectivity of the resin to ...

  11. Preferential Interaction of Na+ over K+ to Carboxylate-functionalized Silver Nanoparticles

    EPA Science Inventory

    Elucidating mechanistic interactions between specific ions (Na+/ K+) and nanoparticle surfaces to alter particle stability in polar media has received little attention. We investigated relative preferential binding of Na+ and K+ to carboxylate-functionalized silver nanoparticles ...

  12. Shielding membrane surface carboxyl groups by covalent-binding graphene oxide to improve anti-fouling property and the simultaneous promotion of flux.

    PubMed

    Han, Jing-Long; Xia, Xue; Tao, Yu; Yun, Hui; Hou, Ya-Nan; Zhao, Chang-Wei; Luo, Qin; Cheng, Hao-Yi; Wang, Ai-Jie

    2016-10-01

    Graphene oxide (GO) is an excellent material for membrane surface modification. However, little is known about how and to what extent surface functional groups change after GO modification influence membrane anti-fouling properties. Carboxyl is an inherent functional group on polyamide or other similar membranes. Multivalent cations in wastewater secondary effluent can bridge with carboxyls on membrane surfaces and organic foulants, resulting in serious membrane fouling. In this study, carboxyls of a polydopamine (pDA)/1,3,5-benzenetricarbonyl trichloride (TMC) active layer are shielded by covalently-bound GO. The process is mediated by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS). For GO containing low quantities of carboxyls, X-ray photoelectron spectroscopy (XPS) and zeta potential analyzer test results reveal that the carboxyl density decreased by 52.3% compare to the pDA/TMC membrane after GO modification. Fouling experiments shows that the flux only slightly declines in the GO functionalized membrane (19.0%), compared with the pDA/TMC membrane (36.0%) after fouling. In addition, during GO modification process the pDA/TMC active layer also become harder and thinner with the aid of EDC/NHS. So the pure water permeability increases from 56.3 ± 18.2 to 103.7 ± 12.0 LMH/MPa. Our results provide new insights for membrane modification work in water treatment and other related fields. PMID:27479294

  13. Renormalization group functional equations

    SciTech Connect

    Curtright, Thomas L.; Zachos, Cosmas K.

    2011-03-15

    Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories and to gain insight into the interplay between continuous and discrete rescaling. With minimal assumptions, the methods produce continuous flows from step-scaling {sigma} functions and lead to exact functional relations for the local flow {beta} functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of {sigma} are sometimes not true fixed points under continuous changes in scale and zeroes of {beta} do not necessarily signal fixed points of the flow but instead may only indicate turning points of the trajectories.

  14. Snythesis and characterization of the first main group oxo-centered trinuclear carboxylate

    NASA Technical Reports Server (NTRS)

    Duraj, Stan A.

    1994-01-01

    The synthesis and structural characterization of the first main group oxo-centered, trinuclear carboxylato-bridged species is reported, namely (Ga3(mu(sub 3)-O) (mu-O2CC6H5)6 (4-Mepy)3) GaCl4 center dot 4-Mepy (compound 1), where 4-Mepy is 4-methylpyridine. Compound 1 is a main group example of a well-established class of complexes, referred to as 'basic carboxylates' of the general formula (M3(mu(sub 3)-O)(mu-O2CR)6L3)(+), previously observed only for transition metals.

  15. "Fifty Shades" of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties.

    PubMed

    Micillo, Raffaella; Panzella, Lucia; Koike, Kenzo; Monfrecola, Giuseppe; Napolitano, Alessandra; d'Ischia, Marco

    2016-01-01

    Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ) and its 3-carboxylic acid (BTZCA). In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA) absorption features, accounting for light-dependent reactive oxygen species (ROS) production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed. PMID:27196900

  16. [Functions of carboxyl-terminus of Hsc70 interacting protein and its role in neurodegenerative disease].

    PubMed

    Yan, Wei-qian; Wang, Jun-ling; Tang, Bei-sha

    2012-08-01

    Neurodegenerative diseases are a group of chronic progressive neuronal damage disorders. The cause is unclear, most of them share a same pathological hallmark with misfold proteins accumulating in neurons. Carboxyl-terminus of Hsc70 interacting protein (CHIP) is a dual functional molecule, which has a N terminal tetratrico peptide repeat (TPR) domain that interacts with Hsc/Hsp70 complex and Hsp90 enabling CHIP to modulate the aberrant protein folding; and a C terminal U-box ubiquitin ligase domain that binds to the 26S subunit of the proteasome involved in protein degradation via ubiqutin-proteasome system. CHIP protein mediates interactions between the chaperone system and the ubiquitin-proteasome system, and plays an important role in maintaining the protein homeostasis in cells. This article reviews the molecular characteristics and physiological functions of CHIP, and its role in cellular metabolism and discusses the relationship between CHIP dysfunction and neurodegenerative diseases. PMID:22875499

  17. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  18. Synthesis, characterization, guest inclusion, and photophysical studies of gold nanoparticles stabilized with carboxylic acid groups of organic cavitands.

    PubMed

    Mondal, Barnali; Kamatham, Nareshbabu; Samanta, Shampa R; Jagadesan, Pradeepkumar; He, Jibao; Ramamurthy, V

    2013-10-15

    Water-soluble gold nanoparticles (AuNP) stabilized with cavitands having carboxylic acid groups have been synthesized and characterized by a variety of techniques. Apparently, the COOH groups similar to thiol are able to prevent aggregation of AuNP. These AuNP were stable either as solids or in aqueous solution. Most importantly, these cavitand functionalized AuNP were able to include organic guest molecules in their cavities in aqueous solution. Just like free cavitands (e.g., octa acid), cavitand functionalized AuNP includes guests such as 4,4'-dimethylbenzil and coumarin-1 through capsule formation. The exact structure of the capsular assembly is not known at this stage. Upon excitation there is communication between the excited guest present in the capsule and gold atoms and this results in quenching of phosphorescence from 4,4'-dimethylbenzil and fluorescence from coumarin-1. PMID:24059841

  19. Copper(II)-Promoted Cyclization/Difunctionalization of Allenols and Allenylsulfonamides: Synthesis of Heterocycle-Functionalized Vinyl Carboxylate Esters.

    PubMed

    Casavant, Barbara J; Khoder, Zainab M; Berhane, Ilyas A; Chemler, Sherry R

    2015-12-18

    A unique method to affect intramolecular aminooxygenation and dioxygenation of allenols and allenylsulfonamides is described. These operationally simple reactions occur under neutral or basic conditions where copper(II) carboxylates serve as reaction promoter, oxidant, and carboxylate source. Moderate to high yields of heterocycle-functionalized vinyl carboxylate esters are formed with moderate to high levels of diastereoselectivity. Such vinyl carboxylate esters could serve as precursors to α-amino and α-oxy ketones and derivatives thereof. PMID:26624861

  20. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    SciTech Connect

    Hazum, E.

    1987-11-03

    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  1. Unusual metal-ligand charge transfer in ferrocene functionalized μ3-O iron carboxylates observed with Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Mereacre, Valeriu; Schlageter, Martin; Eichhöfer, Andreas; Bauer, Thomas; Wolny, Juliusz A.; Schünemann, Volker; Powell, Annie K.

    2016-06-01

    Temperature dependent Mössbauer studies of two ferrocenecarboxylate functionalized {Fe3O} complexes in solid state are reported. It was found that conjugation of ferrocene ring orbitals with the π orbitals of the adjacent carboxylic group promotes a shift of electron density from the ferrocene FeII ion to the cyclopentadienide rings with π-orbital character giving rise to a new type of mixed-valence compound.

  2. Optical characterization of ultrasmall, hydrogen-terminated and carboxyl-functionalized silicon nanoparticles in aqueous environments

    NASA Astrophysics Data System (ADS)

    Eckhoff, Dean Alan

    The primary theme of this dissertation is to characterize the optical and chemical properties of ultrasmall (˜1 nm) silicon nanoparticles (Si-np) in aqueous environments, focusing on their potential for use as luminescent markers in biophysical and biological applications. Two systems are presented in detail: hydrogen-terminated Si-np prepared through electrochemical dispersion of a crystalline Si wafer and carboxyl-functionalized Si-np prepared via thermal hydrosilylation of surface Si-H bonds with an o-ester 1-alkene. Chemical and physical characterizations are done using nuclear magnetic resonance, size exclusion chromatography, and infrared spectroscopy. Optical characterization is done via absorption and steady-state photoluminescence (PL) and using capillary electrophoresis coupled with laser-induced fluorescence detection. The behavior of the hydrogen-terminated Si-np is studied over time as-prepared in isopropanol and during treatments with water, NaOH, HCl, and H2O 2. The PL spectra show three distinct, near-Gaussian states with a FWHM ˜0.45 eV and their respective emissions in the UV-B (˜305 nm), UV-A (˜340 nm), and 'hard-blue' (˜400 nm) regions of the spectrum. The 'hard-blue' emission is shown to have a simple pH dependence with a pKa ˜3, demonstrating the possibility of using Si-np as environmental probes. These results offer some promise for tailoring the PL properties of ultrasmall Si-np through control of their surface chemistry. In the second part, three central elements establish that the carboxyl-functionalized Si-np have excellent potential for use as a luminescent marker in aqueous systems. First, they are shown to be ultrasmall, with a diameter of ˜1 nm, comparable to that of common organic fluorophores. Second, they are shown to have narrow PL in the near-UV with a nearly-symmetric lineshape and a FWHM as small as 30 nm. Third, it is shown that standard chemical means can be used to functionalize the Si-np with carboxyl groups, giving

  3. Preparation of carboxyl group-modified palladium nanoparticles in an aqueous solution and their conjugation with DNA

    NASA Astrophysics Data System (ADS)

    Wang, Zhifei; Li, Hongying; Zhen, Shuang; He, Nongyue

    2012-05-01

    The use of nanomaterials in biomolecular labeling and their corresponding detection has been attracting much attention, recently. There are currently very few studies on palladium nanoparticles (Pd NPs) due to their lack of appropriate surface functionalities for conjugation with DNA. In this paper, we thus firstly present an approach to prepare carboxyl group-modified Pd NPs (with an average size of 6 nm) by the use of 11-mercaptoundecanoic acid (MUDA) as a stabilizer in the aqueous solution. The effect of the various reducing reaction conditions on the morphology of the Pd NPs was investigated. The particles were further characterized by TEM, UV-vis, FT-IR and XPS techniques. DNA was finally covalently conjugated to the surface of the Pd NPs through the activation of the carboxyl group, which was confirmed by agarose gel electrophoresis and fluorescence analysis. The resulting Pd NPs-DNA conjugates show high single base pair mismatch discrimination capabilities. This work therefore sets a good foundation for further applications of Pd NPs in bio-analytical research.

  4. Synthesis and characterization of a novel carboxyl group containing (co)polyimide with sulfur in the polymer backbone

    PubMed Central

    Mrsevic, Miroslav; Düsselberg, David

    2012-01-01

    Summary Soluble functional (co)polyimides are of great interest in the area of separation processes or optical applications, due to their excellent mechanical-, thermal- and optical properties, their superior processability and the ability to adapt their properties to a wide range of special applications. Therefore, two series of novel (co)polyimides containing fluorinated sulfur- and carboxylic acid groups consisting of 4,4′-(hexafluoroisopropylidene)di(phthalic anhydride) (6FDA), 3,5-diaminobenzoic acid (DABA), 4,4′-diaminodiphenylsulfide (4,4′-SDA) and 3,3′-diaminodiphenylsulfone (3,3′-DDS) were synthesized in a two-step polycondensation reaction. The synthesized copolymers were characterized by using NMR, FTIR, GPC, and DSC. Furthermore, with regard to processing and potential applications, the thermal stability, solubility in common organic solvents, moisture uptake, and transparency were investigated. Compared to commercially available transparent polymers, i.e., polymethylmethacrylate and cycloolefin polymers, the sulfur (co)polyimides containing carboxyl groups showed much higher glass-transition temperatures, comparably low moisture uptake and high transmission at the sodium D-line. Furthermore, good solubility in commonly used organic solvents makes them very attractive as high-performance coating materials. PMID:23015826

  5. Molecular dynamics simulations of functionalized carbon nanotubes in water: Effects of type and position of functional groups

    NASA Astrophysics Data System (ADS)

    Foroutan, Masumeh; Moshari, Mahshad

    2010-11-01

    In this work the behavior of the (8,2) single walled carbon nanotubes (CNTs) and functionalized carbon nanotubes (FCNTs) with four functional groups in water were studied using molecular dynamic (MD) simulation method. Glutamine as a long chain functional group and carboxyl as a short chain functional group have been used as functional groups in FCNTs. Four functional groups in each FCNT were localized at two positions: (i) all four functional groups were in the sidewalls of nanotube, (ii) two functional groups were at the ends and two functional groups were in the sidewalls of nanotube. The intermolecular interaction energies between CNTs or FCNTs and water molecules, the plots of radial distribution function and the diffusion coefficients of CNTs and FCNTs in water were computed for investigating the effects of type and position of functional groups on the behavior of FCNTs in water. The obtained results from three methods are consistent with each others. Results showed that the position of the functional groups in FCNTs has an important role in the interaction of hydrophilic groups of FCNTs with water molecules. Furthermore we also investigated the behavior of FCNTs with sixteen carboxyl functional groups in water. The presence of these large numbers of carboxyl functional groups on the carbon nanotubes prevents water molecules from moving towards hydrophilic carboxyl functional groups. This demonstrates the advantage of using lower number of functional groups each containing many hydrophilic groups like glutamine functional group.

  6. Study of carboxylic functionalization of polypropylene surface using the underwater plasma technique

    NASA Astrophysics Data System (ADS)

    Joshi, R. S.; Friedrich, J. F.; Wagner, M. H.

    2009-08-01

    Non-equilibrium solution plasma treatment of polymer surfaces in water offers the possibility of more dense and selective polymer surface functionalization in comparison to the well-known and frequently used low-pressure oxygen plasma. Functional groups are introduced when the polymer surface contacts the plasma moderated solution especially water solutions. The emission of ions, electrons, energy-rich neutrals and complexes, produced by the ion avalanche are limited by quenching, with the aid of the ambient water phase. The UV-radiation produced in plasma formation also helps to moderate the reaction solution further by producing additional excited, ionized/dissociated molecules. Thus, monotype functional groups equipped polymer surfaces, preferably OH groups, originating from the dissociated water molecules, could be produced more selectively. An interesting feature of the technique is its flexibility to use a wide variety of additives in the water phase. Another way to modify polymer surfaces is the deposition of plasma polymers carrying functional groups as carboxylic groups used in this work. Acetic acid, acrylic acid, maleic and itaconic acid were used as additive monomers. Acetic acid is not a chemically polymerizing monomer but it could polymerize by monomer/molecular fragmentation and recombination to a cross linked layer. The other monomers form preferably water-soluble polymers on a chemical way. Only the fragmented fraction of these monomers could form an insoluble coating by cross linking to substrate. The XPS analysis was used to track the alterations in -O-CO- bond percentage on the PP surface. To identify the -COOH groups on substrate surface unambiguously, which have survived the plasma polymerization process, the derivatization with trifluoroethanol was performed.

  7. Incorporating Diblock Copolymer Nanoparticles into Calcite Crystals: Do Anionic Carboxylate Groups Alone Ensure Efficient Occlusion?

    PubMed Central

    2016-01-01

    New spherical diblock copolymer nanoparticles were synthesized via RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) at 70 °C and 20% w/w solids using either poly(carboxybetaine methacrylate) or poly(proline methacrylate) as the steric stabilizer block. Both of these stabilizers contain carboxylic acid groups, but poly(proline methacrylate) is anionic above pH 9.2, whereas poly(carboxybetaine methacrylate) has zwitterionic character at this pH. When calcite crystals are grown at an initial pH of 9.5 in the presence of these two types of nanoparticles, it is found that the anionic poly(proline methacrylate)-stabilized particles are occluded uniformly throughout the crystals (up to 6.8% by mass, 14.0% by volume). In contrast, the zwitterionic poly(carboxybetaine methacrylate)-stabilized particles show no signs of occlusion into calcite crystals grown under identical conditions. The presence of carboxylic acid groups alone therefore does not guarantee efficient occlusion: overall anionic character is an additional prerequisite. PMID:27042383

  8. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications.

    PubMed

    Yang, Jianping; Shen, Dengke; Li, Xiaomin; Li, Wei; Fang, Yin; Wei, Yong; Yao, Chi; Tu, Bo; Zhang, Fan; Zhao, Dongyuan

    2012-10-22

    In this paper, we report a facile one-step hydrothermal method to synthesize phase-, size-, and shape-controlled carboxyl-functionalized rare-earth fluorescence upconversion phosphors by using a small-molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano- to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF(4):Yb/Er products with hydrophilic carboxyl-functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl-functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials. PMID:22996059

  9. Chemical derivatization of peptide carboxyl groups for highly efficient electron transfer dissociation

    PubMed Central

    Frey, Brian L.; Ladror, Daniel T.; Sondalle, Samuel B.; Krusemark, Casey J.; Jue, April L.; Coon, Joshua J.; Smith, Lloyd M.

    2013-01-01

    The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99%. This nearly complete labeling avoids making complex peptide mixtures even more complex due to partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ∼90% of its precursor ions with z > 2, compared to less than 40% for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g. 70% for modified versus only 43% for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50% increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications. PMID:23918461

  10. Chemical Derivatization of Peptide Carboxyl Groups for Highly Efficient Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Frey, Brian L.; Ladror, Daniel T.; Sondalle, Samuel B.; Krusemark, Casey J.; Jue, April L.; Coon, Joshua J.; Smith, Lloyd M.

    2013-11-01

    The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z > 2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications.

  11. Connecting terminal carboxylate groups in nine-coordinate lanthanide podates: consequences on the thermodynamic, structural, electronic, and photophysical properties.

    PubMed

    Senegas, Jean-Michel; Bernardinelli, Gérald; Imbert, Daniel; Bünzli, Jean-Claude G; Morgantini, Pierre-Yves; Weber, Jacques; Piguet, Claude

    2003-07-28

    The hydrolysis of terminal (t)butyl-ester groups provides the novel nonadentate podand tris[2-[N-methylcarbamoyl-(6-carboxypyridine-2)-ethyl]amine] (L13) which exists as a mixture of slowly interconverting conformers in solution. At pH = 8.0 in water, its deprotonated form [L13 - 3H](3-) reacts with Ln(ClO(4))(3) to give the poorly soluble and stable podates [Ln(L13 - 3H)] (log(beta(110)) = 6.7-7.0, Ln = La-Lu). The isolated complexes [Ln(L13 - 3H)](H(2)O)(7) (Ln = Eu, 8; Tb, 9; Lu, 10) are isostructural, and their crystal structures show Ln(III) to be nine-coordinate in a pseudotricapped trigonal prismatic site defined by the donor atoms of the three helically wrapped tridentate binding units of L13. The Ln-O(carboxamide) bonds are only marginally longer than the Ln-O(carboxylate) bonds in [Ln(L13 - 3H)], thus producing a regular triple helix around Ln(III) which reverses its screw direction within the covalent Me-TREN tripod. High-resolution emission spectroscopy demonstrates that (i) the replacement of terminal carboxamides with carboxylates induces only minor electronic changes for the metallic site, (ii) the solid-state structure is maintained in water, and (iii) the metal in the podate is efficiently protected from interactions with solvent molecules. The absolute quantum yields obtained for [Eu(L13 - 3H)] (Phi(Eu)(tot)= 1.8 x 10(-3)) and [Tb(L13 - 3H)] (Phi(Eu)(tot)= 8.9 x 10(-3)) in water remain modest and strongly contrast with that obtained for the lanthanide luminescence step (Phi(Eu) = 0.28). Detailed photophysical studies assign this discrepancy to the small energy gap between the ligand-centered singlet ((1)pi pi*) and triplet ((3)pi pi*) states which limits the efficiency of the intersystem crossing process. Theoretical TDDFT calculations suggest that the connection of a carboxylate group to the central pyridine ring prevents the sizable stabilization of the triplet state required for an efficient sensitization process. The thermodynamic and

  12. Involvement of the carboxyl group in QPs in interaction with succinate dehydrogenase

    SciTech Connect

    Xu, J.; Yu, L.; Yu, C.

    1987-05-01

    Bovine heart mitochondrial succinate-ubiquinone reductase (SQR) can be resolved into two reconstitutively active fractions; soluble succinate dehydrogenase (SDH), and a two-subunit Q-binding protein known as QPs or cytochrome b/sub 560/ fraction. The interaction between SDH and QPs involves both hydrophobic and ionic interactions. The involvement of an amino group in SDH has been established, the participation of a negatively charged group in QPs was then being speculated. Recently, they have used dicyclohexyl carbodiimide (DCCD) to study the involvement of carboxyl group in QPs with respect to interaction with SDH. When isolated QPs was treated with a 300-molar excess of DCCD per mole of protein at pH 6.0 in the presence of 0.2% D-N-gluco-N-methyl-decanamide, more than 80% of the reconstitutive activity of QPs was diminished. The inhibition of QPs by DCCD is pH and detergent concentration dependent. When intact or reconstituted SQR was treated with DCCD, no inhibition was observed, indicating that a carboxyl group in QPs which is essential for interaction with SDH is protected from DCCD modification in the presence of active SDH. No protecting effect was observed when reconstitutively inactive SDH was used, indicating that there is no interaction between reconstitutively inactive SDH and QPs. The (/sup 14/C)-DCCD labeling study showed that the DCCD was incorporated into the smaller subunit of QPs. The modification of QPs by DCCD also caused an alteration of spectral characteristics of cytochrome b/sub 560/.

  13. Mechanism of Macroscopic Motion of Oleate Helical Assemblies: Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives.

    PubMed

    Kageyama, Yoshiyuki; Ikegami, Tomonori; Kurokome, Yuta; Takeda, Sadamu

    2016-06-13

    Macroscopic and spatially ordered motions of self-assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter-scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self-assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry. PMID:27165777

  14. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas. PMID:23286690

  15. Transition metal chemistry of main group hydrazides. Part 3:{sup 1} carboxylate appended phosphorus hydrazides as novel functionalized chelating systems. Synthesis and characterization of new cyclometallaphosphohydrazides. X-ray structure of a Palladium(II) representative

    SciTech Connect

    Singh, P.R.; Jimenez, H.; Barnes, C.L.; Katti, K.V. |; Volkert, W.A. |

    1994-02-16

    The synthesis of new bifunctional chelating agents (BFCAs) based on the phosphorus hydrazide ligand family for potential {sup 109}Pd labeling of tumor-localizing biomolecules such as proteins/peptides is described. The new BFCAs were achieved in good yields (75-90%) by the reaction of the phosphorus hydrazide PhP(S)(NMeNH{sub 2}){sub 2} (1) with functionalized aldehydes to yield the Schiff-base products with the following chemical compositions as air-stable crystalline solids: PhP(S)(NMeNH{sub 2})(NMeNCHC{sub 6}H{sub 4}COOH), 2; PhP(S)(NMeNCHC{sub 6}H{sub 4}COOH){sub 2}, 3; PhP(S)(NMeNH{sub 2})(NMeNCHC{sub 6}H{sub 4}CH=CHCOOH), 4; PhP(S)(NMeNCHC{sub 6}H{sub 4}CH-CHCOOH){sub 2}, 5. The reactions of three of the new phosphorus hydrazides (2-4) with PdCl{sub 2}(PhCN){sub 2} resulted in the new Pd(II) metallacycles PhP(S)(NMeNH{sub 2})(NMeNCHC{sub 6}H{sub 4}COOH){center_dot}PdCl{sub 2}, 6; PhP(S)(NMeNCHC{sub 6}H{sub 4}COOH){sub 2}{center_dot}PdCl{sub 2}, 7; and PhP(S)(NMeNH{sub 2})(NMeNCHC{sub 6}H{sub 4}CH=CHCOOH){center_dot}PdCl{sub 2}, 8. The reactivity of 6 toward n-butylamine has been evaluated as a model for the preparation of new bioconjugates. The structural elucidation of all the new compounds has been carried out by analytical and complete NMR ({sup 1}H, {sup 31}P) and IR spectroscopic data. As a representative example, the X-ray structure of one of the Pd(II) complexes, 8, has been determined.

  16. Synthetic cannabinoids as designer drugs: new representatives of indol-3-carboxylates series and indazole-3-carboxylates as novel group of cannabinoids. Identification and analytical data.

    PubMed

    Shevyrin, Vadim; Melkozerov, Vladimir; Nevero, Alexander; Eltsov, Oleg; Baranovsky, Alexander; Shafran, Yuri

    2014-11-01

    By means of gas chromatography with mass spectrometry detection (GC-MS), including high resolution mass spectrometry (GC-HRMS) together with ultra-high performance liquid chromatography in combination with high resolution tandem mass spectrometry (UHPLC-HRMS), nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FT-IR), structure of new synthetic cannabinoids, representatives of indol- and indazole-3-carboxylates groups, used in smoke mixtures, was determined. Obtained analytical data make reliable identification of these compounds in a course of analysis of criminal seizures possible. PMID:25305529

  17. Cluster functional renormalization group

    NASA Astrophysics Data System (ADS)

    Reuther, Johannes; Thomale, Ronny

    2014-01-01

    Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy scattering vertices of interacting many-body systems. Starting from a free expansion point of the action, the flow of the RG parameter Λ allows us to trace the evolution of the effective one- and two-particle vertices towards low energies by taking into account the vertex corrections between all parquet channels in an unbiased fashion. In this work, we generalize the expansion point at which the diagrammatic resummation procedure is initiated from a free UV limit to a cluster product state. We formulate a cluster FRG scheme where the noninteracting building blocks (i.e., decoupled spin clusters) are treated exactly, and the intercluster couplings are addressed via RG. As a benchmark study, we apply our cluster FRG scheme to the spin-1/2 bilayer Heisenberg model (BHM) on a square lattice where the neighboring sites in the two layers form the individual two-site clusters. Comparing with existing numerical evidence for the BHM, we obtain reasonable findings for the spin susceptibility, the spin-triplet excitation energy, and quasiparticle weight even in coupling regimes close to antiferromagnetic order. The concept of cluster FRG promises applications to a large class of interacting electron systems.

