These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Structure and function studies on enzymes with a catalytic carboxyl group(s): from ribonuclease T1 to carboxyl peptidases  

PubMed Central

A group of enzymes, mostly hydrolases or certain transferases, utilize one or a few side-chain carboxyl groups of Asp and/or Glu as part of the catalytic machinery at their active sites. This review follows mainly the trail of studies performed by the author and his colleagues on the structure and function of such enzymes, starting from ribonuclease T1, then extending to three major types of carboxyl peptidases including aspartic peptidases, glutamic peptidases and serine-carboxyl peptidases. PMID:23759941

TAKAHASHI, Kenji

2013-01-01

2

Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil  

Technology Transfer Automated Retrieval System (TEKTRAN)

Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar’s sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam activated biochar having low O/C ratio...

3

First-Principles Studies of Covalent Functionalization of Graphene by Carboxyl Groups  

NASA Astrophysics Data System (ADS)

We study the mechanism of covalent functionalization of graphene by the carboxyl (COOH) group in the framework of density functional theory combined with the generalized gradient approximation. The structures and binding energies of the COOH group attached to the surface of graphene are examined in cases of graphene containing no defects, containing a Stone-Wales defect, and containing a vacancy. Our calculations confirm that the binding of the COOH group with graphene is significantly stronger in the presence of surface defects. We also observe substantial changes in the structure of defective graphene after the attachment of the COOH group. These results suggest that surface defects play an important role in the carboxylation of graphene.

Al-Aqtash, Nabil; Vasiliev, Igor

2009-03-01

4

Gas-Phase Reactivity of Carboxylic Acid Functional Groups with Carbodiimides  

PubMed Central

Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N?-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT). Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities. PMID:23208744

Prentice, Boone M.; Gilbert, Joshua D.; Stutzman, John R.; Forrest, William P.; McLuckey, Scott A.

2012-01-01

5

Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil.  

PubMed

Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar's sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam-activated biochar having a low O/C ratio (0.04-0.06) and high fixed carbon content (~80% dry weight basis) were oxidized using concentrated H(2)SO(4)/HNO(3) and 30% HNO(3). Oxidized and unoxidized biochars were characterized for O/C ratio, total acidity, pH, moisture, ash, volatile matter, and fixed carbon contents, Brunauer-Emmett-Teller surface area, and attenuated total reflectance Fourier transform infrared spectral features. Characterized biochars were amended (2%, 5%, 10%, and 20% in grams of biochar per gram of soil) on a sandy, slightly acidic (pH 6.27) heavy metal contaminated small arms range soil fraction (<250 ?m) having low total organic carbon (0.518%) and low cation exchange capacity (0.95 cmol(c) kg(-1)). Oxidized biochars rich in carboxyl functional groups exhibited significantly greater Pb, Cu, and Zn stabilization ability compared to unoxidized biochars, especially in pH 4.9 acetate buffer (standard solution for the toxicity characteristic leaching procedure). Oppositely, only oxidized biochars caused desorption of Sb, indicating a counteracting impact of carboxyl functional groups on the solubility of anions and cations. The results suggested that appropriate selection of biochar oxidant will produce recalcitrant biochars rich in carboxyl functional groups for a long-term heavy metal stabilization strategy in contaminated soils. PMID:22280497

Uchimiya, Minori; Bannon, Desmond I; Wartelle, Lynda H

2012-02-22

6

Carboxyl group (-CO2 H) functionalized coordination polymer nanoparticles as efficient platforms for drug delivery.  

PubMed

Functionalization of nanoparticles can significantly influence their properties and potential applications. Although researchers can now functionalize metal, metal oxide, and organic polymer nanoparticles with a high degree of precision, controlled surface functionalization of nanoscale coordination polymer particles (CPPs) has remained a significant challenge. The lack of methodology is perhaps one of the greatest roadblocks to the advancement of CPPs into high added-value drug delivery applications. Here, we report having achieved this goal through a stepwise formation and functionalization protocol. We fabricated robust nanoparticles with enhanced thermal and colloidal stabilities by incorporation of carboxyl groups and these surface carboxyl groups could be subsequently functionalized through well-known peptide coupling reactions. The set of chemistries that we employed as proof-of-concept enabled a plethora of new functional improvements for the application of CPPs as drug delivery carriers, including enhanced colloidal stabilities and the incorporation of additional functional groups such as polyethylene glycol (PEG) or fluorescent dyes that enabled tracking of their cellular uptake. Finally, we ascertained the cytotoxicity of the new CPP nanoparticles loaded with camptothecin to human breast adenocarcinoma (MCF-7). Efflux measurements show that the encapsulation of camptothecin enhances the potency of the drug 6.5-fold and increases the drug retention within the cell. PMID:25284328

Novio, Fernando; Lorenzo, Julia; Nador, Fabiana; Wnuk, Karolina; Ruiz-Molina, Daniel

2014-11-17

7

Synthesis of bio-functionalized copolymer particles bearing carboxyl groups via a microfluidic device  

Microsoft Academic Search

Monodisperse copolymer particles carrying surface carboxyl groups in the range of 50–200 ?m were prepared by in situ UV polymerization\\u000a of ethyleneglycol dimethacrylate (EGDMA) with acrylic acid (AA) via a microfluidic flow-focusing device (MFFD). The design\\u000a of the coaxial orifices in the MFFD enables the confinement of the comonomer liquid thread to the central axis of the microchannel,\\u000a which can avoid

Shih Hao Huang; Hwa Seng Khoo; Shang Yu ChangChien; Fan Gang Tseng

2008-01-01

8

Electronic and optical response of Ru(II) complexes functionalized by methyl, carboxylate groups: joint theoretical and experimental study  

SciTech Connect

New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the complex to the surface of a semiconductor, a linking bridge - a carboxyl group - is added to one or two of the 2,2{prime}-bipyridine ligands. Such changes in the ligand structure, indeed, affect electronic and optical properties and consequently, the charge transfer reactivity of Ru-systems. In this study, we apply both theoretical and experimental approaches to analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the Ru(II) bipyridine complex. First principle calculations based on density functional theory (DFT) and linear response time dependent density functional theory (TDDFT) are used to simulate the ground and excited-state structures of functionalized Ru-complexes in the gas phase, as well as in acetonitrile solution. In addition, an inelaborate Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states. All theoretical results nicely complement experimental absorption spectra of Ru-complexes and contribute to their interpretation. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show a high probability of deprotonation of the carbboxyl group in the Ru-complexes resulted in a slight blue shift and decrease of intensities of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotanated complexes demonstrate strong agreement when acetonitrile solvent is used in simulations. A polar solvent is found to play an important role in calculations of optical spectra: it stabilizes the energy of states localized on the carboxyl or carboxylate groups eliminating artificial charge transport states, which typically appear in TDDFT calculations. Thus, it is validated that the excited-state structure of the functionalized Ru-complexes, specifically in the case of the deprotonated functions, can be accurately modeled by TDDFT with the addition of a dielectric continuum in simulations.

Tretiak, Sergei [Los Alamos National Laboratory

2008-01-01

9

Orthogonal protecting groups for N(alpha)-amino and C-terminal carboxyl functions in solid-phase peptide synthesis.  

PubMed

For the controlled synthesis of even the simplest dipeptide, the N(alpha)-amino group of one of the amino acids and the C-terminal carboxyl group of the other should both be blocked with suitable protecting groups. Formation of the desired amide bond can now occur upon activation of the free carboxyl group. After coupling, peptide synthesis can be continued by removal of either of the two protecting groups and coupling with the free C-terminus or N(alpha)-amino group of another protected amino acid. When three functional amino acids are present in the sequence, the side chain of these residues also has to be protected. It is important that there is a high degree of compatibility between the different types of protecting groups such that one type may be removed selectively in the presence of the others. At the end of the synthesis, the protecting groups must be removed to give the desired peptide. Thus, it is clear that the protection scheme adopted is of the utmost importance and makes the difference between success and failure in a given synthesis. Since R. B. Merrifield introduced the solid-phase strategy for the synthesis of peptides, this prerequisite has been readily accepted. This strategy is usually carried out using two main protection schemes: the tert-butoxycarbonyl/benzyl and the 9-flourenylmethoxycarbonyl/tert-butyl methods. However, for the solid-phase preparation of complex or fragile peptides, as well as for the construction of libraries of peptides or small molecules using a combinatorial approach, a range of other protecting groups is also needed. This review summarizes other protecting groups for both the N(alpha)-amino and C-terminal carboxyl functions. PMID:11074410

Albericio, F

2000-01-01

10

Protein adsorption on colloidal alumina particles functionalized with amino, carboxyl, sulfonate and phosphate groups.  

PubMed

Colloidal oxide particles in biomedical or biotechnological applications immediately become coated with proteins of the biological medium, a process which is strongly influenced by the surface characteristics of the particles. Fundamental correlations between surface characteristics and the, so far mainly uncontrollable, protein adsorption are still not clear. In this study the surface of colloidal alumina particles (d(50)=179 ± 8 nm) was systematically adjusted with NH(2), COOH, SO(3)H and PO(3)H(2) functional groups to investigate the influence on the adsorption of the three model proteins, bovine serum albumin (BSA), lysozyme (LSZ) and trypsin (TRY). The surface functionalization is characterized and discussed in detail with regard to the morphology, isoelectric point, zeta potential, hydrophilic/hydrophobic properties, functional group density and stability. Protein-particle interaction was then assessed by evaluating the amount of protein adsorbed and the zeta potentials of protein-particle conjugates. Protein adsorption was found to be influenced by the type of functional group as well as the expected electrostatic forces under the given experimental conditions. The level of protein adsorption might, hence, be specifically controlled by the type of surface functionalization. Possible adsorption modes of BSA, LSZ and TRY on the particles are suggested by considering the spatial surface potential distribution of the proteins calculated from the protein database file. The particles presented provide an excellent prerequisite for further investigation of fundamental particle-protein interactions and the design of functionally graded materials for biomedical and biotechnological applications, e.g. as drug carriers or for protein purification. PMID:21963406

Meder, Fabian; Daberkow, Timo; Treccani, Laura; Wilhelm, Michaela; Schowalter, Marco; Rosenauer, Andreas; Mädler, Lutz; Rezwan, Kurosch

2012-03-01

11

8, 1000510020, 2008 Carboxyl groups in  

E-print Network

Chemistry and Physics Discussions How many carboxyl groups does an average molecule of humic-like substances Abstract The carboxyl groups of atmospheric humic-like substances (HULIS) are of special in- terest because with a dissociation constant of about pK =3.4, which fits well into the interval represented by fulvic and humic acids

Boyer, Edmond

12

Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells.  

PubMed

A tetra-arylporphyrin dye was functionalized with three different anchoring groups used to attach molecules to metal oxide surfaces. The physical, photophysical and electrochemical properties of the derivatized porphyrins were studied, and the dyes were then linked to mesoporous TiO2. The anchoring groups were ?-vinyl groups bearing either a carboxylate, a phosphonate or a siloxy moiety. The siloxy linkages were made by treatment of the metal oxide with a silatrane derivative of the porphyrin. The surface binding and lability of the anchored molecules were studied, and dye performance was compared in a dye-sensitized solar cell (DSSC). Transient absorption spectroscopy was used to study charge recombination processes. At comparable surface concentration, the porphyrin showed comparable performance in the DSSC, regardless of the linker. However, the total surface coverage achievable with the carboxylate was about twice that obtainable with the other two linkers, and this led to higher current densities for the carboxylate DSSC. On the other hand, the carboxylate-linked dyes were readily leached from the metal oxide surface under alkaline conditions. The phosphonates were considerably less labile, and the siloxy-linked porphyrins were most resistant to leaching from the surface. The use of silatrane proved to be a practical and convenient way to introduce the siloxy linkages, which can confer greatly increased stability on dye-sensitized electrodes with photoelectrochemical performance comparable to that of the other linkers. PMID:23959453

Brennan, Bradley J; Llansola Portolés, Manuel J; Liddell, Paul A; Moore, Thomas A; Moore, Ana L; Gust, Devens

2013-10-21

13

Thermoreversible hydrogels based on triblock copolymers of poly(ethylene glycol) and carboxyl functionalized poly(?-caprolactone): The effect of carboxyl group substitution on the transition temperature and biocompatibility in plasma.  

PubMed

In this study we report on the development, characterization and plasma protein interaction of novel thermoresponsive in situ hydrogels based on triblock copolymers of poly(ethylene glycol) (PEG) and poly(?-carboxyl-co-benzyl carboxylate)-?-caprolactone (PCBCL) having two different degrees of carboxyl group substitution on the PCBCL block. Block copolymers were synthesized through ring-opening polymerization of ?-benzyl carboxylate-?-caprolactone by dihydroxy PEG, leading to the production of poly(?-benzyl carboxylate-?-caprolactone)-PEG-poly(?-benzyl carboxylate-?-caprolactone) (PBCL-PEG-PBCL). This was followed by partial debenzylation of PBCL blocks under controlled conditions, leading to the preparation of PCBCL-PEG-PCBCL triblock copolymers with 30 and 54mol.% carboxyl group substitution. Prepared PCBCL-PEG-PCBCL block copolymers have been shown to have a concentration-dependent sol to gel transition as a result of an increase in temperature above ?29°C, as evidenced by the inverse flow method, differential scanning calorimetry and dynamic mechanical analysis. The sol-gel transition temperature/concentration and dynamic mechanical properties of the gel were found to be dependent on the level of carboxyl group substitution. Both hydrogels (30 and 54mol.% carboxyl group substitution) showed similar amounts of protein adsorption but striking differences in the profiles of the adsorbed proteome. Additionally, the two systems showed similarities in their clot formation kinetics but substantial differences in clot endpoints. The results show great promise for the above-mentioned thermoreversible in situ hydrogels as biocompatible materials for biomedical applications. PMID:25451305

Nikouei, Nazila Safaei; Vakili, Mohammad Reza; Bahniuk, Markian S; Unsworth, Larry; Akbari, Ali; Wu, Jianping; Lavasanifar, Afsaneh

2015-01-01

14

Characterization and diagenesis of strong-acid carboxyl groups in humic substances  

USGS Publications Warehouse

A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

Leenheer, J.A.; Wershaw, R.L.; Brown, G.K.; Reddy, M.M.

2003-01-01

15

IDENTIFICATION AND QUANTIFICATION OF AEROSOL POLAR OXYGENATED COMPOUNDS BEARING CARBOXYLIC AND/OR HYDROXYL GROUPS. 1. METHOD DEVELOPMENT  

EPA Science Inventory

In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...

16

Adsorption of UO 2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group  

NASA Astrophysics Data System (ADS)

The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO 2+2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO 2+2. The complex structure of polyethylene with three functional groups and UO 2+2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy.

Choi, Seong-Ho; Nho, Young Chang

2000-02-01

17

Green process for chemical functionalization of nanocellulose with carboxylic acids.  

PubMed

An environmentally friendly and simple method, named SolReact, has been developed for a solvent-free esterification of cellulose nanocrystals (CNC) surface by using two nontoxic carboxylic acids (CA), phenylacetic acid and hydrocinnamic acid. In this process, the carboxylic acids do not only act as grafting agent, but also as solvent media above their melting point. Key is the in situ solvent exchange by water evaporation driving the esterification reaction without drying the CNC. Atomic force microscopy and X-ray diffraction analyses showed no significant change in the CNC dimensions and crystallinity index after this green process. The presence of the grafted carboxylic was characterized by analysis of the "bulk" CNC with elemental analysis, infrared spectroscopy, and (13)C NMR. The ability to tune the surface properties of grafted nanocrystals (CNC-g-CA) was evaluated by X-ray photoelectron spectroscopy analysis. The hydrophobicity behavior of the functionalized CNC was studied through the water contact-angle measurements and vapor adsorption. The functionalization of these bionanoparticles may offer applications in composite manufacturing, where these nanoparticles have limited dispersibility in hydrophobic polymer matrices and as nanoadsorbers due to the presence of phenolic groups attached on the surface. PMID:25353612

Espino-Pérez, Etzael; Domenek, Sandra; Belgacem, Naceur; Sillard, Cécile; Bras, Julien

2014-12-01

18

62 Langmuir 1987,3, 62-76 Reactivity of Carboxylic Acid and Ester Groups in the  

E-print Network

on structure in ways having no analogy in reactions in solution. For example, the rate of base62 Langmuir 1987,3, 62-76 Reactivity of Carboxylic Acid and Ester Groups in the Functionalized Interfacial Region of "Polyethylene Carboxylic Acid" (PE-C02H) and Its Derivatives: Differentiation

Prentiss, Mara

19

Porosity, crystal phase, and morphology of nanoparticle derived alumina as a function of the nanoparticle's carboxylate substituent  

Microsoft Academic Search

Carboxylate-alumoxanes are a simple to prepare class of chemically functionalized alumina nanoparticles. The identity of the carboxylate group has a direct effect on the microstructure and temperature of phase conversion for their pyrolysis to alumina bodies. A series of carboxylate-alumoxanes with varying chain length of the organic substituent (organic content) have been investigated: acetic acid alumoxane (A-A), methoxyacetic acid alumoxane

Christopher D. Jones; Andrew R. Barron

2007-01-01

20

Functionalized carboxyl nanoparticles enhance mucus dispersion and hydration  

PubMed Central

Luminal accumulation of viscous, poorly hydrated, and less transportable mucus has been associated with altered mucus rheology and reduced mucociliary clearance. These symptoms are some of the cardinal clinical manifestations found throughout major respiratory diseases as well as gastrointestinal and digestive disorders. Applications of current mucolytics may yield short-term improvements but are continuously challenged by undesirable side-effects. While nanoparticles (NPs) can interact with mucin polymers, whether functionalized NPs can rectify mucus rheology is unknown. Herein, we report that carboxyl-functionalized NPs (24?nm and 120?nm) dramatically reduced mucin gel size and accelerated mucin matrix hydration rate (diffusivity). Our results suggest that carboxyl-functionalized NPs disperse mucin gels possibly by enhancing network hydration. This report highlights the prospective usages of carboxyl-functionalized NPs as a novel mucus dispersant or mucolytic agent in adjusting mucus rheological properties and improving mucociliary transport to relieve clinical symptoms of patients suffering from relevant diseases. PMID:22355725

Chen, Eric Y.; Daley, David; Wang, Yung-Chen; Garnica, Maria; Chen, Chi-Shuo; Chin, Wei-Chun

2012-01-01

21

Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide.  

PubMed

In this paper, the structure difference between the polysaccharides isolated from fruit bodies (FGAP) and submerged fermentation system (SGAP) of Ganoderma applanatum was investigated by means of GPC, HPLC and IR, respectively. And their antitumor activities were evaluated against Sarcoma 180 in vivo. The results showed that FGAP and SGAP were typical polysaccharides with different molecular weights, monosaccharide components, and functional groups. Closely related to the distinct structures, FGAP exhibited a better antitumor activity than SGAP. Moreover, since FGAP contained carboxylate groups rather than SGAP, such groups were chemically introduced into SGAP (CSGAP) by carboxymethylation in order to identify their contribution to antitumor activity. The results demonstrated that the inhibition of CSGAP against Sarcoma 180 in vivo was significantly enhanced by comparison to the native SGAP and even higher than that of FGAP, suggesting that the carboxylate groups played a major role in antitumor activity of G. applanatum polysaccharide. PMID:25843860

Sun, Xiaobo; Zhao, Chen; Pan, Wei; Wang, Jinping; Wang, Weijun

2015-06-01

22

Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups.  

PubMed

Oxidized cellulose containing carboxyl and aldehyde functional groups represent an important class of cellulose derivatives. In this study effect of incrementally increasing COOH and CHO groups at C2, C3, and C6 positions of cellulose and nanocellulose has been investigated, with a view to understanding their effect on thermal treatment of cellulose. The results show that 2,3-dialdehyde cellulose (DAC) is the most thermally stable oxidized product of cellulose while the most unstable derivatives contain carboxyl group at the C6 position (6CC). Carboxymethylcellulose (CMC), with carboxymethyl group on C6 position, is more stable than 6CC. Multi-functionalized celluloses 2,3,6-tricarboxycellulose and 6-carboxy-2,3-dialdehyde, have the same level of thermal stability as 6CC, showing that the presence of carboxyl at the C6 is a key destabilizing factor in the thermal stability of oxidized cellulose products. More the number of reducing end groups on the polymer chain, lower the thermal stability of the cellulose, as proved by comparing the TGA/DTG of monomeric analogs dextrose, cellobiose and glucuronic acid with the oxidized celluloses. The thermal stability trend observed for oxidized celluloses was DAC>DCC>nanoparticles>dextrose>glucuronic acid, caused by extent of reducing ends and COOH groups. PMID:25263899

Sharma, Priyanka R; Varma, Anjani J

2014-12-19

23

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbo n A. Acid/Base properties  

E-print Network

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbo n A. Acid/Base properties 1. carboxyl group is proton donor ! weak acid 2. amino group is proton acceptor ! weak base 3. At physiological p natural amino acids (few exceptions) 2. 20 different R groups C. Classification based on R-group - know

Frey, Terry

24

Carboxylic acids and skeletal muscle chloride channel conductance: effects on the biological activity induced by the introduction of an aryloxyalkyl group alpha to the carboxylic function of 4-chloro-phenoxyacetic acid.  

PubMed

2-(4-Chloro-phenoxy)propanoic and 2-(4-chloro-phenoxy)butanoic acids are compounds known to block chloride membrane conductance in rat striated muscle by interaction with a specific receptor. In the present study, a series of chiral analogues has been prepared and tested to evaluate the influence of a second aryloxy moiety introduced in the side-chain at a variable distance from the stereogenic centre. The results show that this chemical modification is detrimental for biological activity which, however, is increased by lengthening the alkyl chain up to three methylenic groups, then decreases to remain constant in the next analogues of the series. A possible explanation for this is proposed on the basis of steric effects and/or different approach of the molecules to the receptor. PMID:11718267

Carbonara, G; Fracchiolla, G; Loiodice, F; Tortorella, P; Conte-Camerino, D; De Luca, A; Liantonio, A

2001-10-01

25

Rational design of carboxyl groups perpendicularly attached to a graphene sheet: a platform for enhanced biosensing applications.  

PubMed

Graphene oxide (GO)-based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen-containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen-containing groups on GO. Herein, we suggest a direct solution to the long-standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free-radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on "classical" GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single-nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron-transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the electrode surface and improved the performance of graphene as a biosensor in comparison to GO. The proposed material can be used as a universal platform for biomolecule immobilization to facilitate rapid and sensitive detection of DNA or proteins for point-of-care investigations. Such reactive carboxyl groups grafted perpendicularly on GO holds promise for a highly efficient tailored biofunctionalization for applications in biosensing or drug delivery. PMID:24311348

Bonanni, Alessandra; Chua, Chun Kiang; Pumera, Martin

2014-01-01

26

Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I? region  

NASA Astrophysics Data System (ADS)

Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I? band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of ?-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D2O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the ?-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

Anderson, Benjamin A.; Literati, Alex; Ball, Borden; Kubelka, Jan

2015-01-01

27

Modifications of diflunisal and meclofenamate carboxyl groups affect their allosteric effects on GABAA receptor ligand binding.  

PubMed

Gamma-aminobutyric acid type A receptors (GABAAR) are allosterically modulated by the nonsteroidal anti-inflammatory drugs diflunisal and fenamates. The carboxyl group of these compounds is charged at physiological pH and therefore penetration of the compounds into the brain is low. In the present study we have transformed the carboxyl group of diflunisal and meclofenamate into non-ionizable functional groups and analyzed the effects of the modifications on stimulation of [(3)H]muscimol binding and on potentiation of ?-aminobutyric acid-induced displacement of 4'-ethenyl-4-n-[2,3-(3)H]propylbicycloorthobenzoate. N-Butylamide derivative of diflunisal modulated radioligand binding with equal or higher potency than the parent compound, while diflunisalamide showed reduced allosteric effect as compared to diflunisal. Amide derivative of meclofenamate equally affected radioligand binding parameters, while both diflunisal and meclofenamate methyl esters were less active than the parent compounds. Our study clearly demonstrates that an intact carboxyl group in diflunisal and meclofenamate is not indispensable for their positive GABAAR modulation. Further derivatization of the compound might yield compounds with higher selectivity for GABAARs that could be utilized in drug development. PMID:24925262

Uusi-Oukari, Mikko; Vähätalo, Laura; Liljeblad, Arto

2014-07-01

28

Langmuir 1985,1,725-740 725 Acid-Base Behavior of Carboxylic Acid Groups Covalently  

E-print Network

using chromic acid/sulfuric acid introduces a high density of covalently attached carboxylic acid groupsLangmuir 1985,1,725-740 725 Acid-Base Behavior of Carboxylic Acid Groups Covalently Attached: August 7, 1985 Oxidation of polyethylene with chromic acidfsulfuric acid generates a material (PE-C02H

Deutch, John

29

Pancreatic Function in Carboxyl-Ester Lipase Knockout Mice  

Microsoft Academic Search

Background\\/Aims:CEL-MODY is a monogenic form of diabetes and exocrine pancreatic insufficiency due to mutations in the carboxyl-ester lipase (CEL) gene. We aimed to investigate endocrine and exocrine pancreatic function in CEL knockout mice (CELKO). Methods: A knockout mouse model with global targeted deletion of CEL was investigated physiologically and histopathologically, and compared to littermate control CEL+\\/+ mice at 7 and

Mette Vesterhus; Helge Ræder; Amarnath J. Kurpad; Dan Kawamori; Anders Molven; Rohit N. Kulkarni; C. Ronald Kahn; Pål Rasmus Njølstad

2010-01-01

30

Cyclic Comonomers for the Synthesis of Carboxylic Acid and Amine Functionalized Poly(l-Lactic Acid).  

PubMed

Degradable aliphatic polyesters such as poly(lactic acid) are widely used in biomedical applications, however, they lack functional moieties along the polymer backbone that are amenable for functionalization reactions or could be the basis for interactions with biological systems. Here we present a straightforward route for the synthesis of functional ?-? epoxyesters as comonomers for lactide polymerization. Salient features of these highly functionalized epoxides are versatility in functionality and a short synthetic route of less than four steps. The ?-? epoxyesters presented serve as a means to introduce carboxylic acid and amine functional groups into poly(lactic acid) polymers via ring-opening copolymerization. PMID:25786163

Heiny, Markus; Shastri, V Prasad

2015-01-01

31

Lipase-Catalyzed Selective Synthesis and Micellization of Poly(ethylene glycol)-block-poly(?-caprolactone) Copolymer Possessing a Carboxylic Acid Group at the PEG Chain End  

Microsoft Academic Search

A novel poly(ethylene glycol)-block-poly(?-caprolactone) (PEG-b-PCL) copolymer possessing a carboxylic acid group at the PEG chain end was prepared by the one-pot lipase-catalyzed polymerization of ?-CL using an ?-carboxylic acid-?-hydroxy-PEG as a macroinitiator. This synthetic approach is remarkable because it dose not require tedious chemical routes such as end-functional group changing steps and protection-deprotection steps. The PEG-b-PCL copolymer spontaneously forms a

Motoi Oishi; Satoshi Ikeo; Yukio Nagasaki

2007-01-01

32

Carboxylic Acids as Traceless Directing Groups for the Rhodium(III)-Catalyzed Decarboxylative C?H Arylation of Thiophenes.  

PubMed

A rhodium(III)-catalyzed carboxylic acid directed decarboxylative C?H/C?H cross-coupling of carboxylic acids with thiophenes has been developed. With a slight adjustment of the reaction conditions based on the nature of the substrates, aryl carboxylic acids with a variety of substituents could serve as suitable coupling partners, and a broad variety of functional groups were tolerated. This method provides straightforward access to biaryl scaffolds with diverse substitution patterns, many of which have conventionally been synthesized through lengthy synthetic sequences. An illustrative example is the one-step gram-scale synthesis of a biologically active 3,5-substituted 2-arylthiophene by way of the current method. PMID:25631325

Zhang, Yuanfei; Zhao, Huaiqing; Zhang, Min; Su, Weiping

2015-03-16

33

Film morphology, orientation and performance of dodecyl/carboxyl functional polysiloxane on cotton substrates  

NASA Astrophysics Data System (ADS)

A novel polysiloxane (RCAS) bearing dodecyl and carboxyl side groups was synthesized by reaction of a dodecyl/amino functionalized polysiloxane with maleic anhydride. Film morphology, molecular orientation and performance of the synthesized polysiloxane on cotton substrates were investigated by field emission scanning electron microscope (FESEM), atomic force microscope (AFM), X-ray photoelectron microscope (XPS) and so on. Affected by the dodecyl and polar carboxyl side groups, RCAS formed a semi hydrophilic, macroscopic smooth but actually uneven siloxane film with many pillar-likes or small humps on the treated substrate surfaces. On the natural cotton surface, RCAS may take such an orientation to form its film that the Si-CH3, Si-C12H25 groups projected outward into air, while the carboxyl groups pointed inward to the substrate, interacting with the hydroxyls of the cotton substrates in ester and hydrogen bonds or twisted away from the negatively charged cotton fiber surface. As a result of such a film-formation, RCAS provided the treated fabric with not only a good wettability of about 22.96 s and a whiteness of 88.44°, but also an improved softness as well as thickening handle.

An, Qiufeng; Wang, Kefeng; Jia, Yun

2011-03-01

34

Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides.  

PubMed

Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethylsulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by (1)H NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined. PMID:18841931

Nockemann, Peter; Thijs, Ben; Parac-Vogt, Tatjana N; Van Hecke, Kristof; Van Meervelt, Luc; Tinant, Bernard; Hartenbach, Ingo; Schleid, Thomas; Ngan, Vu Thi; Nguyen, Minh Tho; Binnemans, Koen

2008-11-01

35

Preparation and self-assembly of carboxylic acid-functionalized silica  

Microsoft Academic Search

A simple method for the fabrication of silica nanoparticle film based on the covalent-bonding interaction between carboxylic acid-functionalized silica nanoparticles (SiO2–COOH) and amino-terminated silicon wafer was developed. Prior to assembly, silica nanoparticles with an average diameter 80 nm were prepared using the Stöber method, amino-functionalized silica nanoparticles (SiO2–NH2) were prepared by a silanization with 3-aminopropyltriethoxysilane (APTES), while carboxylic acid-functionalized silica

Yanqing An; Miao Chen; Qunji Xue; Weimin Liu

2007-01-01

36

Preparation and characterization of carboxyl functionalization of magnetite nanoparticles for oligonucleotide immobilization  

NASA Astrophysics Data System (ADS)

Fe3O4 nanoparticles prepared by the co-precipitation of Fe2+ and Fe3+ with NH4OH were simply modified by the carboxylic acid group of 3-thiopheneacetic acid (3TA) and meso-2,3-dimercaptosuccinic acid (DMSA). These functionalized Fe3O4 nanoparticles when coated with 3TA and DMSA have increased hydrophilic properties, thus causing them to be well dispersed in aqueous solutions. Then oligonucleotides (5'-AGC T-Amine-3') were immobilized on the carboxylic acid group-modified Fe3O4 nanoparticles. They were characterized by using FT-IR, XRD and TEM. The concentration of the oligonucleotide-modified Fe3O4 nanoparticles was investigated using a UV-vis spectrometer and compared to that of Fe3O4 nanoparticles without any surface modification. The Fe3O4 nanoparticles were spherical and the particle sizes were approximately 10 nm. The immobilizing efficiencies of the Fe3O4 nanoparticles modified with 3TA and DMSA were higher than those of the non-functionalized Fe3O4 nanoparticles.

Kim, Min-Jung; Jang, Dae-Hwan; Choa, Yong-Ho

2010-05-01

37

Human ?1-pyrroline-5-carboxylate synthase: Function and regulation  

PubMed Central

Summary Mammalian ?1-pyrroline-5-carboxylate synthase (P5CS) is a bifunctional ATP- and NAD(P)H-dependent mitochondrial enzyme that catalyzes the coupled phosphorylation and reduction-conversion of L-glutamate to P5C, a pivotal step in the biosynthesis of L-proline, L-ornithine and L-arginine. Previously, we reported cloning and characterization of two P5CS transcript variants generated by exon sliding that encode two protein isoforms differing only by a 2 amino acid-insert at the N-terminus of the ?-glutamyl kinase active site. The short form (P5CS.short) is highly expressed in the gut and is inhibited by ornithine. In contrast, the long form (P5CS.long) is expressed ubiquitously and is insensitive to ornithine. Interestingly, we found that all the established human cell lines we have studied expressed P5CS.long but not P5CS.short. In addition, expression of P5CS.long can be modulated by hormones: downregulation by hydrocortisone and dexamethasone and upregulation by estradiol, for example. Using a quantitative proteomic approach, we showed that P5CS.long is upregulated by p53 in p53-induced apoptosis in DLD-1 colorectal cancer cells. Functional genomic analysis confirmed that there are two p53-binding consensus sequences in the promoter region and in the intron 1 of the human P5CS gene. Interestingly, overexpression of P5CS by adenoviruses harboring P5CS.long or P5CS.short in various cell types has no effect on cell growth or survival. It would be of importance to investigate the role of P5CS as a p53 downstream effector and how P5CS.short expression is regulated by hormones and factors of alternative splicing in cells isolated from model animals. PMID:18401542

Khalil, S.; Zhaorigetu, S.; Liu, Z.; Tyler, M.; Wan, G.; Valle, D.

2009-01-01

38

Human Delta1-pyrroline-5-carboxylate synthase: function and regulation.  

PubMed

Mammalian Delta(1)-pyrroline-5-carboxylate synthase (P5CS) is a bifunctional ATP- and NAD(P)H-dependent mitochondrial enzyme that catalyzes the coupled phosphorylation and reduction-conversion of L: -glutamate to P5C, a pivotal step in the biosynthesis of L: -proline, L: -ornithine and L: -arginine. Previously, we reported cloning and characterization of two P5CS transcript variants generated by exon sliding that encode two protein isoforms differing only by a two amino acid-insert at the N-terminus of the gamma-glutamyl kinase active site. The short form (P5CS.short) is highly expressed in the gut and is inhibited by ornithine. In contrast, the long form (P5CS.long) is expressed ubiquitously and is insensitive to ornithine. Interestingly, we found that all the established human cell lines we have studied expressed P5CS.long but not P5CS.short. In addition, expression of P5CS.long can be modulated by hormones: downregulation by hydrocortisone and dexamethasone and upregulation by estradiol, for example. Using a quantitative proteomic approach, we showed that P5CS.long is upregulated by p53 in p53-induced apoptosis in DLD-1 colorectal cancer cells. Functional genomic analysis confirmed that there are two p53-binding consensus sequences in the promoter region and in the intron 1 of the human P5CS gene. Interestingly, overexpression of P5CS by adenoviruses harboring P5CS.long or P5CS.short in various cell types has no effect on cell growth or survival. It would be of importance to further investigate the role of P5CS as a p53 downstream effector and how P5CS.short expression is regulated by hormones and factors of alternative splicing in cells isolated from model animals. PMID:18401542

Hu, C-A A; Khalil, S; Zhaorigetu, S; Liu, Z; Tyler, M; Wan, G; Valle, D

2008-11-01

39

Polymer properties on resins composed of UDMA and methacrylates with the carboxyl group.  

PubMed

The properties of dental matrix resins have been improved by synthesis of new monomers. However, except for improvements in water-resistance, monomers with better mechanical properties than Bis-GMA and UDMA could not being synthesized. Changing the point of emphasis, we tried to improve the mechanical properties controlling the matrix resin higher structure using noncovalent bonds. We prepared a matrix resin structured by UDMA, which is a high viscosity base monomer with imino groups, and by a low viscosity acidic monomer with carboxyl groups, which permits noncovalent bonds such as hydrogen bonds or electrostatic interaction with imino groups. The maximal mechanical strength for matrix resins structured by UDMA and an acidic monomer was obtained with a composition of imino groups and carboxyl groups at a ratio of 1:1. This mechanical strength value was higher than those obtained with UDMA resin or with a Bis-GMA/TEGDMA/UDMA resin with typical composition. The improvement in mechanical properties may be due to the complex based on noncovalent bonds, between the imino groups of UDMA and the carboxyl groups of the acidic monomers. PMID:11806155

Tanaka, J; Hashimoto, T; Stansbury, J W; Antonucci, J M; Suzuki, K

2001-09-01

40

Preferential Interaction of Na+ over K+ to Carboxylate-functionalized Silver Nanoparticles  

EPA Science Inventory

Elucidating mechanistic interactions between specific ions (Na+/ K+) and nanoparticle surfaces to alter particle stability in polar media has received little attention. We investigated relative preferential binding of Na+ and K+ to carboxylate-functionalized silver nanoparticles ...

41

Nonlinear-optical properties of ?-diiminedithiolatonickel(II) complexes enhanced by electron-withdrawing carboxyl groups.  

PubMed

We report the synthesis, characterization, nonlinear-optical (NLO) properties, and density functional theory (DFT) calculations for three nickel diiminedithiolate complexes [Ni(4,4'-R2carboxy-bpy)(L)] [R = methyl, L = 1,2-benzenedithiolate (bdt), 1; R = ethyl, L = 5,6-dihydro-1,4-dithine-2,3-dithiolate (dddt), 2; R = ethyl, L = 1-(N-methylindol-5-yl)ethene-1,2-dithiolate (mi-5edt), 3]. The crystal structure of 1 shows a square-planar coordination for the nickel ion and bond distances consistent with a diiminedithiolate description for the complex. For all complexes, the cyclic voltammetry measurements show two reversible reduction processes (-1.353/-1.380 V and -0798/-0.830 V, respectively) and an anodic wave (+0.372/+0.601 V). The UV-vis spectra present a band around 600-700 nm (? = 4880-6000 dm(3) mol(-1) cm(-1)) mainly attributed to a charge-transfer highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) transition, which shows a large negative solvatochromic shift, characteristic of push-pull complexes, and is responsible for the NLO properties of these molecules. The charge-transfer character of this electronic transition is confirmed by DFT calculations, with the HOMO mainly centered on the dithiolate moiety and the LUMO on the bpy ligand, with important contribution given by the carboxyl groups (?13%). Small contributions from the nickel(II) ion are present in both of the frontier orbitals. The carboxyl groups enhance the optical properties of this class of complexes, confirmed by comparison with the corresponding unsubstituted compounds. The second-order NLO properties have been measured by an electric-field-induced second-harmonic-generation technique using a 10(-3) M solution in N,N-dimethylformamide and working with a 1.907 ?m incident wavelength, giving for ??1.907 (??0) values of -1095 (-581), -2760 (-954), and -1650 (-618) × 10(-48) esu for 1-3, respectively. These values are among the highest in the class of square-planar push-pull complexes, similar to those found for dithionedithiolate compounds. Moreover, spectroelectrochemical experiments demonstrate the possibility of using these complexes as redox-switchable NLO chromophores. PMID:24762131

Pilia, Luca; Pizzotti, Maddalena; Tessore, Francesca; Robertson, Neil

2014-05-01

42

Activation of carboxyl group with cyanate: peptide bond formation from dicarboxylic acids  

Microsoft Academic Search

The reaction of cyanate with C-terminal carboxyl groups of peptides in aqueous solution was considered as a potential pathway\\u000a for the abiotic formation of peptide bonds under the condition of the primitive Earth. The catalytic effect of dicarboxylic\\u000a acids on cyanate hydrolysis was definitely attributed to intramolecular nucleophilic catalysis by the observation of the 1H-NMR signal of succinic anhydride when

Grégoire Danger; Solenne Charlot; Laurent Boiteau; Robert Pascal

43

Removal of transition metals from dilute aqueous solution by carboxylic acid group containing absorbent polymers  

Technology Transfer Automated Retrieval System (TEKTRAN)

A new carboxylic acid group containing resin with cation exchange capacity, 12.67 meq/g has been used to remove Cu2+, Co2+ and Ni2+ ions from dilute aqueous solution. The resin has Cu2+, Co2+ and Ni2+ removal capacity, 216 mg/g, 154 mg/g and 180 mg/g, respectively. The selectivity of the resin to ...

44

Emulsion copolymerization of styrene with acrylic or methacrylic acids – distribution of the carboxylic group  

Microsoft Academic Search

Studies on batch emulsion copolymeization of styrene with acrylic acid (AA) or methacrylic acid (MAA) were carried out. The\\u000a effect of AA or MAA on the total conversion of the monomers was studied by a gravimetric method. The distribution of the carboxylic\\u000a group in the copolymer microspheres was investigated by X-ray photoelectron spectroscopy and elemental analysis. The surface\\u000a content of

P. H. Wang; C.-Y. Pan

2001-01-01

45

Human ? 1 -pyrroline-5-carboxylate synthase: function and regulation  

Microsoft Academic Search

Mammalian ?1-pyrroline-5-carboxylate synthase (P5CS) is a bifunctional ATP- and NAD(P)H-dependent mitochondrial enzyme that catalyzes\\u000a the coupled phosphorylation and reduction-conversion of l-glutamate to P5C, a pivotal step in the biosynthesis of l-proline, l-ornithine and l-arginine. Previously, we reported cloning and characterization of two P5CS transcript variants generated by exon sliding\\u000a that encode two protein isoforms differing only by a two amino

C.-A. A. Hu; S. Khalil; S. Zhaorigetu; Z. Liu; M. Tyler; G. Wan; D. Valle

2008-01-01

46

Snythesis and characterization of the first main group oxo-centered trinuclear carboxylate  

NASA Technical Reports Server (NTRS)

The synthesis and structural characterization of the first main group oxo-centered, trinuclear carboxylato-bridged species is reported, namely (Ga3(mu(sub 3)-O) (mu-O2CC6H5)6 (4-Mepy)3) GaCl4 center dot 4-Mepy (compound 1), where 4-Mepy is 4-methylpyridine. Compound 1 is a main group example of a well-established class of complexes, referred to as 'basic carboxylates' of the general formula (M3(mu(sub 3)-O)(mu-O2CR)6L3)(+), previously observed only for transition metals.

Duraj, Stan A.

1994-01-01

47

Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells  

NASA Astrophysics Data System (ADS)

Nanoparticle uptake by living cells is governed by chemical interactions between functional groups on the nanoparticle as well as the receptors on cell surfaces. Here we have investigated the uptake of anionic polystyrene (PS) nanoparticles of ~100 nm diameter by mesenchymal stem cells (MSCs) using spinning-disk confocal optical microscopy combined with a quantitative analysis of the fluorescence images. Two types of anionic PS nanoparticles with essentially identical sizes and ?-potentials were employed in this study, carboxyl-functionalized nanoparticles (CPS) and plain PS nanoparticles, both coated with anionic detergent for stabilization. CPS nanoparticles were observed to internalize more rapidly and accumulate to a much higher level than plain PS nanoparticles. The relative importance of different uptake mechanisms for the two types of nanoparticles was investigated by using specific inhibitors. CPS nanoparticles were internalized mainly via the clathrin-mediated mechanism, whereas plain PS nanoparticles mainly utilized the macropinocytosis pathway. The pronounced difference in the internalization behavior of CPS and plain PS nanoparticles points to a specific interaction of the carboxyl group with receptors on the cell surface.

Jiang, Xiue; Musyanovych, Anna; Röcker, Carlheinz; Landfester, Katharina; Mailänder, Volker; Nienhaus, G. Ulrich

2011-05-01

48

Functional and anionic cellulose-interacting polymers by selective chemo-enzymatic carboxylation of galactose-containing polysaccharides.  

PubMed

Carboxylated, anionic polysaccharides were selectively prepared using a combination of enzymatic and chemical reactions. The galactose-containing polysaccharides studied were spruce galactoglucomannan, guar galactomannan, and tamarind galactoxyloglucan. The galactosyl units of the polysaccharides were first oxidized with galactose oxidase (EC 1.1.3.9) and then selectively carboxylated, resulting in the galacturonic acid derivatives with good conversion and yield. The degrees of oxidation (DO) of the products were determined by gas chromatography-mass spectrometry (GC-MS). A novel feasible electrospray ionization-mass spectrometry (ESI-MS) method was also developed for the determination of DO. The solution properties and charge densities of the products were investigated. The interaction of the products with cellulose was studied by two methods, bulk sorption onto bleached birch kraft pulp and adsorption onto nanocellulose ultrathin films by quartz crystal microbalance with dissipation (QCM-D). To study the effect of the location of the carboxylic acid groups on the physicochemical properties, polysaccharides were also oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated reaction producing polyuronic acids. The chemo-enzymatically oxidized galacturonic polysaccharides with an unmodified backbone had a better ability to interact with cellulose than the TEMPO-oxidized products. The selectively carboxylated polysaccharides can be further exploited, as such, or in the targeted functionalization of cellulose surfaces. PMID:22724576

Parikka, Kirsti; Leppänen, Ann-Sofie; Xu, Chunlin; Pitkänen, Leena; Eronen, Paula; Osterberg, Monika; Brumer, Harry; Willför, Stefan; Tenkanen, Maija

2012-08-13

49

Improved binding between copper and carbon nanotubes in a composite using oxygen-containing functional groups  

Microsoft Academic Search

The adsorption of Cu on defective carbon nanotubes (CNTs) functionalized with various surface functional groups, including atomic oxygen (–O), hydroxyl (–OH) and carboxyl (–COOH) groups, was investigated by density functional theory calculation. The chemical interaction analysis revealed that the oxygen of the surface functional group can enhance the interaction between the carbon and Cu. The oxygen of the functional group

Mina Park; Byung-Hyun Kim; Sanghak Kim; Do-Suck Han; Gunn Kim; Kwang-Ryeol Lee

2011-01-01

50

Functional Group Analysis.  

ERIC Educational Resources Information Center

Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

Smith, Walter T., Jr.; Patterson, John M.

1984-01-01

51

Calcification of synthetic polymers functionalized with negatively ionizable groups: A critical review  

Microsoft Academic Search

The functionalization of polymers with ionizable carboxyl and oxyphosphorus (phosphate, phosphonate, etc.) groups has been frequently advocated as a method of enhancing their calcification capacity as a prerequisite in certain biomedical applications. However, the existing literature regarding in vitro and in vivo experimental calcification of functionalized polymers is rather a collection of contradictory reports. Some investigators found that carboxyl or

Traian V. Chirila; Zainuddin

2007-01-01

52

Preparation of carboxyl group-modified palladium nanoparticles in an aqueous solution and their conjugation with DNA  

NASA Astrophysics Data System (ADS)

The use of nanomaterials in biomolecular labeling and their corresponding detection has been attracting much attention, recently. There are currently very few studies on palladium nanoparticles (Pd NPs) due to their lack of appropriate surface functionalities for conjugation with DNA. In this paper, we thus firstly present an approach to prepare carboxyl group-modified Pd NPs (with an average size of 6 nm) by the use of 11-mercaptoundecanoic acid (MUDA) as a stabilizer in the aqueous solution. The effect of the various reducing reaction conditions on the morphology of the Pd NPs was investigated. The particles were further characterized by TEM, UV-vis, FT-IR and XPS techniques. DNA was finally covalently conjugated to the surface of the Pd NPs through the activation of the carboxyl group, which was confirmed by agarose gel electrophoresis and fluorescence analysis. The resulting Pd NPs-DNA conjugates show high single base pair mismatch discrimination capabilities. This work therefore sets a good foundation for further applications of Pd NPs in bio-analytical research.

Wang, Zhifei; Li, Hongying; Zhen, Shuang; He, Nongyue

2012-05-01

53

Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes  

PubMed Central

Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas. PMID:23286690

2013-01-01

54

Chemical derivatization of peptide carboxyl groups for highly efficient electron transfer dissociation  

PubMed Central

The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99%. This nearly complete labeling avoids making complex peptide mixtures even more complex due to partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ?90% of its precursor ions with z > 2, compared to less than 40% for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g. 70% for modified versus only 43% for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50% increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications. PMID:23918461

Frey, Brian L.; Ladror, Daniel T.; Sondalle, Samuel B.; Krusemark, Casey J.; Jue, April L.; Coon, Joshua J.; Smith, Lloyd M.

2013-01-01

55

Chemical derivatization of peptide carboxyl groups for highly efficient electron transfer dissociation.  

PubMed

The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups-aspartic and glutamic acid side-chains as well as C-termini-were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z? > ?2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications. PMID:23918461

Frey, Brian L; Ladror, Daniel T; Sondalle, Samuel B; Krusemark, Casey J; Jue, April L; Coon, Joshua J; Smith, Lloyd M

2013-11-01

56

Chemical Derivatization of Peptide Carboxyl Groups for Highly Efficient Electron Transfer Dissociation  

NASA Astrophysics Data System (ADS)

The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z > 2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications.

Frey, Brian L.; Ladror, Daniel T.; Sondalle, Samuel B.; Krusemark, Casey J.; Jue, April L.; Coon, Joshua J.; Smith, Lloyd M.

2013-11-01

57

Adsorption of uranium ions by resins with amidoxime and amidoxime/carboxyl group prepared by radiation-induced polymerization  

NASA Astrophysics Data System (ADS)

In order to recover uranium ions from seawater, chelate-type resins with amidoxime and amidoxime/carboxylic acid groups were prepared by radiation-induced polymerization of acrylonitrile (AN) and AN/acrylic acid and by subsequent amidoximation of cyano group of poly(AN), respectively. The resins were characterized by FT-IR, FT-Raman, solid-state 13C-NMR, SEM, and elemental analysis, respectively. The adsorption rate of uranium ion by resins with the amidoxime/carboxylic acid group were higher than that of resins with the amidoxime group. The adsorption of uranium ions in artificial seawater to chelate-type resins was also examined.

Choi, Seong-Ho; Choi, Min-Seok; Park, Yong-Tae; Lee, Kwang-Pill; Kang, Hee-Dong

2003-06-01

58

Controlling mixed-protein adsorption layers on colloidal alumina particles by tailoring carboxyl and hydroxyl surface group densities.  

