Science.gov

Sample records for carboxylic acid function

  1. Functionalization of Single Wall Carbon Nanotubes with Carboxylic Acids

    NASA Astrophysics Data System (ADS)

    Viswanathan, Sriram; Britt, Phillip F.; Ivanov, Ilia N.; Puretzky, Alex A.; Lance, Michael J.; Geohegan, David B.; Oak Ridge National Laboratory Collaboration

    2003-03-01

    The chemical functionalization of single-wall carbon nanotubes (SWNT) is necessary to solubilize the materials and to assist in the dispersion of the bundles for a variety of applications. One approach has been to derivatize the pendant carboxyl groups that are formed in the oxidative purification of the SWNT. Unfortunately, these carboxyl groups are found in low concentrations because the purification conditions also leads to decarboxylation. Thus, methods were investigated to increase the concentration of carboxylic acids on SWNT by chemical oxidation with a variety of reagents including potassium permanganate, sulfuric acid/nitric acid, and sulfuric acid/hydrogen peroxide. The concentration of carboxylic acids was analyzed by FTIR, and the samples were characterized by TGA, Raman spectroscopy, SEM, and TEM. Surprisingly, many of the oxidative methods lead to the formation of amorphous carbon and little if any increase in carboxyl content of the SWNT.

  2. Green process for chemical functionalization of nanocellulose with carboxylic acids.

    PubMed

    Espino-Prez, Etzael; Domenek, Sandra; Belgacem, Naceur; Sillard, Ccile; Bras, Julien

    2014-12-01

    An environmentally friendly and simple method, named SolReact, has been developed for a solvent-free esterification of cellulose nanocrystals (CNC) surface by using two nontoxic carboxylic acids (CA), phenylacetic acid and hydrocinnamic acid. In this process, the carboxylic acids do not only act as grafting agent, but also as solvent media above their melting point. Key is the in situ solvent exchange by water evaporation driving the esterification reaction without drying the CNC. Atomic force microscopy and X-ray diffraction analyses showed no significant change in the CNC dimensions and crystallinity index after this green process. The presence of the grafted carboxylic was characterized by analysis of the "bulk" CNC with elemental analysis, infrared spectroscopy, and (13)C NMR. The ability to tune the surface properties of grafted nanocrystals (CNC-g-CA) was evaluated by X-ray photoelectron spectroscopy analysis. The hydrophobicity behavior of the functionalized CNC was studied through the water contact-angle measurements and vapor adsorption. The functionalization of these bionanoparticles may offer applications in composite manufacturing, where these nanoparticles have limited dispersibility in hydrophobic polymer matrices and as nanoadsorbers due to the presence of phenolic groups attached on the surface. PMID:25353612

  3. Gas-Phase Reactivity of Carboxylic Acid Functional Groups with Carbodiimides

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; Gilbert, Joshua D.; Stutzman, John R.; Forrest, William P.; McLuckey, Scott A.

    2013-01-01

    Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [ N-cyclohexyl- N'-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT)]. Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities.

  4. Removal of copper and lead from aqueous solution by carboxylic acid functionalized deacetylated konjac glucomannan.

    PubMed

    Liu, Feng; Luo, Xuegang; Lin, Xiaoyan; Liang, Lili; Chen, Yan

    2009-11-15

    Carboxylic acid functionalized deacetylated konjac glucomannan was synthesized by free radical graft copolymerization of methyl acrylate (MA) and methyl methacrylate (MMA) onto the backbone of deacetylated konjac glucomannan with subsequent chemical activation of the ester groups in the side chains of the resulting graft copolymer by sodium hydroxide. Effects of sodium hydroxide concentration and hydrolyzed time on the conversion of ester groups into carboxylic acid groups were studied. A comprehensive adsorption study of Cu(2+) and Pb(2+) ions from aqueous solution was also conducted regarding the effects of initial pH, adsorbent dosage, time, and initial concentration. The new konjac glucomannan adsorbent offered high removal efficiency, fast adsorption rate and high uptake capacity for Cu(2+) and Pb(2+) ions. The maximum removal efficiency at pH 5.0 was found to 98% for Cu(2+) and 99% for Pb(2+) ions. The kinetic data were fitted well to pseudo-second-order model. The maximum uptake capacity of Cu(2+) and Pb(2+) ions onto carboxylic acid functionalized deacetylated konjac glucomannan was found to 64.5 mg g(-1) and 191.3 mg g(-1), respectively. The isotherm adsorption data was well described by the Langmuir isotherm model. PMID:19604636

  5. Adsorption reactions of carboxylic acid functional groups on sodium aluminoborosilicate glass fiber surfaces.

    PubMed

    Stapleton, Joshua J; Suchy, Daniel L; Banerjee, Joy; Mueller, Karl T; Pantano, Carlo G

    2010-11-01

    Multicomponent silicate glasses are ubiquitous in modern society as evidenced by their inclusion in applications ranging from building materials and microelectronics to biomedical implants. Of particular interest in this study is the interface between multicomponent silicate glasses and adhesive polymers. These polymeric systems often possess a variety of different organic functional groups. In this study, we selected acetic acid as a probe molecule representative of the carboxylic acid functional group found in many adhesives. We have used Fourier transform infrared spectroscopy (FT-IR) and NMR to study the interaction of acetic acid with the surface of sodium aluminoborosilicate continuous glass fibers. Methods were developed that enable analyses to be carried out without damaging or altering the pristine as drawn fiber surface. While dosing the surface of fumed silica with acetic acid resulted in the formation of silyl ester groups, analogous dosing of sodium aluminoborosilicate glass fibers resulted in the formation of carboxylate species, principally coordinated to sodium, while silyl ester groups were not observed. PMID:21038910

  6. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  7. Expression of a functional jasmonic acid carboxyl methyltransferase is negatively correlated with strawberry fruit development.

    PubMed

    Preuß, Anja; Augustin, Christiane; Figueroa, Carlos R; Hoffmann, Thomas; Valpuesta, Victoriano; Sevilla, José F; Schwab, Wilfried

    2014-09-15

    The volatile metabolite methyl jasmonate (MeJA) plays an important role in intra- and interplant communication and is involved in diverse biological processes. In this study, we report the cloning and functional characterization of a S-adenosyl-l-methionine:jasmonic acid carboxyl methyltransferase (JMT) from Fragaria vesca and Fragaria×ananassa. Biochemical assays and comprehensive transcript analyses showed that JMT has been erroneously annotated as gene fusion with a carboxyl methyltransferase (CMT) (gene15184) in the first published genome sequence of F. vesca. Recombinant FvJMT catalyzed the formation of MeJA with KM value of 22.3μM while FvCMT and the fusion protein were almost inactive. Activity of JMT with benzoic acid and salicylic acid as substrates was less than 1.5% of that with JA. Leucine at position 245, an amino acid missing in other JMT sequences is essential for activity of FvJMT. In accordance with MeJA levels, JMT transcript levels decreased steadily during strawberry fruit ripening, as did the expression levels of JA biosynthesis and regulatory genes. It appears that CMT has originated by a recent duplication of JMT and lost its enzymatic activity toward JA. In the newest version of the strawberry genome sequence (June 2014) CMT and JMT are annotated as separate genes in accordance with differential temporal and spatial expression patterns of both genes in Fragaria sp. In conclusion, MeJA, the inactive derivative of JA, is probably involved in early steps of fruit development by modulating the levels of the active plant hormone JA. PMID:25046752

  8. Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts

    PubMed Central

    2014-01-01

    Background Surface modification strategies to reduce engineered nanomaterial (ENM) bioactivity have been used successfully in carbon nanotubes. This study examined the toxicity and inflammatory potential for two surface modifications (humic acid and carboxylation) on titanium nanobelts (TNB). Methods The in vitro exposure models include C57BL/6 alveolar macrophages (AM) and transformed human THP-1 cells exposed to TNB for 24 hrs in culture. Cell death and NLRP3 inflammasome activation (IL-1β release) were monitored. Short term (4 and 24 hr) in vivo studies in C57BL/6, BALB/c and IL-1R null mice evaluated inflammation and cytokine release, and cytokine release from ex vivo cultured AM. Results Both in vitro cell models suggest that the humic acid modification does not significantly affect TNB bioactivity, while carboxylation reduced both toxicity and NLRP3 inflammasome activation. In addition, short term in vivo exposures in both C57BL/6 and IL-1R null mouse strains demonstrated decreased markers of inflammation, supporting the in vitro finding that carboxylation is effective in reducing bioactivity. TNB instillations in IL-1R null mice demonstrated the critical role of IL-1β in initiation of TNB-induced lung inflammation. Neutrophils were completely absent in the lungs of IL-1R null mice instilled with TNB for 24 hrs. However, the cytokine content of the IL-1R null mice lung lavage samples indicated that other inflammatory agents, IL-6 and TNF-α were constitutively elevated indicating a potential compensatory inflammatory mechanism in the absence of IL-1 receptors. Conclusions Taken together, the data suggests that carboxylation, but not humic acid modification of TNB reduces, but does not totally eliminate bioactivity of TNB, which is consistent with previous studies of other long aspect ratio nanomaterials such as carbon nanotubes. PMID:25179214

  9. Understanding biocatalyst inhibition by carboxylic acids

    PubMed Central

    Jarboe, Laura R.; Royce, Liam A.; Liu, Ping

    2013-01-01

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance. PMID:24027566

  10. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes.

    PubMed

    Dong, Ki-Young; Choi, Jinnil; Lee, Yang Doo; Kang, Byung Hyun; Yu, Youn-Yeol; Choi, Hyang Hee; Ju, Byeong-Kwon

    2013-01-01

    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas. PMID:23286690

  11. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas. PMID:23286690

  12. Piperazine and its carboxylic acid derivatives-functionalized mesoporous silica as nanocarriers for gemcitabine: adsorption and release study.

    PubMed

    Bahrami, Zohreh; Badiei, Alireza; Atyabi, Fatemeh; Darabi, Hossein Reza; Mehravi, Bita

    2015-04-01

    Piperazine-functionalized SBA-15 nanorods were synthesized by post grafting method with methyldimethoxysilylpropylpiperazine (MDSP). The carboxylic acid derivatives of piperazine-functionalized SBA-15 nanorods were obtained using two different kinds of precursors (bromoacetic acid and succinic anhydride). The prepared materials were used as nanocarriers for the anticancer drug (gemcitabine). The obtained samples were characterized by SAXS, N2 adsorption-desorption, SEM, TEM, DLS, thermogravimetric analysis, FTIR, Raman and UV spectroscopies. The adsorption and release properties of all samples were investigated. In vitro study included cell toxicity. It was found that the surface functionalization increases the interaction between the carrier and gemcitabine and results in the loading enhancement of the drug. In addition, the adsorption of gemcitabine on the modified mesoporous matrix depends on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 36wt.% that it is related to PC2-SBA-15 sample which obtained using succinic anhydride. The obtained results reveal that the surface functionalization leads toward a significant decrease of the drug release rate without any appreciable cytotoxicity. No significant differences are observed among the drug release rate from the modified samples. PMID:25686928

  13. An NHC-catalyzed in situ activation strategy to ?-functionalize saturated carboxylic acid: an enantioselective formal [3+2] annulation for spirocyclic oxindolo-?-butyrolactones.

    PubMed

    Xie, Yuanwei; Yu, Chenxia; Li, Tuanjie; Tu, Shujiang; Yao, Changsheng

    2015-03-27

    An in situ NHC-catalyzed activation strategy to ?-functionalize saturated carboxylic acid was developed. This asymmetric formal [3+2] annulation could deliver spirocyclic oxindolo-?-butyrolactones from saturated carboxylic acid and isatin in good yields with high to excellent enantioselectivities. The easy availability of the starting materials, direct installation of functional units at unreactive carbon atom and the convergent assembly make this protocol attractive in the field of organic synthesis. PMID:25689040

  14. Integrated engineering of ?-oxidation reversal and ?-oxidation pathways for the synthesis of medium chain ?-functionalized carboxylic acids.

    PubMed

    Clomburg, James M; Blankschien, Matthew D; Vick, Jacob E; Chou, Alexander; Kim, Seohyoung; Gonzalez, Ramon

    2015-03-01

    An engineered reversal of the ?-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6-10-carbons) ?-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned ?-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ?-hydroxyacids and dicarboxylic acids by the action of an engineered ?-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core ?-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6-C10 carboxylic acids and provided a platform for vector based independent expression of ?-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all ?-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6-C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a ?-oxidation cycle with ?-oxidation termination pathways was further demonstrated through the production of greater than 0.8 g/L C6-C10 ?-hydroxyacids or about 0.5 g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media. PMID:25638687

  15. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine

    NASA Astrophysics Data System (ADS)

    Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-03-01

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.

  16. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Min Huang, Wei

    2013-06-01

    The present work studies the synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotube (CNT) and carbon fiber on the electrical property and electro-activated recovery behavior of shape memory polymer (SMP) nanocomposites. The combination of CNT and carbon fiber results in improved electrical conductivity in the SMP nanocomposites. Carboxylic acid-functionalized CNTs are grafted onto the carbon fibers and then self-assembled by deposition to significantly enhance the reliability of the bonding between carbon fiber and SMP via van der Waals and covalent crosslink. Furthermore, the self-assembled carboxylic acid-functionalized CNTs and carbon fibers enable the SMP nanocomposites for Joule heating triggered shape recovery.

  17. Biocompatible polymers coated on carboxylated nanotubes functionalized with betulinic acid for effective drug delivery.

    PubMed

    Tan, Julia M; Karthivashan, Govindarajan; Abd Gani, Shafinaz; Fakurazi, Sharida; Hussein, Mohd Zobir

    2016-02-01

    Chemically functionalized carbon nanotubes are highly suitable and promising materials for potential biomedical applications like drug delivery due to their distinct physico-chemical characteristics and unique architecture. However, they are often associated with problems like insoluble in physiological environment and cytotoxicity issue due to impurities and catalyst residues contained in the nanotubes. On the other hand, surface coating agents play an essential role in preventing the nanoparticles from excessive agglomeration as well as providing good water dispersibility by replacing the hydrophobic surfaces of nanoparticles with hydrophilic moieties. Therefore, we have prepared four types of biopolymer-coated single walled carbon nanotubes systems functionalized with anticancer drug, betulinic acid in the presence of Tween 20, Tween 80, polyethylene glycol and chitosan as a comparative study. The Fourier transform infrared spectroscopy studies confirm the bonding of the coating molecules with the SWBA and these results were further supported by Raman spectroscopy. All chemically coated samples were found to release the drug in a slow, sustained and prolonged fashion compared to the uncoated ones, with the best fit to pseudo-second order kinetic model. The cytotoxic effects of the synthesized samples were evaluated in mouse embryonic fibroblast cells (3T3) at 24, 48 and 72 h. The in vitro results reveal that the cytotoxicity of the samples were dependent upon the drug release profiles as well as the chemical components of the surface coating agents. In general, the initial burst, drug release pattern and cytotoxicity could be well-controlled by carefully selecting the desired materials to suit different therapeutic applications. PMID:26704543

  18. Recovery of carboxylic acids produced by fermentation.

    PubMed

    Lpez-Garzn, Camilo S; Straathof, Adrie J J

    2014-01-01

    Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid-liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. Process steps can often be combined synergistically. In-situ removal of carboxylic acid by extraction during fermentation is the most popular approach. Recovery of the extractant can easily lead to waste inorganic salt formation, which counteracts the advantage of the in-situ removal. For industrial production, various recovery principles and configurations are used, because the fermentation conditions and physical properties of specific carboxylic acids differ. PMID:24751382

  19. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  20. An experimental and density functional study on conformational and spectroscopic analysis of 5-methoxyindole-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Cinar, Mehmet; Karabacak, Mehmet; Asiri, Abdullah M.

    2015-02-01

    In this article, a brief conformational and spectroscopic characterization of 5-methoxyindole-2-carboxylic acid (5-MeOICA) via experimental techniques and applications of quantum chemical methods is presented. The conformational analysis of the studied molecule was determined theoretically using density functional computations for ground state, and compared with previously reported experimental findings. The vibrational transitions were examined by measured FT-IR and FT-Raman spectroscopic data, and also results obtained from B3LYP and CAM-B3LYP functionals in combination with 6-311++G(d,p) basis set. The recorded proton and carbon NMR spectra in DMSO solution were analyzed to obtain the exact conformation. Due to intermolecular hydrogen bondings, NMR calculations were performed for the dimeric form of 5-MeOICA and so chemical shifts of those protons were predicted more accurately. Finally, electronic properties of steady compound were identified by a comparative study of UV absorption spectra in ethanol and water solution and TD-DFT calculations.

  1. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  2. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles (Kingsport, TN); Dickson, Todd Jay (Kingsport, TN)

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  3. Single-Walled Carbon Nanotubes Functionalized with Carboxylic Acid for Fabricating Polymeric Composite Microstructures.

    PubMed

    Otuka, Adriano Jos Galvani; Tribuzi, Vinicius; Cardoso, Marcos Roberto; de Almeida, Gustavo Foresto Brito; Zanatta, Antonio Ricardo; Corra, Daniel Souza; Mendona, Cleber Renato

    2015-12-01

    Carbon nanotube composites are promising materials for mechanical and electrical applications. However, methodologies to incorporate carbon nanotubes in polymeric matrices are on high demand, especially for fabricating devices in the micro-nanoscale. In this paper we show the fabrication of 3D polymeric microstructures with functionalized single-walled carbon nanotubes (SWCNT), by means of two-photon polymerization (2PP). We used a range of SWCNT concentrations (0.01-1 wt%) in the resin to fabricate the composite material. Scanning electron microscopy images show the fabricated microstructures surface quality. Raman spectroscopy was used to confirm the presence and evaluate the distribution of SWCNT in the microstructures. Atomic force microscopy was used to evaluate the mechanical properties of the fabricated microstructures. PMID:26682414

  4. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    SciTech Connect

    Cao, X. T.; Showkat, A. M.; Wang, Z.; Lim, K. T.

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.

  5. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO3 nanocomposites and rare earth metal complexes: Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Cao, X. T.; Showkat, A. M.; Wang, Z.; Lim, K. T.

    2015-03-01

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb3+) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S'-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb3+ ions afforded fluorescent Tb3+ tagged aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-Tb3+) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb3+nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb3+ complexes were investigated by fluorescence spectroscopy.

  6. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    PubMed

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  7. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  8. Difunctional carboxylic acid anions in oilfield waters

    SciTech Connect

    MacGowan, D.B.; Surdam, R.C.

    1988-01-01

    Recent models of porosity enhancement during sandstone diagenesis have called upon the metal complexing ability of difunctional carboxylic acid anions in subsurface waters to explain aluminosilicate dissolution. Although carboxylic acid anions have been known to exist in oilfield waters since the turn of the century, until now the existence of significant concentrations of difunctional carboxylic acid anions has not been documented. Data from this study show that difunctional carboxylic acid anions can exist in concentrations up to 2640 ppm, and can account for nearly 100% of the organic acid anions in some oilfield waters. Formation water samples with exceptionally high concentrations of difunctional carboxylic acid anions are found in reservoirs which are at maximum levels of thermal exposure, and which are presently in the 80-100/sup 0/C thermal window. Plagioclase dissolution experiments performed with natural oilfield waters and artificial solutions indicate that waters with high difunctional acid anion concentrations are capable, by organo-metallic complexation, of being apparently oversaturated with respect to total aluminum concentrations compared to the inorganic solubility of kaolinite by several orders of magnitude. Dissolution experiments simulating a specific geologic environment (Stevens Sandstone, southern San Joaquin Basin, California; using natural oilfield waters and Stevens Sandstone core samples), produced plagioclase and calcite dissolution textures similar to those noted in well cores from the Stevens Sandstone, as well as raising total aluminum concentrations in these experimental solutions several orders of magnitude over the solubility of kaolinite.

  9. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    SciTech Connect

    R.L. Ames

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate counterparts of similar thickness (Nafion{trademark} 111). Additionally, nitric acid separation efficiencies ({alpha}) were approximately one order of magnitude higher for the carboxylate solution cast films when compared to Nafion{trademark} 111. The second phase of our work included the generation of thin carboxylate films made by the chemical synthesis perfluoro sulfonate and mixed sulfonate/carboxylate polymers from a perfluoro sulfonyl fluoride precursor, the characterization of the newly generated material, and a study of the transport characteristics of these membranes. Transport studies consisted of the dehydration of nitric acid feeds by pervaporation. In addition, the initial hypothesis was expanded to include demonstration that transmembrane flux and separation efficiencies are a function of the ratio between sulfonate and carboxylate terminated side chains of the perfluoro ionomer. Investigations demonstrated the ability to generate in- house films with varying sulfonate/carboxylate concentrations from commercially available perfluoro sulfonyl fluoride material, and showed that the converted films could be characterized using Fourier transform infrared (FTIR) and x-ray fluorescence (XRF) spectroscopy. Finally, the mixed films where subjected to nitric acid dehydration transport tests and a relationship was found to exist between sulfonate/carboxylate pendant chain ratio and both flux and water separation capability. In summary, experimental results confirmed that, when compared to Nafion 111{trademark}, the mixed film's bulk fluxes decrease by approximately three orders of magnitude and the water separation factor increases by as much as two orders of magnitude as the carboxylate side-chain content was increased from 0 (pure sulfonate film) to 53 mole%, supporting the hypothesis given for this effort. It was observed that the water selectivity improved for both the solution cast perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films when judged against similar perfluoro sulfonate materials. Of great benefit was that during the investigation a number of research tools were utilized including, but in no way limited to, basic chemical operations, procedure development and refinement, the use of a number of analytical systems (FTIR, XRF, thermal gravimetric analysis, nuclear magnetic resonance, etc.), data interpretation and analysis, and presentation and debate (defense) of results.

  10. Chromatographic separations of aromatic carboxylic acids.

    PubMed

    Waksmundzka-Hajnos, M

    1998-10-01

    The purpose of this review is to present methods of chromatographic analysis of aromatic carboxylic acids. The separation, identification and quantitative analysis of aromatic carboxylic acids are necessary because of their importance as non-steroid antiphlogistic drugs, semi-products of biosynthesis of aromatic amino-acids in plants (phenolic acids), metabolites of numerous toxic substances, drugs and catecholamines. HPLC separation of ionic samples tends to be more complicated than separation of non-ionic compounds. The review describes the dependence of the retention of ionic solutes on pH and solvent composition as well as on the ionic strength of a mobile phase. The application of the ion-suppressing RP-HPLC method using organic modifiers (aqueous buffer solutions) as eluents in aromatic carboxylic acid analysis is also presented. In more difficult cases of analysis the addition of an ion-pairing reagent, such as the quaternary alkylammonium ion, is necessary to obtain satisfactory separations. Hypotheses of ion-pair formation in reversed-phase systems as well as the influence of various agents on the separation of ionic solutes in IP-RP systems are explained. Examples of the application of ion-pair liquid chromatography to the analysis of aromatic carboxylic acids have also been reviewed. The principles and application of ion-exchange chromatography to the purification, isolation and less frequently, to chromatographic analysis are discussed. Polar adsorbents and polar bonded stationary phases are also widely used in carboxylic acid separation in normal-phase systems, mainly by TLC, often coupled with densitometry. The review also shows examples of separation of chiral benzoic acids and their derivatives in LC systems. The possibilities of application of gas chromatography preceded by derivatisation or pyrolysis of acidic compounds and applications of GC-MS and Py-GC-MS coupled methods in identification and quantitation of aromatic carboxylic acids is also reviewed. PMID:9832241

  11. Carboxylic Acid (Bio)Isosteres in Drug Design

    PubMed Central

    Ballatore, Carlo; Huryn, Donna M.; Smith, Amos B.

    2013-01-01

    The carboxylic acid functional group can be an important constituent of a pharmacophore, however, the presence of this moiety can also be responsible for significant drawbacks, including metabolic instability, toxicity, as well as limited passive diffusion across biological membranes. To avoid some of these shortcomings while retaining the desired attributes of the carboxylic acid moiety, medicinal chemists often investigate the use of carboxylic acid (bio)isosteres. The same type of strategy can also be effective for a variety other purposes, for example, to increase the selectivity of a biologically active compound or to create new intellectual property. Several carboxylic acid isosteres have been reported, however, the outcome of any isosteric replacement cannot be readily predicted as this strategy is generally found to be dependent upon the particular context (i.e., the characteristic properties of the drug and the drug–target). As a result, screening of a panel of isosteres is typically required. In this context, the discovery and development of novel carboxylic acid surrogates that could complement the existing palette of isosteres remains an important area of research. The goal of this Minireview is to provide an overview of the most commonly employed carboxylic acid (bio)isosteres and to present representative examples demonstrating the use and utility of each isostere in drug design. PMID:23361977

  12. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    PubMed Central

    Haghighatpanah, Shayesteh; Bohln, Martin; Bolton, Kim

    2014-01-01

    Molecular dynamics (MD) and molecular mechanics (MM) methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube (SWNT)polyethylene and SWNTpolyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the SWNT with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1 to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the SWNT wall. PMID:25229056

  13. Vibrational coupling in carboxylic acid dimers.

    PubMed

    Nandi, Chayan K; Hazra, Montu K; Chakraborty, Tapas

    2005-09-22

    The vibrational level splitting in the ground electronic state of carboxylic acid dimers mediated by the doubly hydrogen-bonded networks are investigated using pure and mixed dimers of benzoic acid with formic acid as molecular prototypes. Within the 0-2000-cm(-1) range, the frequencies for the fundamental and combination vibrations of the two dimers are experimentally measured by using dispersed fluorescence spectroscopy in a supersonic jet expansion. Density-functional-theory calculations predict that most of the dimer vibrations are essentially in-phase and out-of-phase combinations of the monomer modes, and many of such combinations show significantly large splitting in vibrational frequencies. The infrared spectrum of the jet-cooled benzoic acid dimer, reported recently by Bakker et al. [J. Chem. Phys. 119, 11180 (2003)], has been used along with the dispersed fluorescence spectra to analyze the coupled g-u vibrational levels. Assignments of the dispersed fluorescence spectra of the mixed dimer are suggested by comparing the vibronic features with those in the homodimer spectrum and the predictions of density-functional-theory calculation. The fluorescence spectra measured by excitations of the low-lying single vibronic levels of the mixed dimer reveal that the hydrogen-bond vibrations are extensively mixed with the ring modes in the S1 surface. PMID:16392485

  14. Carboxylic acid distribution in oil- and water-phases

    SciTech Connect

    Barth, T.; Pettersen, A.R.; Moen, L.K.; Dale, J.D.

    1996-10-01

    Carboxylic acids are the most abundant oxygen containing organic molecules found in oils and oilfield waters. Their partition behaviour in the oil/water system is a function of molecular weight, where the homologous n-carboxylic acids distribute systematically between the phases. Previous work has, however, indicated an in situ source for the aqueous acids, controlled by the overall red-ox conditions in the reservoir. Higher molecular weight acids in the oil phase are more likely generated in the petroleum source rock. The amounts and distributions of carboxylic acids (as carbon number range) in oils and corresponding formation waters have been measured. The results are compared to equivalent data on phenols and BTX distributions (presented elsewhere) using multivariate techniques. The effect of biodegradation on the distribution of organic solutes in petroleum system waters is also addressed. The results are discussed both in the context of partition and red-ox as controlling factors.

  15. The impact of carboxylic acids on ice nucleation

    NASA Astrophysics Data System (ADS)

    Weiss, F.; Baloh, P.; Grothe, H.

    2012-04-01

    Ice nucleation is a process which is not fully understood yet. Especially the influence of carboxylic acids has to be investigated. As shown by Pratt et al.[1] carboxylic acids are present in the troposphere and their influence on cloud formation is still unknown. Recent studies showed that pure soot aerosol is unable to nucleate ice and citric acid suppresses the nucleation to a certain extent in laboratory models.[2], [3] Therefore it is consequent to further investigate organic acids with different molecular masses and functional groups. Starting with oxalic acid as the smallest carboxylic acid, several other carboxylic acids with different molecular masses and functional groups have been investigated. Every sample has been observed by ESEM, XRD and optical Microscopy. The same preparation procedure has been applied to all samples to gain comparable results and reveal trends on nucleation abilities. [1] Pratt et al. "In situ detection of biological particles in cloud ice-crystals" Nature Geoscience, 2, 398-401, 2009 [2] O.Mhler et al., Meteorol.Z.14, 477, 2005 [3] B.J. Murray "Inhibition of ice crystallization in highly viscous aqueous organic acid droplets." Atmos.Chem.Phys., 8, 5423-5433, 2008

  16. Pyrolysis Mechanisms of Aromatic Carboxylic Acids

    SciTech Connect

    Britt, P.F.; Eskay, T.P.; Buchanan, A.C. III

    1997-12-31

    Although decarboxylation of carboxylic acids is widely used in organic synthesis, there is limited mechanistic information on the uncatalyzed reaction pathways of aromatic carboxylic acids at 300-400 {degrees} C. The pyrolysis mechanisms of 1,2-(3,3-dicarboxyphenyl)ethane, 1,2-(4,4-dicarboxylphenyl)ethane, 1-(3-carboxyphenyl)-2-(4- biphenyl)ethane, and substituted benzoic acids have been investigated at 325-425 {degrees} C neat and diluted in an inert solvent. Decarboxylation is the dominant pyrolysis path. Arrhenius parameters, substituent effects, and deuterium isotope effects are consistent with decarboxylation by an electrophilic aromatic substitution reaction. Pyrolysis of benzoic acid in naphthalene, as a solvent, produces significant amounts of 1- and 2-phenylnaphthalenes. The mechanistic pathways for decarboxylation and arylation with be presented.

  17. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirs, Odlia; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions. PMID:26721276

  18. Omega-3-carboxylic acid (Epanova) for hypertriglyceridemia.

    PubMed

    Zhao, Alan; Lam, Sum

    2015-01-01

    Hypertriglyceridemia is a prevalent yet under-addressed condition, often seen in association with uncontrolled diabetes mellitus, obesity, and physical inactivity. The control of triglyceride (TG) levels is essential to prevent the development of coronary artery disease and pancreatitis associated with hypertriglyceridemia. Omega-3-carboxylic acid (Epanova) is the third prescription omega-3 fatty acid product approved in the United States as an adjunct to diet for treating severe hypertriglyceridemia (? 500 mg/dL). At the approved dosage, it reduced baseline serum TG levels by 25-30% in a placebo-controlled study. It reduced serum TG levels by an additional 8-15% in patients who were already taking statin therapy. It appeared to have a better bioavailability profile compared with an equivalent dose of omega-3-acid ethyl ester (Lovaza) in both low-fat and high-fat diets. However, evidence behind the effects of omega-3-carboxylic acid on cardiovascular morbidity and mortality, and pancreatitis risk, is lacking. Overall, it is well tolerated, but may induce common gastrointestinal side effects, such as abdominal pain, nausea, and diarrhea. At this time, omega-3-carboxylic acid is an alternative adjunct therapy (in addition to diet) for hypertriglyceridemia. Its potential clinical benefits over other omega-3 formulations have yet to be evaluated. PMID:25580706

  19. Nickel-Catalyzed Decarboxylative Difluoroalkylation of ?,?-Unsaturated Carboxylic Acids.

    PubMed

    Li, Gang; Wang, Tao; Fei, Fan; Su, Yi-Ming; Li, Yan; Lan, Quan; Wang, Xi-Sheng

    2016-03-01

    The first example of nickel-catalyzed decarboxylative fluoroalkylation of ?,?-unsaturated carboxylic acids has been developed with commonly available fluoroalkyl halides. This novel transformation has demonstrated broad substrate scope, excellent functional-group tolerance, mild reaction conditions, and excellent stereoselectivity. Mechanistic investigations indicate that a fluoroalkyl radical is involved in the catalytic cycle. PMID:26837053

  20. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  1. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  2. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  3. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    NASA Astrophysics Data System (ADS)

    Haghighatpanah, Shayesteh; Bohlén, Martin; Bolton, Kim

    2014-09-01

    Molecular dynamics and molecular mechanics methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube - polyethylene and single walled carbon nanotube - polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the single walled carbon nanotubes with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1% to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the single walled carbon nanotube wall.

  4. Microbial Transformation of Esters of Chlorinated Carboxylic Acids

    PubMed Central

    Paris, D. F.; Wolfe, N. L.; Steen, W. C.

    1984-01-01

    Two groups of compounds were selected for microbial transformation studies. In the first group were carboxylic acid esters having a fixed aromatic moiety and an increasing length of the alkyl component. Ethyl esters of chlorine-substituted carboxylic acids were in the second group. Microorganisms from environmental waters and a pure culture of Pseudomonas putida U were used. The bacterial populations were monitored by plate counts, and disappearance of the parent compound was followed by gas-liquid chromatography as a function of time. The products of microbial hydrolysis were the respective carboxylic acids. Octanol-water partition coefficients (Kow) for the compounds were measured. These values spanned three orders of magnitude, whereas microbial transformation rate constants (kb) varied only 50-fold. The microbial rate constants of the carboxylic acid esters with a fixed aromatic moiety increased with an increasing length of alkyl substituents. The regression coefficient for the linear relationships between log kb and log Kow was high for group 1 compounds, indicating that these parameters correlated well. The regression coefficient for the linear relationships for group 2 compounds, however, was low, indicating that these parameters correlated poorly. PMID:16346459

  5. 4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic Acid (C75), an Inhibitor of Fatty-acid Synthase, Suppresses the Mitochondrial Fatty Acid Synthesis Pathway and Impairs Mitochondrial Function*

    PubMed Central

    Chen, Cong; Han, Xiao; Zou, Xuan; Li, Yuan; Yang, Liang; Cao, Ke; Xu, Jie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui

    2014-01-01

    4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid (C75) is a synthetic fatty-acid synthase (FASN) inhibitor with potential therapeutic effects in several cancer models. Human mitochondrial ?-ketoacyl-acyl carrier protein synthase (HsmtKAS) is a key enzyme in the newly discovered mitochondrial fatty acid synthesis pathway that can produce the substrate for lipoic acid (LA) synthesis. HsmtKAS shares conserved catalytic domains with FASN, which are responsible for binding to C75. In our study, we explored the possible effect of C75 on HsmtKAS and mitochondrial function. C75 treatment decreased LA content, impaired mitochondrial function, increased reactive oxygen species content, and reduced cell viability. HsmtKAS but not FASN knockdown had an effect that was similar to C75 treatment. In addition, an LA supplement efficiently inhibited C75-induced mitochondrial dysfunction and oxidative stress. Overexpression of HsmtKAS showed cellular protection against low dose C75 addition, whereas there was no protective effect upon high dose C75 addition. In summary, the mitochondrial fatty acid synthesis pathway has a vital role in mitochondrial function. Besides FASN, C75 might also inhibit HsmtKAS, thereby reducing LA production, impairing mitochondrial function, and potentially having toxic effects. LA supplements sufficiently ameliorated the toxicity of C75, showing that a combination of C75 and LA may be a reliable cancer treatment. PMID:24784139

  6. Analysis of Chiral Carboxylic Acids in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Elsila, J. E.; Hein, J. E.; Aponte, J. C.; Parker, E. T.; Glavin, D. P.; Dworkin, J. P.