  18. Simple synthesis of carboxyl-functionalized upconversion nanoparticles for biosensing and bioimaging applications.

    PubMed

    Han, Gui-Mei; Li, Hui; Huang, Xiao-Xi; Kong, De-Ming

    2016-01-15

    We report a simple one-step hydrothermal method for the synthesis of hydrophilic luminescent upconversion nanoparticles (UCNPs) using malonic acid as the stabilizer and functional agent. Using this method, two UCNPs with different colors of upconversion luminescence were synthesized. The surface of the as-prepared UCNPs was capped with carboxyl groups, which not only resulted in the UCNPs having good dispersity in water, but also allowed further conjugation with other functional molecules, thus indicating the potential applications in biosensing and bioimaging. To demonstrate this, amino-labeled single-stranded DNA (ssDNA) was conjugated on the surface of the UCNPs. Based on the different absorption and luminescence quenching abilities of graphene oxide (GO) to ssDNA-modified UCNPs before and after exonuclease I (Exo I)-triggered hydrolysis of ssDNA, a detection platform was developed for the detection of Exo I activity with a detection limit of 0.02U mL(-1). The prepared hydrophilic UCNPs were also used successfully for in vivo upconversion luminescence imaging of nude mice. PMID:26592597

  19. Evaluation of a 7-Methoxycoumarin-3-carboxylic Acid Ester Derivative as a Fluorescent, Cell-Cleavable, Phosphonate Protecting Group.

    PubMed

    Wiemer, Andrew J; Shippy, Rebekah R; Kilcollins, Ashley M; Li, Jin; Hsiao, Chia-Hung Christine; Barney, Rocky J; Geng, M Lei; Wiemer, David F

    2016-01-01

    Cell-cleavable protecting groups often enhance cellular delivery of species that are charged at physiological pH. Although several phosphonate protecting groups have achieved clinical success, it remains difficult to use these prodrugs in live cells to clarify biological mechanisms. Here, we present a strategy that uses a 7-methoxycoumarin-3-carboxylic acid ester as a fluorescent protecting group. This strategy was applied to synthesis of an (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) analogue to assess cellular uptake and human Vγ9Vδ2 T cell activation. The fluorescent ester displayed low cellular toxicity (IC50 >100 μm) and strong T cell activation (EC50 =0.018 μm) relative to the unprotected anion (EC50 =23 μm). The coumarin-derived analogue allowed no-wash analysis of biological deprotection, which revealed rapid internalization of the prodrug. These results demonstrate that fluorescent groups can be applied both as functional drug delivery tools and useful biological probes of drug uptake. PMID:26503489

  20. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1980-01-01

    Discusses analytical methods selected from current research articles. Groups information by topics of general interest, including acids, aldehydes and ketones, nitro compounds, phenols, and thiols. Cites 97 references. (CS)

  1. Photo-induced electron transfer between dendritic zinc(II) phthalocyanine bearing carboxylic terminal groups and methyl viologen

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Chen, Jiangxu; Huang, Lishan; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2012-12-01

    The intermolecular electron transfer between carboxylic dendritic zinc(II) phthalocyanine bearing carboxylic terminal groups(G1-ZnPc(COOH)8) and methyl viologens (MV2+) was studied by steady-state fluorescence and UV/Vis spectroscopy. The effect of different concentrations of MV2+ on intermolecular electron transfer was investigated. The results show that the fluorescence emission of this dendritic phthalocyanine could be greatly quenched with an increasing amount of MV2+ upon excitation at 610 nm. Our study suggests that this novel dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential biosensor conjugated with suitable fluorescence quencher.

  2. Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups

    PubMed Central

    Long, Gaobo; Yang, Xiao-lan; Zhang, Yi; Pu, Jun; Liu, Lin; Liu, Hong-bo; Li, Yuan-li; Liao, Fei

    2013-01-01

    Purpose Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. Methods Polyethylene glycol) (PEG) was derived into PEG-bis-(maleic monoester) and maleic monoester-PEG-succinic monoester as the monomers. Magnetofluids were prepared via chemical co-precipitation and dispersion with the monomers. MSPs were prepared via one-step coating of magnetofluids in a water-in-oil microemulsion system of aerosol-OT and heptane by radical co-polymerization of such monomers. Results The resulting MSPs contained abundant carboxyl groups, exhibited negligible nonspecific adsorption of common substances and excellent suspension stability, appeared as irregular particles by electronic microscopy, and had submicron sizes of broad distribution by laser scattering. Saturation magnetizations and average particle sizes were affected mainly by the quantities of monomers used for coating magnetofluids, and steric hindrance around carboxyl groups was alleviated by the use of longer monomers of one polymerizable bond for coating. After optimizations, MSPs bearing saturation magnetizations over 46 emu/g, average sizes of 0.32 μm, and titrated carboxyl groups of about 0.21 mmol/g were obtained. After the activation of carboxyl groups on MSPs into N-hydroxysuccinimide ester, biotin was immobilized on MSPs and the resulting biotin-functionalized MSPs isolated the conjugate of streptavidin and alkaline phosphatase at about 2.1 mg/g MSPs; streptavidin was immobilized at about 10 mg/g MSPs and retained 81% ± 18% (n = 5) of the specific activity of the free form. Conclusion The facile approach effectively prepares MSPs for magnetic separations. PMID:23589687

  3. Multi-Molar Absorption of CO2 by the Activation of Carboxylate Groups in Amino Acid Ionic Liquids.

    PubMed

    Chen, Feng-Feng; Huang, Kuan; Zhou, Yan; Tian, Zi-Qi; Zhu, Xiang; Tao, Duan-Jian; Jiang, De-En; Dai, Sheng

    2016-06-13

    A new strategy for multi-molar absorption of CO2 is reported based on activating a carboxylate group in amino acid ionic liquids. It was illustrated that introducing an electron-withdrawing site to amino acid anions could reduce the negative inductive effect of the amino group while simultaneously activating the carboxylate group to interact with CO2 very efficiently. An extremely high absorption capacity of CO2 (up to 1.69 mol mol(-1) ) in aminopolycarboxylate-based amino acid ionic liquids was thus achieved. The evidence of spectroscopic investigations and quantum-chemical calculations confirmed the interactions between two kinds of sites in the anion and CO2 that resulted in superior CO2 capacities. PMID:27136274

  4. Breaking the dogma of the metal-coordinating carboxylate group in integrin ligands: introducing hydroxamic acids to the MIDAS to tune potency and selectivity.

    PubMed

    Heckmann, Dominik; Laufer, Burkhardt; Marinelli, Luciana; Limongelli, Vittorio; Novellino, Ettore; Zahn, Grit; Stragies, Roland; Kessler, Horst

    2009-01-01

    A suitable substitute: All integrin receptors bind their ligands, which contain an aspartate residue, in the metal-ion- dependent adhesion site (MIDAS). So far all attempts to replace the carboxyl group of aspartate with other, pharmacologically favorable isosteric groups have failed. Now it has been shown that a hydroxamic acid group can replace the carboxyl group; the resulting ligand retains its high binding activity. The picture shows one such ligand in the binding site of alphavbeta3. PMID:19343753

  5. Pyrimidine-2-carboxylic Acid as an Electron-Accepting and Anchoring Group for Dye-Sensitized Solar Cells.

    PubMed

    Wu, Zhifang; Li, Xin; Ågren, Hans; Hua, Jianli; Tian, He

    2015-12-01

    We report a new dye (INPA) adopting pyrimidine-2-carboxylic acid as an electron-accepting and anchoring group to be used in dye-sensitized solar cells. IR spectral analysis indicates that the anchoring group may form two coordination bonds with TiO2 and so facilitate the interaction between the anchoring group and TiO2. The INPA-based cell exhibits an overall conversion efficiency of 5.45%, which is considerably higher than that obtained with cyanoacrylic acid commonly used as the electron acceptor. PMID:26581583

  6. Carboxylated polymers functionalized by cyclodextrins for the stabilization of highly efficient rhodium(0) nanoparticles in aqueous phase catalytic hydrogenation.

    PubMed

    Noël, Sébastien; Léger, Bastien; Herbois, Rudy; Ponchel, Anne; Tilloy, Sébastien; Wenz, Gerhard; Monflier, Eric

    2012-11-21

    Rhodium(0) nanoparticles stabilized by a polymer containing carboxylate and β-cyclodextrin moieties have high stability and catalytic activity for aqueous hydrogenation reactions of olefins and aromatic substrates. This catalytic system can be recycled and reused without loss of activity. These high catalytic performances can be attributed to conjugated electrostatic interactions (carboxylate groups) and steric interactions (polymer structure and β-cyclodextrin moiety). PMID:23007202

  7. Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics.

    PubMed

    Anirudhan, T S; Divya, L; Suchithra, P S

    2009-01-01

    This study investigated the feasibility of using a new adsorbent prepared from coconut coir pith, CP (a coir industry-based lignocellulosic residue), for the removal of uranium [U(VI)] from aqueous solutions. The adsorbent (PGCP-COOH) having a carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto CP using potassium peroxydisulphate-sodium thiosulphite as a redox initiator and in the presence of N,N'-methylenebisacrylamide as a crosslinking agent. IR spectroscopy results confirm the graft copolymer formation and carboxylate functionalization. XRD studies confirm the decrease of crystallinity in PGCP-COOH compared to CP, and it favors the protrusion of the functional group into the aqueous medium. The thermal stability of the samples was studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was determined using potentiometric titration. The ability of PGCP-COOH to remove U(VI) from aqueous solutions was assessed using a batch adsorption technique. The maximum adsorption capacity was observed at the pH range 4.0-6.0. Maximum removal of 99.2% was observed for an initial concentration of 25mg/L at pH 6.0 and an adsorbent dose of 2g/L. Equilibrium was achieved in approximately 3h. The experimental kinetic data were analyzed using a first-order kinetic model. The temperature dependence indicates an endothermic process. U(VI) adsorption was found to decrease with an increase in ionic strength due to the formation of outer-sphere surface complexes on PGCP-COOH. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as DeltaG(0), DeltaH(0) and DeltaS(0) were derived to predict the nature of adsorption. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC-50, with carboxylate functionality for comparison. Utility of the adsorbent was tested by removing U(VI) from simulated nuclear industry wastewater

  8. “Fifty Shades” of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties

    PubMed Central

    Micillo, Raffaella; Panzella, Lucia; Koike, Kenzo; Monfrecola, Giuseppe; Napolitano, Alessandra; d’Ischia, Marco

    2016-01-01

    Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ) and its 3-carboxylic acid (BTZCA). In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA) absorption features, accounting for light-dependent reactive oxygen species (ROS) production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed. PMID:27196900

  9. Immobilization of carbonic anhydrase on carboxyl-functionalized ferroferric oxide for CO2 capture.

    PubMed

    Lv, Bihong; Yang, Zhaoren; Pan, Fujun; Zhou, Zuoming; Jing, Guohua

    2015-08-01

    New materials of Fe3O4 magnetic microspheres were functionalized with carboxyl and prepared for carbonic anhydrase (CA) immobilization to capture CO2. The optimum conditions for immobilization, such as carrier dose, enzyme dose, pH, shaking speed, temperature and contact time, were determined. The pH and thermal stability of the free and the immobilized CA were compared. The results presented that the immobilized CA had a better enzyme activity, a higher pH and thermal stability than that of the free CA. Meanwhile, CO2 capture was respectively enhanced by the free and the immobilized CA in tris(hydroxymethyl) aminomethane (Tris) buffer solution. Moreover, the immobilized CA maintained 58.5% of its initial catalytic ability even after ten recovery cycles due to the protest of the magnetic microspheres. All the results confirmed the potential use of the carboxyl-functionalized Fe3O4 magnetic microspheres immobilized CA to remove CO2 from air or flue gas. PMID:26038102

  10. Structure Property Relationships of Carboxylic Acid Isosteres

    PubMed Central

    2016-01-01

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure–property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group. PMID:26967507

  11. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.

    PubMed

    Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A

    2014-01-01

    A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM). PMID:25302394

  12. ZnO-coated carbon nanotubes: inter-diffusion of carboxyl groups and enhanced photocurrent generation.

    PubMed

    Hung, Chia-I; Wen, Hua-Chiang; Lai, Yao-Cheng; Chang, Shih-Hsin; Chou, Wu-Ching; Hsu, Wen-Kuang

    2015-03-16

    ZnO is a defect-governed oxide and emits light at both visible and UV regimes. This work employs atomic layer deposition to produce oxide particles on oxygenated carbon nanotubes, and the composites only show emission profiles at short wavelengths. The quenching of defect-related emissions at long wavelengths is verified, owing to carboxyl diffusion into oxygen vacancies, and doping is supported by ZnCO3 formation in oxide lattice. Fully coated tubes display an increased photocurrent and the quantum efficiency increases by 22 % relative to the bare nanotubes. PMID:25572260

  13. Immobilization of DNA via oligonucleotides containing an aldehyde or carboxylic acid group at the 5' terminus.

    PubMed Central

    Kremsky, J N; Wooters, J L; Dougherty, J P; Meyers, R E; Collins, M; Brown, E L

    1987-01-01

    A general method for the immobilization of DNA through its 5'-end has been developed. A synthetic oligonucleotide, modified at its 5'-end with an aldehyde or carboxylic acid, was attached to latex microspheres containing hydrazide residues. Using T4 polynucleotide ligase and an oligonucleotide splint, a single stranded 98mer was efficiently joined to the immobilized synthetic fragment. After impregnation of the latex microspheres with the fluorescent dye, Nile Red and attachment of an aldehyde 16mer, 5 X 10(5) bead-DNA conjugates could be detected with a conventional fluorimeter. Images PMID:3562241

  14. The carbon functional group budget of a peatland

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth; Apperley, David

    2016-04-01

    Organic matter samples were taken from each organic matter reservoir and fluvial flux found in a peatland and analysed by elemental analysis for carbon, hydrogen, nitrogen and oxygen content, and by 13C solid state nuclear magnetic resonance (NMR) for functional group composition. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, four different depths from a peat core, and monthly samples of fluvial particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK. The proportion of carbon atoms from each of the eight carbon functional groups (C-alkyl, N-alkyl/methoxyl C, O-alkyl, O2-alkyl/acetal C, aromatic/unsaturated C, phenolic C, aldehyde/ketone C and amide/carboxyl C) from each type of organic matter were combined with an existing carbon budget from the same site, to give a functional group carbon budget. The budget results show that the ecosystem is accumulating N-alkyl/methoxyl C, O-alkyl, O2-alkyl/acetal C and phenolic C groups, but losing C-alkyl, aromatic/unsaturated C, amide/carboxyl C and aldehyde/ketone C. Comparing the functional group compositions between the sampled organic matter pools shows that DOM arises from two distinct sources; from the peat itself and from a vegetation source.

  15. Synthesis and characterization of bifunctional surfaces with tunable functional group pairs

    NASA Astrophysics Data System (ADS)

    Galloway, John M.; Kung, Mayfair; Kung, Harold H.

    2016-06-01

    Grafting of pairs of functional groups onto a silica surface was demonstrated by tethering both terminals of an organochlorosilane precursor molecule, Cl2(CH3)Si(CH2)4(CO)(OSi(i-Pr)2)(CH2)2Si(CH3)Cl2, that possess a cleavable silyl ester bond, onto a silica surface. Hydrolytic cleavage of the silyl ester bond of the grafted molecule resulted in the generation of organized pairs of carboxylic acid and organosilanol groups. This organosilanol moiety was easily transformed into other functional groups through condensation reactions to form, together with the neighboring acid group, pairs such as carboxylic acid/secondary amine, carboxylic acid/pyridine, and carboxylic acid/phosphine. In the case of carboxylic acid/amine pairing, there was evidence of the formation of amide. A sample grafted with amine-carboxylic acid pairs was three times more active (per free amine) than a sample without such pairs for the nitroaldol condensation of 4-nitrobenzaldehyde and nitromethane.

  16. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor.

    PubMed Central

    Bhat, M B; Zhao, J; Takeshima, H; Ma, J

    1997-01-01

    The ryanodine receptor (RyR) is one of the key proteins involved in excitation-contraction (E-C) coupling in skeletal muscle, where it functions as a Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. RyR consists of a single polypeptide of approximately 560 kDa normally arranged in a homotetrameric structure, which contains a carboxyl (C)-terminal transmembrane domain and a large amino (N)-terminal cytoplasmic domain. To test whether the carboxyl-terminal portion of RyR is sufficient to form a Ca2+ release channel, we expressed the full-length (RyR-wt) and C-terminal (RyR-C, approximately 130 kDa) RyR proteins in a Chinese hamster ovary (CHO) cell line, and measured their Ca2+ release channel functions in planar lipid bilayer membranes. The single-channel properties of RyR-wt were found to be similar to those of RyR from skeletal muscle SR. The RyR-C protein forms a cation-selective channel that shares some of the channel properties with RyR-wt, including activation by cytoplasmic Ca2+ and regulation by ryanodine. Unlike RyR-wt, which exhibits a linear current-voltage relationship and inactivates at millimolar Ca2+, the channels formed by RyR-C display significant inward rectification and fail to close at high cytoplasmic Ca2+. Our results show that the C-terminal portion of RyR contains structures sufficient to form a functional Ca2+ release channel, but the N-terminal portion of RyR also affects the ion-conduction and calcium-dependent regulation of the Ca2+ release channel. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:9284301

  17. Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products

    NASA Astrophysics Data System (ADS)

    Horák, Daniel; Rittich, Bohuslav; Španová, Alena

    2007-04-01

    Magnetite nanoparticles about 14 nm in diameter were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts with aqueous ammonia in the presence of poly(ethylene glycol) (PEG). Magnetic poly(glycidyl methacrylate) (PGMA) microspheres about 1 μm in diameter were prepared by dispersion polymerization of GMA in aqueous ethanol in the presence of PEG-coated magnetite nanoparticles. The microspheres were hydrolyzed and carboxyl groups introduced by oxidation with KMnO4. The particles reversibly bound bacterial DNA of Bifidobacterium and Lactobacillus genera in the presence of high concentrations of PEG 6000 and sodium chloride from crude cell lysates of various dairy products (butter milk, cheese, yoghurt, probiotic tablets) or from cell lyophilisates. The presence of Bifidobacterium and Lactobacillus DNA in samples was confirmed by PCR amplification.

  18. Synthesis and evaluation of novel dental monomer with branched carboxyl acid group

    PubMed Central

    Song, Linyong; Ye, Qiang; Ge, Xueping; Misra, Anil; Laurence, Jennifer S.; Berrie, Cynthia L.; Spencer, Paulette

    2014-01-01

    To enhance the water miscibility and increase the mechanical properties of dentin adhesives, a new glycerol-based monomer with vinyl and carboxylic acid, 4-((1,3-bis(-methacryloyloxy)propan-2-yl)oxy)-2-methylene-4-oxobutanoic acid (BMPMOB), was synthesized and characterized. Dentin adhesive formulations containing 2-hydroxyethyl methacrylate (HEMA), 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (BisGMA), and BMPMOB were characterized with regard to real-time photopolymerization behavior, water sorption, dynamic mechanical analysis, and microscale three-dimensional internal morphologies and compared with HEMA/BisGMA controls. The experimental adhesive copolymers showed higher glass transition temperature and rubbery moduli, as well as improved water miscibility compared to the controls. The enhanced properties of the adhesive copolymers indicated that BMPMOB is a promising comonomer for dental restorative materials. PMID:24596134

  19. Preparation and characterization of tannase immobilized onto carboxyl-functionalized superparamagnetic ferroferric oxide nanoparticles.

    PubMed

    Wu, Changzheng; Xu, Caiyun; Ni, Hui; Yang, Qiuming; Cai, Huinong; Xiao, Anfeng

    2016-04-01

    Tannase from Aspergillus tubingensis was immobilized onto carboxyl-functionalized Fe3O4 nanoparticles (CMNPs), and conditions affecting tannase immobilization were investigated. Successful binding between CMNPs and tannase was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Vibrating sample magnetometry and X-ray diffraction showed that the CMNPs and immobilized tannase exhibit distinct magnetic responses and superparamagnetic properties. Free and immobilized tannase exhibited identical optimal temperatures of 50°C and differing pH optima at 6 and 7, respectively. The thermal, pH, and storage stabilities of the immobilized tannase were superior to those of free tannase. After six cycles of catalytic hydrolysis of propyl gallate, the immobilized tannase maintained over 60% of its initial activity. The Michaelis constant (Km) of the immobilized enzyme indicated its higher affinity for substrate binding than the free enzyme. PMID:26809129

  20. Carboxylic group-induced synthesis and characterization of selenium nanoparticles and its anti-tumor potential on Dalton's lymphoma cells.

    PubMed

    Kumar, Sanjay; Tomar, Munendra Singh; Acharya, Arbind

    2015-02-01

    Carboxylic group-induced synthesis of selenium nanoparticles (SeNPs) was achieved using sodium selenosulphate as a precursor. The particles were stabilized and capped with 0.01% polyvinyl alcohol under ambient conditions. This is a simple and easy method of producing SeNPs in a size range from 35 to 105 nm. The synthesized SeNPs were purified by centrifugation at 11,500 × g for 20 min and characterized by UV-visible spectroscopy, FTIR spectroscopy, XRD, DSC and TEM. It was observed that the synthesized SeNPs showed differences in their absorption spectra, phase composition and crystal structure, thermodynamic behaviour, size and shape. Further, to confirm anti-tumour potential of the synthesized SeNPs induced by the carboxylic group of acetic acid, pyruvic acid and benzoic acid, cell viability assay, nuclear morphology testing and DNA fragmentation assay were carried out using Dalton's lymphoma (DL) cells. DL cells treated with the SeNPs showed reduced cell viability, altered nuclear morphology, typical apoptotic DNA ladder and apoptosis. Therefore, these SeNPs may have therapeutic relevance to treat this type of cancer. PMID:25616972

  1. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida.

    PubMed

    Kim, D Y; Kim, Y B; Rhee, Y H

    2000-10-10

    The ability of Pseudomonas putida to synthesize polyhydroxyalkanoate (PHA) from 36 different carboxylic acids containing various functional groups was examined. This bacterium did not utilize short carboxylic acids (C(4)-C(6)) containing bromine, methoxy, ethoxy, cyclohexyl, phenoxy, and olefin groups as the sole carbon substrate. No polymer was isolated from the cells grown with carboxylic acids bearing hydroxyl, amino, para-methoxyphenoxy, and para-ethoxyphenoxy groups regardless of the carbon substrate chain lengths used even when they were cofed with nonanoic acid. Of all the carbon substrates evaluated, only 6-para-methylphenoxyhexanoic acid, 8-para-methylphenoxyoctanoic acid, 8-meta-methylphenoxyoctanoic acid, 10-undecenoic acid, and 10-undecynoic acid supported both growth and the production of PHA containing the corresponding functional groups by P. putida. The present results indicate that the carbon availability of P. putida for growth and PHA production is significantly different from that of P. oleovorans. PMID:11033174

  2. Expression of a functional jasmonic acid carboxyl methyltransferase is negatively correlated with strawberry fruit development.

    PubMed

    Preuß, Anja; Augustin, Christiane; Figueroa, Carlos R; Hoffmann, Thomas; Valpuesta, Victoriano; Sevilla, José F; Schwab, Wilfried

    2014-09-15

    The volatile metabolite methyl jasmonate (MeJA) plays an important role in intra- and interplant communication and is involved in diverse biological processes. In this study, we report the cloning and functional characterization of a S-adenosyl-l-methionine:jasmonic acid carboxyl methyltransferase (JMT) from Fragaria vesca and Fragaria×ananassa. Biochemical assays and comprehensive transcript analyses showed that JMT has been erroneously annotated as gene fusion with a carboxyl methyltransferase (CMT) (gene15184) in the first published genome sequence of F. vesca. Recombinant FvJMT catalyzed the formation of MeJA with KM value of 22.3μM while FvCMT and the fusion protein were almost inactive. Activity of JMT with benzoic acid and salicylic acid as substrates was less than 1.5% of that with JA. Leucine at position 245, an amino acid missing in other JMT sequences is essential for activity of FvJMT. In accordance with MeJA levels, JMT transcript levels decreased steadily during strawberry fruit ripening, as did the expression levels of JA biosynthesis and regulatory genes. It appears that CMT has originated by a recent duplication of JMT and lost its enzymatic activity toward JA. In the newest version of the strawberry genome sequence (June 2014) CMT and JMT are annotated as separate genes in accordance with differential temporal and spatial expression patterns of both genes in Fragaria sp. In conclusion, MeJA, the inactive derivative of JA, is probably involved in early steps of fruit development by modulating the levels of the active plant hormone JA. PMID:25046752

  3. Selective protection and relative importance of the carboxylic acid groups of zaragozic acid A for squalene synthase inhibition.