PubMed

We show that different ratios of bovine serum albumin (BSA) and lysozyme (LSZ) can be achieved in a mixed protein adsorption layer by tailoring the amounts of carboxyl (-COOH) and aluminum hydroxyl (AlOH) groups on colloidal alumina particles (d50 ? 180 nm). The particles are surface-functionalized with -COOH groups, and the resultant surface chemistry, including the remaining AlOH groups, is characterized and quantified using elemental analysis, ? potential measurements, acid-base titration, IR spectroscopy, electron microscopy, nitrogen adsorption, and dynamic light scattering. BSA and LSZ are subsequently added to the particle suspensions, and protein adsorption is monitored by in situ ? potential measurements while being quantified by UV spectroscopy and gel electrophoresis. A comparison of single-component and sequential protein adsorption reveals that BSA and LSZ have specific adsorption sites: BSA adsorbs primarily via AlOH groups, whereas LSZ adsorbs only via -COOH groups (1-2 -COOH groups on the particle surface is enough to bind one LSZ molecule). Tailoring such groups on the particle surface allows control of the composition of a mixed BSA and LSZ adsorption layer. The results provide further insight into how particle surface chemistry affects the composition of protein adsorption layers on colloidal particles and is valuable for the design of such particles for biotechnological and biomedical applications. PMID:23875793

Meder, Fabian; Kaur, Supreet; Treccani, Laura; Rezwan, Kurosch

2013-10-01

59

The role played by the amino and carboxyl groups in the formation of the geometric and electronic structure of phenoxy substituted cyclophosphazenes  

NASA Astrophysics Data System (ADS)

A quantum-topological analysis of the electron density calculated by the density functional theory method in the B3LYP/6-31G( d,p) approximation was performed to determine and quantitatively characterize four types of noncovalent interactions in mono-and disubstituted 4-aminophenoxy-and 4-carboxyphenoxycyclotriphosphazenes P3N3Cl5OC6H4NH2, P3N3Cl4(OC6H4NH2)2, P3N3Cl5OC6H4COOH, and P3N3Cl4(OC6H4COOH)2. These are C-H…N hydrogen bonds between a nitrogen atom of the phosphazene ring and a hydrogen atom of the benzene ring, C-H…C interactions between a carbon atom of one phenoxy group and a hydrogen atom of the other such group (C-H…? interactions), N-H…N interactions between nitrogen and hydrogen atoms of neighboring amino groups, and C-O…C interactions between oxygen atoms of neighboring carboxyl groups. This system of noncovalent bonding interactions determines the mutual orientation of oxyphenyl fragments. The total energy of interatomic contacts estimated from the local potential energy of electrons at the corresponding critical bond points is larger for the amino than for the carboxyl group. It follows that the amino group has the strongest effect on the mutual orientation of oxyphenyl fragments. The effect of the carboxyl group is weaker.

Bobrov, M. F.; Tsirel'Son, V. G.

2008-12-01

60

Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation.  

PubMed

The chemo-enzymatic modification of cellulose nanofibers (CNFs) using laccase as biocatalysts and TEMPO or 4-Amino-TEMPO as mediators under mild aqueous conditions (pH 5, 30 °C) has been investigated to introduce surface active aldehyde groups. 4-Amino TEMPO turned out to be kinetically 0.5-times (50%) more active mediator, resulting to oxoammonium cation intermediacy generated and its in situ regeneration during the modification of CNFs. Accordingly, beside of around 750 mmol/kg terminally-located aldehydes, originated during CNFs isolation, the reaction resulted to about 140% increase of C6-located aldehydes at optimal conditions, without reducing CNFs crystallinity. While only the C6-aldehydes were wholly transformed into the carboxyls after additional post-treatment using NaOH according to the Cannizzaro reaction, the post-oxidation with air-oxygen in EtOH/water medium or NaClO2 resulted to no- or very small amounts of carboxyls created, respectively, at a simultaneous loss of all C6- and some terminal-aldehydes in the latter due to the formation of highly-resistant hemiacetal covalent linkages with available cellulose hydroxyls. The results indicated a new way of preparing and stabilizing highly reactive C6-aldehydes on cellulose, and their exploitation in the development of new nanocellulose-based materials. PMID:25458275

Jaušovec, Darja; Vogrin?i?, Robert; Kokol, Vanja

2015-02-13

61

Electrochemical properties of polyolefin nonwoven fabric modified with carboxylic acid group for battery separator  

NASA Astrophysics Data System (ADS)

Carboxylic acid group was introduced by radiation-induced grafting of acrylic acid (AAc) onto polyolefine nonwoven fabric (PNF), wherein the PNF comprises at least about 60% of a polyethylene having a melting temperature at ˜132°C and no more than about 40% of a second polypropylene having a lower melting temperature at ˜162°C, for a battery separator. The AAc-grafted PNF was characterized by XPS, SEM, DSC, TGA and porosimeter. The wetting speed, electrolyte retention, electrical resistance, and tensile strength were evaluated after grafting of AAc. It was found that the wetting speed, electrolyte retention, thickness, and ion-exchange capacity increased, whereas the electrical resistance decreased with increasing grafting yield. The tensile strength decreased with increasing grafting yield, whereas the elongation decreased with increasing grafting yield.

Choi, Seong-Ho; Kang, Hae-Jeong; Ryu, Eun-Nyoung; Lee, Kwang-Pill

2001-01-01

62

Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl  

E-print Network

Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation-functionalized polysty- rene microspheres. Acid-base titrations were used to monitor protolytic reactions, and Fe K

Roden, Eric E.

63

Sulfonated poly(ether ether ketone) membranes containing pendent carboxylic acid groups and their application in vanadium flow battery  

NASA Astrophysics Data System (ADS)

Sulfonated poly(ether ether ketone) (C-SPEEK) membranes with pendent carboxylic acid groups are prepared and first investigated for vanadium flow battery (VFB) application. The introduction of carboxylic acid groups can effectively improve the ion conductivities of C-SPEEK membranes, while, keep their ion selectivities. The prepared C-SPEEK membranes exhibit excellent performance under VFB operating condition. VFB single cell assembled with C-SPEEK-50 membranes shows much higher energy efficiency (85% Vs 82%) and columbic efficiency (97.3% Vs 94.6%) than that assembled with Nafion 115. The membrane keeps a stable performance after more than 180 cycles charge-discharge test, showing good stability.

Chen, Dongju; Li, Xianfeng

2014-02-01

64

Water and carboxyl group environments in the dehydration blueshift of bacteriorhodopsin.  

PubMed

The proton channels of the bacteriorhodopsin (BR) proton pump contain bound water molecules. The channels connect the purple membrane surfaces with the protonated retinal Schiff base at the membrane center. Films of purple membrane equilibrated at low relative humidity display a shift of the 570 nm retinal absorbance maximum to 528 nm, with most of the change occurring below 15% relative humidity. Purple membrane films were dehydrated to defined humidities between about 50 and 4.5% and examined by Fourier transform infrared difference spectroscopy. In spectra of dehydrated-minus-hydrated purple membrane, troughs are observed at 3645 and 3550 cm-1, and peaks are observed at 3665 and 3500 cm-1. We attribute these changes to water dissociation from the proton uptake channel and the resulting changes in hydrogen bonding of water that remains bound. Also, in the carboxylic acid spectral region, a trough was observed at 1742 cm-1 and a peak at 1737 cm-1. The magnitude of the trough to peak difference between 1737 and 1742 cm-1 correlates linearly with the extent of the 528 nm pigment. This suggests that a carboxylic acid group or groups is undergoing a change in environment as a result of dehydration, and that this change is linked to the appearance of the 528 nm pigment. Dehydration difference spectra with BR mutants D96N and D115N show that the 1737-1742 cm-1 change is due to Asp 96 and Asp 115. A possible mechanism is suggested that links dissociation of water in the proton uptake channel to the environmental change at the Schiff base site. PMID:11107860

Renthal, R; Gracia, N; Regalado, R

2000-11-01

65

Transition metal chemistry of main group hydrazides. Part 3:{sup 1} carboxylate appended phosphorus hydrazides as novel functionalized chelating systems. Synthesis and characterization of new cyclometallaphosphohydrazides. X-ray structure of a Palladium(II) representative  

SciTech Connect

The synthesis of new bifunctional chelating agents (BFCAs) based on the phosphorus hydrazide ligand family for potential {sup 109}Pd labeling of tumor-localizing biomolecules such as proteins/peptides is described. The new BFCAs were achieved in good yields (75-90%) by the reaction of the phosphorus hydrazide PhP(S)(NMeNH{sub 2}){sub 2} (1) with functionalized aldehydes to yield the Schiff-base products with the following chemical compositions as air-stable crystalline solids: PhP(S)(NMeNH{sub 2})(NMeNCHC{sub 6}H{sub 4}COOH), 2; PhP(S)(NMeNCHC{sub 6}H{sub 4}COOH){sub 2}, 3; PhP(S)(NMeNH{sub 2})(NMeNCHC{sub 6}H{sub 4}CH=CHCOOH), 4; PhP(S)(NMeNCHC{sub 6}H{sub 4}CH-CHCOOH){sub 2}, 5. The reactions of three of the new phosphorus hydrazides (2-4) with PdCl{sub 2}(PhCN){sub 2} resulted in the new Pd(II) metallacycles PhP(S)(NMeNH{sub 2})(NMeNCHC{sub 6}H{sub 4}COOH){center_dot}PdCl{sub 2}, 6; PhP(S)(NMeNCHC{sub 6}H{sub 4}COOH){sub 2}{center_dot}PdCl{sub 2}, 7; and PhP(S)(NMeNH{sub 2})(NMeNCHC{sub 6}H{sub 4}CH=CHCOOH){center_dot}PdCl{sub 2}, 8. The reactivity of 6 toward n-butylamine has been evaluated as a model for the preparation of new bioconjugates. The structural elucidation of all the new compounds has been carried out by analytical and complete NMR ({sup 1}H, {sup 31}P) and IR spectroscopic data. As a representative example, the X-ray structure of one of the Pd(II) complexes, 8, has been determined.

Singh, P.R.; Jimenez, H.; Barnes, C.L. [Missouri Univ. Research Reactor, Columbia, MO (United States); Katti, K.V. [Univ. of Missour, Columbia, MO (United States)]|[Missouri Univ. Research Reactor, Columbia, MO (United States); Volkert, W.A. [Missouri Univ. Research Reactor, Columbia, MO (United States)]|[Univ. of Missouri, Columbia, MO (United States)

1994-02-16

66

In vitro apatite formation on polyamide containing carboxyl groups modified with silanol groups  

Microsoft Academic Search

Modification of organic polymer with silanol groups in combination with calcium salts enables the polymer to show bioactivity,\\u000a that is, the polymer forms apatite on its surface after exposure to body environment. However, how modification with silanol\\u000a groups influences ability of apatite formation on the polymer substrate and adhesive strength between polymer and apatite\\u000a is not yet known. In the

Takahiro Kawai; Chikara Ohtsuki; Masanobu Kamitakahara; Kayo Hosoya; Masao Tanihara; Toshiki Miyazaki; Yoshimitsu Sakaguchi; Shigeji Konagaya

2007-01-01

67

Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups  

PubMed Central

Purpose Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. Methods Polyethylene glycol) (PEG) was derived into PEG-bis-(maleic monoester) and maleic monoester-PEG-succinic monoester as the monomers. Magnetofluids were prepared via chemical co-precipitation and dispersion with the monomers. MSPs were prepared via one-step coating of magnetofluids in a water-in-oil microemulsion system of aerosol-OT and heptane by radical co-polymerization of such monomers. Results The resulting MSPs contained abundant carboxyl groups, exhibited negligible nonspecific adsorption of common substances and excellent suspension stability, appeared as irregular particles by electronic microscopy, and had submicron sizes of broad distribution by laser scattering. Saturation magnetizations and average particle sizes were affected mainly by the quantities of monomers used for coating magnetofluids, and steric hindrance around carboxyl groups was alleviated by the use of longer monomers of one polymerizable bond for coating. After optimizations, MSPs bearing saturation magnetizations over 46 emu/g, average sizes of 0.32 ?m, and titrated carboxyl groups of about 0.21 mmol/g were obtained. After the activation of carboxyl groups on MSPs into N-hydroxysuccinimide ester, biotin was immobilized on MSPs and the resulting biotin-functionalized MSPs isolated the conjugate of streptavidin and alkaline phosphatase at about 2.1 mg/g MSPs; streptavidin was immobilized at about 10 mg/g MSPs and retained 81% ± 18% (n = 5) of the specific activity of the free form. Conclusion The facile approach effectively prepares MSPs for magnetic separations. PMID:23589687

Long, Gaobo; Yang, Xiao-lan; Zhang, Yi; Pu, Jun; Liu, Lin; Liu, Hong-bo; Li, Yuan-li; Liao, Fei

2013-01-01

68

The stereochemistry of amide side chains containing carboxyl groups influences water exchange rates in EuDOTA-tetraamide complexes  

PubMed Central

Many Eu(III) complexes formed with DOTA-tetraamide ligands (where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) have sufficiently slow water exchange kinetics to meet the slow-to-intermediate condition required to serve as chemical exchange saturation transfer (CEST) contrast agents for MRI. This class of MRI contrast agents offers an attractive platform for creating biological sensors because water exchange is exquisitely sensitive to subtle ligand stereochemistry and electronic effects. Introduction of carboxyl groups or carboxyl ethyl ester groups on the amide substituents has been shown to slow water exchange in these complexes, but less is known about the orientation or position of these side-chain groups relative to the inner-sphere Eu(III)-bound water molecule. In this study, a series of Eu(III) complexes having one or more carboxyl groups or carboxyl esters at the ?-position of the pendant amide side chains were prepared. Initial attempts to prepare optically pure EuDOTA-[(S)-Asp]4 resulted in a chemically pure ligand consisting of a mixture of stereochemical isomers. This was traced to racemization of (S)-aspartate diethyl ester during the synthetic procedure. Nevertheless, NMR studies of the Eu(III) complexes of this mixture revealed that each isomer had a different water exchange rate, differing by a factor of 2 or more. A second controlled synthesis and CEST study of EuDOTA-[(S)-Asp]4 and cis-EuDOTA-[(S)-Asp]2[(R)-Asp]2 confirmed that the water exchange rates in these diastereomeric complexes are controlled by the axial versus equatorial orientation of the carboxyl groups on the amide side chains. These observations provide new insights toward the development of even more slowly water exchanging systems which will be necessary for practical in vivo applications. PMID:23979260

Mani, Tomoyasu; Opina, Ana Christina L.; Zhao, Piyu; Evbuomwan, Osasere M.; Milburn, Nate; Tircso, Gyula; Kumas, Cemile; Sherry, A. Dean

2013-01-01

69

Influence of polymer functional group architecture on titania pigment dispersion  

Microsoft Academic Search

The influence upon adsorption of polymers containing different functional groups on the dispersion behaviour of titania pigment particle has been investigated at pH 6.0 and 9.5. The polymers chosen are polyacrylic acid and modified polyacrylamides including homo and copolymers modified with carboxylate and\\/or hydroxyl groups. A range of experimental methods including polymer adsorption isotherms, zeta potential, rheology and particle size

Saeed Farrokhpay; Gayle E. Morris; Daniel Fornasiero; Peter Self

2005-01-01

70

Effect of functional groups of humic substances on uf performance  

Microsoft Academic Search

The role of different functional groups present in humic substances on the membrane flux is unclear. This study is undertaken to (1) separate the carboxyl and phenolic groups from a humic solution, and (2) evaluate the effect of each fractionated humic substances on the ultrafiltration (UF) performance. A weak-base amine resin was used for the adsorption (pH7) and the subsequent

Cheng-Fang Lin; Shih-Hsiang Liu; Oliver J. Hao

2001-01-01

71

Functionalized polyoxometalates with covalently linked bisphosphonate, N-donor or carboxylate ligands: from electrocatalytic to optical properties.  

PubMed

The structures of two families of hybrid organic-inorganic polyoxometalates (POMs) functionalized by covalently grafted carboxylate or bisphosphonate ligands are overviewed. The first family concerns the so-called POMOF materials, built from the connection of mixed-valent ?-Keggin type polyoxomolybdates via N-donor or carboxylate organic molecules coordinated to transition metal ions (Zn(II), Co(II), Ni(II)) grafted at the surface of the POMs. The simulation of the hypothetical zeolitic-like POMOF structures is presented and compared to the experimental ones. The second family gathers the various molecular Mo(V), Mo(VI) and W(VI) POMs incorporating directly into their architecture bisphosphonate (BP) ligands. The potentiality of this family of hybrid POMs comes from the organic group grafted on the carbon atom which bears the two phosphonate groups. For both families, besides the structural description, synthetic trends and an overview of their properties are presented. Namely, the electrocatalytic properties (production of H(2) and reduction of BrO(3)(-)) of the ?-Keggin type polyoxomolybdates are described. The optical and biological activities of the POM-BP compounds as well as their ability to form nanosystems are also reported. PMID:22763503

Dolbecq, Anne; Mialane, Pierre; Sécheresse, Francis; Keita, Bineta; Nadjo, Louis

2012-08-28

72

MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates.  

PubMed

Solvent-assisted ligand incorporation (SALI) is useful for functionalizing the channels of metal-organic framework (MOF) materials such as NU-1000 that offer substitutionally labile zirconium(IV) coordination sites for nonbridging ligands. Each of the 30 or so previous examples relied upon coordination of a carboxylate ligand to achieve incorporation. Here we show that, with appropriate attention to ligand/node stoichiometry, SALI can also be achieved with phosphonate-terminated ligands. Consistent with stronger M(IV) coordination of phosphonates versus carboxylates, this change extends the pH range for retention of incorporated ligands. The difference in coordination strength can be exploited to achieve stepwise incorporation of pairs of ligands-specifically, phosphonates species followed by carboxylate species-without danger of displacement of the first ligand type by the second. Diffuse reflectance infrared Fourier-transform spectroscopy suggests that the phosphonate ligands are connected to the MOF node as RPO2(OH)¯ species in a moiety that leaves a base-accessible -OH moiety on each bound phosphonate. PMID:25665089

Deria, Pravas; Bury, Wojciech; Hod, Idan; Kung, Chung-Wei; Karagiaridi, Olga; Hupp, Joseph T; Farha, Omar K

2015-03-01

73

Inactivation of Rb+ and Na+ occlusion on (Na+,K+)-ATPase by modification of carboxyl groups.  

PubMed

This paper demonstrates and characterizes inactivation by N,N'-dicyclohexylcarbodiimide (DCCD) of Rb+ and Na+ occlusion in pig kidney (Na+,K+)-ATPase. Rb+ and Na+ occlusion dependent on oligomycin are measured with a manual assay. Parallel measurement of phosphorylation (by Pi plus ouabain) and Na+ or Rb+ occlusion lead to stoichiometries of 3 Na+ or 2 Rb+ per pump molecule. Inactivation of cation occlusion by DCCD shows the following features: (a) Rb+ and Na+ occlusion are inactivated with identical rates and (b) DCCD concentration dependence shows first-order kinetics and also proportionality to the ratio of DCCD to protein, (c) Rb+ and Na+ occlusion are equally protected from DCCD, by Rb+ ions with high affinity (or Na+ ions with lower affinity), (d) inactivation is only slightly pH-dependent between 6 and 8.5 but (e) is significantly accelerated by several hydrophobic amines while a water-soluble nucleophile, glycine ethyl ester has no effect, and (f) inactivation is exactly correlated with inactivation of (Na+,K+)-ATPase activity of ATP-dependent Na+/K+ exchange in reconstituted vesicles and with the magnitude of E1Na+----E2(Rb+) conformational transitions measured with fluorescence probes. The simplest hypothesis to explain the results is that DCCD modifies one (or a small number of) critical carboxyl residues in a non-aqueous cation binding domain and so blocks occlusion of 2 Rb+ or 3 Na+ ions. The results suggest further that Na+ and K+(Rb+) bind to the same sites and are transported sequentially on the same trans-membrane segments. A second effect of the DCCD treatment is a 4-8-fold shift of the conformational equilibrium E2(Rb+)----E1Rb+ toward E1Rb+. This is detected by (a) reduction in apparent Rb+ affinity for Rb+ occlusion or Rb+/Rb+ exchange in vesicles and (b) direct demonstration of an increased rate of E2(K+)----E1Na+ and decreased rate of E1Na+----E2(K+). This effect is not protected against by Rb+ ions and probably reflects modification of a second group of residues. Modification of (Na+,K+)-ATPase by carbodiimides is complex. Depending on the nature of the carbodiimide (water- or lipid-soluble), ratio of carbodiimide to protein, and perhaps source of the enzyme, inactivation might result either from modification of critical carboxyls, as suggested by this work, or from internal cross-linking as proposed by Pedemonte, C. H. and Kaplan, J. H. ((1986) J. Biol. Chem. 261, 3632-3639). PMID:2848822

Shani-Sekler, M; Goldshleger, R; Tal, D M; Karlish, S J

1988-12-25

74

Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties  

PubMed Central

Molecular dynamics (MD) and molecular mechanics (MM) methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube (SWNT)—polyethylene and SWNT—polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the SWNT with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1 to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the SWNT wall. PMID:25229056

Haghighatpanah, Shayesteh; Bohlén, Martin; Bolton, Kim

2014-01-01

75

Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties.  

PubMed

Molecular dynamics (MD) and molecular mechanics (MM) methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube (SWNT)-polyethylene and SWNT-polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the SWNT with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1 to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the SWNT wall. PMID:25229056

Haghighatpanah, Shayesteh; Bohlén, Martin; Bolton, Kim

2014-01-01

76

Functional Group Analysis.  

ERIC Educational Resources Information Center

Discusses analytical methods selected from current research articles. Groups information by topics of general interest, including acids, aldehydes and ketones, nitro compounds, phenols, and thiols. Cites 97 references. (CS)

Smith, Walter T., Jr.; Patterson, John M.

1980-01-01

77

Selective complexation of ?-amino acids and simple peptides via their carboxylate groups.  

PubMed

The complexation of anions of selected ?-amino acids (alanine, valine, proline, tyrosine) and small peptides (L-alanyl-L-alanine, L-alanyl-L-alanyl-L-alanine, and L-alanyl-L-alanyl-L-alanyl-L-alanine) by the dinuclear nickel(II) complex [LNi2(?-Cl)]+ (1), where (L)2? represents a 24-membered binucleating hexamine-dithiophenolato ligand, has been investigated. The following complexes were prepared, isolated as perchlorate or tetraphenylborate salts, and characterized by UV/Vis, IR, and CD spectroscopy: [LNi2(?-L-alaninato)]+ (2), [LNi2(?-L-valinato)]+ (3), [LNi2(?-L-prolinato)]+ (4), [LNi2(?-L-tyrosinato)]+ (5a), [LNi2(?-D-tyrosinato)]+ (5b), [LNi2(?-L,D-tyrosinato)]+ (5c), [LNi2(?-L-alanyl-L-alaninato)]+ (6), [LNi2(?-(L-alanyl)2-L-alaninato)]+ (7), [LNi2(?-(L-alanyl)3-L-alaninato)]+ (8). Compounds 4, 5a and 6 were additionally identified by X-ray crystallography. In contrast to unsupported amino carboxylate complexes which typically contain five membered NO chelate rings, the [LNi2]2+ fragment selectively binds the ?-amino acids and peptides via ?1,3-bridging carboxylato groups. Coordination of the carboxylato coligands in this way confers dissymmetry on the complexes. The CD spectra of the syn,syn-bridged structures are significantly different from those of the NO chelates, and can distinguish between the two coordination modes. The encapsulation of the peptides increases their solubility in the solvent system MeOH–MeCN by up to two orders of magnitude. This is discussed in terms of the absence of intermolecular hydrogen bonding interactions as indicated in the X-ray structure of 6. PMID:25098239

Schnitter, Roland; Gallego, Daniel; Kersting, Berthold

2014-09-28

78

Cationic Polymerization of N-Vinylcarbazole and N-Vinyl-2Pyrrolidone Initiated by Carboxyl Groups on Carbon Fibers  

Microsoft Academic Search

The effects of solvent and temperature on the grafting of poly(N-vinylcarbazole) (NVC) onto carbon fiber by cationic polymerization initiated by carboxyl groups on the surface were investigated in order to obtain poly-NVC-grafted carbon fiber with a higher percentage of grafting It was found that the rate of the polymerization of NVC increased, depending on the dielectric constant of the solvent,

Norio Tsubokawa; Hiroshi Maruyama; Yasuo Sone

1988-01-01

79

The pKa of the General Acid/Base Carboxyl Group of a Glycosidase Cycles during Catalysis: A 13  

E-print Network

The pKa of the General Acid/Base Carboxyl Group of a Glycosidase Cycles during Catalysis: A 13 C-NMR Study of Bacillus circulans Xylanase Lawrence P. McIntosh,*,,§ Greg Hand, Philip E. Johnson,,§ Manish D obtained from a study of the pH dependence of kcat/Km and demonstrate that, at the enzyme's pH optimum of 5

McIntosh, Lawrence P.

80

Pd(II)-Catalyzed C-H Functionalizations Directed by Distal Weakly Coordinating Functional Groups.  

PubMed

Ortho-C(sp(2))-H olefination and acetoxylation of broadly useful synthetic building blocks phenylacetyl Weinreb amides, esters, and ketones are developed without installing an additional directing group. The interplay between the distal weak coordination and the ligand-acceleration is crucial for these reactions to proceed under mild conditions. The tolerance of longer distance between the target C-H bonds and the directing functional groups also allows for the functionalizations of more distal C-H bonds in hydrocinnamoyl ketones, Weinreb amides, and biphenyl Weinreb amides. Mechanistically, the coordination of these carbonyl groups and the bisdentate amino acid ligand with Pd(II) centers provides further evidence for our early hypothesis that the carbonyl groups of the potassium carboxylate are responsible for the directed C-H activation of carboxylic acids. PMID:25768039

Li, Gang; Wan, Li; Zhang, Guofu; Leow, Dasheng; Spangler, Jillian; Yu, Jin-Quan

2015-04-01

81

Functionalization of carboxylated multiwall nanotubes with imidazole derivatives and their toxicity investigations  

PubMed Central

Imidazoles and their derivatives are compounds with chemotherapeutic applications. In this study, we investigated the chemical functionalization of carboxylated multiwalled carbon nanotubes (MWNT–COOH) by 1,2-phenylendiamine. Multiwalled nanotube (MWNT)–benzimidazole was obtained by an MWNT–amide reaction with POCl3 after 72 hours, which was confirmed by Fourier transform infrared, scanning electron microscopy, thermal gravimetric analysis, and elemental analysis. These functionalizations were chosen due to -NH2 and NHCO active sites in MWNT–amide for future application. Toxicity assays with fibroblast cells and MTT test for measurement of viable cell numbers were also performed. Cellular results did not show any toxicity change in modified samples from that of the reference samples. PMID:21116331

Azizian, Javad; Tahermansouri, Hasan; Biazar, Esmaeil; Heidari, Saeed; Khoei, Davood Chobfrosh

2010-01-01

82

ATR-FTIR spectroscopic evidence for biomolecular phosphorus and carboxyl groups facilitating bacterial adhesion to iron oxides.  

PubMed

Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to probe the binding of bacteria to hematite (?-Fe2O3) and goethite (?-FeOOH). In situ ATR-FTIR experiments with bacteria (Pseudomonas putida, Pseudomonas aeruginosa, Escherichia coli), mixed amino acids, polypeptide extracts, deoxyribonucleic acid (DNA), and a suite of model compounds were conducted. These compounds represent carboxyl, catecholate, amide, and phosphate groups present in siderophores, amino acids, polysaccharides, phospholipids, and DNA. Due in part to the ubiquitous presence of carboxyl groups in biomolecules, numerous IR peaks corresponding to outer-sphere or unbound (1400 cm(-1)) and inner-sphere (1310-1320 cm(-1)) coordinated carboxyl groups are noted following reaction of bacteria and biomolecules with ?-Fe2O3 and ?-FeOOH. However, the data also reveal that the presence of low-level amounts (i.e., 0.45-0.79%) of biomolecular phosphorous groups result in strong IR bands at ?1043 cm(-1), corresponding to inner-sphere Fe-O-P bonds, underscoring the importance of bacteria associated P-containing groups in biomolecule and cell adhesion. Spectral comparisons also reveal slightly greater P-O-Fe contributions for bacteria (Pseudomonad, E. coli) deposited on ?-FeOOH, as compared to ?-Fe2O3. This data demonstrates that slight differences in bacterial adhesion to Fe oxides can be attributed to bacterial species and Fe-oxide minerals. However, more importantly, the strong binding affinity of phosphate in all bacteria samples to both Fe-oxides results in the formation of inner-sphere Fe-O-P bonds, signifying the critical role of biomolecular P in the initiation of bacterial adhesion. PMID:24859052

Parikh, Sanjai J; Mukome, Fungai N D; Zhang, Xiaoming

2014-07-01

83

Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products  

NASA Astrophysics Data System (ADS)

Magnetite nanoparticles about 14 nm in diameter were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts with aqueous ammonia in the presence of poly(ethylene glycol) (PEG). Magnetic poly(glycidyl methacrylate) (PGMA) microspheres about 1 ?m in diameter were prepared by dispersion polymerization of GMA in aqueous ethanol in the presence of PEG-coated magnetite nanoparticles. The microspheres were hydrolyzed and carboxyl groups introduced by oxidation with KMnO4. The particles reversibly bound bacterial DNA of Bifidobacterium and Lactobacillus genera in the presence of high concentrations of PEG 6000 and sodium chloride from crude cell lysates of various dairy products (butter milk, cheese, yoghurt, probiotic tablets) or from cell lyophilisates. The presence of Bifidobacterium and Lactobacillus DNA in samples was confirmed by PCR amplification.

Horák, Daniel; Rittich, Bohuslav; Španová, Alena

2007-04-01

84

Covalent attachments of boron nitride nanotubes through a carboxylic linker: Density functional studies  

NASA Astrophysics Data System (ADS)

Properties of attached boron nitride (BN) nanotubes based on linking two zigzag nanotubes through a carboxylic (-(Cdbnd O)O-) linker were investigated by performing density functional theory (DFT) calculations. The linking boron and nitrogen atoms at the edges of two zigzag BN nanotubes were linked to the -(C]O)O- linker to make possible the attachments of two BN nanotubes together. Total energies, energy gaps, dipole moments, linking bond lengths and angles, and quadrupole coupling constants were obtained for the optimized structures to determine the properties of the attached BN nanotubes. The results indicated that different properties could be seen for the investigated models based on their linking status. For quadrupole coupling constants, the most significant changes of parameters were observed for the linking atoms among the investigated models of attached BN nanotubes.

Mirzaei, Mahmoud; Arshadi, Sattar; Abedini, Saboora; Yousefi, Mohammad; Meskinfam, Masoumeh

2012-06-01

85

ZnO-Coated Carbon Nanotubes: Inter-Diffusion of Carboxyl Groups and Enhanced Photocurrent Generation.  

PubMed

ZnO is a defect-governed oxide and emits light at both visible and UV regimes. This work employs atomic layer deposition to produce oxide particles on oxygenated carbon nanotubes, and the composites only show emission profiles at short wavelengths. The quenching of defect-related emissions at long wavelengths is verified, owing to carboxyl diffusion into oxygen vacancies, and doping is supported by ZnCO3 formation in oxide lattice. Fully coated tubes display an increased photocurrent and the quantum efficiency increases by 22?% relative to the bare nanotubes. PMID:25572260

Hung, Chia-I; Wen, Hua-Chiang; Lai, Yao-Cheng; Chang, Shih-Hsin; Chou, Wu-Ching; Hsu, Wen-Kuang

2015-03-16

86

Expression of a functional jasmonic acid carboxyl methyltransferase is negatively correlated with strawberry fruit development.  

PubMed

The volatile metabolite methyl jasmonate (MeJA) plays an important role in intra- and interplant communication and is involved in diverse biological processes. In this study, we report the cloning and functional characterization of a S-adenosyl-l-methionine:jasmonic acid carboxyl methyltransferase (JMT) from Fragaria vesca and Fragaria×ananassa. Biochemical assays and comprehensive transcript analyses showed that JMT has been erroneously annotated as gene fusion with a carboxyl methyltransferase (CMT) (gene15184) in the first published genome sequence of F. vesca. Recombinant FvJMT catalyzed the formation of MeJA with KM value of 22.3?M while FvCMT and the fusion protein were almost inactive. Activity of JMT with benzoic acid and salicylic acid as substrates was less than 1.5% of that with JA. Leucine at position 245, an amino acid missing in other JMT sequences is essential for activity of FvJMT. In accordance with MeJA levels, JMT transcript levels decreased steadily during strawberry fruit ripening, as did the expression levels of JA biosynthesis and regulatory genes. It appears that CMT has originated by a recent duplication of JMT and lost its enzymatic activity toward JA. In the newest version of the strawberry genome sequence (June 2014) CMT and JMT are annotated as separate genes in accordance with differential temporal and spatial expression patterns of both genes in Fragaria sp. In conclusion, MeJA, the inactive derivative of JA, is probably involved in early steps of fruit development by modulating the levels of the active plant hormone JA. PMID:25046752

Preuß, Anja; Augustin, Christiane; Figueroa, Carlos R; Hoffmann, Thomas; Valpuesta, Victoriano; Sevilla, José F; Schwab, Wilfried

2014-09-15

87

Spectral functions from the functional renormalization group  

NASA Astrophysics Data System (ADS)

We present a viable method to obtain real-time quantities such as spectral functions or transport coefficients at finite temperature and density within a non-perturbative functional renormalization group approach. Our method is based on a thermodynamically consistent truncation of the flow equations for 2-point functions with analytically continued frequency components in the originally Euclidean external momenta. We demonstrate its feasibility by calculating the mesonic spectral functions in the quark-meson model at different temperatures and quark chemical potentials, in particular around the critical endpoint in the phase diagram of the model.

Tripolt, Ralf-Arno; Strodthoff, Nils; von Smekal, Lorenz; Wambach, Jochen

2014-11-01

88

Prop2-ynyl as a protective group for carboxylic acids: a mild method for the highly selective deprotection of prop-2-ynyl esters using tetrathiomolybdate  

Microsoft Academic Search

It is shown that prop-2-ynyl esters are useful protecting groups for carboxylic acids and that they are selectively deprotected in the presence of other esters on treatment with tetrathiomolybdate under mild conditions. There is a constant search for new, easy to introduce and selectively removable protecting groups in organic synthesis. Over the years a number of protective groups have been

Palanichamy Ilankumaran; N. Manoj; Srinivasan Chandrasekaran

1996-01-01

89

Carboxyl functionalization of carbon fibers through a grafting reaction that preserves fiber tensile strength  

Microsoft Academic Search

Composite materials can be enhanced by grafting a secondary material to a functional group on the surface of the reinforcing fibers to improve thermal, electrical or mechanical properties. Grafting secondary materials onto carbon fibers is often limited by the low reactivity of graphitic carbon and there is strong demand to create novel grafting methods with versatile functional groups. One desirable

Gregory J. Ehlert; Yirong Lin; Henry A. Sodano

2011-01-01

90

Carboxylic group-induced synthesis and characterization of selenium nanoparticles and its anti-tumor potential on Dalton's lymphoma cells.  

PubMed

Carboxylic group-induced synthesis of selenium nanoparticles (SeNPs) was achieved using sodium selenosulphate as a precursor. The particles were stabilized and capped with 0.01% polyvinyl alcohol under ambient conditions. This is a simple and easy method of producing SeNPs in a size range from 35 to 105nm. The synthesized SeNPs were purified by centrifugation at 11,500×g for 20min and characterized by UV-visible spectroscopy, FTIR spectroscopy, XRD, DSC and TEM. It was observed that the synthesized SeNPs showed differences in their absorption spectra, phase composition and crystal structure, thermodynamic behaviour, size and shape. Further, to confirm anti-tumour potential of the synthesized SeNPs induced by the carboxylic group of acetic acid, pyruvic acid and benzoic acid, cell viability assay, nuclear morphology testing and DNA fragmentation assay were carried out using Dalton's lymphoma (DL) cells. DL cells treated with the SeNPs showed reduced cell viability, altered nuclear morphology, typical apoptotic DNA ladder and apoptosis. Therefore, these SeNPs may have therapeutic relevance to treat this type of cancer. PMID:25616972

Kumar, Sanjay; Tomar, Munendra Singh; Acharya, Arbind

2015-02-01

91

The iron-isotope fractionation dictated by the carboxylic functional: An ab-initio investigation  

NASA Astrophysics Data System (ADS)

The ground-state geometries, electronic energies and vibrational properties of carboxylic complexes of iron were investigated both in vacuo and under the effect of a reaction field, to determine thermodynamic properties of iron-acetates and the role of the carboxylic functional on the isotopic imprinting of this metal in metalorganic complexation. The electronic energy, zero point corrections and thermal corrections of these substances at variational state were investigated at the DFT/B3LYP level of theory with different basis set expansions and the effect of the reaction field on the variational structures was investigated through the Polarized Continuun Model. Thermochemical cycle calculations, combined with solvation energy calculations and appropriate scaling from absolute to conventional properties allowed to compute the Gibbs free energy of formation from the elements of the investigated aqueous species and to select the best procedure to be applied in the successive vibrational analysis. The best compliance with the few existing thermodynamic data for these substances was obtained by coupling the gas phase calculations at DFT/B3LYP level with the [6-31G(d,p)]-[6-31G+(d,p)] (for cations and neutral molecules - anions; respectively) with solvation calculations adopting atomic radii optimized for the HF/6-31G(d) level of theory (UAHF). A vibrational analysis conducted on 54Fe, 56Fe, 57Fe and 58Fe gaseous isotopomers yielded reduced partition function ratios which increased not only with the nominal valence of the central cation, as expected, but, more importantly, with the extent of the complexation operated by the organic functional. Coupling thermodynamic data with separative effects it was shown that this last is controlled, as expected, by the relative bond strength of the complex in both aggregation states. Through the Integral Equation Formalism of the Polarized Continuum Model (IEFPCM) the effect of the ionic strength of the solution and of a T-dependent permittivity on the energy and separative effects of the solvated metalorganic complexes were analyzed in detail. The solvent effect in the standard state (hypothetical one-molal solution referred to infinite dilution; T = 298.15 K, P = 1 bar) is a limited reduction of the separative effects of all the isotopomeric couples. With an increase in T (and the concomitant decrease in the dielectric constant of the solvent) this effect diminishes progressively.

Ottonello, G.; Vetuschi Zuccolini, M.

2008-12-01

92

Chromium(III) removal from water and wastewater using a carboxylate-functionalized cation exchanger prepared from a lignocellulosic residue.  

PubMed

This study concerns with the development of a new cation exchanger (SDGPMASPCOOH) carrying spacer (SP) group [CONH(CH(2))(2)NHCO(CH(2))(2)] and carboxylate functional group at the chain end. The preparation process was carried out through graft copolymerization of methacrylic acid onto sawdust, SD (a lignocellulosic residue) using ceric ammonium nitrate as an initiator. The poly(methacrylic acid) grafted SD (SDGPMA) was subsequently treated with thionyl chloride followed by ethylenediamine (transmidation) and succinic anhydride (carboxyfunctionalization) treatments. Infrared spectroscopy and potentiometric titrations were used to confirm graft copolymer formation and carboxylate functionalization. The effectiveness of the SDGPMASPCOOH in removing Cr(III) from water and wastewater was evaluated by the batch technique. The influence of different experimental parameters such as solution pH, contact time, absorbent dose, Cr(III) concentration and temperature on removal process was evaluated. The maximum Cr(III) removal was observed at the initial pH of 7.0. The Cr(III) was removed by SDGPMASPCOOH up to 99.3 and 92.6% from an initial concentration of 10 and 25 mg/L, respectively, at pH 7.0. Equilibrium time was reached within 4 h. Kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and Elovich equations. The data fitted very well to the pseudo-second-order rate expression. The Langmuir, Freundlich and Temkin equations were applied to the experimental isotherm data and the Langmuir model was found to be in better correlation with the experimental data. The monolayer adsorption capacity for Cr(III) removal was found to be 36.63 mg/g. The adsorption efficiency towards Cr(III) removal was tested using simulated tannery wastewater. The adsorbed Cr(III) on SDGPMASPCOOH can be recovered by treating with 0.1 M HCl. Four adsorption/desorption cycles were performed without significant decrease in removal capacity. The results showed that SDGPMASPCOOH developed in this study exhibited considerable adsorption potential for application in removal of Cr(III) from water and wastewaters. PMID:17905262

Anirudhan, T S; Radhakrishnan, P G

2007-12-15

93

Phosphorescent biscyclometallated iridium(iii) ethylenediamine complexes functionalised with polar ester or carboxylate groups as bioimaging and visualisation reagents.  

PubMed

We report the synthesis, characterisation and photophysical properties of new phosphorescent biscyclometallated iridium(iii) ethylenediamine (en) complexes functionalised with polar ester or carboxylate groups [Ir(N^C)2(en)](n)(X) (n = +1, X = Cl(-), HN^C = methyl 4-(2-pyridyl)benzoate Hppy-COOMe (), methyl 2-phenyl-4-quinolinecarboxylate Hpq-COOMe (); n = -1, X = Li(+), HN^C = 4-(2-pyridyl)benzoate Hppy-COO(-) (), 2-phenyl-4-quinolinecarboxylate Hpq-COO(-) ()). In aqueous solutions, the carboxylate complexes and displayed emission quenching (ca. 7 and 74 fold, respectively) and lifetime shortening upon protonation, and their pKa values were determined to be 5.13 and 3.46, respectively. The pq complexes and exhibited hypsochromic shifts in their emission maxima and a significant increase in emission intensity (ca. 84 and 15 fold, respectively) upon nonspecific binding to the protein bovine serum albumin (BSA). Inductively coupled plasma-mass spectroscopy (ICP-MS) and laser-scanning confocal microscopy (LSCM) results revealed that the ester complexes and were efficiently internalised by the human cervix epithelioid carcinoma (HeLa) cells through energy-requiring pathways and subsequently localised in endosomes and mitochondria, respectively. They showed good biocompatibility in the dark, but became significantly cytotoxic upon photoirradiation due to the generation of singlet oxygen. In contrast, in aqueous solutions of physiological pH, the carboxylate complexes and existed as the anionic form and hardly entered cells due to limited membrane permeability, as evidenced by the intense emission surrounding the plasma membrane of the cells. They showed negligible cytotoxicity and the cell viability remained over 95% for an incubation period of 24 hours. In view of the low cytotoxicity and strongly emissive nature of the hydrophilic ppy-COO(-) complex in an aqueous medium, the potential application of the complex as a visualisation reagent has been demonstrated using zebrafish (Danio rerio) as an animal model. PMID:25522324

Tang, Tommy Siu-Ming; Leung, Kam-Keung; Louie, Man-Wai; Liu, Hua-Wei; Cheng, Shuk Han; Lo, Kenneth Kam-Wing

2015-03-01

94

Synthesis and evaluation of novel dental monomer with branched carboxyl acid group  

PubMed Central

To enhance the water miscibility and increase the mechanical properties of dentin adhesives, a new glycerol-based monomer with vinyl and carboxylic acid, 4-((1,3-bis(-methacryloyloxy)propan-2-yl)oxy)-2-methylene-4-oxobutanoic acid (BMPMOB), was synthesized and characterized. Dentin adhesive formulations containing 2-hydroxyethyl methacrylate (HEMA), 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (BisGMA), and BMPMOB were characterized with regard to real-time photopolymerization behavior, water sorption, dynamic mechanical analysis, and microscale three-dimensional internal morphologies and compared with HEMA/BisGMA controls. The experimental adhesive copolymers showed higher glass transition temperature and rubbery moduli, as well as improved water miscibility compared to the controls. The enhanced properties of the adhesive copolymers indicated that BMPMOB is a promising comonomer for dental restorative materials. PMID:24596134

Song, Linyong; Ye, Qiang; Ge, Xueping; Misra, Anil; Laurence, Jennifer S.; Berrie, Cynthia L.; Spencer, Paulette

2014-01-01

95

Carboxylic Acids as A Traceless Activation Group for Conjugate Additions: A Three-Step Synthesis of ()-Pregabalin  

E-print Network

A critical feature of this new Csp 3- arylation reaction is the capacity for aliphatic carboxylic acids carboxylic acids should therefore be suitable and generic precursors for radical conjugate addition reactions electrode (SCE) in CH3CN).9 We assumed that base-promoted deprotonation of a carboxylic acid substrate

MacMillan, David W. C.

96

Role of polymeric dispersant functional groups in the dispersion behaviour of titania pigment particles  

Microsoft Academic Search

The adsorption of polymeric dispersants onto titania pigment particles has been investigated at pH 9.5 as a function of the type of polymer functional group, using polyacrylic acid and modified polyacrylamides. The polyacrylamides include homopolymer and copolymers with either hydroxyl groups or carboxylate and hydroxyl groups. The experimental methods used were adsorption isotherm, zeta potential, particle size measurements and rheology. The

Saeed Farrokhpay; Gayle Morris; Daniel Fornasiero; Peter Self

97

Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties  

NASA Astrophysics Data System (ADS)

Molecular dynamics and molecular mechanics methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube – polyethylene and single walled carbon nanotube – polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the single walled carbon nanotubes with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1% to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the single walled carbon nanotube wall.

Haghighatpanah, Shayesteh; Bohlén, Martin; Bolton, Kim

2014-09-01

98

DNA damage in human skin keratinocytes caused by multiwalled carbon nanotubes with carboxylate functionalization.  

PubMed

Water-soluble carbon nanotubes have been found to be one of the most promising nanomaterials in biological- and biomedical-based applications. However, there have been major concerns on their ability to cause cellular and DNA damages upon exposure. In this work, we explore the toxic effects of three multiwalled carbon nanotubes (MWCNTs: nonpurified, purified and carboxylate-functionalized) on human skin keratinocytes (HaCaT). Cytotoxicity tests using the conventional thiazolyl blue tetrazolium bromide (MTT) and the water-soluble tetrazolium (WST-1) assays for 0.5 or 24 h exposure to 20 ?g/mL of MWCNTs show that all three caused minimum cytotoxicity that is generally not statistically significant. Assessment of direct and oxidative DNA damages using both alkaline Comet assay and formamidopyrimidine DNA glycosylase-modified Comet assay reveals that the treatment with 20 ?g/mL of MWCNTs does not cause significant direct DNA damages, but causes great amount of oxidative DNA damages in HaCaT cells. The oxidative DNA damage reaches the maximum amount at 4 h of incubation in Dulbecco's minimum essential medium, but decreases to the minimum at 8 and 24 h of incubation, indicating repair of the oxidative damages by the intrinsic DNA repair mechanism of the cells. PMID:23012341

McShan, Danielle; Yu, Hongtao

2014-07-01

99

Solid phase extraction of petroleum carboxylic acids using a functionalized alumina as stationary phase.  

PubMed

Petroleum essentially consists of a mixture of organic compounds, mainly containing carbon and hydrogen, and, in minor quantities, compounds with nitrogen, sulphur, and oxygen. Some of these compounds, such as naphthenic acids, can cause corrosion in pipes and equipment used in processing plants. Considering that the methods of separation or clean up the target compounds in low concentrations and in complex matrix use large amounts of solvents or stationary phases, is necessary to study new methodologies that consume smaller amounts of solvent and stationary phases to identify the acid components present in complex matrix, such as crude oil samples. The proposed study aimed to recover acid compounds using the solid phase extraction method, employing different types of commercial stationary ion exchange phases (SAX and NH(2)) and new phase alumina functionalized with 1,4-bis(n-propyl)diazoniabicyclo[2.2.2]octane chloride silsesquioxane (Dab-Al(2)O(3)), synthesized in this work. Carboxylic acids were used as standard mixture in the solid phase extraction for further calculation of recovery yield. Then, the real sample (petroleum) was fractionated into saturates, aromatics, resins, and asphaltenes, and the resin fraction of petroleum (B1) was eluted through stationary ion exchange phases. The stationary phase synthesized in this work showed an efficiency of ion exchange comparable to that of the commercial stationary phases. PMID:22589166

de Conto, Juliana Faccin; Nascimento, Juciara dos Santos; de Souza, Driele Maiara Borges; da Costa, Luiz Pereira; Egues, Silvia Maria da Silva; Freitas, Lisiane Dos Santos; Benvenutti, Edilson Valmir

2012-04-01

100

Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic acid functionality in polyethylene glycol: formulation implications.  

PubMed

Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification reactions. In this study, kinetics of two active pharmaceutical ingredients, cetirizine and indomethacin possessing carboxylic acid functionality, has been studied in PEG 400 and PEG 1000 at 50 °C, 60 °C, 70 °C, and 80 °C. HPLC-UV was applied for the determination of concentrations in the kinetic studies, whereas HPLC-MS was used to identify reaction products. The esterification reactions were observed to be reversible. A second-order reversible kinetic model was applied and rate constants were determined. The rate constants demonstrated that cetirizine was esterified about 240 times faster than indomethacin at 80 °C. The shelf-life for cetirizine in a PEG 400 formulation at 25 °C expressed as t(95%) was predicted to be only 30 h. Further, rate constants for esterification of cetirizine in PEG 1000 in relation to PEG 400 decreased by a factor of 10, probably related to increased viscosity. However, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably. PMID:24961667

Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe; Østergaard, Jesper

2014-08-01

101

An efficient general method for esterification of aromatic carboxylic acids  

Microsoft Academic Search

Treatment of variety of aromatic carboxylic acids with alcohols in the presence of thionyl chloride results in excellent yields of corresponding esters. This esterification system is compatible with a wide assortment of functional groups.