    2015-01-01

    Homochirality of amino acids in proteins and sugars in DNA and RNA is a critical feature of life on Earth. In the absence of a chiral driving force, however, reactions leading to the synthesis of amino acids and sugars result in racemic mixtures. It is currently unknown whether homochirality was necessary for the origins of life or if it was a product of early life. The observation of enantiomeric excesses of certain amino acids of extraterrestrial origins in meteorites provides evidence to support the hypothesis that there was a mechanism for the preferential synthesis or destruction of a particular amino acid enantiomer [e.g., 1-3]. The cause of the observed chiral excesses is un-clear, although at least in the case of the amino acid isovaline, the degree of aqueous alteration that occurred on the meteorite parent body is correlated to the isovaline L-enantiomeric excess [3, 4]. This suggests that chiral symmetry is broken and/or amplified within the meteorite parent bodies. Besides amino acids, there have been only a few reports of other meteoritic compounds found in enantiomeric excess: sugars and sugar acids [5, 6] and the hydroxy acid lactic acid [7]. Determining whether or not additional types of molecules in meteorites are also present in enantiomeric excesses of extraterrestrial information will provide insights into mechanisms for breaking chiral symmetry. Though the previous measurements (e.g., enantiomeric composition of lactic acid [7], and chiral carboxylic acids [8]) were made by gas chromatography-mass spectrometry, the potential for increased sensitivity of liquid chromatography-mass spectrometry (LC-MS) analyses is important because for many meteorite samples, only small sample masses are available for study. Furthermore, at least in the case of amino acids, many of the largest amino acid enantiomeric excesses were observed in samples that contained lower abundances (tens of ppb) of a given amino acid enantiomer. In the present work, we describe our efforts to develop highly sensitive LC-MS methods for the analysis of chiral carboxylic acids including hydroxy acids.

  7. Carboxylic Acid Esters as Substrates of Cholinesterases

    NASA Astrophysics Data System (ADS)

    Brestkin, A. P.; Rozengart, E. V.; Abduvakhabov, A. A.; Sadykov, A. A.

    1983-10-01

    Data on the kinetics of the hydrolysis of various carboxylic acid esters by two main types of cholinesterases acetylcholinesterase from human erythrocytes and butyrylcholinesterase from horse blood serum are surveyed. It is shown that the rate of enzyme hydrolysis depends significantly on the structure of the acyl part of the ester molecule, the nature of the ester heteroatom, the structure of the alcohol component, and particularly the structure of the onium group. Esters based on natural products are of special interest as specific substrates of these enzymes. The role of the productive and non-productive sorption of the substrates in enzyme catalysis is demonstrated. The bibliography includes 81 references.

  8. New structural motif for carboxylic acid perhydrolases

    PubMed Central

    Yin, DeLu (Tyler); Purpero, Vince M.; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J.

    2013-01-01

    Some serine hydrolases also catalyze a promiscuous reaction – reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five x-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (kcat comparison) than wild type. Surprisingly, saturation mutagenesis at the 29 position of PFE identified six other amino acid substitutions that increase perhydrolysis of acetic acid at least fourfold over wild type. The best variant, L29I PFE, catalyzed perhydrolysis 83 times faster (kcat comparison) than wild-type PFE and twice as fast as L29P PFE. Despite the different amino acid in the oxyanion loop, L29I PFE shows a similar selectivity for hydrogen peroxide over water as L29P PFE (β0 = 170 M−1 vs. 160 M−1), and a similar fast formation of acetyl-enzyme (140 U/mg vs. 62 U/mg). X-ray crystal structures of L29I PFE with and without bound acetate show an unusual mixture of two different oxyanion loop conformations. The type II β-turn conformation resembles the wild-type structure and is unlikely to increase perhydrolysis, but the type I β-turn conformation creates a binding site for a second acetate. Modeling suggests that a previously proposed mechanism for L29P PFE can be extended to include L29I PFE where an acetate accepts a hydrogen bond to promote faster formation of the acetyl enzyme. PMID:23325572

  9. Hypervalent Iodine Iodinative Decarboxylation Of Cubyl And Homocubyl Carboxylic Acids

    NASA Astrophysics Data System (ADS)

    Moriarty, Robert M.; Khosrowshahi, Jaffar S.; Dalecki, Tomasz

    1988-05-01

    The hypervalent iodine oxidative decarboxylation of homocubyl and cubyl mono- and di-carboxylic acids is reported; the carboxylic acid is treated with PhI(OAc)2CC14-I2 under irradiation conditions and 80-90% of the derived iodo compound is obtained. Systematic functionalization of cubane is an important synthetic goal. The two main methods of cubane synthesis involve sequential Favorskii ring contractions to yield first a homocubyl carboxylic acid, and theh after a second Favorskii reaction, a 1,41,2 or 1,33 cubyl dicarboxylic acid. As a consequence of this synthetic procedure the carboxy group is a logical starting functionality for subsequent synthetic transformation in the cubyl ring system. The carboxy group has been converted ,into a nitro group in the synthesis of 1,4-dinitrocubane4 and halogenodecarboxylation has been effected.596 In a basically different approach Eaton et al., used ortho-lithiation of the der td carboxamide etc a site for ortho-iodination.7 Introduction of an iodo group onto the cubyl system is especially desirable because hypervalent iodine synthetic methodology may be employed in order to effect displacement reactions. This scheme has been successfully applied by Eaton et al.8 in tim cubyl system for R-IC12+ R-C1 R-I(OAC)2+ R-OAc where R=1- iodo-2-N,N-di-isopropylcarbox-amido-5-methylcubane.

  10. Extraction of carboxylic acids by amine extractants

    SciTech Connect

    Tamada, Janet Ayako; King, C.J.

    1989-01-01

    This work examines the chemistry of solvent extraction by long-chain amines for recovery of carboxylic acids from dilute aqueous solution. Long-chain amines act as complexing agents with the acid, which facilitates distribution of the acid into the organic phase. The complexation is reversible, allowing for recovery of the acid from the organic phase and regeneration of the extractant. Batch extraction experiments were performed to study the complexation of acetic, lactic, succinic, malonic, fumaric, and maleic acids with Alamine 336, an aliphatic, tertiary amine extractant, dissolved in various diluents. Results were interpreted by a ''chemical'' model, in which stoichiometric ratios of acid and amine molecules are assumed to form complexes in the solvent phase. From fitting of the extraction data, the stoichiometry of complexes formed and the corresponding equilibrium constants were obtained. The results of the model were combined with infrared spectroscopic experiments and results of past studies to analyze the chemical interactions that are responsible for extraction behavior. The information from the equilibrium studies was used to develop guidelines for large-scale staged extraction and regeneration schemes. A novel scheme, in which the diluent composition is shifted between extraction and regeneration, was developed which could achieve both high solute recovery and high product concentration. 169 refs., 57 figs., 15 tabs.

  11. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    SciTech Connect

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  12. Palladium-catalyzed C-H bond carboxylation of acetanilides: an efficient usage of N,N-dimethyloxamic acid as the carboxylate source.

    PubMed

    Wu, Yinuo; Jiang, Cheng; Wu, Deyan; Gu, Qiong; Luo, Zhang-Yi; Luo, Hai-Bin

    2016-01-01

    N,N-Dimethyloxamic acid can be successfully employed as a carboxylate precursor in the palladium-catalyzed direct C-H carboxylation of acetanilides. The reaction proceeds smoothly under mild conditions over a broad range of substrates with high functional group tolerance, affording substituted N-acyl anthranilic acids in moderate to high yields. PMID:26616015

  13. Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes.

    PubMed

    Tsai, Cheng-Hsun; Chang, Wei-Chieh; Saikia, Diganta; Wu, Cheng-En; Kao, Hsien-Ming

    2016-05-15

    In this work, we demonstrate that a high density of COOH groups loading, up to 60mol% based on silica, is successfully incorporated into SBA-16 via a one-pot synthesis route, which involves co-condensation of carboxyethylsilanetriol sodium salt (CES) and tetraethylorthosilicate (TEOS) templated by Pluronic F127 and P123 in an acidic medium. A variety of characterization techniques are performed to confirm quantitative incorporation of carboxylic groups into ordered cubic mesostructures. These functionalized materials are used to effectively remove two cationic dyes methylene blue (MB) and phenosafranine (PF) with the maximum adsorption capacities of 561 and 519mgg(-1), respectively, at pH 9. The zeta potential results reveal that the electrostatic interactions between cationic dye molecule and negatively charged surface of the adsorbent play a crucial role in their high adsorption capacities. For a binary component system consisting of MB and PF, competitive adsorption of these two dyes is observed with adsorption capacity values slightly lower than those of the corresponding single dye systems. The dye adsorbed material can be easily regenerated by simple acid washing and be reused for five times with MB removal efficiency still up to 98.6%, showing its great potentials in environmental remediation. PMID:26906434

  14. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    SciTech Connect

    Taguchi, J.; Kuriyama, K. )

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  15. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  16. Preparation of {alpha},{beta}-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1998-09-15

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  17. Preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, Makarand Ratnakar (Durham, NC); Spivey, James Jerry (Cary, NC); Zoeller, Joseph Robert (Kingsport, TN)

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  18. Boron-containing amino carboxylic acid compounds and uses thereof

    DOEpatents

    Kabalka, George W. (Knoxville, TN); Srivastava, Rajiv R. (Knoxville, TN)

    2000-03-14

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

  19. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.

    PubMed

    Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C

    2015-05-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F() transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  20. Corrosion inhibition of steel in concrete by carboxylic acids

    SciTech Connect

    Sagoe-Crentsil, K.K.; Glasser, F.P. . Dept. of Chemistry); Yilmaz, V.T. )

    1993-11-01

    Water soluble carboxylic acids have been used as corrosion inhibitors. They remain largely soluble after curing in cement for up to 90d. Corrosion current measurements are presented showing malonic acid, a dicarboxylic acid, to be a very effective corrosion inhibitor even in the presence of 2.5 wt % chloride. Unfortunately, it has an initial retarding effect on the set of Portland cement. The investigation suggests that corrosion inhibitors based on carboxylic acids remain a fruitful field of investigation.

  1. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.

    PubMed

    Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas

    2015-10-16

    The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)26H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100C, 80 bar H2) and reaches turnover numbers of up to 8000. PMID:26472903

  2. Calixarene based chiral solvating agents for ?-hydroxy carboxylic acids

    NASA Astrophysics Data System (ADS)

    Bozkurt, Selahattin

    2013-09-01

    Novel chiral calix[4]arene derivatives functionalized at the lower rim have been prepared from the reaction of p-tert-butylcalix[4]arene diamine derivative with N-Phthaloyl-L-phenylalanine or (2S)-2-((benzyloxy)carbonyl)amino)-3-hydroxypropanoic acid or (2S,3R)-2-((benzyloxy)carbonyl)amino-3-hydroxybutanoic acid in 63-81% yield. The structures of these receptors were characterized by FTIR, 1H, 13C and 2D COSY NMR spectroscopy. The enantioselective recognition of these receptors towards the enantiomers of racemic carboxylic acids was studied by 1H NMR spectroscopy. The molar ratios of the chiral compounds with each of the enantiomers of guests were determined by using Job plots. The Job plots indicate that the hosts form 1:2 instantaneous complexes with all guests. The receptors exhibited different chiral recognition abilities toward the enantiomers of racemic guests. NMR studies demonstrated that the receptors function as highly effective chiral shift reagents for determining the enantiomeric purity of a series of carboxylic acids.

  3. High-throughput aided synthesis of the porous metal-organic framework-type aluminum pyromellitate, MIL-121, with extra carboxylic acid functionalization.

    PubMed

    Volkringer, Christophe; Loiseau, Thierry; Guillou, Nathalie; Férey, Gérard; Haouas, Mohamed; Taulelle, Francis; Elkaim, Erik; Stock, Norbert

    2010-11-01

    A new porous metal-organic framework (MOF)-type aluminum pyromellitate (MIL-121 or Al(OH)[H(2)btec]·(guest), (guest = H(2)O, H(4)btec = pyromellitic acid) has been isolated by using a high-throughput synthesis method under hydrothermal conditions. Its structure was determined from powder X-ray diffraction analysis using synchrotron radiation (Soleil, France) and exhibits a network closely related to that of the MIL-53 series. It is a three-dimensional (3D) framework containing one-dimensional (1D) channels delimited by infinite trans-connected aluminum-centered octahedra AlO(4)(OH)(2) linked through the pyromellitate ligand. Here the organic ligand acts as tetradendate linker via two of the carboxylate groups. The two others remain non-bonded in their protonated form, and this constitutes a rare case of the occurrence of both bonding and non-bonding organic functionalities of the MOF family. The non-coordinated -COOH groups points toward the channels to get them an open form configuration. Within the tunnels are located unreacted pyromellitic acid and water species, which are evacuated upon heating, and a porous MIL-121 phase is obtained with a Brunauer-Emmett-Teller (BET) surface area of 162 m(2) g(-1). MIL-121 has been characterized by IR, thermogravimetry (TG) analyses, and solid state NMR spectroscopy employing a couple of two-dimensional (2D) techniques such as (1)H-(1)H SQ-DQ BABA, (1)H-(1)H SQ-SQ RFDR, (27)Al{(1)H} CPHETCOR and (27)Al MQMAS. PMID:20923169

  4. Microtribological properties of molecularly thin carboxylic acid functionalized imidazolium ionic liquid film on single-crystal silicon

    NASA Astrophysics Data System (ADS)

    Mo, Yufei; Yu, Bo; Zhao, Wenjie; Bai, Mingwu

    2008-12-01

    A series of 1-alkyl-3-ethylcarboxylic acid imidazolium chloride ([AEImi][Cl]) ionic liquids was synthesized and evaluated as a new kind of lubricant for microelectromechanical system (MEMS). In this research, novel molecular thin ionic liquid films (ILs) with various bonding percentages were prepared with different annealing temperatures and times. Film wettability was determined by measurement of contact angle and thickness with the ellipsometric method. The chemical composition, structure and morphology were characterized by the means of multi-technique X-ray photoelectron spectrometric, and atomic force microscopic analysis, respectively. The nano- and microtribological properties of the ionic liquid film were investigated. The morphologies of wear tracks of IL films were examined using a 3D non-contact profilometer. The influence of chain length on friction in nano-scale, and the effect of bonding percentage and sliding frequency on friction coefficient, carry-bearing capacity and durability in micro-scale were studied. Data are compared to the perfluoropolyether lubricant Z Dol. The [AEImi][Cl] ionic liquid films with appropriate bonding percentage exhibited comparable load-bearing capacity and durability than Z Dol 3800 at thickness level of several nanometers. Therefore, the [AEImi][Cl] ionic liquid film shows strong potential applications involving the lubrication and protection of MEMS.

  5. Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol-gel process

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Xu, Tao; He, Guangwei; Jiang, Zhongyi; Wu, Hong

    2015-02-01

    Functionalized titania are used as fillers to modify the sulfonated poly(ether ether ketone) (SPEEK) membrane for improved proton conductivity and methanol barrier property. The functionalized titania sol which contains proton conductive carboxylic acid groups or amino acid groups are derived from a facile chelation method using different functional additives. Then the novel SPEEK/carboxylic acid-functionalized titania (SPEEK/TC) and SPEEK/amino acid-functionalized titania (SPEEK/TNC) hybrid membranes are fabricated via in situ sol-gel method. The anti-swelling property and thermal stability of hybrid membranes are enhanced owing to the formation of electrostatic force between SPEEK and titania nanoparticles. The hybrid membranes exhibit higher proton conductivity than plain SPEEK membrane because more proton transfer sites are provided by the functionalized titania nanoparticles. Particularly, the proton conductivity of SPEEK/TNC membrane with 15% filler content reaches up to 6.24 × 10-2 S cm-1, which is 3.5 times higher than that of the pure SPEEK membrane. For methanol permeability, the SPEEK/TNC membranes possess the lowest values because the acid-base interaction between sulfonic acid groups in SPEEK and amino groups in functionalized titania leads to a more compact membrane structure.

  6. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acid glycidyl esters. 721.2950 Section 721.2950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances 721.2950 Carboxylic...

  7. Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.

    1998-01-20

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  8. Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  9. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  10. Amine-based systems for carboxylic acid recovery

    SciTech Connect

    King, C.J.

    1992-05-01

    Several carboxylic acids are prominent commercial products, and their number and importance will probably grow. Getting these acids out of aqueous solution is necessary in petrochemical manufacture, fermentation, and the environmentally and economically important recovery from waste streams. In this paper, the authors discuss the methods possible to extract acids such as citric, lactic, and succinic from complex mixtures. Carboxylic acids are also readily made by fermentation and are among the most attractive substances that could be manufactured from biomass. Branches of this cycle lead to acetic, lactic, propionic, and formic acids, among others. Carboxylic acids are promising intermediates in a bioprocessing complex, because the oxygen of the biomass is placed in a form that is useful for further reaction with many other products. Citric acid is manufactured on a large scale by fermentation, and lactic and fumaric acids, among others, were manufactured that way in the past.

  11. Catalytic reductive N-alkylation of amines using carboxylic acids.

    PubMed

    Andrews, Keith G; Summers, Declan M; Donnelly, Liam J; Denton, Ross M

    2016-01-21

    We report a catalytic reductive alkylation reaction of primary or secondary amines with carboxylic acids. The two-phase process involves silane mediated direct amidation followed by catalytic reduction. PMID:26669845

  12. Direct esterification of ammonium salts of carboxylic acids

    DOEpatents

    Halpern, Yuval (Skokie, IL)

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  13. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  14. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    PubMed Central

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  15. Iodine-Catalyzed Decarboxylative Amidation of ?,?-Unsaturated Carboxylic Acids with Chloramine Salts Leading to Allylic Amides.

    PubMed

    Kiyokawa, Kensuke; Kojima, Takumi; Hishikawa, Yusuke; Minakata, Satoshi

    2015-10-26

    The iodine-catalyzed decarboxylative amidation of ?,?-unsaturated carboxylic acids with chloramine salts is described. This method enables the regioselective synthesis of allylic amides from various types of ?,?-unsaturated carboxylic acids containing substituents at the ?- and ?-positions. In the reaction, N-iodo-N-chloroamides, generated by the reaction of a chloramine salt with I2 , function as a key active species. The reaction provides an attractive alternative to existing methods for the synthesis of useful secondary allylic amine derivatives. PMID:26493878

  16. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    PubMed

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  17. Mechanistic Investigation into the Decarboxylation of Aromatic Carboxylic Acids

    SciTech Connect

    Britt, P.F.; Buchanan, A.C., III; Eskay, T.P.; Mungall, W.S.

    1999-08-22

    It has been proposed that carboxylic acids and carboxylates are major contributors to cross-linking reactions in low-rank coals and inhibit its thermochemical processing. Therefore, the thermolysis of aromatic carboxylic acids was investigated to determine the mechanisms of decarboxylation at temperatures relevant to coal processing, and to determine if decarboxylation leads to cross-linking (i.e., formation of more refractory products). From the thcrmolysis of simple and polymeric coal model compounds containing aromatic carboxylic acids at 250-425 ?C, decarboxylation was found to occur primarily by an acid promoted ionic pathway. Carboxylate salts were found to enhance the decarboxylation rate, which is consistent with the proposed cationic mechanism. Thermolysis of the acid in an aromatic solvent, such as naphthalene, produced a small amount of arylated products (~5 mol%)), which constitute a low-temperature cross-link. These arylated products were formed by the rapid decomposition of aromatic anhydrides, which are in equilibrium with the acid. These anhydrides decompose by a free radical induced decomposition pathway to form atyl radicals that can add to aromatic rings to form cross-links or abstract hydrogen. Large amounts of CO were formed in the thennolysis of the anhydrides which is consistent with the induced decomposition pathway. CO was also formed in the thermolysis of the carboxylic acids in aromatic solvents which is consistent with the formation and decomposition of the anhydride. The formation of anhydride linkages and cross-links was found to be very sensitive to the reactions conditions. Hydrogen donor solvents, such as tetralin, and water were found to decrease the formation of arylated products. Silar reaction pathways were also found in the thermolysis of a polymeric model that contained aromatic carboxylic acids. In this case, anhydride formation and decomposition produced an insoluble polymer, while the O-methylated polymer and the non-carboxylated polymer produced a soluble thermolysis product.

  18. 4?-Hydroxybiphenyl-4-carboxylic acid

    PubMed Central

    Feng, Sun

    2008-01-01

    The title compound, C13H10O3, has potential oxygen donor and acceptor sites. Intermolecular hydrogen bonding between neighboring carboxylate groups leads to the formation of hydrogen-bonded dimers [graph-set motif R 2 2(8)]. A second hydrogen-bonding interaction between the hydroxy groups generates a chain and extends the structure into a lamellar layer. One of the benzene rings is disordered over two positions with an occupancy ratio of 0.57?(2):0.43?(2). PMID:21202602

  19. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, Helena L. (Arvada, CO); Sopher, David W. (Maarssenbroek, NL)

    1984-01-01

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  20. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, H.L.; Sopher, D.W.

    1983-05-09

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100/sup 0/C and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  1. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions. PMID:25839210

  2. Solvent extraction of rare-earth metals by carboxylic acids

    SciTech Connect

    Preez, A.C. du; Preston, J.S.

    1992-04-01

    The solvent extraction of the trivalent lanthanides and yttrium from nitrate media by solutions of carboxylic acids in xylene has been studied. Commercially available carboxylic acids such as Versatic 10 and naphthenic acids were used, as well as model compounds of known structure, such as 2-ethylhexanoic and 3-cyclohexylpropanoic acids. In a few cases, extraction of the metals from sulphate and chloride solutions was also investigated. The dependence of the extraction properties of the carboxylic acids on the atomic number of the lanthanide shows a definite relationship to the steric bulk of the carboxylic acid molecule quantified by means of the steric parameter, E{sub s}{prime} of the substituent alkyl group. The stoichiometries of the extracted complexes for representative light (La), middle (Gd) and heavy (Lu) rare-earth metals were investigated by the slope-analysis technique for a sterically hindered acid (Versatic 10 acid; -E{prime}{sub s} = 3.83) and an acid with low steric hindrance (3-cyclohexylpropanoic acid; -E{prime}{sub s} = 0.28). 14 refs., 13 figs., 3 tabs.

  3. Quinoline based receptor in fluorometric discrimination of carboxylic acids.

    PubMed

    Ghosh, Kumaresh; Adhikari, Suman; Chattopadhyay, Asoke P; Chowdhury, Purnendu Roy

    2008-01-01

    Quinoline and naphthalene-based fluororeceptors 1 and 2 have been designed and synthesized for detection of hydroxy carboxylic acids in less polar solvents. The receptor 1 shows monomer emission quenching followed by excimer emission upon hydrogen bond-mediated complexation of carboxylic acids. The excimer emission distinguishes aromatic dicarboxylic acids from aliphatic dicarboxylic acids and even long chain aliphatic dicarboxylic acids from short chain aliphatic dicarboxylic acids. The receptor 1 is found to be selective for citric acid with a strong excimer emission in CHCl(3). On the contrary, the receptor 2 exhibited less binding constant value and did not form any excimer upon complexation with the same acids under similar conditions. This established the role of quinoline ring nitrogen in binding with the acids. PMID:19190738

  4. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    SciTech Connect

    Kawamura, K.; Okuwaki, A.; Verheyen, T.; Perry, G.J.

    2006-02-15

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid. Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.

  5. Surface chemical properties of sodium salts of carboxylic acids isolated from Green River shale. [Sodium carboxylates

    SciTech Connect

    McKay, J.F.; Blanche, M.S.; Robertson, R.E.

    1985-12-01

    Organic material isolated from Green River shale varies substantially with the method of isolation. Short-time supercritical fluid treatment and solvent extraction of Green River shale produces large amounts of sodium carboxylates. These sodium salts were observed to form emulsions and therefore be surface active. Quantitative surface activity measurements were then determined using the shale extract. The material was found to have a limiting surface tension of about 41 dynes/cm (as expected) for carboxylates. However, the critical micelle concentration is quite high and has a measured molecular weight value of 600. This probably results from higher solubility of the lower molecular weight species. The solution did not display hysteresis. In general the carboxylic acid salts isolated from Green River shale displayed surface activity similar to those of model compounds cited in the literature.

  6. Dissolving Carboxylic Acids and Primary Amines on the Overhead Projector

    ERIC Educational Resources Information Center

    Solomon, Sally D.; Rutkowsky, Susan A.

    2010-01-01

    Liquid carboxylic acids (or primary amines) with limited solubility in water are dissolved by addition of aqueous sodium hydroxide (or hydrochloric acid) on the stage of an overhead projector using simple glassware and very small quantities of chemicals. This effective and colorful demonstration can be used to accompany discussions of the…

  7. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  8. Dissolving Carboxylic Acids and Primary Amines on the Overhead Projector

    ERIC Educational Resources Information Center

    Solomon, Sally D.; Rutkowsky, Susan A.

    2010-01-01

    Liquid carboxylic acids (or primary amines) with limited solubility in water are dissolved by addition of aqueous sodium hydroxide (or hydrochloric acid) on the stage of an overhead projector using simple glassware and very small quantities of chemicals. This effective and colorful demonstration can be used to accompany discussions of the

  9. Silver-catalyzed protodecarboxylation of heteroaromatic carboxylic acids.

    PubMed

    Lu, Pengfei; Sanchez, Carolina; Cornella, Josep; Larrosa, Igor

    2009-12-17

    A simple and highly efficient protodecarboxylation procedure for a variety of heteroaromatic carboxylic acids catalyzed by Ag(2)CO(3) and AcOH in DMSO is described. This methodology can also perform the selective monoprotodecarboxylation of several aromatic dicarboxylic acids. PMID:19924891

  10. The role of carboxylic acids in TALSQueak separations

    SciTech Connect

    Braley, Jenifer C.; Carter, Jennifer C.; Sinkov, Sergey I.; Nash, Ken L.; Lumetta, Gregg J.

    2012-04-13

    Recent reports have indicated TALSPEAK-type separations chemistry can be improved through the replacement of bis-2-ethyl(hexyl) phosphoric acid (HDEHP) and diethylenetriamine-N,N,N,N,N-pentaacetic acid (DTPA) with the weaker reagents 2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA), respectively. This modified TALSPEAK has been provided with an adjusted acronym of TALSQueak (Trivalent Actinide Lanthanide Separation using Quicker Extractants and Aqueous Komplexes). Among several benefits, TALSQueak chemistry provides more rapid phase transfer kinetics, is less reliant on carboxylic acids to mediate lanthanide extraction and allows a simplified thermodynamic description of the separations process that generally requires only parameters available in the literature to describe metal transfer. This manuscript focuses on the role of carboxylic acids in aqueous ternary (M-HEDTA-carboxylate) complexes, americium/lanthanide separations, and extraction kinetics. Spectrophotometry (UV-vis) of the Nd hypersensitive band indicates the presence of aqueous ternary species (K111 = 1.83 {+-} 0.01 at 1.0 M ionic strength, Nd(HEDTA) + Lac <-> Nd(HEDTA)Lac). Varying the carboxylic acid does not have a significant impact on Ln/Am separations or extraction kinetics. TALSqueak separations come to equilibrium in five minutes at the conventional operational pH of 3.6 using only 0.1 M total lactate or citrate.

  11. Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmentally relevant concentrations into targeted organs of nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Nouara, Abdelli; Wu, Qiuli; Li, Yinxia; Tang, Meng; Wang, Haifang; Zhao, Yuliang; Wang, Dayong

    2013-06-01

    Carboxyl (-COOH) surface modified multi-walled carbon nanotubes (MWCNTs-COOH) can be used for targeted delivery of drugs and imaging. However, whether MWCNTs-COOH at environmentally relevant concentrations exert certain toxic effects on multicellular organisms and the underlying mechanisms are still largely unclear. In the present study, we applied the nematode Caenorhabditis elegans to evaluate the properties of MWCNTs-COOH at environmentally relevant concentrations by comparing the effects of MWCNTs and MWCNTs-COOH exposure on C. elegans from L1-larvae to adult at concentrations of 0.001-1000 μg L-1. Exposure to MWCNTs could potentially damage the intestine (primary targeted organ) at concentrations greater than 0.1 μg L-1 and functions of neurons and reproductive organ (secondary targeted organs) at concentrations greater than 0.001 μg L-1. Carboxyl modification prevented the toxicity of MWCNTs on the primary and the secondary targeted organs at concentrations less than 100 μg L-1, suggesting that carboxyl modification can effectively prevent the adverse effects of MWCNTs at environmentally relevant concentrations. After exposure, MWCNTs-COOH (1 mg L-1) were translocated into the spermatheca and embryos in the body through the primary targeted organs. However, MWCNTs-COOH (10 μg L-1) were not observed in spermatheca and embryos in the body of nematodes. Moreover, relatively high concentrations of MWCNTs-COOH exposed nematodes might have a hyper-permeable intestinal barrier, whereas MWCNTs-COOH at environmentally relevant concentrations effectively sustained the normally permeable state for the intestinal barrier. Therefore, we elucidated the cellular basis of carboxyl modification to prevent toxicity of MWCNTs at environmentally relevant concentrations. Our data highlights the key role of biological barriers in the primary targeted organs to block toxicity formation from MWCNTs, which will be useful for the design of effective prevention strategies against MWCNTs toxicity.Carboxyl (-COOH) surface modified multi-walled carbon nanotubes (MWCNTs-COOH) can be used for targeted delivery of drugs and imaging. However, whether MWCNTs-COOH at environmentally relevant concentrations exert certain toxic effects on multicellular organisms and the underlying mechanisms are still largely unclear. In the present study, we applied the nematode Caenorhabditis elegans to evaluate the properties of MWCNTs-COOH at environmentally relevant concentrations by comparing the effects of MWCNTs and MWCNTs-COOH exposure on C. elegans from L1-larvae to adult at concentrations of 0.001-1000 μg L-1. Exposure to MWCNTs could potentially damage the intestine (primary targeted organ) at concentrations greater than 0.1 μg L-1 and functions of neurons and reproductive organ (secondary targeted organs) at concentrations greater than 0.001 μg L-1. Carboxyl modification prevented the toxicity of MWCNTs on the primary and the secondary targeted organs at concentrations less than 100 μg L-1, suggesting that carboxyl modification can effectively prevent the adverse effects of MWCNTs at environmentally relevant concentrations. After exposure, MWCNTs-COOH (1 mg L-1) were translocated into the spermatheca and embryos in the body through the primary targeted organs. However, MWCNTs-COOH (10 μg L-1) were not observed in spermatheca and embryos in the body of nematodes. Moreover, relatively high concentrations of MWCNTs-COOH exposed nematodes might have a hyper-permeable intestinal barrier, whereas MWCNTs-COOH at environmentally relevant concentrations effectively sustained the normally permeable state for the intestinal barrier. Therefore, we elucidated the cellular basis of carboxyl modification to prevent toxicity of MWCNTs at environmentally relevant concentrations. Our data highlights the key role of biological barriers in the primary targeted organs to block toxicity formation from MWCNTs, which will be useful for the design of effective prevention strategies against MWCNTs toxicity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00847a

  12. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family.

    PubMed

    Zubieta, Chloe; Ross, Jeannine R; Koscheski, Paul; Yang, Yue; Pichersky, Eran; Noel, Joseph P

    2003-08-01

    Recently, a novel family of methyltransferases was identified in plants. Some members of this newly discovered and recently characterized methyltransferase family catalyze the formation of small-molecule methyl esters using S-adenosyl-L-Met (SAM) as a methyl donor and carboxylic acid-bearing substrates as methyl acceptors. These enzymes include SAMT (SAM:salicylic acid carboxyl methyltransferase), BAMT (SAM:benzoic acid carboxyl methyltransferase), and JMT (SAM:jasmonic acid carboxyl methyltransferase). Moreover, other members of this family of plant methyltransferases have been found to catalyze the N-methylation of caffeine precursors. The 3.0-A crystal structure of Clarkia breweri SAMT in complex with the substrate salicylic acid and the demethylated product S-adenosyl-L-homocysteine reveals a protein structure that possesses a helical active site capping domain and a unique dimerization interface. In addition, the chemical determinants responsible for the selection of salicylic acid demonstrate the structural basis for facile variations of substrate selectivity among functionally characterized plant carboxyl-directed and nitrogen-directed methyltransferases and a growing set of related proteins that have yet to be examined biochemically. Using the three-dimensional structure of SAMT as a guide, we examined the substrate specificity of SAMT by site-directed mutagenesis and activity assays against 12 carboxyl-containing small molecules. Moreover, the utility of structural information for the functional characterization of this large family of plant methyltransferases was demonstrated by the discovery of an Arabidopsis methyltransferase that is specific for the carboxyl-bearing phytohormone indole-3-acetic acid. PMID:12897246

  13. More on Effects Controlling Carboxylic Acidity.

    ERIC Educational Resources Information Center

    Schwartz, Lowell M.

    1981-01-01

    Gas phase acidity data shown are offered to writers of elementary organic chemistry texts for replacement of the aqueous phase data that are universally used. Relative acidities in the gas phase are controlled virtually exclusively by enthalpic factors. Structural-energetic explanations of acidic trends can therefore be used. (SK)

  14. Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry.