    PubMed

    Biftu, T; Acton, J J; Berger, G D; Bergstrom, J D; Dufresne, C; Kurtz, M M; Marquis, R W; Parsons, W H; Rew, D R; Wilson, K E

    1994-02-01

    Chemistry that allows selective modification of the carboxylic acid groups of the squalene synthase inhibitor zaragozic acid A (1) was developed and applied to the synthesis of compounds modified at the 3-,4-,5-,3,4-,3,5-, and 4,5-positions. A key step in this procedure is the selective debenzylation by transfer hydrogenolysis in the presence of other olefinic groups. These compounds were tested in the rat squalene synthase assay and in vivo mouse model. Modification at C3 retains significant enzyme potency and enhances oral activity, indicating that C3 is not essential for squalene synthase activity. Modification at C4 and C5 results in significant loss in enzyme activity. In contrast, substitution at C3 or C4 enhances in vivo activity. Furthermore, disubstitution at the C3 and C4 positions results in additive in vivo potency. PMID:8308869

  4. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions.

    PubMed

    Buruiana, Tinca; Melinte, Violeta; Aldea, Horia; Pelin, Irina M; Buruiana, Emil C

    2016-05-01

    A urethane macromer containing hexafluoroisopropylidene, poly(ethylene oxide) and carboxylic moieties (UF-DMA) was synthesized and used in proportions varying between 15 and 35 wt.% (F1-F3) in dental adhesive formulations besides BisGMA, triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The FTIR and (1)H ((13)C) NMR spectra confirmed the chemical structure of the UF-DMA. The experimental adhesives were characterized with regard to the degree of conversion, water sorption/solubility, contact angle, diffusion coefficient, Vickers hardness, and morphology of the crosslinked networks and compared with the specimens containing 10 wt.% hydroxyapatite (HAP) or calcium phosphate (CaP). The conversion degree (after 180 s of irradiation with visible light) ranged from 59.5% (F1) to 74.8% (F3), whereas the water sorption was between 23.15 μg mm(-3) (F1) and 40.52 μg mm(-3) (F3). Upon the addition of HAP or CaP this parameter attained values of 37.82-49.14 μg mm(-3) (F1-F3-HAP) and 34.58-45.56 μg mm(-3), respectively. Also, the formation of resin tags through the infiltration of a dental composition (F3) was visualized by SEM analysis. The results suggest that UF-DMA taken as co-monomer in dental adhesives of acrylic type may provide improved properties in the moist environment of the mouth. PMID:26952402

  5. Synthesis, structural characterization and antimicrobial activities of diorganotin(IV) complexes with azo-imino carboxylic acid ligand: Crystal structure and topological study of a doubly phenoxide-bridged dimeric dimethyltin(IV) complex appended with free carboxylic acid groups

    NASA Astrophysics Data System (ADS)

    Roy, Manojit; Roy, Subhadip; Devi, N. Manglembi; Singh, Ch. Brajakishor; Singh, Keisham Surjit

    2016-09-01

    Diorganotin(IV) complexes appended with free carboxylic acids were synthesized by reacting diorganotin(IV) dichlorides [R2SnCl2; R = Me (1), Bu (2) and Ph (3)] with an azo-imino carboxylic acid ligand i.e. 2-{4-hydroxy-3-[(2-hydroxyphenylimino)methyl]phenylazo}benzoic acid in presence of triethylamine. The complexes were characterized by elemental analysis, IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy. The structure of 1 in solid state has been determined by X-ray crystallography. Crystal structure of 1 reveals that the compound crystallizes in monoclinic space group P21/c and is a dimeric dimethyltin(IV) complex appended with free carboxylic acid groups. In the structure of 1, the Sn(IV) atoms are hexacoordinated and have a distorted octahedral coordination geometry in which two phenoxy oxygen atoms and the azomethine nitrogen atom of the ligand coordinate to each tin atom. One of the phenoxy oxygen atom bridges the two tin centers resulting in a planar Sn2O2 core. Topological analysis is used for the description of molecular packing in 1. Tin NMR spectroscopy study indicates that the complexes have five coordinate geometry around tin atom in solution state. Since the complexes have free carboxylic acids, these compounds could be further used as potential metallo-ligands for the synthesis of other complexes. The synthesized diorganotin(IV) complexes were also screened for their antimicrobial activities and compound 2 showed effective antimicrobial activities.

  6. Mapping functional groups on oxidised multi-walled carbon nanotubes at the nanometre scale.

    PubMed

    Goode, A E; Hine, N D M; Chen, S; Bergin, S D; Shaffer, M S P; Ryan, M P; Haynes, P D; Porter, A E; McComb, D W

    2014-06-28

    Despite voluminous research on the acid oxidation of carbon nanotubes (CNTs), there is a distinct lack of experimental results showing distributions of functional groups at the nanometre length scale. Here, functional peaks have been mapped across individual multi-walled CNTs with low-dose, monochromated electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Density functional theory simulations show that the EELS features are consistent with oxygenated functional groups, most likely carboxyl moieties. PMID:24827593

  7. Distinguishing two groups of flavin reductases by analyzing the protonation state of an active site carboxylic acid.

    PubMed

    Dumit, Verónica I; Cortez, Néstor; Matthias Ullmann, G

    2011-07-01

    Flavin-containing reductases are involved in a wide variety of physiological reactions such as photosynthesis, nitric oxide synthesis, and detoxification of foreign compounds, including therapeutic drugs. Ferredoxin-NADP(H)-reductase (FNR) is the prototypical enzyme of this family. The fold of this protein is highly conserved and occurs as one domain of several multidomain enzymes such as the members of the diflavin reductase family. The enzymes of this family have emerged as fusion of a FNR and a flavodoxin. Although the active sites of these enzymes are very similar, different enzymes function in opposite directions, that is, some reduce oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)) and some oxidize reduced nicotinamide adenine dinucleotide phosphate (NADPH). In this work, we analyze the protonation behavior of titratable residues of these enzymes through electrostatic calculations. We find that a highly conserved carboxylic acid in the active site shows a different titration behavior in different flavin reductases. This residue is deprotonated in flavin reductases present in plastids, but protonated in bacterial counterparts and in diflavin reductases. The protonation state of the carboxylic acid may also influence substrate binding. The physiological substrate for plastidic enzymes is NADP(+), but it is NADPH for the other mentioned reductases. In this article, we discuss the relevance of the environment of this residue for its protonation and its importance in catalysis. Our results allow to reinterpret and explain experimental data. PMID:21538544

  8. Functional Oligomerization of the Saccharomyces cerevisiae Isoprenylcysteine Carboxyl Methyltransferase, Ste14p

    PubMed Central

    Griggs, Amy M.; Hahne, Kalub; Hrycyna, Christine A.

    2010-01-01

    The isoprenylcysteine carboxyl methyltransferase (Icmt) from Saccharomyces cerevisiae, also designated Ste14p, is a 26-kDa integral membrane protein that contains six transmembrane spanning segments. This protein is localized to the endoplasmic reticulum membrane where it performs the methylation step of the CAAX post-translational processing pathway. Sequence analysis reveals a putative GXXXG dimerization motif located in transmembrane 1 of Ste14p, but it is not known whether Ste14p forms or functions as a dimer or higher order oligomer. We determined that Ste14p predominantly formed a homodimer in the presence of the cross-linking agent, bis-sulfosuccinimidyl suberate. Wild-type untagged Ste14p also co-immunoprecipitated and co-purified with N-terminal-tagged His10-myc3-Ste14p (His-Ste14p). Furthermore, enzymatically inactive His-Ste14p variants L81F and E213Q both exerted a dominant-negative effect on methyltransferase activity when co-expressed and co-purified with untagged wild-type Ste14p. Together, these data, although indirect, suggest that Ste14p forms and functions as a homodimer or perhaps a higher oligomeric species. PMID:20202940

  9. Enhanced Hydrothermal Stability and Catalytic Performance of HKUST-1 by Incorporating Carboxyl-Functionalized Attapulgite.

    PubMed

    Yuan, Bo; Yin, Xiao-Qian; Liu, Xiao-Qin; Li, Xing-Yang; Sun, Lin-Bing

    2016-06-29

    Much attention has been paid to metal-organic frameworks (MOFs) due to their large surface areas, tunable functionality, and diverse structure. Nevertheless, most reported MOFs show poor hydrothermal stability, which seriously hinders their applications. Here a strategy is adopted to tailor the properties of MOFs by means of incorporating carboxyl-functionalized natural clay attapulgite (ATP) into HKUST-1, a well-known MOF. A new type of hybrid material was thus fabricated from the hybridization of HKUST-1 and ATP. Our results indicated that the hydrothermal stability of the MOFs as well as the catalytic performance was apparently improved. The frameworks of HKUST-1 were severely destroyed after hydrothermal treatment (hot water vapor, 60 °C), while that of the hybrid materials was maintained. For the hybrid materials containing 8.4 wt % of ATP, the surface area reached 1302 m(2)·g(-1) and was even higher than that of pristine HKUST-1 (1245 m(2)·g(-1)). In the ring-opening of styrene oxide, the conversion reached 98.9% at only 20 min under catalysis from the hybrid material, which was obviously higher than that over pristine HKUST-1 (80.9%). Moreover, the hybrid materials showed excellent reusability and the catalytic activity was recoverable without loss after six cycles. Our materials provide promising candidates for heterogeneous catalysis owing to the good catalytic activity and reusability. PMID:27268731

  10. Learning the Functional Groups: Keys to Success.

    ERIC Educational Resources Information Center

    Byrd, Shannon; Hildreth, David P.

    2001-01-01

    Points out the difficulties students have when they are expected to learn functional groups, which are frameworks for chemical and physical properties of molecules. Presents a classification key for functional groups categorized by 10 common functional groups. (YDS)

  11. Cationic screening of charged surface groups (carboxylates) affects electron transfer steps in photosystem-II water oxidation and quinone reduction.

    PubMed

    Karge, Oliver; Bondar, Ana-Nicoleta; Dau, Holger

    2014-10-01

    The functional or regulatory role of long-distance interactions between protein surface and interior represents an insufficiently understood aspect of protein function. Cationic screening of surface charges determines the morphology of thylakoid membrane stacks. We show that it also influences directly the light-driven reactions in the interior of photosystem II (PSII). After laser-flash excitation of PSII membrane particles from spinach, time courses of the delayed recombination fluorescence (10μs-10ms) and the variable chlorophyll-fluorescence yield (100μs-1s) were recorded in the presence of chloride salts. At low salt-concentrations, a stimulating effect was observed for the S-state transition efficiency, the time constant of O2-formation at the Mn4Ca-complex of PSII, and the halftime of re-oxidation of the primary quinone acceptor (Qa) by the secondary quinone acceptor (Qb). The cation valence determined the half-effect concentrations of the stimulating salt effect, which were around 6μM, 200μM and 10mM for trivalent (LaCl3), bivalent (MgCl2, CaCl2), and monovalent cations (NaCl, KCl), respectively. A depressing high-salt effect also depended strongly on the cation valence (onset concentrations around 2mM, 50mM, and 500mM). These salt effects are proposed to originate from electrostatic screening of negatively charged carboxylate sidechains, which are found in the form of carboxylate clusters at the solvent-exposed protein surface. We conclude that the influence of electrostatic screening by solvent cations manifests a functionally relevant long-distance interaction between protein surface and electron-transfer reactions in the protein interior. A relation to regulation and adaptation in response to environmental changes is conceivable. PMID:25062950

  12. Controlling the Reactivity of Bifunctional Ligands: Carboxylate-Bridged Nonheme Diiron(II) Complexes Bearing Free Thiol Groups.

    PubMed

    Pal, Nabhendu; Majumdar, Amit

    2016-03-21

    Carboxylate-bridged nonheme diiron(II) complexes, bearing free functional groups in general, and free thiol groups in particular, were sought. While the addition of sodium γ-hydroxybutyrate into a mixture of Fe(BF4)2·6H2O, HN-Et-HPTB, and Et3N afforded the complex [Fe2(N-Et-HPTB)(μ-O2C-(CH2)3-OH)](BF4)2 (2) (where N-Et-HPTB is the anion of N,N,N',N'-tetrakis(2-(1-ethylbenzimidazolyl))-2-hydroxy-1,3-diaminopropane), a similar, straightforward process could not be used for the synthesis of diiron(II) complexes with free thiol groups. In order to circumvent this problem, a new class of thiolate bridged diiron(II) complexes, [Fe2(N-Et-HPTB)(μ-SR(1))](BF4)2 (R(1) = Me (1a), Et (1b), (t)Bu (1c), Ph (1d)) was synthesized. Selective proton exchange reactions of one representative compound, 1b, with reagents of the type HS-R(2)-COOH yielded the target compounds, [Fe2(N-Et-HPTB)(μ-O2C-R(2)-SH)](BF4)2 (R(2) = C6H4 (3a), CH2CH2 (3b), CH2(CH2)5CH2 (3c)). Redox properties of the complexes 3a-3c were studied in comparison with the complex, [Fe2(N-Et-HPTB)(μ-O2CMe)](BF4)2 (5). Reaction of (Cp2Fe)(BF4) with 1b yielded [Fe(II)2(N-Et-HPTB)(DMF)3](BF4)3·DMF (4) (when crystallized from DMF/diethyl ether), which might indicate the formation of a transient ethanethiolate bridged {Fe(II)Fe(III)} species, followed by a rapid internal redox reaction to generate diethyldisulfide and the solvent coordinated diiron(II) complex, 4. This possibility was supported by a comparative cyclic voltammetric study of 1a-1c and 4. Prospects of the complexes of the type 3a-3c as potential building blocks for the synthesis of nonheme diiron(II) complexes covalently attached with other redox active metals has been substantiated by the synthesis of the complexes, [Fe2(N-EtHPTB)(μ-O2C-R(2)-S)Cu(Me3TACN)](BF4)2 (R = p-C6H4 (7a), CH2CH2 (7b)). All the compounds were characterized by a combination of single-crystal X-ray structure determinations and/or elemental analysis. PMID:26959857

  13. Copolymeric hexyl acrylate-methacrylic acid microspheres - surface vs. bulk reactive carboxyl groups. Coulometric and colorimetric determination and analytical applications for heterogeneous microtitration.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2016-10-01

    Copolymeric acrylate microspheres were prepared from hexyl acrylate using different amounts of methacrylic acid, resulting in a series of microspheres of gradually changing properties. The distribution of carboxyl groups - between surface and bulk of microspheres was evaluated. Bulk reactive carboxyl groups were determined using reverse coulometric titration with H(+) ions, following hydroxide ions have been generated and allowed to react with microspheres in the first step. It was found that the number of reactive carboxyl groups available in copolymeric microspheres is lower compared to number of methacrylic acid units used for polymerization process. Moreover, there is correlation between the number of groups introduced and found to be reactive in microspheres. On the other hand, the number of surface reactive groups was proportional to the number of groups introduced in course of polymerization. Thus, the surface reactive groups can be used as reagent, in novel heterogeneous microtitration procedure, in which a constant number of microspheres of different carboxyl groups contents is introduced to the sample to react with the analyte. The applicability of novel proposed method was tested on the example of Ni(2+) determination. PMID:27474305

  14. Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals.

    PubMed

    Qiao, Han; Zhou, Yanmei; Yu, Fang; Wang, Enze; Min, Yinghao; Huang, Qi; Pang, Lanfang; Ma, Tongsen

    2015-12-01

    A novel carboxylate-functionalized adsorbent (CNM) based on cellulose nanocrystals (CNCs) was prepared and adsorptive removal of multiple cationic dyes (crystal violet, methylene blue, malachite green and basic fuchsin) were investigated. The maximum cationic dyes uptakes ranged from 30.0 to 348.9mgg(-1) following the order of: CNM>CNCs>raw cellulose. Furthermore, the removal of crystal violet by CNM was investigated representatively where kinetics, thermodynamics and isotherm analysis were employed to explain in-depth information associated with the adsorption process. The adsorption kinetics fitted well to the pseudo-second-order model and thermodynamic analysis revealed that the adsorption process was spontaneous and exothermic. Meanwhile, isothermal study demonstrated a monolayer adsorption behavior following the Langmuir model with a calculated maximum absorption capacity of 243.9mgg(-1), which is higher than those of many other reported adsorbents. These findings prefigure the promising potentials of CNM as a versatile adsorbent for the efficient removal of cationic dyes from wastewater. PMID:26298027

  15. DNA damage in human skin keratinocytes caused by multiwalled carbon nanotubes with carboxylate functionalization.

    PubMed

    McShan, Danielle; Yu, Hongtao

    2014-07-01

    Water-soluble carbon nanotubes have been found to be one of the most promising nanomaterials in biological- and biomedical-based applications. However, there have been major concerns on their ability to cause cellular and DNA damages upon exposure. In this work, we explore the toxic effects of three multiwalled carbon nanotubes (MWCNTs: nonpurified, purified and carboxylate-functionalized) on human skin keratinocytes (HaCaT). Cytotoxicity tests using the conventional thiazolyl blue tetrazolium bromide (MTT) and the water-soluble tetrazolium (WST-1) assays for 0.5 or 24 h exposure to 20 μg/mL of MWCNTs show that all three caused minimum cytotoxicity that is generally not statistically significant. Assessment of direct and oxidative DNA damages using both alkaline Comet assay and formamidopyrimidine DNA glycosylase-modified Comet assay reveals that the treatment with 20 μg/mL of MWCNTs does not cause significant direct DNA damages, but causes great amount of oxidative DNA damages in HaCaT cells. The oxidative DNA damage reaches the maximum amount at 4 h of incubation in Dulbecco's minimum essential medium, but decreases to the minimum at 8 and 24 h of incubation, indicating repair of the oxidative damages by the intrinsic DNA repair mechanism of the cells. PMID:23012341

  16. Solid phase extraction of petroleum carboxylic acids using a functionalized alumina as stationary phase.

    PubMed

    de Conto, Juliana Faccin; Nascimento, Juciara dos Santos; de Souza, Driele Maiara Borges; da Costa, Luiz Pereira; Egues, Silvia Maria da Silva; Freitas, Lisiane Dos Santos; Benvenutti, Edilson Valmir

    2012-04-01

    Petroleum essentially consists of a mixture of organic compounds, mainly containing carbon and hydrogen, and, in minor quantities, compounds with nitrogen, sulphur, and oxygen. Some of these compounds, such as naphthenic acids, can cause corrosion in pipes and equipment used in processing plants. Considering that the methods of separation or clean up the target compounds in low concentrations and in complex matrix use large amounts of solvents or stationary phases, is necessary to study new methodologies that consume smaller amounts of solvent and stationary phases to identify the acid components present in complex matrix, such as crude oil samples. The proposed study aimed to recover acid compounds using the solid phase extraction method, employing different types of commercial stationary ion exchange phases (SAX and NH(2)) and new phase alumina functionalized with 1,4-bis(n-propyl)diazoniabicyclo[2.2.2]octane chloride silsesquioxane (Dab-Al(2)O(3)), synthesized in this work. Carboxylic acids were used as standard mixture in the solid phase extraction for further calculation of recovery yield. Then, the real sample (petroleum) was fractionated into saturates, aromatics, resins, and asphaltenes, and the resin fraction of petroleum (B1) was eluted through stationary ion exchange phases. The stationary phase synthesized in this work showed an efficiency of ion exchange comparable to that of the commercial stationary phases. PMID:22589166

  17. Investigation of oxygen functional groups in low rank coal

    SciTech Connect

    Hagaman, E.W.; Lee, S.K.

    1993-07-01

    The distribution of the organic oxygen content of coals among the principal oxygen containing functional groups typically is determined by a combination of chemical and spectroscopic methods (1,2) and results in a classification scheme such as % carboxyl, % hydroxyl, % carbonyl, and % ether. A notable subdivision in this classification scheme is the differentiation of phenols in a coal on the basis of their ortho-substitution pattern (3). Apart from this distinction, the further classification of oxygen into functional group subsets is virtually nonexistent. This paper presents initial experiments that indicate a fuller characterization of oxygen distribution in low rank coal is possible. The experimental approach couples selective chemical perturbation and solid state NMR analysis of the material, specifically, the fluorination of Argonne Premium Coal {number_sign}8, North Dakota lignite, and spectroscopic examination by high resolution solid state {sup 19}F NMR (4). The fluorination reagent is diethylaminosulfur trifluoride (DAST), (Et){sub 2}NSF{sub 3}, which promotes a rich slate of oxygen functional group interconversions that introduce fluorine into the coal matrix (5). The virtual absence of this element in coals make {sup 19}F an attractive NMR nuclei for this application (6). The present experiments use direct detection of the {sup 19}F nucleus under conditions of proton ({sup 1}H) heteronuclear dipolar decoupling and magic angle spinning (MAS). The ca 300 ppm range of {sup 19}F chemical shifts in common carbon-fluorine bonding configurations and high {sup 19}F nuclear sensitivity permit the identification of unique and chemically dilute functional groups in the coal milieu. The unique detection of aromatic and aliphatic carboxylic acids and primary and secondary alcohols provide examples of the exquisite functional group detail that is revealed by this combination of techniques.

  18. Phosphorescent biscyclometallated iridium(III) ethylenediamine complexes functionalised with polar ester or carboxylate groups as bioimaging and visualisation reagents.

    PubMed

    Tang, Tommy Siu-Ming; Leung, Kam-Keung; Louie, Man-Wai; Liu, Hua-Wei; Cheng, Shuk Han; Lo, Kenneth Kam-Wing

    2015-03-21

    We report the synthesis, characterisation and photophysical properties of new phosphorescent biscyclometallated iridium(III) ethylenediamine (en) complexes functionalised with polar ester or carboxylate groups [Ir(N^C)2(en)](n)(X) (n = +1, X = Cl(-), HN^C = methyl 4-(2-pyridyl)benzoate Hppy-COOMe (1a), methyl 2-phenyl-4-quinolinecarboxylate Hpq-COOMe (2a); n = -1, X = Li(+), HN^C = 4-(2-pyridyl)benzoate Hppy-COO(-) (1b), 2-phenyl-4-quinolinecarboxylate Hpq-COO(-) (2b)). In aqueous solutions, the carboxylate complexes 1b and 2b displayed emission quenching (ca. 7 and 74 fold, respectively) and lifetime shortening upon protonation, and their pKa values were determined to be 5.13 and 3.46, respectively. The pq complexes 2a and 2b exhibited hypsochromic shifts in their emission maxima and a significant increase in emission intensity (ca. 84 and 15 fold, respectively) upon nonspecific binding to the protein bovine serum albumin (BSA). Inductively coupled plasma-mass spectroscopy (ICP-MS) and laser-scanning confocal microscopy (LSCM) results revealed that the ester complexes 1a and 2a were efficiently internalised by the human cervix epithelioid carcinoma (HeLa) cells through energy-requiring pathways and subsequently localised in endosomes and mitochondria, respectively. They showed good biocompatibility in the dark, but became significantly cytotoxic upon photoirradiation due to the generation of singlet oxygen. In contrast, in aqueous solutions of physiological pH, the carboxylate complexes 1b and 2b existed as the anionic form and hardly entered cells due to limited membrane permeability, as evidenced by the intense emission surrounding the plasma membrane of the cells. They showed negligible cytotoxicity and the cell viability remained over 95% for an incubation period of 24 hours. In view of the low cytotoxicity and strongly emissive nature of the hydrophilic ppy-COO(-) complex 1b in an aqueous medium, the potential application of the complex as a visualisation

  19. Self-assembling of Zn porphyrins on a (110) face of rutile TiO2-The anchoring role of carboxyl groups

    NASA Astrophysics Data System (ADS)

    Zajac, Lukasz; Olszowski, Piotr; Godlewski, Szymon; Bodek, Lukasz; Such, Bartosz; Jöhr, Res; Pawlak, Remy; Hinaut, Antoine; Glatzel, Thilo; Meyer, Ernst; Szymonski, Marek

    2016-08-01

    The ordering of zinc containing porphyrin molecules on surface of rutile TiO2(110)-(1×1) has been investigated using scanning tunneling microscopy (STM) in ultra-high vacuum at room temperature. It is demonstrated that a carboxylic group (COOH) has a profound impact on the immobilization of the molecules. At coverages below 0.1 monolayer only molecules equipped with the group COOH could be anchored to the surface and imaged with STM. At higher coverage both species, with and without the carboxyl substituent, assemble into ordered structures, forming complete monolayers. It is found, however, that the rhomboid unit cells of these structures exhibit differences in size.

  20. Comparative Study on Single-Molecule Junctions of Alkane- and Benzene-Based Molecules with Carboxylic Acid/Aldehyde as the Anchoring Groups.