Bhaskar D. Hosangadi; Rajesh H. Dave

1996-01-01

102

G?q Protein Carboxyl Terminus Imitation Polypeptide GCIP-27 Improves Cardiac Function in Chronic Heart Failure Rats  

PubMed Central

Background G?q protein carboxyl terminus imitation polypeptide (GCIP)-27 has been shown to alleviate pathological cardiomyocyte hypertrophy induced by various factors. Pathological cardiac hypertrophy increases the morbidity and mortality of cardiovascular diseases while it compensates for poor heart function. This study was designed to investigate the effects of GCIP-27 on heart function in rats with heart failure induced by doxorubicin. Methods and Results Forty-eight rats were randomly divided into the following six groups receiving vehicle (control), doxorubicin (Dox), losartan (6 mg/kg, i.g.) and three doses of GCIP-27 (10, 30, 90 ?g/kg; i.p., bid), respectively. Heart failure was induced by Dox, which was administered at a 20 mg/kg cumulative dose. After 10 weeks of treatment, we observed that GCIP-27 (30, 90 ?g/kg) significantly increased ejection fraction, fraction shortening, stroke volume and sarcoplasmic reticulum Ca2+ ATPase activity of Dox-treated hearts. Additionally, GCIP-27 decreased myocardial injury, heart weight index and left ventricular weight index, fibrosis and serum cardiac troponin-I concentration in Dox-treated mice. Immunohistochemistry, western blotting and real-time PCR experiments indicated that GCIP-27 (10–90 ?g/kg) could markedly upregulate the protein expression of myocardial ?-myosin heavy chain (MHC), Bcl-2, protein kinase C (PKC) ? and phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2 as well as the mRNA expression of ?-MHC, but downregulated the expression of ?-MHC, Bax and PKC ?II, and the mRNA expression levels of ?-MHC in Dox-treated mice. It was also found that GCIP-27 (30, 90 ?g/L) decreased cell size and protein content of cardiomyocytes significantly in vitro by comparison of Dox group. Conclusions GCIP-27 could effectively ameliorate heart failure development induced by Dox. PKC–ERK1/2 signaling might represent the underlying mechanism of the beneficial effects of GCIP-27. PMID:25822412

Lu, Xiao Lan; Tong, Yang Fei; Liu, Ya; Xu, Ya Li; Yang, Hua; Zhang, Guo Yuan; Li, Xiao-Hui; Zhang, Hai-Gang

2015-01-01

103

Cationic screening of charged surface groups (carboxylates) affects electron transfer steps in photosystem-II water oxidation and quinone reduction.  

PubMed

The functional or regulatory role of long-distance interactions between protein surface and interior represents an insufficiently understood aspect of protein function. Cationic screening of surface charges determines the morphology of thylakoid membrane stacks. We show that it also influences directly the light-driven reactions in the interior of photosystem II (PSII). After laser-flash excitation of PSII membrane particles from spinach, time courses of the delayed recombination fluorescence (10?s-10ms) and the variable chlorophyll-fluorescence yield (100?s-1s) were recorded in the presence of chloride salts. At low salt-concentrations, a stimulating effect was observed for the S-state transition efficiency, the time constant of O2-formation at the Mn4Ca-complex of PSII, and the halftime of re-oxidation of the primary quinone acceptor (Qa) by the secondary quinone acceptor (Qb). The cation valence determined the half-effect concentrations of the stimulating salt effect, which were around 6?M, 200?M and 10mM for trivalent (LaCl3), bivalent (MgCl2, CaCl2), and monovalent cations (NaCl, KCl), respectively. A depressing high-salt effect also depended strongly on the cation valence (onset concentrations around 2mM, 50mM, and 500mM). These salt effects are proposed to originate from electrostatic screening of negatively charged carboxylate sidechains, which are found in the form of carboxylate clusters at the solvent-exposed protein surface. We conclude that the influence of electrostatic screening by solvent cations manifests a functionally relevant long-distance interaction between protein surface and electron-transfer reactions in the protein interior. A relation to regulation and adaptation in response to environmental changes is conceivable. PMID:25062950

Karge, Oliver; Bondar, Ana-Nicoleta; Dau, Holger

2014-10-01

104

Scanning thermal lithography of tailored tert-butyl ester protected carboxylic acid functionalized (meth)acrylate polymer platforms.  

PubMed

In this paper, we report on the development of tailored polymer films for high-resolution atomic force microscopy based scanning thermal lithography (SThL). In particular, full control of surface chemical and topographical structuring was sought. Thin cross-linked films comprising poly(tert-butyl methacrylate) (MA(20)) or poly(tert-butyl acrylate) (A(20)) were prepared via UV initiated free radical polymerization. Thermogravimetric analysis (TGA) and FTIR spectroscopy showed that the heat-induced thermal decomposition of MA(20) by oxidative depolymerization is initially the primary reaction followed by tert-butyl ester thermolysis. By contrast, no significant depolymerization was observed for A(20). For A(20) and MA(20) (at higher temperatures and/or longer reaction times) the thermolysis of the tert-butyl ester liberates isobutylene and yields carboxylic acid groups, which react further intramolecularly to cyclic anhydrides. The values of the apparent activation energies (E(a)) for the thermolysis were calculated to be 125 ± 13 kJ mol(-1) and 116 ± 7 kJ mol(-1) for MA(20) and A(20), respectively. Both MA(20) and A(20) films showed improved thermomechanical stability during SThL compared to non cross-linked films. Carboxylic acid functionalized lines written by SThL in A(20) films had a typically ~10 times smaller width compared to those written in MA(20) films regardless of the tip radius of the heated probe and did not show any evidence for thermochemically or thermomechanically induced modification of film topography. These observations and the E(a) of 45 ± 3 kJ mol(-1) for groove formation in MA(20) estimated from the observed volume loss are attributed to oxidative thermal depolymerization during SThL of MA(20) films, which is considered to be the dominant reaction mechanism for MA(20). The smallest line width values obtained for MA(20) and A(20) films with SThL were 83 ± 7 nm and 21 ± 2 nm, whereas the depth of the lines was below 1 nm, respectively. PMID:21919505

Duvigneau, Joost; Schönherr, Holger; Vancso, G Julius

2011-10-01

105

Screening biochars for heavy metal retention in soil: role of oxygen functional groups  

Technology Transfer Automated Retrieval System (TEKTRAN)

Oxygen-containing carboxyl, hydroxyl, and phenolic surface functional groups of soil organic and mineral components play central roles in binding metal ions, and biochar amendment can provide means of increasing these surface ligands in soil. In this study, positive matrix factorization (PMF) was f...

106

Synthesis and Functionalization of Cyclic Sulfonimidamides: A Novel Chiral Heterocyclic Carboxylic Acid Bioisostere  

PubMed Central

An efficient synthesis of aryl substituted cyclic sulfonimidamides designed as chiral nonplanar heterocyclic carboxylic acid bioisosteres is described. The cyclic sulfonimidamide ring system could be prepared in two steps from a trifluoroacetyl protected sulfinamide and methyl ester protected amino acids. By varying the amino acid, a range of different C-3 substituted sulfonimidamides could be prepared. The compounds could be further derivatized in the aryl ring using standard cross-coupling reactions to yield highly substituted cyclic sulfonimidamides in excellent yields. The physicochemical properties of the final compounds were examined and compared to those of the corresponding carboxylic acid and tetrazole derivatives. The unique nonplanar shape in combination with the relatively strong acidity (pKa 5–6) and the ease of modifying the chemical structure to fine-tune the physicochemical properties suggest that this heterocycle can be a valuable addition to the range of available carboxylic acid isosteres. PMID:24900513

2012-01-01

107

Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices  

NASA Astrophysics Data System (ADS)

The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

2014-05-01

108

Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function  

PubMed Central

Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT’s three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in planta depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses might represent the ancestor for the presently existing floral genes which during evolution gained different expression profiles and encoded enzymes with the ability to accept structurally similar substrates. PMID:15946712

Effmert, Uta; Saschenbrecker, Sandra; Ross, Jeannine; Negre, Florence; Fraser, Chris M.; Noel, Joseph P.; Dudareva, Natalia; Piechulla, Birgit

2010-01-01

109

Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function  

SciTech Connect

Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses might represent the ancestor for the presently existing floral genes which during evolution gained different expression profiles and encoded enzymes with the ability to accept structurally similar substrates.

Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

2005-01-01

110

An NHC-Catalyzed In Situ Activation Strategy to ?-Functionalize Saturated Carboxylic Acid: An Enantioselective Formal [3+2] Annulation for Spirocyclic Oxindolo-?-butyrolactones.  

PubMed

An in situ NHC-catalyzed activation strategy to ?-functionalize saturated carboxylic acid was developed. This asymmetric formal [3+2] annulation could deliver spirocyclic oxindolo-?-butyrolactones from saturated carboxylic acid and isatin in good yields with high to excellent enantioselectivities. The easy availability of the starting materials, direct installation of functional units at unreactive carbon atom and the convergent assembly make this protocol attractive in the field of organic synthesis. PMID:25689040

Xie, Yuanwei; Yu, Chenxia; Li, Tuanjie; Tu, Shujiang; Yao, Changsheng

2015-03-27

111

Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes  

PubMed Central

The surface properties of carbon based electrodes are critically important for the detection of biomolecules and can modulate electrostatic interactions, adsorption and electrocatalysis. Carbon nanotube (CNT) modified electrodes have previously been shown to have increased oxidative sensitivity and reduced overpotential for catecholamine neurotransmitters, but the effect of surface functionalities on these properties has not been characterized. In this study, we modified carbon-fiber microelectrodes (CFMEs) with three differently functionalized single-wall carbon nanotubes and measured their response to serotonin, dopamine, and ascorbic acid using fast-scan cyclic voltammetry. Both carboxylic acid functionalized and amide functionalized CNTs increased the oxidative current of CFMEs by approximately 2–6 fold for the cationic neurotransmitters serotonin and dopamine, but octadecylamine functionalized CNTs resulted in no significant signal change. Similarly, electron transfer was faster for both amide and carboxylic acid functionalized CNT modified electrodes but slower for octadecylamine CNT modified electrodes. Oxidation of ascorbic acid was only increased with carboxylic acid functionalized CNTs although all CNT-modified electrodes showed a trend towards increased reversibility for ascorbic acid. Carboxylic acid-CNT modified disk electrodes were then tested for detection of serotonin in the ventral nerve cord of a Drosophila melanogaster larva, and the increase in sensitivity was maintained in biological tissue. The functional groups of CNTs therefore modulate the electrochemical properties, and the increase in sensitivity from CNT modification facilitates measurements in biological samples. PMID:21373669

Jacobs, Christopher B.; Vickrey, Trisha L.; Venton, B. Jill

2014-01-01

112

Comparison of Interfacial Electron Transfer through Carboxylate and Phosphonate Anchoring Groups  

E-print Network

directly connected to the bipyridine ligands. The injection kinetics, as measured by subpicosecond IR in many molecule-based devices such as molecular electronics1 and dye-sensitized solar cells.2 Although of anchoring group on the efficiency of dye-sensitized solar cells (DSSCs) has also been investigated. So far

113

Highlighting functional groups in self-assembled overlayers with specific functionalized scanning tunnelling microscopy tips  

NASA Astrophysics Data System (ADS)

Overlayers of a fatty acid (palmitic and lauric acid) formed at the interface between a solution of this molecule in phenyloctane and the basal plane of graphite are studied by in situ scanning tunnelling microscopy. The layers organize into lamellae, which are formed by a close packing arrangement of molecules parallel to the graphite surface. Chemical modification of the STM tips used allowed identification of the functional group. Indeed, the gold tips used are functionalized with 4-mercaptobenzoic acid (4-MBA) and 4-mercaptotoluene (4-MT). The same functional group on a sample is then 'seen' as a dark and a bright spot when imaged with 4-MBA and 4-MT modified tips, respectively. This contrast distinction is related to interactions (or a lack of them) between the carboxyl group on the sample and molecules on the tip, which can facilitate (or hinder) the electron tunnelling.

Volcke, Cedric; Simonis, Priscilla; Thiry, Paul A.; Lambin, Philippe; Culot, Christine; Humbert, Christophe

2005-11-01

114

Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine.  

PubMed

The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. PMID:25554963

Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin

2015-03-15

115

Extremely fast gas/liquid reactions in flow microreactors: carboxylation of short-lived organolithiums.  

PubMed

Carboxylation of short-lived organolithiums bearing electrophilic functional groups such as nitro, cyano, and alkoxycarbonyl groups with CO2 to give carboxylic acids and active esters was accomplished in a flow microreactor system. The successful reactions indicate that gas/liquid mass transfer and the subsequent chemical reaction with CO2 are extremely fast. PMID:24863501

Nagaki, Aiichiro; Takahashi, Yusuke; Yoshida, Jun-ichi

2014-06-23

116

A simple colorimetric chemosensor bearing a carboxylic acid group with high selectivity for CN-  

NASA Astrophysics Data System (ADS)

A new simple ‘naked eye' chemosensor 1 (sodium (E)-2-((2-(3-hydroxy-2-naphthoyl)hydrazono)methyl)benzoate) has been synthesized for detection of CN- in a mixture of DMF/H2O (9:1). The sensor 1 comprises of a naphthoic hydrazide as efficient hydrogen bonding donor group and a benzoic acid as the moiety with the water solubility. The receptor 1 showed high selectivity toward cyanide ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to yellow for CN- over other anions. Therefore, receptor 1 could be useful for cyanide detection in aqueous environment, displaying a high distinguishable selectivity from hydrogen bonded anions and being clearly visible to the naked eye.

Park, Gyeong Jin; Choi, Ye Won; Lee, Dongkuk; Kim, Cheal

2014-11-01

117

Reaction of glycidyl methacrylate at the hydroxyl and carboxylic groups of poly(vinyl alcohol) and poly(acrylic acid): is this reaction mechanism still unclear?  

PubMed

Transesterification and epoxide ring-opening reactions are two mechanism routes that explain chemical modifications of macromolecules by glycidyl methacrylate (GMA). Although the coupling reaction of the GMA with macromolecules has widely been investigated, there are still mechanisms that remain to be explained when GMA is processed in an aqueous solution at different pH conditions. To this end, reaction mechanisms of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAAc) by GMA in water in acidic and basic conditions were investigated thoroughly. The presence of hydroxyl groups in PVA and carboxyl groups in PAAc allowed for a better evaluation of the reaction mechanisms. The analysis of the (1)H and (13)C NMR spectra clearly demonstrated that the chemical reactions of GMA with carboxyl groups and alcohols of the macromolecules in an aqueous solution are dependent on pH conditions. At pH 3.5, the GMA reacts with both the carboxylic and the hydroxyl groups through an epoxide ring-opening mechanism. At pH 10.5, the GMA undergoes a hydrolysis process and reacts with hydroxyl groups by way of both the transesterification and the epoxide ring-opening mechanisms, whereas the ring-opening reaction is the preferential pathway. PMID:19361172

Reis, Adriano V; Fajardo, André R; Schuquel, Ivania T A; Guilherme, Marcos R; Vidotti, Gentil José; Rubira, Adley F; Muniz, Edvani C

2009-05-15

118

Cu(I)-catalyzed (11)C carboxylation of boronic acid esters: a rapid and convenient entry to (11)C-labeled carboxylic acids, esters, and amides.  

PubMed

Rapid and direct: the carboxylation of boronic acid esters with (11)CO(2) provides [(11)C]carboxylic acids as a convenient entry into [(11)C]esters and [(11)C]amides. This conversion of boronates is tolerant to diverse functional groups (e.g., halo, nitro, or carbonyl). PMID:22308017

Riss, Patrick J; Lu, Shuiyu; Telu, Sanjay; Aigbirhio, Franklin I; Pike, Victor W

2012-03-12

119

Aqueous infrared carboxylate absorbances: Aliphatic di-acids  

USGS Publications Warehouse

Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

1998-01-01

120

Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol-gel process  

NASA Astrophysics Data System (ADS)

Functionalized titania are used as fillers to modify the sulfonated poly(ether ether ketone) (SPEEK) membrane for improved proton conductivity and methanol barrier property. The functionalized titania sol which contains proton conductive carboxylic acid groups or amino acid groups are derived from a facile chelation method using different functional additives. Then the novel SPEEK/carboxylic acid-functionalized titania (SPEEK/TC) and SPEEK/amino acid-functionalized titania (SPEEK/TNC) hybrid membranes are fabricated via in situ sol-gel method. The anti-swelling property and thermal stability of hybrid membranes are enhanced owing to the formation of electrostatic force between SPEEK and titania nanoparticles. The hybrid membranes exhibit higher proton conductivity than plain SPEEK membrane because more proton transfer sites are provided by the functionalized titania nanoparticles. Particularly, the proton conductivity of SPEEK/TNC membrane with 15% filler content reaches up to 6.24 × 10-2 S cm-1, which is 3.5 times higher than that of the pure SPEEK membrane. For methanol permeability, the SPEEK/TNC membranes possess the lowest values because the acid-base interaction between sulfonic acid groups in SPEEK and amino groups in functionalized titania leads to a more compact membrane structure.

Yin, Yongheng; Xu, Tao; He, Guangwei; Jiang, Zhongyi; Wu, Hong

2015-02-01

121

Functionally important carboxyls in a bacterial homologue of the vesicular monoamine transporter (VMAT).  

PubMed

Transporters essential for neurotransmission in mammalian organisms and bacterial multidrug transporters involved in antibiotic resistance are evolutionarily related. To understand in more detail the evolutionary aspects of the transformation of a bacterial multidrug transporter to a mammalian neurotransporter and to learn about mechanisms in a milieu amenable for structural and biochemical studies, we identified, cloned, and partially characterized bacterial homologues of the rat vesicular monoamine transporter (rVMAT2). We performed preliminary biochemical characterization of one of them, Brevibacillus brevis monoamine transporter (BbMAT), from the bacterium B. brevis. BbMAT shares substrates with rVMAT2 and transports them in exchange with >1H(+), like the mammalian transporter. Here we present a homology model of BbMAT that has the standard major facilitator superfamily fold; that is, with two domains of six transmembrane helices each, related by 2-fold pseudosymmetry whose axis runs normal to the membrane and between the two halves. The model predicts that four carboxyl residues, a histidine, and an arginine are located in the transmembrane segments. We show here that two of the carboxyls are conserved, equivalent to the corresponding ones in rVMAT2, and are essential for H(+)-coupled transport. We conclude that BbMAT provides an excellent experimental paradigm for the study of its mammalian counterparts and bacterial multidrug transporters. PMID:25336661

Yaffe, Dana; Vergara-Jaque, Ariela; Shuster, Yonatan; Listov, Dina; Meena, Sitaram; Singh, Satinder K; Forrest, Lucy R; Schuldiner, Shimon

2014-12-01

122

Preparation and characterization of multi-carboxyl-functionalized silica gel for removal of Cu (II), Cd (II), Ni (II) and Zn (II) from aqueous solution  

NASA Astrophysics Data System (ADS)

In this paper, the multi-carboxyl-functionalized silica gel was prepared by surface grafting method and applied for the removal of Cu (II), Cd (II), Ni (II) and Zn (II) from aqueous solution. The adsorbent was characterized by FT-IR, thermogravimetry, Brunauer-Emmett-Teller surface area measurement and elemental analysis, and it proved that the organic functional group, carboxyl group, was grafted successfully onto the silica gel surface. The effect of solution pH on removal efficiencies of Cu (II), Cd (II), Ni (II) and Zn (II) was investigated and it was found that with the exception of Zn (II), the removal efficiencies of the rest of metal ions increased with the increasing of pH in the solution, the maximum removal efficiency occurred at pH 6.0, whereas the maximum removal efficiency for Zn (II) was found to be at pH 7.0. Adsorption equilibrium data were well fitted to Langmuir than Freundlich isotherm model and the maximum adsorption capacity for Cu (II), Cd (II), Ni (II) and Zn (II) was 47.07, 41.48, 30.80 and 39.96 mg/g, respectively. Competitive adsorption experiments demonstrated that the adsorbent material had excellent adsorption amount and high affinity for the Cu (II) in the binary systems. In addition, the column experiments were used to investigate stability and reusability of the adsorbent, the dynamic adsorption performance, and desorption of metal ions absorbed from the adsorbent. The results confirmed that the adsorbent presents good dynamic adsorption performance for Cu (II), Cd (II), Ni (II) and Zn (II) and these metal ions adsorbed were easy to be desorbed from the adsorbent. The adsorption capacities of metal ions did not present an obvious decrease after five cycles of adsorption-desorption.

Li, Min; Li, Ming-yu; Feng, Chang-gen; Zeng, Qing-xuan

2014-09-01

123

A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS  

PubMed Central

Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA)) and small polar molecules (e.g., jasmonic acid (JA), salicylic acid (SA)) containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the molecules must contain at least one free carboxyl group. PMID:19939243

2009-01-01

124

Discriminating the carboxylic groups from the total acidic sites in oxidized multi-wall carbon nanotubes by means of acid–base titration  

Microsoft Academic Search

This work reports on the quantitative determination of the carboxylic groups created upon HNO3 treatment at multi-wall carbon nanotube (MWCNT) surface. To this purpose, MWCNTs have been oxidized by refluxing in acid for different periods of time (from 1h to 12h). The main goal of the present study comprises the development of a simple analytical methodology based on Boehm’s titration

Ana Belén González-Guerrero; Ernest Mendoza; Eva Pellicer; Francesc Alsina; César Fernández-Sánchez; Laura M. Lechuga

2008-01-01

125

Control of Surface Functional Groups on Pertechntate Sorption on Activated Carbon  

SciTech Connect

{sup 99}Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO{sub 4}{sup -}). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K{sub d}) varying from 9.5 x 10{sup 5} to 3.2 x 10{sup 3} mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K{sub d} remaining more or less constant (1.1 x 10{sup 3} - 1.8 x 10{sup 3} mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO{sub 4}{sup -} can be improved by enhancing the formation of carboxylic subgroups A and B during material processing.

Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

2006-07-05

126

Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite  

NASA Astrophysics Data System (ADS)

The present work studies the synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotube (CNT) and carbon fiber on the electrical property and electro-activated recovery behavior of shape memory polymer (SMP) nanocomposites. The combination of CNT and carbon fiber results in improved electrical conductivity in the SMP nanocomposites. Carboxylic acid-functionalized CNTs are grafted onto the carbon fibers and then self-assembled by deposition to significantly enhance the reliability of the bonding between carbon fiber and SMP via van der Waals and covalent crosslink. Furthermore, the self-assembled carboxylic acid-functionalized CNTs and carbon fibers enable the SMP nanocomposites for Joule heating triggered shape recovery.

Lu, Haibao; Min Huang, Wei

2013-06-01

127

The central role of ketones in reversible and irreversible hydrothermal organic functional group transformations  

NASA Astrophysics Data System (ADS)

Studies of hydrothermal reactions involving organic compounds suggest complex, possibly reversible, reaction pathways that link functional groups from reduced alkanes all the way to oxidized carboxylic acids. Ketones represent a critical functional group because they occupy a central position in the reaction pathway, at the point where Csbnd C bond cleavage is required for the formation of the more oxidized carboxylic acids. The mechanisms for the critical bond cleavage reactions in ketones, and how they compete with other reactions are the focus of this experimental study. We studied a model ketone, dibenzylketone (DBK), in H2O at 300 °C and 70 MPa for up to 528 h. Product analysis was performed as a function of time at low DBK conversions to reveal the primary reaction pathways. Reversible interconversion between ketone, alcohol, alkene and alkane functional groups is observed in addition to formation of radical coupling products derived from irreversible Csbnd C and Csbnd H homolytic bond cleavage. The product distributions are time-dependent but the bond cleavage products dominate. The major products that accumulate at longer reaction times are toluene and larger, dehydrogenated structures that are initially formed by radical coupling. The hydrogen atoms generated by dehydrogenation of the coupling products are predominantly consumed in the formation of toluene. Even though bond cleavage products dominate, no carboxylic acids were observed on the timescale of the reactions under the chosen experimental conditions.

Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

2012-12-01

128

Geometric, electronic and magnetic structures of S = 19/2 and S = 20/2 thiophene-2-carboxylate functionalized Mn12 single molecule magnets.  

PubMed

The geometric and magnetic structures of two structurally related, but magnetically inequivalent, single molecule magnets (SMMs) have been computationally characterized. The first SMM, with formula [Mn12O12(O2CC4H3S)16(H2O)2](-1) (I), has a half-integer spin (S(I) = 19/2) due to ferrimagnetic ordering. The second SMM, with formula Mn12O12(O2CC4H3S)16(H2O)4 (II), has an integer spin (S(II) = 20/2) and its geometric structure has been computationally predicted. Both SMMs include thiophene-2-carboxylate functional groups for potential use in molecular electronics. To determine structural and electronic differences between both SMMs, spin polarized density functional theory was applied to I and II. Hydrogen bonding of two and four Mn-bound water molecules in I and II, respectively, to thiophene-2-carboxylate oxygen atoms and inner cubane oxygen atoms is essential for structural stabilization of both complexes. The one-electron-reduction of I is concomitant with a structural asymmetry within its cubane whereby two ions, of nominal Mn(4+)(Si = 3/2) character, are inequivalent to the other two and acquire an incipient Mn(3+)(Si = 4/2) character. The geometric asymmetry in I provides an extra, albeit small, contribution to its zero field splitting and anisotropy barrier to spin reversal. Thus, despite its lower spin state, the anisotropy barrier of I is only slightly lower than that of II. PMID:25360814

Rodriguez, Jorge H; Ziegler, Christopher J

2015-01-01

129

Statistical investigation of lead removal with various functionalized carboxylate ferroxane nanoparticles.  

PubMed

Four new types of carboxylate-ferroxane nanoparticles, namely; maleate ferroxane (MF), fumarateferroxane (FF), para-amino benzoate ferroxane (PABF) and para-hydroxy benzoate ferroxane (PHBF) were synthesized, characterized and used for lead removal from aqueous solutions. Lepidocrocite nanoparticles were also synthesized and characterized asa precursorforcarboxylate-ferroxanes. FTIR, SEM and DLS analysis characterized the synthesized samplesand final Pb(II) concentration were analysed using inductively coupled plasma atomic emission spectrometer. Performance evaluation of the nanoparticlesin adsorption process was achieved using Taguchi experimental design. Variables in adsorption process were initial pH, contact time, adsorbent dose, adsorbent typeand initial concentration of Pb(2+) ions. The initial Pb(II) concentration was the most influential factor in the adsorption process among the five factors. Adsorption of lead was performed through two possible mechanisms; ion exchange and complex formation. Maleate ferroxane performed the best lead removal efficiency among the four types of ferroxane nanostructures studied. The adsorption kinetic data described well with a pseudo-second-order model and the equilibrium data fitted well to the Frendlich isotherm. PMID:25285999

Moattari, Rozita M; Rahimi, Safoora; Rajabi, Laleh; Derakhshan, Ali Ashraf; Keyhani, Mohammad

2015-02-11

130

Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles  

PubMed Central

Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

2011-01-01

131

Localization of functions defined on cantor group  

NASA Astrophysics Data System (ADS)

We introduce a notion of localization for dyadic functions, i. e. functions defined on Cantor group. Both non-periodic and periodic cases are discussed. Localization is characterized by functionals UCd and UCdp similar to the Heisenberg (the Breitenberger) uncertainty constants used for real-line (periodic) functions. We are looking for dyadic analogs of uncertainty principles. To justify definition we use some test functions including dyadic scaling and wavelet functions.

Krivoshein, Aleksander V.; Lebedeva, Elena A.

2013-10-01

132

Study on the pore structure and oxygen-containing functional groups devoting to the hydrophilic force of dewatered lignite  

NASA Astrophysics Data System (ADS)

In order to explore the water-holding capacity of dewatered lignite and the contribution of pore structure and oxygen-containing functional groups to it, a kind of typical Chinese lignite was dried under the atmosphere of nitrogen for different temperatures and times, and then was subjected to a process of moisture re-adsorption at the temperature of 25 °C and relative humidity of 75%. Nitrogen adsorption and chemical titration methods were used to examine the pore structure parameters and amounts of oxygen-containing functional groups, respectively. The results indicate that the porous structure and oxygen-containing functional groups in lignite are two main factors influencing the hydrophilicity of dewatered coal, and their contributions are varied with the change of drying conditions. The change of water-holding capacity of pore structure is primarily attributed to the shrinkage or collapse of macro- and mesoporous and it decreases with the increase of drying temperature. The oxygen-containing functional groups mainly include phenolic hydroxyl, carbonyl, carboxyl and methoxyl groups, and the order of their hydrophilicity is: carboxyl group > phenolic hydroxyl group > carbonyl group > methoxyl group. Moreover, the water-holding capacity for the same kind of oxygen-containing functional groups in dewatered coal obtained at different temperature is not a fixed one, their hydrophilic forces decrease with the increase of drying temperature. For the coal samples dried for 60 min under different temperature, the contribution of pore structure and oxygen-containing functional groups to the equilibrium moisture content (EMC) of dewatered lignite is: pore structure > phenolic hydroxyl group > carboxyl group > carbonyl group > methoxyl group. The contribution of total oxygen-containing functional groups to the EMC at below 280 °C is more obvious, and that of pore structure is the principal factor thereafter.

Zhang, Yanli; Jing, Xiaoxia; Jing, Kaige; Chang, Liping; Bao, Weiren

2015-01-01

133

Relating Functional Groups to the Periodic Table  

ERIC Educational Resources Information Center

An introduction to organic chemistry functional groups and their ionic variants is presented. Functional groups are ordered by the position of their specific (hetero) atom in the periodic table. Lewis structures are compared with their corresponding condensed formulas. (Contains 5 tables.)

Struyf, Jef

2009-01-01

134

Integrated engineering of ?-oxidation reversal and ?-oxidation pathways for the synthesis of medium chain ?-functionalized carboxylic acids.  

PubMed

An engineered reversal of the ?-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6-10-carbons) ?-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned ?-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ?-hydroxyacids and dicarboxylic acids by the action of an engineered ?-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core ?-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6-C10 carboxylic acids and provided a platform for vector based independent expression of ?-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all ?-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6-C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a ?-oxidation cycle with ?-oxidation termination pathways was further demonstrated through the production of greater than 0.8g/L C6-C10 ?-hydroxyacids or about 0.5g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media. PMID:25638687

Clomburg, James M; Blankschien, Matthew D; Vick, Jacob E; Chou, Alexander; Kim, Seohyoung; Gonzalez, Ramon

2015-03-01

135

Double D-?-A Dye Linked by 2,2'-Bipyridine Dicarboxylic Acid: Influence of para- and meta-Substituted Carboxyl Anchoring Group.  

PubMed

Starting from 2,2'-bipyridine dicarboxylic acid, two new (D-?-A)2 sensitizers, including m-DA with the carboxyl anchoring group substituted meta to the donor-bridge moiety and p-DA with a para-substituted anchoring group, were synthesized in order to evaluate the impact of the position of the anchoring group on the optical, electrochemical, and photovoltaic properties of dye-sensitized solar cells. p-DA exhibits red-shifted absorption behavior compared to m-DA, owing to the more efficiently extended ?-conjugation with para substitution. Both m-DA and p-DA are adsorbed on the mesoporous TiO2 surface by using both of their carboxylic acid groups in a bianchoring mode, which is confirmed through attenuated total reflectance FTIR analysis. Red-shifted absorption of p-DA assists the achievement of a red-shifted incident photon-to-electron conversion efficiency and a higher short-circuit current density than m-DA. The photogenerated electron lifetime in TiO2 is also found to be higher for para substituted p-DA than the meta-substituted m-DA, which results in a higher open-circuit voltage. All of the results suggest that dicarboxyl-2,2'-bipyridine can be used as an acceptor for metal-free organic sensitizers. However, the anchoring segments should be adjusted to the favorable position of the corresponding donor-bridge moieties for better conjugation. PMID:25656067

Ganesan, Paramaguru; Chandiran, Aravind Kumar; Gao, Peng; Rajalingam, Renganathan; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

2015-04-01

136

Transesterification of PHA to Oligomers Covalently Bonded with (Bio)Active Compounds Containing Either Carboxyl or Hydroxyl Functionalities.  

PubMed

This manuscript presents the synthesis and structural characterisation of novel biodegradable polymeric controlled-release systems of pesticides with potentially higher resistance to weather conditions in comparison to conventional forms of pesticides. Two methods for the preparation of pesticide-oligomer conjugates using the transesterification reaction were developed. The first method of obtaining conjugates, which consist of bioactive compounds with the carboxyl group and polyhydroxyalkanoates (PHAs) oligomers, is "one-pot" transesterification. In the second method, conjugates of bioactive compounds with hydroxyl group and polyhydroxyalkanoates oligomers were obtained in two-step method, through cyclic poly(3-hydroxybutyrate) oligomers. The obtained pesticide-PHA conjugates were comprehensively characterised using GPC, 1H NMR and mass spectrometry techniques. The structural characterisation of the obtained products at the molecular level with the aid of mass spectrometry confirmed that both of the synthetic strategies employed led to the formation of conjugates in which selected pesticides were covalently bonded to PHA oligomers via a hydrolysable ester bond. PMID:25781908

Kwiecie?, Iwona; Radecka, Iza; Kowalczuk, Marek; Adamus, Gra?yna

2015-01-01

137

Transesterification of PHA to Oligomers Covalently Bonded with (Bio)Active Compounds Containing Either Carboxyl or Hydroxyl Functionalities  

PubMed Central

This manuscript presents the synthesis and structural characterisation of novel biodegradable polymeric controlled-release systems of pesticides with potentially higher resistance to weather conditions in comparison to conventional forms of pesticides. Two methods for the preparation of pesticide-oligomer conjugates using the transesterification reaction were developed. The first method of obtaining conjugates, which consist of bioactive compounds with the carboxyl group and polyhydroxyalkanoates (PHAs) oligomers, is "one-pot" transesterification. In the second method, conjugates of bioactive compounds with hydroxyl group and polyhydroxyalkanoates oligomers were obtained in two-step method, through cyclic poly(3-hydroxybutyrate) oligomers. The obtained pesticide-PHA conjugates were comprehensively characterised using GPC, 1H NMR and mass spectrometry techniques. The structural characterisation of the obtained products at the molecular level with the aid of mass spectrometry confirmed that both of the synthetic strategies employed led to the formation of conjugates in which selected pesticides were covalently bonded to PHA oligomers via a hydrolysable ester bond. PMID:25781908

Kwiecie?, Iwona; Radecka, Iza; Kowalczuk, Marek; Adamus, Gra?yna

2015-01-01

138

Designed nitrogen doping of few-layer graphene functionalized by selective oxygenic groups  

PubMed Central

Few-layer nitrogen doped graphene was synthesized originating from graphene oxide functionalized by selective oxygenic functional groups (hydroxyl, carbonyl, carboxyl etc.) under hydrothermal conditions, respectively. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) observation evidenced few-layer feature of the graphene oxide. X-ray diffraction (XRD) pattern confirmed phase structure of the graphene oxide and reduced graphene oxide. Nitrogen doping content and bonding configuration of the graphene was determined by X-ray photoelectron spectroscopy (XPS), which indicated that different oxygenic functional groups were evidently different in affecting the nitrogen doping process. Compared with other oxygenic groups, carboxyl group played a crucial role in the initial stage of nitrogen doping while hydroxyls exhibited more evident contribution to the doping process in the late stage of the reaction. Formation of graphitic-like nitrogen species was controlled by a synergistic effect of the involved oxygenic groups (e.g., -COOH, -OH, C-O-C, etc.). The doping mechanism of nitrogen in the graphene was scrutinized. The research in this work may not only contribute to the fundamental understandings of nitrogen doping within graphene but promote the development of producing novel graphene-based devices with designed surface functionalization. PMID:25520594

2014-01-01

139

An experimental and density functional study on conformational and spectroscopic analysis of 5-methoxyindole-2-carboxylic acid  

NASA Astrophysics Data System (ADS)

In this article, a brief conformational and spectroscopic characterization of 5-methoxyindole-2-carboxylic acid (5-MeOICA) via experimental techniques and applications of quantum chemical methods is presented. The conformational analysis of the studied molecule was determined theoretically using density functional computations for ground state, and compared with previously reported experimental findings. The vibrational transitions were examined by measured FT-IR and FT-Raman spectroscopic data, and also results obtained from B3LYP and CAM-B3LYP functionals in combination with 6-311++G(d,p) basis set. The recorded proton and carbon NMR spectra in DMSO solution were analyzed to obtain the exact conformation. Due to intermolecular hydrogen bondings, NMR calculations were performed for the dimeric form of 5-MeOICA and so chemical shifts of those protons were predicted more accurately. Finally, electronic properties of steady compound were identified by a comparative study of UV absorption spectra in ethanol and water solution and TD-DFT calculations.

Cinar, Mehmet; Karabacak, Mehmet; Asiri, Abdullah M.

2015-02-01

140

Factors determining the pKa values of the ionizable groups in proteins: their intrinsic pKas and the effects of hydrogen bonding on buried carboxyl groups  

E-print Network

A goal of the modern protein chemist is the design of novel proteins with specific activities or functions. One hurdle to overcome is the ability to accurately predict the pKas of ionizable groups upon their burial in the interior of a protein...

Thurlkill, Richard Lee

2007-04-25

141

pH-Responsive Non-Ionic Diblock Copolymers: Ionization of Carboxylic Acid End-Groups Induces an Order–Order Morphological Transition**  

PubMed Central

A carboxylic acid based reversible additionfragmentation transfer (RAFT) agent is used to prepare gels composed of worm-like diblock copolymers using two non-ionic monomers, glycerol monomethacrylate (GMA) and 2-hydroxypropyl methacrylate (HPMA). Ionization of the carboxylic acid end-group on the PGMA stabilizer block induces a worm-to-sphere transition, which in turn causes immediate degelation. This morphological transition is fully reversible as determined by TEM and rheology studies and occurs because of a subtle change in the packing parameter for the copolymer chains. A control experiment where the methyl ester derivative of the RAFT agent is used to prepare the same diblock copolymer confirms that no pH-responsive behavior occurs in this case. This end-group ionization approach is important for the design of new pH-responsive copolymer nano-objects as, unlike polyacids or polybases, only a minimal amount of added base (or acid) is required to drive the morphological transition. PMID:25418214

Lovett, Joseph R; Warren, Nicholas J; Ratcliffe, Liam P D; Kocik, Marzena K; Armes, Steven P

2015-01-01

142

Water Soluble Metallo-Phthalocyanines: The Role of the Functional Groups on the Spectral and Photophysical Properties  

Microsoft Academic Search

Strategies are reported that produce symmetrical metal-free and metallo-phthalocyanine dyes, Pc and MPc, respectively, containing\\u000a various numbers of water solubilizing carboxylic acid groups on their periphery that provide a dual role by also serving as\\u000a functional groups to covalently link primary amine-containing targets to these dyes. In order to induce water compatibility\\u000a and to minimize the degree of aggregation, the

Vera T. Verdree; Serhii Pakhomov; Guifa Su; Michael W. Allen; Amber C. Countryman; Robert P. Hammer; Steven A. Soper

2007-01-01

143

A comprehensive classification and nomenclature of carboxyl-carboxyl(ate) supramolecular motifs and related catemers: implications for biomolecular systems.  

PubMed

Carboxyl and carboxylate groups form important supramolecular motifs (synthons). Besides carboxyl cyclic dimers, carboxyl and carboxylate groups can associate through a single hydrogen bond. Carboxylic groups can further form polymeric-like catemer chains within crystals. To date, no exhaustive classification of these motifs has been established. In this work, 17 association types were identified (13 carboxyl-carboxyl and 4 carboxyl-carboxylate motifs) by taking into account the syn and anti carboxyl conformers, as well as the syn and anti lone pairs of the O atoms. From these data, a simple rule was derived stating that only eight distinct catemer motifs involving repetitive combinations of syn and anti carboxyl groups can be formed. Examples extracted from the Cambridge Structural Database (CSD) for all identified dimers and catemers are presented, as well as statistical data related to their occurrence and conformational preferences. The inter-carboxyl(ate) and carboxyl(ate)-water hydrogen-bond properties are described, stressing the occurrence of very short (strong) hydrogen bonds. The precise characterization and classification of these supramolecular motifs should be of interest in crystal engineering, pharmaceutical and also biomolecular sciences, where similar motifs occur in the form of pairs of Asp/Glu amino acids or motifs involving ligands bearing carboxyl(ate) groups. Hence, we present data emphasizing how the analysis of hydrogen-containing small molecules of high resolution can help understand structural aspects of larger and more complex biomolecular systems of lower resolution. PMID:25827369

D'Ascenzo, Luigi; Auffinger, Pascal

2015-04-01

144

A comprehensive classification and nomenclature of carboxyl–carboxyl(ate) supramolecular motifs and related catemers: implications for biomolecular systems  

PubMed Central

Carboxyl and carboxylate groups form important supramolecular motifs (synthons). Besides carboxyl cyclic dimers, carboxyl and carboxylate groups can associate through a single hydrogen bond. Carboxylic groups can further form polymeric-like catemer chains within crystals. To date, no exhaustive classification of these motifs has been established. In this work, 17 association types were identified (13 carboxyl–carboxyl and 4 carboxyl–carboxylate motifs) by taking into account the syn and anti carboxyl conformers, as well as the syn and anti lone pairs of the O atoms. From these data, a simple rule was derived stating that only eight distinct catemer motifs involving repetitive combinations of syn and anti carboxyl groups can be formed. Examples extracted from the Cambridge Structural Database (CSD) for all identified dimers and catemers are presented, as well as statistical data related to their occurrence and conformational preferences. The inter-carboxyl(ate) and carboxyl(ate)–water hydrogen-bond properties are described, stressing the occurrence of very short (strong) hydrogen bonds. The precise characterization and classification of these supramolecular motifs should be of interest in crystal engineering, pharmaceutical and also biomolecular sciences, where similar motifs occur in the form of pairs of Asp/Glu amino acids or motifs involving ligands bearing carboxyl(ate) groups. Hence, we present data emphasizing how the analysis of hydrogen-containing small molecules of high resolution can help understand structural aspects of larger and more complex biomolecular systems of lower resolution. PMID:25827369

D’Ascenzo, Luigi; Auffinger, Pascal

2015-01-01

145

Poly(ether urethane)s incorporating long alkyl side-chains with terminal carboxyl groups as fatty acid mimics: synthesis, structural characterization and protein adsorption.  

PubMed

The object of this work was to produce polyurethanes with greater affinity for albumin (Alb) and improved hemocompatibility by introduction of carboxyl-terminated alkyl side-chains that better mimic fatty acids, in contrast to methyl terminated alkyl side-chains used previously. Synthesis of poly(ether urethane)s (PEUs) with long alkyl side-chains via a multi-step solution addition polymerization is described. The synthesis is based upon the polymerization of a diisocyanate pre-polymer with various chain extenders and reaction with Br-terminated compound in the final stage. The side-chains had terminal methyl or carboxylic groups, and were attached either directly to the polymer backbone or to an oligo(ethylene glycol) spacer. The bulk structure of the PEUs was confirmed by 1H-NMR and the surface polymer structure was characterized by ToF-SIMS. The influence of the incorporated C16-alkyl, C16-carboxyalkyl and oxyethylene-C16-carboxyalkyl side-chains attached to the polymer backbone on fibrinogen (Fg) and Alb adsorption from blood plasma, and Fg adsorption from buffer solutions and binary mixtures with Alb was measured. Incorporation of C16-alkyl or C16-carboxyalkyl side-chains into PEUs caused relatively small changes in Fg and Alb adsorption. PEUs with oxyethylene-C16-carboxyalkyl side-chains exhibited the lowest Fg adsorption and the highest Alb adsorption among all the tested polymers. PMID:16370058

Simonovsky, Felix I; Wu, Yuguang; Golledge, Stephen L; Ratner, Buddy D; Horbett, Thomas A

2005-01-01

146

Development of an Electrogenerated Chemiluminescence Biosensor using Carboxylic acid-functionalized MWCNT and Au Nanoparticles  

PubMed Central

A COOH-F-MWCNT-Nafion-Ru(bpy)32+-Au-ADH electrogenerated chemiluminescence (ECL) electrode using COOH-functionalized MWCNT (COOH-F-MWCNT) and Au nanoparticles synthesized by the radiation method was fabricated for ethanol sensing. A higher sensing efficiency for ethanol for the ECL biosensor prepared by PAAc-g-MWCNT was measured compared to that of the ECL biosensor prepared by PMAc-g-MWCNT, and purified MWCNT. Experimental parameters affecting ethanol detection were also examined in terms of pH and the content of PAAc-g-MWCNT in Nafion. Little interference of other compounds was observed for the assay of ethanol. Results suggest this ECL biosensor could be applied for ethanol detection in real samples. PMID:22573979

Piao, Ming-Hua; Yang, Dae-Soo; Yoon, Kuk-Ro; Lee, Seung-Ho; Choi, Seong-Ho

2009-01-01

147

Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5?-adenylylsulfate reductase  

PubMed Central

5?-Adenylylsulfate (APS) reductase (EC 1.8.99.-) catalyzes the reduction of activated sulfate to sulfite in plants. The evidence presented here shows that a domain of the enzyme is a glutathione (GSH)-dependent reductase that functions similarly to the redox cofactor glutaredoxin. The APR1 cDNA encoding APS reductase from Arabidopsis thaliana is able to complement the cysteine auxotrophy of an Escherichia coli cysH [3?-phosphoadenosine-5?-phosphosulfate (PAPS) reductase] mutant, only if the E. coli strain produces glutathione. The purified recombinant enzyme (APR1p) can use GSH efficiently as a hydrogen donor in vitro, showing a Km[GSH] of ?0.6 mM. Gene dissection was used to express separately the regions of APR1p from amino acids 73–327 (the R domain), homologous with microbial PAPS reductase, and from amino acids 328–465 (the C domain), homologous with thioredoxin. The R and C domains alone are inactive in APS reduction, but the activity is partially restored by mixing the two domains. The C domain shows a number of activities that are typical of E. coli glutaredoxin rather than thioredoxin. Both the C domain and APR1p are highly active in GSH-dependent reduction of hydroxyethyldisulfide, cystine, and dehydroascorbate, showing a Km[GSH] in these assays of ?1 mM. The R domain does not show these activities. The C domain is active in GSH-dependent reduction of insulin disulfides and ribonucleotide reductase, whereas APR1p and R domain are inactive. The C domain can substitute for glutaredoxin in vivo as demonstrated by complementation of an E. coli mutant, underscoring the functional similarity between the two enzymes. PMID:9653199

Bick, Julie-Ann; ?slund, Fredrik; Chen, Yichang; Leustek, Thomas

1998-01-01

148

Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.  

PubMed

Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. PMID:25382736

Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

2014-12-01

149

Synthesis of ?-chloro carboxylic acids by addition of chlorine in a formic acid medium to compounds containing a CCl 2 =CH group  

Microsoft Academic Search

1.Reaction of chlorine with compounds containing the CCl2=CH group in a medium of anhydrous formic acid followed by treatment with water gives a -chloro carboyxlic acids in good yields.2.In this way, from 1,1,3-trichloropropene, l,l-dichloro-3-methoxypropene, 3,3-dichloroallyl formate, 1,1,5-trichloro-1-pentene, 5,5-dichloro-4-pentenyl formate, 1,1,7-trichloro-1-heptene, and 1,1,9-trichloro-1-nonene the following a-chloro carboxylic acids were prepared: 2,3-dichloro- and 2-chloro-3-methoxy-propionic acids, 2-chlorohydracrylic acid formic ester, 2,5-dichlorovaleric acid, 2-chloro-5-hydroxyvaleric

V. N. Kost; T. T. Sidorova; R. Kh. Freidlina; A. N. Nesmeyanov

1959-01-01

150

Carboxyl Group Footprinting Mass Spectrometry and Molecular Dynamics Identify Key Interactions in the HER2-HER3 Receptor Tyrosine Kinase Interface* ?  

PubMed Central

The HER2 receptor tyrosine kinase is a driver oncogene in many human cancers, including breast and gastric cancer. Under physiologic levels of expression, HER2 heterodimerizes with other members of the EGF receptor/HER/ErbB family, and the HER2-HER3 dimer forms one of the most potent oncogenic receptor pairs. Previous structural biology studies have individually crystallized the kinase domains of HER2 and HER3, but the HER2-HER3 kinase domain heterodimer structure has yet to be solved. Using a reconstituted membrane system to form HER2-HER3 kinase domain heterodimers and carboxyl group footprinting mass spectrometry, we observed that HER2 and HER3 kinase domains preferentially form asymmetric heterodimers with HER3 and HER2 monomers occupying the donor and acceptor kinase positions, respectively. Conformational changes in the HER2 activation loop, as measured by changes in carboxyl group labeling, required both dimerization and nucleotide binding but did not require activation loop phosphorylation at Tyr-877. Molecular dynamics simulations on HER2-HER3 kinase dimers identify specific inter- and intramolecular interactions and were in good agreement with MS measurements. Specifically, several intermolecular ionic interactions between HER2 Lys-716-HER3 Glu-909, HER2 Glu-717-HER3 Lys-907, and HER2 Asp-871-HER3 Arg-948 were identified by molecular dynamics. We also evaluated the effect of the cancer-associated mutations HER2 D769H/D769Y, HER3 E909G, and HER3 R948K (also numbered HER3 E928G and R967K) on kinase activity in the context of this new structural model. This study provides valuable insights into the EGF receptor/HER/ErbB kinase structure and interactions, which can guide the design of future therapies. PMID:23843458

Collier, Timothy S.; Diraviyam, Karthikeyan; Monsey, John; Shen, Wei; Sept, David; Bose, Ron

2013-01-01

151

Department and function: Group Leader, Clinical Immunology  

E-print Network

Department and function: Group Leader, Clinical Immunology Education: 1981-1986 Biology in Hannover Positions: 1987-recent Scientist in the Division of Clinical Immunology, MHH 1992 PhD in Biology, MHH 2003 Habilitation in Immunology, MHH Major research interests: Analysis of Natural Killer (NK) cell subpopulations

Manstein, Dietmar J.

152

FT-IR quantification of the carbonyl functional group in aqueous-phase secondary organic aerosol from phenols  

NASA Astrophysics Data System (ADS)

Recent findings suggest that secondary organic aerosols (SOA) formed from aqueous-phase reactions of some organic species, including phenols, contribute significantly to particulate mass in the atmosphere. In this study, we employ a Fourier transform infrared (FT-IR) spectroscopic technique to identify and quantify the functional group makeup of phenolic SOA. Solutions containing an oxidant (hydroxyl radical or 3,4-dimethoxybenzaldehyde) and either one phenol (phenol, guaiacol, or syringol) or a mixture of phenols mimicking softwood or hardwood emissions were illuminated to make SOA, atomized, and collected on a filter. We produced laboratory standards of relevant organic compounds in order to develop calibrations for four functional groups: carbonyls (Cdbnd O), saturated C-H, unsaturated C-H and O-H. We analyzed the SOA samples with transmission FT-IR to identify and determine the amounts of the four functional groups. The carbonyl functional group accounts for 3-12% of the SOA sample mass in single phenolic SOA samples and 9-14% of the SOA sample mass in mixture samples. No carbonyl functional groups are present in the initial reactants. Varying amounts of each of the other functional groups are observed. Comparing carbonyls measured by FT-IR (which could include aldehydes, ketones, esters, and carboxylic acids) with eight small carboxylic acids measured by ion chromatography indicates that the acids only account for an average of 20% of the total carbonyl reported by FT-IR.