    PubMed

    Shi, Hongchang; Wang, Yilei; Hua, Ruimao

    2015-11-11

    By DFT calculation, we found that acid-catalyzed carboxylic acid esterification and ester hydrolysis are brief two-step reactions. First, the carboxylic acid hydroxyl-oxygen or ester alkyl-oxygen is protonated, which generates a highly active acylium ion. The protonation requires an activation energy (Ea) of 4-10 kcal mol(-1), and is the rate-controlling step of the esterification or hydrolysis. Sequentially, the acylium ion spontaneously reacts with two alcohol or two water molecules to form a neutral product molecule; this is a trimolecular reaction. The acylium ion is the highly active intermediate shared by esterification and hydrolysis. ESI-MS data for several typical carboxylic acids confirmed that their acylium ions are easily generated. For 2,4,6-trialkylbenzoic acid and its ester, the two unsubstituted carbons in the benzene ring are very easily protonated, and we have thus revealed the root of the success of Newman's method. Based on these results, the popular esterification and hydrolysis mechanism in organic chemistry textbooks is incorrect. PMID:26445892

  15. Decarboxylative homocoupling of (hetero)aromatic carboxylic acids.

    PubMed

    Cornella, Josep; Lahlali, Hicham; Larrosa, Igor

    2010-11-21

    A variety of hetero(aromatic) carboxylic acids are shown to undergo decarboxylative homocoupling, mediated by a Pd/Ag system. This novel methodology for the synthesis of symmetrical biaryls avoids the use of haloarenes and organometallic compounds as starting materials. PMID:20882244

  16. Metabolic engineering of biocatalysts for carboxylic acids production

    PubMed Central

    Liu, Ping; Jarboe, Laura R.

    2012-01-01

    Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and well-performing. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering, like genetic manipulation for pathway design, has becoming increasingly important to this field and has been used for the production of several organic acids, such as succinic acid, malic acid and lactic acid. This review investigates recent works on Saccharomyces cerevisiae and Escherichia coli, as well as the strategies to improve tolerance towards these chemicals. PMID:24688671

  17. Extraction chemistry of fermentation product carboxylic acids

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathways and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase.

  18. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  19. Extraction chemistry of fermentation product carboxylic acids.

    PubMed

    Kertes, A S; King, C J

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. PMID:18555324

  20. Visible Light-Promoted Decarboxylative Di- and Trifluoromethylthiolation of Alkyl Carboxylic Acids.

    PubMed

    Candish, Lisa; Pitzer, Lena; Gómez-Suárez, Adrián; Glorius, Frank

    2016-03-24

    Described herein is a new and straightforward decarboxylative di- and trifluoromethylthiolation of alkyl carboxylic acids promoted by visible light. This approach enables the synthesis of biologically relevant alkyl SCF2 H and SCF3 compounds from cheap and abundant carboxylic acids. The method is operationally simple, using irradiation from household light sources, and its mild reaction conditions make it tolerant of a range of functional groups. The strategy employs electrophilic phthalimide-derived di- and trifluoromethylthiolation reagents and exploits the ability of the imidyl radical to carry a radical chain. PMID:26840376

  1. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-02-01

    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora); the rates of biodegradation were determined and compared to the photodegradation rates involving •OH radicals. The biodegradation rates in "natural" and "artificial" cloud water were in the same order of magnitude; this confirms the significant role of the active biomass in the aqueous reactivity of clouds.

  2. Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?

    ERIC Educational Resources Information Center

    Leung, Sam H.

    2000-01-01

    Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)

  3. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dihydroxy dialkyl ether, hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated... Specific Chemical Substances § 721.10381 Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether... generically as cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane...

  4. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dihydroxy dialkyl ether, hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated... Specific Chemical Substances § 721.10381 Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether... generically as cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane...

  5. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dihydroxy dialkyl ether, hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated... Specific Chemical Substances § 721.10381 Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether... generically as cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane...

  6. Selective homogeneous hydrogenation of biogenic carboxylic acids with [Ru(TriPhos)H]+: a mechanistic study.

    PubMed

    Geilen, Frank M A; Engendahl, Barthel; Hlscher, Markus; Klankermayer, Jrgen; Leitner, Walter

    2011-09-14

    Selective hydrogenation of biogenic carboxylic acids is an important transformation for biorefinery concepts based on platform chemicals. We herein report a mechanistic study on the homogeneously ruthenium/phosphine catalyzed transformations of levulinic acid (LA) and itaconic acid (IA) to the corresponding lactones, diols, and cyclic ethers. A density functional theory (DFT) study was performed and corroborated with experimental data from catalytic processes and NMR investigations. For [Ru(TriPhos)H](+) as the catalytically active unit, a common mechanistic pathway for the reduction of the C?O functionality in aldehydes, ketones, lactones, and even free carboxylic acids could be identified. Hydride transfer from the Ru-H group to the carbonyl or carboxyl carbon is followed by protonation of the resulting Ru-O unit via ?-bond metathesis from a coordinated dihydrogen molecule. The energetic spans for the reduction of the different functional groups increase in the order aldehyde < ketone < lactone ? carboxylic acid. This reactivity pattern as well as the absolute values are in full agreement with experimentally observed activities and selectivities, forming a rational basis for further catalyst development. PMID:21786816

  7. Propensity of salicylamide and ethenzamide cocrystallization with aromatic carboxylic acids.

    PubMed

    Przybyłek, Maciej; Ziółkowska, Dorota; Mroczyńska, Karina; Cysewski, Piotr

    2016-03-31

    The cocrystallization of salicylamide (2-hydroxybenzamide, SMD) and ethenzamide (2-ethoxybenzamide, EMD) with aromatic carboxylic acids was examined both experimentally and theoretically. The supramolecular synthesis taking advantage of the droplet evaporative crystallization (DEC) technique was combined with powder diffraction and vibrational spectroscopy as the analytical tools. This led to identification of eleven new cocrystals including pharmaceutically relevant coformers such as mono- and dihydroxybenzoic acids. The cocrystallization abilities of SMD and EMD with aromatic carboxylic acids were found to be unexpectedly divers despite high formal similarities of these two benzamides and ability of the R2,2(8) heterosynthon formation. The source of diversities of the cocrystallization landscapes is the difference in the stabilization of possible conformers by adopting alternative intramolecular hydrogen boding patterns. The stronger intramolecular hydrogen bonding the weaker affinity toward intermolecular complexation potential. The substituent effects on R2,2(8) heterosynthon properties are also discussed. PMID:26898408

  8. Synthesis of Terminal Allenes via a Copper-Catalyzed Decarboxylative Coupling Reaction of Alkynyl Carboxylic Acids.

    PubMed

    Lim, Jeongah; Choi, Jinseop; Kim, Han-Sung; Kim, In Seon; Nam, Kye Chun; Kim, Jimin; Lee, Sunwoo

    2016-01-01

    Synthesis of terminal allenes via a copper-catalyzed decarboxylative coupling reaction was developed. Aryl alkynyl carboxylic acid, paraformaldehyde, and dicyclohexylamine were reacted with CuI (20 mol %) in diglyme at 100 C for 2 h to produce the terminal allene in moderate to good yields. The method showed good functional group tolerance. PMID:26618610

  9. 40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section...

  10. 40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section...

  11. Frovatriptan salts of aliphatic carboxylic acids.

    PubMed

    Ravikumar, Krishnan; Sridhar, Balasubramanian; Nanubolu, Jagadeesh Babu; Hariharakrishnan, Venkatasubramanian; Rao, Bandi Venugopal

    2013-04-01

    The interaction of the antimigraine pharmaceutical agent frovatriptan with acetic acid and succinic acid yields the salts (±)-6-carbamoyl-N-methyl-2,3,4,9-tetrahydro-1H-carbazol-3-aminium acetate, C14H18N3O(+)·C2H3O2(-), (I), (R)-(+)-6-carbamoyl-N-methyl-2,3,4,9-tetrahydro-1H-carbazol-3-aminium 3-carboxypropanoate monohydrate, C14H18N3O(+)·C4H5O4(-)·H2O, (II), and bis[(R)-(+)-6-carbamoyl-N-methyl-2,3,4,9-tetrahydro-1H-carbazol-3-aminium] succinate trihydrate, 2C14H18N3O(+)·C4H4O4(2-)·3H2O, (III). The methylazaniumyl substitutent is oriented differently in all three structures. Additionally, the amide group in (I) is in a different orientation. All the salts form three-dimensional hydrogen-bonded structures. In (I), the cations form head-to-head hydrogen-bonded amide-amide catemers through N-H···O interactions, while in (II) and (III) the cations form head-to-head amide-amide dimers. The cation catemers in (I) are extended into a three-dimensional network through further interactions with acetate anion acceptors. The presence of succinate anions and water molecules in (II) and (III) primarily governs the three-dimensional network through water-bridged cation-anion associations via O-H···O and N-H···O hydrogen bonds. The structures reported here shed some light on the possible mode of noncovalent interactions in the aggregation and interaction patterns of drug molecule adducts. PMID:23579721

  12. Decarboxylative functionalization of cinnamic acids.

    PubMed

    Borah, Arun Jyoti; Yan, Guobing

    2015-08-14

    Decarboxylative functionalization of ?,?-unsaturated carboxylic acids is an emerging area that has been developed significantly in recent years. This critical review focuses on the different decarboxylative functionalization reactions of cinnamic acids leading to the formation of various C-C and C-heteroatom bonds. Apart from metal carboxylates, decarboxylation in cinnamic acids has been achieved efficiently under metal-free conditions, particularly via the use of hypervalent iodine reagents. We believe this review will encourage organic chemists to develop vinylic decarboxylation in a more appealing way with an understanding of new mechanistic insight. PMID:26118850

  13. Carboxylic Acids as Indicators of Parent Body Conditions

    NASA Technical Reports Server (NTRS)

    Lerner N. R.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched. It is postulated that they arose from a common interstellar scurce: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alpha-hydroxy nitriles, RR'CO + HCN right and left arrow RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibrium with the alpha-amino nitriles, RR'C(OH)CN + NH3 right and left arrow - RRCNH2CN + H2O. Both nitrites are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O yields RR'C(OH)CO2H and RR'C(NH2)CN + H2O yields RR'C(NH2)CO2H.

  14. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

    PubMed Central

    Matthessen, Roman; Fransaer, Jan; Binnemans, Koen

    2014-01-01

    Summary The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process. PMID:25383120

  15. Transcriptomic Analysis of Carboxylic Acid Challenge in Escherichia coli: Beyond Membrane Damage

    PubMed Central

    Royce, Liam A.; Boggess, Erin; Fu, Yao; Liu, Ping; Shanks, Jacqueline V.; Dickerson, Julie; Jarboe, Laura R.

    2014-01-01

    Carboxylic acids are an attractive biorenewable chemical. Enormous progress has been made in engineering microbes for production of these compounds though titers remain lower than desired. Here we used transcriptome analysis of Escherichia coli during exogenous challenge with octanoic acid (C8) at pH 7.0 to probe mechanisms of toxicity. This analysis highlights the intracellular acidification and membrane damage caused by C8 challenge. Network component analysis identified transcription factors with altered activity including GadE, the activator of the glutamate-dependent acid resistance system (AR2) and Lrp, the amino acid biosynthesis regulator. The intracellular acidification was quantified during exogenous challenge, but was not observed in a carboxylic acid producing strain, though this may be due to lower titers than those used in our exogenous challenge studies. We developed a framework for predicting the proton motive force during adaptation to strong inorganic acids and carboxylic acids. This model predicts that inorganic acid challenge is mitigated by cation accumulation, but that carboxylic acid challenge inverts the proton motive force and requires anion accumulation. Utilization of native acid resistance systems was not useful in terms of supporting growth or alleviating intracellular acidification. AR2 was found to be non-functional, possibly due to membrane damage. We proposed that interaction of Lrp and C8 resulted in repression of amino acid biosynthesis. However, this hypothesis was not supported by perturbation of lrp expression or amino acid supplementation. E. coli strains were also engineered for altered cyclopropane fatty acid content in the membrane, which had a dramatic effect on membrane properties, though C8 tolerance was not increased. We conclude that achieving higher production titers requires circumventing the membrane damage. As higher titers are achieved, acidification may become problematic. PMID:24586888

  16. A triple carboxylic acid-functionalized RAFT agent platform for the elaboration of well-defined telechelic 3-arm star PDMAc.

    PubMed

    Belal, K; Poitras-Jolicoeur, S; Lyskawa, J; Pembouong, G; Cooke, G; Woisel, P; Stoffelbach, F

    2016-01-21

    This communication describes the synthesis of a triple acid-functionalized RAFT agent and its use to prepare well-defined 3-arm star polymers of N,N-dimethylacrylamide (DMAc). A simple esterification reaction allowed the convenient integration of three electron-rich naphthalene recognition units on the RAFT agent platform and subsequently the elaboration of a naphthalene end-decorated telechelic 3-arm star PDMAc. This functionalized star polymer was further exploited to build a hydrogel with a complementary homoditopic host unit featuring tetracationic macrocycle cyclobis(paraquat-p-phenylene) units. PMID:26670290

  17. Theoretical evaluation of flotation performance of carboxyl hydroxamic acids with different number of polar groups on the surfaces of diaspore (010) and kaolinite (001).

    PubMed

    Wang, Fang-ping; Zhan, Guo-ping; Jiang, Yu-ren; Guo, Jing-nan; Yin, Zhi-gang; Feng, Rui

    2013-08-01

    The adsorption behaviors of three carboxyl hydroxamic acids on diaspore (010) and kaolinite (001) have been studied by density functional theory (DFT) and molecular dynamics (MD) method. The results indicated that carboxyl hydroxamic acids could adsorb on diaspore surface by ionic bonds and hydrogen bonds, and adsorb on kaolinite surface by hydrogen bonds. The models of carboxyl hydroxamic acids adsorbed on diaspore and kaolinite surfaces are proposed. PMID:23609224

  18. Functionalized carboxyl nanoparticles enhance mucus dispersion and hydration

    PubMed Central

    Chen, Eric Y.; Daley, David; Wang, Yung-Chen; Garnica, Maria; Chen, Chi-Shuo; Chin, Wei-Chun

    2012-01-01

    Luminal accumulation of viscous, poorly hydrated, and less transportable mucus has been associated with altered mucus rheology and reduced mucociliary clearance. These symptoms are some of the cardinal clinical manifestations found throughout major respiratory diseases as well as gastrointestinal and digestive disorders. Applications of current mucolytics may yield short-term improvements but are continuously challenged by undesirable side-effects. While nanoparticles (NPs) can interact with mucin polymers, whether functionalized NPs can rectify mucus rheology is unknown. Herein, we report that carboxyl-functionalized NPs (24?nm and 120?nm) dramatically reduced mucin gel size and accelerated mucin matrix hydration rate (diffusivity). Our results suggest that carboxyl-functionalized NPs disperse mucin gels possibly by enhancing network hydration. This report highlights the prospective usages of carboxyl-functionalized NPs as a novel mucus dispersant or mucolytic agent in adjusting mucus rheological properties and improving mucociliary transport to relieve clinical symptoms of patients suffering from relevant diseases. PMID:22355725

  19. Functionalized carboxyl nanoparticles enhance mucus dispersion and hydration

    NASA Astrophysics Data System (ADS)

    Chen, Eric Y.; Daley, David; Wang, Yung-Chen; Garnica, Maria; Chen, Chi-Shuo; Chin, Wei-Chun

    2012-01-01

    Luminal accumulation of viscous, poorly hydrated, and less transportable mucus has been associated with altered mucus rheology and reduced mucociliary clearance. These symptoms are some of the cardinal clinical manifestations found throughout major respiratory diseases as well as gastrointestinal and digestive disorders. Applications of current mucolytics may yield short-term improvements but are continuously challenged by undesirable side-effects. While nanoparticles (NPs) can interact with mucin polymers, whether functionalized NPs can rectify mucus rheology is unknown. Herein, we report that carboxyl-functionalized NPs (24 nm and 120 nm) dramatically reduced mucin gel size and accelerated mucin matrix hydration rate (diffusivity). Our results suggest that carboxyl-functionalized NPs disperse mucin gels possibly by enhancing network hydration. This report highlights the prospective usages of carboxyl-functionalized NPs as a novel mucus dispersant or mucolytic agent in adjusting mucus rheological properties and improving mucociliary transport to relieve clinical symptoms of patients suffering from relevant diseases.

  20. Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups

    NASA Astrophysics Data System (ADS)

    Liu, S.; Day, D. A.; Shields, J. E.; Russell, L. M.

    2011-08-01

    Carboxylic acids are present in substantial quantities in atmospheric particles, and they play an important role in the physical and chemical properties of aerosol particles. During measurements in coastal California in the summer of 2009, carboxylic acid functional groups were exclusively associated with a fossil fuel combustion factor derived from factor analysis of Fourier transform infrared spectroscopic measurements and closely correlated with oxygenated organic factors from aerosol mass spectrometry measurements. The high fraction of acid groups and the high ratio of oxygen to carbon in this factor suggest that this factor is composed of secondary organic aerosol (SOA) products of combustion emissions from the upwind industrial region (the ports of Los Angeles and Long Beach). Another indication of the photochemically-driven secondary formation of this combustion-emitted organic mass (OM) was the daytime increase in the concentrations of acid groups and the combustion factors. This daytime increase closely tracked the O3 mixing ratio with a correlation coefficient of 0.7, indicating O3 was closely associated with the SOA maximum and thus likely the oxidant that resulted in acid group formation. Using a pseudo-Lagrangian framework to interpret this daytime increase of carboxylic acid groups and the combustion factors, we estimate that the carboxylic acid groups formed in a 12-h daytime period of one day ("Today's SOA") accounted for 25-33 % of the measured carboxylic acid group mass, while the remaining 67-75 % (of the carboxylic acid group mass) was likely formed 1-3 days previously (the "Background SOA"). A similar estimate of the daytime increase in the combustion factors suggests that "Today's SOA" and the "Background SOA" respectively contributed 25-50 % and 50-75 % of the combustion factor (the "Total SOA"), for a "Total SOA" contribution to the OM of 60 % for the project average. Further, size-resolved spectrometric and spectroscopic characterization of the particle OM indicate that the majority of the OM formed by condensation of gas-phase oxidation products. This unique set of measurements and methods to quantify and characterize photochemically and ozone-linked carboxylic acid group formation provide independent and consistent assessments of the secondary fraction of OM, which could result from second generation products of the oxidation of gas-phase alkane (molecules).

  1. Approaches for regeneration of amine-carboxylic acid extracts

    SciTech Connect

    Dai, Y.; King, C.J.

    1995-07-01

    Extraction processes based on reversible chemical complexation can be useful for separation of polar organics from dilute solution. Tertiary amines are effective extractants for the recovery of carboxylic acids from aqueous solution. The regeneration of aminecarboxylic acid extracts is an important step which strongly influences the economic viability of the separation process. Several regeneration methods are critically reviewed, and the factors that affect swing regeneration processes, including temperature-swing, diluent composition-swing and pH-swing with a volatile base are discussed. Interest in this area comes from interest in treatment of waste streams, particularly in petrochemical and fermentation manufacture.

  2. Unique adsorption behaviors of carboxylic acids at rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Yan; Gong, Xue-Qing

    2015-11-01

    The coverage-dependent adsorption behavior of acetic acid (CH3COOH) on rutile TiO2(110) was investigated by means of density functional theory (DFT) calculations, corrected by on-site Coulomb corrections and long-range dispersion interactions. The p(2 × 1) and c(2 × 2) domains of dissociatively adsorbed acetic acid under different coverages have been studied in detail regarding their structural and energetic properties. Adsorptions of formic acid (HCOOH) and carbonic acid (H2CO3) were also considered for better understanding the adsorption behaviors of carboxylic acids. Our calculation results show that carboxylic acids prefer to dissociatively adsorb in bridging bidentate configuration, and it induces significant surface relaxation at the adsorption site, which also affects other surface atoms nearby. Interestingly, we have shown that such adsorption-induced relaxations still maintain bond symmetries for surface Ti cations within the p(2 × 1) domain while they are drastically broken within the c(2 × 2) domain, giving rise to unstable Ti cations at the surface. This work not only explains the long-lasting puzzle of the preferable occurrence of p(2 × 1) domain for the adsorbed carboxylic acids at rutile TiO2(110), it also proposes a novel scheme that metal oxide surfaces may follow when they are involved in the processes like surface functionalization and self-assembly.

  3. Control of alpha-alumina surface charge with carboxylic acids.

    PubMed

    Bertazzo, Sergio; Rezwan, Kurosch

    2010-03-01

    In this work, we studied the surface charge of alpha-alumina treated with carboxylic acids with different carbon chain length. The results show the possibility of controlling surface charges of alumina by using different concentrations of carboxylic acids or changing the size of the carbon chain of the acids. We also report that part of the acid found on the surface is strongly bound, therefore making it possible to obtain pH-resistant samples of alpha-alumina with an isoelectric point (IEP) of 5.5. It is found, that IEP values obtained for modified samples have a linear correlation with the number of carbon atoms of dicarboxylic acids for up to five carbon atoms. From a practical perspective, the method presented in this work has many advantages. First, it maintains the same hydrophilicity of the alumina surface. Second, the modification of the surface is stable in a long-range of pH. Finally, the presented method is easy-to-use and cheap, as the modification consists of only two simple steps carried out at low temperatures with inexpensive and nontoxic reagents. PMID:20017507

  4. Functionalization of poly-SNS-anchored carboxylic acid with Lys and PAMAM: surface modifications for biomolecule immobilization/stabilization and bio-sensing applications.

    PubMed

    Demirci, Sema; Emre, Fatma Bilge; Ekiz, Fulya; O?uzkaya, Funda; Timur, Suna; Tanyeli, Cihangir; Toppare, Levent

    2012-09-21

    Poly(2-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl) (SNS) acetic acid) was electrochemically deposited on graphite electrodes and functionalized with lysine (Lys) amino acid and poly(amidoamine) derivatives (PAMAM G2 and PAMAM G4) to investigate their matrix properties for biosensor applications. Glucose oxidase (GOx) was immobilized onto the modified surface as the model enzyme. X-Ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to report the surface properties of the matrices in each step of the biosensor construction. The biosensors were characterized in terms of their operational and storage stabilities and the kinetic parameters (K(app)(m) and I(max)). Three new glucose biosensors revealed good stability, featuring low detection limits (19.0 ?M, 3.47 ?M and 2.93 ?M for lysine-, PAMAM G2- and PAMAM G4-functionalized electrodes, respectively) and prolonged the shelf lives (4, 5, and 6 weeks for Lys-, PAMAM G2- and PAMAM G4-modified electrodes, respectively). The proposed biosensors were tested for glucose detection on real human blood serum samples. PMID:22832474

  5. Carboxylic acid microbial metabolites of the natural benzoquinone, maesanin

    PubMed

    Abourashed; El-Feraly; Hufford

    1999-05-01

    Maesanin (1) is a naturally occurring bioactive benzoquinone isolated from the fruits of Maesa lanceolata (Myrsinaceae). Three carboxylic acid metabolites of maesanin were isolated in the course of a prospective microbial transformation study. The first metabolite, 2, was produced by Lipomyces lipofer ATCC 10742 and was characterized as (Z)-15-(2'-hydroxy-5'-methoxy-3', 6'-dioxocyclohexa-1',4'-dienyl)pentadec-5-enoic acid. Metabolites 3 and 4 were produced by Rhodotorula rubra ATCC 20129 and were characterized as 6-(2'-hydroxy-5'-methoxy-3',6'-dioxocyclohexa-1', 4'-dienyl)hexanoic acid and 4-(2'-hydroxy-5'-methoxy-3', 6'-dioxocyclohexa-1',4'-dienyl)butanoic acid, respectively. PMID:10346952

  6. Two Dimensional Polyamides Prepared From Unsaturated Carboxylic Acids And Amines.

    DOEpatents

    McDonald, William F.; Huang, Zhi Heng; Wright, Stacy C.; Danzig, Morris; Taylor, Andrew C.

    2002-07-17

    A polyamide and a process for preparing the polyamide are disclosed. The process comprises reacting in a reaction mixture a monomer selected from unsaturated carboxylic acids, esters of unsaturated carboxylic acids, anhydrides of unsaturated carboxylic acids, and mixtures thereof, and a first amine to form an intermediate reaction product in the reaction mixture, wherein the first amine is selected from RR.sub.1 NH, RNH.sub.2, RR.sub.1 NH.sub.2.sup.+, RNH.sub.3.sup.+ and mixtures thereof, wherein R and R.sub.1 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, and reacting the intermediate reaction product and a second amine to form a polyamide, wherein the second amine is selected from R.sub.2 R.sub.3 NH, R.sub.2 NH.sub.2, R.sub.2 R.sub.3 NH.sub.2.sup.+, R.sub.2 NH.sub.3.sup.+ and mixtures thereof wherein R.sub.2 and R.sub.3 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, wherein multiple of the R, R.sub.1, R.sub.2, and R.sub.3 are in vertically aligned spaced relationship along a backbone formed by the polyamide. In one version of the invention, the monomer is selected from maleic anhydride, maleic acid esters, and mixtures thereof. In another version of the invention, the first amine is an alkylamine, such as tetradecylamine, and the second amine is a polyalkylene polyamine, such as pentaethylenehexamine. In yet another version of the invention, the first amine and the second amine are olefinic or acetylenic amines, such as the reaction products of an alkyldiamine and an acetylenic carboxylic acid. The first amine and the second amine may be the same or different depending on the desired polyamide polymer structure.

  7. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  8. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  9. Interactions of amino acids, carboxylic acids, and mineral acids with different quinoline derivatives

    NASA Astrophysics Data System (ADS)

    Kalita, Dipjyoti; Deka, Himangshu; Samanta, Shyam Sundar; Guchait, Subrata; Baruah, Jubaraj B.

    2011-03-01

    A series of quinoline containing receptors having amide and ester bonds are synthesized and characterised. The relative binding abilities of these receptors with various amino acids, carboxylic acids and mineral acids are determined by monitoring the changes in fluorescence intensity. Among the receptors bis(2-(quinolin-8-yloxy)ethyl) isophthalate shows fluorescence enhancement on addition of amino acids whereas the other receptors shows fluorescence quenching on addition of amino acids. The receptor N-(quinolin-8-yl)-2-(quinolin-8-yloxy) propanamide has higher binding affinity for amino acids. However, the receptor N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acetamide having similar structure do not bind to amino acids. This is attributed to the concave structure of the former which is favoured due to the presence of methyl substituent. The receptor bis(2-(quinolin-8-yloxy)ethyl) isophthalate do not bind to hydroxy carboxylic acids, but is a good receptor for dicarboxylic acids. The crystal structure of bromide and perchlorate salts of receptor 2-bromo-N-(quinolin-8-yl)-propanamide are determined. In both the cases the amide groups are not in the plane of quinoline ring. The structure of N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acetamide, N-(2-methoxyphenethyl)-2-(quinolin-8-yloxy)acetamide and their salts with maleic acid as well as fumaric acid are determined. It is observed that the solid state structures are governed by the double bond geometry of these two acid. Maleic acid forms salt in both the cases, whereas fumaric acid forms either salt or co-crystals.

  10. Carboxylic acids in high elevation Alpine glacier snow

    NASA Astrophysics Data System (ADS)

    Maupetit, FranOis; Delmas, Robert J.

    1994-08-01

    Fresh-snow samples were collected on an event basis on the Glacier de la Girose (3360 m above sea level (asl)) in the southern French Alps, during winters and early springs 1990 and 1991. In addition, a 13-m firn core was recovered in 1991 at the Col du Dme (4250 m asl), a cold glacier in the northern French Alps, offering the complete seasonal record of alpine precipitation during 3.5 years. All samples were analyzed for total formate and acetate and for major ions using ion chromatography. The acidity-alkalinity was accurately measured using a titration technique. An almost perfect ion balance was achieved for this data set. In absence of Saharan dust transport, the high alpine snow is slightly acid (H+ 2-20 ?Eq L-1). HCOOT and CH3COOT are generally present in alpine acid snow at very low concentrations: 0.3-0.6 ?Eq L-1 in winter (January to February) and 0.6-2 ?Eq L-1 in early spring (March to April). At Col du Dme, total acetate concentrations of 1 ?Eq L-1 are observed in summer. It remains unclear from our results what the major sources of carboxylic acids are, and in particular of acetic acid, in the wintertime continental free troposphere, while it appears that formic and acetic acids are presumably mainly derived from natural sources in spring and summer. The total contribution of formic and acetic acids to free acidity is, on average, less than 15-20%. Contrary to major ions which are present in wider concentration ranges and show large variations from one snowfall to the other, HCOOT and CH3COOT are surprisingly stable in acid alpine snow. The only significant deviation of HCOOT and CH3COOT from their mean values (up to 9 and 5 ?Eq L-1, respectively) are observed in case of Saharan dust transport, when precipitation pH is shifted from acid toward alkaline conditions. These observations suggest a pH partitioning effect between the aqueous and gas phases, formic and acetic acids being dissolved and neutralized as salts in alkaline cloudwater droplets. On a global scale, the scavenging by alkaline mineral dust could represent an important deposition process of carboxylic acids.

  11. Rapid isolation of carboxylic acid from petroleum using high-performance liquid chromatography

    SciTech Connect

    Green, J.B.; Stierwalt, B.K.; Thomson, J.S.; Treese, C.A.

    1985-10-01

    A normal-phase HPLC method is described for rapid (1h) separation of carboxylic acids as a class from crude oils and petroleum distillates. Yields of carboxylic acids from several heavy California crude oils as well as midboiling petroleum distillates generated during the API-60 project are reported. Also, four tricyclic terpenoid acids with m/e values of 320, 334, 376, and 376 have been identified and quantified in carboxylic acid concentrations from several oils. The general variability in carboxylic acid species present in different petroleums is discussed along with the suitability of the proposed method for studies requiring analysis of large numbers of oils. 16 references, 3 figures, 5 tables.

  12. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-08-01

    The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10-10-10-11 M s-1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10-12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10-14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.

  13. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    PubMed

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst. PMID:26011419

  14. Structural characterization of 1,3-propanedithiols that feature carboxylic acids: Homologues of mercury chelating agents ?

    PubMed Central

    Sattler, Wesley; Palmer, Joshua H.; Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.; Parkin, Gerard

    2013-01-01

    The molecular structures of a series of 1,3-propanedithiols that contain carboxylic acid groups, namely rac- and meso-2,4-dimercaptoglutaric acid (H4DMGA) and 2-carboxy-1,3-propanedithiol (H3DMCP), have been determined by X-ray diffraction. Each compound exhibits two centrosymmetric intermolecular hydrogen bonding interactions between pairs of carboxylic acid groups, which result in a dimeric structure for H3DMCP and a polymeric tape-like structure for rac- and meso-H4DMGA. Significantly, the hydrogen bonding motifs observed for rac- and meso-H4DMGA are very different to those observed for the 1,2-dithiol, rac-2,3-dimercaptosuccinic acid (rac-H4DMSA), in which the two oxygen atoms of each carboxylic acid group hydrogen bond to two different carboxylic acid groups, thereby resulting in a hydrogen bonded sheet-like structure rather than a tape. Density functional theory calculations indicate that 1,3-dithiolate coordination to mercury results in larger SHgS bond angles than does 1,2-dithiolate coordination, but these angles are far from linear. As such, ?2-S2 coordination of these dithiolate ligands is expected to be associated with mercury coordination numbers of greater than two. In vivo studies demonstrate that both rac-H4DMGA and H3DMCP reduce the renal burden of mercury in rats, although the compounds are not as effective as either 2,3-dimercaptopropane-1-sulfonic acid (H3DMPS) or meso-H4DMSA. PMID:24187425

  15. HPLC determination of perfluorinated carboxylic acids with fluorescence detection.

    PubMed

    Pobo?y, Ewa; Krl, Edyta; Wjcik, Lena; Wachowicz, Mariusz; Trojanowicz, Marek

    2011-03-01

    Perfluorinated carboxylic acids (PFCAs) represent an important group of persistent perfluorinated organic compounds commonly determined in environmental and biological samples. A reversed-phase HPLC method was developed based on derivatization of the PFCAs with the commercially available fluorescent reagent 3-bromoacetyl coumarin. The method was optimized and this resulted in the efficient separation of PFCAs containing from 3 to 12 carbon atoms in molecule in 25min run. To improve sensitivity, the preconcentration step has been optimized using Oasis-WAX and C18 sorbents for SPE. A 100-fold preconcentration is achieved by solid-phase extraction with the sorbent C18 Sep-PAK to result in limits of detection in the range from 43 to 75ppt for the analytes examined, and in the application of the method of water analysis.FigureChromatogram of mixture of perfluorinated carboxylic acids C3-PFCA - C12-PFCA with fluorescence detection after derivatization with 3-bromoacetyl coumarin (b), and blank (a). PMID:21472021

  16. Integrated process for preparing a carboxylic acid from an alkane

    DOEpatents

    Benderly, Abraham (Elkins Park, PA); Chadda, Nitin (Radnor, PA); Sevon, Douglass (Fairless Hills, PA)

    2011-12-20

    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  17. Enantioselective Hydrogenation of β,β-Disubstituted Unsaturated Carboxylic Acids under Base-Free Conditions.

    PubMed

    Yan, Qiaozhi; Kong, Duanyang; Zhao, Wei; Zi, Guofu; Hou, Guohua

    2016-03-01

    An additive-free enantioselective hydrogenation of β,β-disubstituted unsaturated carboxylic acids catalyzed by the Rh-(R,R)-f-spiroPhos complex has been developed. Under mild conditions, a wide scope of β,β-disubstituted unsaturated carboxylic acids were hydrogenated to the corresponding chiral carboxylic acids with excellent enantioselectivities (up to 99.3% ee). This methodology was also successfully applied to the synthesis of the pharmaceutical molecule indatraline. PMID:26847998

  18. Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics.

    PubMed

    Ye, Shefang; Zhou, Tong; Cheng, Keman; Chen, Mingliang; Wang, Yange; Jiang, Yuanqin; Yang, Peiyan

    2015-12-01

    Fullerene (C60) derivatives, a unique class of compounds with potent antioxidant properties, have been reported to exert a wide variety of biological activities including neuroprotective properties. Mitochondrial dynamics are an important constituent of cellular quality control and function, and an imbalance of the dynamics eventually leads to mitochondria disruption and cell dysfunctions. This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model. Using a cell-based functional screening system labeled with DsRed2-mito in BV-2 cells, we showed that LPS stimulation led to excessive mitochondrial fission, increased mitochondrial localization of dynamin-related protein 1 (Drp1), both of which were markedly suppressed by C60-COOH pretreatment. LPS-induced mitochondria reactive oxygen species (ROS) generation and collapse of mitochondrial membrane potential (??m) were also significantly inhibited by C60-COOH. Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-?B and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators. Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives. PMID:26058514

  19. Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics

    NASA Astrophysics Data System (ADS)

    Ye, Shefang; Zhou, Tong; Cheng, Keman; Chen, Mingliang; Wang, Yange; Jiang, Yuanqin; Yang, Peiyan

    2015-05-01

    Fullerene (C60) derivatives, a unique class of compounds with potent antioxidant properties, have been reported to exert a wide variety of biological activities including neuroprotective properties. Mitochondrial dynamics are an important constituent of cellular quality control and function, and an imbalance of the dynamics eventually leads to mitochondria disruption and cell dysfunctions. This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model. Using a cell-based functional screening system labeled with DsRed2-mito in BV-2 cells, we showed that LPS stimulation led to excessive mitochondrial fission, increased mitochondrial localization of dynamin-related protein 1 (Drp1), both of which were markedly suppressed by C60-COOH pretreatment. LPS-induced mitochondria reactive oxygen species (ROS) generation and collapse of mitochondrial membrane potential (Δ Ψm) were also significantly inhibited by C60-COOH. Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators. Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.