    PubMed

    Chen, Fang; Peng, Lin-Lu; Hong, Ze-Wen; Mao, Jin-Chuan; Zheng, Ju-Fang; Shao, Yong; Niu, Zhen-Jiang; Zhou, Xiao-Shun

    2016-12-01

    We have measured the alkane and benzene-based molecules with aldehyde and carboxylic acid as anchoring groups by using the electrochemical jump-to-contact scanning tunneling microscopy break junction (ECSTM-BJ) approach. The results show that molecule with benzene backbone has better peak shape and intensity than those with alkane backbone. Typically, high junction formation probability for same anchoring group (aldehyde and carboxylic acid) with benzene backbone is found, which contributes to the stronger attractive interaction between Cu and molecules with benzene backbone. The present work shows the import role of backbone in junction, which can guide the design molecule to form effective junction for studying molecular electronics. PMID:27566686

  1. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    PubMed Central

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogusław

    2015-01-01

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. Based on the structure, it was possible to identify dynamic structural differences among rice, human, and bacterial enzymes. PMID:26284087

  2. Functional properties and structural characterization of rice δ(1)-pyrroline-5-carboxylate reductase.

    PubMed

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogusław

    2015-01-01

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ(1)-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP(+) were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP(+) ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. Based on the structure, it was possible to identify dynamic structural differences among rice, human, and bacterial enzymes. PMID:26284087

  3. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    DOE PAGESBeta

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogusław

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to usemore » in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.« less

  4. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    PubMed Central

    Haghighatpanah, Shayesteh; Bohlén, Martin; Bolton, Kim

    2014-01-01

    Molecular dynamics (MD) and molecular mechanics (MM) methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube (SWNT)—polyethylene and SWNT—polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the SWNT with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1 to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the SWNT wall. PMID:25229056

  5. Synthesis and Functionalization of Cyclic Sulfonimidamides: A Novel Chiral Heterocyclic Carboxylic Acid Bioisostere

    PubMed Central

    2012-01-01

    An efficient synthesis of aryl substituted cyclic sulfonimidamides designed as chiral nonplanar heterocyclic carboxylic acid bioisosteres is described. The cyclic sulfonimidamide ring system could be prepared in two steps from a trifluoroacetyl protected sulfinamide and methyl ester protected amino acids. By varying the amino acid, a range of different C-3 substituted sulfonimidamides could be prepared. The compounds could be further derivatized in the aryl ring using standard cross-coupling reactions to yield highly substituted cyclic sulfonimidamides in excellent yields. The physicochemical properties of the final compounds were examined and compared to those of the corresponding carboxylic acid and tetrazole derivatives. The unique nonplanar shape in combination with the relatively strong acidity (pKa 5–6) and the ease of modifying the chemical structure to fine-tune the physicochemical properties suggest that this heterocycle can be a valuable addition to the range of available carboxylic acid isosteres. PMID:24900513

  6. Screening biochars for heavy metal retention in soil: role of oxygen functional groups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygen-containing carboxyl, hydroxyl, and phenolic surface functional groups of soil organic and mineral components play central roles in binding metal ions, and biochar amendment can provide means of increasing these surface ligands in soil. In this study, positive matrix factorization (PMF) was f...

  7. Impact of polyacrylamide with different contents of carboxyl groups on the chromium (III) oxide adsorption properties in aqueous solution.

    PubMed

    Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa

    2015-01-01

    The main goal of experiments was determination of solution pH and contents of anionic groups in polyacrylamide (PAM) macromolecules on the stability mechanism of chromium (III) oxide suspension. The spectrophotometry, potentiometric titration, microelectrophoresis, viscosimetry and turbidimetry were applied. They enabled determination of polymer adsorbed amount, surface and diffusion charges of solid particles with and without PAM, thickness of polymer adsorption layer, macromolecule dimensions in the solution and stability of the Cr2O3 - polymer systems, respectively. It was found that adsorption of anionic PAM decreases and thickness of polymeric adsorption layer increases with the increasing pH. Slightly higher adsorption was obtained for the PAM samples containing a greater number of carboxyl groups. At pH 3 and 9 insignificant deterioration of stability conditions of Cr2O3 particle covered with polyacrylamide was observed (neutralization of solid positive charge by the adsorbed polymeric chains (pH 3) and single polymeric bridges formation (pH 9)). The electrosteric repulsion between the solid particles covered with PAM layers at pH 6, is the main reason for significant improvement of Cr2O3 suspension stability in the polymer presence. PMID:25464324

  8. A simple colorimetric chemosensor bearing a carboxylic acid group with high selectivity for CN-

    NASA Astrophysics Data System (ADS)

    Park, Gyeong Jin; Choi, Ye Won; Lee, Dongkuk; Kim, Cheal

    2014-11-01

    A new simple ‘naked eye' chemosensor 1 (sodium (E)-2-((2-(3-hydroxy-2-naphthoyl)hydrazono)methyl)benzoate) has been synthesized for detection of CN- in a mixture of DMF/H2O (9:1). The sensor 1 comprises of a naphthoic hydrazide as efficient hydrogen bonding donor group and a benzoic acid as the moiety with the water solubility. The receptor 1 showed high selectivity toward cyanide ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to yellow for CN- over other anions. Therefore, receptor 1 could be useful for cyanide detection in aqueous environment, displaying a high distinguishable selectivity from hydrogen bonded anions and being clearly visible to the naked eye.

  9. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2010-04-01

    The functional group composition of various organic aerosols (OA) is being investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS). The determinations of the three functional groups' contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups) and precursor ion (nitro groups) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photo-oxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounted for 1.7% (vehicular) to 13.5% (o-xylene photo-oxidation) of the organic carbon. The diagnostic functional group ratios are then used to tentatively differentiate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to distinguish the sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assesses a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass spectra of all

  10. Enhanced photocatalytic hydrogen production by introducing the carboxylic acid group into cobaloxime catalysts.

    PubMed

    Wang, Junfei; Li, Chao; Zhou, Qianxiong; Wang, Weibo; Hou, Yuanjun; Zhang, Baowen; Wang, Xuesong

    2015-10-28

    A series of cobaloxime complexes, [Co(iii)(dmgH)2(py-m-X)Cl] (dmgH = dimethylglyoxime, py-m-X = meta-substituted pyridine, X = COOH (2), COOCH3 (3), CH2CH2COOH (6), and CH2CH2COOCH3 (7)), and [Co(iii)(dmgH)2(py-p-X)Cl], (py-p-X = para-substituted pyridine, X = COOH (4) and COOCH3 (5)), were synthesized and their photocatalytic H2 production activities were compared in an artificial photosynthesis system containing a xanthene dye Eosin Y as the photosensitizer (PS) and triethanolamine (TEOA) as the sacrificial reductant (SR) in CH3CN/H2O (1 : 1, pH = 7.5). Irrespective of substitution by an electron-donating or electron withdrawing group, the photocatalytic H2 production activities of 2-7 are all higher than that of [Co(iii)(dmgH)2(py)Cl] (1). Importantly, meta-substitution is more efficient than para-substitution, and COOH is more efficient than COOCH3, in enhancing the photocatalytic activities. 6 showed the highest activity among the examined complexes. The -CH2CH2- chain linking COOH and pyridine might play a role in the promising performance of 6, which makes the proton relay via interaction between COOH and dmgH possible. This work may open new avenues for developing more efficient cobaloxime-based H2 evolution catalysts (HERs). PMID:26394744

  11. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-05-01

    The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  12. NMR studies of ligand carboxylate group interactions with arginine residues in complexes of Lactobacillus casei dihydrofolate reductase with substrates and substrate analogues.

    PubMed

    Birdsall, B; Polshakov, V I; Feeney, J

    2000-08-15

    In a series of complexes of Lactobacillus casei dihydrofolate reductase (DHFR) formed with substrates and substrate analogues, the (1)H/(15)N NMR chemical shifts for the guanidino group of the conserved Arg 57 residue were found to be sensitive to the mode of binding of their H(eta) protons to the charged oxygen atoms in ligand carboxylate groups. In all cases, Arg 57 showed four nonequivalent H(eta) signals indicating hindered rotation about the N(epsilon)-C(zeta) and C(zeta)-N(eta) bonds. The H(eta)(12) and H(eta)(22) protons have large downfield shifts as expected for a symmetrical end-on interaction with the ligand carboxylate group. The chemical shifts are essentially the same in the complexes with folate and p-aminobenzoyl-L-glutamate (PABG) and similar to those found previously for the methotrexate complex reflecting the strong and similar hydrogen bonds formed with the carboxylate oxygens. Interestingly, the rates of rotation about the N(epsilon)-C(zeta) bond for the complexes containing the weakly binding PABG fragment are almost identical to those measured in the complex with methotrexate, which binds 10(7) times more tightly. In the methotrexate complex, this rotation depends on correlated rotations about the N(epsilon)-C(zeta) bond of Arg 57 and the C(alpha)-C' bond of the ligand glutamate alpha-carboxylate group. Thus, even in a fragment such as PABG, which has a much faster off-rate, the carboxylate group binds to the enzyme in a similar way to that in a parent molecule such as folate and methotrexate with the rotation about the N(epsilon)-C(zeta) bond of Arg 57 being essentially the same in all the different complexes. PMID:10933799

  13. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    SciTech Connect

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  14. Highlighting functional groups in self-assembled overlayers with specific functionalized scanning tunnelling microscopy tips

    NASA Astrophysics Data System (ADS)

    Volcke, Cedric; Simonis, Priscilla; Thiry, Paul A.; Lambin, Philippe; Culot, Christine; Humbert, Christophe

    2005-11-01

    Overlayers of a fatty acid (palmitic and lauric acid) formed at the interface between a solution of this molecule in phenyloctane and the basal plane of graphite are studied by in situ scanning tunnelling microscopy. The layers organize into lamellae, which are formed by a close packing arrangement of molecules parallel to the graphite surface. Chemical modification of the STM tips used allowed identification of the functional group. Indeed, the gold tips used are functionalized with 4-mercaptobenzoic acid (4-MBA) and 4-mercaptotoluene (4-MT). The same functional group on a sample is then 'seen' as a dark and a bright spot when imaged with 4-MBA and 4-MT modified tips, respectively. This contrast distinction is related to interactions (or a lack of them) between the carboxyl group on the sample and molecules on the tip, which can facilitate (or hinder) the electron tunnelling.

  15. A Functional Analytic Approach to Group Psychotherapy

    ERIC Educational Resources Information Center

    Vandenberghe, Luc

    2009-01-01

    This article provides a particular view on the use of Functional Analytical Psychotherapy (FAP) in a group therapy format. This view is based on the author's experiences as a supervisor of Functional Analytical Psychotherapy Groups, including groups for women with depression and groups for chronic pain patients. The contexts in which this approach…

  16. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine.

    PubMed

    Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin

    2015-03-15

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. PMID:25554963

  17. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine

    NASA Astrophysics Data System (ADS)

    Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-03-01

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.

  18. Novel vitamin D receptor ligands having a carboxyl group as an anchor to arginine 274 in the ligand-binding domain.

    PubMed

    Fujishima, Toshie; Tsuji, Genichiro; Tanaka, Chika; Harayama, Hiroshi

    2010-07-01

    Vitamin D3 is metabolized into the hormonally active form, 1alpha,25-dihydroxyvitamin D3 (1), via 25-hydroxyvitamin D3 (2) which is the most abundant circulating metabolite. Introduction of the 1alpha-hydroxyl group into 25-hydroxyvitamin D3 (2) to produce 1alpha,25-dihydroxyvitamin D3 (1) increases the VDR binding affinity by approximately 1000-fold. The X-ray crystal structure of human VDR in complex with 1alpha,25-dihydroxyvitamin D3 (1) shows that, together with Ser-237, the 1alpha-hydroxyl group of 1alpha,25-dihydroxyvitamin D3 (1) makes hydrogen bonds with Arg-274, single mutation of which results in impaired ligand recognition. In 2002, lithocholic acid, which possesses a carboxyl group at position C24, was demonstrated to be a weak VDR ligand. We speculated that the carboxylic acid of lithocholic acid could be recognized by Arg-274 in the ligand-binding domain of VDR. In view of the significance of Arg-274 to direct the 1alpha-hydroxyl group, as well as the results with lithocholic acid and its derivatives, we designed the C2 modified analogues of 25-hydroxylvitamin D3 (2) having a carboxyl group, instead of the 1-hydroxyl group, for better electrostatic interaction to the guanidinium side-chain of arginine. PMID:20435140

  19. Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts

    PubMed Central

    2014-01-01

    Background Surface modification strategies to reduce engineered nanomaterial (ENM) bioactivity have been used successfully in carbon nanotubes. This study examined the toxicity and inflammatory potential for two surface modifications (humic acid and carboxylation) on titanium nanobelts (TNB). Methods The in vitro exposure models include C57BL/6 alveolar macrophages (AM) and transformed human THP-1 cells exposed to TNB for 24 hrs in culture. Cell death and NLRP3 inflammasome activation (IL-1β release) were monitored. Short term (4 and 24 hr) in vivo studies in C57BL/6, BALB/c and IL-1R null mice evaluated inflammation and cytokine release, and cytokine release from ex vivo cultured AM. Results Both in vitro cell models suggest that the humic acid modification does not significantly affect TNB bioactivity, while carboxylation reduced both toxicity and NLRP3 inflammasome activation. In addition, short term in vivo exposures in both C57BL/6 and IL-1R null mouse strains demonstrated decreased markers of inflammation, supporting the in vitro finding that carboxylation is effective in reducing bioactivity. TNB instillations in IL-1R null mice demonstrated the critical role of IL-1β in initiation of TNB-induced lung inflammation. Neutrophils were completely absent in the lungs of IL-1R null mice instilled with TNB for 24 hrs. However, the cytokine content of the IL-1R null mice lung lavage samples indicated that other inflammatory agents, IL-6 and TNF-α were constitutively elevated indicating a potential compensatory inflammatory mechanism in the absence of IL-1 receptors. Conclusions Taken together, the data suggests that carboxylation, but not humic acid modification of TNB reduces, but does not totally eliminate bioactivity of TNB, which is consistent with previous studies of other long aspect ratio nanomaterials such as carbon nanotubes. PMID:25179214

  20. 1H/15N HSQC NMR studies of ligand carboxylate group interactions with arginine residues in complexes of brodimoprim analogues and Lactobacillus casei dihydrofolate reductase.

    PubMed

    Morgan, W D; Birdsall, B; Nieto, P M; Gargaro, A R; Feeney, J

    1999-02-16

    1H and 15N NMR studies have been undertaken on complexes of Lactobacillus casei dihydrofolate reductase (DHFR) formed with analogues of the antibacterial drug brodimoprim (2,4-diamino-5-(3', 5'-dimethoxy-4'-bromobenzyl)pyrimidine) in order to monitor interactions between carboxylate groups on the ligands and basic residues in the protein. These analogues had been designed by computer modeling with carboxylated alkyl chains introduced at the 3'-O position in order to improve their binding properties by making additional interactions with basic groups in the protein. Specific interactions between ligand carboxylate groups and the conserved Arg57 residue have been detected in studies of 1H/15N HSQC spectra of complexes of DHFR with both the 4-carboxylate and the 4, 6-dicarboxylate brodimoprim analogues. The spectra from both complexes showed four resolved signals for the four NHeta protons of the guanidino group of Arg57, and this is consistent with hindered rotation in the guanidino group resulting from interactions with the 4-carboxylate group in each analogue. In the spectra of each complex, one of the protons from each of the two NH2 groups and both nitrogens are considerably deshielded compared to the shielding values normally observed for such nuclei. This pattern of deshielding is that expected for a symmetrical end-on interaction of the carboxylate oxygens with the NHeta12 and NHeta22 guanidino protons. The differences in the degree of deshielding between the complexes of the two structurally similar brodimoprim analogues and the methotrexate indicates that the shielding is very sensitive to geometry, most probably to hydrogen bond lengths. The 1H/15N HSQC spectrum of the DHFR complex with the brodimoprim-6-carboxylate analogue does not feature any deshielded Arg NHeta protons and this argues against a similar interaction with the Arg57 in this case. It has not proved possible to determine whether the 6-carboxylate in this analogue is interacting directly with

  1. Contributions of functional groups and extracellular polymeric substances on the biosorption of dyes by aerobic granules.

    PubMed

    Gao, Jing-Feng; Zhang, Qian; Wang, Jin-Hui; Wu, Xue-Lei; Wang, Shu-Ying; Peng, Yong-Zhen

    2011-01-01

    The contributions of loosely bound extracellular polymeric substances (LB-EPS), tightly bound EPS (TB-EPS), residual sludge (the sludge left after EPS extraction) and functional groups such as amine, carboxyl, phosphate and lipid on aerobic granules on biosorption of four different dyes (Reactive Brilliant Blue KN-R (KN-R), Congo Red (CR), Reactive Brilliant Red K-2G (RBR) and Malachite Green (MG)) were investigated. EPS may be responsible for biosorption of cationic dyes. However, residual sludge always made greater contribution than that of EPS. The biosorption mechanisms were dependent on the functional groups on aerobic granules and dyes' chemical structures. The lipid and phosphate groups might be the main binding sites for KN-R biosorption. Amine, carboxyl, phosphate and lipid were all responsible for the binding of CR. The lipid fractions played an important role for RBR biosorption. For MG, the phosphate groups gave the largest contribution. PMID:20869236

  2. The functions of ritual in social groups.

    PubMed

    Watson-Jones, Rachel E; Legare, Cristine H

    2016-01-01

    Ritual cognition builds upon social learning biases that may have become specialized for affiliation within social groups. The adaptive problems of group living required a means of identifying group members, ensuring commitment to the group, facilitating cooperation, and maintaining group cohesion. We discuss how ritual serves these social functions. PMID:26948744

  3. Interaction between carboxyl-functionalized carbon black nanoparticles and porous media

    NASA Astrophysics Data System (ADS)

    Kim, Song-Bae; Kang, Jin-Kyu; Yi, In-Geol

    2015-04-01

    Carbon nanomaterials, such as carbon nanotubes, fullerene, and graphene, have received considerable attention due to their unique physical and chemical characteristics, leading to mass production and widespread application in industrial, commercial, and environmental fields. During their life cycle from production to disposal, however, carbon nanomaterials are inevitably released into water and soil environments, which have resulted in concern about their health and environmental impacts. Carbon black is a nano-sized amorphous carbon powder that typically contains 90-99% elemental carbon. It can be produced from incomplete combustion of hydrocarbons in petroleum and coal. Carbon black is widely used in chemical and industrial products or applications such as ink pigments, coating plastics, the rubber industry, and composite reinforcements. Even though carbon black is strongly hydrophobic and tends to aggregate in water, it can be dispersed in aqueous media through surface functionalization or surfactant use. The aim of this study was therefore to investigate the transport behavior of carboxyl-functionalized carbon black nanoparticles (CBNPs) in porous media. Column experiments were performed for potassium chloride (KCl), a conservative tracer, and CBNPs under saturated flow conditions. Column experiments was conducted in duplicate using quartz sand, iron oxide-coated sand (IOCS), and aluminum oxide-coated sand (AOCS) to examine the effect of metal (Fe, Al) oxide presence on the transport of CBNPs. Breakthrough curves (BTCs) of CBNPs and chloride were obtained by monitoring effluent, and then mass recovery was quantified from these curves. Additionally, interaction energy profiles for CBNP-porous media were calculated using DLVO theory for sphere-plate geometry. The BTCs of chloride had relative peak concentrations ranging from 0.895 to 0.990. Transport parameters (pore-water velocity v, hydrodynamic dispersion coefficient D) obtained by the model fit from the

  4. Adsorption of Cu(II) to ferrihydrite and ferrihydrite-bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments

    NASA Astrophysics Data System (ADS)

    Moon, Ellen M.; Peacock, Caroline L.

    2012-09-01

    :bacteria mass ratio of the composite. EXAFS shows that Cu adsorbs to ferrihydrite as an inner-sphere, (CuO4Hn)n - 6 bidentate edge-sharing complex; and to ferrihydrite composites as an inner-sphere, (CuO5Hn)n - 8 monodentate complex with carboxyl surface functional groups present on the bacterial fraction plus the bidentate edge-sharing complex on the ferrihydrite fraction. Our new results combined with previous work on Cu sorption to bacteria, humic substances and iron (hydr)oxides coated with humics, demonstrate the universal importance of the carboxyl moiety for Cu sorption and mobility in natural environments. Taken together these results show that Cu-carboxyl binding is the predominant mechanism by which Cu interacts with abiotic and biotic organic matter, and provides a ubiquitous control on Cu fate and mobility in natural waters, soils and sediments. Our results indicate that in environments where a significant proportion of iron (hydr)oxides are intimately intermixed with an organic fraction, we must consider Cu sequestration by these composites in addition to pure mineral phases.

  5. Adsorption properties of the nanozirconia/anionic polyacrylamide system-Effects of surfactant presence, solution pH and polymer carboxyl groups content

    NASA Astrophysics Data System (ADS)

    Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa

    2016-05-01

    The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.

  6. Importance of Having Low-Density Functional Groups for Generating High-Performance Semiconducting Polymer Dots

    PubMed Central

    Zhang, Xuanjun; Yu, Jiangbo; Wu, Changfeng; Jin, Yuhui; Rong, Yu; Ye, Fangmao

    2012-01-01

    Semiconducting polymers with low-density side-chain carboxylic acid groups were synthesized to form stable, functionalized, and highly fluorescent polymer dots (Pdots). The influence of the molar fraction of hydrophilic side-chains on Pdot properties and performance was systematically investigated. Our results show that the density of side-chain carboxylic acid groups significantly affects Pdot stability, internal structure, fluorescence brightness, and nonspecific binding in cellular labeling. Fluorescence spectroscopy, single-particle imaging, and a dye-doping method were employed to investigate the fluorescence brightness and the internal structure of the Pdots. The results of these experiments indicate that semiconducting polymers with low density of side-chain functional groups can form stable, compact, and highly bright Pdots as compared to those with high density of hydrophilic side-chains. The functionalized polymer dots were conjugated to streptavidin (SA) by carbodiimide-catalyzed coupling and the Pdot-SA probes effectively and specifically labeled the cancer cell-surface marker Her2 in human breast cancer cells. The carboxylate-functionalized polymer could also be covalently modified with small functional molecules to generate Pdot probes for click chemistry-based bioorthogonal labeling. This study presents a promising approach for further developing functional Pdot probes for biological applications. PMID:22607220

  7. Effects of the density of carboxyl groups in organic compounds on the photocatalytic reduction of Cr(VI) in a TiO2 suspension.

    PubMed

    Lee, Seung-Mok; Cho, Il-Hyoung; Chang, Yoon-Young; Yang, Jae-Kyu

    2007-03-01

    Photocatalytic reduction (PCR) of Cr(VI) in a TiO2 suspension was studied at pH 4 in the presence of organic compounds containing different numbers of carboxyl groups. The compounds studied were glycine (Gly), iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA). In all the cases, near complete Cr(VI) removal was observed after 60 minutes. During PCR process, the aqueous Cr(VI) concentration measured with both Ion Chromatography and Atomic Absorption Spectrophotometery was different in the presence of IDA and EDTA as reaction proceeded while little difference was observed in a control test. This result suggests that a greater portion of reduced Cr(III) species was possibly dissolved through complex formation with IDA (Cr(III)-IDA) and EDTA (Cr(III)-EDTA) or with reaction intermediates (Cr(III)-organic complexes) during PCR compared to the control test. As the number of carboxyl group increased Cr(VI) reduction increased and showed a good linear relationship between initial rates of Cr(VI) reduction and adsorption density of carboxyl group of the surface of TiO2. The initial rate of Cr(VI) reduction in the presence of EDTA was 5 times greater than that in control. When the PCR process was applied in the treatment of real wastewater, an effective Cr(VI) reduction was observed with addition of EDTA. PMID:17365325

  8. Synthesis, Aqueous Reactivity, and Biological Evaluation of Carboxylic Acid Ester-Functionalized Platinum–Acridine Hybrid Anticancer Agents

    PubMed Central

    Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich

    2012-01-01

    The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158

  9. Localization of functions defined on cantor group

    NASA Astrophysics Data System (ADS)

    Krivoshein, Aleksander V.; Lebedeva, Elena A.

    2013-10-01

    We introduce a notion of localization for dyadic functions, i. e. functions defined on Cantor group. Both non-periodic and periodic cases are discussed. Localization is characterized by functionals UCd and UCdp similar to the Heisenberg (the Breitenberger) uncertainty constants used for real-line (periodic) functions. We are looking for dyadic analogs of uncertainty principles. To justify definition we use some test functions including dyadic scaling and wavelet functions.

  10. Control of Surface Functional Groups on Pertechntate Sorption on Activated Carbon

    SciTech Connect

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-07-05

    {sup 99}Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO{sub 4}{sup -}). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K{sub d}) varying from 9.5 x 10{sup 5} to 3.2 x 10{sup 3} mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K{sub d} remaining more or less constant (1.1 x 10{sup 3} - 1.8 x 10{sup 3} mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO{sub 4}{sup -} can be improved by enhancing the formation of carboxylic subgroups A and B during material processing.

  11. Synthesis of New Functionalized Indoles Based on Ethyl Indol-2-carboxylate.

    PubMed

    Boraei, Ahmed T A; El Ashry, El Sayed H; Barakat, Assem; Ghabbour, Hazem A

    2016-01-01

    Successful alkylations of the nitrogen of ethyl indol-2-carboxylate were carried out using aq. KOH in acetone. The respective N-alkylated acids could be obtained without separating the N-alkylated esters by increasing the amount of KOH and water. The use of NaOMe in methanol led to transesterification instead of the alkylation, while the use of NaOEt led to low yields of the N-alkylated acids. Hydrazinolysis of the ester gave indol-2-carbohydrazide which then was allowed to react with different aromatic aldehydes and ketones in ethanol catalyzed by acetic acid. Indol-2-thiosemicarbazide was used in a heterocyclization reaction to form thiazoles. The new structures were confirmed using NMR, mass spectrometry and X-ray single crystal analysis. PMID:26978331

  12. Copper-Catalyzed Carboxylation of Aryl Iodides with Carbon Dioxide.

    PubMed

    Tran-Vu, Hung; Daugulis, Olafs

    2013-10-01

    A method for carboxylation of aryl iodides with carbon dioxide has been developed. The reaction employs low loadings of copper iodide/TMEDA or DMEDA catalyst, 1 atm of CO2, DMSO or DMA solvent, and proceeds at 25-70 °C. Good functional group tolerance is observed, with ester, bromide, chloride, fluoride, ether, hydroxy, amino, and ketone functionalities tolerated. Additionally, hindered aryl iodides such as iodomesitylene can also be carboxylated. PMID:24288654

  13. Relating Functional Groups to the Periodic Table

    ERIC Educational Resources Information Center

    Struyf, Jef

    2009-01-01

    An introduction to organic chemistry functional groups and their ionic variants is presented. Functional groups are ordered by the position of their specific (hetero) atom in the periodic table. Lewis structures are compared with their corresponding condensed formulas. (Contains 5 tables.)