George, Kathryn M.; Ruthenburg, Travis C.; Smith, Jeremy; Yu, Lu; Zhang, Qi; Anastasio, Cort; Dillner, Ann M.

2015-01-01

153

Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmentally relevant concentrations into targeted organs of nematode Caenorhabditis elegans  

NASA Astrophysics Data System (ADS)

Carboxyl (-COOH) surface modified multi-walled carbon nanotubes (MWCNTs-COOH) can be used for targeted delivery of drugs and imaging. However, whether MWCNTs-COOH at environmentally relevant concentrations exert certain toxic effects on multicellular organisms and the underlying mechanisms are still largely unclear. In the present study, we applied the nematode Caenorhabditis elegans to evaluate the properties of MWCNTs-COOH at environmentally relevant concentrations by comparing the effects of MWCNTs and MWCNTs-COOH exposure on C. elegans from L1-larvae to adult at concentrations of 0.001-1000 ?g L-1. Exposure to MWCNTs could potentially damage the intestine (primary targeted organ) at concentrations greater than 0.1 ?g L-1 and functions of neurons and reproductive organ (secondary targeted organs) at concentrations greater than 0.001 ?g L-1. Carboxyl modification prevented the toxicity of MWCNTs on the primary and the secondary targeted organs at concentrations less than 100 ?g L-1, suggesting that carboxyl modification can effectively prevent the adverse effects of MWCNTs at environmentally relevant concentrations. After exposure, MWCNTs-COOH (1 mg L-1) were translocated into the spermatheca and embryos in the body through the primary targeted organs. However, MWCNTs-COOH (10 ?g L-1) were not observed in spermatheca and embryos in the body of nematodes. Moreover, relatively high concentrations of MWCNTs-COOH exposed nematodes might have a hyper-permeable intestinal barrier, whereas MWCNTs-COOH at environmentally relevant concentrations effectively sustained the normally permeable state for the intestinal barrier. Therefore, we elucidated the cellular basis of carboxyl modification to prevent toxicity of MWCNTs at environmentally relevant concentrations. Our data highlights the key role of biological barriers in the primary targeted organs to block toxicity formation from MWCNTs, which will be useful for the design of effective prevention strategies against MWCNTs toxicity.Carboxyl (-COOH) surface modified multi-walled carbon nanotubes (MWCNTs-COOH) can be used for targeted delivery of drugs and imaging. However, whether MWCNTs-COOH at environmentally relevant concentrations exert certain toxic effects on multicellular organisms and the underlying mechanisms are still largely unclear. In the present study, we applied the nematode Caenorhabditis elegans to evaluate the properties of MWCNTs-COOH at environmentally relevant concentrations by comparing the effects of MWCNTs and MWCNTs-COOH exposure on C. elegans from L1-larvae to adult at concentrations of 0.001-1000 ?g L-1. Exposure to MWCNTs could potentially damage the intestine (primary targeted organ) at concentrations greater than 0.1 ?g L-1 and functions of neurons and reproductive organ (secondary targeted organs) at concentrations greater than 0.001 ?g L-1. Carboxyl modification prevented the toxicity of MWCNTs on the primary and the secondary targeted organs at concentrations less than 100 ?g L-1, suggesting that carboxyl modification can effectively prevent the adverse effects of MWCNTs at environmentally relevant concentrations. After exposure, MWCNTs-COOH (1 mg L-1) were translocated into the spermatheca and embryos in the body through the primary targeted organs. However, MWCNTs-COOH (10 ?g L-1) were not observed in spermatheca and embryos in the body of nematodes. Moreover, relatively high concentrations of MWCNTs-COOH exposed nematodes might have a hyper-permeable intestinal barrier, whereas MWCNTs-COOH at environmentally relevant concentrations effectively sustained the normally permeable state for the intestinal barrier. Therefore, we elucidated the cellular basis of carboxyl modification to prevent toxicity of MWCNTs at environmentally relevant concentrations. Our data highlights the key role of biological barriers in the primary targeted organs to block toxicity formation from MWCNTs, which will be useful for the design of effective prevention strategies against MWCNTs toxicity. Electronic supplementary information (ESI) available. See DOI: 10

Nouara, Abdelli; Wu, Qiuli; Li, Yinxia; Tang, Meng; Wang, Haifang; Zhao, Yuliang; Wang, Dayong

2013-06-01

154

Effects of Trehalose Polycation End-group Functionalization on Plasmid DNA Uptake and Transfection  

PubMed Central

In this study, we have synthesized six analogs of a trehalose-pentaethylenehexamine glycopolymer (Tr4) that contain (1A) adamantane, (1B) carboxy, (1C) alkynyl-oligoethyleneamine, (1D) azido trehalose, (1E) octyl, or (1F) oligoethyleneamine end groups and evaluated the effects of polymer end group chemistry on the ability of these systems to bind, compact, and deliver pDNA in cultured HeLa cells. The polymers were synthesized in one-pot azide-alkyne cycloaddition reactions with an adaptation of the Carothers equation for step-growth polymerization to produce a series of polymers with similar degrees of polymerization. An excess of end-capping monomer was added at the end of the polymerizations to maximize functionalization efficiency, which was evaluated with GPC, NMR and MALDI-TOF. The polymers were all found to bind and compact pDNA at similarly low N/P ratios and form polyplexes with plasmid DNA. The effects of the different end group structures were most evident in the polyplex internalization and transfection assays completed in the presence of serum, as determined by flow cytometry and luciferase gene expression respectively. The Tr4 polymers end-capped with carboxyl groups (1B) (N/P = 7), octyne (1E) (N/P = 7), and oligoethyleneamine (1F) (N/P = 7), were taken into cells as polyplex and exhibited the highest levels of fluorescence, resulting from labeled reporter plasmid. Similarly, the polymers end-functionalized with the carboxyl groups (1E at N/P = 7), octyl groups (1E at N/P = 15) and, in particular, the oligoethyleneamine groups (F at N/P = 15) yielded dramatically higher reporter gene expression in the presence of serum. This study yields insight into how very subtle structural changes in the polymer chemistry such as end groups can yield very significant differences in the biological delivery efficiency and transgene expression of polymers used for pDNA delivery. PMID:22616977

Anderson, Kevin; Sizovs, Antons; Cortez, Mallory; Waldron, Chris; Haddleton, D.M.; Reineke, Theresa M.

2012-01-01

155

A simple one-step modification of various materials for introducing effective multi-functional groups.  

PubMed

Covalent immobilization of various biomolecules is a desired strategy for bio-multifunctional surface modification. Multi-functionalization of a material surface is considered to be the premise of immobilizing a variety of biomolecules. However, currently adopted methods, used to introduce proper reactive functional groups on material surfaces, mostly are hard to be carried out and frequently can only introduce insufficient functional groups. In this work, we successfully develop the films (GAHD films) prepared via the simple copolymerization of gallic acid (GA) and hexamethylenediamine (HD), which can be deposited on different kinds of material surfaces including metals, ceramics and polymers by a one-step dip-coating method. Moreover, these copolymerized GAHD films possess high concentration of multi-functional groups like carboxyl (COOH), primary amine (-NH2) and quinone groups on the surfaces. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results prove either the occurrence of Michael addition reaction, Schiff base reaction in the film-forming process, or the existence of COOH, NH2 and quinone groups on the surfaces. The maximum contents of carboxyl and amine on the GAHD film are 24.9 nmol/cm(2) and 31.7 nmol/cm(2) respectively. After dynamical immersion for 30 days, slight swellings can be observed, which reveals that the GAHD films possess good stability. Moreover, Heparin (Hep), fibronectin (Fn) and laminin (Ln) are successfully immobilized on the GAHD film surfaces. The results of cell counting kit-8 (CCK-8) and rhodamine fluorescence photograph indicate that the 1:1.62 GAHD film has good cytocompatibility. PMID:24064415

Chen, Si; Li, Xin; Yang, Zhilu; Zhou, Shuo; Luo, Rifang; Maitz, Manfred F; Zhao, Yuancong; Wang, Jin; Xiong, Kaiqin; Huang, Nan

2014-01-01

156

Glioma cell line proliferation controlled by different chemical functional groups in vitro  

NASA Astrophysics Data System (ADS)

Glioma cell line C6 cultured on silicon surfaces modified by different chemical functional groups, including mercapto (-SH), carboxyl (-COOH), amino (-NH2), hydroxyl (-OH) and methyl (-CH3) groups, was studied here to investigate the influence of surface chemistry on the cell proliferation, adhesion and apoptosis. AFM confirmed the similar characteristic of different functional groups occupation. The adhering C6 exhibited morphological changes in response to different chemical functional groups. The C6 adhered to -COOH, -NH2, -OH and -CH3 surfaces and flattened morphology, while those on -SH surface exhibited the smallest contact area with mostly rounded morphology, which led to the death of cancer cells. The results of MTT assay showed that the -COOH and -NH2 groups promoted cell proliferation, while the -SH significantly inhibited the proliferation. Compared with other chemical functional groups, the -SH group exhibited its unique effect on the fate of cancer cells, which might provide means for the design of biomaterials to prevent and treat glioma.

Xu, Su-Ju; Cui, Fu-Zhai; Yu, Xiao-Long; Kong, Xiang-Dong

2013-03-01

157

Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips  

PubMed Central

The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH2 groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH2 groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker (“acetal-PEG-NHS”) which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1–10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker (“aldehyde-PEG-NHS”) to adjacent NH2 groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be functionalized with an ethylene diamine derivative of ATP which showed specific interaction with mitochondrial uncoupling protein 1 (UCP1) that had been purified and reconstituted in a mica-supported planar lipid bilayer. PMID:21542606

2011-01-01

158

Efimov physics from the functional renormalization group  

E-print Network

Few-body physics related to the Efimov effect is discussed using the functional renormalization group method. After a short review of renormalization in its modern formulation we apply this formalism to the description of scattering and bound states in few-body systems of identical bosons and distinguishable fermions with two and three components. The Efimov effect leads to a limit cycle in the renormalization group flow. Recently measured three-body loss rates in an ultracold Fermi gas $^6$Li atoms are explained within this framework. We also discuss briefly the relation to the many-body physics of the BCS-BEC crossover for two-component fermions and the formation of a trion phase for the case of three species.

Stefan Floerchinger; Sergej Moroz; Richard Schmidt

2012-08-17

159

Identification of the functional groups on the surface of nanoparticles formed in photonucleation of aldehydes generated during forest fire events  

NASA Astrophysics Data System (ADS)

We describe the new procedure developed to determine the functional groups on the surface of nanoparticles formed in photonucleation of furfural, one of the aldehydes generated during forest fire events. The procedure is based on the detection of nanoparticle rupture from chemically modified surface of the quartz crystal microbalance oscillating in the thickness shear mode under voltage sweep. The rupture force is determined from the voltage at which the rupture occurs. It depends on particle mass and on the affinity of the surface functional groups of the particle to the groups that are present on the modified QCM surface. It was demonstrated with the amine modification of the surface that the nanoparticles formed in furfural photonucleation contain carbonyl and carboxyl groups. The applicability of the method for the investigation of functional groups on the surface of the nanoparticles of atmospheric aerosol is demonstrated.

Dultsev, Fedor N.; Mik, Ivan A.; Dubtsov, Sergei N.; Dultseva, Galina G.

2014-11-01

160

Contribution of cytochrome P450 and UDT-glucuronosyltransferase to the metabolism of drugs containing carboxylic acid groups: risk assessment of acylglucuronides using human hepatocytes.  

PubMed

1.?In order to evaluate the inhibition activity of 1-aminobenzotriazole (ABT) and (-)-borneol (borneol) against cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT), the substrates of these metabolic enzymes were incubated with ABT and borneol in human hepatocytes. We found that 3?mM ABT and 300??M borneol were the most suitable experimental levels to specifically inhibit CYP and UGT. 2.?Montelukast, mefenamic acid, flufenamic acid, diclofenac, tienilic acid, gemfibrozil, ibufenac and repaglinide were markedly metabolized in human hepatocytes, and the metabolism of gemfibrozil, mefenamic acid and flufenamic acid was inhibited by borneol. With regard to repaglinide, montelukast, diclofenac and tienilic acid, metabolism was inhibited by ABT. Ibufenac was partly inhibited by both inhibitors. Zomepirac, tolmetin, ibuprofen, indomethacin and levofloxacin were moderately metabolized by human hepatocytes, and the metabolism of zomepirac, ibuprofen and indomethacin was equally inhibited by both ABT and borneol. The metabolism of tolmetin was strongly inhibited by ABT, and was also inhibited weakly by borneol. Residual drugs, telmisartan, valsartan, furosemide, naproxen and probenecid were scarcely metabolized. 3.?Although we attempted to predict the toxicological risks of drugs containing carboxylic groups from the combination chemical stability and CLint via UGT, the results indicated that this combination was not sufficient and that clinical daily dose is important. PMID:24575896

Jinno, Norimasa; Tagashira, Mizuka; Tsurui, Kazuyuki; Yamada, Shizuo

2014-08-01

161

Synthesis and properties of radiopaque polymer hydrogels: polyion complexes of copolymers of acrylamide derivatives having triiodophenyl and carboxyl groups and p-styrene sulfonate and polyallylamine  

NASA Astrophysics Data System (ADS)

In order to pursue a possibility of application of radiopaque polymer hydrogels to vascular embolization, studies were done on synthesis of iodine-containing copolyanions and properties of their hydrogels with polycation via formation of polyion complexes. Acrylamide derivatives having triiodophenyl and carboxyl groups were synthesized and copolymerized with sodium styrene sulfonate at various molar ratios of initiator to monomer and temperatures. Hydrogels were prepared by mixing aqueous solutions of the obtained radiopaque copolyanions and polyallylamine. Embolization was examined by injection of these hydrogels into vein of a removed porcine kidney as a preliminary test for transcatheter arterial embolization (TAE) for hepatocellular carcinoma. It was found that the hydrogels prepared from the copolycation obtained under particular conditions give high X-ray contrasts of the vein and remained there, though copolycations with low molecular weights had a tendency to drain through the capillaries to the peripheral tissues. It is therefore concluded that the hydrogels examined in the present study are promising for vascular embolization.

Okamura, M.; Uehara, H.; Yamanobe, T.; Komoto, T.; Hosoi, S.; Kumazaki, T.

2000-10-01

162

Understanding pyrroline-5-carboxylate synthetase deficiency: clinical, molecular, functional, and expression studies, structure-based analysis, and novel therapy with arginine.  

PubMed

?(1)-Pyrroline-5-carboxylate synthetase (P5CS) catalyzes the first two steps of ornithine/proline biosynthesis. P5CS deficiency has been reported in three families, with patients presenting with cutis/joint laxity, cataracts, and neurodevelopmental delay. Only one family exhibited metabolic changes consistent with P5CS deficiency (low proline/ornithine/citrulline/arginine; fasting hyperammonemia). Here we report a new P5CS-deficient patient presenting the complete clinical/metabolic phenotype and carrying p.G93R and p.T299I substitutions in the ?-glutamyl kinase (?GK) component of P5CS. The effects of these substitutions are (1) tested in mutagenesis/functional studies with E.coli ?GK, (2) rationalized by structural modelling, and (3) reflected in decreased P5CS protein in patient fibroblasts (shown by immunofluorescence). Using optical/electron microscopy on skin biopsy, we show collagen/elastin fiber alterations that may contribute to connective tissue laxity and are compatible with our angio-MRI finding of kinky brain vessels in the patient. MR spectroscopy revealed decreased brain creatine, which normalized after sustained arginine supplementation, with improvement of neurodevelopmental and metabolic parameters, suggesting a pathogenic role of brain creatine decrease and the value of arginine therapy. Morphological and functional studies of fibroblast mitochondria show that P5CS deficiency is not associated with the mitochondrial alterations observed in ?(1)-pyrroline-5-carboxylate reductase deficiency (another proline biosynthesis defect presenting cutis laxa and neurological alterations). PMID:22170564

Martinelli, Diego; Häberle, Johannes; Rubio, Vicente; Giunta, Cecilia; Hausser, Ingrid; Carrozzo, Rosalba; Gougeard, Nadine; Marco-Marín, Clara; Goffredo, Bianca M; Meschini, Maria Chiara; Bevivino, Elsa; Boenzi, Sara; Colafati, Giovanna Stefania; Brancati, Francesco; Baumgartner, Matthias R; Dionisi-Vici, Carlo

2012-09-01

163

1-Azaniumylcyclobutane-1-carboxylate monohydrate  

NASA Technical Reports Server (NTRS)

In the title compound, C5H9NO2H2O, the amino acid is in the usual zwitterionic form involving the carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7) and0.118 (7). In the crystal, NH O and OH O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+) and donor (through a single carboxylate O from two different aminocyclobutane carboxylatemoities)], resulting in a two-dimensional layered structure lying parallel to (100).

Butcher, Ray J.; Brewer, Greg; Burton, Aaron S.; Dworkin, Jason

2014-01-01

164

Parameterization of Leaf-Level Gas Exchange for Plant Functional Groups From Amazonian Seasonal Tropical Rain Forest  

NASA Astrophysics Data System (ADS)

Plant communities exert strong influence over the magnitude of carbon and water cycling through ecosystems by controlling photosynthetic gas exchange and respiratory processes. Leaf-level gas exchange fluxes result from a combination of physiological properties, such as carboxylation capacity, respiration rates and hydraulic conductivity, interacting with environmental drivers such as water and light availability, leaf-to-air vapor pressure deficit, and temperature. Carbon balance models concerned with ecosystem-scale responses have as a common feature the description of eco-physiological properties of vegetation. Here we focus on the parameterization of ecophysiological gas-exchange properties of plant functional groups from a pristine Amazonian seasonally dry tropical rain forest ecosystem (FLONA-Tapajós, Santarém, PA, Brazil). The parameters were specific leaf weight, leaf nitrogen content, leaf carbon isotope ratio, maximum photosynthetic assimilation rate, photosynthetic carboxylation capacity, dark respiration rates, and stomatal conductance to water vapor. Our plant functional groupings were lianas at the top of the canopy, trees at the top of the canopy, mid-canopy trees and undestory trees. Within the functional groups, we found no evidence that leaves acclimated to seasonal changes in precipitation. However, there were life-form dependent distinctions when a combination of parameters was included. Top-canopy lianas were statistically different from top-canopy trees for leaf carbon isotope ratio, maximum photosynthetic assimilation rate, and stomatal conductance to water vapor, suggesting that lianas are more conservative in the use of water, causing a stomatal limitation on photosynthetic assimilation. Top-canopy, mid canopy and understory groupings were distinct for specific leaf weight, leaf nitrogen content, leaf carbon isotope ratio, maximum photosynthetic assimilation rate, and photosynthetic carboxylation capacity. The recognition that plant functional groups have distinct impacts on ecosystem-scale gas exchange can increase the accuracy of process-based carbon balance models where structure is known and when logging activities are incorporated into production models.

Domingues, T. F.; Berry, J. A.; Ometto, J. P.; Martinelli, L. A.; Ehleringer, J. R.

2004-12-01

165

The luminosity function of compact groups of galaxies  

Microsoft Academic Search

An analysis of the luminosity function of 68 compact groups of galaxies cataloged by Hickson (1982) is presented. The luminosities of compact group galaxies are consistent with their being drawn from a Schechter luminosity function. Individual morphological-type luminosity functions are also determined. Both the total and morphological-type specific luminosity functions of compact group galaxies are significantly different from those of

Claudia Mendes de Oliveira; Paul Hickson

1991-01-01

166

Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups  

PubMed Central

Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI) contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field. For such biomedical applications, SPIONs must have multifunctional characteristics, including optimized size and modified surface. However, the biofunctionality and biocompatibility of SPIONs with various surface functional groups of different sizes have yet to be elucidated clearly. Therefore, it is important to carefully monitor the cytotoxicity and genotoxicity of SPIONs that are surfaced-modified with various functional groups of different sizes. In this study, we evaluated SPIONs with diameters of approximately 10 nm and 100~150 nm, containing different surface functional groups. SPIONs were covered with ?O? groups, so-called bare SPIONs. Following this, they were modified with three different functional groups – hydroxyl (?OH), carboxylic (?COOH), and amine (?NH2) groups – by coating their surfaces with tetraethyl orthosilicate (TEOS), (3-aminopropyl)trimethoxysilane (APTMS), TEOS-APTMS, or citrate, which imparted different surface charges and sizes to the particles. The effects of SPIONs coated with these functional groups on mitochondrial activity, intracellular accumulation of reactive oxygen species, membrane integrity, and DNA stability in L-929 fibroblasts were determined by water-soluble tetrazolium, 2?,7?-dichlorodihydrofluorescein, lactate dehydrogenase, and comet assays, respectively. Our toxicological observations suggest that the functional groups and sizes of SPIONs are critical determinants of cellular responses, degrees of cytotoxicity and genotoxicity, and potential mechanisms of toxicity. Nanoparticles with various surface modifications and of different sizes induced slight, but possibly meaningful, changes in cell cytotoxicity and genotoxicity, which would be significantly valuable in further studies of bioconjugation and cell interaction for drug delivery, cell culture, and cancer-targeting applications. PMID:22238510

Hong, Seong Cheol; Lee, Jong Ho; Lee, Jaewook; Kim, Hyeon Yong; Park, Jung Youn; Cho, Johann; Lee, Jaebeom; Han, Dong-Wook

2011-01-01

167

Functional group composition of organic aerosol from combustion emissions and secondary processes at two contrasted urban environments  

NASA Astrophysics Data System (ADS)

The quantification of major functional groups in atmospheric organic aerosol (OA) provides a constraint on the types of compounds emitted and formed in atmospheric conditions. This paper presents functional group composition of organic aerosol from two contrasted urban environments: Marseille during summer and Grenoble during winter. Functional groups were determined using a tandem mass spectrometry approach, enabling the quantification of carboxylic (RCOOH), carbonyl (RCOR?), and nitro (RNO2) functional groups. Using a multiple regression analysis, absolute concentrations of functional groups were combined with those of organic carbon derived from different sources in order to infer the functional group contents of different organic aerosol fractions. These fractions include fossil fuel combustion emissions, biomass burning emissions and secondary organic aerosol (SOA). Results clearly highlight the differences between functional group fingerprints of primary and secondary OA fractions. OA emitted from primary sources is found to be moderately functionalized, as about 20 carbons per 1000 bear one of the functional groups determined here, whereas SOA is much more functionalized, as in average 94 carbons per 1000 bear a functional group under study. Aging processes appear to increase both RCOOH and RCOR? functional group contents by nearly one order of magnitude. Conversely, RNO2 content is found to decrease with photochemical processes. Finally, our results also suggest that other functional groups significantly contribute to biomass smoke and SOA. In particular, for SOA, the overall oxygen content, assessed using aerosol mass spectrometer measurements by an O:C ratio of 0.63, is significantly higher than the apparent O:C* ratio of 0.17 estimated based on functional groups measured here. A thorough examination of our data suggests that this remaining unexplained oxygen content can be most probably assigned to alcohol (ROH), organic peroxides (ROOH), organonitrates (RONO2) and/or organosulfates (ROSO3H).

El Haddad, Imad; Marchand, Nicolas; D'Anna, Barbara; Jaffrezo, Jean Luc; Wortham, Henri

2013-08-01

168

Detecting Functional Groups of Arabidopsis Mutants by Metabolic Profiling and Evaluation of Pleiotropic Responses  

PubMed Central

Metabolic profiles and fingerprints of Arabidopsis thaliana plants with various defects in plastidic sugar metabolism or photosynthesis were analyzed to elucidate if the genetic mutations can be traced by comparing their metabolic status. Using a platform of chromatographic and spectrometric tools data from untargeted full MS scans as well as from selected metabolites including major carbohydrates, phosphorylated intermediates, carboxylates, free amino acids, major antioxidants, and plastidic pigments were evaluated. Our key observations are that by multivariate statistical analysis each mutant can be separated by a unique metabolic signature. Closely related mutants come close. Thus metabolic profiles of sugar mutants are different but more similar than those of photosynthesis mutants. All mutants show pleiotropic responses mirrored in their metabolic status. These pleiotropic responses are typical and can be used for separating and grouping of the mutants. Our findings show that metabolite fingerprints can be taken to classify mutants and hence may be used to sort genes into functional groups. PMID:22639613

Hofmann, Jörg; Börnke, Frederik; Schmiedl, Alfred; Kleine, Tatjana; Sonnewald, Uwe

2011-01-01

169

Effects of functional groups and ionization on the structure of alkanethiol-coated gold nanoparticles.  

PubMed

We report classical atomistic molecular dynamics simulations of alkanethiol-coated gold nanoparticles solvated in water and decane, as well as at water/vapor interfaces. The structure of the coatings is analyzed as a function of various functional end groups, including amine and carboxyl groups in various ionization states. We study both neutral and charged end groups for two different chain lengths (9 and 17 carbons). For the charged end groups, we simulated both mono- and divalent counterions. For the longer alkanes, we find significant local bundling of chains on the nanoparticle surface, which results in highly asymmetric coatings. In general, the charged end groups attenuate this effect by enhancing the water solubility of the nanoparticles. On the basis of the coating structures and density profiles, we can qualitatively infer the overall solubility of the nanoparticles. This asymmetry in the alkanethiol coatings is likely to have a significant effect on aggregation behavior. Our simulations elucidate the mechanism by which modulating the end group charge state can be used to control coating structure and therefore nanoparticle solubility and aggregation behavior. PMID:25162679

Bolintineanu, Dan S; Lane, J Matthew D; Grest, Gary S

2014-09-23

170

Self-assembly of Sn-3Ag-0.5Cu Solder in Thermoplastic Resin Containing Carboxyl Group and its Interconnection  

NASA Astrophysics Data System (ADS)

The self-assembly of solder powder on pads is attractive as a novel interconnection method between chips and substrates. However, the solder used in this method is limited to Sn-58Bi and Sn-52In. In contrast, Sn-3Ag-0.5Cu has been relatively less studied despite its wide use as a lead-free solder in assembling semiconductor packages. Hence, here, polymeric materials incorporating Sn-3Ag-0.5Cu solder powder were investigated for the self-assembly of the solder on pads at temperatures up to 260°C in a lead-free reflow process. The self-assembly of the solder was observed with an optical microscope through transparent glass chips placed on substrates covered with the polymeric materials incorporating the solder powder. Differential scanning calorimetry measurements were performed to confirm the behaviors of the reaction of the resins and the melting of the solder. When epoxy resin with a fluxing additive was used as a matrix, self-assembly of the solder was prevented by the cross-linking reaction. Conversely, when thermoplastic resin containing carboxyl groups was used as a matrix, the self-assembly of solder was successfully achieved in the absence of fluxing additives. The shear strength of interconnection using reflowfilm with lamination was sufficient and significantly increased during the reflow process. However, the shear strength of the reflowfilm showed cohesive failure, possibly because of the brittle intermetallic compounds (Ag3Sn, Au4Sn) network in bulk was lower than that of conventional solder paste that showed interfacial failure after the reflow process with a rapid cooling rate.

Miyauchi, Kazuhiro; Yamashita, Yukihiko; Suzuki, Naoya; Takano, Nozomu

2014-09-01

171

Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.  

PubMed Central

A method was developed to measure Fourier-transform infrared (FTIR) difference spectra of detergent-solubilized rhodopsin expressed in COS cells. Experiments were performed on native bovine rhodopsin, rhodopsin expressed in COS cells, and three expressed rhodopsin mutants with amino acid replacements of membrane-embedded carboxylic acid groups: Asp-83-->Asn (D83N), Glu-122-->Gln (E122Q), and the double mutant D83N/E122Q. Each of the mutant opsins bound 11-cis-retinal to yield a visible light-absorbing pigment. Upon illumination, each of the mutant pigments formed a metarhodopsin II-like species with maximal absorption at 380 nm that was able to activate guanine nucleotide exchange by transducin. Rhodopsin versus metarhodopsin II-like photoproduct FTIR-difference spectra were recorded for each sample. The COS-cell rhodopsin and mutant difference spectra showed close correspondence to that of rhodopsin from disc membranes. Difference bands (rhodopsin/metarhodopsin II) at 1767/1750 cm-1 and at 1734/1745 cm-1 were absent from the spectra of mutants D83N and E122Q, respectively. Both bands were absent from the spectrum of the double mutant D83N/E122Q. These results show that Asp-83 and Glu-122 are protonated both in rhodopsin and in metarhodopsin II, in agreement with the isotope effects observed in spectra measured in 2H2O. A photoproduct band at 1712 cm-1 was not affected by either single or double replacements at positions 83 and 122. We deduce that the 1712 cm-1 band arises from the protonation of Glu-113 in metarhodopsin II. PMID:7901852

Fahmy, K; Jäger, F; Beck, M; Zvyaga, T A; Sakmar, T P; Siebert, F

1993-01-01

172

Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.  

PubMed

A method was developed to measure Fourier-transform infrared (FTIR) difference spectra of detergent-solubilized rhodopsin expressed in COS cells. Experiments were performed on native bovine rhodopsin, rhodopsin expressed in COS cells, and three expressed rhodopsin mutants with amino acid replacements of membrane-embedded carboxylic acid groups: Asp-83-->Asn (D83N), Glu-122-->Gln (E122Q), and the double mutant D83N/E122Q. Each of the mutant opsins bound 11-cis-retinal to yield a visible light-absorbing pigment. Upon illumination, each of the mutant pigments formed a metarhodopsin II-like species with maximal absorption at 380 nm that was able to activate guanine nucleotide exchange by transducin. Rhodopsin versus metarhodopsin II-like photoproduct FTIR-difference spectra were recorded for each sample. The COS-cell rhodopsin and mutant difference spectra showed close correspondence to that of rhodopsin from disc membranes. Difference bands (rhodopsin/metarhodopsin II) at 1767/1750 cm-1 and at 1734/1745 cm-1 were absent from the spectra of mutants D83N and E122Q, respectively. Both bands were absent from the spectrum of the double mutant D83N/E122Q. These results show that Asp-83 and Glu-122 are protonated both in rhodopsin and in metarhodopsin II, in agreement with the isotope effects observed in spectra measured in 2H2O. A photoproduct band at 1712 cm-1 was not affected by either single or double replacements at positions 83 and 122. We deduce that the 1712 cm-1 band arises from the protonation of Glu-113 in metarhodopsin II. PMID:7901852

Fahmy, K; Jäger, F; Beck, M; Zvyaga, T A; Sakmar, T P; Siebert, F

1993-11-01

173

ATR-FTIR characterization of organic functional groups and inorganic ions in ambient aerosols at a rural site  

NASA Astrophysics Data System (ADS)

An Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopic method was used to measure organic functional groups and inorganic ions at Tonto National Monument (TNM), an Interagency Monitoring of Protected Visual Environments (IMPROVE) sampling site in a rural area near Phoenix, Arizona. Functional groups and ions from common aerosol compound classes such as aliphatic and aromatic CH, methylene, methyl, aldehydes/ketones, carboxylic acids, ammonium sulfate and nitrate as well as functional groups from difficult to measure compound classes such as esters/lactones, acid anhydrides, carbohydrate hydroxyl and ethers, amino acids, and amines were quantified. On average, ˜33% of the PM 1.0 mass was composed of organic aerosol. The average (standard deviation) composition of the organic aerosol at TNM was 34% (6%) biogenic functional groups, 21% (5%) oxygenated functional groups, 28% (7%) aliphatic hydrocarbon functional groups (aliphatic CH, methylene and methyl) and 17% (1%) aromatic hydrocarbon functional groups. Compositional analysis, functional group correlations, and back trajectories were used to identify three types of events with source signatures: primary biogenic-influenced, urban-influenced, and regional background. The biogenic-influenced event had high concentrations of amino acids and carbohydrate hydroxyl and ether, as well as aliphatic CH and aromatic CH functional groups and qualitatively high levels of silicate. The urban-influenced events had back trajectories traveling directly from the Phoenix area and high concentrations of hydrocarbons, oxygenated functional groups, and inorganic ions. This aerosol characterization suggests that both primary emissions in Phoenix and secondary formation of aerosols from Phoenix emissions had a major impact on the aerosol composition and concentration at TNM. The regional background source had low concentrations of all functional groups, but had higher concentrations of biogenic functional groups than the urban source.

Coury, Charity; Dillner, Ann M.

174

Preconversion catalytic deoxygenation of phenolic functional groups  

SciTech Connect

The deoxygenation of phenols is a conceptually simple, but unusually difficult chemical transformation to achieve. Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. A program of research for the catalytic deoxygenation of phenols, via a low energy mechanistic pathway that is based on the use of the CO/CO{sub 2} couple to remove phenolic oxygen atoms, is underway. We are focusing on systems which have significant promise as catalysts: Ir(triphos)OPh, (Pt(triphos)OPh){sup +} and Rh(triphos)OPh. Our studies of phenol deoxygenation focus on monitoring the reactions for the elementary processes upon which catalytic activity will depend: CO insertion into M-OPh bonds, CO{sub 2} elimination from aryloxy carbonyls {l brace}M-C(O)-O-Ph{r brace}, followed by formation of a coordinated benzyne intermediate.

Kubiak, C.P.

1991-01-01

175

Polymers with Pendant Functional Group. III. Polysulfones Containing Viologen Group  

Microsoft Academic Search

The chloromethylation reaction of polysulfone and the amination reaction with 4,4?-bipyridyl or some monoquaternized derivatives of this in order to obtain polysulfone with viologen groups were analyzed. A kinetic study of amination reaction of a chloromethylated polysulfone with 4,4?-bipyridyl and N benzylbipyridinium chloride in dimethylsulfoxide is also reported.

Ecaterina Avram; Elena Butuc; Cornelia Luca; Ioan Druta

1997-01-01

176

Functions of mammalian Polycomb group and trithorax group related genes  

Microsoft Academic Search

Genes of the Polycomb and trithorax groups (PcG and trxG) are part of a cellular memory system that maintains inactive and active states of homeotic gene expression in Drosophila. Recent genetic evidence indicates that several related loci in mammals are also involved in the regulation of Hox genes. Like their Drosophila counterparts, the vertebrate gene products are components of multiprotein

Alex Gould

1997-01-01

177

Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air  

Microsoft Academic Search

It was found that a large number of oxygen-containing functional groups (OFGs) could be created on the surface of hydrothermal carbon (HTC) by simply heating at lower temperature in air during the course of our preliminary experiments which focused on oxidation pre-treatment of pristine HTC for the purpose of grafting functionalization. Especially carboxyl groups on HTC would increase significantly, from

Zhen Chen; Lijian Ma; Shuqiong Li; Junxia Geng; Qiang Song; Jun Liu; Chunli Wang; Hang Wang; Juan Li; Zhi Qin; Shoujian Li

2011-01-01

178

Palladium-catalyzed decarboxylative trifluoroethylation of aryl alkynyl carboxylic acids.  

PubMed

A trifluoroethylation of alkynes through a palladium-catalyzed decarboxylative coupling reaction was developed. When alkynyl carboxylic acids and ICH2CF3 were allowed to react with [Pd(?(3)-allyl)Cl]2/XantPhos and Cs2CO3 in N,N-dimethylformamide (DMF) at 80 °C for 1 h, the desired products were formed in good yields. This catalytic system showed high functional group tolerance. PMID:24628537

Hwang, Jinil; Park, Kyungho; Choe, Juseok; Min, Hongkeun; Song, Kwang Ho; Lee, Sunwoo

2014-04-01

179

End Group Modification of Regioregular Polythiophene through Postpolymerization Functionalization  

E-print Network

of the conjugated polymers. Literature procedures to function- alize end groups of conjugated polymers, however, are very scarce.13 End group functionalization of -conju- gated conducting polymers would extend the rangeEnd Group Modification of Regioregular Polythiophene through Postpolymerization Functionalization

McCullough, Richard D.

180

Functional analysis of mouse Polycomb group genes  

Microsoft Academic Search

Two groups of genes, the Polycomb group (Pc-G) and trithorax group (trx-G), have been identified in Drosophila to provide a transcriptional memory mechanism. They ensure the maintenance of transcription patterns of key regulators such as the Hox genes and thereby the correct execution of developmental programmes. Recent data suggest that this memory mechanism is conserved in vertebrates and plants. Here

M. van Lohuizen

1998-01-01

181

Peptide coupling between amino acids and the carboxylic acid of a functionalized chlorido-gold(I)-phosphane.  

PubMed

We have developed a protocol for the direct coupling between methyl ester protected amino acids and the chlorido-gold(I)-phosphane (p-HOOC(C6H4)PPh2)AuCl. By applying the EDC·HCl/NHS strategy (EDC·HCl = N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide hydrochloride, NHS = N-hydroxysuccinimide), the methyl esters of l-phenylalanine, glycine, l-leucine, l-alanine, and l-methionine are coupled with the carboxylic acid of the gold complex in moderate to good yields (62-88%). All amino acid tagged gold complexes were characterized by (1)H and (13)C NMR spectroscopy and high-resolution mass spectrometry. As corroborated by measurement of the angle of optical rotation, no racemization occurred during the reaction. The molecular structure of the leucine derivative was determined by single-crystal X-ray diffraction. In the course of developing an efficient coupling protocol, the acyl chlorides (p-Cl(O)C(C6H4)PPh2)AuX (X = Cl, Br) were also prepared and characterized. PMID:25203269

Kriechbaum, Margit; List, Manuela; Himmelsbach, Markus; Redhammer, Günther J; Monkowius, Uwe

2014-10-01

182

Department and function: Group Leader Junior Research Group Hematopoietic Cell Therapy  

E-print Network

Department and function: Group Leader Junior Research Group Hematopoietic Cell Therapy (Department Junior Research Group "Hematopoietic Cell Therapy", REBIRTH Excellence Cluster, MHH Major research interests: Molecular medicine and development of gene vectors for clinical gene therapy of inherited

Manstein, Dietmar J.

183

Ionization behavior, stoichiometry of association, and accessibility of functional groups in the active layers of reverse osmosis and nanofiltration membranes.  

PubMed

We characterized the fully aromatic polyamide (PA) active layers of six commercial reverse osmosis (RO) and nanofiltration (NF) membranes and found that in contrast to their similar elemental composition, total concentration of functional groups, and degree of polymerization, the ionization behavior and spatial distribution of carboxylic (R-COOH) groups within the active layers can be significantly different. We also studied the steric effects experienced by barium ion (Ba2+) in the active layers by determining the fraction of carboxylate (R-COO-) groups accessible to Ba2+; such fraction, referred to as the accessibility ratio (AR), was found to vary within the range AR=0.40-0.81, and to be generally independent of external solution pH. Additionally, we studied an NF membrane with a sulfonated polyethersulfone (SPES) active layer, and found that the concentration of sulfonate (R-SO3-) groups in the active layer was 1.67 M, independent of external solution pH and approximately three times higher than the maximum concentration (approximately 0.45+/-0.25 M) of R-COO- groups in PA active layers. The R-SO3- groups were found to be highly accessible to Ba2+ (AR=0.95+/-0.01). PMID:20701293

Coronell, Orlando; González, Mari I; Mariñas, Benito J; Cahill, David G

2010-09-01

184

Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly report, January 1--March 30, 1996  

SciTech Connect

Over the course of the studies on catalytic deoxygenation of phenolic residues in coal by carbon monoxide, the author performed preliminary investigations into the removal of other heteroatom groups. This report describes the attempted carbonylation of phenyl amido complexes. These studies resulted in the surprisingly facile formation of amidines. The amidine group is the nitrogen analog of carboxylic acids and esters. This functional group combines the properties of an azomethane-like C=N double bond with an amide-like C-N single bond. This group, like the related allyl (C-C-C), aza-allyl (C-N-C), and carboxylato (O-C-O) groups, form a number of transition metal derivatives, with both early and late transition metals. Various bonding modes of the amidino group have been reported. However, most isolated complexes have the amidino ligand as a chelating ligand or bridging two metals. This is due to the preference of amidines to bond via the nitrogen lone pairs, in contrast to the {eta}3 bonding observed in metal-allyl complexes. The experimental section of the paper describes the synthesis of platinum complexes, X-ray diffraction data for one Pt complex, and its reaction with carbon monoxide. Results are presented on the crystal and molecular structure of a platinum complex.

Kubiak, C.P.

1996-12-31

185

The carboxyl group of Glu113 is required for stabilization of the diferrous and bis-FeIV states of MauG  

PubMed Central

The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Crystallographic studies have implicated Glu113 in the formation of the bis-FeIV state of MauG, in which one heme is FeIV=O and the other is FeIV with His-Tyr axial ligation. An E113Q mutation had no effect on the structure of MauG, but significantly altered its redox properties. E113Q MauG could not be converted to the diferrous state by reduction with dithionite, but was only reduced to a mixed valence FeII/FeIII state, which is never observed in wild-type (WT) MauG. Addition of H2O2 to E113Q MauG generated a high valence state that formed more slowly and was less stable than the bis-FeIV state of WT MauG. E113Q MauG exhibited no detectable TTQ biosynthesis activity in a steady-state assay with preMADH as the substrate. It did catalyze the steady-state oxidation of quinol MADH to the quinone, but 1000-fold less efficiently than WT MauG. Addition of H2O2 to a crystal of the E113Q MauG-preMADH complex resulted in partial synthesis of TTQ. Extended exposure of these crystals to H2O2 resulted in hydroxylation of Pro107 in the distal pocket of the high-spin heme. It is concluded that the loss of the carboxylic group of Glu113 disrupts the redox cooperativity between hemes that allows rapid formation of the diferrous state, and alters the distribution of high-valence species that participate in charge-resonance stabilization of the bis-FeIV redox state. PMID:23952537

Tarboush, Nafez Abu; Yukl, Erik T.; Shin, Sooim; Feng, Manliang; Wilmot, Carrie M.; Davidson, Victor L.

2013-01-01

186

Influence of functional groups on organic aerosol cloud condensation nucleus activity.  

PubMed

Organic aerosols in the atmosphere are composed of a wide variety of species, reflecting the multitude of sources and growth processes of these particles. Especially challenging is predicting how these particles act as cloud condensation nuclei (CCN). Previous studies have characterized the CCN efficiency for organic compounds in terms of a hygroscopicity parameter, ?. Here we extend these studies by systematically testing the influence of the number and location of molecular functional groups on the hygroscopicity of organic aerosols. Organic compounds synthesized via gas-phase and liquid-phase reactions were characterized by high-performance liquid chromatography coupled with scanning flow CCN analysis and thermal desorption particle beam mass spectrometry. These experiments quantified changes in ? with the addition of one or more functional groups to otherwise similar molecules. The increase in ? per group decreased in the following order: hydroxyl ? carboxyl > hydroperoxide > nitrate ? methylene (where nitrate and methylene produced negative effects, and hydroperoxide and nitrate groups produced the smallest absolute effects). Our results contribute to a mechanistic understanding of chemical aging and will help guide input and parametrization choices in models relying on simplified treatments such as the atomic oxygen:carbon ratio to predict the evolution of organic aerosol hygroscopicity. PMID:25118824

Suda, Sarah R; Petters, Markus D; Yeh, Geoffrey K; Strollo, Christen; Matsunaga, Aiko; Faulhaber, Annelise; Ziemann, Paul J; Prenni, Anthony J; Carrico, Christian M; Sullivan, Ryan C; Kreidenweis, Sonia M

2014-09-01

187

Poly(ethylene glycol)- and carboxylate-functionalized gold nanoparticles using polymer linkages: single-step synthesis, high stability, and plasmonic detection of proteins.  

PubMed

Gold nanoparticles with suitable surface functionalities have been widely used as a versatile nanobioplatform. However, functionalized gold nanoparticles using thiol-terminated ligands have a tendency to aggregate, particularly in many enzymatic reaction buffers containing biological thiols, because of ligand exchange reactions. In the present study, we developed a one-step synthesis of poly(ethylene glycol) (PEG)ylated gold nanoparticles using poly(dimethylaminoethyl methacrylate) (PDMAEMA) in PEG as a polyol solvent. Because of the chelate effect of polymeric functionalities on the gold surface, the resulting PEGylated gold nanoparticles (Au@P-PEG) are very stable under the extreme conditions at which the thiol-monolayer-protected gold nanoparticles are easily coagulated. Using the solvent mixture of PEG and ethylene glycol (EG) and subsequent hydrolysis, gold nanoparticles bearing mixed functionalities of PEG and carboxylate are generated. The resulting particles exhibit selective adsorption of positively charged chymotrypsin (ChT) without nonselective adsorption of bovine serum albumin (BSA). The present nanoparticle system has many advantages, including high stability, simple one-step synthesis, biocompatibility, and excellent binding specificity; thus, this system can be used as a versatile platform for potential bio-related applications, such as separation, sensing, imaging, and assays. PMID:24090031

Park, Garam; Seo, Daeha; Chung, Im Sik; Song, Hyunjoon

2013-11-01

188

Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups  

Microsoft Academic Search

Here we report the immunological characterization of lipid–polymer hybrid nanoparticles (NPs) and propose a method to control the levels of complement activation induced by these NPs. This method consists of the highly specific modification of the NP surface with methoxyl, carboxyl, and amine groups. Hybrid NPs with methoxyl surface groups induced the lowest complement activation, whereas the NPs with amine

Carolina Salvador-Morales; Liangfang Zhang; Robert Langer; Omid C. Farokhzad

2009-01-01

189

A novel amino acid analysis method using derivatization of multiple functional groups followed by liquid chromatography/tandem mass spectrometry.  

PubMed

We have developed a novel amino acid analysis method using derivatization of multiple functional groups (amino, carboxyl, and phenolic hydroxyl groups). The amino, carboxyl, and phenolic hydroxyl groups of the amino acids were derivatized with 1-bromobutane so that the hydrophobicities and basicities of the amino acids were improved. The derivatized amino acids, including amino group-modified amino acids, could be detected with high sensitivity using liquid chromatography/tandem mass spectrometry (LC-MS/MS). In this study, 17 amino acids obtained by hydrolyzing proteins and 4 amino group-modified amino acids found in the human body (N,N-dimethylglycine, N-formyl-l-methionine, l-pyroglutamic acid, and sarcosine) were selected as target compounds. The 21 derivatized amino acids could be separated using an octadecyl-silylated silica column within 20 min and simultaneously detected. The detection limits for the 21 amino acids were 5.4-91 fmol, and the calibration curves were linear over the range of 10-100 nmol L(-1) (r(2) > 0.9984) with good repeatability. A confirmatory experiment showed that our proposed method could be applied to the determination of a protein certified reference material using the analysis of 12 amino acids combined with isotope dilution mass spectrometry. Furthermore, the proposed method was successfully applied to a stable isotope-coded derivatization method using 1-bromobutane and 1-bromobutane-4,4,4-d3 for comparative analysis of amino acids in human serum. PMID:25671319

Sakaguchi, Yohei; Kinumi, Tomoya; Yamazaki, Taichi; Takatsu, Akiko

2015-03-01

190

Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane  

PubMed Central

Engineered nanomaterials (ENM) have desirable properties that make them well suited for many commercial applications. However, a limited understanding of how ENM’s properties influence their molecular interactions with biomembranes hampers efforts to design ENM that are both safe and effective. This paper describes the use of a tethered bilayer lipid membrane (tBLM) to characterize biomembrane disruption by functionalized silica-core nanoparticles. Electrochemical impedance spectroscopy was used to measure the time trajectory of tBLM resistance following nanoparticle exposure. Statistical analysis of parameters from an exponential resistance decay model was then used to quantify and analyze differences between the impedance profiles of nanoparticles that were unfunctionalized, amine-functionalized, or carboxyl-functionalized. All of the nanoparticles triggered a decrease in membrane resistance, indicating nanoparticle-induced disruption of the tBLM. Hierarchical clustering allowed the potency of nanoparticles for reducing tBLM resistance to be ranked in the order amine > carboxyl ~ bare silica. Dynamic light scattering analysis revealed that tBLM exposure triggered minor coalescence for bare and amine-functionalized silica nanoparticles but not for carboxyl-functionalized silica nanoparticles. These results indicate that the tBLM method can reproducibly characterize ENM-induced biomembrane disruption and can distinguish the BLM-disruption patterns of nanoparticles that are identical except for their surface functional groups. The method provides insight into mechanisms of molecular interaction involving biomembranes and is suitable for miniaturization and automation for high-throughput applications to help assess the health risk of nanomaterial exposure or identify ENM having a desired mode of interaction with biomembranes. PMID:24060565

Liu, Ying; Zhang, Zhen; Zhang, Quanxuan; Baker, Gregory L.; Worden, R. Mark

2013-01-01

191

Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane.  