  20. Titania-Promoted Carboxylic Acid Alkylations of Alkenes and Cascade Addition–Cyclizations

    PubMed Central

    2014-01-01

    Photochemical reactions employing TiO2 and carboxylic acids under dry anaerobic conditions led to several types of C–C bond-forming processes with electron-deficient alkenes. The efficiency of alkylation varied appreciably with substituents in the carboxylic acids. The reactions of aryloxyacetic acids with maleimides resulted in a cascade process in which a pyrrolochromene derivative accompanied the alkylated succinimide. The selectivity for one or other of these products could be tuned to some extent by employing the photoredox catalyst under different conditions. Aryloxyacetic acids adapted for intramolecular ring closures by inclusion of 2-alkenyl, 2-aryl, or 2-oximinyl functionality reacted rather poorly. Profiles of reactant consumption and product formation for these systems were obtained by an in situ NMR monitoring technique. An array of different catalyst forms were tested for efficiency and ease of use. The proposed mechanism, involving hole capture at the TiO2 surface by the carboxylates followed by CO2 loss, was supported by EPR spectroscopic evidence of the intermediates. Deuterium labeling indicated that the titania likely donates protons from surface hydroxyl groups as well as supplying electrons and holes, thus acting as both a catalyst and a reaction partner. PMID:24437519

  1. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity.

    PubMed

    Royce, Liam A; Yoon, Jong Moon; Chen, Yingxi; Rickenbach, Emily; Shanks, Jacqueline V; Jarboe, Laura R

    2015-05-01

    Carboxylic acids are an attractive biorenewable chemical, but as with many biorenewables, their toxicity to microbial biocatalysts limits their fermentative production. While it is generally accepted that membrane damage is the main mechanism of fatty acid toxicity, previous metabolic engineering efforts that increased membrane integrity did not enable increased carboxylic acid production. Here we used an evolutionary approach to improve tolerance to exogenous octanoic acid, with the goal of learning design strategies from this evolved strain. This evolution of an Escherichia coli MG1655 derivative at neutral pH in minimal media produced a strain with increased tolerance not only to octanoic acid, but also to hexanoic acid, decanoic acid, n-butanol and isobutanol. This evolved strain also produced carboxylic acids at a 5-fold higher titer than its parent strain when expressing the Anaerococcus tetradius thioesterase. While it has been previously suggested that intracellular acidification may contribute to carboxylic acid toxicity, we saw no evidence that the evolved strain has increased resistance to this acidification. Characterization of the evolved strain membrane showed that it had significantly altered membrane polarization (fluidity), integrity (leakage) and composition relative to its parent. The changes in membrane composition included a significant increase in average lipid length in a variety of growth conditions, including 30C, 42C, carboxylic acid challenge and ethanol challenge. The evolved strain has a more dynamic membrane composition, showing both a larger number of significant changes and larger fold changes in the relative abundance of membrane lipids. These results highlight the importance of the cell membrane in increasing microbial tolerance and production of biorenewable fuels and chemicals. PMID:25839166

  2. Separation of Aliphatic and Aromatic Carboxylic Acids by Conventional and Ultra High Performance Ion Exclusion Chromatography

    PubMed Central

    Mansour, Fotouh R.; Kirkpatrick, Christine L.; Danielson, Neil D.

    2013-01-01

    An ion exclusion chromatography (IELC) comparison between a conventional ion exchange column and an ultra-high performance liquid chromatography (UHPLC) dynamically surfactant modified C18 column for the separation of an aliphatic carboxylic acid and two aromatic carboxylic acids is presented. Professional software is used to optimize the conventional IELC separation conditions for acetylsalicylic acid and the hydrolysis products: salicylic acid and acetic acid. Four different variables are simultaneously optimized including H2SO4 concentration, pH, flow rate, and sample injection volume. Thirty different runs are suggested by the software. The resolutions and the time of each run are calculated and feed back to the software to predict the optimum conditions. Derringers desirability functions are used to evaluate the test conditions and those with the highest desirability value are utilized to separate acetylsalicylic acid, salicylic acid, and acetic acid. These conditions include using a 0.35 mM H2SO4 (pH 3.93) eluent at a flow rate of 1 mL min-1 and an injection volume of 72 ?L. To decrease the run time and improve the performance, a UHPLC C18 column is used after dynamic modification with sodium dodecyl sulfate. Using pure water as a mobile phase, a shorter analysis time and better resolution are achieved. In addition, the elution order is different from the IELC method which indicates the contribution of the reversed-phase mode to the separation mechanism. PMID:24285874

  3. Regiocontrolled intramolecular cyclizations of carboxylic acids to carbon-carbon triple bonds promoted by acid or base catalyst.

    PubMed

    Uchiyama, Masanobu; Ozawa, Hiroki; Takuma, Kazuya; Matsumoto, Yotaro; Yonehara, Mitsuhiro; Hiroya, Kou; Sakamoto, Takao

    2006-11-23

    We systematically investigated, for the first time, the relationship between regioselectivity and acid/base effects in the cyclization reactions between carboxylic acids and carbon-carbon triple bonds. We found novel acid- and base-promoted cyclizations to selectively give isocoumarin or pyran-2(2H)-one and phthalide or furan-2(5H)-one skeletons, respectively, and established a catalytic version of regioselective heterocyclic ring synthesis. Density functional theory calculations and application to a short route to thunberginol A were also described. [reaction: see text]. PMID:17107061

  4. Energetics of the lighter chalcogen analogues of carboxylic acid esters.

    PubMed

    Deakyne, Carol A; Ludden, Alicia K; Roux, Maria Victoria; Notario, Rafael; Demchenko, Alexei V; Chickos, James S; Liebman, Joel F

    2010-12-16

    In the current paper we present the results of our quantum chemical (G2, G2(MP2), and G3) study of the structure and energetics of carboxylic acids and their chalcogen analogues. In the particular, calculations and accompanying natural bond orbital (NBO) and atoms in molecules (AIM) analyses were performed on all species with the generic formula RC(?X)YR' (X, Y = O, S, Se and R = R' = CH(3)). Energies, enthalpies, and free energies of formation, resonance energies, interchalcogen methyl transfer energies and their energies of activation, and heavy atom bond lengths and angles are all discussed. A comparison of the calculated results with the sparse experimentally available data shows good agreement. Trends are also presented. PMID:21028778

  5. Density functional study of electronic, charge density, and chemical bonding properties of 9-methyl-3-Thiophen-2-YI-Thieno [3,2-e] [1, 2, 4] Thriazolo [4,3-c] pyrimidine-8-Carboxylic acid ethyl ester crystals

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Kamarudin, H.; Alahmed, Z. A.; Auluck, S.; Chysk, Jan

    2014-06-01

    A comprehensive theoretical density functional investigation of the electronic crystal structure, chemical bonding, and the electron charge densities of 9-Methyl-3-Thiophen-2-YI-Thieno [3, 2-e] [1, 2, 4] Thriazolo [4,3-c] Pyrimidine-8-Carboxylic Acid Ethyl Ester (C15H12N4O2S2) is performed. The density of states at Fermi level equal to 5.50 (3.45) states/Ry cell, and the calculated bare electronic specific heat coefficient is found to be 0.95 (0.59) mJ/mole-K2 for the local density approximation (Engel-Vosko generalized gradient approximation). The electronic charge density space distribution contours in (1 0 0) and (1 1 0) planes were calculated. We find that there are two independent molecules (A and B) in the asymmetric unit exhibit intramolecular C-HO, C-HN interactions. This intramolecular interaction is different in molecules A and B, where A molecule show C-HO interaction while B molecule exhibit C-HN interaction. We should emphasis that there is ?-? interaction between the pyrimidine rings of the two neighbors B molecules gives extra strengths and stabilizations to the superamolecular structure. The calculated distance between the two neighbors pyrimidine rings found to be 3.345 , in good agreement with the measured one (3.424(1) ).

  6. Electrochemiluminescence sensor for melamine based on a Ru(bpy)3(2+)-doped silica nanoparticles/carboxylic acid functionalized multi-walled carbon nanotubes/Nafion composite film modified electrode.

    PubMed

    Chen, Xiaomei; Lian, Sai; Ma, Ying; Peng, Aihong; Tian, Xiaotian; Huang, Zhiyong; Chen, Xi

    2016-01-01

    In this work, a sensitive electrochemiluminescence (ECL) sensor for the determination of melamine (MEL) was developed based on a Ru(bpy)3(2+)-doped silica nanoparticles (RUDS)/carboxylic acid functionalized multi-walled carbon nanotubes (CMWCNTs)/Nafion composite film modified electrode. The homogeneous spherical RUDS were synthesized by a reverse microemulsion method. As Ru(bpy)3(2+) were encapsulated in the RUDS, Ru(bpy)3(2+) dropping from the modified electrode can be greatly prevented, which is helpful for obtaining a stable ECL signal. Moreover, to improve the conductivity of the film and promote the electron transfer rate on electrode surface, CMWCNTs with excellent electrical conductivity and large surface area were applied in the construction of the sensing film. As CMWCNTs acted as electron bridges making more Ru(bpy)3(2+) participate in the reaction, the ECL intensity was greatly enhanced. Under the optimum conditions, the relative ECL signal (△IECL) was proportional to the logarithmic MEL concentration ranging from 5×10(-13) to 1×10(-7)molL(-1) with a detection limit of 1×10(-13)molL(-1). To verify the reliability, the thus-fabricated ECL sensor was applied to determine the concentration of MEL in milk. Based on these investigations, the proposed ECL sensor exhibited good feasibility and high sensitivity for the determination of MEL, promising the applicability of this sensor in practical analysis. PMID:26695338

  7. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  8. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  9. 40 CFR 721.2088 - Carboxylic acids, (C6-C9) branched and linear.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... linear. 721.2088 Section 721.2088 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances 721.2088 Carboxylic acids, (C6-C9) branched and linear. (a) Chemical... as carboxylic acids, (C6-C9) branched and linear (PMNs P-93-313, 314, 315, and 316) are subject...

  10. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  11. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  12. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  13. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  14. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  15. Structure and function studies on enzymes with a catalytic carboxyl group(s): from ribonuclease T1 to carboxyl peptidases

    PubMed Central

    TAKAHASHI, Kenji

    2013-01-01

    A group of enzymes, mostly hydrolases or certain transferases, utilize one or a few side-chain carboxyl groups of Asp and/or Glu as part of the catalytic machinery at their active sites. This review follows mainly the trail of studies performed by the author and his colleagues on the structure and function of such enzymes, starting from ribonuclease T1, then extending to three major types of carboxyl peptidases including aspartic peptidases, glutamic peptidases and serine-carboxyl peptidases. PMID:23759941

  16. Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    DOEpatents

    King, C. Judson (Kensington, CA); Husson, Scott M. (Berkeley, CA)

    1999-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

  17. Multiple-acid equilibria in adsorption of carboxylic acids from dilute aqueous solution

    SciTech Connect

    Husson, S.M.; King, C.J.

    1999-02-01

    Equilibria were measured for adsorption of carboxylic acids from aqueous, binary-acid mixtures of lactic and succinic acids and acetic and formic acids onto basic polymeric sorbents. The experimentally determined adsorption isotherms compared well with model predictions, confirming that simple extensions from adsorption of individual acids apply. Fixed-bed studies were carried out that establish the efficacy of chromatographic fractionation of lactic and succinic acids using basic polymeric sorbents. Finally, sequential thermal and solvent regeneration of lactic and acetic acid-laden sorbents was investigated as a method to fractionate among coadsorbed volatile and nonvolatile acids. Essentially complete removal of the acetic acid from the acid-laden sorbent was achieved by vaporization under the conditions used; a small amount of loss of lactic acid (about 11%) was observed.

  18. ANALYSIS OF PERFLUORINATED CARBOXYLIC ACIDS IN SOILS II: OPTIMIZATION OF CHROMATOGRAPHY AND EXTRACTION

    EPA Science Inventory

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorinated octanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary p...

  19. An ab initio density functional study of the optical functions of 9-Methyl-3-Thiophen-2-YI-Thieno [3,2e] [1,2,4] Thriazolo [4,3c] Pyrimidine-8-Carboxylic Acid Ethyl Ester crystals

    NASA Astrophysics Data System (ADS)

    Reshak, Ali H.; Kityk, I. V.; Khenata, R.; Al-Douri, Y.; Auluck, S.

    An ab initio investigation of the optical constants of 9-Methyl-3-Thiophen-2-YI-Thieno [3,2e] [1,2,4] Thriazolo [4,3c] Pyrimidine-8-Carboxylic Acid Ethyl Ester crystal is performed within a framework of local density approximation (LDA), and the Engel-Vosko generalized gradient approximation (EV-GGA) exchange correlation potentials. It is established that there are two independent molecules (A and B) exhibiting different intra-molecular interactions: C-H⋯O (A) and C-H⋯N (B). These intra-molecular interactions favor stabilization of the crystal structure for molecules A and B. It should be emphasized that there exist remarkable ?-? interactions between the pyrimidine rings of the two neighbors B molecules giving extra strengths and stabilizations to the superamolecular structure. These different intra-molecular interactions C-H⋯O (A) and C-H⋯N (B) and the ?-? interaction between the pyrimidine rings of the two neighbors B molecules give principal contribution to dispersion of optical properties. With a view to seek deeper insight into the electronic structure, the optical properties were investigated. Our calculations show that the optical constants are very anisotropic. The EVGGA calculation shows a blue spectral shift of around 0.024 eV with significant changes in the spectra compared to the LDA calculation. The observed spectral shifts are in agreement with the calculated band structure and corresponding electron density of states.

  20. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-06-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  1. Palladium-Catalyzed Heck-type Domino Cyclization and Carboxylation to Synthesize Carboxylic Acids by Utilizing Chloroform as the Carbon Monoxide Source.

    PubMed

    Liu, Xianglei; Li, Bin; Gu, Zhenhua

    2015-08-01

    A palladium-catalyzed domino cyclization and carboxylation reaction for synthesis of a variety of carboxylic acids was developed, where chloroform was used as "carbon monoxide" source. The in situ generated neopentylpalladium species by Heck cyclization was efficiently trapped by dichlorocarbene to form a series of carboxylic acids. It was found that in this type of domino reaction CHCl3 is a convenient and safe alternation for CO gas. PMID:26131968

  2. Electron mobility enhancement in ZnO thin films via surface modification by carboxylic acids

    NASA Astrophysics Data System (ADS)

    Spalenka, Josef W.; Gopalan, Padma; Katz, Howard E.; Evans, Paul G.

    2013-01-01

    Modifying the surface of polycrystalline ZnO films using a monolayer of organic molecules with carboxylic acid attachment groups increases the field-effect electron mobility and zero-bias conductivity, resulting in improved transistors and transparent conductors. The improvement is consistent with the passivation of defects via covalent bonding of the carboxylic acid and is reversible by exposure to a UV-ozone lamp. The properties of the solvent used for the attachment are crucial because solvents with high acid dissociation constants (Ka) for carboxylic acids lead to high proton activities and etching of the nanometers-thick ZnO films, masking the electronic effect.

  3. Recovery of carboxylic acids at pH greater than pK{sub a}

    SciTech Connect

    Tung, L.A.

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pK{sub a} and regenerability depend on sorbent basicity; apparent pK{sub a} and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  4. Carboxylic acid production from brewer's spent grain via mixed culture fermentation.

    PubMed

    Liang, Shaobo; Wan, Caixia

    2015-04-01

    This study aimed at investigating carboxylic acid production from brewer's spent grain (BSG) via mixed culture fermentation. The results showed that the distribution of fermentation products was significantly affected by pH conditions and the addition of electron donors. Lactic acid was the dominant component under acidic and alkaline conditions while volatile fatty acids (VFAs) became dominant under the neutral condition. Furthermore, the neutral condition favored the chain elongation of carboxylic acids, especially with ethanol as the electron donor. Ethanol addition enhanced valeric acid and caproic acid production by 44% and 167%, respectively. Lactic acid addition also had positive effects on VFAs production under the neutral condition but limited to C2-C4 products. As a result, propionic acid and butyric acid production was increased by 109% and 152%, respectively. These findings provide substantial evidence for regulating carboxylic acid production during mixed culture fermentation of BSG by controlling pH and adding electron donors. PMID:25698409

  5. Photo-induced coupling reactions of tetrazoles with carboxylic acids in aqueous solution: application in protein labelling.

    PubMed

    Zhao, Shan; Dai, Jianye; Hu, Mo; Liu, Chang; Meng, Rong; Liu, Xiaoyun; Wang, Chu; Luo, Tuoping

    2016-03-17

    The photo-induced reactions of diaryltetrazoles with carboxylic acids in aqueous solution were investigated. Besides measuring the apparent second-order rate constant and evaluating the functional group compatibility of these reactions, we further incorporated the tetrazoles into SAHA, leading to a new active-site-directed probe for labelling HDACs in both cell lysates and living cells. PMID:26953773

  6. Keto-Enol Tautomerizations Catalyzed by Water and Carboxylic Acids

    NASA Astrophysics Data System (ADS)

    da Silva, G.

    2009-12-01

    The ability of weakly-bound complexes to influence the kinetics of gas phase reactions, particularly in atmospheric chemistry, has long been speculated. This study uses quantum chemistry and statistical reaction rate theory to identify that bound water molecules can significantly reduce barriers to intramolecular hydrogen shift reactions, via a double-hydrogen-shift mechanism. The bound water molecule directly participates in the hydrogen shift reaction, exchanging a H atom with its counterpart. For the vinyl alcohol to acetaldehyde keto-enol tautomerization this mechanism cuts the reaction barrier approximately in half, reducing it by over 30 kcal mol-1. In contrast, while a non-participatory bystander water molecule also reduces the hydrogen shift barrier, it is only by around 3 kcal/mol. When a carboxylic acid replaces water in the double-hydrogen-shift mechanism the barrier to keto-enol tautomerization is decimated, reduced to less than 6 kcal/mol (around 15 kcal/mol in the reverse direction). This results from reduced strain in the hydrogen shift transition state, and achieves enol lifetimes in the troposphere that become short on relevant timescales. Rapid enol to ketone isomerizations are currently required to explain the oxidation products of isoprene. The wider significance of rapid hydrogen shift reactions in atmospherically relevant molecules and radicals is also explored.

  7. Aggregation of asphaltene model compounds using a porphyrin tethered to a carboxylic acid.

    PubMed

    Schulze, Matthias; Lechner, Marc P; Stryker, Jeffrey M; Tykwinski, Rik R

    2015-07-01

    A Ni(II) porphyrin functionalized with an alkyl carboxylic acid (3) has been synthesized to model the chemical behavior of the heaviest portion of petroleum, the asphaltenes. Specifically, porphyrin 3 is used in spectroscopic studies to probe aggregation with a second asphaltene model compound containing basic nitrogen (4), designed to mimic asphaltene behavior. NMR spectroscopy documents self-association of the porphyrin and aggregation with the second model compound in solution, and a Job's plot suggests a 1 : 2 stoichiometry for compounds 3 and 4. PMID:26024486

  8. Silver(I)-Promoted ipso-Nitration of Carboxylic Acids by Nitronium Tetrafluoroborate.

    PubMed

    Natarajan, Palani; Chaudhary, Renu; Venugopalan, Paloth

    2015-11-01

    A novel and efficient method for the regioselective nitration of a series of aliphatic and aromatic carboxylic acids to their corresponding nitro compounds using nitronium tetrafluoroborate and silver carbonate in dimethylacetamide has been described. This transformation is believed to proceed via the alkyl-silver or aryl-silver intermediate, which subsequently reacts with the nitronium ion to form nitro substances. Mild reaction conditions, tolerant of a broad range of functional groups, and formation of only the ipso-nitrated products are the key features of this methodology when compared to known methods for syntheses of nitroalkyls and nitroarenes. PMID:26457769

  9. Enantiopure synthesis of all four stereoisomers of carbapenam-3-carboxylic acid methyl ester.

    PubMed

    Avenoza, Alberto; Barriobero, Jos I; Busto, Jess H; Peregrina, Jess M

    2003-04-01

    The retro-Dieckmann reaction has been used as a stereodivergent synthetic tool on N-Boc-7-azabicyclo[2.2.1]heptan-2-one-1-carboxylic acid methyl ester to obtain enantiopure trans- and cis-5-(carboxymethyl)pyrrolidine-2-carboxylic acid methyl esters. These disubstituted pyrrolidines have been used as starting materials to develop concise and straightforward syntheses of all four stereoisomers of carbapenam-3-carboxylic acid methyl esters. In this way, we have confirmed unequivocally the stereochemistry of two carbapenams isolated from strains of Serratia and Erwinia species. PMID:12662066

  10. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): Heavy atom effect

    NASA Astrophysics Data System (ADS)

    Kowalska-Baron, Agnieszka; Ga??cki, Krystian; Wysocki, Stanis?aw

    2013-12-01

    In this study the effect of carboxylic group substitution in the 2 and 5 position of indole ring on the photophysics of the parent indole chromophore has been studied. The photophysical parameters crucial in triplet state decay mechanism of aqueous indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C) have been determined applying our previously proposed methodology based on the heavy atom effect and fluorescence and phosphorescence decay kinetics [Kowalska-Baron et al., 2012]. The determined time-resolved phosphorescence spectra of I2C and I5C are red-shifted as compared to that of the parent indole. This red-shift was especially evident in the case of I2C and may indicate the possibility of hydrogen bonded complex formation incorporating carbonyl Cdbnd O, the NH group of I2C and, possibly, surrounding water molecules. The possibility of the excited state charge transfer process and the subsequent electronic charge redistribution in such a hydrogen bonded complex may also be postulated. The resulting stabilization of the I2C triplet state is manifested by its relatively long phosphorescence lifetime in aqueous solution (912 ?s). The relatively short phosphorescence lifetime of I5C (56 ?s) may be the consequence of more effective ground-state quenching of I5C triplet state. This hypothesis may be strengthened by the significantly larger value of the determined rate constant of I5C triplet state quenching by its ground-state (4.4 108 M-1 s-1) as compared to that for indole (6.8 107 M-1 s-1) and I2C (2.3 107 M-1 s-1). The determined bimolecular rate constant for triplet state quenching by iodide kqT1 is equal to 1 104 M-1 s-1; 6 103 M-1 s-1 and 2.7 104 M-1 s-1 for indole, I2C and I5C, respectively. In order to obtain a better insight into iodide quenching of I2C and I5C triplet states in aqueous solution, the temperature dependence of the bimolecular rate constants for iodide quenching of the triplet states has been expressed in Arrhenius form. The linearity of the obtained Arrhenius plots clearly indicated the existence of one temperature-dependent non-radiative process for the de-excitation of I2C and I5C triplet state in the presence of iodide. This process may be attributed to the solute-quenching by iodide and, most probably, proceeds via reversibly formed exciplex. The activation energies obtained from linear Arrhenius plots (1.89 kcal/mol for I5C; 2.55 kcal/mol for I2C) are smaller as compared to that for diffusion controlled reactions in aqueous solution (about 4 kcal/mol), which may indicate the great importance of the electrostatic interactions between solute and iodide ions in lowering the energy barrier needed for the formation of the triplet-quencher complex. Based on the theoretical predictions (at the DFT(CAM-B3LYP)/6-31 + G(d,p) level of theory) and careful analysis of the obtained FTIR spectra it may be concluded that in the solid state I2C and I5C molecules form associates by intermolecular NH⋯Odbnd C and OH⋯Odbnd C hydrogen bonding interactions, whereas the existence of intramolecular NH⋯Odbnd C interactions in the solid state of I2C and I5C is highly unlikely.

  11. The Effects of Borate Minerals on the Synthesis of Nucleic Acid Bases, Amino Acids and Biogenic Carboxylic Acids from Formamide

    NASA Astrophysics Data System (ADS)

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  12. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration-based distribution ratios increase from 0.11 to 0.46 as the aqueous phase pH increases from 7.18 to 8.15. Regeneration of the organic extractant solution was carried out by stripping at elevated temperatures to remove the ammonia, with 99% recovery of the ammonia being obtained at 125 C.

  13. (S) 2-phenyl-2-(p-tolylsulfonylamino)acetic acid. Structure, acidity and its alkali carboxylates

    NASA Astrophysics Data System (ADS)

    Duarte-Hernández, Angélica M.; Contreras, Rosalinda; Suárez-Moreno, Galdina V.; Montes-Tolentino, Pedro; Ramos-García, Iris; González, Felipe J.; Flores-Parra, Angelina

    2015-03-01

    The structure and the preferred conformers of (S) 2-phenyl-2-(p-tolylsulfonylamino)acetic acid (1) are reported. Compound 1 is a derivative of the unnatural aminoacid the (S) phenyl glycine. The X-ray diffraction analyses of the complexes of 1 with water, methanol, pyridine and its own anion are discussed. In order to add information about the acidity of the COOH and NH protons in compound 1, its pKa in DMSO and those of N-benzyl-p-tolylsulfonamide and (S) N-methylbenzyl-p-tolylsulfonamide were determined by cyclic voltammetry. Data improved the scarce information about pKa in DMSO values of sulfonamides. The products of the reactions of compound 1 with one and two equivalents of LiOH, NaOH and KOH in methanol were analyzed. Crystals of the lithium (2) and sodium (3) carboxylates and the dipotassium sulfonylamide acetate (7) were obtained, they are coordination polymers. In compound 2, the lithium is bound to four oxygen atoms with short bond lengths. The coordination of the lithium atom to two carboxylates gives an infinite ribbon by formation of fused six membered rings. In the crystal of compound 3, two pentacoordinated sodium atoms are bridged by three oxygen atoms, one from a water molecule and two from DMSO. The short distance between the sodium atoms (3.123 Å), implies a metal-metal interaction. The sodium couples are linked by two carboxylate groups, forming a planar ribbon of fused twelve membered rings. A notable discovery was a water molecule quenched in the middle of the ring, with a tetra coordinated oxygen atom in a square planar geometry. In compound 7, the carboxylate and the amide are bound to heptacoordinated potassium atoms. The 2D polymer of 7 has a sandwich structure, with the carboxylate and potassium atoms in the inner layer covered by the aromatic rings.

  14. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin.

    PubMed

    Bai, Shijie; Dai, Jingcheng; Xia, Ming; Ruan, Jing; Wei, Hehong; Yu, Dianzhen; Li, Ronghui; Jing, Hongmei; Tian, Chunyuan; Song, Lirong; Qiu, Dongru

    2015-04-01

    Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass. PMID:25342454

  15. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide.

    PubMed

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL(-1), which is 32 times lower than that of graphene oxide-based biosensor. PMID:26944998

  16. The effect of carboxylic acid anions on the stability of framework mineral grains in petroleum reservoirs

    SciTech Connect

    MacGowan, D.B.; Surdam, R.C.; Ewing, R.E. )

    1990-06-01

    This paper presents experimental and empirical evidence to show that carboxylic acid anions (CAA's) are a major diagenetic control on first-cycle basins in Jurassic-to-Pleistocene reservoirs in the 80-to-120{degrees}C thermal window.

  17. Self-assembly of indole-2-carboxylic acid at graphite and gold surfaces

    NASA Astrophysics Data System (ADS)

    De Marchi, Fabrizio; Cui, Daling; Lipton-Duffin, Josh; Santato, Clara; MacLeod, Jennifer M.; Rosei, Federico

    2015-03-01

    Model systems are critical to our understanding of self-assembly processes. As such, we have studied the surface self-assembly of a small and simple molecule, indole-2-carboxylic acid (I2CA). We combine density functional theory gas-phase (DFT) calculations with scanning tunneling microscopy to reveal details of I2CA assembly in two different solvents at the solution/solid interface, and on Au(111) in ultrahigh vacuum (UHV). In UHV and at the trichlorobenzene/highly oriented pyrolytic graphite (HOPG) interface, I2CA forms epitaxial lamellar structures based on cyclic OH⋯O carboxylic dimers. The structure formed at the heptanoic acid/HOPG interface is different and can be interpreted in a model where heptanoic acid molecules co-adsorb on the substrate with the I2CA, forming a bicomponent commensurate unit cell. DFT calculations of dimer energetics elucidate the basic building blocks of these structures, whereas calculations of periodic two-dimensional assemblies reveal the epitaxial effects introduced by the different substrates.

  18. Rh(III)-Catalyzed Decarboxylative Coupling of Acrylic Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators

    PubMed Central

    2015-01-01

    ?,?-Unsaturated carboxylic acids undergo Rh(III)-catalyzed decarboxylative coupling with ?,?-unsaturated O-pivaloyl oximes to provide substituted pyridines in good yield. The carboxylic acid, which is removed by decarboxylation, serves as a traceless activating group, giving 5-substituted pyridines with very high levels of regioselectivity. Mechanistic studies rule out a picolinic acid intermediate, and an isolable rhodium complex sheds further light on the reaction mechanism. PMID:24512241

  19. Copper-catalyzed intermolecular oxyamination of olefins using carboxylic acids and O-benzoylhydroxylamines

    PubMed Central

    Hemric, Brett N

    2016-01-01

    Summary This paper reports a novel approach for the direct and facile synthesis of 1,2-oxyamino moieties via an intermolecular copper-catalyzed oxyamination of olefins. This strategy utilizes O-benzoylhydroxylamines as an electrophilic amine source and carboxylic acids as a nucleophilic oxygen source to achieve a modular difunctionalization of olefins. The reaction proceeded in a regioselective manner with moderate to good yields, exhibiting a broad scope of carboxylic acid, amine, and olefin substrates. PMID:26877805

  20. Identification of Amides as Carboxylic Acid Surrogates for Quinolizidinone-Based M1 Positive Allosteric Modulators

    PubMed Central

    2012-01-01

    Selective activation of the M1 muscarinic receptor via positive allosteric modulation represents an approach to treat the cognitive decline in patients with Alzheimer's disease. A series of amides were examined as a replacement for the carboxylic acid moiety in a class of quinolizidinone carboxylic acid M1 muscarinic receptor positive allosteric modulators, and leading pyran 4o and cyclohexane 5c were found to possess good potency and in vivo efficacy. PMID:24900430

  1. Molecular structure and spectroscopic studies on novel complexes of coumarin-3-carboxylic acid with Ni(II), Co(II), Zn(II) and Mn(II) ions based on density functional theory.

    PubMed

    Creaven, B S; Devereux, M; Georgieva, I; Karcz, D; McCann, M; Trendafilova, N; Walsh, M

    2011-12-15

    Novel Ni(II), Co(II), Zn(II) and Mn(II) complexes of coumarin-3-carboxylic acid (HCCA) were studied at experimental and theoretical levels. The complexes were characterised by elemental analyses, FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by magnetic susceptibility measurements. The binding modes of the ligand and the spin states of the metal complexes were established by means of molecular modelling of the complexes studied and calculation of their IR, NMR and absorption spectra at DFT(TDDFT)/B3LYP level. The experimental and calculated data verified high spin Ni(II), Co(II) and Mn(II) complexes and a bidentate binding through the carboxylic oxygen atoms (CCA2). The model calculations predicted pseudo octahedral trans-[M(CCA2)(2)(H(2)O)(2)] structures for the Zn(II), Ni(II) and Co(II) complexes and a binuclear [Mn(2)(CCA2)(4)(H(2)O)(2)] structure. Experimental and calculated (1)H, (13)C NMR, IR and UV-Vis data were used to distinguish the two possible bidentate binding modes (CCA1 and CCA2) as well as mononuclear and binuclear structures of the metal complexes. PMID:21996590

  2. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  3. Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a screening exercise for ethanol-selective extraction solvents, partitioning of ethanol and water from a 5 wt% aqueous solution into several C8 C18 carboxylic acids was studied. Results for the acids are compared with those from alcohols of similar structure. In all cases studied, the acids exh...

  4. Probing the acidity of carboxylic acids in protic ionic liquids, water, and their binary mixtures: activation energy of proton transfer.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2013-02-28

    Acidity functions were used to express the ability of a solvent/solution to donate/accept a proton to a solute. The present work accounts for the acidity determination of HCOOH, CH3COOH, and CH3CH2COOH in the alkylimidazolium-based protic ionic liquids (PILs), incorporated with carboxylate anion, water, and in a binary mixture of PIL and water using the Hammett acidity function, H0. A reversal in the acidity trend was observed, when organic acids were transferred from water to PIL. It was emphasized that an increased stabilization offered by PIL cation toward the more basic conjugate anion of organic acid was responsible for this anomalous change in acidity order in PILs, which was absent in water. The greater stabilization of a basic organic anion by PIL cation is discussed in terms of the stable hard–soft acid base (HSAB) pairing. A change in the H0 values of these acids was observed with a change in temperature, and a linear correlation between the ln H0 and 1/T was noted. This relationship points toward the activation energy of proton transfer (E(a,H+)), a barrier provided by the medium during the proton transfer from Brønsted acid to indicator. The H0 function in binary mixtures points to the involvement of pseudosolvent, the behavior of which changes with the nature and concentration of acid. The presence of the maxima/minima in the H0 function is discussed in terms of the synergetic behavior of the pseudosolvent composed of the mixtures of aqueous PILs. PMID:23373464

  5. Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration.

    PubMed

    Weng, Yu-Hsiang; Wei, Hwa-Jou; Tsai, Tsung-Yen; Lin, Ting-Hsiang; Wei, Tsong-Yang; Guo, Gia-Luen; Huang, Chin-Pao

    2010-07-01

    This work studied the concentration of hydrolyzates obtained from dilute acid hydrolysis of rice straw using nanofiltration (NF). In order to minimize the Donnan exclusion effect of the membrane, the hydrolyzate solution was controlled at low pH value. Negative retentions of both furans and carboxylic acids were observed. The maximum separation factor of acetic acid over xylose was 49, while the maximum separation factor of acetic acid over arabinose was 52, when the system was operated at pH 2.9 and an applied pressure of 24.5-34.3 bar. The separation factors of inhibitors over glucose became infinity due to the complete retention of glucose. The separation performance decreased when the operating temperature was increased from 25 to 40 degrees C. The flux deterioration was recovered by flushing with 0.01 N of NaOH and water. PMID:20022241

  6. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays).