  14. The central role of ketones in reversible and irreversible hydrothermal organic functional group transformations

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2012-12-01

    Studies of hydrothermal reactions involving organic compounds suggest complex, possibly reversible, reaction pathways that link functional groups from reduced alkanes all the way to oxidized carboxylic acids. Ketones represent a critical functional group because they occupy a central position in the reaction pathway, at the point where Csbnd C bond cleavage is required for the formation of the more oxidized carboxylic acids. The mechanisms for the critical bond cleavage reactions in ketones, and how they compete with other reactions are the focus of this experimental study. We studied a model ketone, dibenzylketone (DBK), in H2O at 300 °C and 70 MPa for up to 528 h. Product analysis was performed as a function of time at low DBK conversions to reveal the primary reaction pathways. Reversible interconversion between ketone, alcohol, alkene and alkane functional groups is observed in addition to formation of radical coupling products derived from irreversible Csbnd C and Csbnd H homolytic bond cleavage. The product distributions are time-dependent but the bond cleavage products dominate. The major products that accumulate at longer reaction times are toluene and larger, dehydrogenated structures that are initially formed by radical coupling. The hydrogen atoms generated by dehydrogenation of the coupling products are predominantly consumed in the formation of toluene. Even though bond cleavage products dominate, no carboxylic acids were observed on the timescale of the reactions under the chosen experimental conditions.

  15. Effects of surface functional groups on proliferation and biofunction of Schwann cells.

    PubMed

    Wang, Yaling; Ji, Yawei; Zhao, Yahong; Kong, Yan; Gao, Ming; Feng, Qilin; Wu, Yue; Yang, Yumin

    2016-05-01

    Scaffolds in tissue engineering should be rationally designed to become an adhesion substrate friendly to cells. Schwann cells play an important role in nerve regeneration and repair. Previous studies have suggested that surface chemical groups have effect on many types of cells. However, there have hitherto been few reports on Schwann cells. In this study, we investigated cell adhesion, survival, proliferation, and neurotrophic actions of Schwann cells cultured on glass coverslips modified with different chemical groups, including methyl, carboxyl, amino, hydroxyl, mercapto, and sulfonic groups. Schwann cells on amino and carboxyl surfaces had higher attachment rate, presenting good morphology, high proliferation, and strong neurotrophic functions, while on methyl surfaces, few cells can survive, cells shrunk into round shape, exhibiting poor proliferation and weak neurotrophic functions. Growth of cells on other groups was between methyl and amino, carboxyl, and had little difference among them. Our data indicated that chemical groups can regulate behavior of Schwann cells, indicating a way to design new scaffolds for peripheral nerve regeneration. PMID:26911577

  16. Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol-gel process

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Xu, Tao; He, Guangwei; Jiang, Zhongyi; Wu, Hong

    2015-02-01

    Functionalized titania are used as fillers to modify the sulfonated poly(ether ether ketone) (SPEEK) membrane for improved proton conductivity and methanol barrier property. The functionalized titania sol which contains proton conductive carboxylic acid groups or amino acid groups are derived from a facile chelation method using different functional additives. Then the novel SPEEK/carboxylic acid-functionalized titania (SPEEK/TC) and SPEEK/amino acid-functionalized titania (SPEEK/TNC) hybrid membranes are fabricated via in situ sol-gel method. The anti-swelling property and thermal stability of hybrid membranes are enhanced owing to the formation of electrostatic force between SPEEK and titania nanoparticles. The hybrid membranes exhibit higher proton conductivity than plain SPEEK membrane because more proton transfer sites are provided by the functionalized titania nanoparticles. Particularly, the proton conductivity of SPEEK/TNC membrane with 15% filler content reaches up to 6.24 × 10-2 S cm-1, which is 3.5 times higher than that of the pure SPEEK membrane. For methanol permeability, the SPEEK/TNC membranes possess the lowest values because the acid-base interaction between sulfonic acid groups in SPEEK and amino groups in functionalized titania leads to a more compact membrane structure.

  17. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  18. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Min Huang, Wei

    2013-06-01

    The present work studies the synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotube (CNT) and carbon fiber on the electrical property and electro-activated recovery behavior of shape memory polymer (SMP) nanocomposites. The combination of CNT and carbon fiber results in improved electrical conductivity in the SMP nanocomposites. Carboxylic acid-functionalized CNTs are grafted onto the carbon fibers and then self-assembled by deposition to significantly enhance the reliability of the bonding between carbon fiber and SMP via van der Waals and covalent crosslink. Furthermore, the self-assembled carboxylic acid-functionalized CNTs and carbon fibers enable the SMP nanocomposites for Joule heating triggered shape recovery.

  19. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  20. FTIR Analysis of Functional Groups in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  1. A CuII coordination polymer based on incorporated carboxylate and sulfonate groups: Synthesis, crystal structure, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Yinfeng; Zheng, Zebao; Wang, Chang'an; Sun, Jiafeng; Li, Xiaoyan; Zhang, Jianping; Xiao, Jing; He, Guofang; Li, Liqing

    2015-01-01

    A CuII coordination polymer, [Cu(sbpc)(phen)(H2O)]ṡH2O 1, has been synthesized and characterized structurally and magnetically (H2sbpc = 4-sulfobiphenyl-4‧-carboxylic acid, phen = 1,10-phenanthroline). Single-crystal structural analysis shows that 1 consists of dinuclear [Cu2(CO2)2] units bridged via sbpc2- to afford a 1-D chain, which then extends into the 3-D coordination polymer supramolecular network by O-H⋯O hydrogen bonds and π⋯π interactions. Magnetic measurements indicate that complex 1 exhibits weak antiferromagnetic coupling.

  2. Carboxylate Surrogates Enhance the Antimycobacterial Activity of UDP-Galactopyranose Mutase Probes.

    PubMed

    Winton, Valerie J; Aldrich, Claudia; Kiessling, Laura L

    2016-08-12

    Uridine diphosphate galactopyranose mutase (UGM also known as Glf) is a biosynthetic enzyme required for construction of the galactan, an essential mycobacterial cell envelope polysaccharide. Our group previously identified two distinct classes of UGM inhibitors; each possesses a carboxylate moiety that is crucial for potency yet likely detrimental for cell permeability. To enhance the antimycobacterial potency, we sought to replace the carboxylate with a functional group mimic-an N-acylsulfonamide group. We therefore synthesized a series of N-acylsulfonamide analogs and tested their ability to inhibit UGM. For each inhibitor scaffold tested, the N-acylsulfonamide group functions as an effective carboxylate surrogate. Although the carboxylates and their surrogates show similar activity against UGM in a test tube, several N-acylsulfonamide derivatives more effectively block the growth of Mycobacterium smegmatis. These data suggest that the replacement of a carboxylate with an N-acylsulfonamide group could serve as a general strategy to augment antimycobacterial activity. PMID:27626294

  3. Self-assembly of amphiphilic homopolymers bearing ferrocene and carboxyl functionalities: effect of polymer concentration, β-cyclodextrin, and length of alkyl linker.

    PubMed

    Feng, Chun; Lu, Guolin; Li, Yongjun; Huang, Xiaoyu

    2013-08-27

    Three new acrylamide monomers containing ferrocene and tert-butyl ester groups were first synthesized via multistep nucleophilic substitution reaction under mild conditions followed by reversible addition-fragmentation chain transfer (RAFT) homopolymerization to give well-defined homopolymers with narrow molecular weight distributions (M(w)/M(n) ≤ 1.36). The target amphiphilic homopolymers were obtained by the acidic hydrolysis of tert-butyoxycarbonyls to carboxyls in every repeating unit using CF3COOH. The self-assembly behaviors of these amphiphilic homopolymers bearing both ferrocene and carboxyl moieties in each repeating unit in aqueous media were investigated by transmission emission microscopy (TEM), dynamic light scattering (DLS), and atomic force microscopy (AFM). Large compound micelles with different morphologies were formed by these amphiphilic homopolymers, which consist of the corona formed by hydrophilic carboxyls and the core containing numerous reverse micelles with hydrophilic islands of carboxyls in continuous hydrophobic phase of ferrocene-based segments. The morphologies of the formed micelles could be tuned by the concentration of amphiphilic homopolymers, pH value of the solution, the length of -CH2 linker between ferrocene group and carboxyl, and the amount of β-cyclodextrin (β-CD). PMID:23977901

  4. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles

    PubMed Central

    Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

    2011-01-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

  5. Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae.

    PubMed Central

    Morrison, A; Miller, E J; Prakash, L

    1988-01-01

    The RAD6 gene of Saccharomyces cerevisiae, which is required for normal tolerance of DNA damage and for sporulation, encodes a 172-residue protein whose 23 carboxyl-terminal residues are almost all acidic. We show that this polyacidic sequence appends to RAD6 protein as a polyanionic tail and that its function in vivo does not require stoichiometry of length. RAD6 protein was purified to near homogeneity from a yeast strain carrying a RAD6 overproducing plasmid. Approximately the first 150 residues of RAD6 protein composed a structural domain that was resistant to proteinase K and had a Stokes radius typical of a globular protein of its calculated mass. The carboxyl-terminal polyacidic sequence was sensitive to proteinase K, and it endowed RAD6 protein with an aberrantly large Stokes radius that indicates an asymmetric shape. We deduce that RAD6 protein is monomeric and comprises a globular domain with a freely extending polyacidic tail. We tested the phenotypic effects of partial or complete deletion of the polyacidic sequence, demonstrating the presence of the shortened proteins in the cell by using antibody to RAD6 protein. Removal of the entire polyacidic sequence severely reduced sporulation but only slightly affected survival after UV irradiation or UV-induced mutagenesis. Strains with deletions of all but the first 4 or 15 residues of the polyacidic sequence were phenotypically almost wild type or wild type, respectively. We conclude that the intrinsic activity of RAD6 protein resides in the globular domain, that the polyacidic sequence has a stimulatory or modifying role evident primarily in sporulation, and that only a short section apparently functions as effectively as the entire polyacidic sequence. Images PMID:3285176

  6. Metabolic Fate of the Carboxyl Groups of Malate and Pyruvate and their Influence on δ13C of Leaf-Respired CO2 during Light Enhanced Dark Respiration

    PubMed Central

    Lehmann, Marco M.; Wegener, Frederik; Barthel, Matti; Maurino, Veronica G.; Siegwolf, Rolf T. W.; Buchmann, Nina; Werner, Christiane; Werner, Roland A.

    2016-01-01

    The enhanced CO2 release of illuminated leaves transferred into darkness, termed “light enhanced dark respiration (LEDR)”, is often associated with an increase in the carbon isotope ratio of the respired CO2 (δ13CLEDR). The latter has been hypothesized to result from different respiratory substrates and decarboxylation reactions in various metabolic pathways, which are poorly understood so far. To provide a better insight into the underlying metabolic processes of δ13CLEDR, we fed position-specific 13C-labeled malate and pyruvate via the xylem stream to leaves of species with high and low δ13CLEDR values (Halimium halimifolium and Oxalis triangularis, respectively). During respective label application, we determined label-derived leaf 13CO2 respiration using laser spectroscopy and the 13C allocation to metabolic fractions during light–dark transitions. Our results clearly show that both carboxyl groups (C-1 and C-4 position) of malate similarly influence respiration and metabolic fractions in both species, indicating possible isotope randomization of the carboxyl groups of malate by the fumarase reaction. While C-2 position of pyruvate was only weakly respired, the species-specific difference in natural δ13CLEDR patterns were best reflected by the 13CO2 respiration patterns of the C-1 position of pyruvate. Furthermore, 13C label from malate and pyruvate were mainly allocated to amino and organic acid fractions in both species and only little to sugar and lipid fractions. In summary, our results suggest that respiration of both carboxyl groups of malate (via fumarase) by tricarboxylic acid cycle reactions or by NAD-malic enzyme influences δ13CLEDR. The latter supplies the pyruvate dehydrogenase reaction, which in turn determines natural δ13CLEDR pattern by releasing the C-1 position of pyruvate. PMID:27375626

  7. Metabolic Fate of the Carboxyl Groups of Malate and Pyruvate and their Influence on δ(13)C of Leaf-Respired CO2 during Light Enhanced Dark Respiration.

    PubMed

    Lehmann, Marco M; Wegener, Frederik; Barthel, Matti; Maurino, Veronica G; Siegwolf, Rolf T W; Buchmann, Nina; Werner, Christiane; Werner, Roland A

    2016-01-01

    The enhanced CO2 release of illuminated leaves transferred into darkness, termed "light enhanced dark respiration (LEDR)", is often associated with an increase in the carbon isotope ratio of the respired CO2 (δ(13)CLEDR). The latter has been hypothesized to result from different respiratory substrates and decarboxylation reactions in various metabolic pathways, which are poorly understood so far. To provide a better insight into the underlying metabolic processes of δ(13)CLEDR, we fed position-specific (13)C-labeled malate and pyruvate via the xylem stream to leaves of species with high and low δ(13)CLEDR values (Halimium halimifolium and Oxalis triangularis, respectively). During respective label application, we determined label-derived leaf (13)CO2 respiration using laser spectroscopy and the (13)C allocation to metabolic fractions during light-dark transitions. Our results clearly show that both carboxyl groups (C-1 and C-4 position) of malate similarly influence respiration and metabolic fractions in both species, indicating possible isotope randomization of the carboxyl groups of malate by the fumarase reaction. While C-2 position of pyruvate was only weakly respired, the species-specific difference in natural δ(13)CLEDR patterns were best reflected by the (13)CO2 respiration patterns of the C-1 position of pyruvate. Furthermore, (13)C label from malate and pyruvate were mainly allocated to amino and organic acid fractions in both species and only little to sugar and lipid fractions. In summary, our results suggest that respiration of both carboxyl groups of malate (via fumarase) by tricarboxylic acid cycle reactions or by NAD-malic enzyme influences δ(13)CLEDR. The latter supplies the pyruvate dehydrogenase reaction, which in turn determines natural δ(13)CLEDR pattern by releasing the C-1 position of pyruvate. PMID:27375626

  8. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2010-08-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-Ŕ respectively) and precursor ion (nitro groups, R-NO2) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  9. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    PubMed

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-01

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling. PMID:27439145

  10. Impact of a carboxyl group on a cyclometalated ligand: hydrogen-bond- and coordination-driven self-assembly of a luminescent platinum(II) complex.

    PubMed

    Ebina, Masanori; Kobayashi, Atsushi; Ogawa, Tomohiro; Yoshida, Masaki; Kato, Masako

    2015-09-21

    A new luminescent cyclometalated platinum(II) complex containing a carboxyl group, trans-[Pt(pcppy)(pic)][1-COOH; Hpcppy = 2-(p-carboxyphenyl)pyridine and Hpic = picolinic acid] has been synthesized and characterized. The luminescence behavior of 1-COOH in the solid and solution states is completely different despite the similarity of the luminescence in both states for the nonsubstituted complex, [Pt(ppy)(pic)] (1-H; Hppy = 2-phenylpyridine). Interestingly, 1-COOH exhibits concentration-dependent absorption and emission behavior based on its aggregation in a basic aqueous solution despite the absence of amphiphilic character. PMID:26327429

  11. Identifying copepod functional groups from species functional traits

    PubMed Central

    Benedetti, Fabio; Gasparini, Stéphane; Ayata, Sakina-Dorothée

    2016-01-01

    We gathered information on the functional traits of the most representative copepod species in the Mediterranean Sea. Our database includes 191 species described by 7 traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Cluster analysis in the functional trait space revealed that Mediterranean copepods can be separated into groups with distinct ecological roles. PMID:26811565

  12. pH-Responsive Non-Ionic Diblock Copolymers: Ionization of Carboxylic Acid End-Groups Induces an Order–Order Morphological Transition**

    PubMed Central

    Lovett, Joseph R; Warren, Nicholas J; Ratcliffe, Liam P D; Kocik, Marzena K; Armes, Steven P

    2015-01-01

    A carboxylic acid based reversible additionfragmentation transfer (RAFT) agent is used to prepare gels composed of worm-like diblock copolymers using two non-ionic monomers, glycerol monomethacrylate (GMA) and 2-hydroxypropyl methacrylate (HPMA). Ionization of the carboxylic acid end-group on the PGMA stabilizer block induces a worm-to-sphere transition, which in turn causes immediate degelation. This morphological transition is fully reversible as determined by TEM and rheology studies and occurs because of a subtle change in the packing parameter for the copolymer chains. A control experiment where the methyl ester derivative of the RAFT agent is used to prepare the same diblock copolymer confirms that no pH-responsive behavior occurs in this case. This end-group ionization approach is important for the design of new pH-responsive copolymer nano-objects as, unlike polyacids or polybases, only a minimal amount of added base (or acid) is required to drive the morphological transition. PMID:25418214

  13. pH-responsive non-ionic diblock copolymers: ionization of carboxylic acid end-groups induces an order-order morphological transition.

    PubMed

    Lovett, Joseph R; Warren, Nicholas J; Ratcliffe, Liam P D; Kocik, Marzena K; Armes, Steven P

    2015-01-19

    A carboxylic acid based reversible additionfragmentation transfer (RAFT) agent is used to prepare gels composed of worm-like diblock copolymers using two non-ionic monomers, glycerol monomethacrylate (GMA) and 2-hydroxypropyl methacrylate (HPMA). Ionization of the carboxylic acid end-group on the PGMA stabilizer block induces a worm-to-sphere transition, which in turn causes immediate degelation. This morphological transition is fully reversible as determined by TEM and rheology studies and occurs because of a subtle change in the packing parameter for the copolymer chains. A control experiment where the methyl ester derivative of the RAFT agent is used to prepare the same diblock copolymer confirms that no pH-responsive behavior occurs in this case. This end-group ionization approach is important for the design of new pH-responsive copolymer nano-objects as, unlike polyacids or polybases, only a minimal amount of added base (or acid) is required to drive the morphological transition. PMID:25418214

  14. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Zhong, Ren-Sheng; Qin, Yuan-Hang; Niu, Dong-Fang; Tian, Jing-Wei; Zhang, Xin-Sheng; Zhou, Xin-Gui; Sun, Shi-Gang; Yuan, Wei-Kang

    2013-03-01

    Carbon nanofibers (CNFs) with different content of surface functional groups which are carboxyl groups (CNF-OX), carbonyl groups (CNF-CO) and hydroxyl groups (CNF-OH) and nitrogen-containing groups (CNF-ON) are synthesized, and their electrocatalytic activities toward oxygen reduction reaction (ORR) in alkaline solution are investigated. The result of X-ray photoelectron spectroscopy (XPS) characterization indicates that a higher concentration of carboxyl groups, carbonyl groups and hydroxyl groups are imported onto the CNF-OX, CNF-CO and CNF-OH, respectively. Cyclic voltammetry shows that both the oxygen- and nitrogen-containing groups can improve the electrocatalytic activity of CNFs for ORR. The CNF-ON/GC electrode, which has nitrogen-containing groups, exhibits the highest current density of ORR. Rotating disk electrode (RDE) characterization shows that the oxygen reduction on CNF-ON/GC electrode proceeds almost entirely through the four-electron reduction pathway, the CNF-OX/GC, CNF-CO/GC and CNF-OH/GC electrodes proceed a two-electron reduction pathway at low potentials (-0.2 V to -0.6 V) followed by a gradual four-electron reduction pathway at more negative potentials, while the untreated carbon nanofiber (CNF-P/GC) electrode proceeds predominantly by a two-electron reduction pathway within the whole range of potential studied.

  15. Transesterification of PHA to Oligomers Covalently Bonded with (Bio)Active Compounds Containing Either Carboxyl or Hydroxyl Functionalities

    PubMed Central

    Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Adamus, Grażyna

    2015-01-01

    This manuscript presents the synthesis and structural characterisation of novel biodegradable polymeric controlled-release systems of pesticides with potentially higher resistance to weather conditions in comparison to conventional forms of pesticides. Two methods for the preparation of pesticide-oligomer conjugates using the transesterification reaction were developed. The first method of obtaining conjugates, which consist of bioactive compounds with the carboxyl group and polyhydroxyalkanoates (PHAs) oligomers, is "one-pot" transesterification. In the second method, conjugates of bioactive compounds with hydroxyl group and polyhydroxyalkanoates oligomers were obtained in two-step method, through cyclic poly(3-hydroxybutyrate) oligomers. The obtained pesticide-PHA conjugates were comprehensively characterised using GPC, 1H NMR and mass spectrometry techniques. The structural characterisation of the obtained products at the molecular level with the aid of mass spectrometry confirmed that both of the synthetic strategies employed led to the formation of conjugates in which selected pesticides were covalently bonded to PHA oligomers via a hydrolysable ester bond. PMID:25781908

  16. Hygroscopic Characteristics of Alkylaminium Carboxylate Aerosols.

    PubMed

    Gomez-Hernandez, Mario; McKeown, Megan; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Lavi, Avi; Rudich, Yinon; Collins, Don R; Zhang, Renyi

    2016-03-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity for a series of alkylaminium carboxylate aerosols have been measured using a hygroscopicity tandem differential mobility analyzer coupled to a condensation particle counter and a CCN counter. The particles, consisting of the mixtures of mono- (acetic, propanoic, p-toluic, and cis-pinonic acid) and dicarboxylic (oxalic, succinic, malic, adipic, and azelaic acid) acid with alkylamine (mono-, di-, and trimethylamines), represent those commonly found under diverse environmental conditions. The hygroscopicity parameter (κ) of the alkylaminium carboxylate aerosols was derived from the HGF and CCN results and theoretically calculated. The HGF at 90% RH is in the range of 1.3 to 1.8 for alkylaminium monocarboxylates and 1.1 to 2.2 for alkylaminium dicarboxylates, dependent on the molecular functionality (i.e., the carboxylic or OH functional group in organic acids and methyl substitution in alkylamines). The κ value for all alkylaminium carboxylates is in the range of 0.06-1.37 derived from the HGF measurements at 90% RH, 0.05-0.49 derived from the CCN measurements, and 0.22-0.66 theoretically calculated. The measured hygroscopicity of the alkylaminium carboxylates increases with decreasing acid to base ratio. The deliquescence point is apparent for several of the alkylaminium dicarboxylates but not for the alkylaminium monocarboxylates. Our results reveal that alkylaminium carboxylate aerosols exhibit distinct hygroscopic and deliquescent characteristics that are dependent on their molecular functionality, hence regulating their impacts on human health, air quality, and direct and indirect radiative forcing on climate. PMID:26794419

  17. Cd(II), Zn(II) and Cu(II) Bioadsorption on Chemically Treated Waste Brewery Yeast Biomass: The Role of Functional Groups.

    PubMed

    Tonk, Szende; Nagy, Boldizsár; Török, Anamaria; Indolean, Cerasella; Majdik, Cornelia

    2015-01-01

    Here we study the role of functional groups from waste brewery yeast Saccharomyces cerevisiae cells in the bioadsorption of Cd(2+), Zn(2+) and Cu(2+) ions. In order to clarify the role of these functional groups, the brewery yeast was pretreated chemically, thereby helping to determine the mechanisms responsible for binding the target metals. SEM studies were performed to examine the surface microstructure of the adsorbent in pure as well as pretreated forms. The biomass was characterized using FTIR analysis, which indicated that hydroxyl, carboxyl and amid groups are present on the biomass surface. When carboxyl groups were modified by various chemical treatments, the adsorption capacity decreased dramatically, showing that carboxyl groups play a fundamental role in the bioadsorption process. The residual metallic ion concentrations were determined using an Atomic Absorption Spectrophotometer (AAS). Pseudo-first and second-order kinetic models were used to describe the bioadsorption process. PMID:26454609

  18. An experimental and density functional study on conformational and spectroscopic analysis of 5-methoxyindole-2-carboxylic acid.