PubMed

Engineered nanomaterials (ENM) have desirable properties that make them well suited for many commercial applications. However, a limited understanding of how ENM's properties influence their molecular interactions with biomembranes hampers efforts to design ENM that are both safe and effective. This paper describes the use of a tethered bilayer lipid membrane (tBLM) to characterize biomembrane disruption by functionalized silica-core nanoparticles. Electrochemical impedance spectroscopy was used to measure the time trajectory of tBLM resistance following nanoparticle exposure. Statistical analysis of parameters from an exponential resistance decay model was then used to quantify and analyze differences between the impedance profiles of nanoparticles that were unfunctionalized, amine-functionalized, or carboxyl-functionalized. All of the nanoparticles triggered a decrease in membrane resistance, indicating nanoparticle-induced disruption of the tBLM. Hierarchical clustering allowed the potency of nanoparticles for reducing tBLM resistance to be ranked in the order amine>carboxyl~bare silica. Dynamic light scattering analysis revealed that tBLM exposure triggered minor coalescence for bare and amine-functionalized silica nanoparticles but not for carboxyl-functionalized silica nanoparticles. These results indicate that the tBLM method can reproducibly characterize ENM-induced biomembrane disruption and can distinguish the BLM-disruption patterns of nanoparticles that are identical except for their surface functional groups. The method provides insight into mechanisms of molecular interaction involving biomembranes and is suitable for miniaturization and automation for high-throughput applications to help assess the health risk of nanomaterial exposure or identify ENM having a desired mode of interaction with biomembranes. PMID:24060565

Liu, Ying; Zhang, Zhen; Zhang, Quanxuan; Baker, Gregory L; Worden, R Mark

2014-01-01

192

The study of synthesis and functionalized single-walled carbon nanotubes with amide group  

NASA Astrophysics Data System (ADS)

This study includes of syntheses and characteristics functionalized single-walled carbon nanotubes (SWCNTs) with amide group using thionyl chloride and NH3. First SWCNTs in H2SO4 and HNO3, solved and the solution obtained ultrasound was to reach the equilibrium temperature to functionalization of carboxylate single-walled carbon nanotubes (SWCNT-COOH). Then using thionyl chloride with (SOCl2) and DMF the mixture was refluxing. SWCNT-COCl was obtained from the previous step with ammonia (NH3), and DMF as solvent, and the mixture was refluxing. The black solid obtained was placed overnight in the oven to dry. Carbon nanotubes were expected at this stage to have a functional group CONH2. All new chemical bonding products were identified by FT-IR and observations using scanning electron microscopy (SEM) were confirmed. SWCNT-COOH functionalized carbon nanotubes have a relatively smooth surface and thin Stowe and the SEM image of the SWCNT-NH2; a thin layer of hope is clearly placed on the surface of SWCNT-COOH and its diameter is increased.

Abjameh, Reza; Moradi, Omid; Amani, Javad

2014-06-01

193

Stimulation of nonspecific resistance to infection induced by muramyl dipeptide analogs substituted in the gamma-carboxyl group and evaluation of N alpha-muramyl dipeptide-N epsilon-stearoyllysine.  

PubMed Central

Stimulation of resistance to infection induced by the analogs of muramyl dipeptide (MDP) having substituted functions in the gamma-carboxyl group of D-isoglutamyl residue was examined in experimental Escherichia coli infections in mice. An MDP analog which is an efficient strengthener of resistance to infection, N alpha-MDP-N epsilon-stearoyllysine [MDP-Lys(L18)], was selected through the comparative assessment of a number of compounds in three categories: (i) gamma-alkylamides, (ii) gamma-esters, and (iii) N alpha-MDP-N epsilon-acyllysine derivatives. Furthermore, the antiinfectious activity of MDP-Lys(L18) was evaluated bacteriologically in comparison with that of MDP. The effect of MDP-Lys(L18) on the susceptibility of mice to infections with various species of microorganisms was studied. Protective activity was greatest against E. coli and staphylococcal infections, considerable against Pseudomonas and Candida infections, and least against Klebsiella infection. The effects of bacterial inoculum size and MDP treatment timing, dose, and route of administration on protective activity were studied. The efficacy of MDP-Lys(L18) in protection tests was demonstrated for all administration routes, even the oral. Its high potency was confirmed by the smaller influence of inoculum size and particularly small value of the minimum dosage required for inducing protective activity. A decrease in bacterial survival was observed in the blood and organs of mice treated with the analog and infected with E. coli. The following two useful effects were obtained: the synergistic effect of glycopeptide and chemotherapeutic agents and the stimulation of resistance to infection in animals immunocompromised by cyclophosphamide treatment. PMID:6341226

Matsumoto, K; Otani, T; Une, T; Osada, Y; Ogawa, H; Azuma, I

1983-01-01

194

Electrical transport and field-effect transistors using inkjet-printed SWCNT films having different functional side groups.  

PubMed

The electrical properties of random networks of single-wall carbon nanotubes (SWNTs) obtained by inkjet printing are studied. Water-based stable inks of functionalized SWNTs (carboxylic acid, amide, poly(ethylene glycol), and polyaminobenzene sulfonic acid) were prepared and applied to inkjet deposit microscopic patterns of nanotube films on lithographically defined silicon chips with a back-side gate arrangement. Source-drain transfer characteristics and gate-effect measurements confirm the important role of the chemical functional groups in the electrical behavior of carbon nanotube networks. Considerable nonlinear transport in conjunction with a high channel current on/off ratio of approximately 70 was observed with poly(ethylene glycol)-functionalized nanotubes. The positive temperature coefficient of channel resistance shows the nonmetallic behavior of the inkjet-printed films. Other inkjet-printed field-effect transistors using carboxyl-functionalized nanotubes as source, drain, and gate electrodes, poly(ethylene glycol)-functionalized nanotubes as the channel, and poly(ethylene glycol) as the gate dielectric were also tested and characterized. PMID:20481513

Gracia-Espino, Eduardo; Sala, Giovanni; Pino, Flavio; Halonen, Niina; Luomahaara, Juho; Mäklin, Jani; Tóth, Géza; Kordás, Krisztián; Jantunen, Heli; Terrones, Mauricio; Helistö, Panu; Seppä, Heikki; Ajayan, Pulickel M; Vajtai, Robert

2010-06-22

195

Selective adsorption of L-serine functional groups on the anatase TiO2(101) surface in benthic microbial fuel cells.  

PubMed

To help design bacteria-friendly anodes for unmediated benthic microbial fuel cells (MFCs), we explore the role of anatase TiO2(101) surface biocompatibility in selecting the functional groups of the levo-isomer serine (L-Ser), which contains carboxyl, hydroxyl, and amino groups in a single molecule. By performing total energy calculations and molecular dynamics simulations based on a density-functional tight-binding method, we find that at room temperature, the surface should be active for biomolecules with carboxyl/carboxylic and hydroxyl groups, but it is not sensitive to those with amino groups. The hydrogen bonding between the hydroxyl H and surface O facilitates electron transfer from the pili or the bacterial matrix to the anode surface, which improves the output power density. Thus, in combination with conductive polymers, the anatase TiO2(101) surface can be an effective biocompatible substrate in benthic MFCs by enabling the surface O to form more hydrogen bonds with the hydroxyl H of the biomolecule. PMID:25165847

Zhao, Yan-Ling; Wang, Cui-Hong; Zhai, Ying; Zhang, Rui-Qin; Van Hove, Michel A

2014-10-14

196

Functional analysis of mouse Polycomb group genes.  

PubMed

Two groups of genes, the Polycomb group (Pc-G) and trithorax group (trx-G), have been identified in Drosophila to provide a transcriptional memory mechanism. They ensure the maintenance of transcription patterns of key regulators such as the Hox genes and thereby the correct execution of developmental programmes. Recent data suggest that this memory mechanism is conserved in vertebrates and plants. Here we discuss current insights into the role of mouse Pc-G genes, with a particular focus on the best-studied Bmi1, Mel18 and M33 genes, as representative examples. Common phenotypes observed in knockout mice mutant for each of these genes indicate an important role for Pc-G genes not only in regulation of Hox gene expression and axial skeleton development but also in control of proliferation and survival of haematopoietic cell lineages. Proliferation defects are also observed in other cell lineages derived from these null-mutant mice, and provide new tools to study the impact of Pc-G deregulation on cell cycle control. PMID:9487388

van Lohuizen, M

1998-01-01

197

Isolation and characterization of a ?1-pyrroline-5-carboxylate synthetase (NtP5CS) from Nitraria tangutorum Bobr. and functional comparison with its Arabidopsis homologue.  

PubMed

Several functional and regulatory proteins play important roles in controlling plant stress tolerance. Proline (Pro) is one of the most accumulated osmolytes correlated with tolerance to stresses. ?(1)-Pyrroline-5-carboxylate synthetase (P5CS) is a rate-limiting enzyme in Pro biosynthesis. In the present study, we isolated the cDNA for a P5CS gene (NtP5CS) from the halophyte Nitraria tangutorum. Phylogenetic analysis and subcellular localization analysis of NtP5CS-GFP protein in onion cells showed that NtP5CS was a new P5CS gene and was involved in Pro synthesis in N. tangutorum. Expression of the NtP5CS gene was induced by salt stress, dehydration, and high and low temperatures. Escherichia coli overexpressing AtP5CS or NtP5CS exhibited better growth in all treatments, including high salinity, high alkalinity, dehydration, osmotic, heat and cold stresses. Additionally, NtP5CS recombinant E. coli cells grew better than did AtP5CS recombinant cells in response to abiotic stresses. Our data demonstrate that the P5CS from a halophytic species functions more efficiently than its homologue from a glycophytic species in improving the stress tolerance of E. coli. PMID:24338163

Zheng, Linlin; Dang, Zhenhua; Li, Haoyu; Zhang, Huirong; Wu, Shubiao; Wang, Yingchun

2014-01-01

198

Biomineralization on polymer-coated multi-walled carbon nanotubes with different surface functional groups.  

PubMed

Substrate-controlled mineralization from simulated body fluid (SBF) has been studied as a model for biomineralization and for the synthesis of bioinspired hybrid materials. The mineralization procedure is complex and the features of final minerals are affected by many factors. Surface functional groups are among them and play important roles in inducing nucleation, crystal growth and transformation. In this study, multi-walled carbon nanotubes (MWCNTs) were surface-modified with poly(acrylic acid), polyacrylamide or poly(hydroxyethyl methylacrylate), and used as templates for biomineralization. The polymer coating was gained via photo-initiated polymerization of monomers and adsorption of polymer chains onto MWCNTs in solution. Then, the modified MWCNTs with different surface functional groups were incubated in 1.5 times SBF for different times to compare the effect of carboxyl, acylamino and hydroxyl group on calcium phosphate formation. The study involved various characterizations such as morphology observation, weight increase, chemical and crystal structures of deposited minerals at different soaking time points. In all cases, carbonated calcium-deficient hydroxyapatite (CDHA) was identified after 7 days immersion. The continuously growing mineral crystals would wrap MWCNTs into spherical composite particles ultimately. However, the rates of nucleation and crystal growth depended on the type of surface functional groups, in an order of COOH>CONH2>OH. And their different charge characteristics led to different Ca/P ratios in initially formed minerals. It revealed that acylamino group, which demonstrated the lowest Ca/P ratio in nucleation stage, was helpful to obtain c-axis preferentially oriented morphology resembling the HA structure in natural bone tissue. PMID:25454665

Li, Xiaoli; Lan, Jinle; Ai, Miao; Guo, Yougang; Cai, Qing; Yang, Xiaoping

2014-11-01

199

Using Text Analysis to Identify Functionally Coherent Gene Groups  

Microsoft Academic Search

The analysis of large-scale genomic information (such as sequence data or expression patterns) frequently involves grouping genes on the basis of common experimental features. Often, as with gene expression clustering, there are too many groups to easily identify the functionally relevant ones. One valuable source of information about gene function is the published literature. We present a method, neighbor divergence,

Soumya Raychaudhuri; Hinrich Schutze; Russ B. Altman

2002-01-01

200

Boron-containing amino carboxylic acid compounds and uses thereof  

DOEpatents

Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

Kabalka, George W. (Knoxville, TN); Srivastava, Rajiv R. (Knoxville, TN)

2000-03-14

201

Functional Analytic Psychotherapy for Interpersonal Process Groups: A Behavioral Application  

ERIC Educational Resources Information Center

This paper is an adaptation of Kohlenberg and Tsai's work, Functional Analytical Psychotherapy (1991), or FAP, to group psychotherapy. This author applied a behavioral rationale for interpersonal process groups by illustrating key points with a hypothetical client. Suggestions are also provided for starting groups, identifying goals, educating…

Hoekstra, Renee

2008-01-01

202

An efficient tandem approach for the synthesis of functionalized 2-pyridone-3-carboxylic acids using three-component reaction in aqueous media.  

PubMed

Novel analogs of 2-pyridone-3-carboxylic acids 4a-l have been prepared by the three-component reaction of 3-formyl chromone, Meldrum's acid, and primary amines in the presence of a catalytic amount of diammonium hydrogen phosphate in water. Good-to-high yields, easy work-up, and an environmentally friendly profile are the advantages of this method for the synthesis of 2-pyridone-3-carboxylic acid derivatives. PMID:24792225

Mehrparvar, Saber; Balalaie, Saeed; Rabbanizadeh, Mahnaz; Ghabraie, Elmira; Rominger, Frank

2014-08-01

203

The inhibitory effect of kakkonto, Japanese traditional (kampo) medicine, on brain penetration of oseltamivir carboxylate in mice with reduced blood-brain barrier function.  

PubMed

Oseltamivir phosphate (OP) is used to treat influenza virus infections. However, its use may result in central nervous system (CNS) adverse effects. In Japan, OP is used with Kampo formulations to improve clinical effectiveness. We evaluated the potential for using Kampo formulations to reduce CNS adverse effects by quantifying the CNS distribution of oseltamivir and its active metabolite oseltamivir carboxylate (OC) when administered with maoto and kakkonto. We administered lipopolysaccharide (LPS) by intraperitoneal injection to C57BL/6 mice to reduce blood-brain barrier function. Saline, maoto, and kakkonto were administered orally at the same time as LPS. OP was orally administered 4 hours after the last LPS injection and the migration of oseltamivir and OC was examined. Additionally, we examined the brain distribution of OC following intravenous administration. Changes in OC concentrations in the brain suggest that, in comparison to LPS-treated control mice, both Kampo formulations increased plasma levels of OC, thereby enhancing its therapeutic effect. Additionally, our findings suggest kakkonto may not only improve the therapeutic effect of oseltamivir but also reduce the risk of CNS-based adverse effects. Considering these findings, it should be noted that administration of kakkonto during periods of inflammation has led to increased OAT3 expression. PMID:25788966

Ohara, Kousuke; Oshima, Shinji; Fukuda, Nanami; Ochiai, Yumiko; Maruyama, Ayumi; Kanamuro, Aki; Negishi, Akio; Honma, Seiichi; Ohshima, Shigeru; Akimoto, Masayuki; Takenaka, Shingo; Kobayashi, Daisuke

2015-01-01

204

The Inhibitory Effect of Kakkonto, Japanese Traditional (Kampo) Medicine, on Brain Penetration of Oseltamivir Carboxylate in Mice with Reduced Blood-Brain Barrier Function  

PubMed Central

Oseltamivir phosphate (OP) is used to treat influenza virus infections. However, its use may result in central nervous system (CNS) adverse effects. In Japan, OP is used with Kampo formulations to improve clinical effectiveness. We evaluated the potential for using Kampo formulations to reduce CNS adverse effects by quantifying the CNS distribution of oseltamivir and its active metabolite oseltamivir carboxylate (OC) when administered with maoto and kakkonto. We administered lipopolysaccharide (LPS) by intraperitoneal injection to C57BL/6 mice to reduce blood-brain barrier function. Saline, maoto, and kakkonto were administered orally at the same time as LPS. OP was orally administered 4 hours after the last LPS injection and the migration of oseltamivir and OC was examined. Additionally, we examined the brain distribution of OC following intravenous administration. Changes in OC concentrations in the brain suggest that, in comparison to LPS-treated control mice, both Kampo formulations increased plasma levels of OC, thereby enhancing its therapeutic effect. Additionally, our findings suggest kakkonto may not only improve the therapeutic effect of oseltamivir but also reduce the risk of CNS-based adverse effects. Considering these findings, it should be noted that administration of kakkonto during periods of inflammation has led to increased OAT3 expression.

Ohara, Kousuke; Oshima, Shinji; Fukuda, Nanami; Ochiai, Yumiko; Maruyama, Ayumi; Kanamuro, Aki; Negishi, Akio; Honma, Seiichi; Ohshima, Shigeru; Akimoto, Masayuki; Takenaka, Shingo; Kobayashi, Daisuke

2015-01-01

205

Screening biochars for heavy metal retention in soil: role of oxygen functional groups.  

PubMed

Oxygen-containing carboxyl, hydroxyl, and phenolic surface functional groups of soil organic and mineral components play central roles in binding metal ions, and biochar amendment can provide means of increasing these surface ligands in soil. In this study, positive matrix factorization (PMF) was first employed to fingerprint the principal components responsible for the stabilization of heavy metals (Cu, Ni, Cd, Pb) and the release of selected elements (Na, Ca, K, Mg, S, Al, P, Zn) and the pH change in biochar amended soils. The PMF analysis indicated that effective heavy metal stabilization occurred concurrently with the release of Na, Ca, S, K, and Mg originating from soil and biochar, resulting in as much as an order or magnitude greater equilibrium concentrations relative to the soil-only control. In weathered acidic soil, the heavy metal (especially Pb and Cu) stabilization ability of biochar directly correlated with the amount of oxygen functional groups revealed by the O/C ratio, pH(pzc), total acidity, and by the (1)H NMR analysis. Equilibrium speciation calculation showed minor influence of hydrolysis on the total soluble metal concentration, further suggesting the importance of binding by surface ligands of biochar that is likely to be promoted by biochar-induced pH increase. PMID:21489689

Uchimiya, Minori; Chang, SeChin; Klasson, K Thomas

2011-06-15

206

The effect of different functional groups on the ligand-promoted dissolution of NiO and other oxide minerals  

NASA Astrophysics Data System (ADS)

Sets of homologous ligands were used to probe the dissolution of oxide minerals through experiments on bunsenite (NiO). The ligand sets have primary amine, hydroxyl, and carboxyl functional groups and form five-membered, bidentate, ring complexes at the mineral surface. A set of ligands that has only two metal-coordinating functional groups ( ox, en, gly) was compared with a set of larger, but similar, ligands ( nta, tren) that link three sets of functional groups with a tertiary amine. Experiments were also conducted with hydroxyl ligands ( tea), ammonia (NH 3), and ligands containing ring nitrogen ( pic). The dissolution rates of NiO(s) in the presence of these ligands established close consistency between metal detachment from a dissolving surface and the mechanisms of ligand exchange around dissolved Ni(II)-ligand complexes. The solution pH, however, is an important complicating factor. Metals compete with protons for ligand sites and this protonation changes the ligand structure and reactivity. Several types of protonation lead to different species at the mineral surface and this greatly complicates the rate laws for dissolution. The speciation will be particularly complicated for large-molecular-weight ligands with functional groups that protonate over a wide pH range. In terms of a rate law, protonation of ligand functional groups at the surface is distinct from protonation of structural oxygens at the mineral surface. These are different surface complexes (species) for the purpose of the rate law.

Ludwig, Christian; Devidal, Jean-Luc; Casey, William H.

1996-01-01

207

Identification and Characterization of Carboxyl Esterases of Gill Chamber-Associated Microbiota in the Deep-Sea Shrimp Rimicaris exoculata by Using Functional Metagenomics.  

PubMed

The shrimp Rimicaris exoculata dominates the fauna in deep-sea hydrothermal vent sites along the Mid-Atlantic Ridge (depth, 2,320 m). Here, we identified and biochemically characterized three carboxyl esterases from microbial communities inhabiting the R. exoculata gill that were isolated by naive screens of a gill chamber metagenomic library. These proteins exhibit low to moderate identity to known esterase sequences (?52%) and to each other (11.9 to 63.7%) and appear to have originated from unknown species or from genera of Proteobacteria related to Thiothrix/Leucothrix (MGS-RG1/RG2) and to the Rhodobacteraceae group (MGS-RG3). A library of 131 esters and 31 additional esterase/lipase preparations was used to evaluate the activity profiles of these enzymes. All 3 of these enzymes had greater esterase than lipase activity and exhibited specific activities with ester substrates (?356 U mg(-1)) in the range of similar enzymes. MGS-RG3 was inhibited by salts and pressure and had a low optimal temperature (30°C), and its substrate profile clustered within a group of low-activity and substrate-restricted marine enzymes. In contrast, MGS-RG1 and MGS-RG2 were most active at 45 to 50°C and were salt activated and barotolerant. They also exhibited wider substrate profiles that were close to those of highly active promiscuous enzymes from a marine hydrothermal vent (MGS-RG2) and from a cold brackish lake (MGS-RG1). The data presented are discussed in the context of promoting the examination of enzyme activities of taxa found in habitats that have been neglected for enzyme prospecting; the enzymes found in these taxa may reflect distinct habitat-specific adaptations and may constitute new sources of rare reaction specificities. PMID:25595762

Alcaide, María; Tchigvintsev, Anatoli; Martínez-Martínez, Mónica; Popovic, Ana; Reva, Oleg N; Lafraya, Álvaro; Bargiela, Rafael; Nechitaylo, Taras Y; Matesanz, Ruth; Cambon-Bonavita, Marie-Anne; Jebbar, Mohamed; Yakimov, Michail M; Savchenko, Alexei; Golyshina, Olga V; Yakunin, Alexander F; Golyshin, Peter N; Ferrer, Manuel

2015-03-15

208

Copper-Catalyzed Formal C?H Carboxylation of Aromatic Compounds with Carbon Dioxide through Arylaluminum Intermediates.  

PubMed

The C?H bond carboxylation of various aromatic compounds with CO2 was achieved by the deprotonative alumination with a mixed alkyl amido lithium aluminate compound iBu3 Al(TMP)Li followed by the NHC-copper-catalyzed carboxylation of the resulting arylaluminum species, which afforded the corresponding carboxylation products in high yield and high selectivity. In addition to benzene derivatives, heteroarenes such as benzofuran, benzothiophene, and indole derivatives are also suitable substrates. Functional groups such as Cl, Br, I, vinyl, amide, and CN could survive the reaction conditions. Some key reaction intermediates such as the copper aryl and isobutyl complexes and their carboxylation products were isolated and structurally characterized by X-ray crystallographic analyses, thus offering important information on the reaction mechanism. PMID:25491488

Ueno, Atsushi; Takimoto, Masanori; O, Wylie W N; Nishiura, Masayoshi; Ikariya, Takao; Hou, Zhaomin

2015-04-01

209

Breaking the Carboxyl Rule  

PubMed Central

A lysine instead of the usual carboxyl group is in place of the internal proton donor to the retinal Schiff base in the light-driven proton pump of Exiguobacterium sibiricum (ESR). The involvement of this lysine in proton transfer is indicated by the finding that its substitution with alanine or other residues slows reprotonation of the Schiff base (decay of the M intermediate) by more than 2 orders of magnitude. In these mutants, the rate constant of the M decay linearly decreases with a decrease in proton concentration, as expected if reprotonation is limited by the uptake of a proton from the bulk. In wild type ESR, M decay is biphasic, and the rate constants are nearly pH-independent between pH 6 and 9. Proton uptake occurs after M formation but before M decay, which is especially evident in D2O and at high pH. Proton uptake is biphasic; the amplitude of the fast phase decreases with a pKa of 8.5 ± 0.3, which reflects the pKa of the donor during proton uptake. Similarly, the fraction of the faster component of M decay decreases and the slower one increases, with a pKa of 8.1 ± 0.2. The data therefore suggest that the reprotonation of the Schiff base in ESR is preceded by transient protonation of an initially unprotonated donor, which is probably the ?-amino group of Lys-96 or a water molecule in its vicinity, and it facilitates proton delivery from the bulk to the reaction center of the protein. PMID:23696649

Balashov, Sergei P.; Petrovskaya, Lada E.; Imasheva, Eleonora S.; Lukashev, Evgeniy P.; Dioumaev, Andrei K.; Wang, Jennifer M.; Sychev, Sergey V.; Dolgikh, Dmitriy A.; Rubin, Andrei B.; Kirpichnikov, Mikhail P.; Lanyi, Janos K.

2013-01-01

210

Structural and functional characterization of the human NBC3 sodium/bicarbonate co-transporter carboxyl-terminal cytoplasmic domain.  

PubMed

The sodium bicarbonate co-transporter, NBC3, is expressed in a range of tissues including heart, skeletal muscle and kidney, where it modulates intracellular pH and bicarbonate levels. NBC3 has a three-domain structure: 67 kDa N-terminal cytoplasmic domain, 57 kDa membrane domain and an 11 kDa C-terminal cytoplasmic domain (NBC3Ct). The role of C-terminal domains as important regulatory regions is an emerging theme in bicarbonate transporter physiology. This study determined the functional role of human NBC3Ct and characterized its structure using biochemical techniques. The NBC3 C-terminal domain deletion mutant (NBC3DeltaCt) had only 12 +/- 5% of wild-type transport activity. This low activity is attributable to low steady-state levels of NBC3DeltaCt and almost complete retention inside the cell, as assessed by immunoblots and confocal microscopy, suggesting a role of NBC3Ct in cell surface processing. To characterize the structure of NBC3Ct, amino acids 1127-1214 of NBC3 were expressed as a GST fusion protein (GST.NBC3Ct). GST.NBC3Ct was cleaved with PreScission Protease and native NBC3Ct could be purified to 94% homogeneity. Gel permeation chromatography and sedimentation velocity ultracentrifugation of NBC3Ct indicated a Stokes radius of 26 and 30 angstroms, respectively. Shape modelling revealed NBC3Ct as a prolate shape with long and short axes of 19 and 2 nm, respectively. The circular dichroism spectra of NBC3Ct did not change over the pH 6.2-7.8 range, which rules out a large change of secondary structure as a component of pH sensor function. Proteolysis with trypsin and chymotrypsin identified two proteolytically sensitive regions, R1129 and K1183-K1186, which could form protein interaction sites. PMID:14578046

Loiselle, Frederick B; Jaschke, Paul; Casey, Joseph R

2003-01-01

211

The Luminosity Function of Galaxies in Compact Groups  

E-print Network

From R-band images of 39 Hickson compact groups (HCGs), we use galaxy counts to determine a luminosity function extending to M_R=-14.0, approximately two magnitudes deeper than previous compact group luminosity functions. We find that a single Schechter function is a poor fit to the data, so we fit a composite function consisting of separate Schechter functions for the bright and faint galaxies. The bright end is best fit with M^*=-21.6 and alpha=-0.52 and the faint end with M^*=-16.1 and alpha=-1.17. The decreasing bright end slope implies a deficit of intermediate luminosity galaxies in our sample of HCGs and the faint end slope is slightly steeper than that reported for earlier HCG luminosity functions. Furthermore, luminosity functions of subsets of our sample reveal more substantial dwarf populations for groups with x-ray halos, groups with tidal dwarf candidates, and groups with a dominant elliptical or lenticular galaxy. Collectively, these results support the hypothesis that within compact groups, the initial dwarf galaxy population is replenished by "subsequent generations" formed in the tidal debris of giant galaxy interactions.

Sally D. Hunsberger; Jane C. Charlton; Dennis Zaritsky

1998-05-13

212

Understanding biocatalyst inhibition by carboxylic acids.  

PubMed

Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance. PMID:24027566

Jarboe, Laura R; Royce, Liam A; Liu, Ping

2013-01-01

213

The luminosity function of galaxies in compact groups  

NASA Technical Reports Server (NTRS)

We use counts of faint galaxies in the regions of compact groups to extend the study of the luminosity function of galaxies in compact groups to absolute magnitudes as faint as M(sub B) = -14.5 + 5 log h. We find a slope of the faint end of the luminosity function of approximately alpha = -0.8, with a formal uncertainty of 0.15. This slope is not significantly different from that found for galaxies in other environments. Our results do not support previous suggestions of a dramatic underabundance of intrinsically faint galaxies in compact groups, which were based on extrapolations from fits at brighter magnitudes. The normal faint-end slope of the luminosity function in compact groups is in agreement with previous evidence that most galaxies in compact groups have not been dramatically affected by recent merging.

Ribeiro, A. L. B.; De Carvalho, R. R.; Zepf, S. E.

1994-01-01

214

Department and function: Group Leader, Laboratory of Molecular Immunology; Clinical  

E-print Network

Department and function: Group Leader, Laboratory of Molecular Immunology; Clinical Immunology in Immunology, Hannover Medical School Positions: 1994-1996: Research Associate, Dept. of Clinical Immunology, Hannover Medical School 1994: Visiting Scientist, Dept. of Immunology, University of Utrecht

Manstein, Dietmar J.

215

PLANT FUNCTIONAL GROUP DIVERSITY AS A MECHANISM FOR INVASION RESISTANCE  

Technology Transfer Automated Retrieval System (TEKTRAN)

A commonly cited mechanism for invasion resistance is that diverse plant assemblages use resources more completely through maximum niche occupation. Our research investigates the ability of plant functional groups in resisting invasion by a nonindigenous species, Centaurea maculosa (spotted knapwee...

216

Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes  

SciTech Connect

The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

Starr, J.N.; King, C.J.

1991-11-01

217

Intracellular localization of a group II chaperonin indicates a membrane-related function  

NASA Technical Reports Server (NTRS)

Chaperonins are protein complexes that are believed to function as part of a protein folding system in the cytoplasm of the cell. We observed, however, that the group II chaperonins known as rosettasomes in the hyperthermophilic archaeon Sulfolobus shibatae, are not cytoplasmic but membrane associated. This association was observed in cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C by using immunofluorescence microscopy and in thick sections of rapidly frozen cells grown at 76 degrees C by using immunogold electron microscopy. We observed that increased abundance of rosettasomes after heat shock correlated with decreased membrane permeability at lethal temperature (92 degrees C). This change in permeability was not seen in cells heat-shocked in the presence of the amino acid analogue azetidine 2-carboxylic acid, indicating functional protein synthesis influences permeability. Azetidine experiments also indicated that observed heat-induced changes in lipid composition in S. shibatae could not account for changes in membrane permeability. Rosettasomes purified from cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C bind to liposomes made from either the bipolar tetraether lipids of Sulfolobus or a variety of artificial lipid mixtures. The presence of rosettasomes did not significantly change the transition temperature of liposomes, as indicated by differential scanning calorimetry, or the proton permeability of liposomes, as indicated by pyranine fluorescence. We propose that these group II chaperonins function as a structural element in the natural membrane based on their intracellular location, the correlation between their functional abundance and membrane permeability, and their potential distribution on the membrane surface.

Trent, Jonathan D.; Kagawa, Hiromi K.; Paavola, Chad D.; McMillan, R. Andrew; Howard, Jeanie; Jahnke, Linda; Lavin, Colleen; Embaye, Tsegereda; Henze, Christopher E.

2003-01-01

218

Surface etching of methacrylic microparticles via basic hydrolysis and introduction of functional groups for click chemistry.  

PubMed

Controlled basic hydrolysis of poly(methyl methacrylate-co-ethylene glycol dimethacrylate) P(MMA-co-EGDMA) microparticles with a diameter d50=6 ?m led to high densities of carboxylic groups at the particles' surface of up to 1.288 ?eq g(-1) (equivalent to 1.277 ?mol m(-2)). The microparticles' core has not been altered by this surface activation procedure as seen by fluorescent staining. The kinetics of the hydrolysis reaction was investigated via electrophoretic light scattering and particle charge detection employing polycation titration under shear condition. The activated microparticle's surface was subsequently exploited in carbodiimide-mediated coupling reactions using a variety of molecular reactants, that is, 11-azido-3,6,9-trioxaundecan-1-amine, cysteamine, propargylamine, and fluoresceinamine, thus enabling the introduction of chemically reactive moieties such as azides, thiols, and alkynes. Fluorescent staining of the particles' surface successfully demonstrated the versatile applications of surface functionalized microparticles via copper-catalyzed huisgen cycloaddition. Carrying on this two-step procedure in a controlled manner provides an excellent way for relatively simple but highly effective surface functionalization. PMID:23481515

Speyerer, Christian; Borchers, Kirsten; Hirth, Thomas; Tovar, Günter E M; Weber, Achim

2013-05-01

219

The Eisentein group and the pseudo hyperbolic functions  

E-print Network

We review the teory of the pseudo-iperbolic functions on the basis of an algebraic point of view which employs the Eisenstein group. We frame the teory within the general context of the number decomposition and discuss the importance of these functions in the theory of the generalized Fourier transforms

G. Dattoli; M. Migliorati; P. E. Ricci

2010-10-08

220

Recursive Method for Nekrasov partition function for classical Lie groups  

E-print Network

Nekrasov partition function for the supersymmetric gauge theories with general Lie groups is not so far known in a closed form while there is a definition in terms of the integral. In this paper, as an intermediate step to derive it, we give a recursion formula among partition functions, which can be derived from the integral. We apply the method to a toy model which reflects the basic structure of partition functions for BCD type Lie groups and obtained a closed expression for the factor associated with the generalized Young diagram.

Satoshi Nakamura; Futoshi Okazawa; Yutaka Matsuo

2014-11-27

221

Application of Lie group analysis to functional differential equations  

E-print Network

In the present paper the classical point symmetry analysis is extended from partial differential to functional differential equations with functional derivatives. In order to perform the group analysis and deal with the functional derivatives we extend the quantities such as infinitesimal transformations, prolongations and invariant solutions. For the sake of example the procedure is applied to the continuum limit of the heat equation. The method can further lead to significant applications in statistical physics and fluid dynamics.

Martin Oberlack; Marta Waclawczyk

2006-10-27

222

Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions.  

PubMed

The infrared spectra of six aqueous carboxylate anions have been calculated at the M05-2X/cc-pVTZ level of theory with the SMD solvent model, and validated against experimental data from the literature over the region of 1700 cm(-1) to 1250 cm(-1); this region corresponds to the stretching modes of the carboxylate group, and is often interrogated when probing bonding of carboxylates to other species and surfaces. The anions studied here were formate, acetate, oxalate, succinate, glutarate and citrate. For the lowest energy conformer of each anion, the carboxylate moiety antisymmetric stretching peak was predicted with a mean signed error of only 4 cm(-1) using the SMD solvent model, while the symmetric peak was slightly overestimated. Performing calculations in vacuum and scaling was found to generally over-predict the antisymmetric vibrational frequencies and under predict the symmetric peak. Different conformers of the same anion were found to have only slightly different spectra in the studied region and the inclusion of explicit water molecules was not found to significantly change the calculated spectra when the implicit solvent model is used. Overall, the use of density functional theory in conjunction with an implicit solvent model was found to result in infra-red spectra that are the best reproduction of the features found experimentally for the aqueous carboxylate ions in the important 1700 cm(-1) to 1250 cm(-1) region. The development of validated model chemistries for simulating the stretching modes of aqueous carboxylate ions will be valuable for future studies that investigate how carboxylate anions complex with multivalent metal cations and related species in solution. PMID:25048288

Sutton, Catherine C R; Franks, George V; da Silva, Gabriel

2015-01-01

223

Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions  

NASA Astrophysics Data System (ADS)

The infrared spectra of six aqueous carboxylate anions have been calculated at the M05-2X/cc-pVTZ level of theory with the SMD solvent model, and validated against experimental data from the literature over the region of 1700 cm-1 to 1250 cm-1; this region corresponds to the stretching modes of the carboxylate group, and is often interrogated when probing bonding of carboxylates to other species and surfaces. The anions studied here were formate, acetate, oxalate, succinate, glutarate and citrate. For the lowest energy conformer of each anion, the carboxylate moiety antisymmetric stretching peak was predicted with a mean signed error of only 4 cm-1 using the SMD solvent model, while the symmetric peak was slightly overestimated. Performing calculations in vacuum and scaling was found to generally over-predict the antisymmetric vibrational frequencies and under predict the symmetric peak. Different conformers of the same anion were found to have only slightly different spectra in the studied region and the inclusion of explicit water molecules was not found to significantly change the calculated spectra when the implicit solvent model is used. Overall, the use of density functional theory in conjunction with an implicit solvent model was found to result in infra-red spectra that are the best reproduction of the features found experimentally for the aqueous carboxylate ions in the important 1700 cm-1 to 1250 cm-1 region. The development of validated model chemistries for simulating the stretching modes of aqueous carboxylate ions will be valuable for future studies that investigate how carboxylate anions complex with multivalent metal cations and related species in solution.

Sutton, Catherine C. R.; Franks, George V.; da Silva, Gabriel

2015-01-01

224

Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets  

Microsoft Academic Search

We describe an approach for characterizing selective binding between oppositely charged ionic functional groups under biologically relevant conditions. Relative shifts in K-shell x-ray absorption spectra of aqueous cations and carboxylate anions indicate the corresponding binding strengths via perturbations of carbonyl antibonding orbitals. XAS spectra measured for aqueous formate and acetate solutions containing lithium, sodium, and potassium cations reveal monotonically stronger

Janel S. Uejio; Craig P. Schwartz; Andrew M. Duffin; Walter S. Drisdell; Ronald C. Cohen; Richard J. Saykally

2008-01-01

225

[Macrozoobenthos functional groups in intertidal flat of northwest Jiaozhou Bay].  

PubMed

Based on the survey of macrozoobenthos at 35 locations of 7 sections in the intertidal flat of northwest Jiaozhou Bay in February, May, August, and November 2009, three zones including high tidal zone (A), mid tidal zone (B, C, and D), and low tidal zone (E) were selected to study the functional groups of macrozoobenthos in the flat. A total of 71 macrozoobenthos species were recorded, most of which were of mollusk (31 species), polychaete (20 species), and crustacean (14 species). The species number in A, B, C, D, and E was 26, 33, 35, 38, and 31, respectively. According to their food preferences, the macrozoobenthos were classified into 4 functional groups, i. e., planktonphagous, carnivorous, omnivorous, and detritivorous. The percentage of the species number of each functional group in the total species number of macrozoobenthos was in the order of carnivorous > planktophagous > detritivorous > omnivorous. Carnivorous group had the highest species diversity index, while omnivorous group had the lowest one. Overall, the species richness index, evenness index, and species diversity index were higher in mid tidal zone and lower in high and low tidal zones. The present study showed that the distribution of macrozoobenthos functional groups varied with the environment of tidal zones, being an integrative reflection of their habitat conditions. PMID:22007469

Xin, Jun-hong; Ren, Yi-ping; Xu, Bin-duo; Zhang, Chong-liang; Xue, Ying; Ji, Yu-peng

2011-07-01

226

Single or functionalized fullerenes interacting with heme group  

SciTech Connect

The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (?CH{sub 3}, ?COOH, ?NH{sub 2}, ?OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, CEP 65080-805, São Luís - MA (Brazil)

2014-09-15

227

Carboxylic acid sorption regeneration process  

DOEpatents

Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

King, C.J.; Poole, L.J.

1995-05-02

228

A general method for preparing bridged organosilanes with pendant functional groups and functional mesoporous organosilicas.  

PubMed

New organosilica precursors containing two triethoxysilyl groups suitable for the organosilica material formation through the sol-gel process were designed and synthesised. These precursors display alkyne or azide groups for attaching targeted functional groups by copper-catalysed azide-alkyne cycloaddition (CuAAC) and can be used for the preparation of functional organosilicas following two strategies: 1)?the functional group is first appended by CuAAC under anhydrous conditions, then the functional material is prepared by the sol-gel process; 2)?the precursor is first subjected to the sol-gel process, producing porous, clickable bridged silsesquioxanes or periodic mesoporous organosilicas (PMOs), then the desired functional groups are attached by means of CuAAC. Herein, we show the feasibility of both approaches. A series of bridged bis(triethoxysilane)s with different pending organic moieties was prepared, demonstrating the compatibility of the first approach with many functional groups. In particular, we demonstrate that organic functional molecules bearing only one derivatisation site can be used to produce bridged organosilanes and bridged silsesquioxanes. In the second approach, clickable PMOs and porous bridged silsesquioxanes were prepared from the alkyne- or azide-containing precursors, and thereafter, functionalised with complementary model azide- or alkyne-containing molecules. These results confirmed the potential of this approach as a general methodology for preparing functional organosilicas with high loadings of functional groups. Both approaches give rise to a wide range of new functional organosilica materials. PMID:25044077

Bürglová, Kristýna; Noureddine, Achraf; Hoda?ová, Jana; Toquer, Guillaume; Cattoën, Xavier; Wong Chi Man, Michel

2014-08-11

229

Functional equations and uniformity for local zeta functions of nilpotent groups  

Microsoft Academic Search

We investigate in this paper the zeta function ?,p(s) associated to a nilpotent group ? introduced in (GSS). This zeta function counts the subgroups H ? whose profinite completion ˆ H is isomorphic to the profinite completion ˆ ?. By representing ?,p (s) as an integral with respect to the Haar measure on the algebraic automorphism group G of the

Marcus Du Sautoy; Alexander Lubotzky

1996-01-01

230

Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes  

SciTech Connect

Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate counterparts of similar thickness (Nafion{trademark} 111). Additionally, nitric acid separation efficiencies ({alpha}) were approximately one order of magnitude higher for the carboxylate solution cast films when compared to Nafion{trademark} 111. The second phase of our work included the generation of thin carboxylate films made by the chemical synthesis perfluoro sulfonate and mixed sulfonate/carboxylate polymers from a perfluoro sulfonyl fluoride precursor, the characterization of the newly generated material, and a study of the transport characteristics of these membranes. Transport studies consisted of the dehydration of nitric acid feeds by pervaporation. In addition, the initial hypothesis was expanded to include demonstration that transmembrane flux and separation efficiencies are a function of the ratio between sulfonate and carboxylate terminated side chains of the perfluoro ionomer. Investigations demonstrated the ability to generate in- house films with varying sulfonate/carboxylate concentrations from commercially available perfluoro sulfonyl fluoride material, and showed that the converted films could be characterized using Fourier transform infrared (FTIR) and x-ray fluorescence (XRF) spectroscopy. Finally, the mixed films where subjected to nitric acid dehydration transport tests and a relationship was found to exist between sulfonate/carboxylate pendant chain ratio and both flux and water separation capability. In summary, experimental results confirmed that, when compared to Nafion 111{trademark}, the mixed film's bulk fluxes decrease by approximately three orders of magnitude and the water separation factor increases by as much as two orders of magnitude as the carboxylate side-chain content was increased from 0 (pure sulfonate film) to 53 mole%, supporting the hypothesis given for this effort. It was observed that the water selectivity improved for both the solution cast perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films when judged against similar perfluoro sulfonate materials. Of great benefit was that during the investigation a number of research tools w

R.L. Ames

2004-09-01

231

Species, functional groups, and thresholds in ecological resilience.  

PubMed

The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species' morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although ecological resilience is reduced. We propose that the mechanisms responsible for shaping discontinuous distributions of body mass and the nonrandom distribution of functions may also shape species losses such that local extinctions will be nonrandom with respect to the retention and distribution of functions and that the distribution of function within and across aggregations will be conserved despite extinctions. PMID:22443132

Sundstrom, Shana M; Allen, Craig R; Barichievy, Chris

2012-04-01

232

Species, functional groups, and thresholds in ecological resilience  

USGS Publications Warehouse

The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species’ morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although ecological resilience is reduced. We propose that the mechanisms responsible for shaping discontinuous distributions of body mass and the nonrandom distribution of functions may also shape species losses such that local extinctions will be nonrandom with respect to the retention and distribution of functions and that the distribution of function within and across aggregations will be conserved despite extinctions.

Sundstrom, Shana M.; Allen, Craig R.; Barichievy, Chris

2012-01-01

233

Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids  

SciTech Connect

In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid. Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.

Kawamura, K.; Okuwaki, A.; Verheyen, T.; Perry, G.J. [Tohoku University, Miyagi (Japan). Graduate School of Environmental Studies

2006-02-15

234

Pelagic functional group modeling: Progress, challenges and prospects  

Microsoft Academic Search

In this paper, we review the state of the art and major challenges in current efforts to incorporate biogeochemical functional groups into models that can be applied on basin-wide and global scales, with an emphasis on models that might ultimately be used to predict how biogeochemical cycles in the ocean will respond to global warming. We define the term “biogeochemical

Raleigh R. Hood; Edward A. Laws; Robert A. Armstrong; Nicholas R. Bates; Christopher W. Brown; Craig A. Carlson; Fei Chai; Scott C. Doney; Paul G. Falkowski; Richard A. Feely; Marjorie A. M. Friedrichs; Michael R. Landry; J. Keith Moore; David M. Nelson; Tammi L. Richardson; Baris Salihoglu; Markus Schartau; Dierdre A. Toole; Jerry D. Wiggert

2006-01-01

235

Langmuir monolayers from functionalized amphiphiles with epoxy terminal groups  

E-print Network

Langmuir monolayers from functionalized amphiphiles with epoxy terminal groups Kirsten L. Gensona June 2005 Abstract We studied Langmuir and Langmuir­Blodgett monolayers from amphiphiles applications [1­4]. Among them, photo- responsive amphiphiles possess the possibility of forming ordered, two

Vakni, David

236

Quantum groups and functional relations for lower rank  

E-print Network

A detailed construction of the universal integrability objects related to the integrable systems associated with the quantum group $\\mathrm U_q(\\mathcal L(\\mathfrak{sl}_2))$ is given. The full proof of the functional relations in the form independent of the representation of the quantum group on the quantum space is presented. The case of the general gradation and general twisting is treated. The specialization of the universal functional relations to the case when the quantum space is the state space of a discrete spin chain is described. This is a degression of the corresponding consideration for the case of the quantum group $\\mathrm U_q(\\mathcal L(\\mathfrak{sl}_3))$ with an extensions to the higher spin case.

Kh. S. Nirov; A. V. Razumov

2014-12-23

237

Characterization of Oxygen Containing Functional Groups on Carbon Materials with Oxygen K-edge X-ray Absorption Near Edge Structure Spectroscopy  

SciTech Connect

Surface functional groups on carbon materials are critical to their surface properties and related applications. Many characterization techniques have been used to identify and quantify the surface functional groups, but none is completely satisfactory especially for quantification. In this work, we used oxygen K-edge X-ray absorption near edge structure (XANES) spectroscopy to identify and quantify the oxygen containing surface functional groups on carbon materials. XANES spectra were collected in fluorescence yield mode to minimize charging effect due to poor sample conductivity which can potentially distort XANES spectra. The surface functional groups are grouped into three types, namely carboxyl-type, carbonyl-type, and hydroxyl-type. XANES spectra of the same type are very similar while spectra of different types are significantly different. Two activated carbon samples were analyzed by XANES. The total oxygen contents of the samples were estimated from the edge step of their XANES spectra, and the identity and abundance of different functional groups were determined by fitting of the sample XANES spectrum to a linear combination of spectra of the reference compounds. It is concluded that oxygen K-edge XANES spectroscopy is a reliable characterization technique for the identification and quantification of surface functional groups on carbon materials.

K Kim; P Zhu; L Na; X Ma; Y Chen

2011-12-31

238

The SLC13 gene family of sodium sulphate\\/carboxylate cotransporters  

Microsoft Academic Search

The SLC13 gene family consist of five sequence-related members that have been identified in a variety of animals, plants, yeast and bacteria. Proteins encoded by these genes are divided into two functionally unrelated groups: the Na +-sulphate (NaS) cotransporters and the Na +-carboxylate (NaC) cotransporters. Members of this family include the renal Na +-dependent inorganic sulphate transporter-1 (NaSi-1, SLC13A1), the

Daniel Markovich; Heini Murer

2004-01-01

239

Thermodynamic properties of furan-2-carboxylic and 3-(2-furyl)-2-propenoic acids  

NASA Astrophysics Data System (ADS)

The standard enthalpies of combustion, formation, fusion, and sublimation of crystalline furan-2-carboxylic and 3-(2-furyl)-2-propenoic acids are determined by experimental methods and recalculated to 298 K. The possibility of using additive calculation schemes based on the principle of group contributions to calculate the standard enthalpies of vaporization and formation of substances with similar combinations of functional fragments in the gas phase is analyzed.

Sobechko, I. B.; Van-Chin-Syan, Yu. Ya.; Kochubei, V. V.; Prokop, R. T.; Velychkivska, N. I.; Gorak, Yu. I.; Dibrivnyi, V. N.; Obushak, M. D.

2014-12-01

240

Heterogeneous Catalyst Design by Multiple Functional Group Positioning in Organic-Inorganic Materials: On the Route to Analogs of Multifunctional Enzymes  

NASA Astrophysics Data System (ADS)

Enzymes catalyze reactions with high rates and selectivities through the sophisticated use of cooperative interactions between neighboring functional groups within an active site. For example, the “catalytic triad” in proteases is capable of accelerating the cleavage of amides by 1011 through neighboring interactions between carboxylic acid, imidazole, and alcohol sites. Guided by these principles, heterogeneous catalysts having two different types of functional groups have been prepared, and the cooperative behavior have been demonstrated with catalytic reactions in the liquid phase. Cooperative interactions between thiols and sulfonic acids and between incompatible acid and base groups are achievable with rates and selectivities that are superior to homogeneous systems, especially for the latter case wherein there is no reactivity.

Margelefsky, Eric L.; Zeidan, Ryan K.; Davis, Mark E.

241

Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes  

SciTech Connect

The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, –CH{sub 2}, groups and the other one is composed of one, two, or three –CH{sub 2} groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, –COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au–S bonds localized at the molecule-electrode interfaces and the electronic coupling between –COOH and S dominate the low-bias junction conductance. Following the increase of the number of the –CH{sub 2} groups, the coupling between –COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

Li, Yang; Tu, Xingchen; Wang, Minglang; Wang, Hao; Hou, Shimin, E-mail: smhou@pku.edu.cn [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Sanvito, Stefano [School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2 (Ireland)

2014-11-07

242

Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia  

PubMed Central

Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ?1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10?11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10?4), excitability (P=9.0 × 10?4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10?3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

2012-01-01

243

The UAT Groups Project: HI Deficiency and Mass Function for Galaxies in Groups  

NASA Astrophysics Data System (ADS)

We present the HI deficiencies of galaxies in a sample of ten well-studied groups that form a subset of the Arecibo Legacy Fast-ALFA (ALFALFA) survey. We expect the HI content of galaxies in groups to reflect the strong galaxy-galaxy interactions that are likely to take place in these dense, but low velocity dispersion environments; HI gas may, for example, be tidally drawn out, merged with other galaxies, or destroyed in starbursts. We find that, despite strong morphological segregation (with early-type galaxies dominating the centers of the groups) , most late-type massive galaxies near the center exhibit only slightly depressed levels of HI relative to late-type galaxies in the outskirts. Similarly, the HI mass function for these groups is consistent with that for the full ALFALFA survey, despite the clear difference in galaxy populations across environments.