    PubMed

    Krippner, Johanna; Falk, Sandy; Brunn, Hubertus; Georgii, Sebastian; Schubert, Sven; Stahl, Thorsten

    2015-04-15

    Uptake of perfluoroalkyl acids (PFAAs) by maize represents a potential source of exposure for humans, either directly or indirectly via feed for animals raised for human consumption. The aim of the following study was, therefore, to determine the accumulation potential of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Two different concentrations of PFAAs were applied as aqueous solution to the soil to attain target concentrations of 0.25 mg or 1.00 mg of PFAA per kg of soil. Maize was grown in pots, and after harvesting, PFAA concentrations were measured in the straw and kernels of maize. PFCA and PFSA concentrations of straw decreased significantly with increasing chain length. In maize kernels, only PFCAs with a chain length ? C8 as well as perfluorobutanesulfonic acid (PFBS) were detected. The highest soil-to-plant transfer for both straw and kernels was determined for short-chained PFCAs and PFSAs. PMID:25815603

  7. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: carboxylic acids.

    PubMed

    Stockton, Amanda M; Tjin, Caroline Chandra; Chiesl, Thomas N; Mathies, Richard A

    2011-01-01

    The oxidizing surface chemistry on Mars argues that any comprehensive search for organic compounds indicative of life requires methods to analyze higher oxidation states of carbon with very low limits of detection. To address this goal, microchip capillary electrophoresis (?CE) methods were developed for analysis of carboxylic acids with the Mars Organic Analyzer (MOA). Fluorescent derivatization was achieved by activation with the water soluble 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) followed by reaction with Cascade Blue hydrazide in 30 mM borate, pH 3. A standard containing 12 carboxylic acids found in terrestrial life was successfully labeled and separated in 30 mM borate at pH 9.5, 20 C by using the MOA CE system. Limits of detection were 5-10 nM for aliphatic monoacids, 20 nM for malic acid (diacid), and 230 nM for citric acid (triacid). Polyacid benzene derivatives containing 2, 3, 4, and 6 carboxyl groups were also analyzed. In particular, mellitic acid was successfully labeled and analyzed with a limit of detection of 300 nM (5 ppb). Analyses of carboxylic acids sampled from a lava tube cave and a hydrothermal area demonstrated the versatility and robustness of our method. This work establishes that the MOA can be used for sensitive analyses of a wide range of carboxylic acids in the search for extraterrestrial organic molecules. PMID:21790324

  8. Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone

    SciTech Connect

    Glasius, M.; Lahaniati, M.; Calogirou, A.; Di Bella, D.; Jensen, N.R.; Hjorth, J.; Kotzias, D.; Larsen, B.R.

    2000-03-15

    A series of smog chamber experiments have been conducted in which five cyclic monoterpenes were oxidized by ozone. The evolved secondary aerosol was analyzed by GC-MS and HPLC-MS for nonvolatile polar oxidation products with emphasis on the identification of carboxylic acids. Three classes of compounds were determined at concentration levels corresponding to low percentage molar yields: i.e., dicarboxylic acids, oxocarboxylic acids, and hydroxyketocarboxylic acids. Carboxylic acids are highly polar and have lower vapor pressures than their corresponding aldehydes and may thus play an important role in secondary organic aerosol formation processes. The most abundant carboxylic acids were the following: cis-pinic acid AB1(cis-3-carboxy-2,2-dimethylcyclobutylethanoic acid) from {alpha} and {beta}-pinene; cis-pinonic acid A3 (cis-3-acetyl-2,2-dimethylcyclobutylethanoic acid) and cis-10-hydroxypinonic acid Ab6 (cis-2,2-dimethyl-3-hydroxyacetylcyclobutyl-ethanoic acid) from {alpha}-pinene and {beta}-pinene; cis-3-caric acid C1 (cis-2,2-dimethyl-1,3-cyclopropyldiethanoic acid), cis-3-caronic acid C3 (2,2-dimethyl-3-(2-oxopropyl)cyclopropanylethanoic acid), and cis-10-hydroxy-3-caronic acid C6 (cis-2,2-dimethyl-3(hydroxy-2-oxopropyl)cyclopropanylethanoic acid) from 3-carene; cis-sabinic acid S1 (cis-2-carboxy-1-isopropylcyclopropylethanoic acid) from sabinene; limonic acid L1 (3-isopropenylhexanedioic acid), limononic acid L3 (3-isopropenyl-6-oxo-heptanoic acid), 7-hydroxy-limononic acid L6 (3-isopropenyl-7-hydroxy-6-oxoheptanoic acid), and 7-hydroxylimononic acid Lg{prime} (7-hydroxy-3-isopropenyl-6-oxoheptanoic acid) from limonene.

  9. Measuring the concentration of carboxylic acid groups in torrefied spruce wood.

    PubMed

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko

    2012-11-01

    Torrefaction is moderate thermal treatment (?200-300C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction. PMID:22940339

  10. Isolation and molecular characterization of 1-aminocyclopropane-1-carboxylic acid synthase genes in Hevea brasiliensis.

    PubMed

    Zhu, Jia-Hong; Xu, Jing; Chang, Wen-Jun; Zhang, Zhi-Li

    2015-01-01

    Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1-7) of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment. These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production. PMID:25690030

  11. Isolation and Molecular Characterization of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in Hevea brasiliensis

    PubMed Central

    Zhu, Jia-Hong; Xu, Jing; Chang, Wen-Jun; Zhang, Zhi-Li

    2015-01-01

    Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7) of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment.These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production. PMID:25690030

  12. Selective conversion of cyano compounds to amides and carboxylic acids

    SciTech Connect

    Prevatt, W.D.; Akin, C.; Evans, A.J.

    1986-12-16

    A process is described for producing aromatic compounds having at least one cyano group and one amide group or carboxyl group. The process comprises subjecting aromatic polynitrile compounds containing no carboxyl groups to the action of one or more Rhodococcus microorganisms selected from the group of Rhodococcus microorganisms consisting of BZN 6, accession number ATCC 39,484; BZN34, accession number ATCC 39,485; BZN 37, accession number ATCC 39,486; BZN 121, accession number ATCC 39,487; BZN 251, accession number ATCC 39,488; BZN 310, accession number ATCC 39,489; BZN 322, accession number ATCC 39,490; BZN 422, accession number ATCC 39,491; BZN 762, accession number ATCC 39,492, which have a nitrilase system capable of hydrolyzing one cyano group of the polynitrile.

  13. Adsorption of pesticidal compounds bearing a single carboxyl functional group and biogenic amines by humic fraction-immobilized silica gel.

    PubMed

    Chen, Cheng-Sheng; Chen, Shushi

    2013-04-17

    Fractions collected from humic acids under acidic and basic conditions were immobilized on silica gel and used as adsorbents for a variety of agricultural pesticide compounds bearing a single carboxyl functional group and biogenic amines in acetonitrile. Among these compounds examined under the same conditions, the percentage of adsorption varies considerably from 0 to almost 100%. The percentage is found to be highly related to the structure of the analyte and the type of functional group attached to it. The adsorption, better performed on adsorbent immobilized with the fraction collected under acidic conditions, is believed to result from the reversible interaction between the functional moieties of the analyte and humic acids (e.g., amino or carboxyl group of analyte vs carboxyl group of humic acids, etc.) as no adsorption is observed under the same conditions for analytes that are derivatives of alcohol, amide, and ester. Given the nature of the analyte, the time needed to reach the maximum percent of adsorption decreases as the amount of adsorbent is increased. Also, the longer the time that has elapsed, the higher the percentage of analyte adsorbed, thus indicating that the adsorption process is surface-oriented. Factors such as the acidic or basic origin of the additive in the liquid phase of the matrix also affect the percentage of analyte adsorbed. PMID:23521499

  14. Room-temperature decarboxylative alkynylation of carboxylic acids using photoredox catalysis and EBX reagents.

    PubMed

    Le Vaillant, Franck; Courant, Thibaut; Waser, Jerome

    2015-09-14

    Alkynes are used as building blocks in synthetic and medicinal chemistry, chemical biology, and materials science. Therefore, efficient methods for their synthesis are the subject of intensive research. Herein, we report the direct synthesis of alkynes from readily available carboxylic acids at room temperature under visible-light irradiation. The combination of an iridium photocatalyst with ethynylbenziodoxolone (EBX) reagents allowed the decarboxylative alkynylation of carboxylic acids in good yields under mild conditions. The method could be applied to silyl-, aryl-, and alkyl- substituted alkynes. It was particularly successful in the case of ?-amino and ?-oxo acids derived from biomass. PMID:26212356

  15. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  16. Novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids as calcium activated chloride channel inhibitors

    PubMed Central

    Kumar, Satish; Namkung, Wan; Verkman, A. S.; Sharma, Pawan K.

    2013-01-01

    Transmembrane protein 16A (TMEM16A) channels are recently discovered membrane proteins that functions as a calcium activated chloride channel (CaCC). CaCCs are major regulators of various physiological processes, such as sensory transduction, epithelial secretion, smooth muscle contraction and oocyte fertilization. Thirty novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids (B01B30) were synthesized and evaluated for their TMEM16A inhibitory activity by using short circuit current measurements in Fischer rat thyroid (FRT) cells expressing human TMEM16A. IC50 values were calculated using YFP fluorescence plate reader assay. Final compounds, having free carboxylic group displayed significant inhibition. Eight of the novel compounds B02, B13, B21, B23, B25, B27, B28, B29 exhibit excellent CaCCs inhibition with IC50 value <6 ?M, with compound B25 exhibiting the lowest IC50 value of 2.8 1.3 ?M. None of the tested ester analogs of final benzofuran derivatives displayed TMEM16A/CaCCs inhibition. PMID:22739085

  17. Vibrational spectroscopic studies of indolecarboxylic acids and their metal complexes part VIII. 5-methoxyindole-2-carboxylic acid and its Zn(II) complex.

    PubMed

    Morzyk-Ociepa, Barbara

    2009-03-01

    The complex of 5-methoxyindole-2-carboxylic acid with Zn(II) has been synthesized and characterized by the infrared and Raman spectroscopic methods. Moreover, the infrared and Raman spectra of 5-methoxyindole-2-carboxylic acid (5-MeOI2CAH) and the infrared spectrum of deuterated derivative of 5-metoxyindole-2-carboxylic acid (5-MeOI2CA-d2) are recorded in the solid phase. The theoretical wavenumbers, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-311++G(df,p) basis set for 5-MeOI2CAH and 5-MeOI2CA-d2 and with the 6-311++G(df,p)/LanL2DZ basis sets for the theoretical model of [Zn(5-MeOI2CA)(2)(H(2)O)(2)](n). The detailed vibrational assignment has been made on the basis of the calculated potential energy distribution for 5-MeOI2CAH, 5-MeOI2CA-d2 and [Zn(5-MeOI2CA)(2)(H(2)O)(2)](n). The results from natural bond orbitals (NBO) analyses for indole-2-carboxylic acid (I2CAH) and 5-MeOI2CAH are discussed. PMID:19084467

  18. Formation and wetting characteristics of adsorbed layers of unsaturated carboxylic acids at a fluorite surface

    SciTech Connect

    Drelich, J.; Atia, A.A.; Yalamanchili, M.R.; Miller, J.D.

    1996-03-25

    Molecular layers of unsaturated carboxylates on a fluorite surface were prepared by spontaneous adsorption from alkaline aqueous solutions of 10-undecenoic and 10-undecynoic acids. The adsorption density and the kinetics of adsorption were examined by Fourier transform infrared internal reflection spectroscopy (FT-IR/IRS). Both 10-undecenoic and 10-undecynoic acids chemisorb on the fluorite surface and may form a monolayer from alkaline aqueous solutions. As much as 30 min is required to form such monolayers from 0.5--0.7 mM solutions at pH 9.5--9.6 under turbulent conditions. However, the formation of a perfect monolayer with a well-organized structure was difficult to control in this study. Advancing and receding contact angles were measured for water drops on submonolayers and monolayers of the unsaturated carboxylates using the sessile-drop technique. The effect of surface heterogeneity, as inferred from the extent of carboxylate adsorption, on contact angle hysteresis for various drop sizes was examined. It was found that both contact angle hysteresis and contact angle/drop size relationships depend on the deviation of the carboxylate layer from the well-organized monolayer state. Further, the contact angle data suggest that the formation of carboxylate monolayers is not a uniform process over the entire surface of the fluorite crystal, but rather involves the nucleation of hydrophobic aggregates, patches composed of adsorbed carboxylates, whose size increases with time.

  19. Fourier transform infrared study on hydrogen bonding species of carboxylic acids in supercritical carbon dioxide with ethanol

    SciTech Connect

    Yamamoto, Morio; Iwai, Yoshio; Nakajima, Taro; Arai, Yasuhiko

    1999-05-06

    Supercritical fluid extraction has been given much attention recently as one of the new separation technologies in the chemical industry. Fourier transform infrared (FTIR) spectroscopy has been used to determine the equilibrium constants of the dimerization for carboxylic acid (acetic acid or palmitic acid) and the amount of hydrogen bonding species between carboxylic acid and ethanol in supercritical CO{sub 2}. Experiments were carried out at 308.2--313.2 K and 10.0--20.0 MPa. The noticeable band was the C{double_bond}O stretching band for carboxylic acid. In the binary system (supercritical CO{sub 2} + carboxylic acid), the equilibrium constants of the dimerization between the carboxylic acid monomer and dimer decrease with increasing pressure and temperature. The equilibrium constants of palmitic acid are larger than those of acetic acid. In a ternary system (supercritical CO{sub 2} + carboxylic acid + ethanol), the amount of hydrogen bonding species between carboxylic acid and ethanol in supercritical CO{sub 2} increases with the increasing mole fraction of added ethanol. Furthermore, the authors confirm that the solubility enhancement by ethanol used as an entrainer in supercritical CO{sub 2} related to the amount of hydrogen bonding species between carboxylic acid and ethanol.

  20. Infrared spectrum, molecular structure and theoretical calculation of 2-pyridone-6-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Arslan, H.; ?engl, A.; Aygn, S.; Karaday?, N.; Bayar?, S. Haman

    2007-08-01

    The X-ray and infrared spectroscopic analysis of 2-pyridone-6-carboxylic acid are reported. The crystals of investigated molecule belong to P2 1/ c of the monoclinic system, a = 11.714 , b = 3.7088, c = 18.223 and ? = 123.71. The molecule is found in the ketonic form. Comprehensive studies of the molecular structures and vibrational frequencies and infrared intensities of the molecule have been performed by using Hartree-Fock, density functional B3LYP and second-order Moller-Plesset MP2 methods with the 6-31G+(d, p) basis set. The calculated geometrical parameters of investigated molecule in gas phase were compared with the experimental X-ray data.

  1. Automatic analyzer for highly polar carboxylic acids based on fluorescence derivatization-liquid chromatography.

    PubMed

    Todoroki, Kenichiro; Nakano, Tatsuki; Ishii, Yasuhiro; Goto, Kanoko; Tomita, Ryoko; Fujioka, Toshihiro; Min, Jun Zhe; Inoue, Koichi; Toyo'oka, Toshimasa

    2015-03-01

    A sensitive, versatile, and reproducible automatic analyzer for highly polar carboxylic acids based on a fluorescence derivatization-liquid chromatography (LC) method was developed. In this method, carboxylic acids were automatically and fluorescently derivatized with 4-(N,N-dimethylaminosulfonyl)-7-piperazino-2,1,3-benzoxadiazole (DBD-PZ) in the presence of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride by adopting a pretreatment program installed in an LC autosampler. All of the DBD-PZ-carboxylic acid derivatives were separated on the ODS column within 30 min by gradient elution. The peak of DBD-PZ did not interfere with the separation and the quantification of all the acids with the exception of lactic acid. From the LC-MS/MS analysis, we confirmed that lactic acid was converted to an oxytriazinyl derivative, which was further modified with a dimethoxy triazine group of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM). We detected this oxytriazinyl derivative to quantify lactic acid. The detection limits (signal-to-noise ratio = 3) for the examined acids ranged from 0.19 to 1.1 m, which correspond to 95-550 fmol per injection. The intra- and inter-day precisions of typical, highly polar carboxylic acids were all <9.0%. The developed method was successfully applied to the comprehensive analysis of carboxylic acids in various samples, which included fruit juices, red wine and media from cultured tumor cells. PMID:25082081

  2. Structures and spectroscopic studies of indolecarboxylic acids. Part III. Diamminetetrakis-?-(O,O?-indole-3-carboxylate)dicopper(II)

    NASA Astrophysics Data System (ADS)

    Morzyk-Ociepa, Barbara; Rozycka-Sokolowska, Ewa

    2006-02-01

    The crystal and molecular structures of the novel compound diamminetetrakis-?-( O, O'-indole-3-carboxylate)dicopper(II), Cu-I3CA, have been determined using single-crystal X-ray diffraction, infrared spectroscopy and EPR methods. The crystals are monoclinic, space group P2 1/c, with a=9.505(2), b=7.469(1), c=23.779(5), V=1669.1(6) 3 and Z=2. Complex has a dinuclear molecular structure of C i symmetry in which the carboxyl groups of the indole-3-carboxylic acid ligands act as bridges. The Cu-Cu distance of 2.6387(8) , Cu-O distances of 1.961(2) and 1.970(2) , and Cu-NH 3 distance of 2.188(2) , are typical of such dinuclear complexes. The novel Cu-I3CA complex unit reveals a remarkable similarity in its structural and spectroscopic features to the Cu(II) complexes of the human anti-inflammatory drug, indomethacin (a derivative of indole-3-acetic acid). The EPR and infrared spectroscopic studies of Cu-I3CA in the solid state well support the results from X-ray analysis. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the O-deprotonated indole-3-carboxylate ion (I3CA -) have been calculated using density functional (B3LYP) method with the 6-311++G(d,p) basis set. The potential energy distribution (PED) calculated for the ionic ligand (I3CA -) has proved to be of great help in assigning the infrared spectrum of the title complex. The results from natural bond orbital (NBO) analyses for I3CA - and indole-3-carboxylic acid (I3CA) are discussed.

  3. Determination of the asphaltene and carboxylic acid content of a heavy oil using a microfluidic device.

    PubMed

    Bowden, Stephen A; Wilson, Rab; Parnell, John; Cooper, Jonathan M

    2009-03-21

    Heavy oil utilisation is set to increase over the coming decades as reserves of conventional oil decline. Heavy oil differs from conventional oil in containing relatively large quantities of asphaltene and carboxylic acids. The proportions of these compounds greatly influence how oil behaves during production and its utilisation as a fuel or feedstock. We report the development of a microfluidic technique, based on a H-cell, that can extract the carboxylic acid components of an oil and assess its asphaltene content. Ultimately this technology could yield a field-deployable device capable of performing measurements that facilitate improved resource management at the point of resource-extraction. PMID:19255665

  4. Preparation of carboxylic acid-bearing polysaccharide nanofiber made from euglenoid β-1,3-glucans.

    PubMed

    Shibakami, Motonari; Tsubouchi, Gen; Nakamura, Makoto; Hayashi, Masahiro

    2013-10-15

    This paper introduces a new strategy for creating surface modified polysaccharide nanofibers. To demonstrate proof of principle, the synthesis, structure, and self-assembly behavior of a carboxylic acid-bearing polysaccharide made from paramylon (β-1,3-glucan) and succinic anhydride were investigated. Examination by a combination of NMR, FT-IR, and SEC-MALLS confirmed that successful preparation of the desired succinylated paramylon without significant depolymerization. NMR, SEC-MALLS, visible absorption and CD spectroscopic analyses indicated that the paramylon derivative forms the triplex structure in solutions. SEM observation revealed that succinylated paramylon forms a nanofiber that has carboxylic acid on the surface. PMID:23987321

  5. Nucleosides of 4-methylthio-1,2,3-triazol-5-yl-carboxylic acid derivatives

    SciTech Connect

    Shingarova, I.D.; Yartseva, I.V.; Preobrazhenskaya, M.N.

    1987-08-01

    2-..beta..-D-Ribofuranosyl-4-methylthio-5-methoxycarbonyl-1,2,3-triazole was obtained by fusing 4-methylthio-5-methoxycarbonyl-1,2,3-triazole together with tetraacyl-D-ribofuranose, followed by deacylation, and its amide and hydrazide were prepared. The structures of the new nucleosides were established by converting them into known 2-nucleosides of 1,2,3-triazol-4-yl-carboxylic acid derivatives. By comparing PMR spectra with previously reported PMR spectra for the isomeric 1- and 2-nucleosides of 1,2,3-triazol-4-yl-carboxylic acid derivatives, the synthesized nucleosides could be assigned to 2-substituted triazoles.

  6. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  7. The sorption of anthracene onto goethite and kaolinite in the presence of some benzene carboxylic acids.

    PubMed

    Angove, Michael J; Fernandes, Milena B; Ikhsan, Jaslin

    2002-03-15

    The uptake of anthracene from dilute aqueous solutions onto goethite and kaolinite was investigated at 25 degrees C, first in the absence and then in the presence of three benzene carboxylic acids: phthalic acid (benzene-1,2-dicarboxylic acid), trimesic acid (-1,3,5-), and mellitic acid (-1,2,3,4,5,6-). Carboxylic acid concentrations were 0.20, 0.10, and 0.05 mM. Anthracene (0.20 microM) did not adsorb strongly onto the pure mineral surfaces, but in the presence of phthalic acid a substantial increase in anthracene uptake was observed, particularly for the goethite systems. Trimesic and mellitic acids did not enhance anthracene uptake. Phthalate and proton adsorption data have been used to model phthalate adsorption onto the mineral surfaces using an extended constant capacitance surface complexation model. This model was then successfully adapted to account for the observed increase in anthracene uptake, where anthracene molecules were assumed to interact with adsorbed phthalate. We propose that the enhancement of anthracene adsorption in the presence of phthalic acid is due to an increase in the hydrophobicity of the mineral surface once phthalic acid molecules adsorb. The same effect was not observed for the other benzene carboxylates because of their greater polarity. PMID:16290467

  8. Interconversion of biologically important carboxylic acids by radiation

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1978-01-01

    The interconversion of a group of biologically important polycarboxylic acids (acetic, fumaric, malic, malonic, succinic, citric, isocitric, tricarballylic) under gamma-ray or ultraviolet radiation was investigated. The formation of high molecular weight compounds was observed in all cases. Succinic acid was formed in almost all radiolysis experiments. Citric, malonic, and succinic acids appeared to be relatively insensitive to radiation. Interconversion of the polycarboxylic acids studied may have occurred under the effect of radiation in the prebiotic earth.

  9. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides.

    PubMed

    Noble, Adam; McCarver, Stefan J; MacMillan, David W C

    2015-01-21

    Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of ?-oxy and ?-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions. PMID:25521443

  10. Identification of new non-carboxylic acid containing inhibitors of aldose reductase.

    PubMed

    Maccari, Rosanna; Ciurleo, Rosella; Giglio, Marco; Cappiello, Mario; Moschini, Roberta; Corso, Antonella Del; Mura, Umberto; Ottan, Rosaria

    2010-06-01

    Non-carboxylic acid containing bioisosteres of (5-arylidene-2,4-dioxothiazolidin-3-yl)acetic acids, which are active as aldose reductase (ALR2) inhibitors, were designed by replacing the carboxylic group with the trifluoromethyl ketone moiety. The in vitro evaluation of the ALR2 inhibitory effects of these trifluoromethyl substituted derivatives led to the identification of two inhibitors effective at low micromolar doses. It was further confirmed that a carboxylic chain on N-3 of the thiazolidinedione scaffold is a determining requisite to obtain the highest efficacy levels; however, it is not essential for the interaction with the target enzyme and it can be replaced by different polar groups, thus obtaining less ionised or unionised inhibitors. PMID:20452228

  11. Templating route for mesostructured calcium phosphates with carboxylic acid- and amine-type surfactants.

    PubMed

    Ikawa, Nobuaki; Hori, Hideki; Kimura, Tatsuo; Oumi, Yasunori; Sano, Tsuneji

    2008-11-18

    Mesostructured calcium phosphates constructed by ionic frameworks were synthesized using carboxylic acid- and amine-type surfactants in mixed solvent systems of ethanol and water. A lamellar mesostructured calcium phosphate was prepared using palmitic acid as an anionic surfactant, as in the case using n-alkylamines. A wormhole-like mesostructured calcium phosphate can be obtained using dicarboxyl N-lauroyl- l-glutamic acid, whose headgroup is larger than that of palmitic acid. Similar mesostructured product was obtained using 4-dodecyldiethylenetriamine with a large headgroup containing two primary amine groups. Interactions of carboxyl and primary amino groups in the surfactant molecules with inorganic species are quite important for the formation of mesostructured calcium phosphates. The Ca/P molar ratio of mesostructured calcium phosphates was strongly affected by the molecular structure of surfactants containing carboxyl and primary amino groups. Ca-rich materials can be obtained using carboxylic acid-type surfactants (Ca/P approximately 1.7) rather than amine-type surfactants (Ca/P approximately 1.0). PMID:18947246

  12. Helical assembly induced by hydrogen bonding from chiral carboxylic acids based on perylene bisimides.

    PubMed

    Lu, Xinyu; Guo, Zhiqian; Sun, Chunyu; Tian, He; Zhu, Weihong

    2011-09-22

    The control over self-assembly behavior becomes absolutely critical because it is dependent on the orientation and morphology. The motivation is focused on borrowing the help of O-HO hydrogen bonding interactions to realize the control in chiral self-assembly. A series of perylene bisimide (PBI) dyes 3a-3d bearing chiral amino acid derivatives on the imide N atoms and four phenoxy-type substituents at the bay positions of the perylene core were synthesized. Optical properties and aggregation behavior of PBIs were investigated by absorption, fluorescence, circular dichroism (CD), and (1)H NMR spectroscopy. Except for the chiral ester 3c and achiral 3d, chiral dyes 3a and 3b show bisignated CD signals, indicating that the chiral carboxylic acid-functionalized PBI systems are found to be spontaneously self-assembled into supramolecular helices via intermolecular hydrogen bonding rather than ?-? stacking. Furthermore, the chirality-controlled helical superstructures are strongly dependent on several factors, such as solvent polarity, concentration, and temperature. The supramolecular helical chirality can be well-controlled by the chiral amino acid residues in the PBI system; that is, the assembled clockwise (plus, P) or anticlockwise (minus, M) helices can be induced by L- or D-isomers, respectively. PMID:21830806

  13. Functionalised carboxylic acids in atmospheric particles: An annual cycle revealing seasonal trends and possible sources

    NASA Astrophysics Data System (ADS)

    Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

    2013-04-01

    Carboxylic acids represent a major fraction of the water soluble organic carbon (WSOC) in atmospheric particles. Among the particle phase carboxylic acids, straight-chain monocarboxylic acids (MCA) and dicarboxylic acids (DCA) with 2-10 carbon atoms have extensively been studied in the past. However, only a few studies exist dealing with functionalised carboxylic acids, i.e. having additional hydroxyl-, oxo- or nitro-groups. Regarding atmospheric chemistry, these functionalised carboxylic acids are of particular interest as they are supposed to be formed during atmospheric oxidation processes, e.g. through radical reactions. Therefore they can provide insights into the tropospheric multiphase chemistry. During this work 28 carboxylic acids (4 functionalised aliphatic MCAs, 5 aromatic MCAs, 3 nitroaromatic MCAs, 6 aliphatic DCAs, 6 functionalised aliphatic DCAs, 4 aromatic DCAs) were quantitatively determined in 256 filter samples taken at the rural research station Melpitz (Saxony, Germany) with a PM10 Digitel DHA-80 filter sampler. All samples were taken in 2010 covering a whole annual cycle. The resulting dataset was examined for a possible seasonal dependency of the acid concentrations. Furthermore the influence of the air mass origin on the acid concentrations was studied based on a simple two-sector classification (western or eastern sector) using a back trajectory analysis. Regarding the annual average, adipic acid was found to be the most abundant compound with a mean concentration of 7.8 ng m-3 followed by 4-oxopimelic acid with 6.1 ng m-3. The sum of all acid concentrations showed two maxima during the seasonal cycle; one in summer and one in winter, whereas the highest overall acid concentrations were found in summer. In general the target acids could be divided into two different groups, where one group has its maximum concentration in summer and the other group during winter. The first group contains all investigated aliphatic mono- and dicarboxylic acids. The high concentrations in summer could lead to the conclusion that these acids are mostly formed during photochemical processes in the atmosphere. However, the concentrations in autumn were often exceeded by the ones in winter. Therefore probably other sources beside photochemical processes have to be considered. The second group consists of aromatic compounds. Because of the high concentrations in winter it can be concluded that photochemical formation plays a minor role and primary emission sources e.g., wood combustion are likely. Further evidence in determining sources of the carboxylic acids could be obtained from the air mass origin. In general, air masses transported from East have a more anthropogenic influence than the air mass inflow from West. For all aromatic carboxylic acids higher concentrations were determined during eastern inflow, indicating anthropogenic sources. This presumption is supported by high correlations with the elemental carbon (EC). Regarding the aliphatic carboxylic there is one group with higher concentrations when the air mass is transported from West and one with higher concentrations when air mass is transported from East. In summary the findings of this study reveal a clear difference in the seasonal trends of the single target acids indicating a variety of different sources.

  14. Enhanced Production of Carboxylic Acids by Engineering of Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  15. Preferential Interaction of Na+ over K+ to Carboxylate-functionalized Silver Nanoparticles

    EPA Science Inventory

    Elucidating mechanistic interactions between specific ions (Na+/ K+) and nanoparticle surfaces to alter particle stability in polar media has received little attention. We investigated relative preferential binding of Na+ and K+ to carboxylate-functionalized silver nanoparticles ...

  16. Fluorescent derivatization of aromatic carboxylic acids with horseradish peroxidase in the presence of excess hydrogen peroxide.

    PubMed

    Odo, Junichi; Inoguchi, Masahiko; Aoki, Hiroyuki; Sogawa, Yuto; Nishimura, Masahiro

    2015-01-01

    The fluorescent derivatization of aromatic carboxylic acids by the catalytic activity of horseradish peroxidase (HRP) in the presence of excess H2O2 was investigated. Four monocarboxylic acids, nine dicarboxylic acids, and two tricarboxylic acids, all of which are non- or weakly fluorescent, were effectively converted into fluorescent compounds using this new method. This technique was further developed for the fluorometric determination of trace amounts of terephthalic acid (3c) and lutidinic acid (2b), and linear calibration curves for concentrations between 2.5 and 20.0 nmol of terephthalic acid (3c) and 1.0 and 10.0 nmol of lutidinic acid (2b) were demonstrated. Compound III, an intermediate of HRP, played an essential role in this process. Additionally, lactoperoxidase and manganese peroxidase, peroxidases similar to HRP, showed successful fluorescent derivatization of nicotinic acid (1b), lutidinic acid (2b), and hemimellitic acid (4a) in the presence of excess H2O2. PMID:25792272

  17. Acyl Radicals from Aromatic Carboxylic Acids by Means of Visible-Light Photoredox Catalysis

    PubMed Central

    Bergonzini, Giulia; Cassani, Carlo; Wallentin, Carl-Johan

    2015-01-01

    Simple and abundant carboxylic acids have been used as acyl radical precursor by means of visible-light photoredox catalysis. By the transient generation of a reactive anhydride intermediate, this redox-neutral approach offers a mild and rapid entry to high-value heterocyclic compounds without the need of UV irradiation, high temperature, high CO pressure, tin reagents, or peroxides. PMID:26403148

  18. Decarboxylative alkynylation and carbonylative alkynylation of carboxylic acids enabled by visible-light photoredox catalysis.

    PubMed

    Zhou, Quan-Quan; Guo, Wei; Ding, Wei; Wu, Xiong; Chen, Xi; Lu, Liang-Qiu; Xiao, Wen-Jing

    2015-09-14

    Visible-light-induced photocatalytic decarboxylative alkynylations of carboxylic acids have been developed for the first time. The reaction features extremely mild conditions, broad substrate scope, and avoids additional oxidants. Importantly, a decarboxylative carbonylative alkynylation has also been carried out in the presence of carbon monoxide (CO) under photocatalytic conditions, which affords valuable ynones in high yields at room temperature. PMID:26149104

  19. Selective deuteration of (hetero)aromatic compounds via deutero-decarboxylation of carboxylic acids.

    PubMed

    Grainger, Rachel; Nikmal, Arif; Cornella, Josep; Larrosa, Igor

    2012-04-28

    A practical, mild and highly selective protocol for the monodeuteration of a variety of arenes and heteroarenes is presented. Catalytic amounts of Ag(I) salts in DMSO/D(2)O are shown to facilitate the deutero-decarboxylation of ortho-substituted benzoic and heteroaromatic α-carboxylic acids in high yields with excellent levels of deuterium incorporation. PMID:22418863

  20. Qualitative identification of carboxylic acids, boronic acids, and amines using cruciform fluorophores.

    PubMed

    Schwaebel, Thimon; Lirag, Rio Carlo; Davey, Evan A; Lim, Jaebum; Bunz, Uwe H F; Miljani?, Ognjen

    2013-01-01

    Molecular cruciforms are X-shaped systems in which two conjugation axes intersect at a central core. If one axis of these molecules is substituted with electron-donors, and the other with electron-acceptors, cruciforms' HOMO will localize along the electron-rich and LUMO along the electron-poor axis. This spatial isolation of cruciforms' frontier molecular orbitals (FMOs) is essential to their use as sensors, since analyte binding to the cruciform invariably changes its HOMO-LUMO gap and the associated optical properties. Using this principle, Bunz and Miljani? groups developed 1,4-distyryl-2,5-bis(arylethynyl)benzene and benzobisoxazole cruciforms, respectively, which act as fluorescent sensors for metal ions, carboxylic acids, boronic acids, phenols, amines, and anions. The emission colors observed when these cruciform are mixed with analytes are highly sensitive to the details of analyte's structure and - because of cruciforms' charge-separated excited states - to the solvent in which emission is observed. Structurally closely related species can be qualitatively distinguished within several analyte classes: (a) carboxylic acids; (b) boronic acids, and (c) metals. Using a hybrid sensing system composed from benzobisoxazole cruciforms and boronic acid additives, we were also able to discern among structurally similar: (d) small organic and inorganic anions, (e) amines, and (f) phenols. The method used for this qualitative distinction is exceedingly simple. Dilute solutions (typically 10(-6) M) of cruciforms in several off-the-shelf solvents are placed in UV/Vis vials. Then, analytes of interest are added, either directly as solids or in concentrated solution. Fluorescence changes occur virtually instantaneously and can be recorded through standard digital photography using a semi-professional digital camera in a dark room. With minimal graphic manipulation, representative cut-outs of emission color photographs can be arranged into panels which permit quick naked-eye distinction among analytes. For quantification purposes, Red/Green/Blue values can be extracted from these photographs and the obtained numeric data can be statistically processed. PMID:23995878

  1. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  2. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1981-01-01

    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  3. Regioselective Enzymatic β-Carboxylation of para-Hydroxy- styrene Derivatives Catalyzed by Phenolic Acid Decarboxylases

    PubMed Central

    Wuensch, Christiane; Pavkov-Keller, Tea; Steinkellner, Georg; Gross, Johannes; Fuchs, Michael; Hromic, Altijana; Lyskowski, Andrzej; Fauland, Kerstin; Gruber, Karl; Glueck, Silvia M; Faber, Kurt

    2015-01-01

    We report on a ‘green’ method for the utilization of carbon dioxide as C1 unit for the regioselective synthesis of (E)-cinnamic acids via regioselective enzymatic carboxylation of para-hydroxystyrenes. Phenolic acid decarboxylases from bacterial sources catalyzed the β-carboxylation of para-hydroxystyrene derivatives with excellent regio- and (E/Z)-stereoselectivity by exclusively acting at the β-carbon atom of the C=C side chain to furnish the corresponding (E)-cinnamic acid derivatives in up to 40% conversion at the expense of bicarbonate as carbon dioxide source. Studies on the substrate scope of this strategy are presented and a catalytic mechanism is proposed based on molecular modelling studies supported by mutagenesis of amino acid residues in the active site. PMID:26190963

  4. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  5. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, Helena L. (Arvada, CO); Ratcliff, Matthew A. (Lakewood, CO); Palasz, Peter D. (Lakewood, CO)

    1986-01-01

    A process for producing peracids from lactic acid-containing solutions derived from biomass processing systems comprising: adjusting the pH of the solution to about 8-9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids; oxidizing the solution to produce volatile lower aliphatic aldehydes; removing said aldehydes as they are generated; and converting said aldehydes to peracids.