    PubMed

    Cinar, Mehmet; Karabacak, Mehmet; Asiri, Abdullah M

    2015-02-25

    In this article, a brief conformational and spectroscopic characterization of 5-methoxyindole-2-carboxylic acid (5-MeOICA) via experimental techniques and applications of quantum chemical methods is presented. The conformational analysis of the studied molecule was determined theoretically using density functional computations for ground state, and compared with previously reported experimental findings. The vibrational transitions were examined by measured FT-IR and FT-Raman spectroscopic data, and also results obtained from B3LYP and CAM-B3LYP functionals in combination with 6-311++G(d,p) basis set. The recorded proton and carbon NMR spectra in DMSO solution were analyzed to obtain the exact conformation. Due to intermolecular hydrogen bondings, NMR calculations were performed for the dimeric form of 5-MeOICA and so chemical shifts of those protons were predicted more accurately. Finally, electronic properties of steady compound were identified by a comparative study of UV absorption spectra in ethanol and water solution and TD-DFT calculations. PMID:25255480

  19. Functional Assessment of Residues in the Amino- and Carboxyl-Termini of Crustacean Hyperglycemic Hormone (CHH) in the Mud Crab Scylla olivacea Using Point-Mutated Peptides

    PubMed Central

    Liu, Chun-Jing; Huang, Shiau-Shan; Toullec, Jean-Yves; Chang, Cheng-Yen; Chen, Yun-Ru; Huang, Wen-San; Lee, Chi-Ying

    2015-01-01

    To assess functional importance of the residues in the amino- and carboxyl-termini of crustacean hyperglycemic hormone in the mud crab Scylla olivacea (Sco-CHH), both wild-type and point-mutated CHH peptides were produced with an amidated C-terminal end. Spectral analyses of circular dichroism, chromatographic retention time, and mass spectrometric analysis of the recombinant peptides indicate that they were close in conformation to native CHH and were produced with the intended substitutions. The recombinant peptides were subsequently used for an in vivo hyperglycemic assay. Two mutants (R13A and I69A rSco-CHH) completely lacked hyperglycemic activity, with temporal profiles similar to that of vehicle control. Temporal profiles of hyperglycemic responses elicited by 4 mutants (I2A, F3A, D12A, and D60A Sco-CHH) were different from that elicited by wild-type Sco-CHH; I2A was unique in that it exhibited significantly higher hyperglycemic activity, whereas the remaining 3 mutants showed lower activity. Four mutants (D4A, Q51A, E54A, and V72A rSco-CHH) elicited hyperglycemic responses with temporal profiles similar to those evoked by wild-type Sco-CHH. In contrast, the glycine-extended version of V72A rSco-CHH (V72A rSco-CHH-Gly) completely lost hyperglycemic activity. By comparing our study with previous ones of ion-transport peptide (ITP) and molt-inhibiting hormone (MIH) using deleted or point-mutated mutants, detail discussion is made regarding functionally important residues that are shared by both CHH and ITP (members of Group I of the CHH family), and those that discriminate CHH from ITP, and Group-I from Group-II peptides. Conclusions summarized in the present study provide insights into understanding of how functional diversification occurred within a peptide family of multifunctional members. PMID:26261986

  20. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2014-03-18

    To understand interactions between polymer surfaces and different functional groups in proteins, interaction forces were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Various polymer brush surfaces were systematically prepared by surface-initiated atom transfer radical polymerization as well-defined model surfaces to understand protein adsorption behavior. The polymer brush layers consisted of phosphorylcholine groups (zwitterionic/hydrophilic), trimethylammonium groups (cationic/hydrophilic), sulfonate groups (anionic/hydrophilic), hydroxyl groups (nonionic/hydrophilic), and n-butyl groups (nonionic/hydrophobic) in their side chains. The interaction forces between these polymer brush surfaces and different functional groups (carboxyl groups, amino groups, and methyl groups, which are typical functional groups existing in proteins) were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Furthermore, the amount of adsorbed protein on the polymer brush surfaces was quantified by surface plasmon resonance using albumin with a negative net charge and lysozyme with a positive net charge under physiological conditions. The amount of proteins adsorbed on the polymer brush surfaces corresponded to the interaction forces generated between the functional groups on the cantilever and the polymer brush surfaces. The weakest interaction force and least amount of protein adsorbed were observed in the case of the polymer brush surface with phosphorylcholine groups in the side chain. On the other hand, positive and negative surfaces generated strong forces against the oppositely charged functional groups. In addition, they showed significant adsorption with albumin and lysozyme, respectively. These results indicated that the interaction force at the functional group level might be

  1. Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes.

    PubMed

    Tsai, Cheng-Hsun; Chang, Wei-Chieh; Saikia, Diganta; Wu, Cheng-En; Kao, Hsien-Ming

    2016-05-15

    In this work, we demonstrate that a high density of −COOH groups loading, up to 60 mol% based on silica, is successfully incorporated into SBA-16 via a one-pot synthesis route, which involves co-condensation of carboxyethylsilanetriol sodium salt (CES) and tetraethylorthosilicate (TEOS) templated by Pluronic F127 and P123 in an acidic medium. A variety of characterization techniques are performed to confirm quantitative incorporation of carboxylic groups into ordered cubic mesostructures. These functionalized materials are used to effectively remove two cationic dyes methylene blue (MB) and phenosafranine (PF) with the maximum adsorption capacities of 561 and 519 mg g(-1), respectively, at pH 9. The zeta potential results reveal that the electrostatic interactions between cationic dye molecule and negatively charged surface of the adsorbent play a crucial role in their high adsorption capacities. For a binary component system consisting of MB and PF, competitive adsorption of these two dyes is observed with adsorption capacity values slightly lower than those of the corresponding single dye systems. The dye adsorbed material can be easily regenerated by simple acid washing and be reused for five times with MB removal efficiency still up to 98.6%, showing its great potentials in environmental remediation. PMID:26906434

  2. The circular velocity function of group galaxies

    SciTech Connect

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-20

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v {sub c} ≲ 200 km s{sup –1}. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v {sub c} estimators, we find no transition from field to ΛCDM-shaped CVF above v {sub c} = 50 km s{sup –1} as a function of group halo mass. All groups with 12.4 ≲ log M {sub halo}/M {sub ☉} ≲ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v {sub c} compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v {sub c} slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  3. Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol.

    PubMed

    Castro, D O; Tabary, N; Martel, B; Gandini, A; Belgacem, N; Bras, J

    2016-12-01

    Current investigations deal with new surface functionalization strategy of nanocrystalline cellulose-based substrates to impart active molecule release properties. In this study, cellulose nanocrystals (CNC) were surface-functionalized with β-cyclodextrin (β-CD) using succinic acid (SA) and fumaric acid (FA) as bridging agents. The main objective of this surface modification performed only in aqueous media was to obtain new active materials able to release antibacterial molecules over a prolonged period of time. The reactions were conducted by immersing the CNC film into a solution composed of β-CD, SA and FA, leading to CNC grafting. The materials were characterized by infrared spectroscopy (FT-IR), Quartz crystal microbalance-dissipation (QCM-D), AFM and phenolphthalein (PhP) was used to determine the efficiency of CNC grafting with β-CD. The results indicated that β-CD was successfully attached to the CNC backbone through the formation of ester bonds. Furthermore, carvacrol was entrapped by the attached β-CD and a prolonged release was confirmed. In particular, CNC grafted to β-CD in the presence of FA was selected as the best solution. The antibacterial activity and the controlled release were studied for this sample. Considerably longer bacterial activity against B. subtilis was observed for CNC grafted to β-CD compared to CNC and CNC-FA, confirming the promising impact of the present strategy. PMID:27612798

  4. Carboxyl-Functionalized Ionic Liquid Assisted Preparation of Flexible, Transparent, and Luminescent Chitosan Films as Vapor Luminescent Sensor.

    PubMed

    Yang, Daqing; Wang, Yige; He, Liang; Li, Huanrong

    2016-08-01

    Herein we present a novel method to synthesize flexible self-standing films consisting of europium(III) complexes in nanoclay and chitosan, which are transparent and luminescent. Preparation takes place under aqueous conditions assisted by a carboxyl-functionalized ionic liquid (IL). The latter is used not only as a replacement for acetic acid to dissolve chitosan but, surprisingly, also to enhance the luminescence efficiency of the final films. A brighter luminescence is observed for the films prepared assisted with the ionic liquids compared to those by using acetic acid. The reason is that the ionic liquid used to dissolve chitosan can decrease proton strength on embedded platelets primarily through ion-exchange process and thus can increase the coordination number of europium(III) complexes. Exposure of the films to Et3N vapors can cause a further remarkable luminescence enhancement, while significant luminescence quenching occurred upon exposure to HCl vapors. The films are promising for applications in areas such as optoelectronics and vapor-sensitive luminescent sensors. PMID:27424528

  5. Sorption of heavy metal ions onto carboxylate chitosan derivatives--a mini-review.

    PubMed

    Boamah, Peter Osei; Huang, Yan; Hua, Mingqing; Zhang, Qi; Wu, Jingbo; Onumah, Jacqueline; Sam-Amoah, Livingstone K; Boamah, Paul Osei

    2015-06-01

    Chitosan is of importance for the elimination of heavy metals due to their outstanding characteristics such as the presence of NH2 and -OH functional groups, non-toxicity, low cost and, large available quantities. Modifying a chitosan structure with -COOH group improves it in terms of solubility at pH ≤7 without affecting the aforementioned characteristics. Chitosan modified with a carboxylic group possess carboxyl, amino and hydroxyl multifunctional groups which are good for elimination of metal ions. The focal point of this mini-review will be on the preparation and characterization of some carboxylate chitosan derivatives as a sorbent for heavy metal sorption. PMID:25791666

  6. Biocompatible polymers coated on carboxylated nanotubes functionalized with betulinic acid for effective drug delivery.

    PubMed

    Tan, Julia M; Karthivashan, Govindarajan; Abd Gani, Shafinaz; Fakurazi, Sharida; Hussein, Mohd Zobir

    2016-02-01

    Chemically functionalized carbon nanotubes are highly suitable and promising materials for potential biomedical applications like drug delivery due to their distinct physico-chemical characteristics and unique architecture. However, they are often associated with problems like insoluble in physiological environment and cytotoxicity issue due to impurities and catalyst residues contained in the nanotubes. On the other hand, surface coating agents play an essential role in preventing the nanoparticles from excessive agglomeration as well as providing good water dispersibility by replacing the hydrophobic surfaces of nanoparticles with hydrophilic moieties. Therefore, we have prepared four types of biopolymer-coated single walled carbon nanotubes systems functionalized with anticancer drug, betulinic acid in the presence of Tween 20, Tween 80, polyethylene glycol and chitosan as a comparative study. The Fourier transform infrared spectroscopy studies confirm the bonding of the coating molecules with the SWBA and these results were further supported by Raman spectroscopy. All chemically coated samples were found to release the drug in a slow, sustained and prolonged fashion compared to the uncoated ones, with the best fit to pseudo-second order kinetic model. The cytotoxic effects of the synthesized samples were evaluated in mouse embryonic fibroblast cells (3T3) at 24, 48 and 72 h. The in vitro results reveal that the cytotoxicity of the samples were dependent upon the drug release profiles as well as the chemical components of the surface coating agents. In general, the initial burst, drug release pattern and cytotoxicity could be well-controlled by carefully selecting the desired materials to suit different therapeutic applications. PMID:26704543

  7. Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets.

    PubMed

    Fuchs, Ann-Kathrin; Syrovets, Tatiana; Haas, Karina A; Loos, Cornelia; Musyanovych, Anna; Mailänder, Volker; Landfester, Katharina; Simmet, Thomas

    2016-04-01

    Macrophages are key regulators of innate and adaptive immune responses. Exposure to microenvironmental stimuli determines their polarization into proinflammatory M1 and anti-inflammatory M2 macrophages. M1 exhibit high expression of proinflammatory TNF-α and IL-1β, and M2 promote tissue repair, but likewise support tumor growth and cause immune suppression by expressing IL-10. Thus, the M1/M2 balance critically determines tissue homeostasis. By using carboxyl- (PS-COOH) and amino-functionalized (PS-NH2) polystyrene nanoparticles, the effects of surface decoration on the polarization of human macrophages were investigated. The nanoparticles did not compromise macrophage viability nor did they affect the expression of the M1 markers CD86, NOS2, TNF-α, and IL-1β. By contrast, in M2, both nanoparticles impaired expression of scavenger receptor CD163 and CD200R, and the release of IL-10. PS-NH2 also inhibited phagocytosis of Escherichia coli by both, M1 and M2. PS-COOH did not impair phagocytosis by M2, but increased protein mass in M1 and M2, TGF-β1 release by M1, and ATP levels in M2. Thus, nanoparticles skew the M2 macrophage polarization without affecting M1 markers. Given the critical role of the M1 and M2 polarization for the immunological balance in patients with cancer or chronic inflammation, functionalized nanoparticles might serve as tools for reprogramming the M1/M2 polarization. PMID:26854393

  8. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    SciTech Connect

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogusław

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.

  9. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    SciTech Connect

    Cao, X. T.; Showkat, A. M.; Wang, Z.; Lim, K. T.

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.

  10. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO3 nanocomposites and rare earth metal complexes: Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Cao, X. T.; Showkat, A. M.; Wang, Z.; Lim, K. T.

    2015-03-01

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb3+) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S'-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb3+ ions afforded fluorescent Tb3+ tagged aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-Tb3+) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb3+nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb3+ complexes were investigated by fluorescence spectroscopy.

  11. Cobalt(II) metal-organic framework micro-nanoparticles: Molecular self-assembly from layers to micropores showing the conjunctive orientation of carboxyl groups

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Li, Xiaoqi; Xu, Zhen-liang; Xu, Haitao

    2015-08-01

    Cobalt metal-organic framework (MOF) materials CoL(1,4-chdc)·mH2O (1,4-chdc = 1,4-cyclohexanedicarboxylic acid, L1 = 1,2-di(4-pyridyl)ethylene, and m = 0 for 1Co; L2 = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene and m = 2 for 2Co) were assembled in a MeOH-H2O solvent system. They crystallized in a monoclinic system with space group P2(1)/c, Z = 4, a = 9.479(4) Å, b = 13.704(6) Å, c = 14.455(6) Å, and β = 99.424(6)° for 1Co, and a = 14.349(11) Å, b = 12.088(9) Å, c = 26.62(2) Å, and β = 97.255(11)° for 2Co. It was shown that N-ligand can regulate and control the conjunctive orientation of carboxyl groups in these MOFs; thus, the MOFs exhibited structures that ranged from layers to micropores. Furthermore, the micro-nanoparticles of 1Co and 2Co were investigated for new potential applications of micro-nano MOFs.

  12. Functional renormalization group approach to noncollinear magnets

    NASA Astrophysics Data System (ADS)

    Delamotte, B.; Dudka, M.; Mouhanna, D.; Yabunaka, S.

    2016-02-01

    A functional renormalization group approach to d -dimensional, N -component, noncollinear magnets is performed using various truncations of the effective action relevant to study their long distance behavior. With help of these truncations we study the existence of a stable fixed point for dimensions between d =2.8 and d =4 for various values of N focusing on the critical value Nc(d ) that, for a given dimension d , separates a first-order region for N Nc(d ) . Our approach concludes to the absence of a stable fixed point in the physical—N =2 ,3 and d =3 —cases, in agreement with the ɛ =4 -d expansion and in contradiction with previous perturbative approaches performed at fixed dimension and with recent approaches based on the conformal bootstrap program.

  13. Role of functional groups in fiber in the binding of zinc

    SciTech Connect

    Jiang, K.

    1986-03-01

    The binding of zinc by purified cellulose, xylan, methylated xylan, pectin and methylated pectin was measured in vitro. Methylated xylan and methylated pectin were prepared chemically from xylan and pectin, respectively, to block hydroxyl and carboxyl groups. Comparison of zinc binding capacities was made between xylan and methylated xylan, and between pectin and methylated pectin to assess the role of the two functional groups in binding minerals. The binding of zinc was conducted at pH 2.6, 4.0, 5.4 and 6.8 in various concentrations of ZnSO/sub 4/ solution containing /sup 65/Zn using a dialysis system for water-soluble pectin and an incubation-centrifugation model for the other four water-insoluble fibers. The results showed that zinc binding by each fiber was pH dependent and it increased from pH 2.6 to 6.8 (p < 0.001). At pH 6.8, % Zn bound to fiber decreased as concentration of ZnSO/sub 4/ increased from 1 ..mu..M to 96 ..mu..M (p less than or equal to 0.01). mean zinc binding ratio of pectin to methylated xylan was 5.1, whereas the ratio of pectin t methylated pectin was only 1.7. This suggests that the hydroxyl group in xylan plays a more important role than the carboxyl group in pectin in the binding of zinc.

  14. Effects of trehalose polycation end-group functionalization on plasmid DNA uptake and transfection.

    PubMed

    Anderson, Kevin; Sizovs, Antons; Cortez, Mallory; Waldron, Chris; Haddleton, D M; Reineke, Theresa M

    2012-08-13

    In this study, we have synthesized six analogs of a trehalose-pentaethylenehexamine glycopolymer (Tr4) that contain (1A) adamantane, (1B) carboxy, (1C) alkynyl-oligoethyleneamine, (1D) azido trehalose, (1E) octyl, or (1F) oligoethyleneamine end groups and evaluated the effects of polymer end group chemistry on the ability of these systems to bind, compact, and deliver pDNA to cultured HeLa cells. The polymers were synthesized in one-pot azide-alkyne cycloaddition reactions with an adaptation of the Carothers equation for step-growth polymerization to produce a series of polymers with similar degrees of polymerization. An excess of end-capping monomer was added at the end of the polymerizations to maximize functionalization efficiency, which was evaluated with GPC, NMR, and MALDI-TOF. The polymers were all found to bind and compact pDNA at similarly low N/P ratios and form polyplexes with plasmid DNA. The effects of the different end group structures were most evident in the polyplex internalization and transfection assays in the presence of serum as determined by flow cytometry and luciferase gene expression, respectively. The Tr4 polymers end-capped with carboxyl groups (1B) (N/P = 7), octyne (1E) (N/P = 7), and oligoethyleneamine (1F) (N/P = 7), were taken into cells as polyplex and exhibited the highest levels of fluorescence, resulting from labeled plasmid. Similarly, the polymers end-functionalized with carboxyl groups (1E at N/P = 7), octyl groups (1E at N/P = 15), and in particular oligoethyleneamine groups (1F at N/P = 15) yielded dramatically higher reporter gene expression in the presence of serum. This study yields insight into how very subtle structural changes in polymer chemistry, such as end groups can yield very significant differences in the biological delivery efficiency and transgene expression of polymers used for pDNA delivery. PMID:22616977

  15. FT-IR quantification of the carbonyl functional group in aqueous-phase secondary organic aerosol from phenols

    NASA Astrophysics Data System (ADS)

    George, Kathryn M.; Ruthenburg, Travis C.; Smith, Jeremy; Yu, Lu; Zhang, Qi; Anastasio, Cort; Dillner, Ann M.

    2015-01-01

    Recent findings suggest that secondary organic aerosols (SOA) formed from aqueous-phase reactions of some organic species, including phenols, contribute significantly to particulate mass in the atmosphere. In this study, we employ a Fourier transform infrared (FT-IR) spectroscopic technique to identify and quantify the functional group makeup of phenolic SOA. Solutions containing an oxidant (hydroxyl radical or 3,4-dimethoxybenzaldehyde) and either one phenol (phenol, guaiacol, or syringol) or a mixture of phenols mimicking softwood or hardwood emissions were illuminated to make SOA, atomized, and collected on a filter. We produced laboratory standards of relevant organic compounds in order to develop calibrations for four functional groups: carbonyls (Cdbnd O), saturated C-H, unsaturated C-H and O-H. We analyzed the SOA samples with transmission FT-IR to identify and determine the amounts of the four functional groups. The carbonyl functional group accounts for 3-12% of the SOA sample mass in single phenolic SOA samples and 9-14% of the SOA sample mass in mixture samples. No carbonyl functional groups are present in the initial reactants. Varying amounts of each of the other functional groups are observed. Comparing carbonyls measured by FT-IR (which could include aldehydes, ketones, esters, and carboxylic acids) with eight small carboxylic acids measured by ion chromatography indicates that the acids only account for an average of 20% of the total carbonyl reported by FT-IR.

  16. Linking of sensor molecules with amino groups to amino-functionalized AFM tips.

    PubMed

    Wildling, Linda; Unterauer, Barbara; Zhu, Rong; Rupprecht, Anne; Haselgrübler, Thomas; Rankl, Christian; Ebner, Andreas; Vater, Doris; Pollheimer, Philipp; Pohl, Elena E; Hinterdorfer, Peter; Gruber, Hermann J

    2011-06-15

    The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH(2) groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH(2) groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker ("acetal-PEG-NHS") which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1-10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker ("aldehyde-PEG-NHS") to adjacent NH(2) groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be

  17. pKa Values for Side-Chain Carboxyl Groups of a PGB1 Variant Explain Salt and pH-Dependent Stability

    PubMed Central

    Lindman, Stina; Linse, Sara; Mulder, Frans A. A.; André, Ingemar

    2007-01-01

    Determination of pKa values of titrating residues in proteins provides a direct means of studying electrostatic coupling as well as pH-dependent stability. The B1 domain of protein G provides an excellent model system for such investigations. In this work, we analyze the observed pKa values of all carboxyl groups in a variant of PGB1 (T2Q, N8D, N37D) at low and high ionic strength as determined using 1H-13C heteronuclear NMR in a structural context. The pKa values are used to calculate the pH-dependent stability in low and high salt and to investigate electrostatic coupling in the system. The observed pKa values can explain the pH dependence of protein stability but require pKa shifts relative to model values in the unfolded state, consistent with persistent residual structure in the denatured state. In particular, we find that most of the deviations from the expected random coil values can be explained by a significantly upshifted pKa value. We show also that 13C backbone carbonyl data can be used to study electrostatic coupling in proteins and provide specific information on hydrogen bonding and electrostatic potential at nontitrating sites. PMID:17040982

  18. Contribution of cytochrome P450 and UDT-glucuronosyltransferase to the metabolism of drugs containing carboxylic acid groups: risk assessment of acylglucuronides using human hepatocytes.

    PubMed

    Jinno, Norimasa; Tagashira, Mizuka; Tsurui, Kazuyuki; Yamada, Shizuo

    2014-08-01

    1. In order to evaluate the inhibition activity of 1-aminobenzotriazole (ABT) and (-)-borneol (borneol) against cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT), the substrates of these metabolic enzymes were incubated with ABT and borneol in human hepatocytes. We found that 3 mM ABT and 300 μM borneol were the most suitable experimental levels to specifically inhibit CYP and UGT. 2. Montelukast, mefenamic acid, flufenamic acid, diclofenac, tienilic acid, gemfibrozil, ibufenac and repaglinide were markedly metabolized in human hepatocytes, and the metabolism of gemfibrozil, mefenamic acid and flufenamic acid was inhibited by borneol. With regard to repaglinide, montelukast, diclofenac and tienilic acid, metabolism was inhibited by ABT. Ibufenac was partly inhibited by both inhibitors. Zomepirac, tolmetin, ibuprofen, indomethacin and levofloxacin were moderately metabolized by human hepatocytes, and the metabolism of zomepirac, ibuprofen and indomethacin was equally inhibited by both ABT and borneol. The metabolism of tolmetin was strongly inhibited by ABT, and was also inhibited weakly by borneol. Residual drugs, telmisartan, valsartan, furosemide, naproxen and probenecid were scarcely metabolized. 3. Although we attempted to predict the toxicological risks of drugs containing carboxylic groups from the combination chemical stability and CLint via UGT, the results indicated that this combination was not sufficient and that clinical daily dose is important. PMID:24575896

  19. Synthesis and characterization of novel sulfonated poly(arylene ether ketone) copolymers with pendant carboxylic acid groups for proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Cui, Zhiming; Zhao, Chengji; Shao, Ke; Li, Hongtao; Fu, Tiezhu; Na, Hui; Xing, Wei

    A series of novel side-chain-type sulfonated poly(arylene ether ketone)s with pendant carboxylic acid groups copolymers (C-SPAEKs) were synthesized by direct copolymerization of sodium 5,5‧-carbonyl-bis(2-fluorobenzenesulfonate), 4,4‧-difluorobenzophenone and 4,4‧-bis(4-hydroxyphenyl) valeric acid (DPA). The expected structure of the sulfonated copolymers was confirmed by FT-IR and 1H NMR. Membranes with good thermal and mechanical stability could be obtained by solvent cast process. It should be noted that the proton conductivity of these copolymers with high sulfonatation degree (DS > 0.6) was higher than 0.03 S cm -1 and increased with increasing temperature. At 80 °C, the conductivity of C-SPAEK-3 (DS = 0.6) and C-SPAEK-4 (DS = 0.8) reached up to 0.12 and 0.16 S cm -1, respectively, which were higher than that of Nafion 117 (0.10 S cm -1). Moreover, their methanol permeability was much lower than that of Nafion 117. These results showed that the synthesized materials might have potential applications as the proton exchange membranes for DMFCs.

  20. Preconversion catalytic deoxygenation of phenolic functional groups

    SciTech Connect

    Kubiak, C.P.

    1991-01-01

    The deoxygenation of phenols is a conceptually simple, but unusually difficult chemical transformation to achieve. Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. A program of research for the catalytic deoxygenation of phenols, via a low energy mechanistic pathway that is based on the use of the CO/CO{sub 2} couple to remove phenolic oxygen atoms, is underway. We are focusing on systems which have significant promise as catalysts: Ir(triphos)OPh, (Pt(triphos)OPh){sup +} and Rh(triphos)OPh. Our studies of phenol deoxygenation focus on monitoring the reactions for the elementary processes upon which catalytic activity will depend: CO insertion into M-OPh bonds, CO{sub 2} elimination from aryloxy carbonyls {l brace}M-C(O)-O-Ph{r brace}, followed by formation of a coordinated benzyne intermediate.