Egner, Joanna; Crone-Odekon, M.; Raskin, M.; Undergraduate ALFALFA Team

2014-01-01

244

Polycomb Group Proteins Are Key Regulators of Keratinocyte Function  

Microsoft Academic Search

The Polycomb group (PcG) proteins are epigenetic suppressors of gene expression that function through modification of histones to change chromatin structure and modulate gene expression and cell behavior. Recent studies show that PcG proteins are expressed in epidermis, that their levels change during differentiation and in disease states, and that PcG expression is regulated by agents that influence cell proliferation

Richard L Eckert; Gautam Adhikary; Ellen A Rorke; Yap Ching Chew; Sivaprakasam Balasubramanian

2011-01-01

245

Grazing effects on plant functional group diversity in Mediterranean shrublands  

Microsoft Academic Search

Grazing is one of the prevalent human activities that even today are taking place inside protected areas with direct or indirect\\u000a effects on ecosystems. In this study we analyzed the effects of grazing on plant species diversity, plant functional group\\u000a (PFG) diversity and community composition of shrublands. We analyzed plant diversity data from 582 sampling plots located\\u000a in 66 protected

Alexandra D. Papanikolaou; Nikolaos M. Fyllas; Antonios D. Mazaris; Panayiotis G. Dimitrakopoulos; Athanasios S. Kallimanis; John D. Pantis

246

Correlation functions for pairs and groups of galaxies  

NASA Technical Reports Server (NTRS)

There are many studies on the correlation functions of galaxies, of clusters of galaxies, even of superclusters (e.g., Groth and Peebles 1977; Davies and Peebles 1983; Kalinkov and Kuneva 1985, 1986; Bahcall 1988 and references therein) but not so many on pairs and groups of galaxies. Results of the calculations of two-point correlation fuctions for some catalogs of pairs and groups of galaxies are given. It is assumed that the distances to pairs and groups of galaxies are given by their mean redshifts according to R = sigma (sup n, sub i-1) V sub i/nH (sub 0), where n is the number of galaxies in the system and H sub 0 = 100 km s(exp -1) Mpc(exp -1).

Kalinkov, M.; Kuneva, I.

1990-01-01

247

Effect of surface groups on the electrocatalytic behaviour of Pt-Fe-Co alloy-dispersed carbon electrodes in the phosphoric acid fuel cell  

NASA Astrophysics Data System (ADS)

Effect of surface group on the electrocatalytic behaviour of 10 wt.% Pt-Fe-Co alloy-dispersed carbon (Pt-Fe-Co/C) electrode has been investigated as functions of applied potential and duration in 85% H 3PO 4 solution of 145°C, using Fourier transform infrared (FTIR) spectroscopy, combined with ac-impedance spectroscopy, potentiostatic current transient technique, and potentiodynamic polarization experiment. It was shown from FTIR spectra that surface group formed in this work mainly comprises carboxyl group and that the formation potential of carboxyl group lies between 600 and 700 mV RHE. From increase of charge transfer resistance ( Rct), and decrease of electrocatalytic activity for oxygen reduction with immersion time, it is suggested that above the formation potential of carboxyl group, further formation of carboxyl group on the carbon support around the catalyst particle reduces active surface area of the catalyst particle with immersion time. On the other hand, below the formation potential, dissolution of carboxyl group previously formed on the carbon support raises active surface area of the catalyst particle. In the present study, relationship between electrocatalytic aspect of the electrode, and the amount of carboxyl group formed on the carbon support around the catalyst particle was well discussed with a schematic illustration. The illustrative representation is underlain by formation on and dissolution from the catalyst particle of carboxyl group which cause the rise and fall in circumferential coverage of carboxyl group, respectively and hence the reduction and elevation in active surface area of the catalyst particle.

Pyun, Su-Il; Lee, Seung-Bok

248

The size of hydroxyl groups in solution and the changes in size associated with the ionization of phenolic, carboxylic and amino groups in phenolic quaternary ammonium salts, nicotine and some amino acids: possible implications for drug-water and drug-receptor interactions.  

PubMed Central

Size in solution can be expressed either as the apparent molal volume at infinite dilution (phi 0v) amd the concentration parameter (j) or as the partial molal volume of the solute at infinite dilution (V0(2)) and the concentration parameter for the solute or solvent (qs or qw). Although calculated differently, these are derived from the same results and are equivalent. From measurement with phenolic quaternary ammonium salts, including compounds with high nicotine-like activity, the apparent size of the hydroxyl group in water is small and variable. Phenolic groups are slightly larger than alcoholic groups, which should be better hydrogen donors. By measuring the volume change associated with ionisation it is possible to measure the size of charged groups such as phenate and carboxylate; these are much smaller than phenolic and carboxyl. Ammonium groups, however, are only slightly smaller than the corresponding amines. The zwitterion forms of amino acids are associated with a minimum in volume but the volume changes increase with chain length from glycine to gamma-aminobutyric acid. Groups separated by less than this distance interact in their effects on water. Decreases in volume or unexpectedly small increments in apparent molal volume represent decreases in entropy which must be taken into account in drug-water-receptor interactions. Although they may be offset by enthalpy changes, they should favour binding because there is more scope for an increase in entropy. This might explain the association of the small apparent size in water of the hydroxyl group in many compounds with its effects of their affinity for receptors. PMID:7470734

Barlow, R. B.

1980-01-01

249

Dynamical correlation functions using the density matrix renormalization group  

NASA Astrophysics Data System (ADS)

The density matrix renormalization group (DMRG) method allows for very precise calculations of ground state properties in low-dimensional strongly correlated systems. We investigate two methods to expand the DMRG to calculations of dynamical properties. In the Lanczos vector method the DMRG basis is optimized to represent Lanczos vectors, which are then used to calculate the spectra. This method is fast and relatively easy to implement, but the accuracy at higher frequencies is limited. Alternatively, one can optimize the basis to represent a correction vector for a particular frequency. The correction vectors can be used to calculate the dynamical correlation functions at these frequencies with high accuracy. By separately calculating correction vectors at different frequencies, the dynamical correlation functions can be interpolated and pieced together from these results. For systems with open boundaries we discuss how to construct operators for specific wave vectors using filter functions.

Kühner, Till D.; White, Steven R.

1999-07-01

250

The numerically optimized regulator and the functional renormalization group  

NASA Astrophysics Data System (ADS)

We aim to optimize the functional form of the compactly supported smooth (CSS) regulator within the functional renormalization group (RG), in the framework of bosonized two-dimensional quantum electrodynamics (QED2) and of the three-dimensional O(N = 1) scalar field theory in the local potential approximation (LPA). The principle of minimal sensitivity (PMS) is used for the optimization of the CSS regulator, recovering all the major types of regulators in appropriate limits. Within the investigated class of functional forms, a thorough investigation of the CSS regulator, optimized with two different normalizations within the PMS method, confirms that the functional form of a regulator first proposed by Litim is optimal within the LPA. However, Litim’s exact form leads to a kink in the regulator function. A form of the CSS regulator, numerically close to Litim’s limit while maintaining infinite differentiability, remains compatible with the gradient expansion to all orders. A smooth analytic behavior of the regulator is ensured by a small, but finite value of the exponential fall-off parameter in the CSS regulator. Consequently, a compactly supported regulator, in a parameter regime close to Litim’s optimized form, but regularized with an exponential factor, appears to have favorable properties and could be used to address the scheme dependence of the functional RG, at least within the approximations employed in the studies reported here.

Márián, I. G.; Jentschura, U. D.; Nándori, I.

2014-05-01

251

Carboxylated poly(glycerol methacrylate)s for doxorubicin delivery.  

PubMed

Poly(glycerol methacrylate)s (PGOHMAs) were successfully synthesized via the hydrolysis of the epoxy groups on linear and/or star-shaped poly(glycidyl methacrylate)s (PGMAs). Further modification of the hydroxyl groups on PGOHMAs with succinic anhydride (SA) or 1,2-cyclohexanedicarboxylic anhydride (CDA) resulted in a new type of polyacid polymer, namely, PGOHMACOOH for short, which was then employed to prepare pH-sensitive assemblies using dialysis method. The carboxylated polymers were quite effective in the encapsulation of doxorubicin hydrochloride (DOX) by electrostatic interaction. Compared with poly(acrylic acid) (PAA), the star-shaped PGOHMA modified with CDA exhibited higher encapsulation efficiency and loading capacity, as well as better pH-responsive release profile. Scanning electron microscope images showed that the polymeric nanoparticles before and after encapsulation of DOX were spherical in shape. The encapsulation efficiency, loading capacity and release properties of these polymers were found to rely on their backbone architectures and the type of carboxylated functionalities. By fine-tuning these factors to achieve optimal properties, such type of polymeric materials holds promise as an attractive and effective drug delivery vehicle. PMID:22085680

Ma, Yanan; Gao, Hui; Gu, Wenxing; Yang, Ying-Wei; Wang, Yinong; Fan, Yunge; Wu, Guolin; Ma, Jianbiao

2012-01-23

252

Conservation of the carboxyl terminal epitope of myelin proteolipid protein in the tetrapods and lobe-finned fish.  

PubMed

Immunochemical analysis of the myelin proteolipid protein (PLP) has identified the carboxyl terminal amino acid phenylalanine 276 as the only PLP epitope conserved between the PLP components of rat and lungfish, species representing the phylogenetically most widely separated groups that synthesise typical CNS myelin. Immunoblotting using a rabbit antiserum raised against the carboxyl terminal sequence of rat PLP (residues 257-276) identified this epitope on the PLP components of both tetrapod (rat, chicken, lizard, and frog) and lobe-finned fish (coelacanth and lungfish) CNS myelin, including the DM-20 isoform of PLP, which is restricted to rat, chicken, and lizard CNS myelin. The conservation of the carboxyl terminus of PLP during evolution suggests this structure may play an important role in maintaining the organisation and function of PLP in the myelin membrane. PMID:1690268

Linington, C; Waehneldt, T V

1990-04-01

253

pCloDF13-encoded bacteriocin release proteins with shortened carboxyl-terminal segments are lipid modified and processed and function in release of cloacin DF13 and apparent host cell lysis.  

PubMed Central

By oligonucleotide-directed mutagenesis, stop codon mutations were introduced at various sites in the pCloDF13-derived bacteriocin release protein (BRP) structural gene. The expression, lipid modification (incorporation of [3H]palmitate), and processing (in the presence and absence of globomycin) of the various carboxyl-terminal shortened BRPs were analyzed by a special electrophoresis system and immunoblotting with an antiserum raised against a synthetic BRP peptide, and their functioning with respect to release of cloacin DF13, lethality, and apparent host cell lysis were studied in Sup-, supF, and supP strains of Escherichia coli. All mutant BRPs were stably expressed, lipid modified, and processed by signal peptidase II, albeit with different efficiencies. The BRP signal peptide appeared to be extremely stable and accumulated in induced cells. Full induction of the mutant BRPs, including the shortest containing only 4 amino acid residues of the mature polypeptide, resulted in phospholipase A-dependent and Mg2+-suppressible apparent cell lysis. The extent of this lysis varied with the mutant BRP used. Induction of all mutant BRPs also prevented colony formation, which appeared to be phospholipase A independent. One shortened BRP, containing 20 amino acid residues of the mature polypeptide, was still able to bring about the release of cloacin DF13. The results indicated that the 8-amino-acid carboxyl-terminal segment of the BRP contains a strong antigenic determinant and that a small segment between amino acid residues 17 and 21, located in the carboxyl-terminal half of the BRP, is important for release of cloacin DF13. Either the stable signal peptide or the acylated amino-terminal BRP fragments (or both) are involved in host cell lysis and lethality. Images PMID:2651413

Luirink, J; Clark, D M; Ras, J; Verschoor, E J; Stegehuis, F; de Graaf, F K; Oudega, B

1989-01-01

254

pCloDF13-encoded bacteriocin release proteins with shortened carboxyl-terminal segments are lipid modified and processed and function in release of cloacin DF13 and apparent host cell lysis.  

PubMed

By oligonucleotide-directed mutagenesis, stop codon mutations were introduced at various sites in the pCloDF13-derived bacteriocin release protein (BRP) structural gene. The expression, lipid modification (incorporation of [3H]palmitate), and processing (in the presence and absence of globomycin) of the various carboxyl-terminal shortened BRPs were analyzed by a special electrophoresis system and immunoblotting with an antiserum raised against a synthetic BRP peptide, and their functioning with respect to release of cloacin DF13, lethality, and apparent host cell lysis were studied in Sup-, supF, and supP strains of Escherichia coli. All mutant BRPs were stably expressed, lipid modified, and processed by signal peptidase II, albeit with different efficiencies. The BRP signal peptide appeared to be extremely stable and accumulated in induced cells. Full induction of the mutant BRPs, including the shortest containing only 4 amino acid residues of the mature polypeptide, resulted in phospholipase A-dependent and Mg2+-suppressible apparent cell lysis. The extent of this lysis varied with the mutant BRP used. Induction of all mutant BRPs also prevented colony formation, which appeared to be phospholipase A independent. One shortened BRP, containing 20 amino acid residues of the mature polypeptide, was still able to bring about the release of cloacin DF13. The results indicated that the 8-amino-acid carboxyl-terminal segment of the BRP contains a strong antigenic determinant and that a small segment between amino acid residues 17 and 21, located in the carboxyl-terminal half of the BRP, is important for release of cloacin DF13. Either the stable signal peptide or the acylated amino-terminal BRP fragments (or both) are involved in host cell lysis and lethality. PMID:2651413

Luirink, J; Clark, D M; Ras, J; Verschoor, E J; Stegehuis, F; de Graaf, F K; Oudega, B

1989-05-01

255

Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations  

NASA Astrophysics Data System (ADS)

In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and probably part of a single macromolecular scaffold. Fresh Ulva tissue appears to contain the same three functional groups but at lower concentrations, based on wet weight. The titration in natural seawater was largely dominated by the non-carbonate alkalinity of the solution and could not be robustly modeled. Results of fits with ionic strengths fixed at their experimental values indicate that the pKas of all three groups display prominent Debije-Hückel-type behavior, hence that these acid dissociation reactions involve a different mechanism than metal-proton exchange reactions on mineral surfaces, whose distribution coefficients (i.e., equilibrium constants) generally show a weak ionic strength dependence.

Ebling, A. M.; Schijf, J.

2008-12-01

256

Water Mediated Ligand Functional Group Cooperativity: The Contribution of a Methyl Group to Binding Affinity is Enhanced by a COO? Group Through Changes in the Structure and Thermo dynamics of the Hydration Waters of Ligand-Thermolysin Complexes  

PubMed Central

Ligand functional groups can modulate the contributions of one another to the ligand-protein binding thermodynamics, producing either positive or negative cooperativity. Data presented for four thermolysin phosphonamidate inhibitors demonstrate that the differential binding free energy and enthalpy caused by replacement of a H with a Me group, which binds in the well-hydrated S2? pocket, are more favorable in presence of a ligand carboxylate. The differential entropy is however less favorable. Dissection of these differential thermodynamic parameters, X-ray crystallography, and density-functional theory calculations suggest that these cooperativities are caused by variations in the thermodynamics of the complex hydration shell changes accompanying the H?Me replacement. Specifically, the COO? reduces both the enthalpic penalty and the entropic advantage of displacing water molecules from the S2? pocket, and causes a subsequent acquisition of a more enthalpically, less entropically, favorable water network. This study contributes to understanding the important role water plays in ligand-protein binding. PMID:22894131

Nasief, Nader N; Tan, Hongwei; Kong, Jing; Hangauer, David

2012-01-01

257

catena-Poly[[diaqua-calcium(II)]-bis-(?-quinoline-3-carboxyl-ato)].  

PubMed

In the title complex, [Ca(C(10)H(6)NO(2))(2)(H(2)O)(2)](n), the Ca(II) ion is eight-coordinated by six carboxyl-ate O atoms from four separate quinoline-3-carboxyl-ate ligands, two of which are bidentate chelate and two bridging, and two water mol-ecules in a distorted square-anti-prismatic geometry. The bridging groups form a polymeric chain substructure extending along the c axis, the chains being connected by coordinated-water O-H?N and O-H?O(carboxyl-ate) hydrogen bonds into a three-dimensional framework structure. PMID:21588864

Miao, Dong-Liang; Li, Shi-Jie; Song, Wen-Dong; Liu, Juan-Hua; Li, Xiao-Fei

2010-01-01

258

Durable press finishing of cotton fabrics with polyamino carboxylic acids.  

PubMed

In this study, a polyamino carboxylic acid was synthesized by reaction of a commercial polyvinylamine and bromoacetic acid. The reaction product was used for crosslinking of cotton fabric by a pad-dry-cure process. Crosslinking of the finished cotton occurred via the formation of ester bonds between the carboxylic groups of the polyamino carboxylic acid and the hydroxyl groups of cellulose. Ester bonds were confirmed by appearance of the corresponding absorbance at 1730 cm(-1) in the FTIR spectrum of the finished cotton. The created durable press effect on the finished cotton with polyamino carboxylic acid was evaluated by measuring the wrinkle recovery angle (WRA). Impact of this finishing agent on the physical properties of the cotton was studied by evaluating the tensile strength and whiteness index, and softness of the finished cotton. The easy care effect was durable against laundering. Softness, whiteness, and tensile strength of the finished cotton have not changed significantly. PMID:24750758

Dehabadi, Vahid Ameri; Buschmann, Hans-Jürgen; Gutmann, Jochen Stefan

2012-06-20

259

Organized thiol functional groups in mesoporous core shell colloids  

SciTech Connect

The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

Marchena, Martin H. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Granada, Mara [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Bordoni, Andrea V. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Joselevich, Maria [Asociacion Civil Expedicion Ciencia, Cabrera 4948, C1414BGP Buenos Aires (Argentina); Troiani, Horacio [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Williams, Federico J. [DQIAQyF-INQUIMAE FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EHA Buenos Aires (Argentina); Wolosiuk, Alejandro, E-mail: wolosiuk@cnea.gov.ar [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina)

2012-03-15

260

Replacement of the Y450 (c234) phenyl ring in the carboxyl-terminal region of coagulation factor IX causes pleiotropic effects on secretion and enzyme activity  

PubMed Central

The interplay between impaired protein biosynthesis and/or function caused by missense mutations, particularly in relation to specific protein regions, has been poorly investigated. As model we chose the severe p.Y450C mutation in the carboxyl-terminal region of coagulation factor IX (FIX) and, by expression of a panel of recombinant variants, demonstrated the key role of the tyrosine phenyl group for both FIX secretion and coagulant activity. Comparison among highly homologous coagulation serine proteases indicate that additive or compensatory pleiotropic effects on secretion and function by carboxyl-terminal mutations produce life-threatening or mild phenotypes in the presence of similarly reduced protein amounts. PMID:23994528

Branchini, Alessio; Campioni, Matteo; Mazzucconi, Maria Gabriella; Biondo, Francesca; Mari, Rosella; Bicocchi, Maria Patrizia; Bernardi, Francesco; Pinotti, Mirko

2013-01-01

261

Modeling the active sites of non-heme diiron metalloproteins with sterically hindered carboxylates and syn N-Donor ligands  

E-print Network

Chapter 1. Different Synthetic Approaches to Modeling the Active Sites of Carboxylate-Bridged Non-Heme Diiron Enzymes Carboxylate-bridged non-heme diiron enzymes activate dioxygen to perform a variety of biological functions. ...

Friedle, Simone, 1976-

2009-01-01

262

Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails.  

PubMed

Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine family of cytokines that mediate leukocyte chemotaxis. The potent and specific activation of monocytes by MCP-1 may mediate the monocytic infiltration of tissues in atherosclerosis and other inflammatory diseases. We have isolated cDNAs that encode two MCP-1-specific receptors with alternatively spliced carboxyl tails. Expression of the receptors in Xenopus oocytes conferred robust mobilization of intracellular calcium in response to nanomolar concentrations of MCP-1 but not to related chemokines. The MCP-1 receptors are most closely related to the receptor for the chemokines macrophage inflammatory protein 1 alpha and RANTES (regulated on activation, normal T expressed and secreted). The identification of the MCP-1 receptor and cloning of two distinct isoforms provide powerful tools for understanding the specificity and signaling mechanisms of this important chemokine. PMID:8146186

Charo, I F; Myers, S J; Herman, A; Franci, C; Connolly, A J; Coughlin, S R

1994-03-29

263

Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails.  

PubMed Central

Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine family of cytokines that mediate leukocyte chemotaxis. The potent and specific activation of monocytes by MCP-1 may mediate the monocytic infiltration of tissues in atherosclerosis and other inflammatory diseases. We have isolated cDNAs that encode two MCP-1-specific receptors with alternatively spliced carboxyl tails. Expression of the receptors in Xenopus oocytes conferred robust mobilization of intracellular calcium in response to nanomolar concentrations of MCP-1 but not to related chemokines. The MCP-1 receptors are most closely related to the receptor for the chemokines macrophage inflammatory protein 1 alpha and RANTES (regulated on activation, normal T expressed and secreted). The identification of the MCP-1 receptor and cloning of two distinct isoforms provide powerful tools for understanding the specificity and signaling mechanisms of this important chemokine. Images PMID:8146186

Charo, I F; Myers, S J; Herman, A; Franci, C; Connolly, A J; Coughlin, S R

1994-01-01

264

Spontaneous symmetry breaking and optimization of functional renormalization group  

NASA Astrophysics Data System (ADS)

The requirement for the absence of spontaneous symmetry breaking in the d=1 dimension has been used to optimize the regulator dependence of functional renormalization group equations in the framework of the sine-Gordon scalar field theory. Results obtained by the optimization of this kind were compared to those of the Litim-Pawlowski and the principle of minimal sensitivity optimization scenarios. The optimal parameters of the compactly supported smooth (CSS) regulator, which recovers all major types of regulators in appropriate limits, have been determined beyond the local potential approximation, and the Litim limit of the CSS was found to be the optimal choice.

Nándori, I.; Márián, I. G.; Bacsó, V.

2014-02-01

265

A group theoretical approach to graviton two-point function  

NASA Astrophysics Data System (ADS)

Respecting the group theoretical approach, it is debated that the theory of linear conformal gravity should be formulated through a tensor field of rank-3 and mixed symmetry (Binegar et al., Phys Rev D 27: 2249, 1983). Pursuing this path, such a field equation was obtained in de Sitter space (Takook et al., J Math Phys 51:032503, 2010). In the present work, considering the de Sitter ambient space notation, a proper solution to the physical part of this field equation is obtained. We have also calculated the related two-point function, which is interestingly de Sitter invariant and free of an infrared divergence.

Rahbardehghan, S.; Pejhan, H.; Elmizadeh, M.

2015-03-01

266

Selective ion-exchangers containing phosphorus in their functional groups  

Microsoft Academic Search

A series of selective ion-exchangers was synthetized, containing phosphinic or phosphonic acid functional groups. The selective\\u000a sorption of Sc3+, Fe3+, Ga3+, In3+, Al3+, La3+, Pb2+, Co2+ and Ca2+ ions in 0.1–4.0M HNO3 medium was investigated using a batch experiment technique. The selectivity of these exchangers generally decreased in the\\u000a order: Sc>Fe>In>Ga>Al>La>Pb>Cu>Co>Ca. The observed large differences in selectivity resulted in effective

M. Marhol; H. Beranová; K. L. Cheng

1974-01-01

267

Functional renormalization group study of nuclear and neutron matter  

E-print Network

A chiral model based on nucleons interacting via boson exchange is investigated. Fluctuation effects are included consistently beyond the mean-field approximation in the framework of the functional renormalization group. The liquid-gas phase transition of symmetric nuclear matter is studied in detail. No sign of a chiral restoration transition is found up to temperatures of about 100 MeV and densities of at least three times the density of normal nuclear matter. Moreover, the model is extended to asymmetric nuclear matter and the constraints from neutron star observations are discussed.

Matthias Drews; Wolfram Weise

2014-10-31

268

Plant Functional Group Composition Modifies the Effects of Precipitation Change on Grassland Ecosystem Function  

PubMed Central

Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species, and that maintaining the presence of key functional groups should be a crucial consideration in future grassland management. PMID:23437300

Fry, Ellen L.; Manning, Pete; Allen, David G. P.; Hurst, Alex; Everwand, Georg; Rimmler, Martin; Power, Sally A.

2013-01-01

269

Plant functional group composition modifies the effects of precipitation change on grassland ecosystem function.  

PubMed

Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species, and that maintaining the presence of key functional groups should be a crucial consideration in future grassland management. PMID:23437300

Fry, Ellen L; Manning, Pete; Allen, David G P; Hurst, Alex; Everwand, Georg; Rimmler, Martin; Power, Sally A

2013-01-01

270

Spectral functions from the functional renormalization group at finite temperature and density  

E-print Network

We present a viable method to obtain real-time quantities such as spectral functions or transport coefficients at finite temperature and density within a non-perturbative Functional Renormalization Group approach. Our method is based on a thermodynamically consistent truncation of the flow equations for 2-point functions with analytically continued frequency components in the originally Euclidean external momenta. We demonstrate its feasibility by calculating the mesonic spectral functions in the quark-meson model at different temperatures and quark chemical potentials, in particular around the critical endpoint in the phase diagram of the model.

Ralf-Arno Tripolt; Nils Strodthoff; Lorenz von Smekal; Jochen Wambach

2014-07-31

271

Spectral Functions for the Quark-Meson Model Phase Diagram from the Functional Renormalization Group  

E-print Network

We present a method to obtain spectral functions at finite temperature and density from the Functional Renormalization Group. Our method is based on a thermodynamically consistent truncation of the flow equations for 2-point functions with analytically continued frequency components in the originally Euclidean external momenta. For the uniqueness of this continuation at finite temperature we furthermore implement the physical Baym-Mermin boundary conditions. We demonstrate the feasibility of the method by calculating the mesonic spectral functions in the quark-meson model along the temperature axis of the phase diagram, and at finite quark chemical potential along the fixed-temperature line that crosses the critical endpoint of the model.

Ralf-Arno Tripolt; Nils Strodthoff; Lorenz von Smekal; Jochen Wambach

2015-02-05

272

Functional Renormalisation Group Approach for Tensorial Group Field Theory: a Rank-3 Model  

E-print Network

We set up the Functional Renormalisation Group formalism for Tensorial Group Field Theory in full generality. We then apply it to a rank-3 model over U(1) x U(1) x U(1), endowed with a linear kinetic term and nonlocal interactions. The system of FRG equations turns out to be non-autonomous in the RG flow parameter. This feature is explained by the existence of a hidden scale, the radius of the group manifold. We investigate in detail the opposite regimes of large cut-off (UV) and small cut-off (IR) of the FRG equations, where the system becomes autonomous, and we find, in both case, Gaussian and non-Gaussian fixed points. We derive and interpret the critical exponents and flow diagrams associated with these fixed points, and discuss how the UV and IR regimes are matched at finite N. Finally, we discuss the evidence for a phase transition from a symmetric phase to a broken or condensed phase, from an RG perspective, finding that this seems to exist only in the approximate regime of very large radius of the group manifold, as to be expected for systems on compact manifolds.

Dario Benedetti; Joseph Ben Geloun; Daniele Oriti

2015-02-01

273

Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups.  

PubMed

We have investigated properties of chemically modified boron nitride nanotubes (BNNTs) with NH(3) and four other amino functional groups (NH(2)CH(3), NH(2)CH(2)OCH(3), NH(2)CH(2)COOH, and NH(2)COOH) on the basis of density functional theory calculations. Unlike the case of carbon nanotubes, we found that NH(3) can be chemically adsorbed on top of the boron atom, with a charge transfer from NH(3) to the BNNT. The minimum-energy path calculation shows that a small energy barrier is encountered during the adsorption. Similarly, a small energy barrier (about 0.42 eV) is also involved in the desorption, suggesting that both adsorption and desorption can be realized even at room temperature. For chemically modified BNNTs with various amino functional groups, the adsorption energies are typically less than that of NH(3) on the BNNT. The trend of adsorption-energy change can be correlated with the trend of relative electron-withdrawing or -donating capability of the amino functional groups. Overall, the chemical modification of BNNTs with the amino groups results in little changes in the electronic properties of BNNTs. However, the chemical reactivity of the BNNTs can be enhanced by the chemical modification with the amino group containing -COOH. PMID:16953642

Wu, Xiaojun; An, Wei; Zeng, Xiao Cheng

2006-09-13

274

Observations of Adolescent Peer Group Interactions as a Function of Within- and Between-Group Centrality Status  

ERIC Educational Resources Information Center

Observations of adolescent (n = 258; M age = 15.45) peer group triads (n = 86) were analyzed to identify conversation and interaction styles as a function of within-group and between-group centrality status. Group members' discussions about hypothetical dilemmas were coded for agreements, disagreements, commands, and opinions. Interactions during…

Ellis, Wendy E.; Dumas, Tara M.; Mahdy, Jasmine C.; Wolfe, David A.

2012-01-01

275

Changes in Bird Functional Diversity across Multiple Land Uses: Interpretations of Functional Redundancy Depend on Functional Group Identity  

PubMed Central

Examinations of the impact of land-use change on functional diversity link changes in ecological community structure driven by land modification with the consequences for ecosystem function. Yet, most studies have been small-scale, experimental analyses and primarily focussed on plants. There is a lack of research on fauna communities and at large-scales across multiple land uses. We assessed changes in the functional diversity of bird communities across 24 land uses aligned along an intensification gradient. We tested the hypothesis that functional diversity is higher in less intensively used landscapes, documented changes in diversity using four diversity metrics, and examined how functional diversity varied with species richness to identify levels of functional redundancy. Functional diversity, measured using a dendogram-based metric, increased from high to low intensity land uses, but observed values did not differ significantly from randomly-generated expected values. Values for functional evenness and functional divergence did not vary consistently with land-use intensification, although higher than expected values were mostly recorded in high intensity land uses. A total of 16 land uses had lower than expected values for functional dispersion and these were mostly low intensity native vegetation sites. Relations between functional diversity and bird species richness yielded strikingly different patterns for the entire bird community vs. particular functional groups. For all birds and insectivores, functional evenness, divergence and dispersion showed a linear decline with increasing species richness suggesting substantial functional redundancy across communities. However, for nectarivores, frugivores and carnivores, there was a significant hump-shaped or non-significant positive linear relationship between these functional measures and species richness indicating less redundancy. Hump-shaped relationships signify that the most functionally diverse communities occur at intermediate levels of species richness. Interpretations of redundancy thus vary for different functional groups and related ecosystem functions (e.g. pollination), and can be substantially different to relationships involving entire ecological communities. PMID:23696844

Luck, Gary W.; Carter, Andrew; Smallbone, Lisa

2013-01-01

276

Superconductivity in the attractive Hubbard model: functional renormalization group analysis  

NASA Astrophysics Data System (ADS)

We present a functional renormalization group analysis of superconductivity in the ground state of the attractive Hubbard model on a square lattice. Spontaneous symmetry breaking is treated in a purely fermionic setting via anomalous propagators and anomalous effective interactions. In addition to the anomalous interactions arising already in the reduced BCS model, effective interactions with three incoming legs and one outgoing leg (and vice versa) occur. We accomplish their integration into the usual diagrammatic formalism by introducing a Nambu matrix for the effective interactions. From a random-phase approximation generalized through use of this matrix we conclude that the impact of the 3+1 effective interactions is limited, especially considering the effective interactions which are important for the determination of the order parameter. The exact hierarchy of flow equations for one-particle irreducible vertex functions is truncated on the two-particle level, with higher-order self-energy corrections included in a scheme proposed by Katanin (2004 Phys. Rev. B 70 115109). Using a parametrization of effective interactions by patches in momentum space, the flow equations can be integrated numerically to the lowest scales without encountering divergences. Momentum-shell as well as interaction-flow cutoff functions are used, including a small external field or a large external field and a counterterm, respectively. Both approaches produce momentum-resolved order parameter values directly from the microscopic model. The size of the superconducting gap is in reasonable agreement with expectations from other studies.

Gersch, R.; Honerkamp, C.; Metzner, W.

2008-04-01

277

Structural characterization and function determination of a nonspecific carboxylate esterase from the amidohydrolase superfamily with a promiscuous ability to hydrolyze methylphosphonate esters.  

PubMed

The uncharacterized protein Rsp3690 from Rhodobacter sphaeroides is a member of the amidohydrolase superfamily of enzymes. In this investigation the gene for Rsp3690 was expressed in Escherichia coli and purified to homogeneity, and the three-dimensional structure was determined to a resolution of 1.8 Å. The protein folds as a distorted (?/?)8-barrel, and the subunits associate as a homotetramer. The active site is localized to the C-terminal end of the ?-barrel and is highlighted by the formation of a binuclear metal center with two manganese ions that are bridged by Glu-175 and hydroxide. The remaining ligands to the metal center include His-32, His-34, His-207, His-236, and Asp-302. Rsp3690 was shown to catalyze the hydrolysis of a wide variety of carboxylate esters, in addition to organophosphate and organophosphonate esters. The best carboxylate ester substrates identified for Rsp3690 included 2-naphthyl acetate (kcat/Km = 1.0 × 10(5) M(-1) s(-1)), 2-naphthyl propionate (kcat/Km = 1.5 × 10(5) M(-1) s(-1)), 1-naphthyl acetate (kcat/Km = 7.5 × 10(3) M(-1) s(-1)), 4-methylumbelliferyl acetate (kcat/Km = 2.7 × 10(3) M(-1) s(-1)), 4-nitrophenyl acetate (kcat/Km = 2.3 × 10(5) M(-1) s(-1)), and 4-nitrophenyl butyrate (kcat/Km = 8.8 × 10(5) M(-1) s(-1)). The best organophosphonate ester substrates included ethyl 4-nitrophenyl methylphosphonate (kcat/Km = 3.8 × 10(5) M(-1) s(-1)) and isobutyl 4-nitrophenyl methylphosphonate (kcat/Km = 1.1 × 10(4) M(-1) s(-1)). The (SP)-enantiomer of isobutyl 4-nitrophenyl methylphosphonate was hydrolyzed 10 times faster than the less toxic (RP)-enantiomer. The high inherent catalytic activity of Rsp3690 for the hydrolysis of the toxic enantiomer of methylphosphonate esters make this enzyme an attractive target for directed evolution investigations. PMID:24832101

Xiang, Dao Feng; Kumaran, Desigan; Swaminathan, Subramanyam; Raushel, Frank M

2014-06-01

278

Structural characterization of 1,3-propanedithiols that feature carboxylic acids: Homologues of mercury chelating agents ?  

PubMed Central

The molecular structures of a series of 1,3-propanedithiols that contain carboxylic acid groups, namely rac- and meso-2,4-dimercaptoglutaric acid (H4DMGA) and 2-carboxy-1,3-propanedithiol (H3DMCP), have been determined by X-ray diffraction. Each compound exhibits two centrosymmetric intermolecular hydrogen bonding interactions between pairs of carboxylic acid groups, which result in a dimeric structure for H3DMCP and a polymeric tape-like structure for rac- and meso-H4DMGA. Significantly, the hydrogen bonding motifs observed for rac- and meso-H4DMGA are very different to those observed for the 1,2-dithiol, rac-2,3-dimercaptosuccinic acid (rac-H4DMSA), in which the two oxygen atoms of each carboxylic acid group hydrogen bond to two different carboxylic acid groups, thereby resulting in a hydrogen bonded sheet-like structure rather than a tape. Density functional theory calculations indicate that 1,3-dithiolate coordination to mercury results in larger S–Hg–S bond angles than does 1,2-dithiolate coordination, but these angles are far from linear. As such, ?2-S2 coordination of these dithiolate ligands is expected to be associated with mercury coordination numbers of greater than two. In vivo studies demonstrate that both rac-H4DMGA and H3DMCP reduce the renal burden of mercury in rats, although the compounds are not as effective as either 2,3-dimercaptopropane-1-sulfonic acid (H3DMPS) or meso-H4DMSA. PMID:24187425

Sattler, Wesley; Palmer, Joshua H.; Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.; Parkin, Gerard

2013-01-01

279

Conversion of carboxylate salts to carboxylic acids via reactive distillation  

E-print Network

on the conversion of the carboxylate salts produced via fermentation into their corresponding acids via reactive distillation. The primary objective is to determine the optimal operating conditions of the distillation. A secondary objective is to optimize...

Williamson, Shelly Ann

2000-01-01

280

In-Situ End-Group Functionalization of Regioregular Poly(3-alkylthiophene)  

E-print Network

and control of the end groups of such polymers.[5,6] Procedures published to date to functionalize end groups of conjugated polymers are limited in scope and number.[5,6] End-group functionalization of HT-PTs would leadIn-Situ End-Group Functionalization of Regioregular Poly(3-alkylthiophene) Using the Grignard

McCullough, Richard D.

281

Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects  

PubMed Central

Summary Mammalian cells generate citrate by decarboxylating pyruvate in the mitochondria to supply the tricarboxylic acid (TCA) cycle. In contrast, hypoxia and other impairments of mitochondrial function induce an alternative pathway that produces citrate by reductively carboxylating ?-ketoglutarate (AKG) via NADPH-dependent isocitrate dehydrogenase (IDH). It is unknown how cells generate reducing equivalents necessary to supply reductive carboxylation in the setting of mitochondrial impairment. Here we identified shared metabolic features in cells using reductive carboxylation. Paradoxically, reductive carboxylation was accompanied by concomitant AKG oxidation in the TCA cycle. Inhibiting AKG oxidation decreased reducing equivalent availability and suppressed reductive carboxylation. Interrupting transfer of reducing equivalents from NADH to NADPH by nicotinamide nucleotide transhydrogenase increased NADH abundance and decreased NADPH abundance while suppressing reductive carboxylation. The data demonstrate that reductive carboxylation requires bidirectional AKG metabolism along oxidative and reductive pathways, with the oxidative pathway producing reducing equivalents used to operate IDH in reverse. PMID:24857658

Mullen, Andrew R.; Hu, Zeping; Shi, Xiaolei; Jiang, Lei; Boroughs, Lindsey K.; Kovacs, Zoltan; Boriack, Richard; Rakheja, Dinesh; Sullivan, Lucas B.; Linehan, W. Marston; Chandel, Navdeep S.; DeBerardinis, Ralph J.

2014-01-01

282

Correlated starting points for the functional renormalization group  

NASA Astrophysics Data System (ADS)

We present a general frame to extend functional renormalization group (fRG) based computational schemes by using an exactly solvable interacting reference problem as starting point for the RG flow. The systematic expansion around this solution accounts for a nonperturbative inclusion of correlations. Introducing auxiliary fermionic fields by means of a Hubbard-Stratonovich transformation, we derive the flow equations for the auxiliary fields and determine the relation to the conventional weak-coupling truncation of the hierarchy of flow equations. As a specific example we consider the dynamical mean field theory (DMFT) solution as reference system, and discuss the relation to the recently introduced DMF2RG and the dual-fermion formalism.

Wentzell, N.; Taranto, C.; Katanin, A.; Toschi, A.; Andergassen, S.

2015-01-01

283

(2S)-1-Carbamoylpyrrolidine-2-carboxylic acid.  

PubMed

In the title compound, also known as N-carbamoyl-L-proline, C(6)H(10)N(2)O(3), the pyrrolidine ring adopts a half-chair conformation, whereas the carboxyl group and the mean plane of the ureide group form an angle of 80.1 (2) degrees. Molecules are joined by N-H...O and O-H...O hydrogen bonds into cyclic structures with graph-set R(2)(2)(8), forming chains in the b-axis direction that are further connected via N-H...O hydrogen bonds into a three-dimensional network. PMID:17478918

Seijas, Luis E; Delgado, Gerzon E; Mora, Asiloé J; Bahsas, Ali; Briceño, Alexander

2007-05-01

284

Detection of functional hydrogen-bonded water molecules with protonated/deprotonated key carboxyl side chains in the respiratory enzyme ba3-oxidoreductase.  

PubMed

The protonation/deprotonation of active carboxyl side chains by water networks forming the proton loading and exit sites in proteins are important steps in protein catalysis. An excellent system to study such basic principles is the heme-copper ba3 from T. thermophilus because it utilizes one proton input channel and it delivers protons to the active site for both O2 chemistry and proton pumping. We report the interaction of the heme a3 Fe propionate-A and the Asp372-His376 pair which forms the valve for the exit pathway for the protons with internal water molecules in ba3 oxidoreductase by light minus dark FTIR spectroscopy in conjunction with H2O/H2(18)O/D2O exchange. The proton loading site consists of several water molecules including w941/w946 which are H-bonded to propionate-A-H(+), acting as the Zundel cation. The detection of two H2(18)O sensitive bands at 3640 and 3634 cm(-1) shows the existence of weakly H-bonded water molecules. PMID:25728291

Nicolaides, Antonis; Soulimane, Tewfik; Varotsis, Constantinos

2015-03-11

285

Crystallization of silver carboxylates from sodium carboxylate mixtures.  

PubMed

Silver carboxylates can be made by the reaction of silver nitrate and the corresponding sodium carboxylates. The length of the alkyl chain has a significant impact on the product behavior. In this study, 18, 20, and 22 carbon chains (stearate, arachidate, and behenate, respectively) have been selected. All three sodium carboxylates are very insoluble in water at room temperature. Solutions are obtained above the Krafft temperature, which precipitates lamellar crystals if cooled at the proper cooling rate. Depending on the chain length, metastable morphologies, such as vesicles and tiny fibers, can be seen consecutively before hexagonal plates form. The carboxylate with the shorter chain length reaches equilibrium more quickly. All three silver carboxylates also take on a lamellar structure. Small-angle X-ray scattering (SAXS) shows that the d spacing of the crystals increases as the chain length increases. Cryo-TEM illustrates that the crystallites are the result of micelle nucleation and micelle aggregation. In addition, the crystallization process in the presence of silver bromide nanocrystals has been investigated. In the initial stage, an epitaxial interface is formed between the silver carboxylate crystallites and the cubic silver bromide grains. Budlike and strandlike structures grow because of it. The consequent strand enclosure restrains the crystal growth, which reduces the size and changes the morphology of the crystals. PMID:17567157

Dong, Jingshan; Whitcomb, David R; McCormick, Alon V; Davis, H Ted

2007-07-17

286

Fermionic Functional Renormalization Group Approach to Superfluid Phase Transition  

E-print Network

Fermionic functional renormalization group (FRG) is applied to describe the superfluid phase transition of the two-component fermionic system with attractive contact interaction. Connection between the fermionic FRG approach and the conventional Bardeen-Cooper-Schrieffer (BCS) theory with Gorkov and Melik-Barkhudarov (GMB) correction are clarified in details in the weak coupling region by using the renormalization group flow of the fermionic four-point vertex with particle-particle and particle-hole scattering contributions. To go beyond the BCS+GMB theory, coupled FRG flow equations of the fermion self-energy and the four-point vertex are studied under an Ansatz concerning their frequency/momentum dependence. We found that the fermion self-energy turns out to be substantial even in the weak couping region, and the frequency dependence of the four-point vertex is essential to obtain the correct asymptotic-ultraviolet behavior of the flow for the self-energy. The superfluid transition temperature and the associated chemical potential are calculated in the region of negative scattering lengths.

Yuya Tanizaki; Gergely Fej?s; Tetsuo Hatsuda

2014-04-24

287

Controls of functional group chemistry on calcium carbonate nucleation: Insights into systematics of biomolecular innovations for skeletal mineralization?  

NASA Astrophysics Data System (ADS)

Living organisms produce skeletal structures within a complex matrix of organic macromolecules that guide the nucleation and growth of crystalline structures into the organic-inorganic composites we know as biominerals. This type of biomolecule-directed mineralization is an ancient process as evidenced by structures in the fossil record that date to the Ediacaran (ca. 549 Ma). Our understanding of template-directed biomineralization, however, is largely based upon assumptions from studies that: 1) qualitatively demonstrate some chemical functionalities influence the nucleating mineral phase and morphology; 2) propose proteins are the primary driver to template-directed mineralization and 3) propose the ubiquitous polysaccharides are inert components. Thus, a mechanistic basis for how the underlying chemistry of macromolecules controls nucleation kinetics and thermodynamics in template-directed nucleation is not well established. Moreover, there is not yet a good appreciation for how patterns of skeletal mineralization evolved with biochemical innovations in response to environmental changes over geologic timescales. In small steps toward understanding biochemical controls on biomineralization, we test the hypothesis that the kinetics and thermodynamics of calcium carbonate (CaCO3) formation is regulated by a systematic relationship to the functional group chemistry of macromolecules. A long-term goal is to establish the energetic basis for biochemical motifs that are seen (and not seen) at sites of calcification across the phylogenetic tree. Two types of studies were conducted. The first measured nucleation rates on model biomolecular substrates with termini that are found in proteins associated with sites of calcification (-COOH, -PO4, and -SH) and two alkanethiol chain lengths (16-C and 11-C) at a variety of chemical driving forces. The measurements show functional group chemistry and molecule conformation regulate rates by a predictable relation to interfacial free energy. A second study tested the hypothesis that polysaccharides can also confer reactivity through their functional group chemistry. Using high purity polysaccharides with regular monomer sequences as simple model compounds, we quantify the effect of functional group chemistry (chitosan, hyaluronic acid, heparin, alginic acid) and monomer sequencing (two stereoisomers of alginic acid) on the kinetic and thermodynamic barriers to CaCO3 formation. Analysis of the data indicates the barriers to nucleation are correlated by a systematic relationship to charge as the number of carboxyl groups per monomer of polysaccharide. The findings demonstrate a physical basis for how organic surfaces regulate the thermodynamic barrier to nucleation through interfacial free energy and suggest the chemical basis for recurring motifs that are seen in modern organisms. We also show that polysaccharides may indeed have active roles in promoting calcite mineralization and suggest their presumed function as inert framework molecules should be revisited.

Dove, P. M.; Hamm, L. M.; Giuffre, A. J.

2012-12-01

288

Vibrational spectroscopic and molecular docking study of 4-Methylphenylquinoline-2-carboxylate.  

PubMed

FT-IR and FT-Raman spectra of 4-Methylphenylquinoline-2-carboxylate were recorded and analyzed. The structure of the molecule has been optimized and structural characteristics have been determined by density functional theory. The geometrical parameters (DFT) are in agreement with the XRD results. HOMO and LUMO and other chemical properties are reported. Nonlinear optical properties are also reported. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. The negative (red and yellow) regions of the MEP are related to electrophilic reactivity and the positive (blue) regions to nucleophilic reactivity, as shown in the MEP plot and the carbonyl group and the phenyl rings are observed as electrophilic. PASS analysis predicts that the 4-Methylphenylquinoline-2-carboxylate might exhibit anti-diabetic activity. Molecular docking results suggest that the compound might exhibit inhibitory activity against GPb. PMID:25733248

Fazal, E; Panicker, C Yohannan; Varghese, Hema Tresa; Nagarajan, S; Sudha, B S; War, Javeed Ahamad; Srivastava, S K; Harikumar, B; Anto, P L

2015-05-15

289

Adsorption of chromium (VI) ion from aqueous solution by succinylated mercerized cellulose functionalized with quaternary ammonium groups.  

PubMed

Succinylated mercerized cellulose (cell 1) was used to synthesize an anion exchange resin. Cell 1, containing carboxylic acid groups was reacted with triethylenetetramine to introduce amine functionality to this material to obtain cell 2. Cell 2 was reacted with methyl-iodide to quaternize the amine groups from this material to obtain cell 3. Cells 2 and 3 were characterized by mass percent gain, degree of amination and quaternization, FTIR and CHN. Cells 2 and 3 showed degrees of amination and quaternization of 2.8 and 0.9 mmol/g and nitrogen content of 6.07% and 2.13%, respectively. Cell 3 was used for Cr (VI) adsorption studies. Adsorption equilibrium time and optimum pH for Cr (VI) adsorption were found to be 300 min and 3.1, respectively. The Langmuir isotherm was used to model adsorption equilibrium data. The adsorption capacity of cell 3 was found to be 0.829 mmol/g. Kinetic studies showed that the rate of adsorption of Cr (VI) on cell 3 obeyed a pseudo-second-order kinetic model. PMID:19297152

Gurgel, Leandro Vinícius Alves; Perin de Melo, Júlio César; de Lena, Jorge Carvalho; Gil, Laurent Frédéric

2009-07-01

290

Dominant Functional Group Effects on the Invasion Resistance at Different Resource Levels  

PubMed Central

Background Functional group composition may affect invasion in two ways the effect of abundance, i.e. dominance of functional group; and the effect of traits, i.e. identity of functional groups. However, few studies have focused on the role of abundance of functional group on invasion resistance. Moreover, how resource availability influences the role of the dominant functional group in invasion resistance is even less understood. Methodology/Principal Findings In this experiment, we established experimental pots using four different functional groups (annual grass, perennial grass, deciduous shrub or arbor and evergreen shrub or arbor), and the dominant functional group was manipulated. These experimental pots were respectively constructed at different soil nitrogen levels (control and fertilized). After one year of growth, we added seeds of 20 different species (five species per functional group) to the experimental pots. Fertilization significantly increased the overall invasion success, while dominant functional group had little effect on overall invasion success. When invaders were grouped into functional groups, invaders generally had lower success in pots dominated by the same functional group in the control pots. However, individual invaders of the same functional group exhibited different invasion patterns. Fertilization generally increased success of invaders in pots dominated by the same than by another functional group. However, fertilization led to great differences for individual invaders. Conclusions/Significance The results showed that the dominant functional group, independent of functional group identity, had a significant effect on the composition of invaders. We suggest that the limiting similarity hypothesis may be applicable at the functional group level, and limiting similarity may have a limited role for individual invaders as shown by the inconsistent effects of dominant functional group and fertilization. PMID:24167565

Wang, Jiang; Ge, Yuan; Zhang, Chong B.; Bai, Yi; Du, Zhao K.

2013-01-01

291

Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions  

PubMed Central

Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green roof ecosystems. PMID:20300196

Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

2010-01-01

292

Molecular and functional characterization of the only known hemiascomycete ortholog of the carboxyl terminus of Hsc70-interacting protein CHIP in the yeast Yarrowia lipolytica.  