  6. The Debaryomyces hansenii carboxylate transporters Jen1 homologues are functional in Saccharomyces cerevisiae.

    PubMed

    Soares-Silva, Isabel; Ribas, David; Foskolou, Iosifina P; Barata, Beatriz; Bessa, Daniela; Paiva, Sandra; Queirs, Odlia; Casal, Margarida

    2015-12-01

    We have functionally characterized the four Saccharomyces cerevisiae (Sc) Jen1 homologues of Debaryomyces hansenii (Dh) by heterologous expression in S. cerevisiae. Debaryomyces hansenii cells display mediated transport for the uptake of lactate, acetate, succinate and malate. DHJEN genes expression was detected by RT-PCR in all carbon sources assayed, namely lactate, succinate, citrate, glycerol and glucose. The heterologous expression in the S. cerevisiae W303-1A jen1? ady2? strain demonstrated that the D. hansenii JEN genes encode four carboxylate transporters. DH27 gene encodes an acetate transporter (Km 0.94 0.17 mM; Vmax 0.43 0.03 nmols(-1)mg(-1)), DH17 encodes a malate transporter (Km 0.27 0.04 mM; Vmax 0.11 0.01 nmols(-1)mg(-1)) and both DH18 and DH24 encode succinate transporters with the following kinetic parameters, respectively, Km 0.31 0.06 mM; Vmax 0.83 0.04 nmols(-1)mg(-1)and Km 0.16 0.02 mM; Vmax 0.19 0.02 nmols(-1)mg(-1). Surprisingly, no lactate transporter was found, although D. hansenii presents a mediated transport for this acid. This work advanced the current knowledge on yeast carboxylate transporters by characterizing four new plasma membrane transporters in D. hansenii. PMID:26500234

  7. Simple thiol-ene click chemistry modification of SBA-15 silica pores with carboxylic acids.

    PubMed

    Bordoni, Andrea V; Lombardo, M Vernica; Regazzoni, Alberto E; Soler-Illia, Galo J A A; Wolosiuk, Alejandro

    2015-07-15

    A straightforward approach for anchoring tailored carboxylic groups in mesoporous SiO2 colloidal materials is presented. The thiol-ene photochemical reaction between vinyltrimethoxysilane precursors and various thiocarboxylic acids which has, click chemistry features (i.e. high conversion yields, insensitivity to oxygen, mild reaction conditions), results in carboxylated silane precursors that can be readily used as surface modifiers. The carboxylic groups of acetic, undecanoic and succinic acid were immobilized on the silica mesopore walls of SBA-15 powders employing the synthesized silane precursors. Post-grafting has been confirmed through infrared spectrometry (FTIR), energy dispersive X-ray spectroscopy (EDS), elemental analysis (EA) and zeta potential measurements. Detailed field-emission gun scanning electron microscopy (FESEM) images and small angle X-ray scattering (SAXS) data revealed parallel mesopores and ordered mesostructures. It is shown that the immobilized COOH groups are chemically accessible for acid-base reactions as well as copper adsorption. Immobilization of easily synthesized tailored carboxylic modified alkoxide precursors within mesoporous systems provides a unique chemical nanoenvironment within these ordered frameworks. PMID:25845883

  8. Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades.

    PubMed

    Just-Baringo, Xavier; Procter, David J

    2015-05-19

    Reductive electron transfer (ET) to organic compounds is a powerful method for the activation of substrates via the formation of radicals, radical anions, anions, and dianions that can be exploited in bond-cleaving and bond-forming processes. Since its introduction to the synthetic community in 1977 by Kagan, SmI2 has become one of the most important reducing agents available in the laboratory. Despite its widespread application in aldehyde and ketone reduction, it was widely accepted that carboxylic acid derivatives could not be reduced by SmI2; only recently has our work led to this dogma being overturned, and the reduction of carboxylic acid derivatives using SmI2 can now take its place alongside aldehyde/ketone reduction as a powerful activation mode for synthesis. In this Account, we set out our studies of the reduction of carboxylic acid derivatives using SmI2, SmI2-H2O, and SmI2-H2O-NR3 and the exploitation of the unusual radical anions that are now accessible in unprecedented carbon-carbon bond-forming processes. The Account begins with our serendipitous discovery that SmI2 mixed with H2O is able to reduce six-membered lactones to diols, a transformation previously thought to be impossible. After the successful development of selective monoreductions of Meldrum's acid and barbituric acid heterocyclic feedstocks, we then identified the SmI2-H2O-NR3 reagent system for the efficient reduction of a range of acyclic carboxylic acid derivatives that typically present a significant challenge for ET reductants. Mechanistic studies have led us to propose a common mechanism for the reduction of carboxylic acid derivatives using Sm(II), with only subtle changes observed as the carboxylic acid derivative and Sm(II) reagent system are varied. At the center of our postulated mechanism is the proposed reversibility of the first ET to the carbonyl of carboxylic acid derivatives, and this led us to devise several strategies that allow the radical anion intermediates to be exploited productively in efficient new processes. First, we have used internal directing groups in substrates to "switch on" productive ET to esters and amides and have exploited such an approach in tag-removal cyclization processes that deliver molecular scaffolds of significance in biology and materials science. Second, we have exploited external ligands to facilitate ET to carboxylic acid derivatives and have applied the strategy in telescoped reaction sequences. Finally, we have employed follow-up cyclizations with alkenes, alkynes, and allenes to intercept radical anion intermediates formed along the reaction path and have employed this strategy in complexity-generating cascade approaches to biologically significant molecular architectures. From our studies, it is now clear that Sm(II)-mediated ET to carboxylic acid derivatives constitutes a general strategy for inverting the polarity of the carbonyl, allowing nucleophilic carbon-centered radicals to be formed and exploited in novel chemical processes. PMID:25871998

  9. ANIBAL, stable isotope-based quantitative proteomics by aniline and benzoic acid labeling of amino and carboxylic groups.

    PubMed

    Panchaud, Alexandre; Hansson, Jenny; Affolter, Michael; Bel Rhlid, Rachid; Piu, Stéphane; Moreillon, Philippe; Kussmann, Martin

    2008-04-01

    Identification and relative quantification of hundreds to thousands of proteins within complex biological samples have become realistic with the emergence of stable isotope labeling in combination with high throughput mass spectrometry. However, all current chemical approaches target a single amino acid functionality (most often lysine or cysteine) despite the fact that addressing two or more amino acid side chains would drastically increase quantifiable information as shown by in silico analysis in this study. Although the combination of existing approaches, e.g. ICAT with isotope-coded protein labeling, is analytically feasible, it implies high costs, and the combined application of two different chemistries (kits) may not be straightforward. Therefore, we describe here the development and validation of a new stable isotope-based quantitative proteomics approach, termed aniline benzoic acid labeling (ANIBAL), using a twin chemistry approach targeting two frequent amino acid functionalities, the carboxylic and amino groups. Two simple and inexpensive reagents, aniline and benzoic acid, in their (12)C and (13)C form with convenient mass peak spacing (6 Da) and without chromatographic discrimination or modification in fragmentation behavior, are used to modify carboxylic and amino groups at the protein level, resulting in an identical peptide bond-linked benzoyl modification for both reactions. The ANIBAL chemistry is simple and straightforward and is the first method that uses a (13)C-reagent for a general stable isotope labeling approach of carboxylic groups. In silico as well as in vitro analyses clearly revealed the increase in available quantifiable information using such a twin approach. ANIBAL was validated by means of model peptides and proteins with regard to the quality of the chemistry as well as the ionization behavior of the derivatized peptides. A milk fraction was used for dynamic range assessment of protein quantification, and a bacterial lysate was used for the evaluation of relative protein quantification in a complex sample in two different biological states. PMID:18083701

  10. The dimerization of ?1-piperidine-2-carboxylic acid

    PubMed Central

    Hope, D. B.; Horncastle, K. C.; Aplin, R. T.

    1967-01-01

    The l-amino acid oxidase of Mytilus edulis has been used to oxidize l-lysine on a large scale in the presence of catalase. The ?-oxo acid derived from lysine cyclizes to a Schiff base, which readily dimerizes. The dimer undergoes spontaneous dehydration and decarboxylation to form 1,2,3,4,5,6,7,8-octahydropyrido[3,2-a]-indolizin-10(4bH)-one. This structure was established by a study of its molecular weight and infrared, nuclear-magnetic-resonance and mass spectra. PMID:5584009

  11. Antimicrobial Activity of Some Higher Amine Salts of Carboxylic Acids

    PubMed Central

    Borick, Paul M.; Bratt, Martin

    1961-01-01

    Various higher amine salts of dicarboxylic and tricarboxylic acids were prepared and tested for antimicrobial activity in vitro. Although activity was present in all compounds tested, tetradecylammonium malonate showed the greatest activity with the widest spectrum. This compound was effective against gram-negative as well as gram-positive microorganisms, yeast, and fungi. A high order of microbiological activity was demonstrated with various higher amine salts of dicarboxylic and tricarboxylic acids, e.g., tetradecylammonium oxalate, tetradecylammonium citrate, and so forth. Compounds tested exhibited a low order of toxicity. PMID:13871338

  12. Profiling of chiral and achiral carboxylic acid metabolomics: synthesis and evaluation of triazine-type chiral derivatization reagents for carboxylic acids by LC-ESI-MS/MS and the application to saliva of healthy volunteers and diabetic patients.

    PubMed

    Takayama, Takahiro; Kuwabara, Tomohiro; Maeda, Toshio; Noge, Ichiro; Kitagawa, Yutaka; Inoue, Koichi; Todoroki, Kenichiro; Min, Jun Zhe; Toyo'oka, Toshimasa

    2015-01-01

    Novel triazine-type chiral derivatization reagents, i.e., (S)-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidin-3-amine (DMT-3(S)-Apy) and (S)-4,6-dimethoxy-N-(pyrrolidin-3-yl)-1,3,5-triazin-2-amine (DMT-1(S)-Apy), were developed for the highly sensitive and selective detection of chiral carboxylic acids by UPLC-MS/MS analysis. Among the synthesized reagents, DMT-3(S)-Apy was a more efficient chiral reagent for the enantiomeric separation of chiral carboxylic acids in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The DMT-3(S)-Apy was used for the determination of 13 carboxylic acids in human saliva of healthy volunteers and diabetic patients. Various biological carboxylic acids including chiral carboxylic acids, and mono- and di-carboxylic acids were clearly identified in the saliva of healthy persons and diabetic patients. The concentrations of carboxylic acids detected in the saliva of diabetic patients were relatively higher than those in the healthy persons. Furthermore, the concentration of D-lactic acid (LA) and the ratio of D/L-LA in the diabetic patients were significantly higher than those in the healthy persons. The low ratio of D/L-LA in healthy persons was also identified to be independent of age and sex. These results suggest that the determination of the D/L-LA ratio in saliva might be applicable for the diagnosis of diabetes. Based on these observations, DMT-3(S)-Apy seems to be a useful chiral derivatization reagent for the determination not only of chiral carboxylic acids but also achiral ones. In conclusion, the proposed method using DMT-3(S)-Apy is useful for the carboxylic acid metabolomics study of various specimens. PMID:25366977

  13. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!

    PubMed Central

    Van de Poel, Bram; Van Der Straeten, Dominique

    2014-01-01

    Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) is also a fairly simple molecule, but perhaps its role in plant biology is seriously underestimated. This triangularly shaped amino acid has many more features than just being the precursor of the lead-role player ethylene. For example, ACC can be conjugated to three different derivatives, but their biological role remains vague. ACC can also be metabolized by bacteria using ACC-deaminase, favoring plant growth and lowering stress susceptibility. ACC is also subjected to a sophisticated transport mechanism to ensure local and long-distance ethylene responses. Last but not least, there are now a few exciting studies where ACC has been reported to function as a signal itself, independently from ethylene. This review puts ACC in the spotlight, not to give it the lead-role, but to create a picture of the stunning co-production of the hormone and its precursor. PMID:25426135

  14. A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate.

    PubMed

    Nelp, Micah T; Bandarian, Vahe

    2015-09-01

    The biosynthesis of nitriles is known to occur through specialized pathways involving multiple enzymes; however, in bacterial and archeal biosynthesis of 7-deazapurines, a single enzyme, ToyM, catalyzes the conversion of the carboxylic acid containing 7-carboxy-7-deazaguanine (CDG) into its corresponding nitrile, 7-cyano-7-deazaguanine (preQ0 ). The mechanism of this unusual direct transformation was shown to proceed via the adenylation of CDG, which activates it to form the newly discovered amide intermediate 7-amido-7-deazaguanine (ADG). This is subsequently dehydrated to form the nitrile in a process that consumes a second equivalent of ATP. The authentic amide intermediate is shown to be chemically and kinetically competent. The ability of ToyM to activate two different substrates, an acid and an amide, accounts for this unprecedented one-enzyme catalysis of nitrile synthesis, and the differential rates of these two half reactions suggest that this catalytic ability is derived from an amide synthetase that gained a new function. PMID:26228534

  15. Mechanism of SmI2/amine/H2O-promoted chemoselective reductions of carboxylic acid derivatives (esters, acids, and amides) to alcohols.

    PubMed

    Szostak, Michal; Spain, Malcolm; Eberhart, Andrew J; Procter, David J

    2014-12-19

    Samarium(II) iodide-water-amine reagents have emerged as some of the most powerful reagents (E = -2.8 V) for the reduction of unactivated carboxylic acid derivatives to primary alcohols under single electron transfer conditions, a transformation that had been considered to lie outside the scope of the classic SmI2 reductant for more than 30 years. In this article, we present a detailed mechanistic investigation of the reduction of unactivated esters, carboxylic acids, and amides using SmI2-water-amine reagents, in which we compare the reactivity of three functional groups. The mechanism has been studied using the following: (i) kinetic, (ii) reactivity, (iii) radical clock, and (iv) isotopic labeling experiments. The kinetic data indicate that for the three functional groups all reaction components (SmI2, amine, water) are involved in the rate equation and that the rate of electron transfer is facilitated by base assisted deprotonation of water. Notably, the mechanistic details presented herein indicate that complexation between SmI2, water, and amines can result in a new class of structurally diverse, thermodynamically powerful reductants for efficient electron transfer to a variety of carboxylic acid derivatives. These observations will have important implications for the design and optimization of new processes involving Sm(II)-reduction of ketyl radicals. PMID:25232891

  16. Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids

    PubMed Central

    García, Vanina; Reyes-Darias, Jose-Antonio; Martín-Mora, David; Morel, Bertrand; Matilla, Miguel A.

    2015-01-01

    Chemoreceptors are at the beginnings of chemosensory signaling cascades that mediate chemotaxis. Most bacterial chemoreceptors are functionally unannotated and are characterized by a diversity in the structure of their ligand binding domains (LBDs). The data available indicate that there are two major chemoreceptor families at the functional level, namely, those that respond to amino acids or to Krebs cycle intermediates. Since pseudomonads show chemotaxis to many different compounds and possess different types of chemoreceptors, they are model organisms to establish relationships between chemoreceptor structure and function. Here, we identify PP2861 (termed McpP) of Pseudomonas putida KT2440 as a chemoreceptor with a novel ligand profile. We show that the recombinant McpP LBD recognizes acetate, pyruvate, propionate, and l-lactate, with KD (equilibrium dissociation constant) values ranging from 34 to 107 μM. Deletion of the mcpP gene resulted in a dramatic reduction in chemotaxis toward these ligands, and complementation restored a native-like phenotype, indicating that McpP is the major chemoreceptor for these compounds. McpP has a CACHE-type LBD, and we present data indicating that CACHE-containing chemoreceptors of other species also mediate taxis to C2 and C3 carboxylic acids. In addition, the LBD of NbaY of Pseudomonas fluorescens, an McpP homologue mediating chemotaxis to 2-nitrobenzoate, bound neither nitrobenzoates nor the McpP ligands. This work provides further insight into receptor structure-function relationships and will be helpful to annotate chemoreceptors of other bacteria. PMID:26048936

  17. Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids.

    PubMed

    García, Vanina; Reyes-Darias, Jose-Antonio; Martín-Mora, David; Morel, Bertrand; Matilla, Miguel A; Krell, Tino

    2015-08-15

    Chemoreceptors are at the beginnings of chemosensory signaling cascades that mediate chemotaxis. Most bacterial chemoreceptors are functionally unannotated and are characterized by a diversity in the structure of their ligand binding domains (LBDs). The data available indicate that there are two major chemoreceptor families at the functional level, namely, those that respond to amino acids or to Krebs cycle intermediates. Since pseudomonads show chemotaxis to many different compounds and possess different types of chemoreceptors, they are model organisms to establish relationships between chemoreceptor structure and function. Here, we identify PP2861 (termed McpP) of Pseudomonas putida KT2440 as a chemoreceptor with a novel ligand profile. We show that the recombinant McpP LBD recognizes acetate, pyruvate, propionate, and l-lactate, with KD (equilibrium dissociation constant) values ranging from 34 to 107 μM. Deletion of the mcpP gene resulted in a dramatic reduction in chemotaxis toward these ligands, and complementation restored a native-like phenotype, indicating that McpP is the major chemoreceptor for these compounds. McpP has a CACHE-type LBD, and we present data indicating that CACHE-containing chemoreceptors of other species also mediate taxis to C2 and C3 carboxylic acids. In addition, the LBD of NbaY of Pseudomonas fluorescens, an McpP homologue mediating chemotaxis to 2-nitrobenzoate, bound neither nitrobenzoates nor the McpP ligands. This work provides further insight into receptor structure-function relationships and will be helpful to annotate chemoreceptors of other bacteria. PMID:26048936

  18. Oxygenation mechanism in conversion of aldehyde to carboxylic acid catalyzed by a cytochrome P-450 isozyme.

    PubMed

    Watanabe, K; Narimatsu, S; Yamamoto, I; Yoshimura, H

    1991-02-15

    The oxygenation of an aldehyde, 11-oxo-delta 8-tetrahydrocannabinol to a carboxylic acid, delta 8-tetrahydrocannabinol-11-oic acid was catalyzed by cytochrome P-450 MUT-2 purified from hepatic microsomes of male ddN mice. The oxygenation mechanism was confirmed by the incorporation of oxygen-18 from molecular oxygen into the carboxylic acid formed. An aldehyde form but not a hydrated form of 11-oxo-delta 8-tetrahydrocannabinol may be a substrate for the cytochrome P-450. The oxygenation of aldehyde catalyzed by cytochrome P-450 might be a common metabolic reaction in biological systems, and should be considered as an additional role of cytochrome P-450 in biotransformation of endogenous compounds and xenobiotics. PMID:1847130

  19. Water chemical ionization mass spectrometry of aldehydes, ketones esters, and carboxylic acids

    SciTech Connect

    Hawthorne, S.B.; Miller, D.J.

    1986-11-01

    Chemical ionization mass spectrometry (CI) of aliphatic and aromatic carbonyl compounds using water as the reagent gas provides intense pseudomolecular ions and class-specific fragmentation patterns that can be used to identify aliphatic aldehydes, ketones, carboxylic acids, and esters. The length of ester acyl and alkyl groups can easily be determined on the basis of loss of alcohols from the protonated parent. Water CI provides for an approximately 200:1 selectivity of carbonyl species over alkanes. No reagent ions are detected above 55 amu, allowing species as small as acetone, propanal, acetic acid, and methyl formate to be identified. When deuterate water was used as the reagent, only the carboxylic acids and ..beta..-diketones showed significant H/D exchange. The use of water CI to identify carbonyl compounds in a wastewater from the supercritical water extraction of lignite coal, in lemon oil, and in whiskey volatiles is discussed.

  20. Comparison Of Asymmetric Hydrogenations Of Unsaturated- Carboxylic Acids And -Esters

    PubMed Central

    Khumsubdee, Sakunchai; Burgess, Kevin

    2013-01-01

    As methodology development matures it can be difficult to discern the most effective ways of performing certain transformations from the rest. This review summarizes the most important contributions leading to asymmetric hydrogenations of simple unsaturated-acid and ester substrates, with the objective of highlighting at least the best types of catalysts for each. Achievements in the area are described and these reveal situations where further efforts should be worthwhile, and ones where more research is only likely to give diminishing returns. In general, our conclusions are that the most useful types of catalysts for unsaturated-acids and -esters tend to be somewhat different, simple substrates have been studied extensively, and the field is poised to address more complex reactions. These could be ones involving alternative, particularly cyclic, structures, chemoselectivity issues, and more complex substrate stereochemistries. PMID:24729943

  1. Partial Hydrothermal Oxidation of High Molecular Weight Unsaturated Carboxylic Acids for Upgrading of Biodiesel Fuel

    NASA Astrophysics Data System (ADS)

    Kawasaki, K.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.

    2007-03-01

    With increasing environmental awareness and crude oil price, biodiesel fuel (BDF) is gaining recognition as a renewable fuel which may be used as an alternative diesel fuel without any modification to the engine. The cold flow and viscosity of BDF, however, is a major drawback that limited its use in cold area. In this study, therefore, we investigated that partial oxidation of high molecular weight unsaturated carboxylic acids in subcritical water, which major compositions in BDF, to upgrade biodiesel fuel. Oleic acid, (HOOC(CH2)7CH=CH(CH2)7CH3), was selected as a model compound of high molecular weight unsaturated carboxylic acids. All experiments were performed with a batch reactor made of SUS 316 with an internal volume of 5.7 cm3. Oleic acid was oxidized at 300 °C with oxygen supply varying from 1-10 %. Results showed that a large amount of carboxylic acids and aldehydes having 8-9 carbon atoms were formed. These experimental results suggest that the hydrothermal oxidative cleavage may mainly occur at double bonds and the cleavage of double bonds could improve the cold flow and viscosity of BDF.

  2. Do carboximide-carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics.

    PubMed

    Kaur, Ramanpreet; Gautam, Raj; Cherukuvada, Suryanarayan; Guru Row, Tayur N

    2015-05-01

    Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular inter-actions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations. PMID:25995843

  3. A pH-Sensitive Supramolecular Switch Based on Mixed Carboxylic Acid Terminated Self-Assembled Monolayers on Au(111).

    PubMed

    Jacqueln, Daniela K; Prez, Manuel A; Euti, Esteban M; Arisnabarreta, Nicols; Cometto, Fernando P; Paredes-Olivera, Patricia; Patrito, E Martn

    2016-02-01

    We show that homogeneously mixed self-assembled monolayers (SAMs) of mercaptoalkanoic acids of different chain lengths can be used to build up a pH-sensitive supramolecular switch. The acids with short and long alkyl chains interact via the strong hydrogen bond between carboxylic acid groups. The pH acts as a trigger by breaking or restoring the hydrogen bond interaction in basic or acidic solutions, respectively. The corresponding changes in the monolayer structure were determined by ellipsometry, surface-enhanced Raman spectroscopy, and contact angle measurements. Density functional theory (DFT) calculations were performed to elucidate the structures of interacting molecules compatible with the surface coverage obtained from electrochemical reductive desorption experiments. The simplicity of the preparation procedure assures a high reproducibility whereas the stability of the homogeneous mixed SAM guarantees the reversibility of the switching process. PMID:26799556

  4. Anhydrosugar and sugar alcohol organic markers associated with carboxylic acids in particulate matter from incense burning

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Wu, Pei-Ling; Hsu, Yu-Ting; Yang, Chi-Ru

    2010-09-01

    Aerosol from the burning two types of sandalwood-based incense, Hsing Shan and Lao Shan, was analyzed to characterize the chemical profile of total particulate matter emitted. The total particulate matter (PM) mass emission factors were 46.3 2.68 mg g -1 of Hsing Shan incense and 43.7 1.08 mg g -1 of Lao Shan incense. Chemical analysis of emissions from the two types of incense revealed that of the 25 components in four groups characterized, anhydrosugars formed the major group, at 46.7-52.2% w/w of the identified particulate and 1078.3-1169.8 ?g g -1 of incense, followed by inorganic salts at 30.4-31.8% w/w of identified particulate and 681.6-734.0 ?g g -1 of incense, carboxylic acids at 12.0-17.1% w/w of the identified particulate and 268.6-392.8 ?g g -1 of incense, and sugar alcohols at 4.44-5.38% w/w of the identified particulate and 102.3-120.6 ?g g -1 of incense. More anhydrosugars and sugar alcohols were emitted from Lao Shan incense than from Hsing Shan incense whereas more carboxylic acids and organic salts were emitted from Hsing Shan than from Lao Shan. These differences were due to structural and functional differences in the young sandalwood used to make Hsing Shan and the aged sandalwood used to make Lao Shan. The anhydrosugar levoglucosan, used as a marker of biomass burning, was always the most abundant species in emitted PM for both incenses ( Lao Shan 21.7 mg g -1 of PM and Hsing Shan 18.7 mg g -1). K + and Cl - were the second most abundant components (K + and Cl - were summed), accounting for 10.6 mg g -1 of Hsing Shan PM and 9.85 mg g -1 of Lao Shan PM. The most abundant carboxylic acids in the emissions were formic, acetic, succinic, glutaric and phthalic acid. The latter is a fragrance ingredient and a potential health hazard and was twice as prevalent in Lao Shan emissions. Xylitol was the most prevalent of the sugar alcohols at 35.7-36.6% w/w of total identified sugar alcohols. These abundant species are potential markers for incense burning. K +, levoglucosan, mannosan and xylitol are already reported in discriminator ratios for wood burning and it is proposed here that these can and should also apply to incense burning. The calculated discriminator ratios for two types of incense burning reported here are 0.229-0.288 for K/Levo, 12.5-13.5 for Levo/Manno, and 21.5-23.7 for the novel discriminator ratio Levo/Xylitol.

  5. Copper(II)-Promoted Cyclization/Difunctionalization of Allenols and Allenylsulfonamides: Synthesis of Heterocycle-Functionalized Vinyl Carboxylate Esters.

    PubMed

    Casavant, Barbara J; Khoder, Zainab M; Berhane, Ilyas A; Chemler, Sherry R

    2015-12-18

    A unique method to affect intramolecular aminooxygenation and dioxygenation of allenols and allenylsulfonamides is described. These operationally simple reactions occur under neutral or basic conditions where copper(II) carboxylates serve as reaction promoter, oxidant, and carboxylate source. Moderate to high yields of heterocycle-functionalized vinyl carboxylate esters are formed with moderate to high levels of diastereoselectivity. Such vinyl carboxylate esters could serve as precursors to ?-amino and ?-oxy ketones and derivatives thereof. PMID:26624861

  6. Study of carboxylic functionalization of polypropylene surface using the underwater plasma technique

    NASA Astrophysics Data System (ADS)

    Joshi, R. S.; Friedrich, J. F.; Wagner, M. H.

    2009-08-01

    Non-equilibrium solution plasma treatment of polymer surfaces in water offers the possibility of more dense and selective polymer surface functionalization in comparison to the well-known and frequently used low-pressure oxygen plasma. Functional groups are introduced when the polymer surface contacts the plasma moderated solution especially water solutions. The emission of ions, electrons, energy-rich neutrals and complexes, produced by the ion avalanche are limited by quenching, with the aid of the ambient water phase. The UV-radiation produced in plasma formation also helps to moderate the reaction solution further by producing additional excited, ionized/dissociated molecules. Thus, monotype functional groups equipped polymer surfaces, preferably OH groups, originating from the dissociated water molecules, could be produced more selectively. An interesting feature of the technique is its flexibility to use a wide variety of additives in the water phase. Another way to modify polymer surfaces is the deposition of plasma polymers carrying functional groups as carboxylic groups used in this work. Acetic acid, acrylic acid, maleic and itaconic acid were used as additive monomers. Acetic acid is not a chemically polymerizing monomer but it could polymerize by monomer/molecular fragmentation and recombination to a cross linked layer. The other monomers form preferably water-soluble polymers on a chemical way. Only the fragmented fraction of these monomers could form an insoluble coating by cross linking to substrate. The XPS analysis was used to track the alterations in -O-CO- bond percentage on the PP surface. To identify the -COOH groups on substrate surface unambiguously, which have survived the plasma polymerization process, the derivatization with trifluoroethanol was performed.

  7. DETERMINATION OF CARBOXYLIC ACIDS BY ION-EXCLUSION CHROMATOGRAPHY WITH NON-SUPPRESSED CONDUCTIVITY AND OPTICAL DETECTORS

    EPA Science Inventory

    Determination of carboxylic acids using non-suppressed conductivity and UV detections is described. The background conductance of 1-octanesulfonic acid, hexane sulfonic acid and sulfuric acid at varying concentrations was determined. Using 0.2 mM 1-octanesulfonic acid as a mobile...

  8. DETERMINATION OF CARBOXYLIC ACIDS BY ION-EXCLUSION CHROMATOGRAPHY WITH NON-SUPPRESSED CONDUCTIVITY AND OPTICAL DETECTORS

    EPA Science Inventory

    Determination of carboxylic acids using non-suppressed conductivity and UV detections is described. he background conductance of I-octanesulfonic acid, hexane sulfonic acid and sulfuric acid at varying concentrations was determined. sing 0.2 MM I-octanesulfonic acid as a mobile p...

  9. Efficient Palladium-Catalyzed C-H Fluorination of C(sp3)-H Bonds: Synthesis of ?-Fluorinated Carboxylic Acids.

    PubMed

    Zhu, Qihua; Ji, Dezhong; Liang, Tingting; Wang, Xueyan; Xu, Yungen

    2015-08-01

    A novel and facile process for direct fluorination of unactivated C(sp3)-H bonds at the ? position of carboxylic acids was accomplished by a palladium(II)-catalyzed C-H activation. The addition of Ag2O and pivalic acid was found to be crucial for the success of this transformation. This reaction provides a versatile strategy for the synthesis of ?-fluorinated carboxylic acids. PMID:26172446

  10. Modular synthesis of multisubstituted furans through palladium-catalyzed three-component condensation of alkynylbenziodoxoles, carboxylic acids, and imines.

    PubMed

    Wu, Junliang; Yoshikai, Naohiko

    2015-09-14

    Mild and regiocontrolled synthesis of a multisubstituted furan is achieved through Pd(OAc)2 -catalyzed room-temperature condensation of an alkynylbenziodoxole, a carboxylic acid, and an enolizable ketimine, which contribute to C1, CO, and C2 fragments, respectively, to the furan skeleton. The reaction tolerates a broad range of functional groups in each of the reaction components, and enables highly modular and flexible synthesis of variously substituted furans. The reaction is particularly effective for the rapid generation of tri- and tetraarylfurans and furan-containing oligoarylenes without relying on conventional cross-coupling chemistry. PMID:26230623

  11. Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase.

    PubMed

    Pilling, Sergio; Baptista, Leonardo; Boechat-Roberty, Heloisa M; Andrade, Diana P P

    2011-11-01

    Despite the extensive search for glycine (NH₂CH₂COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH₂OH. Another possible reaction involves NH₂CH₂ and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH₂CH or NH₂CH₂OH are the most favorable from the thermochemical point of view. PMID:22066498

  12. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    SciTech Connect

    Dutta, Saikat; Wu, Kevin C.-W. E-mail: kevinwu@ntu.edu.tw; Kao, Hsien-Ming E-mail: kevinwu@ntu.edu.tw

    2014-11-01

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and {sup 13}C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  13. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    NASA Astrophysics Data System (ADS)

    Dutta, Saikat; Kao, Hsien-Ming; Wu, Kevin C.-W.

    2014-11-01

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (-COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and 13C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  14. Vibrational relaxation of matrix-isolated carboxylic acid dimers and monomers.