  1. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Kyu; Yi, In-Geol; Park, Jeong-Ann; Kim, Song-Bae; Kim, Hyunjung; Han, Yosep; Kim, Pil-Je; Eom, Ig-Chun; Jo, Eunhye

    2015-06-01

    The aim of this study was to investigate the transport behavior of carboxyl-functionalized carbon black nanoparticles (CBNPs) in porous media including quartz sand, iron oxide-coated sand (IOCS), and aluminum oxide-coated sand (AOCS). Two sets of column experiments were performed under saturated flow conditions for potassium chloride (KCl), a conservative tracer, and CBNPs. Breakthrough curves were analyzed to obtain mass recovery and one-dimensional transport model parameters. The first set of experiments was conducted to examine the effects of metal (Fe, Al) oxides and flow rate (0.25 and 0.5 mL min- 1) on the transport of CBNPs suspended in deionized water. The results showed that the mass recovery of CBNPs in quartz sand (flow rate = 0.5 mL min- 1) was 83.1%, whereas no breakthrough of CBNPs (mass recovery = 0%) was observed in IOCS and AOCS at the same flow rate, indicating that metal (Fe, Al) oxides can play a significant role in the attachment of CBNPs to porous media. In addition, the mass recovery of CBNPs in quartz sand decreased to 76.1% as the flow rate decreased to 0.25 mL min- 1. Interaction energy profiles for CBNP-porous media were calculated using DLVO theory for sphere-plate geometry, demonstrating that the interaction energy for CBNP-quartz sand was repulsive, whereas the interaction energies for CBNP-IOCS and CBNP-AOCS were attractive with no energy barriers. The second set of experiments was conducted in quartz sand to observe the effect of ionic strength (NaCl = 0.1 and 1.0 mM; CaCl2 = 0.01 and 0.1 mM) and pH (pH = 4.5 and 5.4) on the transport of CBNPs suspended in electrolyte. The results showed that the mass recoveries of CBNPs in NaCl = 0.1 and 1.0 mM were 65.3 and 6.4%, respectively. The mass recoveries of CBNPs in CaCl2 = 0.01 and 0.1 mM were 81.6 and 6.3%, respectively. These results demonstrated that CBNP attachment to quartz sand can be enhanced by increasing the electrolyte concentration. Interaction energy profiles demonstrated that

  2. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.

    PubMed

    Kang, Jin-Kyu; Yi, In-Geol; Park, Jeong-Ann; Kim, Song-Bae; Kim, Hyunjung; Han, Yosep; Kim, Pil-Je; Eom, Ig-Chun; Jo, Eunhye

    2015-01-01

    The aim of this study was to investigate the transport behavior of carboxyl-functionalized carbon black nanoparticles (CBNPs) in porous media including quartz sand, iron oxide-coated sand (IOCS), and aluminum oxide-coated sand (AOCS). Two sets of column experiments were performed under saturated flow conditions for potassium chloride (KCl), a conservative tracer, and CBNPs. Breakthrough curves were analyzed to obtain mass recovery and one-dimensional transport model parameters. The first set of experiments was conducted to examine the effects of metal (Fe, Al) oxides and flow rate (0.25 and 0.5 mL min(-1)) on the transport of CBNPs suspended in deionized water. The results showed that the mass recovery of CBNPs in quartz sand (flow rate=0.5 mL min(-1)) was 83.1%, whereas no breakthrough of CBNPs (mass recovery=0%) was observed in IOCS and AOCS at the same flow rate, indicating that metal (Fe, Al) oxides can play a significant role in the attachment of CBNPs to porous media. In addition, the mass recovery of CBNPs in quartz sand decreased to 76.1% as the flow rate decreased to 0.25 mL min(-1). Interaction energy profiles for CBNP-porous media were calculated using DLVO theory for sphere-plate geometry, demonstrating that the interaction energy for CBNP-quartz sand was repulsive, whereas the interaction energies for CBNP-IOCS and CBNP-AOCS were attractive with no energy barriers. The second set of experiments was conducted in quartz sand to observe the effect of ionic strength (NaCl=0.1 and 1.0mM; CaCl2=0.01 and 0.1mM) and pH (pH=4.5 and 5.4) on the transport of CBNPs suspended in electrolyte. The results showed that the mass recoveries of CBNPs in NaCl=0.1 and 1.0mM were 65.3 and 6.4%, respectively. The mass recoveries of CBNPs in CaCl2=0.01 and 0.1mM were 81.6 and 6.3%, respectively. These results demonstrated that CBNP attachment to quartz sand can be enhanced by increasing the electrolyte concentration. Interaction energy profiles demonstrated that the

  3. Decarboxylation of pyrrole-2-carboxylic acid: A DFT investigation

    NASA Astrophysics Data System (ADS)

    Cheng, Xueli; Wang, Jinhu; Tang, Ke; Liu, Yongjun; Liu, Chengbu

    2010-08-01

    Decarboxylation is normally a dissociative process, commonly catalyzed by proton or enzymes. The decarboxylation mechanism of pyrrole-2-carboxylic acid involves the addition of water to the carboxyl group, and the C-C bond cleavage leading to the protonated carbonic acid. The direct decarboxylation and decarboxylation aided with water were also investigated to consider the functions of proton and water. Our calculations with G AUSSIAN 03 package show that, with the assistance of H 3O +, the potential energy of the C-C rupture decreases significantly to 9.77 kcal/mol, and the total energy barrier decreases to 33.99 kcal/mol.

  4. Transition from Bioinert to Bioactive Material by Tailoring the Biological Cell Response to Carboxylated Nanocellulose.

    PubMed

    Hua, Kai; Rocha, Igor; Zhang, Peng; Gustafsson, Simon; Ning, Yi; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2016-03-14

    This work presents an insight into the relationship between cell response and physicochemical properties of Cladophora cellulose (CC) by investigating the effect of CC functional group density on the response of model cell lines. CC was carboxylated by electrochemical TEMPO-mediated oxidation. By varying the amount of charge passed through the electrolysis setup, CC materials with different degrees of oxidation were obtained. The effect of carboxyl group density on the material's physicochemical properties was investigated together with the response of human dermal fibroblasts (hDF) and human osteoblastic cells (Saos-2) to the carboxylated CC films. The introduction of carboxyl groups resulted in CC films with decreased specific surface area and smaller total pore volume compared with the unmodified CC (u-CC). While u-CC films presented a porous network of randomly oriented fibers, a compact and aligned fiber pattern was depicted for the carboxylated-CC films. The decrease in surface area and total pore volume, and the orientation and aggregation of the fibers tended to augment parallel to the increase in the carboxyl group density. hDF and Saos-2 cells presented poor cell adhesion and spreading on u-CC, which gradually increased for the carboxylated CC as the degree of oxidation increased. It was found that a threshold value in carboxyl group density needs be reached to obtain a carboxylated-CC film with cytocompatibility comparable to commercial tissue culture material. Hence, this study demonstrates that a normally bioinert nanomaterial can be rendered bioactive by carefully tuning the density of charged groups on the material surface, a finding that not only may contribute to the fundamental understanding of biointerface phenomena, but also to the development of bioinert/bioactive materials. PMID:26886265

  5. Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells

    PubMed Central

    Das, Srustidhar; Lakshmanan, Imayavaramban; Majhi, Prabin D.; Smith, Lynette M.; Wagner, Kay-Uwe; Batra, Surinder K.

    2015-01-01

    MUC16 (CA125) is a type-I transmembrane glycoprotein that is up-regulated in multiple cancers including pancreatic cancer (PC). However, the existence and role of carboxyl-terminal MUC16 generated following its cleavage in PC is unknown. Our previous study using a systematic dual-epitope tagged domain deletion approach of carboxyl-terminal MUC16 has demonstrated the generation of a 17-kDa cleaved MUC16 (MUC16-Cter). Here, we demonstrate the functional significance of MUC16-Cter in PC using the dual-epitope tagged version (N-terminal FLAG- and C-terminal HA-tag) of 114 carboxyl-terminal residues of MUC16 (F114HA). In vitro analyses using F114HA transfected MiaPaCa-2 and T3M4 cells showed enhanced proliferation, motility and increased accumulation of cells in the G2/M phase with apoptosis resistance, a feature associated with cancer stem cells (CSCs). This was supported by enrichment of ALDH+ CSCs along with enhanced drug-resistance. Mechanistically, we demonstrate a novel function of MUC16-Cter that promotes nuclear translocation of JAK2 resulting in phosphorylation of Histone-3 up-regulating stemness-specific genes LMO2 and NANOG. Jak2 dependence was demonstrated using Jak2+/+ and Jak2−/− cells. Using eGFP-Luciferase labeled cells, we demonstrate enhanced tumorigenic and metastatic potential of MUC16-Cter in vivo. Taken together, we demonstrate that MUC16-Cter mediated enrichment of CSCs is partly responsible for tumorigenic, metastatic and drug-resistant properties of PC cells. PMID:25691062

  6. Feminist Research Methodology Groups: Origins, Forms, Functions.

    ERIC Educational Resources Information Center

    Reinharz, Shulamit

    Feminist Research Methodology Groups (FRMGs) have developed as a specific type of women's group in which feminist academics can find supportive audiences for their work while contributing to a feminist redefinition of research methods. An analysis of two FRMGs reveals common characteristics, dynamics, and outcomes. Both were limited to small…

  7. Identification of the functional groups on the surface of nanoparticles formed in photonucleation of aldehydes generated during forest fire events

    NASA Astrophysics Data System (ADS)

    Dultsev, Fedor N.; Mik, Ivan A.; Dubtsov, Sergei N.; Dultseva, Galina G.

    2014-11-01

    We describe the new procedure developed to determine the functional groups on the surface of nanoparticles formed in photonucleation of furfural, one of the aldehydes generated during forest fire events. The procedure is based on the detection of nanoparticle rupture from chemically modified surface of the quartz crystal microbalance oscillating in the thickness shear mode under voltage sweep. The rupture force is determined from the voltage at which the rupture occurs. It depends on particle mass and on the affinity of the surface functional groups of the particle to the groups that are present on the modified QCM surface. It was demonstrated with the amine modification of the surface that the nanoparticles formed in furfural photonucleation contain carbonyl and carboxyl groups. The applicability of the method for the investigation of functional groups on the surface of the nanoparticles of atmospheric aerosol is demonstrated.

  8. Homogeneous Ziegler-Natta polymerization of functionalized monomers catalyzed by cationic group IV metallocenes

    SciTech Connect

    Kesti, M.R.; Coates, G.W.; Waymouth, R.M.

    1992-11-18

    Ziegler-Natta catalysts are remarkable in their ability to polymerize {alpha}-olefins to high molecular weight, stereoregular polyolefins. One of the major limitations of conventional Ziegler-Natta catalysts is their intolerance to Lewis bases; catalysts based on titanium halides and alkylaluminum cocatalysts are poisoned by most types of monomers containing ethers, esters, amines, and carboxylic acids. The absence of functionality in hydrocarbon polymers seriously affects their adhesive properties, affinity for dyes, permeability, and compatibility with more polar polymers. Previous attempts to polymerize sterically hindered amines, esters and amides, alkyl halides, and carboxylic acids using catalysts derived from TiCl{sub 3} and AlR{sub 3-n}Cl{sub n} have achieved limited success due to the severe loss of catalytic activity in the presence of these monomers. This work reports that cationic, group four metallocenes are active catalysts for the homo-polymerization of {alpha}-olefins containing silyl-protected alcohols and tertiary amines. Employing different monomers and conditions, a table shows the starting monomer, reaction time and temperature, and spectroscopic analysis of the end products. A major advanatage of these metallocene-based catalysts is that the ligand system can be modified to proved the optimal combination of catalystic activity, stereospecificity, and tolerance to functionality. 32 refs., 1 tab.

  9. Replacement of the carboxylic acid group of prostaglandin F2α with a hydroxyl or methoxy substituent provides biologically unique compounds

    PubMed Central

    Woodward, D F; Krauss, A H-P; Chen, J; Gil, D W; Kedzie, K M; Protzman, C E; Shi, L; Chen, R; Krauss, H A; Bogardus, A; Dinh, H T T; Wheeler, L A; Andrews, S W; Burk, R M; Gac, T; Roof, M B; Garst, M E; Kaplan, L J; Sachs, G; Pierce, K L; Regan, J W; Ross, R A; Chan, M F

    2000-01-01

    Replacement of the carboxylic acid group of PGF2α with the non-acidic substituents hydroxyl (-OH) or methoxy (-OCH3) resulted in an unexpected activity profile.Although PGF2α 1-OH and PGF2α 1-OCH3 exhibited potent contractile effects similar to 17-phenyl PGF2α in the cat lung parenchymal preparation, they were approximately 1000 times less potent than 17-phenyl PGF2α in stimulating recombinant feline and human FP receptors.In human dermal fibroblasts and Swiss 3T3 cells PGF2α 1-OH and PGF2α 1-OCH3 produced no Ca2+ signal until a 1 μM concentration was exceeded. Pretreatment of Swiss 3T3 cells with either 1 μM PGF2α 1-OH or PGF2α 1-OCH3 did not attenuate Ca2+ signal responses produced by PGF2α or fluprostenol. In the rat uterus, PGF2α 1-OH was about two orders of magnitude less potent than 17-phenyl PGF2α whereas PGF2α 1-OCH3 produced only a minimal effect.Radioligand binding studies on cat lung parenchymal plasma membrane preparations suggested that the cat lung parenchyma does not contain a homogeneous population of receptors that equally respond to PGF2α1-OH, PGF2α1-OCH3, and classical FP receptor agonists.Studies on smooth muscle preparations and cells containing DP, EP1, EP2, EP3, EP4, IP, and TP receptors indicated that the activity of PGF2α 1-OH and PGF2α 1-OCH3 could not be ascribed to interaction with these receptors.The potent effects of PGF2α 1-OH and PGF2α 1-OCH3 on the cat lung parenchyma are difficult to describe in terms of interaction with the FP or any other known prostanoid receptor. PMID:10952685

  10. Detecting Functional Groups of Arabidopsis Mutants by Metabolic Profiling and Evaluation of Pleiotropic Responses

    PubMed Central

    Hofmann, Jörg; Börnke, Frederik; Schmiedl, Alfred; Kleine, Tatjana; Sonnewald, Uwe

    2011-01-01

    Metabolic profiles and fingerprints of Arabidopsis thaliana plants with various defects in plastidic sugar metabolism or photosynthesis were analyzed to elucidate if the genetic mutations can be traced by comparing their metabolic status. Using a platform of chromatographic and spectrometric tools data from untargeted full MS scans as well as from selected metabolites including major carbohydrates, phosphorylated intermediates, carboxylates, free amino acids, major antioxidants, and plastidic pigments were evaluated. Our key observations are that by multivariate statistical analysis each mutant can be separated by a unique metabolic signature. Closely related mutants come close. Thus metabolic profiles of sugar mutants are different but more similar than those of photosynthesis mutants. All mutants show pleiotropic responses mirrored in their metabolic status. These pleiotropic responses are typical and can be used for separating and grouping of the mutants. Our findings show that metabolite fingerprints can be taken to classify mutants and hence may be used to sort genes into functional groups. PMID:22639613

  11. Functional group diversity increases with modularity in complex food webs

    PubMed Central

    Montoya, D.; Yallop, M.L.; Memmott, J.

    2015-01-01

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web. PMID:26059871

  12. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    SciTech Connect

    Taguchi, J.; Kuriyama, K. )

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  13. Synthesis of carboxylate-functionalized graphene nanosheets for high dispersion of platinum nanoparticles based on the reduction of graphene oxide via 1-pyrenecarboxaldehyde

    NASA Astrophysics Data System (ADS)

    Kuang, Yinjie; Chen, Jinhua; Zheng, Xingliang; Zhang, Xiaohua; Zhou, Qionghua; Lu, Cuihong

    2013-10-01

    A one-step reduction/functionalization strategy for the synthesis of carboxylate-functionalized graphene nanosheets is reported in this paper. 1-pyrenecarboxaldehyde (PCA) is introduced as a new reductant for the chemical reduction of graphene oxide (GO), serving three roles: reducing GO to graphene nanosheets (GNs), stabilizing the as-prepared GNs due to the electrostatic repulsion of the oxidation products of PCA (1-pyrenecarboxylate, PC-) on the surface of the GNs and anchoring Pt nanoparticles (Pt NPs) with high dispersion and small particle size. Transmission electron microscopy shows that Pt NPs with an average diameter of 1.3 ± 0.2 nm are uniformly dispersed on the surface of the PC--functionalized GNs (PC--GNs). The obtained Pt NPs/PC--GNs nanohybrids have higher electrocatalytic activity and stability towards methanol oxidation in comparison with Pt NPs supported on GNs obtained by the chemical reduction of GO with the typical reductant, hydrazine.

  14. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    PubMed

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  15. Silver-Catalyzed Decarboxylative Allylation of Aliphatic Carboxylic Acids in Aqueous Solution.

    PubMed

    Cui, Lei; Chen, He; Liu, Chao; Li, Chaozhong

    2016-05-01

    Direct decarboxylative radical allylation of aliphatic carboxylic acids is described. With K2S2O8 as the oxidant and AgNO3 as the catalyst, the reactions of aliphatic carboxylic acids with allyl sulfones in aqueous CH3CN solution gave the corresponding alkenes in satisfactory yields under mild conditions. This site-specific allylation method is applicable to all primary, secondary, and tertiary alkyl acids and exhibits wide functional group compatibility. PMID:27065060

  16. Functional group analysis in coal and on coal surfaces by NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1990-01-01

    An accurate knowledge of the oxygen-bearing labile hydrogen functional groups (e.g., carboxylic acids, phenols and alcohols) in coal is required for today's increasingly sophisticated coal cleaning and beneficiation processes. Phospholanes (compounds having the general structure -POCH{sub 2}CH{sub 2}O (1)) are being investigated as reagents for the tagging of liable hydrogen functional groups in coal materials with the NMR-active {sup 31}P nucleus. Of twelve such reagents investigated so far, 2 (2-chloro-1,3-dioxaphospholane, ClPOCH{sub 2}CH{sub 2}O) and 8 (2-chloro-1,3-dithiaphospholane, ClPSCH{sub 2}CH{sub 2}S) have been found to be useful in identifying and quantitating, by {sup 31}P NMR spectroscopy, labile hydrogen functional groups in an Illinois No. 6 coal condensate. Reagent 2 has also been used to quantitate moisture in pyridine extracts of Argonne Premium Coal Samples. Preliminary {sup 119}Sn NMR spectroscopic results on model compounds with the new reagent CF{sub 3}C(O)NHSnMe{sub 3} (N-trimethylstannyltrifluoroacetamide, 14) suggest that labile hydrogen functional groups in coal materials may be more precisely identified with 14 than with phospholanes. 14 refs., 2 figs., 2 tabs.

  17. N-heterocyclic carbene gold(I) and silver(I) complexes bearing functional groups for bio-conjugation.

    PubMed

    Garner, Mary E; Niu, Weijia; Chen, Xigao; Ghiviriga, Ion; Abboud, Khalil A; Tan, Weihong; Veige, Adam S

    2015-01-28

    This work describes several synthetic approaches to append organic functional groups to gold and silver N-heterocyclic carbene (NHC) complexes suitable for applications in biomolecule conjugation. Carboxylate appended NHC ligands (3) lead to unstable Au(I) complexes that convert into bis-NHC species (4). A benzyl protected carboxylate NHC-Au(I) complex 2 was synthesized but deprotection to produce the carboxylic acid functionality could not be achieved. A small library of new alkyne functionalized NHC proligands were synthesized and used for subsequent silver and gold metalation reactions. The alkyne appended NHC gold complex 13 readily reacts with benzyl azide in a copper catalyzed azide-alkyne cycloaddition reaction to form the triazole appended NHC gold complex 14. Cell cytotoxicity studies were performed on DLD-1 (colorectal adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MCF-7 (breast adenocarcinoma), CCRF-CEM (human T-Cell leukemia), and HEK (human embryonic kidney). Complete spectroscopic characterization of the ligands and complexes was achieved using (1)H and (13)C NMR, gHMBC, ESI-MS, and combustion analysis. PMID:25490699

  18. N-heterocyclic carbene gold(I) and silver(I) complexes bearing functional groups for bio-conjugation

    PubMed Central

    Garner, Mary E.; Niu, Weijia; Chen, Xigao; Ghiviriga, Ion; Tan, Weihong; Veige, Adam S.

    2015-01-01

    This work describes several synthetic approaches to append organic functional groups to gold and silver N-heterocyclic carbene (NHC) complexes suitable for applications in biomolecule conjugation. Carboxylate appended NHC ligands (3) lead to unstable AuI complexes that convert into bis-NHC species (4). A benzyl protected carboxylate NHC-AuI complex 2 was synthesized but deprotection to produce the carboxylic acid functionality could not be achieved. A small library of new alkyne functionalized NHC proligands were synthesized and used for subsequent silver and gold metalation reactions. The alkyne appended NHC gold complex 13 readily react with benzyl azide in a copper catalyzed azide-alkyne cycloaddition reaction to form the triazole appended NHC gold complex 14. Cell cytotoxicity studies were performed on DLD-1 (colorectal adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MCF-7 (breast adenocarcinoma), CCRF-CEM (human T-Cell leukemia), and HEK (human embryonic kidney). Complete spectroscopic characterization of the ligands and complexes was achieved using 1H and 13C NMR, gHMBC, ESI-MS, and combustion analysis. PMID:25490699

  19. Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: application to the immunocapture of β-amyloid peptides.

    PubMed

    Horák, Daniel; Hlídková, Helena; Hiraoui, Mohamed; Taverna, Myriam; Proks, Vladimír; Mázl Chánová, Eliška; Smadja, Claire; Kučerová, Zdenka

    2014-11-01

    Identification and evaluation of small changes in β-amyloid peptide (Aβ) levels in cerebrospinal fluid is of crucial importance for early detection of Alzheimer's disease. Microfluidic detection methods enable effective preconcentration of Aβ using magnetic microparticles coated with Aβ antibodies. Poly(glycidyl methacrylate) microspheres are coated with α-amino-ω-methoxy-PEG5000 /α-amino-ω-Boc-NH-PEG5000 Boc groups deprotected and NH2 succinylated to introduce carboxyl groups. Capillary electrophoresis with laser-induced fluorescence detection confirms the efficient capture of Aβ 1-40 peptides on the microspheres with immobilized monoclonal anti-Aβ 6E10. The capture specificity is confirmed by comparing Aβ 1-40 levels on the anti-IgG-immobilized particles used as a control. PMID:25142028

  20. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    NASA Technical Reports Server (NTRS)

    Butcher, Ray J.; Brewer, Greg; Burton, Aaron S.; Dworkin, Jason

    2014-01-01

    In the title compound, C5H9NO2H2O, the amino acid is in the usual zwitterionic form involving the carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7) and0.118 (7). In the crystal, NH O and OH O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+) and donor (through a single carboxylate O from two different aminocyclobutane carboxylatemoities)], resulting in a two-dimensional layered structure lying parallel to (100).

  1. Functional group composition of organic aerosol from combustion emissions and secondary processes at two contrasted urban environments

    NASA Astrophysics Data System (ADS)

    El Haddad, Imad; Marchand, Nicolas; D'Anna, Barbara; Jaffrezo, Jean Luc; Wortham, Henri

    2013-08-01

    The quantification of major functional groups in atmospheric organic aerosol (OA) provides a constraint on the types of compounds emitted and formed in atmospheric conditions. This paper presents functional group composition of organic aerosol from two contrasted urban environments: Marseille during summer and Grenoble during winter. Functional groups were determined using a tandem mass spectrometry approach, enabling the quantification of carboxylic (RCOOH), carbonyl (RCOR‧), and nitro (RNO2) functional groups. Using a multiple regression analysis, absolute concentrations of functional groups were combined with those of organic carbon derived from different sources in order to infer the functional group contents of different organic aerosol fractions. These fractions include fossil fuel combustion emissions, biomass burning emissions and secondary organic aerosol (SOA). Results clearly highlight the differences between functional group fingerprints of primary and secondary OA fractions. OA emitted from primary sources is found to be moderately functionalized, as about 20 carbons per 1000 bear one of the functional groups determined here, whereas SOA is much more functionalized, as in average 94 carbons per 1000 bear a functional group under study. Aging processes appear to increase both RCOOH and RCOR‧ functional group contents by nearly one order of magnitude. Conversely, RNO2 content is found to decrease with photochemical processes. Finally, our results also suggest that other functional groups significantly contribute to biomass smoke and SOA. In particular, for SOA, the overall oxygen content, assessed using aerosol mass spectrometer measurements by an O:C ratio of 0.63, is significantly higher than the apparent O:C* ratio of 0.17 estimated based on functional groups measured here. A thorough examination of our data suggests that this remaining unexplained oxygen content can be most probably assigned to alcohol (ROH), organic peroxides (ROOH

  2. A conformation and orientation model of the carboxylic group of fatty acids dependent on chain length in a Langmuir monolayer film studied by polarization-modulation infrared reflection absorption spectroscopy.