PubMed

The carboxyl terminus of Hsc70-interacting protein (CHIP) is an Hsp70 co-chaperone and a U-box ubiquitin ligase that plays a crucial role in protein quality control in higher eukaryotes. The yeast Yarrowia lipolytica is the only known hemiascomycete where a CHIP ortholog is found. Here, we characterize Y. lipolytica's CHIP ortholog (Yl.Chn1p) and document its interactions with components of the protein quality control machinery. We show that Yl.Chn1p is non-essential unless Y. lipolytica is severely stressed. We sought for genetic interactions among key components of the Y. lipolytica protein quality control arsenal, including members of the Ssa-family of Hsp70 molecular chaperones, the Yl.Bag1p Hsp70 nucleotide exchange factor, the Yl.Chn1p and Yl.Ufd2p U-box ubiquitin ligases, the Yl.Doa10p and Yl.Hrd1p RING-finger ubiquitin ligases, and the Yl.Hsp104p disaggregating molecular chaperone. Remarkably, no synthetic phenotypes were observed among null alleles of the corresponding genes in most cases, suggesting that overlapping pathways efficiently act to enable Y. lipolytica cells to survive under harsh conditions. Yl.Chn1p interacts with mammalian and Saccharomyces cerevisiae members of the Hsp70 family in vitro, and these interactions are differently regulated by Hsp70 co-chaperones. We demonstrate notably that Yl.Chn1p/Ssa1p interaction is Fes1p-dependent and the formation of an Yl.Chn1p/Ssa1p/Sse1p ternary complex. Finally, we show that, similar to Sse1p, Yl.Chn1p can act as a "holdase" to prevent the aggregation of a heat-denatured protein. PMID:22038197

Martineau, Céline N; Le Dall, Marie-Thérèse; Melki, Ronald; Beckerich, Jean-Marie; Kabani, Mehdi

2012-03-01

293

A method to quantify organic functional groups and inorganic compounds in ambient aerosols using attenuated total reflectance FTIR spectroscopy and multivariate chemometric techniques  

NASA Astrophysics Data System (ADS)

An attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopic technique and a multivariate calibration method were developed to quantify ambient aerosol organic functional groups and inorganic compounds. These methods were applied to size-resolved particulate matter samples collected in winter and summer of 2004 at three sites: a downtown Phoenix, Arizona location, a rural site near Phoenix, and an urban fringe site between the urban and rural site. Ten organic compound classes, including four classes which contain a carbonyl functional group, and three inorganic species were identified in the ambient samples. A partial least squares calibration was developed and applied to the ambient spectra, and 13 functional groups related to organic compounds (aliphatic and aromatic CH, methylene, methyl, alkene, aldehydes/ketones, carboxylic acids, esters/lactones, acid anhydrides, carbohydrate hydroxyl and ethers, amino acids, and amines) as well as ammonium sulfate and ammonium nitrate were quantified. Comparison of the sum of the mass measured by the ATR-FTIR technique and gravimetric mass indicates that this method can quantify nearly all of the aerosol mass on sub-micrometer size-segregated samples. Analysis of sample results shows that differences in organic functional group and inorganic compound concentrations at the three sampling sites can be measured with these methods. Future work will analyze the quantified data from these three sites in detail.

Coury, Charity; Dillner, Ann M.

294

Evaluation of a series of prolylamidepyridines as the chiral derivatization reagents for enantioseparation of carboxylic acids by LC-ESI-MS/MS and the application to human saliva.  

PubMed

Mass spectrometry has become a popular analytical tool because of its high sensitivity and specificity. The use of a chiral derivatization reagent for the mass spectrometry (MS) detection seems to be efficient for the enantiomeric separation of racemates. However, the number of chiral reagents for the liquid chromatography (LC)-MS/MS analysis is very limited. According to these observations, we are currently in the process of developing novel labeling reagents for chiral molecules in MS/MS analysis. The derivatization reagent that is effective for enhancing not only the electrospray ionization-MS/MS sensitivity but also the reversed-phase LC resolution of carboxylic acid enantiomers should have a highly proton-affinitive moiety and an asymmetric structure near the reactive functional group. Furthermore, the resulting derivative has to provide a characteristic product ion suitable for the selected reaction monitoring. Based upon these considerations, a series of prolylamidepyridines ((S)-N-pyrrolidine-2-carboxylic acid N-(pyridine-2-yl)amide (PCP2), (S)-N-pyrrolidine-2-carboxylic acid N-(pyridine-3-yl)amide, and (S)-N-pyrrolidine-2-carboxylic acid N-(pyridine-4-yl)amide) was synthesized as ideal labeling reagents for the enantioseparation of chiral carboxylic acids and evaluated in terms of separation efficiency and detection sensitivity by ultra-performance LC (UPLC)-MS/MS. Among the synthesized reagents, PCP2 was the most efficient chiral derivatization reagent for the enantioseparation of carboxylic acid. The Rs values and the detection limits of the derivatives of non-steroidal anti-inflammatory drugs, which were selected as the representative carboxylic acids, were in the range of 2.52-6.07 and 49-260 amol, respectively. The sensitive detection of biological carboxylic acids (detection limits, 32-520 amol) was also carried out by the proposed method using PCP2 and UPLC-MS/MS. The PCP2 was applied to the determination of carboxylic acids in human saliva. Several biological carboxylic acids, such as lactic acid (LA), 3-hydroxybutylic acid, maric acid, succinic acid, ?-ketoglutalic acid, and citric acid, were clearly identified in the saliva of healthy persons and diabetic patients. Furthermore, the ratio of D-LA in diabetic patients was higher than that in normal subjects. Judging from these results, PCP2 seems to be a useful chiral derivatization reagent for the determination not only of chiral, but also achiral, carboxylic acids in real samples. PMID:24500756

Kuwabara, Tomohiro; Takayama, Takahiro; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa

2014-04-01

295

Implicit function theorem over free groups Olga Kharlampovich  

E-print Network

group is a torsion-free CSA group [2]. We recall from [29] that a group G is called a CSA group if every maximal Abelian subgroup M of G is malnormal, i.e., Mg \\ M = 1 for any g 2 G ¡ M: The class of CSA-relator CSA-groups was obtained by D. Gildenhuys, O. Kharlampovich and A. Myasnikov in [40]. Notice

Kharlampovich, Olga

296

Submicron aerosol organic functional groups, ions, and water content at the Centreville SEARCH site (Alabama), during SOAS campaign  

NASA Astrophysics Data System (ADS)

The SOAS campaign was conducted from June 1 to July 15 of 2013 in order to understand the relationship between biogenic and anthropogenic emissions in the South East US1,2. In this study, the organic and inorganic composition of submicron aerosol in the Centreville SEARCH site was measured by Fourier Transform Infrared Spectroscopy (FTIR) and the Ambient Ion Monitor (AIM; URG Corporation), whereas the aerosol water content was measured with a Dry Ambient Aerosol Size Spectrometer (DAASS)3. Organic functional group analysis was performed on PM1 aerosol selected by cyclone and collected on teflon filters with a time resolution of 4-12 hours, using one inlet heated to 50 °C and the other operated either at ambient temperature or 70 °C 4. The AIM measured both condensed and gas phase composition with a time resolution of 1 hour, providing partitioning behavior of inorganic species such as NH3/NH4+, HNO3/NO3-. These measurements collectively permit calculation of pure-component vapor pressures of candidate organic compounds and activity coefficients of interacting components in the condensed phase, using models such as SIMPOL.15, E-AIM6, and AIOMFAC7. From these results, the water content of the aerosol is predicted, and a comparison between modeled and measured partitioning of inorganic compounds and water vapor are discussed, in addition to organic aerosol volatility prediction based on functional group analysis. [1]- Goldstein, A.H., et al., Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(22), 8835-8840. [2]- Carlton, A.G., Turpin, B.J., 2013. Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water. Atmospheric Chemistry and Physics Discussions 13, 12743-12770. [3]- Khlystov, A., Stanier, C.O., Takahama, S., Pandis, S.N., 2005. Water content of ambient aerosol during the Pittsburgh Air Quality Study. Journal of Geophysical Research: Atmospheres 110, n/a-n/a. [4]- Takahama, S., Johnson, A., Russell, L.M., 2013. Quantification of Carboxylic and Carbonyl Functional Groups in Organic Aerosol Infrared Absorbance Spectra. Aerosol Science and Technology 47, 310-325. [5]- Pankow, J.F., Asher, W.E., 2008. SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds. Atmos. Chem. Phys. 8, 2773-2796. [6]- Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998. Thermodynamic Model of the System H+-NH4+-SO42--NO3--H2O at Tropospheric Temperatures. J. Phys. Chem. A 102, 2137-2154. [7]- Zuend, A., Marcolli, C., Booth, A.M., Lienhard, D.M., Soonsin, V., Krieger, U.K., Topping, D.O., McFiggans, G., Peter, T., Seinfeld, J.H., 2011. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 11, 9155-9206.

Ruggeri, G.; Ergin, G.; Modini, R. L.; Takahama, S.

2013-12-01

297

A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1).  

PubMed

Since the characterization of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) as a major melanogenic intermediate, the fate of this compound and the mechanisms of its incorporation into the melanin polymer have become major issues in the study of melanogenesis. DHICA is a stable dihydroxyindole with a low rate of spontaneous oxidation, suggesting that enzymatic mechanism(s) might contribute to its evolution. The most obvious candidates are the melanosomal tyrosinases. We have recently shown that mouse melanosomes contain two electrophoretically distinct tyrosinase isoenzymes, termed low electrophoretic mobility tyrosinase (LEMT) and high electrophoretic mobility tyrosinase (HEMT), that can be resolved and purified. In this study, we report immunological evidence indicating that LEMT corresponds to the protein encoded by the brown locus (termed tyrosinase-related protein-1, TRP1), while HEMT corresponds to the tyrosinase encoded by the albino locus. We have compared the ability of both isoenzymes to catalyze DHICA evolution as determined by high performance liquid chromatography; although LEMT is a relatively poor tyrosine hydroxylase and DOPA oxidase as compared to HEMT, it was readily able to accelerate DHICA consumption concomitant with the production of a brownish product. However, the DHICA conversion activity of HEMT was barely detectable. The ability of purified LEMT to catalyze DHICA conversion could be almost completely abolished by treatment with heat or trypsin, and was inhibited in a concentration dependent way by the tyrosinase inhibitor 2-phenylthiourea and by L-tyrosine. Moreover, in the presence of low concentration of ascorbate, the DHICA conversion activity of LEMT displayed a lag period which was progressively longer at higher ascorbate concentrations. Based on the relationship between ascorbate added, enzyme activity, and lag period, it is very likely that the DHICA converting activity is indeed a DHICA oxidase activity. This was further proven by the demonstration that the product reacts rapidly and efficiently with the quinone trapping reagent 3-methyl-2-benzothiazolinone hydrazone, yielding a colored adduct similar to the one obtained with DOPAquinone. The DHICA oxidase activity of LEMT displayed a Km for DHICA of about 0.8 mM, as compared to 1.9 mM for L-DOPA and 0.23 nM for L-tyrosine. These results suggest that TRP1, the product of the brown locus, is indeed a tyrosinase with DHICA oxidase activity. However, as opposed to the tyrosinase encoded by the albino locus, TRP1's role in melanogenesis could be more directly related to DHICA metabolism than to the first steps of the pathway. PMID:8027058

Jiménez-Cervantes, C; Solano, F; Kobayashi, T; Urabe, K; Hearing, V J; Lozano, J A; García-Borrón, J C

1994-07-01

298

The interaction of carboxylic acids with aluminium oxides: journeying from a basic understanding of alumina nanoparticles to water treatment for industrial and humanitarian applications.  

PubMed

Carboxylic acids are found to react with aluminium oxides via a topotactic reaction such that the carboxylate acts as a bridging ligand. This reaction allows for carboxylate-functionalized alumina nanoparticles to be prepared directly from boehmite (AlOOH). Understanding the structural relationship between molecular and surface species allows for the rationalization/prediction of suitable alternative ligands as well as alternative oxide surfaces. The identity of the carboxylate substituent controls the pH stability of a nanoparticle as well as the porosity and processability of ceramics prepared by thermolysis. Through the choice of functional groups on the carboxylic acid the properties of the alumina surface or alumina nanoparticle can be tailored. For example, the solubility/miscibility of nanoparticles can be tuned to the solvent/matrix, and the wettability to be varied from hydrophobic to super hydrophilic. The choice Zwitter ionic substituents on alumina micro-/ultra-filtration membranes are found to enhance the flux and limit fouling while allowing for the facile separation of organic compounds from water. Examples are presented of purification of frac and flow-back water from oil well production as well as providing drinking water from contaminated sources in underdeveloped regions. PMID:24728503

Barron, Andrew R

2014-06-14

299

The Nonenzymatic Reactivity of the Acyl-Linked Metabolites of Mefenamic Acid toward Amino and Thiol Functional Group Bionucleophiles  

PubMed Central

Mefenamic acid (MFA), a carboxylic acid–containing nonsteroidal anti-inflammatory drug, is metabolized into the chemically-reactive MFA-1-O-acyl-glucuronide (MFA-1-O-G), MFA-acyl-adenylate (MFA-AMP), and the MFA-S-acyl-coenzyme A (MFA-CoA), all of which are electrophilic and capable of acylating nucleophilic sites on biomolecules. In this study, we investigate the nonenzymatic ability of each MFA acyl-linked metabolite to transacylate amino and thiol functional groups on the acceptor biomolecules Gly, Tau, l-glutathione (GSH), and N-acetylcysteine (NAC). In vitro incubations with each of the MFA acyl-linked metabolites (1 ?M) in buffer under physiologic conditions with Gly, Tau, GSH, or NAC (10 mM) revealed that MFA-CoA was 11.5- and 19.5-fold more reactive than MFA-AMP toward the acylation of cysteine-sulfhydryl groups of GSH and NAC, respectively. However, MFA-AMP was more reactive toward both Gly and Tau, 17.5-fold more reactive toward the N-acyl-amidation of taurine than its corresponding CoA thioester, while MFA-CoA displayed little reactivity toward glycine. Additionally, mefenamic acid-S-acyl-glutathione (MFA-GSH) was 5.6- and 108-fold more reactive toward NAC than MFA-CoA and MFA-AMP, respectively. In comparison with MFA-AMP and MFA-CoA, MFA-1-O-G was not significantly reactive toward all four bionucleophiles. MFA-AMP, MFA-CoA, MFA-1-O-G, MFA-GSH, and mefenamic acid-taurine were also detected in rat in vitro hepatocyte MFA (100 ?M) incubations, while mefenamic acid-glycine was not. These results demonstrate that MFA-AMP selectively reacts with the amino functional groups of glycine and lysine nonenzymatically, MFA-CoA selectively reacts nonenzymatically with the thiol functional groups of GSH and NAC, and MFA-GSH reacts with the thiol functional group of GSH nonenzymatically, all of which may potentially elicit an idiosyncratic toxicity in vivo. PMID:23975029

Horng, Howard

2013-01-01

300

New Class of Biodegradable Polymers Formed from Reactions of an Inorganic Functional Group  

E-print Network

New Class of Biodegradable Polymers Formed from Reactions of an Inorganic Functional Group Jun Yoo functional groups into polymer chemistry allows the fabrication of polymers with new properties a polymer with a new functional group along its backbone that renders it stable at physiological pH but also

Salem, Aliasger K.

301

A NOTE ON GROUP CONTRACTIONS AND RADAR AMBIGUITY FUNCTIONS  

E-print Network

the expansion formula for the target distribution function in the narrowband case arises as a limit how the narrowband cross­ ambiguity function arises as a limit of the wideband cross­ambiguity function. We also demonstrate how the expansion formula for the target distribution function

Miller, Willard

302

Zeta functions and Eisenstein series on?classical?groups  

PubMed Central

We construct an Euler product from the Hecke eigenvalues of an automorphic form on a classical group and prove its analytic continuation to the whole complex plane when the group is a unitary group over a CM field and the eigenform is holomorphic. We also prove analytic continuation of an Eisenstein series on another unitary group, containing the group just mentioned defined with such an eigenform. As an application of our methods, we prove an explicit class number formula for a totally definite hermitian form over a CM field. PMID:11607757

Shimura, Goro

1997-01-01

303

Zeta functions and Eisenstein series on classical groups.  

PubMed

We construct an Euler product from the Hecke eigenvalues of an automorphic form on a classical group and prove its analytic continuation to the whole complex plane when the group is a unitary group over a CM field and the eigenform is holomorphic. We also prove analytic continuation of an Eisenstein series on another unitary group, containing the group just mentioned defined with such an eigenform. As an application of our methods, we prove an explicit class number formula for a totally definite hermitian form over a CM field. PMID:11607757

Shimura, G

1997-10-14

304

Biocatalytic reduction of carboxylic acids.  

PubMed

An increasing demand for non-petroleum-based products is envisaged in the near future. Carboxylic acids such as citric acid, succinic acid, fatty acids, and many others are available in abundance from renewable resources and they could serve as economic precursors for bio-based products such as polymers, aldehyde building blocks, and alcohols. However, we are confronted with the problem that carboxylic acid reduction requires a high level of energy for activation due to the carboxylate's thermodynamic stability. Catalytic processes are scarce and often their chemoselectivity is insufficient. This review points at bio-alternatives: currently known enzyme classes and organisms that catalyze the reduction of carboxylic acids are summarized. Two totally distinct biocatalyst lines have evolved to catalyze the same reaction: aldehyde oxidoreductases from anaerobic bacteria and archea, and carboxylate reductases from aerobic sources such as bacteria, fungi, and plants. The majority of these enzymes remain to be identified and isolated from their natural background in order to evaluate their potential as industrial biocatalysts. PMID:24737783

Napora-Wijata, Kamila; Strohmeier, Gernot A; Winkler, Margit

2014-06-01

305

Vibrational spectra, electronic absorption, nonlinear optical properties, evaluation of bonding, chemical reactivity and thermodynamic properties of ethyl 4-(1-(2-(hydrazinecarbonothioyl)hydrazono)ethyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate molecule by ab initio HF and density functional methods.  

PubMed

In this work, detailed vibrational spectral analysis of ethyl 4-(1-(2-(hydrazinecarbonothioyl)hydrazono)ethyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (EHCHEDPC) molecule has been carried out using FT-IR spectroscopy and potential energy distribution (PED). Theoretical calculations were performed by ab initio RHF and density functional theory (DFT) method, using 6-31G(d,p) and 6-311+G(d,p) basis sets. The other carried outwork cover: structural, thermodynamic properties, electronic transitions, bonding, multiple interaction, chemical reactivity and hyperpolarizability analysis. The results of the calculation were applied to the simulated spectra of (EHCHEDPC), which show excellent agreement with observed spectra. The vibrational analysis shows red shift in both group, the proton donor (pyrrole N-H) and proton acceptor (C=O of ester) indicating the presence of intermolecular hydrogen bonding. Time dependent density functional theory (TD-DFT) has been used to find electronic excitations and their nature. The results of natural bond orbital (NBOs) analysis show the charges transfer and delocalization in various intra- and intermolecular interactions. The binding energy of intermolecular multiple interactions is calculated to be 12.54 kcal mol(-1) using QTAIM calculation. The electronic descriptors analyses reveal the investigated molecule used as precursor for heterocyclic derivatives synthesis. First hyperpolarizability (?0) has been computed to evaluate non-linear optical (NLO) response. PMID:25168004

Singh, R N; Rawat, Poonam; Sahu, Sangeeta

2015-01-25

306

Vibrational spectra, electronic absorption, nonlinear optical properties, evaluation of bonding, chemical reactivity and thermodynamic properties of ethyl 4-(1-(2-(hydrazinecarbonothioyl)hydrazono)ethyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate molecule by ab initio HF and density functional methods  

NASA Astrophysics Data System (ADS)

In this work, detailed vibrational spectral analysis of ethyl 4-(1-(2-(hydrazinecarbonothioyl)hydrazono)ethyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (EHCHEDPC) molecule has been carried out using FT-IR spectroscopy and potential energy distribution (PED). Theoretical calculations were performed by ab initio RHF and density functional theory (DFT) method, using 6-31G(d,p) and 6-311+G(d,p) basis sets. The other carried outwork cover: structural, thermodynamic properties, electronic transitions, bonding, multiple interaction, chemical reactivity and hyperpolarizability analysis. The results of the calculation were applied to the simulated spectra of (EHCHEDPC), which show excellent agreement with observed spectra. The vibrational analysis shows red shift in both group, the proton donor (pyrrole Nsbnd H) and proton acceptor (Cdbnd O of ester) indicating the presence of intermolecular hydrogen bonding. Time dependent density functional theory (TD-DFT) has been used to find electronic excitations and their nature. The results of natural bond orbital (NBOs) analysis show the charges transfer and delocalization in various intra- and intermolecular interactions. The binding energy of intermolecular multiple interactions is calculated to be 12.54 kcal mol-1 using QTAIM calculation. The electronic descriptors analyses reveal the investigated molecule used as precursor for heterocyclic derivatives synthesis. First hyperpolarizability (?0) has been computed to evaluate non-linear optical (NLO) response.

Singh, R. N.; Rawat, Poonam; Sahu, Sangeeta

2015-01-01

307

Poly[diaqua-(?-oxalato)(?-2-oxidopyridinium-3-carboxyl-ato)lanthanum(III)].  

PubMed

In the title complex, [La(C(6)H(4)NO(3))(C(2)O(4))(H(2)O)(2)](n), the La(III) ion is coordinated by eight O atoms from two 2-oxido-pyridinium-3-carboxyl-ate ligands, two oxalate ligands and two water mol-ecules in a distorted bicapped square-anti-prismatic geometry. The carboxyl-ate groups link adjacent La(III) ions, forming two-dimensional layers that are further linked by N-H?O and O-H?O hydrogen bonds. PMID:21583041

Hu, Zhen; Zhu, Zhi-Bo

2009-01-01

308

Fragrance material review on methyl hexyl oxo cyclopentanone carboxylate.  

PubMed

A toxicologic and dermatologic review of methyl hexyl oxo cyclopentanone carboxylate when used as a fragrance ingredient is presented. Methyl hexyl oxo cyclopentanone carboxylate is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for methyl hexyl oxo cyclopentanone carboxylate were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (this issue) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances. PMID:22449537

Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

2012-10-01

309

Improved preparation of haloalkyl bridged carboxylic ortho esters  

Technology Transfer Automated Retrieval System (TEKTRAN)

Protection of a carboxylic acid function as a bridged ortho ester derivative enables the use of strong basic conditions in the synthetic strategy. For example, a protected 3-halopropionic acid can behave like an alkyl halide because the protons, alpha to the halide function, are less acidic. Ester...

310

Students' Perceptions of Classroom Group Work as a Function of Group Member Selection  

ERIC Educational Resources Information Center

The purpose of this assessment was to examine whether differences exist between students who self-select their classroom work group members and students who are randomly assigned to their classroom work groups in terms of their use of organizational citizenship behaviors with their work group members; their commitment to, trust in, and relational…

Myers, Scott A.

2012-01-01

311

Critical Design Features of Phenyl Carboxylate-Containing Polymer Microbicides  

PubMed Central

Recent studies of cellulose-based polymers substituted with carboxylic acids like cellulose acetate phthalate (CAP) have demonstrated the utility of using carboxylic acid groups instead of the more common sulfate or sulfonate moieties. However, the pKa of the free carboxylic acid group is very important and needs careful selection. In a polymer like CAP the pKa is approximately 5.28. This means that under the low pH conditions found in the vaginal lumen, CAP would be only minimally soluble and the carboxylic acid would not be fully dissociated. These issues can be overcome by substitution of the cellulose backbone with a moiety whose free carboxylic acid group(s) has a lower pKa. Hydroxypropyl methylcellulose trimellitate (HPMCT) is structurally similar to CAP; however, its free carboxylic acids have pKas of 3.84 and 5.2. HPMCT, therefore, remains soluble and molecularly dispersed at a much lower pH than CAP. In this study, we measured the difference in solubility and dissociation between CAP and HPMCT and the effect these parameters might have on antiviral efficacy. Further experiments revealed that the degree of acid substitution of the cellulose backbone can significantly impact the overall efficacy of the polymer, thereby demonstrating the need to optimize any prospective polymer microbicide with respect to pH considerations and the degree of acid substitution. In addition, we have found HPMCT to be a potent inhibitor of CXCR4, CCR5, and dual tropic strains of human immunodeficiency virus in peripheral blood mononuclear cells. Therefore, the data presented herein strongly support further evaluation of an optimized HPMCT variant as a candidate microbicide. PMID:16940105

Rando, Robert F.; Obara, Sakae; Osterling, Mark C.; Mankowski, Marie; Miller, Shendra R.; Ferguson, Mary L.; Krebs, Fred C.; Wigdahl, Brian; Labib, Mohamed; Kokubo, Hiroyasu

2006-01-01

312

Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technical progress report, January 1--March 30, 1996 and April 1--June 30, 1996  

SciTech Connect

Over the course of his studies on catalytic deoxygenation of phenolic residues in coal by carbon monoxide, the author performed preliminary investigations into the removal of other heteroatom groups. This report describes his attempted carbonylation of phenyl amido complexes. These studies resulted in the surprisingly facile formation of amidines. The amidine group is the nitrogen analog of carboxylic acids and esters. This functional group combines the properties of an azomethane-like C=N double bond with an amide-like C-N single bond. This group, like the related allyl (C-C-C), aza-allyl (C-N-C), and carboxylato (O-C-O) groups, form a number of transition metal derivatives, with both early and late transition metals. Various bonding modes of the amidino group have been reported. However, most isolated complexes have the amidino ligand as a chelating ligand or bridging two metals. This is due to the preference of amidines to bond via the nitrogen lone pairs, in contrast to the {eta}{sup 3} {pi} bonding observed in metal-allyl complexes.

Kubiak, C.P.

1997-05-01

313

Perceptual Visual Grouping under Inattention: Electrophysiological Functional Imaging  

ERIC Educational Resources Information Center

Two types of perceptual visual grouping, differing in complexity of shape formation, were examined under inattention. Fourteen participants performed a similarity judgment task concerning two successive briefly presented central targets surrounded by task-irrelevant simple and complex grouping patterns. Event-related potentials (ERPs) were…

Razpurker-Apfeld, Irene; Pratt, Hillel

2008-01-01

314

Synthesis and HPLC evaluation of carboxylic acid phases on a hydride surface.  

PubMed

Three organic moieties containing carboxylic acid functional groups are attached to a particulate silica surface through silanization/hydrosilation. Two compounds (undecylenic acid and 10-undecynoic acid) have 11 carbon chains and the other is a five-carbon acid (pentenoic acid). Bonding is confirmed through carbon elemental analysis, diffuse reflectance infrared fourier transform spectroscopy, and carbon-13 and silicon-29 CP-MAS NMR spectroscopy. The bonded phases are tested by HPLC using PTH amino acids, nucleic acids, theophylline-related compounds, anilines, benzoic acid compounds, choline, and tobramycin. The latter two compounds are used to investigate the aqueous normal phase properties of the three bonded materials. PMID:16830499

Pesek, Joseph J; Matyska, Maria T; Gangakhedkar, Surekha; Siddiq, Rukhsana

2006-04-01

315

Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals.  

PubMed

Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1064nm. PMID:25795607

Swarna Sowmya, N; Sampathkrishnan, S; Vidyalakshmi, Y; Sudhahar, S; Mohan Kumar, R

2015-06-15

316

Structures and spectroscopic studies of indolecarboxylic acids. Part III. Diamminetetrakis-?-(O,O?-indole-3-carboxylate)dicopper(II)  

NASA Astrophysics Data System (ADS)

The crystal and molecular structures of the novel compound diamminetetrakis-?-( O, O'-indole-3-carboxylate)dicopper(II), Cu-I3CA, have been determined using single-crystal X-ray diffraction, infrared spectroscopy and EPR methods. The crystals are monoclinic, space group P2 1/c, with a=9.505(2), b=7.469(1), c=23.779(5), V=1669.1(6) Å 3 and Z=2. Complex has a dinuclear molecular structure of C i symmetry in which the carboxyl groups of the indole-3-carboxylic acid ligands act as bridges. The Cu-Cu distance of 2.6387(8) Å, Cu-O distances of 1.961(2) and 1.970(2) Å, and Cu-NH 3 distance of 2.188(2) Å, are typical of such dinuclear complexes. The novel Cu-I3CA complex unit reveals a remarkable similarity in its structural and spectroscopic features to the Cu(II) complexes of the human anti-inflammatory drug, indomethacin (a derivative of indole-3-acetic acid). The EPR and infrared spectroscopic studies of Cu-I3CA in the solid state well support the results from X-ray analysis. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the O-deprotonated indole-3-carboxylate ion (I3CA -) have been calculated using density functional (B3LYP) method with the 6-311++G(d,p) basis set. The potential energy distribution (PED) calculated for the ionic ligand (I3CA -) has proved to be of great help in assigning the infrared spectrum of the title complex. The results from natural bond orbital (NBO) analyses for I3CA - and indole-3-carboxylic acid (I3CA) are discussed.

Morzyk-Ociepa, Barbara; Rozycka-Sokolowska, Ewa

2006-02-01

317

Titania-Promoted Carboxylic Acid Alkylations of Alkenes and Cascade Addition–Cyclizations  

PubMed Central

Photochemical reactions employing TiO2 and carboxylic acids under dry anaerobic conditions led to several types of C–C bond-forming processes with electron-deficient alkenes. The efficiency of alkylation varied appreciably with substituents in the carboxylic acids. The reactions of aryloxyacetic acids with maleimides resulted in a cascade process in which a pyrrolochromene derivative accompanied the alkylated succinimide. The selectivity for one or other of these products could be tuned to some extent by employing the photoredox catalyst under different conditions. Aryloxyacetic acids adapted for intramolecular ring closures by inclusion of 2-alkenyl, 2-aryl, or 2-oximinyl functionality reacted rather poorly. Profiles of reactant consumption and product formation for these systems were obtained by an in situ NMR monitoring technique. An array of different catalyst forms were tested for efficiency and ease of use. The proposed mechanism, involving hole capture at the TiO2 surface by the carboxylates followed by CO2 loss, was supported by EPR spectroscopic evidence of the intermediates. Deuterium labeling indicated that the titania likely donates protons from surface hydroxyl groups as well as supplying electrons and holes, thus acting as both a catalyst and a reaction partner. PMID:24437519

2014-01-01

318

Reactivity of End-functionalized Polymers Containing Diels-Alder Functional Groups  

NASA Astrophysics Data System (ADS)

Incorporation of reversible covalent bond into macromolecular systems has proven useful in engineering novel responsive architectures, and Diels-Alder bonding in this context is now well established. However, efficient synthesis of end-functionalized polymers is a major obstacle hindering further development of responsive and modular polymer architectures. In this current research, two immiscible polymers, poly(methyl methacrylate) (PMMA) and poly(benzyl methacrylate) (PBzMA) with controlled molecular weight, bearing terminal furan-maleimide groups, are prepared via Reversible Addition-Fragmentation chain transfer (RAFT) polymerization. The reactivity of such end-functionalized polymers is explored to expose the relationship between chain composition and their ability to undergo modular cross-coupling to form monodisperse block copolymers. To elucidate how reaction conditions affect the efficiency of the Diels-Alder reaction, Hydrogen Nuclear Magnetic Resonance (H-NMR) and Size Exclusion Chromatography (SEC) techniques are actively applied. Experimental results will be interpreted on the basis of dissimilarity between interaction energies of polymer segments and the concentration of reactive groups.

Meng, Yuan; Zhang, Yuan; Anthamatten, Mitchell

2013-03-01

319

A Generalized Logistic Regression Procedure to Detect Differential Item Functioning among Multiple Groups  

ERIC Educational Resources Information Center

We present an extension of the logistic regression procedure to identify dichotomous differential item functioning (DIF) in the presence of more than two groups of respondents. Starting from the usual framework of a single focal group, we propose a general approach to estimate the item response functions in each group and to test for the presence…

Magis, David; Raiche, Gilles; Beland, Sebastien; Gerard, Paul

2011-01-01

320

Isoperimetric Functions of Groups and Computational Complexity of the Word Problem  

E-print Network

generated group G is in NP (solvable in polynomial time by a non­deterministic Turing machine) if and only if this group is a subgroup of a finitely presented group H with polynomial isoperimetric function with Dehn function T (n) there exists a nondeterministic Turing machine M(G) which solves the word problem

Sapir, Mark

321

Density functional study of electronic, charge density, and chemical bonding properties of 9-methyl-3-Thiophen-2-YI-Thieno [3,2-e] [1, 2, 4] Thriazolo [4,3-c] pyrimidine-8-Carboxylic acid ethyl ester crystals  

NASA Astrophysics Data System (ADS)

A comprehensive theoretical density functional investigation of the electronic crystal structure, chemical bonding, and the electron charge densities of 9-Methyl-3-Thiophen-2-YI-Thieno [3, 2-e] [1, 2, 4] Thriazolo [4,3-c] Pyrimidine-8-Carboxylic Acid Ethyl Ester (C15H12N4O2S2) is performed. The density of states at Fermi level equal to 5.50 (3.45) states/Ry cell, and the calculated bare electronic specific heat coefficient is found to be 0.95 (0.59) mJ/mole-K2 for the local density approximation (Engel-Vosko generalized gradient approximation). The electronic charge density space distribution contours in (1 0 0) and (1 1 0) planes were calculated. We find that there are two independent molecules (A and B) in the asymmetric unit exhibit intramolecular C-H…O, C-H…N interactions. This intramolecular interaction is different in molecules A and B, where A molecule show C-H…O interaction while B molecule exhibit C-H…N interaction. We should emphasis that there is ?-? interaction between the pyrimidine rings of the two neighbors B molecules gives extra strengths and stabilizations to the superamolecular structure. The calculated distance between the two neighbors pyrimidine rings found to be 3.345 Å, in good agreement with the measured one (3.424(1) Å).

Reshak, A. H.; Kamarudin, H.; Alahmed, Z. A.; Auluck, S.; Chyský, Jan

2014-06-01

322

An experimental test of the effect of plant functional group diversity on arthropod diversity  

Microsoft Academic Search

Characteristics used to categorize plant species into functional groups for their effects on ecosystem functioning may also be relevant to higher trophic levels. In addition, plant and consumer diversity should be positively related because more diverse plant communities offer a greater variety of resources for the consumers. Thus, the functional group composition and richness of a plant community may affect

Amy J. Symstad; Evan Siemann; John Haarstad

2000-01-01

323

Molecular Structure of Cyclopropane carboxylic acid  

NSDL National Science Digital Library

Cyclopropane carboxylic acid is a clear liquid used as an intermediate for agrochemicals, pharmaceuticals, and other organic synthesis such as for the applications of electronics, chemicals, polymer additives, coatings, adhesives, surfactants, and other applications. Also, derivatives of cyclopropane-carboxylic acid are used against parasites in plants and animals. For example, the alkynyl esters of cyclopropane-carboxylic acid are used as pesticides. Similarly, cyclopropane carboxylic acid esters containing a polyhalogenated substituent are used as fungicides.

2003-04-11

324

Photooxidative degradation of carboxylated poly(vinyl chloride)  

Microsoft Academic Search

Thin films of poly(vinyl chloride), PVC, and carboxylated poly(vinyl chloride), C-PVC, containing 1.8% of carboxyl groups\\u000a were exposed to high energy ultraviolet radiation (? = 254 nm) in laboratory conditions. The photochemical reactions in irradiated\\u000a samples were studied by FTIR and UV–Vis spectroscopy, gel permeation chromatography and gravimetric estimation of insoluble\\u000a gel. It was found that photodegradation and photocrosslinking in C-PVC is accelerated,

Halina Kaczmarek; Agnieszka Felczak; Dagmara Bajer

2009-01-01

325

Using Text Analysis to Identify Functionally Coherent Gene Groups  

E-print Network

based on their associated scientific literature. The method uses statistical natural language processing of genes shares a common biological function by automatic analysis of scientific text. It requires only

Batzoglou, Serafim

326

Separation of certain carboxylic acids utilizing cation exchange membranes  

DOEpatents

A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

Chum, Helena L. (Arvada, CO); Sopher, David W. (Maarssenbroek, NL)

1984-01-01

327

Separation of certain carboxylic acids utilizing cation exchange membranes  

DOEpatents

A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100/sup 0/C and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

Chum, H.L.; Sopher, D.W.

1983-05-09

328

New Integral Representations of Whittaker Functions for Classical Lie Groups  

Microsoft Academic Search

We propose integral representations of the Whittaker functions for the classical Lie algebras sp(2l), so(2l) and so(2l+1). These integral representations generalize the integral representation of gl(l+1)-Whittaker functions first introduced by Givental. One of the salient features of the Givental representation is its recursive structure with respect to the rank of the Lie algebra gl(l+1). The proposed generalization of the Givental

A. Gerasimov; D. Lebedev; S. Oblezin

2007-01-01

329

Group structure and weighting function effects on neutron penetration through thick sodium-iron shields  

SciTech Connect

The effects of group structures and weighting functions on neutron penetration through a thick Na-Fe geometry are studied. The recommended broad-group (61-neutron/23-gamma-ray) and few-group (22-neutron/10-gamma-ray) structures are tailored to the sodium and iron resonances, windows, and capture gamma-ray spectra. The best weighting functions are shown to be fine-group fluxes selected from a few key locations in the geometry. These group structures and weighting functions, relative to existing group structures and conventional weighting functions, improve the accuracy of the computed 61-neutron-group Bonner ball responses by up to one hundred percent and of the computed 22-neutron-group results by up to six hundred percent.

Fu, C.Y.; Ingersoll, D.T.

1987-01-01

330

Multicultural-Multilingual Group Sessions: Development of Functional Communication  

ERIC Educational Resources Information Center

Group therapy with multilingual, multicultural populations is a challenging and unexplored area that is beginning to be addressed because of the growing population of multilingual, multicultural children. In this article, the importance of working with children from different cultural backgrounds, and current research on bilingualism are reviewed.…

Larroude, Bettina

2004-01-01

331

Purification to Homogeneity of Pyrroline-5-Carboxylate Reductase of Barley  

PubMed Central

An enzyme has been purified to homogeneity from barley seedlings which has `proline dehydrogenase' and the pyrroline-5-carboxylic acid reductase activities. The purification achieved is 39,000-fold as calculated from the proline dehydrogenase activity. The subunit molecular weight of the protein is 30 kilodaltons. The native enzyme has molecular weights up to 480 kilodaltons, depending on the buffer environment. From the pH profiles, the specific activities and thermodynamic considerations, it is concluded that the plant proline dehydrogenase functions in vivo as a pyrroline-5-carboxylate reductase. Images Fig. 2 PMID:16664571

Krueger, Rolf; Jäger, Hans-Jürgen; Hintz, Martin; Pahlich, Edwin

1986-01-01

332

Investigation of the ionic strength dependence of Ulva lactuca acid functional group pK(a)s by manual alkalimetric titrations.  

PubMed

We performed a series of manual alkalimetric titrations in NaCl solutions (0.01-5.0 M) at T = 25 degrees C on both fresh and dehydrated samples of the marine chlorophyte Ulva lactuca (sea lettuce), a strong metal accumulator holding considerable promise in biosorbent and biomonitor applications. Functional groups were characterized in terms of their number, site densities, and acid dissociation constants (pK(a)s). FITEQL4.0 modeling shows that, at any ionic strength, titration curves for dehydrated biomass in the pH range 2-10 are adequately described by three functional groups with remarkably uniform site densities of about 5 x 10(-4) mol/g. Lower site densities for fresh U. lactuca are consistent with approximately 87% water content. The pK(a)s display pronounced ionic strength dependent behavior obeying an extended Debye-Huckel relation. Extrapolation to I = 0 yields values of 4.26 +/- 0.04, 6.44 +/- 0.02, and 9.56 +/- 0.04. This information by itself is insufficient to unambiguously identify the groups. Similar site densities suggest that all three are linked to major molecular building blocks of the cell material, pointing to carboxylic acids, phosphate esters, and amines as likely candidates. Highly acidic sulfate esters, not detected in our titrations, may also play a role in trace metal adsorption on U. lactuca. PMID:20121199

Schijf, Johan; Ebling, Alina M

2010-03-01

333

Selective Na(+)/K(+) effects on the formation of ?-cyclodextrin complexes with aromatic carboxylic acids: competition for the guest.  

PubMed

We investigated the effects of K(+) and Na(+) ions on the formation of ?-cyclodextrin complexes with ionized aromatic carboxylic acids. Using solution calorimetry and (1)H NMR, we performed the thermodynamic and structural investigation of ?-cyclodextrin complex formation with benzoic and nicotinic acids in different aqueous solutions containing K(+) and Na(+) ions as well as in pure water. The experiments show that the addition of sodium ions to solution leads to a decrease in the binding constants of the carboxylic acids with ?-cyclodextrin as compared to pure water and solutions containing potassium ions. From another side, the effect of potassium ions on the binding constants is insignificant as compared to pure water solution. We suggest that the selectivity of cation pairing with carboxylates is the origin of the difference between the effects of sodium and potassium ions on complex formation. The strong counterion pairing between the sodium cation and the carboxylate group shifts the equilibrium toward dissociation of the binding complexes. In turn, the weak counterion pairing between the potassium cation and the carboxylate group has no effect on the complex formation. We complemented the experiments with molecular modeling, which shows the molecular scale details of the formation of cation pairs with the carboxylate groups of the carboxylic acids. The fully atomistic molecular simulations show that sodium ions mainly form direct contact pairs with the carboxylate group. At the same time, potassium ions practically do not form direct contact pairs with the carboxylate groups and usually stay in the second solvation shell of carboxylate groups. That confirms our hypotheses that the selective formation of ion pairs is the main cause of the difference in the observed effects of sodium and potassium salts on the guest-host complex formation of ?-cyclodextrin with aromatic carboxylic acids. We propose a molecular mechanism explaining the effects of salts, based on competition between the cations and ?-cyclodextrin for binding with the ionized carboxylic acids. PMID:20843099

Terekhova, Irina V; Romanova, Anastasia O; Kumeev, Roman S; Fedorov, Maxim V

2010-10-01

334

Functional Assignments for the Carboxyl-Terminal Domains of the Ferrochelatase from Synechocystis PCC 6803: The CAB Domain Plays a Regulatory Role, and Region II Is Essential for Catalysis1[W  

PubMed Central

Ferrochelatase (FeCH) catalyzes the insertion of Fe2+ into protoporphyrin, forming protoheme. In photosynthetic organisms, FeCH and magnesium chelatase lie at a biosynthetic branch point where partitioning down the heme and chlorophyll (Chl) pathways occurs. Unlike their mammalian, yeast, and other bacterial counterparts, cyanobacterial and algal FeCHs as well as FeCH2 isoform from plants possess a carboxyl-terminal Chl a/b-binding (CAB) domain with a conserved Chl-binding motif. The CAB domain is connected to the FeCH catalytic core by a proline-rich linker sequence (region II). In order to dissect the regulatory, catalytic, and structural roles of the region II and CAB domains, we analyzed a FeCH ?H347 mutant that retains region II but lacks the CAB domain and compared it with the ?H324-FeCH mutant that lacks both these domains. We found that the CAB domain is not required for catalytic activity but is essential for dimerization of FeCH; its absence causes aberrant accumulation of Chl-protein complexes under high light accompanied by high levels of the Chl precursor chlorophyllide. Thus, the CAB domain appears to serve mainly a regulatory function, possibly in balancing Chl biosynthesis with the synthesis of cognate apoproteins. Region II is essential for the catalytic function of the plastid-type FeCH enzyme, although the low residual activity of the ?H324-FeCH is more than sufficient to furnish the cellular demand for heme. We propose that the apparent surplus of FeCH activity in the wild type is critical for cell viability under high light due to a regulatory role of FeCH in the distribution of Chl into apoproteins. PMID:21081693

Sobotka, Roman; Tichy, Martin; Wilde, Annegret; Hunter, C. Neil

2011-01-01

335

Improved Preparation of Halopropyl Bridged Carboxylic Ortho Esters  

Technology Transfer Automated Retrieval System (TEKTRAN)

Protection of a carboxylic acid function as a bridged ortho ester derivative enables the use of strongly basic conditions in the synthetic strategy because the protons, alpha to the previous carbonyl carbon, are less acidic. Protected 3-halopropionic acid can behave like an alkyl halide making them...

336

Effects of Oxygen-Containing Functional Groups on Supercapacitor Performance  

SciTech Connect

Molecular dynamics (MD) simulations of the interface between graphene and the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM OTf) were carried out to gain molecular-level insights into the performance of graphene-based supercapacitors and, in particular, determine the effects of the presence of oxygen-containing defects at the graphene surface on their integral capacitance. The MD simulations predict that increasing the surface coverage of hydroxyl groups negatively affects the integral capacitance, whereas the effect of the presence of epoxy groups is much less significant. The calculated variations in capacitance are found to be directly correlated to the interfacial structure. Indeed, hydrogen bonding between hydroxyl groups and SO3 anion moieties prevents BMIM+ and OTf- molecules from interacting favorably in the dense interfacial layer and restrains the orientation and mobility of OTf- ions, thereby reducing the permittivity of the ionic liquid at the interface. The results of the molecular simulations can facilitate the rational design of electrode materials for supercapacitors.

Kerisit, Sebastien N.; Schwenzer, Birgit; Vijayakumar, M.

2014-06-19

337

Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?  

NASA Technical Reports Server (NTRS)

The functional grouping hypothesis, which suggests that complexity in function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained FL scrub function in terms of carbon, water and nitrogen dynamics. The suite of physiologic parameters measured to determine function included both instantaneous gas exchange measurements obtained from photosynthetic light response curves and integrated measures of function. Using cluster analysis, five distinct physiologically-based functional groups were identified. Using non-parametric multivariate analyses, it was determined that these five groupings were not altered by plot differences or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed. The physiological groupings also remained robust between the two years 1999 and 2000. In order for these groupings to be of use for scaling ecosystem processes, there needs to be an easy-to-measure morphological indicator of function. Life form classifications were able to depict the physiological groupings more adequately than either specific leaf area or leaf thickness. THe ability of life forms to depict the groupings was improved by separating the parasitic Ximenia americana from the shrub category.

Foster, Tammy E.; Brooks, J. Renee; Quincy, Charles (Technical Monitor)

2002-01-01

338

QUANTUM MECHANICS AND NONABELIAN THETA FUNCTIONS FOR THE GAUGE GROUP SU(2)  

E-print Network

functions from the quantization of the torus 8 3.2. Classical theta functions from a topological perspective 12 3.3. The discrete Fourier transform for classical theta functions from a topological perspectiveQUANTUM MECHANICS AND NON­ABELIAN THETA FUNCTIONS FOR THE GAUGE GROUP SU(2) R â?? AZVAN GELCA

Gelca, Razvan

339

QUANTUM MECHANICS AND NON-ABELIAN THETA FUNCTIONS FOR THE GAUGE GROUP SU(2)  

E-print Network

functions from the quantization of the torus 8 3.2. Classical theta functions from a topological perspective 12 3.3. The discrete Fourier transform for classical theta functions from a topological perspectiveQUANTUM MECHANICS AND NON-ABELIAN THETA FUNCTIONS FOR THE GAUGE GROUP SU(2) RAZVAN GELCA

Gelca, Razvan

340

Direct mechanochemical cleavage of functional groups from graphene  

NASA Astrophysics Data System (ADS)

Mechanical stress can drive chemical reactions and is unique in that the reaction product can depend on both the magnitude and the direction of the applied force. Indeed, this directionality can drive chemical reactions impossible through conventional means. However, unlike heat- or pressure-driven reactions, mechanical stress is rarely applied isometrically, obscuring how mechanical inputs relate to the force applied to the bond. Here we report an atomic force microscope technique that can measure mechanically induced bond scission on graphene in real time with sensitivity to atomic-scale interactions. Quantitative measurements of the stress-driven reaction dynamics show that the reaction rate depends both on the bond being broken and on the tip material. Oxygen cleaves from graphene more readily than fluorine, which in turn cleaves more readily than hydrogen. The technique may be extended to study the mechanochemistry of any arbitrary combination of tip material, chemical group and substrate.

Felts, Jonathan R.; Oyer, Andrew J.; Hernández, Sandra C.; Whitener, Keith E., Jr.; Robinson, Jeremy T.; Walton, Scott G.; Sheehan, Paul E.

2015-03-01

341

Direct mechanochemical cleavage of functional groups from graphene.  

PubMed

Mechanical stress can drive chemical reactions and is unique in that the reaction product can depend on both the magnitude and the direction of the applied force. Indeed, this directionality can drive chemical reactions impossible through conventional means. However, unlike heat- or pressure-driven reactions, mechanical stress is rarely applied isometrically, obscuring how mechanical inputs relate to the force applied to the bond. Here we report an atomic force microscope technique that can measure mechanically induced bond scission on graphene in real time with sensitivity to atomic-scale interactions. Quantitative measurements of the stress-driven reaction dynamics show that the reaction rate depends both on the bond being broken and on the tip material. Oxygen cleaves from graphene more readily than fluorine, which in turn cleaves more readily than hydrogen. The technique may be extended to study the mechanochemistry of any arbitrary combination of tip material, chemical group and substrate. PMID:25739513

Felts, Jonathan R; Oyer, Andrew J; Hernández, Sandra C; Whitener, Keith E; Robinson, Jeremy T; Walton, Scott G; Sheehan, Paul E

2015-01-01

342

Atmospheric Environment 36 (2002) 51855196 FTIR measurements of functional groups and organic mass in  

E-print Network

Atmospheric Environment 36 (2002) 5185­5196 FTIR measurements of functional groups and organic mass has been used to collect particles for Fourier transform infrared (FTIR) transmission spectroscopy-turbulence inlet project. FTIR identified sulfate, ammonium, silicate, and organic functional groups, and a four

Russell, Lynn

343

Plant parameters for plant functional groups of western rangelands to enable process-based simulation modeling  

Technology Transfer Automated Retrieval System (TEKTRAN)

Regional environmental assessments with process-based models require realistic estimates of plant parameters for the primary plant functional groups in the region. “Functional group” in this context is an operational term, based on similarities in plant type and in plant parameter values. Likewise...