    PubMed

    Maçôas, Ermelinda M S; Myllyperkiö, Pasi; Kunttu, Henrik; Pettersson, Mika

    2009-07-01

    Femtosecond mid-IR transient absorption spectroscopy was used to probe the vibrational dynamics of formic acid and acetic acid isolated in solid argon following excitation of the fundamental transition of the carbonyl stretching mode. Carboxylic acids form extremely stable H-bonded dimers, hindering the study of the monomeric species at equilibrium conditions. The low-temperature rare-gas matrix isolation technique allows for a unique control over aggregation enabling the study of the monomer vibrational dynamics, as well as the dynamics of two distinct dimer structures (cyclic and open chain). This study provides insight into the role of the methyl rotor and hydrogen bonding in the vibrational dynamics of carboxylic acids. In the monomer of FA, depopulation of the initially excited state is characterized by a time constant of approximately 500 ps, and it is followed by the energy transfer from intermediately populated intramolecular vibrational states into the phonon modes of the argon lattice (vibrational cooling) in a much longer time scale (estimated to be longer than 5 ns). The methyl rotor in acetic acid monomer accelerates both processes of population transfer and vibrational cooling, with time constants of approximately 80 ps. Hydrogen bonding in formic acid dimers decreases the time constant associated with the dominant vibrational relaxation process by more than 2 orders of magnitude. Unlike in formic acid, hydrogen bonding in acetic acid has no apparent effect on the vibrational cooling rate. PMID:19275138

  15. Identification of a carboxylic acid metabolite from the catabolism of fluoranthene by a Mycobacterium sp

    SciTech Connect

    Kelley, I.; Freeman, J.P.; Evans, F.E.; Cerniglia, C.E. )

    1991-03-01

    A Mycobacterium sp. previously isolated from oil-contaminated estuarine sediments was capable of extensively mineralizing the high-molecular-weight polycyclic aromatic hydrocarbon fluoranthene. A carboxylic acid metabolite accumulated and was isolated by thin-layer and high-pressure liquid chromatographic analyses of ethyl acetate extracts from acidified culture media. The metabolite reached a maximum concentration of approximately 0.65% after 24 h of incubation. On the basis of comparisons with authentic compound in which the authors used UV and fluorescence spectrophotometry and R{sub f} values, as well as mass spectral and proton and carbon nuclear magnetic resonance spectral analyses, the metabolite was identified as 9-fluorenone-1-carboxylic acid. This is the first report in a microbial system of a fluoranthene metabolite in which significant degradation of one of the aromatic rings has occurred.

  16. Kinetics and mechanism of thermal decomposition of tert-Butylperoxyethyl esters of carboxylic acids

    SciTech Connect

    Turovskii, A.A.; Aleinikova, T.P.; Kushch, O.V.; Navrotskii, V.A.; Turovskii, N.A.

    1985-07-01

    tert-Butylperoxyethyl esters of carboxylic acids are widely used as vulcanization initiators of saturated elastomers and also as comonomers and inititators in polymerization processes. The kinetics of thermal decomposition of these esters of carboxylic acids were studied in the temperature range of 383-413/sup 0/K. The thermal stability of the peroxides is only slightly influenced by change in the substituent in the acyl part. The differences in the energies of activation are compensated by a change in the value of the preexponential factor. A mechanism of the process has been suggested and discussed. The homolytic cleavage of the -00- bond leads to the formation of inactive acyloxyethoxyl radicals, which undergo further decomposition.

  17. Direct bonding for dissimilar metals assisted by carboxylic acid vapor

    NASA Astrophysics Data System (ADS)

    Song, Jenn-Ming; Huang, Shang-Kun; Akaike, Masatake; Suga, Tadatomo

    2015-03-01

    This study developed a low-temperature low-vacuum direct bonding process for dissimilar metals via surface modification with formic acid vapor. Robust Cu/Ag and Cu/Zn bonding with a shear strength higher than 25 MPa can be achieved by thermal compression at 275 and 300 C, respectively. CuZn5 and Cu5Zn8 formed at the interface of Cu/Zn joints, while no distinct interdiffusion layers appeared at the Cu/Ag interface. At elevated temperatures, the shear strength of Cu/Zn joints decreased significantly and turned to be weaker than Cu/Ag at 250 C due to the softening of Zn. All the joints performed well subjected to thermal cycling up to 1000 times. However, compared with Cu/Ag joints with stable mechanical performance suffering aging at 250 C, the shear strength of Cu/Zn degraded drastically up to 200 h, and after that it remained almost constant, which can be ascribed to the competitive growth between CuZn5 and Cu5Zn8, resulting in collapse and oxidation of CuZn5.

  18. Salt and co-crystal formation from 6-bromobenzo[d]thiazol-2-amine and different carboxylic acid derivatives

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Yan, Pinhui; Wang, Daqi; Xu, Yijie; Jiang, Yingyan; Hu, Liangliang

    2012-05-01

    Studies concentrating on non-covalent interactions between the organic base of 6-bromobenzo[d]thiazol-2-amine, and carboxylic acid derivatives have led to an increased understanding of the role 6-bromobenzo[d]thiazol-2-amine has in binding with carboxylic acid derivatives. Here anhydrous and hydrated multicomponent organic acid-base adducts of 6-bromobenzo[d]thiazol-2-amine have been prepared with the carboxylic acids as p-nitrobenzoic acid, fumaric acid, L-tartaric acid, and terephthalic acid. The four crystalline compounds were characterized by X-ray diffraction analysis, infrared (IR), melting point (mp), and elemental analysis. All structures adopted hetero R22(8) supramolecular synthons except the salt 3. Analysis of crystal packing of the compounds under study suggests that there are Nsbnd H⋯O, Osbnd H⋯N, and Osbnd H⋯O hydrogen bonds (charge assisted or neutral) between acid and base components in the supramolecular assemblies.

  19. Internal energy distribution of carboxylate negative-ions of the herbicide diclofop acid in the gas-phase

    NASA Astrophysics Data System (ADS)

    Headley, J. V.; Peru, K. M.

    1997-11-01

    Unimolecular dissociations of diclofop acid and three of its esters were studied using electron capture negative-ion mass spectrometry, to determine to what extent the gas-phase chemistry correlated with transformation products reported for the herbicide in soils and microbial biofilms. Electron capture of the trimethylsilyl (TMS) and pentafluorobenzyl (PFB) esters along with H+ abstraction of diclofop acid were used to form the carboxylate ion at m / z 325. The degree of dissociation of this ion was strongly dependent on the relative distribution of internal energies, chemical nature and size of the ester group. For carboxylate ions formed with relatively low distribution of internal energies (PFB ester), elimination of HCl only was the preferred pathway. In contrast, m / z 325 from the TMS ester and diclofop acid, underwent loss of Cl, followed by loss of HCl to give m / z 254 with some direct loss of HCl for the TMS ester. For carboxylate ions formed with little or no internal energy under electrospray ionization, no unimolecular dissociations were observed. However, a wide range of product-ions were observed for the latter using collision-induced dissociations. For the methyl ester there was a preponderance for initial formation of a chlorodibenzofuran oxide ion (m / z 217) instead of electron attachment on the carbonyl function. The ion (m / z 217) was also prevalent for fragmentation of m / z 253 produced directly by electron capture of diclofop acid and the TMS ester. In general, the gas-phase ion chemistry correlated well with the distribution of some transformation products reported in the literature for the herbicide in soils and microbial biofilms.

  20. Facile Synthesis of Spirocyclic Lactams from β-Keto Carboxylic Acids.

    PubMed

    Yang, Wei; Sun, Xianyu; Yu, Wenbo; Rai, Rachita; Deschamps, Jeffrey R; Mitchell, Lauren A; Jiang, Chao; MacKerell, Alexander D; Xue, Fengtian

    2015-06-19

    A facile synthesis of spirocyclic lactams starting from β-keto carboxylic acids via a one-pot cascade reaction involving a Curtius rearrangement and an intramolecular nucleophilic addition of the enol carbon to the isocyanate intermediate is reported. The same conditions have also been used for the generation of fused cyclic lactams with similar good yields. The synthetic value of this method has been demonstrated by efficient synthesis of tetracyclic spirolactam 8 and pentacyclic spirolactam 9. PMID:26043081

  1. CuSO4-Mediated Decarboxylative Difluoroacetamidation of α,β-Unsaturated Carboxylic Acids.

    PubMed

    Chen, Qiao; Wang, Chao; Zhou, Jiawei; Wang, Yanan; Xu, Zhaoqing; Wang, Rui

    2016-03-18

    The first example of decarboxylative difluoroacetamidation of α,β-unsaturated carboxylic acids by using difluoromethyl-substituted carbonyl compounds was disclosed. The procedure, which was mediated by low-cost and benign CuSO4, furnished a broad range of difluorinated alkenes in remarkable yields with only the E configuration in most of the cases. Moreover, the product could be smoothly transformed to the corresponding difluorofunctionalized ester and alcohol in high yields. PMID:26934998

  2. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions.

    PubMed

    Pritchard, James; Filonenko, Georgy A; van Putten, Robbert; Hensen, Emiel J M; Pidko, Evgeny A

    2015-06-01

    The catalytic reduction of carboxylic acid derivatives has witnessed a rapid development in recent years. These reactions, involving molecular hydrogen as the reducing agent, can be promoted by heterogeneous and homogeneous catalysts. The milestone achievements and recent results by both approaches are discussed in this Review. In particular, we focus on the mechanistic aspects of the catalytic hydrogenation and highlight the bifunctional nature of the mechanism that is preferred for supported metal catalysts as well as homogeneous transition metal complexes. PMID:25941799

  3. Silver-Catalyzed Decarboxylative Addition/Cyclization of Activated Alkenes with Aliphatic Carboxylic Acids.

    PubMed

    Xia, Xiao-Feng; Zhu, Su-Li; Chen, Chao; Wang, Haijun; Liang, Yong-Min

    2016-02-01

    A silver-catalyzed decarboxylative addition/aryl migration/desulfonylation of N-phenyl-N-(phenylsulfonyl)methacrylamide with primary, secondary, and tertiary carboxylic acids was described. The protocol provides an efficient approach for the synthesis of α-all-carbon quaternary stereocenters amides and isoquinolinediones. It was proposed that the radical generated from the silver-catalyzed decarboxylation was involved in the sequence reaction. PMID:26760053

  4. Pitfalls in the use of carboxylic acid anhydrides for structural studies of nucleoprotein particles.

    PubMed Central

    Nieto, M A; Palacin, E

    1987-01-01

    During modification of protein amino groups with carboxylic acid anhydrides, these reagents cause a fall in pH, which can be prevented by addition of base. Although unmodified nucleosomal particles are not affected by the local transient changes in pH induced by the base (NaOH) added to prevent a fall in pH during modification, the nucleosomal particles modified by acetic anhydride are dissociated, with release of single-stranded DNA. PMID:3593211

  5. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  6. Removal of transition metals from dilute aqueous solution by carboxylic acid group containing absorbent polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new carboxylic acid group containing resin with cation exchange capacity, 12.67 meq/g has been used to remove Cu2+, Co2+ and Ni2+ ions from dilute aqueous solution. The resin has Cu2+, Co2+ and Ni2+ removal capacity, 216 mg/g, 154 mg/g and 180 mg/g, respectively. The selectivity of the resin to ...

  7. 5-Methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid

    PubMed Central

    Lin, Jin Rui; Yao, Ji Yuan; Zhao, Hong

    2008-01-01

    The title compound, C10H9N3O2, was synthesized from azidobenzene and ethyl acetylacetate. A pair of hydrogen bonds [2.617?(2)?] interconnects a pair of the carboxyl groups, forming an R 2 2(8) inversion dimer, a frequent motif in carboxylic acids. In the title structure, the bonding H atom in the aforementioned OH?O hydrogen bond is significantly shifted towards the acceptor O atom [the donor and acceptor OH distances are 1.25?(4) and 1.38?(4)?, respectively]. A plot of the O?O versus OH distances in compounds with paired carboxyl groups shows that the title structure belongs to the group of structures with abnormally long OH distances with regard to the O?O contacts. The displacement of the bonding H atom towards the centre of the hydrogen bond is concomitant with more equal CO bonding distances in the carboxyl group. PMID:21201814

  8. The interaction of carboxylic acids with aluminium oxides: journeying from a basic understanding of alumina nanoparticles to water treatment for industrial and humanitarian applications.

    PubMed

    Barron, Andrew R

    2014-06-14

    Carboxylic acids are found to react with aluminium oxides via a topotactic reaction such that the carboxylate acts as a bridging ligand. This reaction allows for carboxylate-functionalized alumina nanoparticles to be prepared directly from boehmite (AlOOH). Understanding the structural relationship between molecular and surface species allows for the rationalization/prediction of suitable alternative ligands as well as alternative oxide surfaces. The identity of the carboxylate substituent controls the pH stability of a nanoparticle as well as the porosity and processability of ceramics prepared by thermolysis. Through the choice of functional groups on the carboxylic acid the properties of the alumina surface or alumina nanoparticle can be tailored. For example, the solubility/miscibility of nanoparticles can be tuned to the solvent/matrix, and the wettability to be varied from hydrophobic to super hydrophilic. The choice Zwitter ionic substituents on alumina micro-/ultra-filtration membranes are found to enhance the flux and limit fouling while allowing for the facile separation of organic compounds from water. Examples are presented of purification of frac and flow-back water from oil well production as well as providing drinking water from contaminated sources in underdeveloped regions. PMID:24728503

  9. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  10. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  11. Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: Potential precursor molecules for ancient coenzymes

    NASA Astrophysics Data System (ADS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-07-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  12. Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling

    PubMed Central

    2011-01-01

    Background Effects of organic acids on microbial fermentation are commonly tested in investigations about metabolic behaviour of bacteria. However, they typically provide only descriptive information without modelling the influence of acid concentrations on bacterial kinetics. Results We developed and applied a mathematical model (secondary model) to capture the toxicological effects of those chemicals on kinetic parameters that define the growth of bacteria in batch cultures. Thus, dose-response kinetics were performed with different bacteria (Leuconostoc mesenteroides, Carnobacterium pisicola, Escherichia coli, Bacillus subtilis and Listonella anguillarum) exposed at increasing concentrations of individual carboxylic acids (formic, acetic, propionic, butyric and lactic). In all bioassays the acids affected the maximum bacterial load (Xm) and the maximum growth rate (vm) but only in specific cases the lag phase (λ) was modified. Significance of the parameters was always high and in all fermentations the toxicodynamic equation was statistically consistent and had good predictability. The differences between D and L-lactic acid effects were significant for the growth of E. coli, L. mesenteroides and C. piscicola. In addition, a global parameter (EC50,τ) was used to compare toxic effects and provided a realistic characterization of antimicrobial agents using a single value. Conclusions The effect of several organic acids on the growth of different bacteria was accurately studied and perfectly characterized by a bivariate equation which combines the basis of dose-response theory with microbial growth kinetics (secondary model). The toxicity of carboxylic acids was lower with the increase of the molecular weight of these chemicals. PMID:22118421

  13. Complexation of carboxylate anions with the arginine gas-phase amino acid: Effects of chain length on the geometry of extended ion binding

    NASA Astrophysics Data System (ADS)

    Luxford, Thomas F. M.; Milner, Edward M.; Yoshikawa, Naruo; Bullivant, Chad; Dessent, Caroline E. H.

    2013-07-01

    Complexation of deprotonated carboxylic acids with arginine was investigated using collision-induced dissociation to probe the nature of isolated carboxylate-amino acid interactions as a function of anion size. Monocarboxylic CH3(CH2)nCOO-Arg (n = 3-7, 9, 10) and dicarboxylic acid COOH(CH2)nCOO-Arg (n = 3-5, 7-10) complexes were investigated. For the dicarboxylic acid clusters, chain length has a significant effect on the %fragmentation energies with the n = 9, 10 systems fragmenting at significantly lower energies than the corresponding shorter chain systems. Molecular mechanics calculations suggest that this fragmentation energy shift is associated with the longer-chain dicarboxylic acid-Arg clusters switching to ring structures.

  14. Effects of carboxylic acids on nC60 aggregate formation.

    PubMed

    Chang, Xiaojun; Vikesland, Peter J

    2009-04-01

    The discovery that negatively charged aggregates of C(60) fullerene (nC(60)) are stable in water has raised concerns regarding the potential environmental and health effects of these aggregates. In this work, we show that nC(60) aggregates produced by extended mixing in the presence of environmentally relevant carboxylic acids (acetic acid, tartaric acid, citric acid) have surface charge and morphologic properties that differ from those produced by extended mixing in water alone. In general, aggregates formed in the presence of these acids have a more negative surface charge and are more homogeneous than those produced in water alone. Carboxylic acid identity, solution pH, and sodium ion concentration, which are all intricately coupled, play an important role in setting the measured surface charge. Comparisons between particle sizes determined by analysis of TEM images and those obtained by dynamic light scattering (DLS) indicate that DLS results require careful evaluation when used to describe nC(60) aggregates. PMID:19054600

  15. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal.

    PubMed

    Yu, Yang; Murthy, Bandaru N; Shapter, Joseph G; Constantopoulos, Kristina T; Voelcker, Nicolas H; Ellis, Amanda V

    2013-09-15

    Graphene oxide (GO) nanosheets were grafted to acid-treated natural clinoptilolite-rich zeolite powders followed by a coupling reaction with a diazonium salt (4-carboxybenzenediazoniumtetrafluoroborate) to the GO surface. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) revealed successful grafting of GO nanosheets onto the zeolite surface. The application of the adsorbents for the adsorption of rhodamine B from aqueous solutions was then demonstrated. After reaching adsorption equilibrium the maximum adsorption capacities were shown to be 50.25, 55.56 and 67.56 mg g(-1) for pristine natural zeolite, GO grafted zeolite (GO-zeolite) and benzene carboxylic acid derivatized GO-zeolite powders, respectively. The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. Further, a relationship between surface functional groups, pH and adsorption efficiency was established. Results indicate that benzene carboxylic acid derivatized GO-zeolite powders are environmentally favorable adsorbents for the removal of cationic dyes from aqueous solutions. PMID:23778259

  16. Protonation of Excited State Pyrene-1-Carboxylate by Phosphate and Organic Acids in Aqueous Solution Studied by Fluorescence Spectroscopy

    PubMed Central

    Zelent, Bogumil; Vanderkooi, Jane M.; Coleman, Ryan G.; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2006-01-01

    Pyrene-1-carboxylic acid has a pK of 4.0 in the ground state and 8.1 in the singlet electronic excited state. In the pH range of physiological interest (pH ∼5–8), the ground state compound is largely ionized as pyrene-1-carboxylate, but protonation of the excited state molecule occurs when a proton donor reacts with the carboxylate during the excited state lifetime of the fluorophore. Both forms of the pyrene derivatives are fluorescent, and in this work the protonation reaction was measured by monitoring steady-state and time-resolved fluorescence. The rate of protonation of pyrene-COO− by acetic, chloroacetic, lactic, and cacodylic acids is a function of ΔpK, as predicted by Marcus theory. The rate of proton transfer from these acids saturates at high concentration, as expected for the existence of an encounter complex. Trihydrogen-phosphate is a much better proton donor than dihydrogen- and monohydrogen-phosphate, as can be seen by the pH dependence. The proton-donating ability of phosphate does not saturate at high concentrations, but increases with increasing phosphate concentration. We suggest that enhanced rate of proton transfer at high phosphate concentrations may be due to the dual proton donating and accepting nature of phosphate, in analogy to the Grotthuss mechanism for proton transfer in water. It is suggested that in molecular structures containing multiple phosphates, such as membrane surfaces and DNA, proton transfer rates will be enhanced by this mechanism. PMID:16920831

  17. Determination of low molecular weight carboxylic acids in water by HPLC with conductivity detection

    SciTech Connect

    Manning, D.L.; Maskarinec, M.P.

    1983-01-01

    Low molecular weight carboxylic acids (C/SUB/2-C/SUB/8) were measured in aqueous samples by reverse-phase HPLC and conductivity detection. Aqueous samples (sour waters from an operating coal liquefaction plant, a shale oil retort water, and municipal refuse leachates) were adjusted to pH 2 and extracted with diethyl ether. The acid concentrate was then analysed using a Zorbax-CDS column. The method was considered simple, rapid and relatively free from interference, with a mean precision of +/-13%.

  18. Structural, spectroscopic, and computational studies of [2,2‧-bithiophene]-5-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Einkauf, Jeffrey D.; Mathivathanan, Logesh; de Lill, Daniel T.

    2016-01-01

    The crystal structure of [2,2‧-bithiophene]-5-carboxylic acid was obtained from in-situ decarboxylation of [2,2‧-bithiophene]-5,5‧-dicarboxylic acid during solvothermal treatment. UV-Vis absorption and fluorescence spectroscopies were conducted in solution and solid-state on these two molecules as well as the precursor, 2,2‧-bithiophene. These molecules were modeled using DFT level of theory to explain the observed structural features and spectroscopy.

  19. Determination of nitrite via reaction with pyridine-4-carboxylic acid hydrazide

    SciTech Connect

    Verma, K.K.; Tyagi, P.

    1985-06-01

    Nitrite is determined by its reaction with a measured but excessive amount of pyridine-4-carboxylic acid hydrazide in acid medium (when the two substances react in a 1:1 molar ratio) and evaluation of the surplus hydrazide by titration with chloramine-T in the presence of acidified potassium bromide, the end-point being shown by the decolorization of the methyl red indicator. Nitrate, copper(II), mercury(II), etc. are found not to interfere, and the determination of nitrite in the presence of diazotized aromatic amines is demonstrated. 11 references, 2 tables.

  20. Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function

    PubMed Central

    Effmert, Uta; Saschenbrecker, Sandra; Ross, Jeannine; Negre, Florence; Fraser, Chris M.; Noel, Joseph P.; Dudareva, Natalia; Piechulla, Birgit

    2010-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT’s three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in planta depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses might represent the ancestor for the presently existing floral genes which during evolution gained different expression profiles and encoded enzymes with the ability to accept structurally similar substrates. PMID:15946712

  1. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    SciTech Connect

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses might represent the ancestor for the presently existing floral genes which during evolution gained different expression profiles and encoded enzymes with the ability to accept structurally similar substrates.

  2. C-hexaphenyl-substituted trianglamine as a chiral solvating agent for carboxylic acids.

    PubMed

    Gualandi, Andrea; Grilli, Stefano; Savoia, Diego; Kwit, Marcin; Gawro?ski, Jacek

    2011-06-01

    Chiral hexaazamacrocycles with a trianglamine structure and C(3)-symmetry, containing six ring substituents and twelve stereocenters have been tested as chiral solvating agents (CSAs) for ?-substituted carboxylic acids. Excellent results have been obtained with a hexaphenyl-substituted macrocycle. The optimal ratio between the macrocycle and racemic acid, allowing for baseline separation of the enantiomers' signals in the (1)H NMR spectrum, was dependent on the type of acid, in particular on its degree of acidity. The analyte and the CSA could be separated and recovered by a simple acid-base extraction and reused without purification. The conformations of the free and protonated hexaamino macrocycles were inferred by CD spectroscopic studies and DFT calculations. PMID:21499627

  3. Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al(2)Cl(6)/Al system.

    PubMed

    Olah, George A; Trk, Bla; Joschek, Jens P; Bucsi, Imre; Esteves, Pierre M; Rasul, Golam; Surya Prakash, G K

    2002-09-25

    Aromatic carboxylic acids are obtained in good to excellent yield essentially free of diaryl ketones by carboxylation of aromatics with a carbon dioxide-Al(2)Cl(6)/Al system at moderate temperatures (20-80 degrees C). To optimize reaction conditions and study the reaction mechanism, experimental variables including temperature, amount of Al(2)Cl(6)/Al, various Lewis acids, role of metal additive, carbon dioxide pressure, etc. were studied. The carboxylation reaction was found to be stoichiometric rather than catalytic, with aluminum chloride forming a dichloroaluminate of carboxylic acids. Although the carboxylation takes place using AlCl(3) itself, the presence of metal additives, especially Al, increased the yield and selectivity of carboxylic acids. Because it was not possible to distinguish between two possible mechanistic pathways of the reaction on the basis of the experimental results, theoretical calculations using density functional theory (DFT) were also carried out. One possible pathway involves an initial complex between benzene and Al(2)Cl(6), with subsequent formation of organoaluminum intermediates (PhAlCl(2) and PhAl(2)Cl(5)). The other proceeds through the formation of various complexes of CO(2) with aluminum chloride (AlCl(3))(n), n = 1-4. The calculations have shown that the organometallic pathway, leading eventually through the formation of phenylaluminum dichloride, is endothermic by 33 kcal/mol. In contrast, the preferred CO(2)-AlCl(3) complex forms in an exothermic reaction (-6.0 kcal/mol) as does CO(2)AlCl(2)(+). On the basis of both experimental and calculational findings, the most feasible reaction mechanism proposed involves superelectrophilic aluminum chloride activated carbon dioxide reacting with the aromatics in a typical electrophilic substitution. PMID:12236753

  4. Kinetic activation of yeast mitochondrial D-lactate dehydrogenase by carboxylic acids.

    PubMed

    Mourier, Arnaud; Vallortigara, Julie; Yoboue, Edgar D; Rigoulet, Michel; Devin, Anne

    2008-10-01

    Aerobically grown yeast cells express mitochondrial lactate dehydrogenases that localize to the mitochondrial inner membrane. The D-lactate dehydrogenase is a zinc-flavoprotein with high acceptor specificity for cytochrome c, that catalyzes the oxidation of D-lactate into pyruvate. In this paper, we show that mitochondrial respiratory rate in phosphorylating or non-phosphorylating conditions with D-lactate as substrate is stimulated by carboxylic acids. This stimulation does not affect the yield of oxidative phosphorylation. Furthermore, this stimulation lies at the level of the D-lactate dehydrogenase. It is non-competitive, hyperbolic and its dimension is directly related to the number of carboxylic groups on the activator. The physiological meaning of such a regulation is discussed. PMID:18640090

  5. Purification and Characterization of 1-Aminocyclopropane-1-Carboxylic Acid N-Malonyltransferase from Tomato Fruit.

    PubMed Central

    Martin, M. N.; Saftner, R. A.

    1995-01-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) can be oxidized to ethylene or diverted to the conjugate 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) by an ACC N-malonyltransferase. We developed a facile assay for the ACC N-malonyltransferase that resolved [14C]MACC from [14C]ACC by thin-layer chromatography and detected and quantified them using a radioisotope-imaging system. Using this assay, we showed that ACC N-malonyltransferase activity has developmental and tissue-specific patterns of expression in tomato (Lycopersicon esculentum) fruit. In the pericarp, activity was elevated for several days postanthesis, subsequently declined to a basal level, increased 3-fold at the onset of ripening, and again declined in overripe fruit. In the seed, activity increased throughout embryogenesis, maturation, and desiccation. Treatment of fruit with ethylene increased activity 50- to 100-fold in the pericarp. ACC N-malonyltransferase was purified 22,000-fold to a specific activity of 22,000 nmol min-1 mg-1 protein using ammonium sulfate precipitation, DyeMatrex Green A affinity, anion-exchange, Cibacron Blue 3GA affinity, hydrophobic interaction, and molecular filtration chromatography. Native and sodium dodecyl sulfate-denatured enzyme showed molecular masses of 38 kD, indicating that the enzyme exists as a monomer. The enzyme exhibited a Km for ACC of 500 [mu]M, was not inhibited by D- or L-amino acids, and did not conjugate [alpha]-aminoisobutyric acid or L-amino acids. PMID:12228541

  6. Investigating the photostability of carboxylic acids exposed to Mars surface ultraviolet radiation conditions.

    PubMed

    Stalport, F; Coll, P; Szopa, C; Cottin, H; Raulin, F

    2009-01-01

    The detection and identification of organic molecules on Mars are of primary importance to establish the existence of a possible ancient prebiotic chemistry or even biological activity. The harsh environmental conditions at the surface of Mars could explain why the Viking probes-the only efforts, to date, to search for organics on Mars-detected no organic matter. To investigate the nature, abundance, and stability of organic molecules that could survive such environmental conditions, we developed a series of experiments that simulate martian surface environmental conditions. Here, we present results with regard to the impact of solar UV radiation on various carboxylic acids, such as mellitic acid, which are of astrobiological interest to the study of Mars. Our results show that at least one carboxylic acid, mellitic acid, could produce a resistant compound-benzenehexacarboxylic acid-trianhydride (C(12)O(9))-when exposed to martian surface radiation conditions. The formation of such products could contribute to the presence of organic matter in the martian regolith, which should be considered a primary target for in situ molecular analyses during future surface missions. PMID:19663761

  7. Activation of carboxyl group with cyanate: peptide bond formation from dicarboxylic acids.

    PubMed

    Danger, Grgoire; Charlot, Solenne; Boiteau, Laurent; Pascal, Robert

    2012-06-01

    The reaction of cyanate with C-terminal carboxyl groups of peptides in aqueous solution was considered as a potential pathway for the abiotic formation of peptide bonds under the condition of the primitive Earth. The catalytic effect of dicarboxylic acids on cyanate hydrolysis was definitely attributed to intramolecular nucleophilic catalysis by the observation of the 1H-NMR signal of succinic anhydride when reacting succinic acid with KOCN in aqueous solution (pH 2.2-5.5). The formation of amide bonds was noticed when adding amino acids or amino acid derivatives into the solution. The reaction of N-acyl aspartic acid derivatives was observed to proceed similarly and the scope of the cyanate-promoted reaction was analyzed from the standpoint of prebiotic peptide formation. The role of cyanate in activating peptide C-terminus constitutes a proof of principle that intramolecular reactions of adducts of peptides C-terminal carboxyl groups with activating agents represent a pathway for peptide activation in aqueous solution, the relevance of which is discussed in connexion with the issue of the emergence of homochirality. PMID:21769498

  8. Gas-Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum-Vanadium-Molybdenum.

    PubMed

    Lotfi, Samira; Boffito, Daria C; Patience, Gregory S

    2015-10-26

    Lignin is a complex polymer that is a potential feedstock for aromatic compounds and carboxylic acids by cleaving the ?-O-4 and 5-5' linkages. In this work, a syringe pump atomizes an alkaline solution of lignin into a catalytic fluidized bed operating above 600?K. The vanadium heterogeneous catalysts convert all the lignin into carboxylic acids (up to 25?% selectivity), coke, carbon oxides, and hydrogen. Aluminum-vanadium-molybdenum mostly produced lactic acid (together with formic acid, acrylic acid, and maleic anhydride), whereas the vanadium pyrophosphate catalyst produced more maleic anhydride. PMID:26361086

  9. Structure of eight molecular salts assembled from noncovalent bonding between carboxylic acids, imidazole, and benzimidazole

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhang, Huan; Liu, Hui; Wen, Xianhong; Li, Minghui; Wang, Daqi

    2015-09-01

    Eight organic salts of imidazole/benzimidazole have been prepared with carboxylic acids as 2-methyl-2-phenoxypropanoic acid, α-ketoglutaric acid, 5-nitrosalicylic acid, isophthalic acid, 4-nitro-phthalic acid, and 3,5-dinitrosalicylic acid. The eight crystalline forms reported are proton-transfer compounds of which the crystals and compounds were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted hetero supramolecular synthons, with the most common R22(7) motif observed at salts 2, 3, 5, 6 and 8. Analysis of the crystal packing of 1-8 suggests that there are extensive strong Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds (charge assisted or neutral) between acid and imidazolyl components in all of the salts. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. This variety, coupled with the varying geometries and number of acidic groups of the acids utilized, has led to the creation of eight supramolecular arrays with 1D-3D structure. The role of weak and strong noncovalent interactions in the crystal packing is analyzed. The results presented herein indicate that the strength and directionality of the Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds between acids and imidazole/benzimidazole are sufficient to bring about the formation of organic salts.

  10. FT-IR, FT-Raman spectra and quantum mechanical study of piperidine-3-carboxylic acid and its tautomers, isomers

    NASA Astrophysics Data System (ADS)

    Yurdakul, ?enay; Ya?ayan, Nefise i?dem; Bado?lu, Serdar

    2014-06-01

    The mid-IR, far-IR, and Raman spectra of piperidine-3-carboxylic acid were measured and interpreted with support of the MP2 and B3LYP/6-311++G(d, p) calculated harmonic vibrational spectra. 10 stable piperidine-3-carboxylic acid tautomers/isomers were found after B3LYP, calculations. The experimental absorption bands of carboxylate (COO-) group show that the free piperidine-3-carboxylic acid molecule exists in zwitterionic form and the most stable tautomer (NAT-1) can be stabilized by an intramolecular N-H...O hydrogen bond. All vibrational frequencies of NAT-1 assigned in detail with the help of total energy distribution (TED). The experimental vibrational wave numbers were compared with the calculated data.

  11. Simple synthesis of carboxyl-functionalized upconversion nanoparticles for biosensing and bioimaging applications.

    PubMed

    Han, Gui-Mei; Li, Hui; Huang, Xiao-Xi; Kong, De-Ming

    2016-01-15

    We report a simple one-step hydrothermal method for the synthesis of hydrophilic luminescent upconversion nanoparticles (UCNPs) using malonic acid as the stabilizer and functional agent. Using this method, two UCNPs with different colors of upconversion luminescence were synthesized. The surface of the as-prepared UCNPs was capped with carboxyl groups, which not only resulted in the UCNPs having good dispersity in water, but also allowed further conjugation with other functional molecules, thus indicating the potential applications in biosensing and bioimaging. To demonstrate this, amino-labeled single-stranded DNA (ssDNA) was conjugated on the surface of the UCNPs. Based on the different absorption and luminescence quenching abilities of graphene oxide (GO) to ssDNA-modified UCNPs before and after exonuclease I (Exo I)-triggered hydrolysis of ssDNA, a detection platform was developed for the detection of Exo I activity with a detection limit of 0.02U mL(-1). The prepared hydrophilic UCNPs were also used successfully for in vivo upconversion luminescence imaging of nude mice. PMID:26592597

  12. Water-enhanced solubility of carboxylic acids in organic solvents and its application to extraction processes

    SciTech Connect

    Starr, J.N. ); King, C.J. )

    1992-11-01

    This paper reports on solubilities of carboxylic acids in certain organic solvents which increase sharply as the concentration of water in the solvent increases. This phenomenon leads to a method of regeneration for solvent-extraction processes whereby coextracted water is selectively removed from the extract, such as by stripping, thereby precipitating the acid. The removal of a minor constituent to cause precipitation reduces energy consumption, in contrast with bulk removal of solvent. Solubilities of fumaric acid were measured in a number of organic solvents, with varying amounts of water in the organic phase. Cyclohexanone and methylcyclohexanone were chosen as solvents for which detailed solid-liquid and liquid-liquid equilibria were measured for adipic, fumaric, and succinic acids in the presence of varying concentrations of water, at both 25 and 45[degrees]C. Batch precipitation experiments were performed to demonstrate the processing concept and determine the relative volatility of water to solvent in the presence of carbon.

  13. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.