    PubMed

    Muro, Maiko; Itoh, Yuki; Hasegawa, Takeshi

    2010-09-01

    The conformation of the carboxylic group of fatty acids in a Langmuir (L) monolayer film on water is described in relation to the aggregation property of the hydrocarbon chain. Polarization-modulation infrared reflection absorption spectra (PM-IRRAS) of L films of heptadecanoic acid (C(17)), octadecanoic acid (C(18)), and nonadecanoic acid (C(19)) exhibit systematic spectral changes in both the C-H and C=O stretching vibration regions. Through a stabilization analysis of the L films at a high surface pressure, the C(19) L film has been found outstandingly stable exhibiting no film shrink, while the other two compounds exhibit a large shrink at high surface pressure. By taking into account the uniquely high aggregation property of the hydrocarbon chains of C(19), the three major bands arising from the C=O stretching vibration mode propose three types of molecular conformations about the carboxylic group, which are elucidated by a balance of the hydration of the carboxylic group, the chain length of the hydrocarbon chain, and the surface pressure. PMID:20718412

  3. Involvement of the Carboxyl-Terminal Region of the Yeast Peroxisomal Half ABC Transporter Pxa2p in Its Interaction with Pxa1p and in Transporter Function

    PubMed Central

    Chuang, Cheng-Yi; Chen, Ling-Yun; Fu, Ru-Huei; Chen, Shih-Ming; Ho, Ming-Hua; Huang, Jie-Mau; Hsu, Chia-Chi; Wang, Chien-Cheng; Chen, Meng-Shian; Tsai, Rong-Tzong

    2014-01-01

    Background The peroxisome is a single membrane-bound organelle in eukaryotic cells involved in lipid metabolism, including β-oxidation of fatty acids. The human genetic disorder X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene (encoding ALDP, a peroxisomal half ATP-binding cassette [ABC] transporter). This disease is characterized by defective peroxisomal β-oxidation and a large accumulation of very long-chain fatty acids in brain white matter, adrenal cortex, and testis. ALDP forms a homodimer proposed to be the functional transporter, whereas the peroxisomal transporter in yeast is a heterodimer comprising two half ABC transporters, Pxa1p and Pxa2p, both orthologs of human ALDP. While the carboxyl-terminal domain of ALDP is engaged in dimerization, it remains unknown whether the same region is involved in the interaction between Pxa1p and Pxa2p. Methods/Principal Findings Using a yeast two-hybrid assay, we found that the carboxyl-terminal region (CT) of Pxa2p, but not of Pxa1p, is required for their interaction. Further analysis indicated that the central part of the CT (designated CT2) of Pxa2p was indispensable for its interaction with the carboxyl terminally truncated Pxa1_NBD. An interaction between the CT of Pxa2p and Pxa1_NBD was not detected, but could be identified in the presence of Pxa2_NBD-CT1. A single mutation of two conserved residues (aligned with X-ALD-associated mutations at the same positions in ALDP) in the CT2 of the Pxa2_NBD-CT protein impaired its interaction with Pxa1_NBD or Pxa1_NBD-CT, resulting in a mutant protein that exhibited a proteinase K digestion profile different from that of the wild-type protein. Functional analysis of these mutant proteins on oleate plates indicated that they were defective in transporter function. Conclusions/Significance The CT of Pxa2p is involved in its interaction with Pxa1p and in transporter function. This concept may be applied to human ALDP studies, helping to establish

  4. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

    PubMed Central

    2016-01-01

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr2+, Fe3+, Nd3+, and Am3+, from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  5. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework.

    PubMed

    Demir, Selvan; Brune, Nicholas K; Van Humbeck, Jeffrey F; Mason, Jarad A; Plakhova, Tatiana V; Wang, Shuao; Tian, Guoxin; Minasian, Stefan G; Tyliszczak, Tolek; Yaita, Tsuyoshi; Kobayashi, Tohru; Kalmykov, Stepan N; Shiwaku, Hideaki; Shuh, David K; Long, Jeffrey R

    2016-04-27

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  6. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon.

    PubMed

    Foo, Guo Shiou; Sievers, Carsten

    2015-02-01

    The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups. PMID:25504913

  7. The carboxyl group of Glu113 is required for stabilization of the diferrous and bis-FeIV states of MauG

    PubMed Central

    Tarboush, Nafez Abu; Yukl, Erik T.; Shin, Sooim; Feng, Manliang; Wilmot, Carrie M.; Davidson, Victor L.

    2013-01-01

    The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Crystallographic studies have implicated Glu113 in the formation of the bis-FeIV state of MauG, in which one heme is FeIV=O and the other is FeIV with His-Tyr axial ligation. An E113Q mutation had no effect on the structure of MauG, but significantly altered its redox properties. E113Q MauG could not be converted to the diferrous state by reduction with dithionite, but was only reduced to a mixed valence FeII/FeIII state, which is never observed in wild-type (WT) MauG. Addition of H2O2 to E113Q MauG generated a high valence state that formed more slowly and was less stable than the bis-FeIV state of WT MauG. E113Q MauG exhibited no detectable TTQ biosynthesis activity in a steady-state assay with preMADH as the substrate. It did catalyze the steady-state oxidation of quinol MADH to the quinone, but 1000-fold less efficiently than WT MauG. Addition of H2O2 to a crystal of the E113Q MauG-preMADH complex resulted in partial synthesis of TTQ. Extended exposure of these crystals to H2O2 resulted in hydroxylation of Pro107 in the distal pocket of the high-spin heme. It is concluded that the loss of the carboxylic group of Glu113 disrupts the redox cooperativity between hemes that allows rapid formation of the diferrous state, and alters the distribution of high-valence species that participate in charge-resonance stabilization of the bis-FeIV redox state. PMID:23952537

  8. Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG.

    PubMed

    Abu Tarboush, Nafez; Yukl, Erik T; Shin, Sooim; Feng, Manliang; Wilmot, Carrie M; Davidson, Victor L

    2013-09-17

    The diheme enzyme MauG catalyzes a six-electron oxidation required for post-translational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Crystallographic studies have implicated Glu113 in the formation of the bis-Fe(IV) state of MauG, in which one heme is Fe(IV)═O and the other is Fe(IV) with His-Tyr axial ligation. An E113Q mutation had no effect on the structure of MauG but significantly altered its redox properties. E113Q MauG could not be converted to the diferrous state by reduction with dithionite but was only reduced to a mixed valence Fe(II)/Fe(III) state, which is never observed in wild-type (WT) MauG. Addition of H2O2 to E113Q MauG generated a high valence state that formed more slowly and was less stable than the bis-Fe(IV) state of WT MauG. E113Q MauG exhibited no detectable TTQ biosynthesis activity in a steady-state assay with preMADH as the substrate. It did catalyze the steady-state oxidation of quinol MADH to the quinone, but 1000-fold less efficiently than WT MauG. Addition of H2O2 to a crystal of the E113Q MauG-preMADH complex resulted in partial synthesis of TTQ. Extended exposure of these crystals to H2O2 resulted in hydroxylation of Pro107 in the distal pocket of the high-spin heme. It is concluded that the loss of the carboxylic group of Glu113 disrupts the redox cooperativity between hemes that allows rapid formation of the diferrous state and alters the distribution of high-valence species that participate in charge-resonance stabilization of the bis-Fe(IV) redox state. PMID:23952537

  9. Toward Functional Carboxylate-Bridged Diiron Protein Mimics: Achieving Structural Stability and Conformational Flexibility Using a Macrocylic Ligand Framework

    PubMed Central

    Do, Loi H.; Lippard, Stephen J.

    2011-01-01

    A dinucleating macrocycle, H2PIM, containing phenoxylimine metal-binding units has been prepared. Reaction of H2PIM with [Fe2(Mes)4] (Mes = 2,4,6-trimethylphenyl) and sterically hindered carboxylic acids, Ph3CCO2H or ArTolCO2H (2,6-bis(p-tolyl)benzoic acid), afforded complexes [Fe2(PIM)(Ph3CCO2)2] (1) and [Fe2(PIM)(ArTolCO2)2] (2), respectively. X-ray diffraction studies revealed that these diiron(II) complexes closely mimic the active site structures of the hydroxylase components of bacterial multi-component monooxygenases (BMMs), particularly the syn disposition of the nitrogen donor atoms and the bridging μ-η1η2 and μ-η1η1 modes of the carboxylate ligands at the diiron(II) centers. Cyclic voltammograms of 1 and 2 displayed quasi-reversible redox couples at +16 and +108 mV vs. ferrocene/ferrocenium, respectively. Treatment of 2 with silver perchlorate afforded a silver(I)/iron(III) heterodimetallic complex, [Fe2(μ-OH)2(ClO4)2(PIM)(ArTolCO2)Ag] (3), which was structurally and spectroscopically characterized. Complexes 1 and 2 both react rapidly with dioxygen. Oxygenation of 1 afforded a (μ-hydroxo)diiron(III) complex [Fe2(μ-OH)(PIM)(Ph3CCO2)3] (4), a hexa(μ-hydroxo)tetrairon(III) complex [Fe4(μ-OH)6(PIM)2(Ph3CCO2)2] (5), and an unidentified iron(III) species. Oxygenation of 2 exclusively formed di(carboxylato)diiron(III) compounds, a testimony to the role of the macrocylic ligand in preserving the dinuclear iron center under oxidizing conditions. X-ray crystallographic and 57Fe Mössbauer spectroscopic investigations indicated that 2 reacts with dioxygen to give a mixture of (μ-oxo)diiron(III) [Fe2(μ-O)(PIM)(ArTolCO2)2] (6) and di(μ-hydroxo)diiron(III) [Fe2(μ-OH)2(PIM)(ArTolCO2)2] (7) units in the same crystal lattice. Compounds 6 and 7 spontaneously convert to a tetrairon(III) complex, [Fe4(μ-OH)6(PIM)2(ArTolCO2)2] (8), when treated with excess H2O. PMID:21682286

  10. Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmentally relevant concentrations into targeted organs of nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Nouara, Abdelli; Wu, Qiuli; Li, Yinxia; Tang, Meng; Wang, Haifang; Zhao, Yuliang; Wang, Dayong

    2013-06-01

    Carboxyl (-COOH) surface modified multi-walled carbon nanotubes (MWCNTs-COOH) can be used for targeted delivery of drugs and imaging. However, whether MWCNTs-COOH at environmentally relevant concentrations exert certain toxic effects on multicellular organisms and the underlying mechanisms are still largely unclear. In the present study, we applied the nematode Caenorhabditis elegans to evaluate the properties of MWCNTs-COOH at environmentally relevant concentrations by comparing the effects of MWCNTs and MWCNTs-COOH exposure on C. elegans from L1-larvae to adult at concentrations of 0.001-1000 μg L-1. Exposure to MWCNTs could potentially damage the intestine (primary targeted organ) at concentrations greater than 0.1 μg L-1 and functions of neurons and reproductive organ (secondary targeted organs) at concentrations greater than 0.001 μg L-1. Carboxyl modification prevented the toxicity of MWCNTs on the primary and the secondary targeted organs at concentrations less than 100 μg L-1, suggesting that carboxyl modification can effectively prevent the adverse effects of MWCNTs at environmentally relevant concentrations. After exposure, MWCNTs-COOH (1 mg L-1) were translocated into the spermatheca and embryos in the body through the primary targeted organs. However, MWCNTs-COOH (10 μg L-1) were not observed in spermatheca and embryos in the body of nematodes. Moreover, relatively high concentrations of MWCNTs-COOH exposed nematodes might have a hyper-permeable intestinal barrier, whereas MWCNTs-COOH at environmentally relevant concentrations effectively sustained the normally permeable state for the intestinal barrier. Therefore, we elucidated the cellular basis of carboxyl modification to prevent toxicity of MWCNTs at environmentally relevant concentrations. Our data highlights the key role of biological barriers in the primary targeted organs to block toxicity formation from MWCNTs, which will be useful for the design of effective prevention strategies against

  11. Peptide coupling between amino acids and the carboxylic acid of a functionalized chlorido-gold(I)-phosphane.

    PubMed

    Kriechbaum, Margit; List, Manuela; Himmelsbach, Markus; Redhammer, Günther J; Monkowius, Uwe

    2014-10-01

    We have developed a protocol for the direct coupling between methyl ester protected amino acids and the chlorido-gold(I)-phosphane (p-HOOC(C6H4)PPh2)AuCl. By applying the EDC·HCl/NHS strategy (EDC·HCl = N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide hydrochloride, NHS = N-hydroxysuccinimide), the methyl esters of l-phenylalanine, glycine, l-leucine, l-alanine, and l-methionine are coupled with the carboxylic acid of the gold complex in moderate to good yields (62-88%). All amino acid tagged gold complexes were characterized by (1)H and (13)C NMR spectroscopy and high-resolution mass spectrometry. As corroborated by measurement of the angle of optical rotation, no racemization occurred during the reaction. The molecular structure of the leucine derivative was determined by single-crystal X-ray diffraction. In the course of developing an efficient coupling protocol, the acyl chlorides (p-Cl(O)C(C6H4)PPh2)AuX (X = Cl, Br) were also prepared and characterized. PMID:25203269

  12. Carboxyl-functionalized polyurethane nanoparticles with immunosuppressive properties as a new type of anti-inflammatory platform

    NASA Astrophysics Data System (ADS)

    Huang, Yen-Jang; Hung, Kun-Che; Hsieh, Fu-Yu; Hsu, Shan-Hui

    2015-12-01

    The interaction of nanoparticles (NPs) with the body immune system is critically important for their biomedical applications. Most NPs stimulate the immune response of macrophages. Here we show that synthetic polyurethane nanoparticles (PU NPs, diameter 34-64 nm) with rich surface COO- functional groups (zeta potential -70 to -50 mV) can suppress the immune response of macrophages. The specially-designed PU NPs reduce the gene expression levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) for endotoxin-treated macrophages. The PU NPs increase the intracellular calcium of macrophages (4.5-6.5 fold) and activate autophagy. This is in contrast to the autophagy dysfunction generally observed upon NP exposure. These PU NPs may further decrease the nuclear factor-κB-related inflammation via autophagy pathways. The immunosuppressive activities of PU NPs can prevent animal death by inhibiting the macrophage recruitment and proinflammatory responses, confirmed by an in vivo zebrafish model. Therefore, the novel biodegradable PU NPs demonstrate COO- dependent immunosuppressive properties without carrying any anti-inflammatory agents. This study suggests that NP surface chemistry may regulate the immune response, which provides a new paradigm for potential applications of NPs in anti-inflammation and immunomodulation.The interaction of nanoparticles (NPs) with the body immune system is critically important for their biomedical applications. Most NPs stimulate the immune response of macrophages. Here we show that synthetic polyurethane nanoparticles (PU NPs, diameter 34-64 nm) with rich surface COO- functional groups (zeta potential -70 to -50 mV) can suppress the immune response of macrophages. The specially-designed PU NPs reduce the gene expression levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) for endotoxin-treated macrophages. The PU NPs increase the intracellular calcium of macrophages (4.5-6.5 fold) and activate autophagy. This is in contrast

  13. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly report, January 1--March 30, 1996

    SciTech Connect

    Kubiak, C.P.

    1996-12-31

    Over the course of the studies on catalytic deoxygenation of phenolic residues in coal by carbon monoxide, the author performed preliminary investigations into the removal of other heteroatom groups. This report describes the attempted carbonylation of phenyl amido complexes. These studies resulted in the surprisingly facile formation of amidines. The amidine group is the nitrogen analog of carboxylic acids and esters. This functional group combines the properties of an azomethane-like C=N double bond with an amide-like C-N single bond. This group, like the related allyl (C-C-C), aza-allyl (C-N-C), and carboxylato (O-C-O) groups, form a number of transition metal derivatives, with both early and late transition metals. Various bonding modes of the amidino group have been reported. However, most isolated complexes have the amidino ligand as a chelating ligand or bridging two metals. This is due to the preference of amidines to bond via the nitrogen lone pairs, in contrast to the {eta}3 bonding observed in metal-allyl complexes. The experimental section of the paper describes the synthesis of platinum complexes, X-ray diffraction data for one Pt complex, and its reaction with carbon monoxide. Results are presented on the crystal and molecular structure of a platinum complex.

  14. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  15. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  16. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  17. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    NASA Astrophysics Data System (ADS)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-11-01

    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  18. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    SciTech Connect

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  19. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2015-09-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. The model combines Köhler theory with semi-empirical group contribution methods to estimate molar volumes, activity coefficients and liquid-liquid phase boundaries to predict the effective hygroscopicity parameter, kappa. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of two. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging testbeds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger scale models.

  20. Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon.

    PubMed

    Khanal, S P; Mahfuz, H; Rondinone, A J; Leventouri, Th

    2016-03-01

    The potential of improving the fracture toughness of synthetic hydroxyapatite (HAp) by incorporating carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and polymerized ε-caprolactam (nylon) was studied. A series of HAp samples with CfSWCNTs concentrations varying from 0 to 1.5 wt.%, without, and with nylon addition was prepared. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) were used to characterize the samples. The three point bending test was applied to measure the fracture toughness of the composites. A reproducible value of 3.6±0.3 MPa.√m was found for samples containing 1 wt.% CfSWCNTs and nylon. This value is in the range of the cortical bone fracture toughness. Increase of the CfSWCNTs content results to decrease of the fracture toughness, and formation of secondary phases. PMID:26706523

  1. Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon

    SciTech Connect

    Khanal, Suraj P.; Mahfuz, Hassan; Rondinone, Adam Justin; Leventouri, Th.

    2015-11-12

    The potential of improving the fracture toughness of synthetic hydroxyapatite (HAp) by incorporating carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and polymerized ε-caprolactam (nylon) was researched. A series of HAp samples with CfSWCNTs concentrations varying from 0 to 1.5 wt.%, without, and with nylon addition was prepared. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) were used to characterize the samples. The three point bending test was applied to measure the fracture toughness of the composites. A reproducible value of 3.6 ± 0.3 MPa.√m was found for samples containing 1 wt.% CfSWCNTs and nylon. This value is in the range of the cortical bone fracture toughness. Lastly, the increase of the CfSWCNTs content results to decrease of the fracture toughness, and formation of secondary phases.

  2. Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon

    DOE PAGESBeta

    Khanal, Suraj P.; Mahfuz, Hassan; Rondinone, Adam Justin; Leventouri, Th.

    2015-11-12

    The potential of improving the fracture toughness of synthetic hydroxyapatite (HAp) by incorporating carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and polymerized ε-caprolactam (nylon) was researched. A series of HAp samples with CfSWCNTs concentrations varying from 0 to 1.5 wt.%, without, and with nylon addition was prepared. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) were used to characterize the samples. The three point bending test was applied to measure the fracture toughness of the composites. A reproducible value of 3.6 ± 0.3 MPa.√m was found for samples containing 1 wt.% CfSWCNTs and nylon. This valuemore » is in the range of the cortical bone fracture toughness. Lastly, the increase of the CfSWCNTs content results to decrease of the fracture toughness, and formation of secondary phases.« less

  3. Influence of functional groups on organic aerosol cloud condensation nucleus activity.

    PubMed

    Suda, Sarah R; Petters, Markus D; Yeh, Geoffrey K; Strollo, Christen; Matsunaga, Aiko; Faulhaber, Annelise; Ziemann, Paul J; Prenni, Anthony J; Carrico, Christian M; Sullivan, Ryan C; Kreidenweis, Sonia M

    2014-09-01

    Organic aerosols in the atmosphere are composed of a wide variety of species, reflecting the multitude of sources and growth processes of these particles. Especially challenging is predicting how these particles act as cloud condensation nuclei (CCN). Previous studies have characterized the CCN efficiency for organic compounds in terms of a hygroscopicity parameter, κ. Here we extend these studies by systematically testing the influence of the number and location of molecular functional groups on the hygroscopicity of organic aerosols. Organic compounds synthesized via gas-phase and liquid-phase reactions were characterized by high-performance liquid chromatography coupled with scanning flow CCN analysis and thermal desorption particle beam mass spectrometry. These experiments quantified changes in κ with the addition of one or more functional groups to otherwise similar molecules. The increase in κ per group decreased in the following order: hydroxyl ≫ carboxyl > hydroperoxide > nitrate ≫ methylene (where nitrate and methylene produced negative effects, and hydroperoxide and nitrate groups produced the smallest absolute effects). Our results contribute to a mechanistic understanding of chemical aging and will help guide input and parametrization choices in models relying on simplified treatments such as the atomic oxygen:carbon ratio to predict the evolution of organic aerosol hygroscopicity. PMID:25118824

  4. The synaptic targeting of mGluR1 by its carboxyl-terminal domain is crucial for cerebellar function.

    PubMed

    Ohtani, Yoshiaki; Miyata, Mariko; Hashimoto, Kouichi; Tabata, Toshihide; Kishimoto, Yasushi; Fukaya, Masahiro; Kase, Daisuke; Kassai, Hidetoshi; Nakao, Kazuki; Hirata, Tatsumi; Watanabe, Masahiko; Kano, Masanobu; Aiba, Atsu

    2014-02-12

    The metabotropic glutamate receptor subtype 1 (mGluR1, Grm1) in cerebellar Purkinje cells (PCs) is essential for motor coordination and motor learning. At the synaptic level, mGluR1 has a critical role in long-term synaptic depression (LTD) at parallel fiber (PF)-PC synapses, and in developmental elimination of climbing fiber (CF)-PC synapses. mGluR1a, a predominant splice variant in PCs, has a long carboxyl (C)-terminal domain that interacts with Homer scaffolding proteins. Cerebellar roles of the C-terminal domain at both synaptic and behavior levels remain poorly understood. To address this question, we introduced a short variant, mGluR1b, which lacks this domain into PCs of mGluR1-knock-out (KO) mice (mGluR1b-rescue mice). In mGluR1b-rescue mice, mGluR1b showed dispersed perisynaptic distribution in PC spines. Importantly, mGluR1b-rescue mice exhibited impairments in inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca(2+) release, CF synapse elimination, LTD induction, and delay eyeblink conditioning: they showed normal transient receptor potential canonical (TRPC) currents and normal motor coordination. In contrast, PC-specific rescue of mGluR1a restored all cerebellar defects of mGluR1-KO mice. We conclude that the long C-terminal domain of mGluR1a is required for the proper perisynaptic targeting of mGluR1, IP3R-mediated Ca(2+) release, CF synapse elimination, LTD, and motor learning, but not for TRPC currents and motor coordination. PMID:24523559

  5. Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane

    PubMed Central

    Liu, Ying; Zhang, Zhen; Zhang, Quanxuan; Baker, Gregory L.; Worden, R. Mark

    2013-01-01

    Engineered nanomaterials (ENM) have desirable properties that make them well suited for many commercial applications. However, a limited understanding of how ENM’s properties influence their molecular interactions with biomembranes hampers efforts to design ENM that are both safe and effective. This paper describes the use of a tethered bilayer lipid membrane (tBLM) to characterize biomembrane disruption by functionalized silica-core nanoparticles. Electrochemical impedance spectroscopy was used to measure the time trajectory of tBLM resistance following nanoparticle exposure. Statistical analysis of parameters from an exponential resistance decay model was then used to quantify and analyze differences between the impedance profiles of nanoparticles that were unfunctionalized, amine-functionalized, or carboxyl-functionalized. All of the nanoparticles triggered a decrease in membrane resistance, indicating nanoparticle-induced disruption of the tBLM. Hierarchical clustering allowed the potency of nanoparticles for reducing tBLM resistance to be ranked in the order amine > carboxyl ~ bare silica. Dynamic light scattering analysis revealed that tBLM exposure triggered minor coalescence for bare and amine-functionalized silica nanoparticles but not for carboxyl-functionalized silica nanoparticles. These results indicate that the tBLM method can reproducibly characterize ENM-induced biomembrane disruption and can distinguish the BLM-disruption patterns of nanoparticles that are identical except for their surface functional groups. The method provides insight into mechanisms of molecular interaction involving biomembranes and is suitable for miniaturization and automation for high-throughput applications to help assess the health risk of nanomaterial exposure or identify ENM having a desired mode of interaction with biomembranes. PMID:24060565

  6. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling

    NASA Astrophysics Data System (ADS)

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2015-11-01

    Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices.Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively

  7. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids.

    PubMed

    Clomburg, James M; Blankschien, Matthew D; Vick, Jacob E; Chou, Alexander; Kim, Seohyoung; Gonzalez, Ramon

    2015-03-01

    An engineered reversal of the β-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6-10-carbons) ω-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned β-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ω-hydroxyacids and dicarboxylic acids by the action of an engineered ω-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core β-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6-C10 carboxylic acids and provided a platform for vector based independent expression of ω-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all β-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6-C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a β-oxidation cycle with ω-oxidation termination pathways was further demonstrated through the production of greater than 0.8 g/L C6-C10 ω-hydroxyacids or about 0.5 g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media. PMID:25638687

  8. Dwarf Galaxies in the Leo I Group: the Group Luminosity Function beyond the Local Group (Oral Contribution)

    NASA Astrophysics Data System (ADS)

    Flint, K.; Bolte, M.; Mendes de Oliveira, C.

    We present first results of a survey of the Leo I group at 10 Mpc for M_R < -10 dwarf galaxies. This is part of a larger program to measure the faint end of the galaxy luminosity function in nearby poor groups. Our method is optimized to find Local-Group-like dwarfs down to dwarf spheroidal surface brightnesses, but we also find very large LSB dwarfs in Leo I with no Local Group counterpart. A preliminary measurement of the luminosity function yields a slope consistent with that measured in the Local Group.

  9. Functional Analytic Psychotherapy for Interpersonal Process Groups: A Behavioral Application

    ERIC Educational Resources Information Center

    Hoekstra, Renee

    2008-01-01

    This paper is an adaptation of Kohlenberg and Tsai's work, Functional Analytical Psychotherapy (1991), or FAP, to group psychotherapy. This author applied a behavioral rationale for interpersonal process groups by illustrating key points with a hypothetical client. Suggestions are also provided for starting groups, identifying goals, educating…

  10. Detection of Differential Item Functioning in Multiple Groups.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho; And Others

    Detection of differential item functioning (DIF) is most often done between two groups of examinees under item response theory. It is sometimes important, however, to determine whether DIF is present in more than two groups. A method is presented for the detection of DIF in multiple groups. The method, the Q(sub j) statistic, is closely related to…