344

In Search of Functional Specificity in the Brain: Generative Models for Group fMRI Data  

E-print Network

In Search of Functional Specificity in the Brain: Generative Models for Group fMRI Data by Danial #12;2 #12;3 In Search of Functional Specificity in the Brain: Generative Models for Group fMRI Data an exploratory framework for design and analysis of fMRI studies. In our framework, the experimenter presents

Golland, Polina

345

Detection of low concentration oxygen containing functional groups on activated carbon fiber surfaces through fluorescent labeling  

E-print Network

carbon, activated carbon fibers and carbon nano- tubes, are based on the presence of oxygen containingDetection of low concentration oxygen containing functional groups on activated carbon fiber of surface functional groups (OH, COOH and CHO) on activated carbon fiber surfaces. The chromophores were

Borguet, Eric

346

A literature-based method for assessing the functional coherence of a gene group  

Microsoft Academic Search

Motivation: Many experimental and algorithmic ap- proaches in biology generate groups of genes that need to be examined for related functional properties. For example, gene expression profiles are frequently orga- nized into clusters of genes that may share functional properties. We evaluate a method, neighbor divergence per gene (NDPG), that uses scientific literature to assess whether a group of genes

Soumya Raychaudhuri; Russ B. Altman

2003-01-01

347

Feeding capabilities and limitation of herbivorous molluscs: A functional group approach  

Microsoft Academic Search

The susceptibility of an alga to an herbivorous mollusc depends, in part, upon the size and toughness of the plant relative to the feeding ability of the mollusc. In this study, algae are subdivided into seven functional groups based on these and other physiological characteristics. Herbivorous prosobranchs and chitons are subdivided into four functional groups based on the structure of

R. S. Steneck; L. Watling

1982-01-01

348

R''O NR2''' Oxidation States of Organic Functional Groups  

E-print Network

. Included are several functional group equivalents considered to be at the same oxidation state. Alkane R R' N R'' C NR R R' R''O NR2''' O R R' Myers Oxidation States of Organic Functional Groups General Press: Cambridge, UK, 1987, p. 344!410. Mark G. Charest, Jonathan William Medley Chem 115Oxidation

349

Development of acid functional groups during the thermal degradation of wood and wood components  

Technology Transfer Automated Retrieval System (TEKTRAN)

This study provides data on acid functional groups in charcoals and how the acid functional group content varies with the formation conditions. Chars were created from purified cellulose, purified lignin, pine wood, and pine bark. The charring temperatures and charring duration were controlled in a ...

350

Synthesis and characterization of homo- and heterovalent tetra- hexa- hepta- and decanuclear manganese clusters using pyridyl functionalized beta-diketone, carboxylate and triethanolamine ligands.  

PubMed

The syntheses and characterizations are reported for six new homo- and heterovalent manganese clusters, utilizing pyridyl functionalized beta-diketones ligands. The reaction of the trinuclear complex [Mn3O(O2CPh)6(H2O)(Py)2] with 1,3-di(pyridine-2-yl)propane-1,3-dione (dppdH) in CH2Cl2 resulted in a mixed-valence Mn3(II)Mn6(III)Mn(IV) decanuclear cluster of formula [Mn10O7(dppd)3(O2CPh)11] x 4 CH2Cl2 (1). The structure of the core of 1 is based upon a centred tricapped trigonal prism. Reacting Mn(BF4)2 x xH2O with dppdH and triethylamine (NEt3) in CH2Cl2-MeOH gave a rare, homoleptic hexanuclear cluster of formula [Mn(II)6(dppd)8][BF4]4 (2) which has a triangular based core. Reaction of Mn(Y)2 x xH2O, Y = NO3(-) or BF4(-), with dppdH or 1-phenyl-3-(2-pyridyl)propane-1,3-dione (pppdH) in the presence of triethanolamine (teaH3) and NEt3 gave a heptanuclear 'disc' like manganese core of general formula [Mn(II)7(X)6(tea)(OH)3][Y]2 x solv (3) X = pppd- or dppd- and Y = NO3(-) or BF4(-). The addition of N-(2-pyridinyl)acetoacetamide (paaH) to Mn(Y)2 x 4 H2O Y = NO3(-) or ClO4(-) in MeOH gave a second divalent heptanuclear cluster with a 'disc'-like core of general formula [Mn7(paa)6(OMe)6][X]2 x solv (4) (X = NO3(-) or ClO4(-)), whilst the addition of paaH to a mixture of Mn(NO3)2 x 4 H2O, teaH3 and NEt3 in CH2Cl2-MeOH resulted in the formation of a mixed-valence Mn2(II)Mn2(III) tetranuclear 'butterfly' complex of formula [Mn4(paa)4(teaH)2][NO3]2 x 2 MeOH x 2 CH2Cl2 (5). Compound 5 displays the rare Mn(II/III) oxidation state distribution of the body positions being Mn(II) while the wing tips are Mn(III). The in situ formation of the tetranuclear [Mn4(teaH)2(teaH2)2(O2C(CH3)3)2][O2C(CH3)3]2 'butterfly' complex followed by the addition of Mn(O2CMe)2 x 4 H2O resulted in a mixed-valence Mn4(II)Mn(III)Mn(IV) hexanuclear species of formula [Mn6O2(teaH2)4(O2CMe)4][NO3]2[O2CMe] x CH2Cl2 x MeOH x 2 H2O (6). The core of 6 displays a face sharing dicubane topology. Compounds 1 and 6 both display novel trapped-valence metal cores containing three different oxidation states on the manganese ion. Compounds 1, 2 and 3 are the first manganese based dppd clusters, while 4 and 5 are the first with the pyridylamino-substituted beta-diketone ligand (paaH). The magnetic data for 1, 2, 3, 4, and 6 are dominated by antiferromagnetic interactions within the clusters, leading to small ground spin values of S = 1 for 1, S = 3 for 2, S = 5/2 for 3, S = 5/2 for 4 and S = 1/2 for 6. Compound 5, however, displays overall ferromagnetic interactions with the data indicating an S = 6 ground state. 5 also exhibits probable single molecule magnet behaviour as indicated by frequency dependent out-of-phase chiM'' peaks in the AC susceptibility measurements. PMID:20617238

Langley, Stuart K; Chilton, Nicholas F; Massi, Massimiliano; Moubaraki, Boujemaa; Berry, Kevin J; Murray, Keith S

2010-08-21

351

PhI(OAc)2 mediated decarboxylative sulfonylation of ?-aryl-?,?-unsaturated carboxylic acids: a synthesis of (E)-vinyl sulfones.  

PubMed

A highly efficient metal-free decarboxylative sulfonylation protocol for the preparation of (E)-vinyl sulfones from of ?-aryl-?,?-unsaturated carboxylic acids using sodium sulfinates and (diacetoxyiodo)benzene (PhI(OAc)2) was developed. This strategy offers a simple and expedient synthesis of (E)-vinyl sulfones bearing a wide variety of functional groups. A radical-based pathway has been proposed for this decarboxylative sulfonylation reaction. PMID:25811160

Katrun, Praewpan; Hlekhlai, Sornsiri; Meesin, Jatuporn; Pohmakotr, Manat; Reutrakul, Vichai; Jaipetch, Thaworn; Soorukram, Darunee; Kuhakarn, Chutima

2015-04-01

352

Synthesis of chromium(III) complex with 1-hydroxy-2-pyridinone-6-carboxylic acid as insulin-mimetic agent and its spectroscopic and computational studies  

NASA Astrophysics Data System (ADS)

The new complex of chromium(III) and 1-hydroxy-2-pyridinone-6-carboxylic acid was synthesized and its preparation routes were reported. Mass spectrometry and elemental analysis indicated the formation of chromium complex with the metal-to-ligand mole ratio of 1:3. Combination of spectroscopic measurement and spectral computations based on the density functional theory suggested that 1-hydroxy-2-pyridinone-6-carboxylic acid was a bidentate ligand using one oxygen atom at pyridinone carbonyl group and the other at N-oxide group as donor atoms upon chelation with chromium(III), forming the six-coordinate complex with five-membered chelate rings. Due to the enhanced stability of the chelate rings, such the pathway of chelation was theoretically predicted to be more favorable than the case where the carboxylate oxygen atom of ligand participated in the chelation. According to the preliminary tests, the chromium(III) complex with 1-hydroxy-2-pyridinone-6-carboxylic acid was found to be active in lowering plasma glucose levels in vivo.

Yasarawan, Nuttawisit; Thipyapong, Khajadpai; Sirichai, Somsak; Ruangpornvisuti, Vithaya

2013-01-01

353

Polymerization process for carboxyl containing polymers utilizing oil soluble ionic surface active agents  

SciTech Connect

This patent describes a method for polymerizing olefinically unsaturated carboxylic acid monomers containing at least one activated carbon to carbon olefinic double bond and at least one carboxyl group. The monomers are polymerized in an organic media consisting essentially of organic liquids, in the presence of free radical forming catalysts and at least one oil soluble ionic surface active agent selected from the group consisting of: (a) anionic surface active agents; (b) cationic surface active agents; and (c) amphoteric surface active agents.

Uebele, C.E.; Ball, L.E.; Jorkasky, R.J. II; Wardlow, E. Jr.

1987-09-08

354

A re-evaluation of how functional groups modify the electronic structure of graphene oxide.  

PubMed

The first 4 eV of the conduction band in graphene oxide is dominated by states from carbon sites that are in close proximity, but not directly bonded, to oxidizing functional groups. The carbon sites that are bonded directly to these groups, such as epoxide and hydroxyl groups, are much higher in energy. PMID:24903059

Hunt, Adrian; Kurmaev, Ernst Z; Moewes, Alex

2014-07-23

355

Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures.  

PubMed

Surface functional groups such as carboxyl play a vital role in the environmental applications of biochar as a soil amendment. However, the quantification of oxygen-containing groups on a biochar surface still lacks systematical investigation. In this paper, we report an integrated method combining chemical and spectroscopic techniques that were established to quantitatively identify the chemical states, dissociation constants (pK(a)), and contents of oxygen-containing groups on dairy manure-derived biochars prepared at 100-700 °C. Unexpectedly, the dissociation pH of carboxyl groups on the biochar surface covered a wide range of pH values (pH 2-11), due to the varied structural microenvironments and chemical states. For low temperature biochars (? 350 °C), carboxyl existed not only as hydrogen-bonded carboxyl and unbonded carboxyl groups but also formed esters at the surface of biochars. The esters consumed OH(-) via saponification in the alkaline pH region and enhanced the dissolution of organic matter from biochars. For high temperature biochars (? 500 °C), esters came from carboxyl were almost eliminated via carbonization (ester pyrolysis), while lactones were developed. The surface density of carboxyl groups on biochars decreased sharply with the increase of the biochar-producing temperature, but the total contents of the surface carboxyls for different biochars were comparable (with a difference <3-fold) as a result of the expanded surface area at high pyrolytic temperatures. Understanding the wide pKa ranges and the abundant contents of carboxyl groups on biochars is a prerequisite to recognition of the multifunctional applications and biogeochemical cycling of biochars. PMID:25453912

Chen, Zaiming; Xiao, Xin; Chen, Baoliang; Zhu, Lizhong

2015-01-01

356

Biogeographical Boundaries, Functional Group Structure and Diversity of Rocky Shore Communities along the Argentinean Coast  

PubMed Central

We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10?s km) and local (10?s m) scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass) and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3–4 main ‘groups’ of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site ) to stabilize patterns of biomass variability and, in this manner, provide a buffer, or “insurance”, against spatial variability in environmental conditions. PMID:23166756

Wieters, Evie A.; McQuaid, Christopher; Palomo, Gabriela; Pappalardo, Paula; Navarrete, Sergio A.

2012-01-01

357

An ab initio density functional study of the optical functions of 9-Methyl-3-Thiophen-2-YI-Thieno [3,2e] [1,2,4] Thriazolo [4,3c] Pyrimidine-8-Carboxylic Acid Ethyl Ester crystals  

NASA Astrophysics Data System (ADS)

An ab initio investigation of the optical constants of 9-Methyl-3-Thiophen-2-YI-Thieno [3,2e] [1,2,4] Thriazolo [4,3c] Pyrimidine-8-Carboxylic Acid Ethyl Ester crystal is performed within a framework of local density approximation (LDA), and the Engel-Vosko generalized gradient approximation (EV-GGA) exchange correlation potentials. It is established that there are two independent molecules (A and B) exhibiting different intra-molecular interactions: C-H⋯O (A) and C-H⋯N (B). These intra-molecular interactions favor stabilization of the crystal structure for molecules A and B. It should be emphasized that there exist remarkable ?-? interactions between the pyrimidine rings of the two neighbors B molecules giving extra strengths and stabilizations to the superamolecular structure. These different intra-molecular interactions C-H⋯O (A) and C-H⋯N (B) and the ?-? interaction between the pyrimidine rings of the two neighbors B molecules give principal contribution to dispersion of optical properties. With a view to seek deeper insight into the electronic structure, the optical properties were investigated. Our calculations show that the optical constants are very anisotropic. The EVGGA calculation shows a blue spectral shift of around 0.024 eV with significant changes in the spectra compared to the LDA calculation. The observed spectral shifts are in agreement with the calculated band structure and corresponding electron density of states.

Reshak, Ali H.; Kityk, I. V.; Khenata, R.; Al-Douri, Y.; Auluck, S.

358

Solvent effects on chiroptical properties of carbonyl functional group molecules  

NASA Astrophysics Data System (ADS)

Solvent effects on Optical Rotatory Dispersion (ORD) and Circular Dichroism CD of carvone enantiomers and R-(+)-3-methylcyclopentanone (R3MCP) are studied for 35 common solvents. Solvent effects are significantly attributed to the solute-solvent electrostatic and Van der waals interactions. Hartree-Fock and Density Function theoretical calculations of R3MCP CD and ORD in solvation are also employed to support the experimental findings and observed to have good agreement with experimental results. Enantiomers (R,S) of chiral molecules are known to exhibit optical activity effects which are equal in magnitude and opposite in sign. For some carbonyl molecules (possessing C=O) the equatorial and axial conformers also exhibit CD and ORD of opposite sign but not necessarily the same absolute magnitude for the n->?* (n->3s) molecular transition. Temperature dependent variations of CD and Raman spectra are shown to be a useful technique to study the conformer's populations and energy difference of R3MCP. Thermodynamic constants of R3MCP in 35 solvents, will be presented and related to solvent polarity parameters.

Al-Basheer, Watheq; Pagni, Richard; Compton, Robert

2007-03-01

359

Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems  

SciTech Connect

This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and {sup 13}C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

Dutta, Saikat; Wu, Kevin C.-W., E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Kao, Hsien-Ming, E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemistry, National Central University, Chung-Li 32054, Taiwan (China)

2014-11-01

360

Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems  

NASA Astrophysics Data System (ADS)

This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (-COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and 13C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

Dutta, Saikat; Kao, Hsien-Ming; Wu, Kevin C.-W.

2014-11-01

361

Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups.  

PubMed

We have synthesized five novel Ru(ii) phenanthroline complexes with an additional aryl sulfonate ligating substituent at the 5-position [Ru(L)(bpy)2](BF4)2 (1), [Ru(L)(bpy)(SCN)2] (2), [Ru(L)3](BF4)2 (3), [Ru(L)2(bpy)](BF4)2 (4) and [Ru(L)(BPhen)(SCN)2] (5) (where L = 6-one-[1,10]phenanthroline-5-ylamino)-3-hydroxynaphthalene 1-sulfonic, bpy = 2,2'-bipyridine, BPhen = 4,7-diphenyl-1,10-phenanthroline), as both photosensitizers for oxide semiconductor solar cells (DSSCs) and light emitting diodes (LEDs). The absorption and emission maxima of these complexes red shifted upon extending the conjugation of the phenanthroline ligand. Ru phenanthroline complexes exhibit broad metal to ligand charge transfer-centered electroluminescence (EL) with a maximum near 580 nm. Our results indicated that a particular structure (2) can be considered as both DSSC and OLED devices. The efficiency of the LED performance can be tuned by using a range of ligands. Device (2) has a luminance of 550 cd m(-2) and maximum efficiency of 0.9 cd A(-1) at 18 V, which are the highest values among the five devices. The turn-on voltage of this device is approximately 5 V. The role of auxiliary ligands in the photophysical properties of Ru complexes was investigated by DFT calculation. We have also studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phenanthroline complexes and an iodine redox electrolyte. A solar energy to electricity conversion efficiency (?) of 0.67% was obtained for Ru complex (2) under standard AM 1.5 irradiation with a short-circuit photocurrent density (Jsc) of 2.46 mA cm(-2), an open-circuit photovoltage (Voc) of 0.6 V, and a fill factor (ff) of 40%, which are all among the highest values for ruthenium sulfonated anchoring groups reported so far. Monochromatic incident photon to current conversion efficiency was 23% at 475 nm. Photovoltaic studies clearly indicated dyes with two SCN substituents yielded a higher Jsc for the cell than dyes with a tris-homoleptic anchor substituent. PMID:24818219

Shahroosvand, Hashem; Abbasi, Parisa; Mohajerani, Ezeddin; Janghouri, Mohammad

2014-06-28

362

Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir.  

PubMed

Liuxihe reservoir is a deep, monomictic, oligo-mesotrophic canyon-reservoir in the subtropical monsoon climate region of southern China. Phytoplankton functional groups in the reservoir were investigated and a comparison made between the succession observed in 2008, an exceptionally wet year, and 2009, an average year. The reservoir shows strong annual fluctuations in water level caused by monsoon rains and artificial drawdown. Altogether 28 functional groups of phytoplankton were identified, including 79 genera. Twelve of the groups were analyzed in detail using redundancy analysis. Because of the oligo-mesotrophic and P-limited condition of the reservoir, the dominant functional groups were those tolerant of nutrient (phosphorus) deficiency. The predominant functional groups in the succession process were Groups A (Cyclotella with greatest axial linear dimension<10 ?m), B (Cyclotella with greatest axial linear dimension>10 ?m), LO (Peridinium), LM (Ceratium and Microcystis), E (Dinobryon and Mallomonas), F (Botryococcus), X1 (Ankistrodesmus, Ankyra, Chlorella and Monoraphidium) and X2 (Chlamydomonas and Chroomonas). The development of groups A, B and LO was remarkably seasonal. Group A was dominant during stratification, when characteristic small size and high surface/volume ratio morphology conferred an advantage. Group LO was dominant during dry stratification, when motility was advantageous. Group B plankton exhibited a high relative biomass during periods of reduced euphotic depth and isothermy. Groups LM, E, F, X1 and X2 occasionally exhibited high relative biomasses attributable to specific environmental events (e.g. drawdown, changes in zooplankton community). A greater diversity of phytoplankton functional groups was apparent during isothermy. This study underscores the usefulness of functional algal groups in studying succession in subtropical impoundments, in which phytoplankton succession can be significantly affected by external factors such as monsoonal hydrology and artificial drawdown, which alter variables such as retention time, mixing regime and thermal structure and influence light and nutrient availability. PMID:21831406

Xiao, Li-Juan; Wang, Tian; Hu, Ren; Han, Bo-Ping; Wang, Sheng; Qian, Xin; Padisák, Judit

2011-10-15

363

Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity  

PubMed Central

Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50?mg/L. After 24?h of exposure, the final nitrate concentration in the presence of 50?mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction. PMID:25008009

Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

2014-01-01

364

Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity  

NASA Astrophysics Data System (ADS)

Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

2014-07-01

365

Group theory of Wannier functions providing the basis for a deeper understanding of magnetism and superconductivity  

E-print Network

The paper presents the group theory of best localized and symmetry-adapted Wannier functions in a crystal of any given space group G or magnetic group M. Provided that the calculated band structure of the considered material is given and that the symmetry of the Bloch functions at all the points of symmetry in the Brillouin zone is known, the paper details whether or not the Bloch functions of particular energy bands can be unitarily transformed into best localized Wannier functions symmetry-adapted to the space group G, to the magnetic group M, or to a subgroup of G or M. In this context, the paper considers usual as well as spin-dependent Wannier functions, the latter representing the most general definition of Wannier functions. The presented group theory is a review of the theory published by one of the authors in several former papers and is independent of any physical model of magnetism or superconductivity. However, it is suggested to interpret the special symmetry of the best localized Wannier functions in the framework of a nonadiabatic extension of the Heisenberg model, the nonadiabatic Heisenberg model. On the basis of the symmetry of the Wannier functions, this model of strongly correlated localized electrons makes clear predictions whether or not the system can possess superconducting or magnetic eigenstates.

Ekkehard Krüger; Horst P. Strunk

2015-02-14

366

Organized surface functional groups: cooperative catalysis via thiol/sulfonic acid pairing.  

PubMed

The synthesis and characterization of heterogeneous catalysts containing surfaces functionalized with discrete pairs of sulfonic acid and thiol groups are reported. A catalyst having acid and thiol groups separated by three carbon atoms is ca. 3 times more active than a material containing randomly distributed acid and thiol groups in the condensation of acetone and phenol to bisphenol A and 14 times more active in the condensation of cyclohexanone and phenol to bisphenol Z. Increasing the acid/thiol distance in the paired materials decreases both the activity and selectivity. This work clearly reveals the importance of nanoscale organization of two disparate functional groups on the surface of heterogeneous catalysts. PMID:17929925

Margelefsky, Eric L; Zeidan, Ryan K; Dufaud, Véronique; Davis, Mark E

2007-11-01

367

Solvent extraction of rare-earth metals by carboxylic acids  

SciTech Connect

The solvent extraction of the trivalent lanthanides and yttrium from nitrate media by solutions of carboxylic acids in xylene has been studied. Commercially available carboxylic acids such as Versatic 10 and naphthenic acids were used, as well as model compounds of known structure, such as 2-ethylhexanoic and 3-cyclohexylpropanoic acids. In a few cases, extraction of the metals from sulphate and chloride solutions was also investigated. The dependence of the extraction properties of the carboxylic acids on the atomic number of the lanthanide shows a definite relationship to the steric bulk of the carboxylic acid molecule quantified by means of the steric parameter, E{sub s}{prime} of the substituent alkyl group. The stoichiometries of the extracted complexes for representative light (La), middle (Gd) and heavy (Lu) rare-earth metals were investigated by the slope-analysis technique for a sterically hindered acid (Versatic 10 acid; -E{prime}{sub s} = 3.83) and an acid with low steric hindrance (3-cyclohexylpropanoic acid; -E{prime}{sub s} = 0.28). 14 refs., 13 figs., 3 tabs.

Preez, A.C. du; Preston, J.S. [Mintek, Randburg (South Africa)

1992-04-01

368

Boronate derivatives of functionally diverse catechols: stability studies.  

PubMed

Benzeneboronate of catecholic carboxyl methyl esters, N-acetyldopamine, coumarin and catechol estrogens were prepared as crystalline derivatives in high yield. Related catechol compounds with extra polar functional group(s) (OH, NH2) do not form or only partially form unstable cyclic boronate derivatives. PMID:20428047

Ketuly, Kamal Aziz; Hadi, A Hamid A

2010-04-01

369

Thermosensitive hydrogel from oligopeptide-containing amphiphilic block copolymer: effect of peptide functional group on self-assembly and gelation behavior.  

PubMed

We reveal that a slight change in the functional group of the oligopeptide block incorporated into the poloxamer led to drastically different hierarchical assembly behavior and rheological properties in aqueous media. An oligo(L-Ala-co-L-Phe-co-?-benzyl L-Asp)-poloxamer-oligo(?-benzyl-L-Asp-co-L-Phe-co-L-Ala) block copolymer (OAF-(OAsp(Bzyl))-PLX-(OAsp(Bzyl))-OAF, denoted as polymer 1), which possessed benzyl group on the aspartate moiety of the peptide block, was synthesized through ring-opening polymerization. The benzyl group on aspartate was then converted to carboxylic acid to yield oligo(L-Ala-co-L-Phe-co-L-Asp)-poloxamer-oligo(L-Asp-co-L-Phe-co-L-Ala) (OAF-(OAsp)-PLX-(OAsp)-OAF, denoted as polymer 2). Characterization of the peptide secondary structure in aqueous media by circular dichroism revealed that the oligopeptide block in polymer 1 exhibited mainly an ?-helix conformation, whereas that in polymer 2 adopted predominantly a ?-sheet conformation at room temperature. The segmental dynamics of the PEG in polymer 1 remained essentially unperturbed upon heating from 10 to 50 °C; by contrast, the PEG segmental motion in polymer 2 became more constrained above ca. 35 °C, indicating an obvious change in the chemical environment of the block chains. Meanwhile, the storage modulus of the polymer 2 solution underwent an abrupt increase across this temperature, and the solution turned into a gel. Wet-cell TEM observation revealed that polymer 1 self-organized to form microgel particles of several hundred nanometers in size. The microgel particle was retained as the characteristic morphological entity such that the PEG chains did not experience a significant change of their chemical environment upon heating. The hydrogel formed by polymer 2 was found to contain networks of nanofibrils, suggesting that the hydrogen bonding between the carboxylic acid groups led to an extensive stacking of the ? sheets along the fibril axis at elevated temperature. The in vitro cytotoxicity of the polymer 2 aqueous solution was found to be low in human retinal pigment epithelial cells. The low cytotoxicity coupled with the sol-gel transition makes the corresponding hydrogel a good candidate for biomedical applications. PMID:24328368

Chiang, Ping-Ray; Lin, Tsai-Yu; Tsai, Hsieh-Chih; Chen, Hsin-Lung; Liu, Shih-Yi; Chen, Fu-Rong; Hwang, Yih-Shiou; Chu, I-Ming

2013-12-23

370

a Renormalization Group Calculation of the Velocity - and Density-Density Correlation Functions.  

NASA Astrophysics Data System (ADS)

The velocity-velocity correlation function of a free field theory is obtained. The renormalization group, along with a 4-varepsilon expansion, is then used to find the leading order behavior of the velocity-velocity correlation function for an interacting field theory in the high temperature phase near the critical point. The details of the calculation of the density-density correlation function for Hedgehogs, in the context of a free field theory, is presented next. Finally the renormalization group, along with a 4-varepsilon expansion, is used to find the leading order behavior of the density-density correlation function for Hedgehogs in an interacting field theory near the critical point.

Cowan, Mark Timothy

371

Group-ICA Model Order Highlights Patterns of Functional Brain Connectivity  

PubMed Central

Resting-state networks (RSNs) can be reliably and reproducibly detected using independent component analysis (ICA) at both individual subject and group levels. Altering ICA dimensionality (model order) estimation can have a significant impact on the spatial characteristics of the RSNs as well as their parcellation into sub-networks. Recent evidence from several neuroimaging studies suggests that the human brain has a modular hierarchical organization which resembles the hierarchy depicted by different ICA model orders. We hypothesized that functional connectivity between-group differences measured with ICA might be affected by model order selection. We investigated differences in functional connectivity using so-called dual regression as a function of ICA model order in a group of unmedicated seasonal affective disorder (SAD) patients compared to normal healthy controls. The results showed that the detected disease-related differences in functional connectivity alter as a function of ICA model order. The volume of between-group differences altered significantly as a function of ICA model order reaching maximum at model order 70 (which seems to be an optimal point that conveys the largest between-group difference) then stabilized afterwards. Our results show that fine-grained RSNs enable better detection of detailed disease-related functional connectivity changes. However, high model orders show an increased risk of false positives that needs to be overcome. Our findings suggest that multilevel ICA exploration of functional connectivity enables optimization of sensitivity to brain disorders. PMID:21687724

Abou Elseoud, Ahmed; Littow, Harri; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Nissilä, Juuso; Timonen, Markku; Tervonen, Osmo; Kiviniemi, Vesa

2011-01-01

372

Synthesis and small molecule chemistry of the niobaziridine-hydride functional group  

E-print Network

Chapter 1. Synthesis and Divergent Reactivity of the Niobaziridine-Hydride Functional Group The synthesis, characterization and reactivity of the niobaziridine-hydride complex Nb(H)([eta]²-t- ]Bu(H)C=NAr)(N[Np]Ar)? (la-H; ...

Figueroa, Joshua S

2005-01-01

373

Functional Group Compositions of Carbonaceous Materials of Hayabusa-Returned Samples  

NASA Astrophysics Data System (ADS)

We have analyzed the functional group compositions of the carbonaceous materials of Hayabusa-returned samples by STXM-XANES, in order to identify whether the materials are terrestrial or extraterrestrial.

Yabuta, H.; Uesugi, M.; Naraoka, H.; Ito, M.; Kilcoyne, D.; Sandford, S. A.; Kitajima, F.; Mita, H.; Takano, Y.; Yada, T.; Karouji, Y.; Ishibashi, Y.; Okada, T.; Abe, M.

2014-09-01

374

A finite-frequency functional renormalization group approach to the single impurity Anderson model  

Microsoft Academic Search

We use the Matsubara functional renormalization group (FRG) to describe electronic correlations within the single impurity Anderson model. In contrast to standard FRG calculations, we account for the frequency dependence of the two-particle vertex in order to address finite-energy properties (e.g, spectral functions). By comparing with data obtained from the numerical renormalization group (NRG) framework, the FRG approximation is shown

C. Karrasch; R. Hedden; R. Peters; Th Pruschke; K. Schönhammer; V. Meden

2008-01-01

375

Preparation of poly (vinyl alcohol)\\/silica composite nanofibers membrane functionalized with mercapto groups by electrospinning  

Microsoft Academic Search

Membranes of poly vinyl alcohol (PVA)\\/silica functionalized with mercapto groups are synthesized by electrospinning. Scanning electron microscopy (SEM) studies showed that the fiber diameters are in the range of 200–300nm. The thickness of nanofiber decreases with an increase in calcination temperature. The results of Fourier transform infrared (FTIR) indicated that PVA\\/silica nanofibers are functionalized by mercapto groups via the hydrolysis

Shengju Wu; Fengting Li; Ran Xu; Shihui Wei; Hongtao Wang

2010-01-01

376

Reactivities of amine functions grafted to carbon fiber surfaces by tetraethylenepentamine. Designing interfacial bonding  

Microsoft Academic Search

PAN-base carbon fibers were oxidized with 70% nitric acid at 115 °C to introduce surface carboxyl, hydroxyl and other oxygenated functions. Subsequent reactions of these surfaces at 190–200 °C with tetraethylenepentamine (TEPA) generated amide bonds at carboxyl and ester sites thereby grafting TEPA and introducing primary and secondary amine groups onto the fiber surfaces. The reactivity of these surface-bound amine

C. U. Pittman; Z. Wu; W. Jiang; G.-R. He; B. Wu; W. Li; S. D. Gardner

1997-01-01

377

A functional renormalization group approach to zero-dimensional interacting systems  

NASA Astrophysics Data System (ADS)

We apply the functional renormalization group method to the calculation of dynamical properties of zero-dimensional interacting quantum systems. We discuss as case studies the anharmonic oscillator and the single-impurity Anderson model. We truncate the hierarchy of flow equations such that the results are at least correct up to second-order perturbation theory in the coupling. For the anharmonic oscillator, energies and spectra obtained within two different functional renormalization group schemes are compared to numerically exact results, perturbation theory results, and the mean field approximation. Even at large coupling, the results obtained using the functional renormalization group agree quite well with the numerical exact solution. The better of the two schemes is used to calculate spectra of the single-impurity Anderson model, which are then compared to the results from perturbation theory and the numerical renormalization group ones. For small to intermediate couplings the functional renormalization group gives results which are close to the ones obtained using the very accurate numerical renormalization group method. In particular, the low energy scale (Kondo temperature) extracted from the functional renormalization group results shows the expected behaviour.

Hedden, R.; Meden, V.; Pruschke, Th; Schönhammer, K.

2004-07-01

378

On the detection of functionally coherent groups of protein domains with an extension to protein annotation  

PubMed Central

Background Protein domains coordinate to perform multifaceted cellular functions, and domain combinations serve as the functional building blocks of the cell. The available methods to identify functional domain combinations are limited in their scope, e.g. to the identification of combinations falling within individual proteins or within specific regions in a translated genome. Further effort is needed to identify groups of domains that span across two or more proteins and are linked by a cooperative function. Such functional domain combinations can be useful for protein annotation. Results Using a new computational method, we have identified 114 groups of domains, referred to as domain assembly units (DASSEM units), in the proteome of budding yeast Saccharomyces cerevisiae. The units participate in many important cellular processes such as transcription regulation, translation initiation, and mRNA splicing. Within the units the domains were found to function in a cooperative manner; and each domain contributed to a different aspect of the unit's overall function. The member domains of DASSEM units were found to be significantly enriched among proteins contained in transcription modules, defined as genes sharing similar expression profiles and presumably similar functions. The observation further confirmed the functional coherence of DASSEM units. The functional linkages of units were found in both functionally characterized and uncharacterized proteins, which enabled the assessment of protein function based on domain composition. Conclusion A new computational method was developed to identify groups of domains that are linked by a common function in the proteome of Saccharomyces cerevisiae. These groups can either lie within individual proteins or span across different proteins. We propose that the functional linkages among the domains within the DASSEM units can be used as a non-homology based tool to annotate uncharacterized proteins. PMID:17937820

McLaughlin, William A; Chen, Ken; Hou, Tingjun; Wang, Wei

2007-01-01

379

The Use of Language Functions in Mathematical Group Games. Teacher Insights.  

ERIC Educational Resources Information Center

Six group games were introduced into a second-grade bilingual classroom. Children's talk during each game was classified using a modification of Dyson's five language functions (representational, directive, heuristic, personal, and interactional). Group games provided many communication opportunities. Some children tried new communication styles.…

Black, Carolyn; Huerta, Maria G.

1994-01-01

380

Aggressive and Prosocial Peer Group Functioning: Effects on Children's Social, School, and Psychological Adjustment  

ERIC Educational Resources Information Center

This study examined the effects of aggressive and prosocial contexts of peer groups on children's socioemotional and school adjustment. Data on informal peer groups, social functioning, and different aspects of adjustment were collected from multiple sources in a sample of elementary school children (149 boys, 181 girls; M age = 10 years).…

Chung-Hall, Janet; Chen, Xinyin

2010-01-01

381

Identification of Differential Item Functioning in Multiple-Group Settings: A Multivariate Outlier Detection Approach  

ERIC Educational Resources Information Center

We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…

Magis, David; De Boeck, Paul

2011-01-01

382

Merging photoredox with nickel catalysis: Coupling of ?-carboxyl sp3-carbons with aryl halides  

PubMed Central

Over the past 40 years, transition metal catalysis has enabled bond formation between aryl and olefinic (sp2) carbons in a selective and predictable manner with high functional group tolerance. Couplings involving alkyl (sp3) carbons have proven more challenging. Here, we demonstrate that the synergistic combination of photoredox catalysis and nickel catalysis provides an alternative cross-coupling paradigm, in which simple and readily available organic molecules can be systematically used as coupling partners. By using this photoredox-metal catalysis approach, we have achieved a direct decarboxylative sp3–sp2 cross-coupling of amino acids, as well as ?-O– or phenyl-substituted carboxylic acids, with aryl halides. Moreover, this mode of catalysis can be applied to direct cross-coupling of Csp3–H in dimethylaniline with aryl halides via C–H functionalization. PMID:24903563

Zuo, Zhiwei; Ahneman, Derek T.; Chu, Lingling; Terrett, Jack A.; Doyle, Abigail G.; MacMillan, David W. C.

2015-01-01

383

Dual catalysis. Merging photoredox with nickel catalysis: coupling of ?-carboxyl sp³-carbons with aryl halides.  

PubMed

Over the past 40 years, transition metal catalysis has enabled bond formation between aryl and olefinic (sp(2)) carbons in a selective and predictable manner with high functional group tolerance. Couplings involving alkyl (sp(3)) carbons have proven more challenging. Here, we demonstrate that the synergistic combination of photoredox catalysis and nickel catalysis provides an alternative cross-coupling paradigm, in which simple and readily available organic molecules can be systematically used as coupling partners. By using this photoredox-metal catalysis approach, we have achieved a direct decarboxylative sp(3)-sp(2) cross-coupling of amino acids, as well as ?-O- or phenyl-substituted carboxylic acids, with aryl halides. Moreover, this mode of catalysis can be applied to direct cross-coupling of C(sp³)-H in dimethylaniline with aryl halides via C-H functionalization. PMID:24903563

Zuo, Zhiwei; Ahneman, Derek T; Chu, Lingling; Terrett, Jack A; Doyle, Abigail G; MacMillan, David W C

2014-07-25

384

Regular Free Length Functions on Lyndon's Free Z(t)-group FZ(t)  

Microsoft Academic Search

Let F = F(X) be a free group with basis X and Z(t) be the ring of integer polynomials in t. In this paper we represent elements of Lyndon's free Z(t)-group FZ(t) by inflnite words deflned as functions w : (1;fw) ! X§1 over closed intervals (1;fw) = fa 2Z(t) j 1 6 a 6 fwg in the additive group

Alexei G. Myasnikov; Vladimir N. Remeslennikov; Denis E. Serbin

385

Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?  

NASA Technical Reports Server (NTRS)

The functional grouping hypothesis, which suggests that complexity in ecosystem function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained Florida scrub regulate exchange of carbon and water with the atmosphere as indicated by both instantaneous gas exchange measurements and integrated measures of function (%N, delta C-13, delta N-15, C-N ratio). Using cluster analysis, five distinct physiologically-based functional groups were identified in the fire maintained scrub. These functional groups were tested to determine if they were robust spatially, temporally, and with management regime. Analysis of Similarities (ANOSIM), a non-parametric multivariate analysis, indicated that these five physiologically-based groupings were not altered by plot differences (R = -0.115, p = 0.893) or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed (R = 0.018, p = 0.349). The physiological groupings also remained robust between the two climatically different years 1999 and 2000 (R = -0.027, p = 0.725). Easy-to-measure morphological characteristics indicating functional groups would be more practical for scaling and modeling ecosystem processes than detailed gas-exchange measurements, therefore we tested a variety of morphological characteristics as functional indicators. A combination of non-parametric multivariate techniques (Hierarchical cluster analysis, non-metric Multi-Dimensional Scaling, and ANOSIM) were used to compare the ability of life form, leaf thickness, and specific leaf area classifications to identify the physiologically-based functional groups. Life form classifications (ANOSIM; R = 0.629, p 0.001) were able to depict the physiological groupings more adequately than either specific leaf area (ANOSIM; R = 0.426, p = 0.001) or leaf thickness (ANOSIM; R 0.344, p 0.001). The ability of life forms to depict the physiological groupings was improved by separating the parasitic Ximenia americana from the shrub category (ANOSIM; R = 0.794, p = 0.001). Therefore, a life form classification including parasites was determined to be a good indicator of the physiological processes of scrub species, and would be a useful method of grouping for scaling physiological processes to the ecosystem level.

Foster, Tammy E.; Brooks, J. Renee

2004-01-01

386

Psychosocial Functioning in a Group of Swedish Adults with Asperger Syndrome or High-Functioning Autism.  

ERIC Educational Resources Information Center

A study investigated psychosocial functioning in 16 Swedish adults with Asperger syndrome or high-functioning autism. The majority lived independently; all but one were unemployed; and none was married or had children. Most persons needed a high level of public and/or private support. Overall adjustment was rated good in 12%. (Contains…

Engstrom, I.; Ekstrom, L.; Emilsson, B.

2003-01-01

387

Phosphorylation by a G protein-coupled kinase inhibits signaling and promotes internalization of the monocyte chemoattractant protein-1 receptor. Critical role of carboxyl-tail serines/threonines in receptor function.  

PubMed

Monocyte chemoattractant protein-1 (MCP-1) is a member of the chemokine family of chemotactic cytokines and signals via activation of a G protein-coupled seven-transmembrane domain receptor to mediate chemotaxis. Monocyte activation is limited by desensitization and internalization of the MCP-1R, but these mechanisms are not well understood. In this study, we show that the type B MCP-1R (MCP-1RB/CCR2B) is rapidly phosphorylated and internalized in response to nanomolar concentrations of MCP-1. Co-expression of CCR2B in Xenopus oocytes with beta-adrenergic receptor kinase 2 (beta ark2), but not beta ark1 or rhodopsin kinase, specifically blocked receptor activation by MCP-1. Mutation of serine (Ser) and threonine (Thr) residues in the terminal carboxyl-tail of the receptor, which are potential targets of beta ark-mediated phosphorylation, prevented inhibition of receptor activation by beta ark2 in microinjected oocytes. Finally, a construct in which multiple Ser and Thr residues in the carboxyl-tail were changed to alanine significantly prolonged the agonist-dependent intracellular calcium flux and inhibited receptor internalization in transfected human embryonic kidney (HEK)-293 cells. These studies demonstrate that phosphorylation of Ser and Thr residues in the carboxyl-tail of CCR2B mediates receptor desensitization and internalization and may serve to limit the chemotactic response of leukocytes to MCP-1 and related chemokines. PMID:8955213

Franci, C; Gosling, J; Tsou, C L; Coughlin, S R; Charo, I F

1996-12-15

388

Heterologous expression and functional analysis of the wheat group 1 pathogenesis-related (PR-1) proteins  

Technology Transfer Automated Retrieval System (TEKTRAN)

The group 1 pathogenesis-related (PR-1) proteins have been widely used as hallmarks of plant defense pathways, but their biological functions are still unknown. We report here the functional analysis of two basic PR-1 proteins following the identification of the wheat PR-1 gene family (Lu et al., 20...

389

DOES FUNCTIONAL GROUP DIVERSITY IN SHRUB-STEPPE COMMUNITIES REDUCE INVASION?  

Technology Transfer Automated Retrieval System (TEKTRAN)

The importance of functional group diversity to the long-term structure and function of shrub-steppe plant communities is not well understood. Field experiments with prevalent Great Basin species were initiated to evaluate the microenvironmental and structural variation in plots (1.5 x 1.5 m) assem...

390

Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy  

E-print Network

Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy sulfur functionalities in natural organic matter from S K-edge XANES spectroscopy are presented-induced errors, inherent to the choice of a particular curve, are typically lower than 5% of total sulfur

391

Elucidation of Functional Groups on Gram-Positive and Gram-Negative Bacterial Surfaces Using Infrared  

E-print Network

and their isolated cell walls was examined as a function of pH, growth phase, and growth media (for intact cells only. Variation in solution pH has only a minor effect on the secondary structure of the cell wall proteins of bacteria. This study reveals the universality of the functional group chemistry of bacterial cell surfaces

Ward, Bess

392

Utility-Function-Based Self-Adaptation in Elevator Group Control System  

Microsoft Academic Search

Utility functions provide a natural and advantageous way for achieving self-adaptation in distributed systems. We implemented in a realistic prototype elevator group control system(EGCS), that demonstrates how utility functions can continually optimize the use of elevators in a dynamic environment. A global manager allocates elevators among the whole system based on throughput obtained from the monitors of the floors. We

Hao Wu; Qingping Tan

2008-01-01

393

Direct UV-induced functionalization of surface hydroxy groups by thiol-ol chemistry.  

PubMed

A novel UV-initiated surface modification method for the direct functionalization of surface hydroxy groups with thiol-containing molecules (termed "thiol-ol" modification) is described. This method is based on the oxidative conjugation of thiols to hydroxy groups. We demonstrate that different thiol-containing molecules, such as fluorophores, thiol-terminated poly(ethylene glycol) (PEG-SH), and a cysteine-containing peptide, can be attached onto the surface of porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate). Direct functionalization of other hydroxy-group-bearing surfaces, fabrication of micropatterns, and double patterning have been also demonstrated using the thiol-ol method. PMID:24595963

Li, Linxian; Li, Junsheng; Du, Xin; Welle, Alexander; Grunze, Michael; Trapp, Oliver; Levkin, Pavel A

2014-04-01

394

Standard partial molar volumes of some aqueous alkanolamines and alkoxyamines at temperatures up to 325 degrees C: functional group additivity in polar organic solutes under hydrothermal conditions.  

PubMed

Apparent molar volumes of dilute aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), N,N-dimethylethanolamine (DMEA), ethylethanolamine (EAE), 2-diethylethanolamine (2-DEEA), and 3-methoxypropylamine (3-MPA) and their salts were measured at temperatures from 150 to 325 degrees C and pressures as high as 15 MPa. The results were corrected for the ionization and used to obtain the standard partial molar volumes, Vo2. A three-parameter equation of state was used to describe the temperature and pressure dependence of the standard partial molar volumes. The fitting parameters were successfully divided into functional group contributions at all temperatures to obtain the standard partial molar volume contributions. Including literature results for alcohols, carboxylic acids, and hydroxycarboxylic acids yielded the standard partial molar volume contributions of the functional groups >CH-, >CH2, -CH3, -OH, -COOH, -O-, -->N, >NH, -NH2, -COO-Na+, -NH3+Cl-, >NH2+Cl-, and -->NH+Cl- over the range (150 degrees C groups at temperatures up to approximately 310 degrees C and pressures of 10-20 MPa to within a precision of +/-5 cm3 x mol(-1). The model could not be extended to higher temperatures because of uncertainties caused by thermal decomposition. At temperatures above approximately 250 degrees C, the order of the group contributions to Vo2 changes from that observed at 25 degrees C, to become increasingly consistent with the polarity of each functional group. The effect of the dipole moment of each molecule on the contribution to Vo2 from long-range solvent polarization was calculated from the multipole expansion of the Born equation using dipole moments estimated from restricted Hartree-Fock calculations with Gaussian 03 (Gaussian, Inc., Wallingford, CT) and the Onsager reaction-field approximation for solvent effects. Below 325 degrees C, the dipole contribution was found to be less than 2 cm3 x mol(-1) for all the solute molecules studied. At higher temperatures and pressures near steam saturation, the effect is much larger and may explain anomalies in functional group additivity observed in small, very polar solutes. PMID:18412415

Bulemela, E; Tremaine, Peter R

2008-05-01

395

The Faint End of the Luminosity Function of Galaxies in Compact Groups  

E-print Network

We study the luminosity function of galaxies in Hickson groups using our recent redshift survey of galaxies in and around 17 of these groups. We find that the galaxies in these regions have a luminosity function with M* = -19.5 + 5 log h, and alpha = -1.0, where M* and alpha are the usual parameters in the standard Schechter form of the luminosity function, and the magnitudes are measured in the B band. The formal 95% confidence intervals for M* and alpha range from (-19.3,-0.8), to (-19.7,-1.2) and are highly correlated as is usual for these fits. This luminosity function for galaxies in our Hickson group sample is very similar from that found in large surveys covering a range of environments. These values are also consistent with our earlier estimates based on a photometric analysis with statistical background correction, and do not support previous suggestions of an underabundance of intrinsically faint galaxies in compact groups. We confirm our earlier finding that the fainter galaxies are more diffusely distributed within individual groups than the brighter ones. This can be interpreted either as evidence for mass segregation within the groups or as the result of the selection procedure for Hickson groups.

Stephen E. Zepf; Reinaldo R. de Carvalho; Andre L. B. Ribeiro

1997-07-30

396

Recursive method for the Nekrasov partition function for classical Lie groups  

NASA Astrophysics Data System (ADS)

The Nekrasov partition function for supersymmetric gauge theories with general Lie groups is, so far, not known in a closed form, while there is a definition in terms of the integral. In this paper, as an intermediate step to derive the closed form, we give a recursion formula among partition functions, which can be derived from the integral. We apply the method to a toy model that reflects the basic structure of partition functions for BCD-type Lie groups and obtain a closed expression for the factor associated with the generalized Young diagram.

Nakamura, Satoshi; Okazawa, Futoshi; Matsuo, Yutaka

2015-03-01

397

Quantum mechanics and non-abelian theta functions for the gauge group $SU(2)$  

Microsoft Academic Search

This paper outlines an approach to the non-abelian theta functions of the $SU(2)$-Chern-Simons theory with the methods used by A. Weil for studying classical theta functions. First we translate in knot theoretic language classical theta functions, the action of the finite Heisenberg group, and the discrete Fourier transform. Then we explain how the non-abelian counterparts of these arise in the

Razvan Gelca; Alejandro Uribe

2010-01-01

398

Theory of chromatography of linear and cyclic polymers with functional groups  

Microsoft Academic Search

We discuss the chromatographic behavior of linear polymers and rings having specific (functional) adsorption-active groups. Functionalized eight-shaped, daisy-like and theta-shaped macromolecules are considered as well. By using a model of an ideal chain with point-type defects in a slit-like pore we derive equations for the distribution coefficient covering all modes of chromatography of functionalized polymers of any molar mass in

Alexei A. Gorbunov; Andrey V. Vakhrushev

2004-01-01

399

Arrival order among native plant functional groups does not affect invasibility of constructed dune communities.  

PubMed

Different arrival order scenarios of native functional groups to a site may influence both resource use during development and final community structure. Arrival order may then indirectly influence community resistance to invasion. We present a mesocosm experiment of constructed coastal dune communities that monitored biotic and abiotic responses to different arrival orders of native functional groups. Constructed communities were compared with unplanted mesocosms. We then simulated a single invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata), a dominant exotic shrub of coastal communities. We evaluated the hypothesis that plantings with simultaneous representation of grass, herb and shrub functional groups at the beginning of the experiment would more completely sequester resources and limit invasion than staggered plantings. Staggered plantings in turn would offer greater resource use and invasion resistance than unplanted mesocosms. Contrary to our expectations, there were few effects of arrival order on abiotic variables for the duration of the experiment and arrival order was unimportant in final community invasibility. All planted mesocosms supported significantly more invader germinants and significantly less invader abundance than unplanted mesocosms. Native functional group plantings may have a nurse effect during the invader germination and establishment phase and a competitive function during the invader juvenile and adult phase. Arrival order per se did not affect resource use and community invasibility in our mesocosm experiment. While grass, herb and shrub functional group plantings will not prevent invasion success in restored communities, they may limit final invader biomass. PMID:23468238

Mason, T J; French, K; Jolley, D

2013-10-01

400

Tensor renormalization group: Local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness  

NASA Astrophysics Data System (ADS)

The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.

Güven, Can; Hinczewski, Michael; Berker, A. Nihat

2010-11-01

401

Tensor renormalization group: local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness.  

PubMed

The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature. PMID:21230440

Güven, Can; Hinczewski, Michael; Berker, A Nihat

2010-11-01

402

Tensor renormalization group: Local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness  

NASA Astrophysics Data System (ADS)

The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness [1]. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.[4pt] [1] C. G"uven, M. Hinczewski, and A.N. Berker, Phys. Rev. E 82, 051110 (2010).

Güven, Can; Hinczewski, Michael; Berker, A. Nihat

2011-03-01

403

Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids  

PubMed Central

Summary The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challen