    PubMed

    Martins, Andra Bercini; Santana, Ruth Marlene Campomanes

    2016-01-01

    In this work, polypropylene/thermoplastic starch (PP/TPS) blends were prepared as an alternative material to use in disposable packaging, reducing the negative polymeric environmental impact. Unfortunately, this material displays morphological characteristics typical of immiscible polymer blends and a compatibilizer agent is needed. Three different carboxyl acids: myristic (C14), palmitic (C16) and stearic acids (C18) were used as natural compatibilizer agent (NCA). The effects of NCA on the mechanical, physical, thermal and morphological properties of PP/TPS blends were investigated and compared against PP/TPS with and without PP-grafted maleic anhydride (PPgMA). When compared to PP/TPS, blends with C18, PPgMA and C14 presented an improvement of 25, 22 and 17% in tensile strength at break and of 180, 194 and 259% in elongation at break, respectively. The highest increase, 54%, in the impact strength was achieved with C14 incorporation. Improvements could be seen, through scanning electron microscopy (SEM) images, in the compatibility between the immiscible components by acids incorporation. These results showed that carboxylic acids, specifically C14, could be used as compatibilizer agent and could substitute PPgMA. PMID:26453854

  14. Theoretical Study of the Thermal Decomposition of Carboxylic Acids at Pyrolysis Temperature

    SciTech Connect

    Clark, J. M.; Robichaud, D. J.; Nimlos, M. R.

    2013-01-01

    Carboxylic acids are important in the processing of biomass into renewable fuels and chemicals. They are formed from the pretreatment and pyrolysis of hemicellulose biopolymers and are released from the decomposition of sugars. They result from the deconstruction of polyhydroxyalkanoates (bacterial carbon storage polymers) from fatty acids derived from algae, bacteria, and oil crops. The thermal deoxygenation of carboxylic acids is an important step in the conversion of biomass into aliphatic hydrocarbons suitable for use in renewable biofuels and as petrochemical replacements. Decarboxylation, a primary decomposition pathway under pyrolysis conditions, represents an ideal conversion process, because it eliminates two atoms of oxygen for every carbon atom removed. Problematically, additional deoxygenation processes exist (e.g. dehydration) that are in direct competition with decarboxylation and result in the formation of reactive and more fragmented end products. To better understand the competition between decarboxylation and other deoxygenation processes and to gain insight into possible catalysts that would favor decarboxylation, we have investigated the mechanisms and thermochemistry of the various unimolecular and bimolecular deoxygenation pathways for a family of C1-C4 organic acids using electronic structure calculations at the M06-2X/6-311++G(2df,p) level of theory.

  15. Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids.

    PubMed

    Peng, Xue; Shindo, Kazutoshi; Kanoh, Kaneo; Inomata, Yukie; Choi, Seon-Kang; Misawa, Norihiko

    2005-11-01

    An aldehyde dehydrogenase gene, designated phnN, was isolated from a genome library of the 1,4-dimethylnaphthalene-utilizing soil bacterium, Sphingomonas sp. 14DN61. Escherichia coli expressing the phnN gene converted 1,4-dihydroxymethylnaphthalene to 1-hydroxymethyl-4-naphthoic acid. The putative amino acid sequence of the phnN gene product had 31-42% identity with those of NAD(+)-dependent short-chain aliphatic aldehyde dehydrogenases and a secondary alcohol dehydrogenase. The NAD(P)(+)-binding site and two consensus sequences involved in the active site for aldehyde dehydrogenase are conserved among these proteins. The PhnN enzyme purified from recombinant E. coli showed broad substrate specificity towards various aromatic aldehydes, i.e., 1- and 2-naphaldehydes, cinnamaldehyde, vanillin, syringaldehyde, benzaldehyde and benzaldehydes substituted with a hydroxyl, methyl, methoxy, chloro, fluoro, or nitro group were converted to their corresponding carboxylic acids. Interestingly, E. coli expressing phnN was able to biotransform a variety of not only aromatic aldehydes, but also aromatic alcohols to carboxylic acids. PMID:15812642

  16. Bio-inspired amino acid oxidation by a non-heme iron catalyst modeling the action of 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Barth, Gbor; Kaizer, Jzsef; Pap, Jzsef Sndor; Speier, Gbor; El Bakkali-Taheri, Nadia; Simaan, A Jalila

    2010-10-21

    In this communication we describe the first example of a biomimetic mononuclear iron complex, [Fe(III)(Salen)Cl] (Salen = N,N'-bis(salicylidene)-ethylenediaminato), that highly selectively and efficiently catalyzes the oxidation of 1-aminocyclopropane-1-carboxylic acid (ACCH), ?-aminoisobutyric acid (AIBH), and alanine (ALAH) to ethylene or the corresponding carbonyl compounds, mimicking the action of the non-heme iron enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). PMID:20830340

  17. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar’s sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam activated biochar having low O/C ratio...

  18. Synthesis, Characterization, Semiempirical and Biological Activities of Organotin(IV) Carboxylates with 4-Piperidinecarboxylic Acid

    PubMed Central

    Sharma, Saroj K.; Qanungo, Kushal; Shahid, Muhammad

    2014-01-01

    Organotin (IV) carboxylates with the general formulae R2Sn(Cl)L [R?=?Me (1), n-Bu (2), Ph (3)] and R3SnL [R?=?Me (4), Ph (5)] have been synthesized by the reaction of 4-piperidinecarboxylic acid (HL) with KOH and R2SnCl2 (R?=?Me, n-Bu, Ph)/R3SnCl (R?=?Me, Ph) in methanol under stirring conditions. The metal ligand binding site, structure, and stability of complexes have been verified by FT-IR, (1H, 13C) NMR, EI-MS technique, and semiempirical study. The FT-IR data indicate the bidentate chelating mode of the carboxylate ligand which is also confirmed by semiempirical study. In solution state, five and four coordinated geometry around tin was confirmed by NMR spectroscopy. The EI-MS data agreed well with the molecular structure of the complexes. Thermodynamic parameters and molecular descriptors were calculated by using semiempirical PM3 method. HOMO-LUMO calculations show that chlorodiorganotin complexes are more susceptible to nucleophilic attack as compared to triorganotin complexes. Computed negative heat of formation indicates that complexes 14 are thermodynamically stable. The organotin(IV) carboxylates displayed powerful antimicrobial activities against various strains of bacteria and fungi and their minimal inhibitory concentration were also evaluated. The complexes exhibited comparatively higher hemolytic activity as compared to free ligand. PMID:25548551

  19. Synthesis, Characterization, Semiempirical and Biological Activities of Organotin(IV) Carboxylates with 4-Piperidinecarboxylic Acid.

    PubMed

    Hussain, Shabbir; Ali, Saqib; Shahzadi, Saira; Sharma, Saroj K; Qanungo, Kushal; Shahid, Muhammad

    2014-01-01

    Organotin (IV) carboxylates with the general formulae R2Sn(Cl)L [R?=?Me (1), n-Bu (2), Ph (3)] and R3SnL [R?=?Me (4), Ph (5)] have been synthesized by the reaction of 4-piperidinecarboxylic acid (HL) with KOH and R2SnCl2 (R?=?Me, n-Bu, Ph)/R3SnCl (R?=?Me, Ph) in methanol under stirring conditions. The metal ligand binding site, structure, and stability of complexes have been verified by FT-IR, ((1)H, (13)C) NMR, EI-MS technique, and semiempirical study. The FT-IR data indicate the bidentate chelating mode of the carboxylate ligand which is also confirmed by semiempirical study. In solution state, five and four coordinated geometry around tin was confirmed by NMR spectroscopy. The EI-MS data agreed well with the molecular structure of the complexes. Thermodynamic parameters and molecular descriptors were calculated by using semiempirical PM3 method. HOMO-LUMO calculations show that chlorodiorganotin complexes are more susceptible to nucleophilic attack as compared to triorganotin complexes. Computed negative heat of formation indicates that complexes 1-4 are thermodynamically stable. The organotin(IV) carboxylates displayed powerful antimicrobial activities against various strains of bacteria and fungi and their minimal inhibitory concentration were also evaluated. The complexes exhibited comparatively higher hemolytic activity as compared to free ligand. PMID:25548551

  20. Accumulation of the Antibiotic Phenazine-1-Carboxylic Acid in the Rhizosphere of Dryland Cereals

    PubMed Central

    Mavrodi, Dmitri V.; Mavrodi, Olga V.; Parejko, James A.; Bonsall, Robert F.; Kwak, Youn-Sig; Paulitz, Timothy C.; Weller, David M.

    2012-01-01

    Natural antibiotics are thought to function in the defense, fitness, competitiveness, biocontrol activity, communication, and gene regulation of microorganisms. However, the scale and quantitative aspects of antibiotic production in natural settings are poorly understood. We addressed these fundamental questions by assessing the geographic distribution of indigenous phenazine-producing (Phz+) Pseudomonas spp. and the accumulation of the broad-spectrum antibiotic phenazine-1-carboxylic acid (PCA) in the rhizosphere of wheat grown in the low-precipitation zone (<350 mm) of the Columbia Plateau and in adjacent, higher-precipitation areas. Plants were collected from 61 commercial wheat fields located within an area of about 22,000 km2. Phz+ Pseudomonas spp. were detected in all sampled fields, with mean population sizes ranging from log 3.2 to log 7.1 g?1 (fresh weight) of roots. Linear regression analysis demonstrated a significant inverse relationship between annual precipitation and the proportion of plants colonized by Phz+ Pseudomonas spp. (r2 = 0.36, P = 0.0001). PCA was detected at up to nanomolar concentrations in the rhizosphere of plants from 26 of 29 fields that were selected for antibiotic quantitation. There was a direct relationship between the amount of PCA extracted from the rhizosphere and the population density of Phz+ pseudomonads (r2 = 0.46, P = 0.0006). This is the first demonstration of accumulation of significant quantities of a natural antibiotic across a terrestrial ecosystem. Our results strongly suggest that natural antibiotics can transiently accumulate in the plant rhizosphere in amounts sufficient not only for inter- and intraspecies signaling but also for the direct inhibition of sensitive organisms. PMID:22138981

  1. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals.

    PubMed

    Mavrodi, Dmitri V; Mavrodi, Olga V; Parejko, James A; Bonsall, Robert F; Kwak, Youn-Sig; Paulitz, Timothy C; Thomashow, Linda S; Weller, David M

    2012-02-01

    Natural antibiotics are thought to function in the defense, fitness, competitiveness, biocontrol activity, communication, and gene regulation of microorganisms. However, the scale and quantitative aspects of antibiotic production in natural settings are poorly understood. We addressed these fundamental questions by assessing the geographic distribution of indigenous phenazine-producing (Phz(+)) Pseudomonas spp. and the accumulation of the broad-spectrum antibiotic phenazine-1-carboxylic acid (PCA) in the rhizosphere of wheat grown in the low-precipitation zone (<350 mm) of the Columbia Plateau and in adjacent, higher-precipitation areas. Plants were collected from 61 commercial wheat fields located within an area of about 22,000 km(2). Phz(+) Pseudomonas spp. were detected in all sampled fields, with mean population sizes ranging from log 3.2 to log 7.1 g(-1) (fresh weight) of roots. Linear regression analysis demonstrated a significant inverse relationship between annual precipitation and the proportion of plants colonized by Phz(+) Pseudomonas spp. (r(2) = 0.36, P = 0.0001). PCA was detected at up to nanomolar concentrations in the rhizosphere of plants from 26 of 29 fields that were selected for antibiotic quantitation. There was a direct relationship between the amount of PCA extracted from the rhizosphere and the population density of Phz(+) pseudomonads (r(2) = 0.46, P = 0.0006). This is the first demonstration of accumulation of significant quantities of a natural antibiotic across a terrestrial ecosystem. Our results strongly suggest that natural antibiotics can transiently accumulate in the plant rhizosphere in amounts sufficient not only for inter- and intraspecies signaling but also for the direct inhibition of sensitive organisms. PMID:22138981

  2. Malic Acid Production by Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation, Oxaloacetate Reduction, and Malate Export?

    PubMed Central

    Zelle, Rintze M.; de Hulster, Erik; van Winden, Wouter A.; de Waard, Pieter; Dijkema, Cor; Winkler, Aaron A.; Geertman, Jan-Maarten A.; van Dijken, Johannes P.; Pronk, Jack T.; van Maris, Antonius J. A.

    2008-01-01

    Malic acid is a potential biomass-derivable building block for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO2-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)?1. A previously engineered glucose-tolerant, C2-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter?1 at a malate yield of 0.42 mol (mol glucose)?1. Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on 13C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved. PMID:18344340

  3. Intramolecular Fluorocyclizations of Unsaturated Carboxylic Acids with a Stable Hypervalent Fluoroiodane Reagent.

    PubMed

    Geary, Gemma C; Hope, Eric G; Stuart, Alison M

    2015-12-01

    A new class of fluorinated lactones was prepared by the intramolecular fluorocyclizations of unsaturated carboxylic acids by using the stable fluoroiodane reagent in combination with AgBF4 . This unique reaction incorporates a cyclization, an aryl migration, and a fluorination all in one step. The fluoroiodane reagent, prepared easily from fluoride, can also be used without a metal catalyst to give moderate yields within just 1?hour, thus demonstrating that it is a suitable reagent for developing new (18) F-labelled radiotracers for PET imaging. PMID:26450355

  4. Synthesis of chromium(III) complex with 1-hydroxy-2-pyridinone-6-carboxylic acid as insulin-mimetic agent and its spectroscopic and computational studies

    NASA Astrophysics Data System (ADS)

    Yasarawan, Nuttawisit; Thipyapong, Khajadpai; Sirichai, Somsak; Ruangpornvisuti, Vithaya

    2013-01-01

    The new complex of chromium(III) and 1-hydroxy-2-pyridinone-6-carboxylic acid was synthesized and its preparation routes were reported. Mass spectrometry and elemental analysis indicated the formation of chromium complex with the metal-to-ligand mole ratio of 1:3. Combination of spectroscopic measurement and spectral computations based on the density functional theory suggested that 1-hydroxy-2-pyridinone-6-carboxylic acid was a bidentate ligand using one oxygen atom at pyridinone carbonyl group and the other at N-oxide group as donor atoms upon chelation with chromium(III), forming the six-coordinate complex with five-membered chelate rings. Due to the enhanced stability of the chelate rings, such the pathway of chelation was theoretically predicted to be more favorable than the case where the carboxylate oxygen atom of ligand participated in the chelation. According to the preliminary tests, the chromium(III) complex with 1-hydroxy-2-pyridinone-6-carboxylic acid was found to be active in lowering plasma glucose levels in vivo.

  5. Evaluating the potential of long chain n-alkanes and n-carboxylic acids as biomarkers for past vegetation

    NASA Astrophysics Data System (ADS)

    Lanny, Verena; Zech, Roland; Eglinton, Timothy

    2014-05-01

    Leaf waxes, such as long chain n-alkanes and n-carboxylic acids, may have a great potential for the reconstruction of past environmental and climate conditions (e.g. (Zech R. et al., 2013). While n-C27 and n-C29 alkanes often predominantly occur in trees and shrubs, n-C31 and n-C33 are more abundant in grasses and herbs. However, little is known about chain-length distributions of n-carboxylic acids, and very few studies have systematically investigated leaf waxes in top soils. We analyzed n-alkanes and n-carboxylic acids in ~100 litter and topsoil samples from Southern Germany to Sweden. Our results show that sites under deciduous trees often contain a lot of C27 n-alkanes and C28 n-carboxylic acids. Coniferous sites are characterized by dominance in n-alkanes C29 and C31 and have relatively high concentrations of n-carboxylic acids C22 and C24. Grass sites show a Cmax at C31 for n-alkanes and at C24 or C26 for n-carboxylic acids. Differences in homologue patterns are most pronounced in the litter samples, but are well preserved also in the topsoils (0-3 cm depth, a little less in the lower topsoils from 3-10 cm). Our results illustrate the potential of combining n-alkane and n-carboxylic acid analyses for paleo-vegetation reconstructions, yet indicate that the degree of degradation may have to be taken into consideration (Zech M. et al., 2013). References: Zech, M. et al. (2013) Quat. Int. 296, 108-116. Zech, R. et al. (2013) Palaeo3, 387, 165-175.

  6. Chiral Recognition Studies of ?-(Nonafluoro-tert-butoxy)carboxylic Acids by NMR Spectroscopy.

    PubMed

    Nemes, Anik; Cska, Tams; Bni, Szabolcs; Farkas, Viktor; Rbai, Jzsef; Szab, Dnes

    2015-06-19

    Three chiral ?-(nonafluoro-tert-butoxy)carboxylic acids (R)-1, (RS)-2, (R)-3 were synthesized to examine their application as chiral solvating agents with amines. As a model compound, first (S)- and/or (RS)-?-phenylethylamine was used, and their diastereomeric salts were investigated by (1)H and (19)F NMR and ECD spectroscopy. The NMR spectroscopic studies were carried out at room temperature using the slightly polar CDCl3 and apolar C6D6 as solvents in 5 mM and 54 mM concentrations. The difference of the chemical shifts (??) in the diastereomeric complexes is comparable with other, well-known chiral derivatizing and solvating agents (e.g., Mosher's acid, Pirkle's alcohol). Diastereomeric salts of racemic acids (RS)-1 and (RS)-2 with biologically active amines (1R,2S)-ephedrine and (S)-dapoxetine were also investigated by (19)F NMR spectroscopy. PMID:26024423

  7. Geometric and chelation influences on the electronic structure and optical properties of tetra(carboxylic acid)phenyleneethynylene dyes.

    PubMed

    Berlin, Asher; Risko, Chad; Ratner, Mark A

    2008-05-01

    A quantum-chemical study on the consequences of geometric modification and chelation on the electronic structure and optical properties of a tetra(carboxylic acid)phenyleneethynylene dye, of interest for chemical sensing applications, is presented. Rotation within the central biphenylene and complexation with divalent metal ions--in particular Cu2+--lead to notable changes in the absorption and emission profiles. Calculations at both the density functional theory (DFT) and Hartree-Fock (HF) levels are used to evaluate geometric potential energy surfaces for rotation within the central biphenylene unit; HF coupled with configuration interaction singles (HF-CIS) is used to investigate the first excited state of the dye. Time-dependent DFT (TDDFT) calculations are employed to assess changes in optical absorption and fluorescence as a function of geometry and chelation. PMID:18399673

  8. Reactivity of ferrate(V) with carboxylic acids: A pre-mix pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Bielski, Benon H. J.; Sharma, Virender K.; Czapski, Gidon

    1994-11-01

    Rates of reduction of ferrate(VI) to ferrate(V) by a number of organic acid and ester radicals (monocarboxylic acids, dicarboxylic acids, amino acids, malonic acid esters), generated by the pulse radiolysis technique, vary from 10 7-10 9 dm 3 mol -1 s -1. The rate at which these radicals reduce ferrate(VI) depends upon the nature of the substituents at the ?-carbon atom and decrease in the order ?- C-NH 2>?-C-OH>?-C-H.A similar dependence upon the ?-C-groups(s) has been observed for the oxidation of the parent organic acid by ferrate(V), for which the rate constants vary from 10 1-10 6 dm 3 mol -1 s -1. An oxidation mechanism is being proposed in which ferrate(V) oxidizes the carboxylic acid by a two-electron process. The rate of the oxidation process is dependent on the protonation of ferrate(V). For example, in the oxidation of gluconic acid with H 2Fe VO 4-/HF eVO 42-; k 10(H 2Fe VO 4- + gluconate) = 1.1 10 6 dm 3 mol -1 s -1 and k 11(HFe VO 42- + gluconate) = 2.0 10 5dm 3 mol -1 s -1. The oxidation mechanisms for malate and asparate by OH radicals and ferrate(V) are compared.

  9. Year-round records of gas and particulate carboxylic acids (formate and acetate) in the boundary layer at Dumont d'Urville (coastal Antarctica): Production of carboxylic acids from biogenic NMHC emissions from the Antarctic ocean

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Preunkert, S.; Jourdain, B.

    2003-04-01

    Multiple year-round concentrations of acetic and formic acids were measured both in gas and aerosol phases at Dumont d'Urville (DDU, a coastal Antarctic site: 66^o40'S, 140^o01'E) by using mist chamber and aerosol filter sampling. Aerosol levels of the 2 carboxylates range from less than one ng m-3 in winter to 5--10 ng m-3 in summer. Comparison with gas phase concentrations shows that almost 99% of the 2 carboxylic acids are present in the gas phase. Concentrations of formic acid in the gas phase are minima in June--July (70 ng m-3) and increase regularly towards summer months when levels reach 400 ng m-3. Concentrations of acetic acid in the gas phase exhibit a more well-marked seasonal cycle with values remaining close to 50 ng m-3 from April to October and strongly increase during summer months (mean value of 800 ng m-3). Such a strong seasonal cycle of carboxylic acids in the high southern latitude marine boundary layer displays with observations made at numerous continental sites where a more weak seasonality is generally observed. It is suggested that carboxylic acids present at DDU mainly originate from biogenic emissions from the Antarctic ocean which are expected to closely follow annual cycle of the sea ice extent and solar radiation, affecting in particular photochemical production of alkenes from dissolved organic carbon released from phytoplancton. Summer levels of carboxylic acids are discussed in terms of air-sea fluxes of NMHCs and photochemical production of carboxylic acids from ozone-alkene reactions and HO_2 reaction with peroxyacetal radical in these poor NOx environments.

  10. Wind tunnel investigations on the retention of carboxylic acids during riming

    NASA Astrophysics Data System (ADS)

    Jost, Alexander; Szakll, Mikls; Diehl, Karoline; Mitra, Subir K.; Borrmann, Stephan

    2015-04-01

    In mid-latitudes, precipitation is mainly initiated via the ice phase in mixed phase clouds. In such clouds the ice particles grow to precipitation sizes at the expense of liquid drops through riming which means that supercooled droplets collide with ice particles and subsequently freeze. Water-soluble trace substances present in the liquid phase might remain only fractionally in the ice phase after freezing. This fractionation is called retention and is an important ratio which quantifies the partitioning of atmospheric trace substances between the phases. Laboratory experiments were carried out at the Mainz vertical wind tunnel to determine the retention of lower mono- and di-carboxylic acids during riming. Due to their low molecular weight and their polarity these acids are water-soluble. In the atmosphere formic acid and acetic acid are the most abundant mono-carboxylic acids in the gas and aqueous phase, thus, they represent the major fraction of carboxylic acids in cloud water. Oxalic and malonic acid are common coatings on aerosol particles because of their relatively low saturation vapor pressure. These di-carboxylic acids might therefore promote the aerosol particles to act as cloud condensation nuclei and additionally contribute to the aqueous phase chemistry in cloud droplets. The conditions during the riming experiments in the wind tunnel were similar to those in atmospheric mixed phase clouds, i.e. temperatures from -18C to -6 C, liquid water contents between 0.5 and 1.5 g/m3, and liquid drop radii between 10 and 20 ?m. The liquid phase concentrations ranged from 3 to 5 mg/l (4.1 < pH < 4.5). As rime collectors captively floating ice particles and quasi-floating snowflakes with diameters between 0.6 and 1.5 cm were used. The wind speed in the vertical wind tunnel was very close to the terminal velocities of the rime collectors, thus, the ventilation during riming was in the same order of magnitude as under atmospheric riming conditions. After riming the collectors were removed from the wind tunnel, their melt water was analyzed by ion chromatography and the retention coefficients, i.e. the fractions of the species which remained in the ice phase were determined. Average retention coefficients of formic acid and acetic acid were 0.73 0.07 and 0.62 0.12, respectively; both oxalic and malonic acids had average retention coefficients of 0.98 0.04. These variations can be explained by the fact that retention depends on the one hand on the dissociation state of the substance together with its solubility (described by the effective Henry's law constant) and on the other hand on the latent heat removal from the collector to the environment. This is affected by ventilation, shape of the rime collector, liquid water content, and droplet size.

  11. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    SciTech Connect

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.

  12. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    DOE PAGESBeta

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0more » MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  13. Carboxylic Acids as A Traceless Activation Group for Conjugate Additions: A Three-Step Synthesis of (±)-Pregabalin

    PubMed Central

    2015-01-01

    The direct application of carboxylic acids as a traceless activation group for radical Michael additions has been accomplished via visible light-mediated photoredox catalysis. Photon-induced oxidation of a broad series of carboxylic acids, including hydrocarbon-substituted, α-oxy, and α-amino acids, provides a versatile CO2-extrusion platform to generate Michael donors without the requirement for organometallic activation or propagation. A diverse array of Michael acceptors is amenable to this new conjugate addition strategy. An application of this technology to a three-step synthesis of the medicinal agent pregabalin (commercialized by Pfizer under the trade name Lyrica) is also presented. PMID:25032785

  14. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    PubMed

    Luanloet, Thikumporn; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2015-08-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (EC 1.14.12.4) from Pseudomonas sp. MA-1 is a flavin-dependent monooxygenase that catalyzes a hydroxylation and aromatic ring cleavage reaction. The functional roles of two residues, Tyr223 and Tyr82, located ~ 5 Å away from MHPC, were characterized using site-directed mutagenesis, along with ligand binding, product analysis and transient kinetic experiments. Mutation of Tyr223 resulted in enzyme variants that were impaired in their hydroxylation activity and had Kd values for substrate binding 5-10-fold greater than the wild-type enzyme. Because this residue is adjacent to the water molecule that is located next to the 3-hydroxy group of MHPC, the results indicate that the interaction between Tyr223, H2 O and the 3-hydroxyl group of MHPC are important for substrate binding and hydroxylation. By contrast, the Kd for substrate binding of Tyr82His and Tyr82Phe variants were similar to that of the wild-type enzyme. However, only ~ 40-50% of the substrate was hydroxylated in the reactions of both variants, whereas most of the substrate was hydroxylated in the wild-type enzyme reaction. In free solution, MHPC or 5-hydroxynicotinic acid exists in a mixture of monoanionic and tripolar ionic forms, whereas only the tripolar ionic form binds to the wild-type enzyme. The binding of tripolar ionic MHPC would allow efficient hydroxylation through an electrophilic aromatic substitution mechanism. For the Tyr82His and Tyr82Phe variants, both forms of substrates can bind to the enzymes, indicating that the mutation at Tyr82 abolished the selectivity of the enzyme towards the tripolar ionic form. Transient kinetic studies indicated that the hydroxylation rate constants of both Tyr82 variants are approximately two- to 2.5-fold higher than that of the wild-type enzyme. Altogether, our findings suggest that Tyr82 is important for the binding selectivity of MHPC oxygenase towards the tripolar ionic species, whereas the interaction between Tyr223 and the substrate is important for ensuring hydroxylation. These results highlight how the active site of a flavoenzyme is able to deal with the presence of multiple forms of a substrate in solution and ensure efficient hydroxylation. PMID:25639849

  15. The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry.

    PubMed

    Mugnaini, Claudia; Pasquini, Serena; Corelli, Federico

    2009-01-01

    Quinolones are among the most common frameworks present in the bioactive molecules and hence represent an attractive starting point for the design of combinatorial libraries. Since 1962 4-quinolone-3-carboxylic acid derivatives are clinically used as antibacterial agents worldwide. Currently, fluoroquinolones are approved by the WHO as second-line drugs to treat tuberculosis (TB), and their use in multidrug-resistant (MDR)-TB is increasing due to the fact that they have a broad and potent spectrum of activity and can be administered orally. In the last years, quinolones endowed with "non-classical" biological activities, such as antitumor, anti-HIV-1 integrase, cannabinoid receptor 2 agonist/antagonist activities, have been reported by our research group as well as by other researchers. This review focuses on the 4-quinolone-3-carboxylic acid motif as a privileged structure in medicinal chemistry for obtaining new compounds possessing antibacterial, antitumor, anti-HIV, and cannabinoid receptors modulating activities. Synthetic approaches, structure-activity relationships, mechanisms of action, and therapeutic potentials of these novel classes of pharmacologically active compounds are presented. PMID:19442143

  16. Electronic and cationic spectroscopy of 9-hydroxy-9-fluorene carboxylic acid.

    PubMed

    Gu, Quanli; Trindle, Carl O; Knee, J L

    2014-07-10

    Resonance-enhanced multiphoton ionization spectroscopy of supersonically cooled gas-phase 9-hydroxy-9-fluorene carboxylic acid (9HFCA) is reported for its first electronic excited state, S1. The UV-UV hole-burning experiment identifies a single conformer in the molecular beam, stabilized by an intramolecular hydrogen bond. For this Cs symmetric conformer, two low frequencies in the S1 spectrum are assigned: an in-plane rocking mode of the carboxylic acid side chain lies at 58 cm(-1), and an in-plane fluorene bending mode appears at 183 cm(-1). The corresponding mode frequencies in the cation, 58 and 196 cm(-1), are measured by zero electron kinetic energy (ZEKE) spectroscopy upon pumping the S1 vibronic states. The adiabatic ionization potential is measured to be 64?923 5 cm(-1). In addition, a feature established by ZEKE spectroscopy upon pumping the hot band is found at 67 cm(-1). This is assigned as a hot band of the HO-C9-COOH rocking mode in the neutral ground state. PMID:24956485

  17. Facile Synthesis of Carboxylic Functionalized MFe2O4 (M = Mn, Co, Zn) Nanospheres.

    PubMed

    Xing, Ruimin; Lu, Li; Huang, Haiping; Liu, Shanhu; Niu, Jingyang

    2015-07-01

    A facile one-pot solvothermal method was developed for the synthesis of carboxylic functionalized MFe2O4 (M = Mn, Co, Zn) nanospheres. Field-emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectrometer, and a superconducting quantum interference device magnetometer were used to characterize the morphologies, compositions and properties of the functionalized materials. Results show that all of the products were cubic spinel structures and exhibited hierarchical sphere-like morphologies, which were composed of primary nanocrystals. The MFe2O4 present advantageous functionality and good water dispensability due to the preferential exposure of uncoordinated carboxylate groups on their respective surfaces. These properties make them ideal candidates for various important applications such as drug delivery, bioseparation, and magnetic resonance imaging. PMID:26373101

  18. A supported polymeric liquid membrane process for removal of carboxylic acids from a waste stream

    SciTech Connect

    Ho, S.V.

    1999-12-31

    The removal or elimination of organic residues from aqueous waste streams represents a major need in the chemical industry. The authors have developed a new class of membrane called supported polymeric liquid membranes that are capable of removing and concentrating low molecular weight organic compounds from dilute aqueous solutions, especially those that also contain high concentrations of inorganic salts. Attractive features of this membrane process include the ability to recover the contaminants in concentrated form for either recycle or more economical disposal, low pressure (ambient) operation, simple scale-up using commercial hollow fiber modules, and ease of in-situ regeneration of the polymeric liquid. The process has shown treatment feasibility for several types of aqueous waste streams. This paper describes the laboratory development activities for treating a waste stream containing a dilute mixture of C2-C6 carboxylic acids and nitric acid.

  19. Synthesis and evaluation of novel dental monomer with branched carboxyl acid group

    PubMed Central

    Song, Linyong; Ye, Qiang; Ge, Xueping; Misra, Anil; Laurence, Jennifer S.; Berrie, Cynthia L.; Spencer, Paulette

    2014-01-01

    To enhance the water miscibility and increase the mechanical properties of dentin adhesives, a new glycerol-based monomer with vinyl and carboxylic acid, 4-((1,3-bis(-methacryloyloxy)propan-2-yl)oxy)-2-methylene-4-oxobutanoic acid (BMPMOB), was synthesized and characterized. Dentin adhesive formulations containing 2-hydroxyethyl methacrylate (HEMA), 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (BisGMA), and BMPMOB were characterized with regard to real-time photopolymerization behavior, water sorption, dynamic mechanical analysis, and microscale three-dimensional internal morphologies and compared with HEMA/BisGMA controls. The experimental adhesive copolymers showed higher glass transition temperature and rubbery moduli, as well as improved water miscibility compared to the controls. The enhanced properties of the adhesive copolymers indicated that BMPMOB is a promising comonomer for dental restorative materials. PMID:24596134

  20. Charge transport and structural dynamics in carboxylic-acid-based deep eutectic mixtures.

    PubMed

    Griffin, Philip J; Cosby, Tyler; Holt, Adam P; Benson, Roberto S; Sangoro, Joshua R

    2014-08-01

    Charge transport and structural dynamics in the 1:2 mol ratio mixture of lidocaine and decanoic acid (LID-DA), a model deep eutectic mixture (DEM), have been characterized over a wide temperature range using broad-band dielectric spectroscopy and depolarized dynamic light scattering. Additionally, Fourier transform infrared spectroscopy measurements were performed to assess the degree of proton transfer between the neutral parent molecules. From our detailed analysis of the dielectric spectra, we have determined that this carboxylic-acid-based DEM is approximately 25% ionic at room temperature. Furthermore, we have found that the characteristic diffusion rate of mobile charge carriers is practically identical to the rate of structural relaxation at all measured temperatures, indicating that fast proton transport does not occur in LID-DA. Our results demonstrate that while LID-DA exhibits the thermal characteristics of a DEM, its charge transport properties resemble those of a protic ionic liquid. PMID:25025600

  1. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during the catalytic reactions. PS nanoparticles were further evaluated for the pretreatment of corn stover in order to increase digestibility of the biomass. The pretreatment was carried out at three different catalyst load and temperature levels. At 180C, the total glucose yield was linearly correlated to the catalyst load. A maximum glucose yield of 90% and 58% of the hemicellulose sugars were obtained at this temperature.

  2. Toxicity assessment of perfluorinated carboxylic acids (PFCAs) towards the rotifer Brachionus calyciflorus.

    PubMed

    Wang, Yujuan; Niu, Junfeng; Zhang, Lilan; Shi, Jianghong

    2014-09-01

    The effects of acute toxicity, 3-day population growth and morphological effects of perfluorinated carboxylic acids (PFCAs) with carbon chain lengths of 2-6 on the freshwater rotifer Brachionus calyciflorus were investigated. The results indicated that the 24-h median lethal concentration (LC50) values of trifluoroacetic acid (TFA), perfluoropropionic acid (PFPrA), perfluorobutanoic acid (PFBA), perfluopentanoic acid (PFPeA), and perfluorohexanoic acid (PFHxA) towards B. calyciflorus were 70, 80, 110, 130 and 140 mg L(-1), respectively. The acute effects of PFCAs decreased with the increase of carbon chain length. The parameters used to determine 3-day population growth on these compounds were the rate of population increase (r) and mictic ratio. With the increase of fluorinated carbon-chain length, the r values of TFA, PFPrA, PFBA, PFPeA and PFHxA decreased by 0.99%, 16.8%, 16.5%, 22.4% and 32.0%, respectively. Mictic ratios ranged from 0.707 to 0.953 for PFCAs with carbon chain lengths of 2-6. In addition, the mictic ratio, body size and egg size exposed to some PFCAs were higher than those of the controls. These results offer a useful method for the ecological risk assessment of these short chain PFCAs. PMID:24572989

  3. Radiation-initiated emulsion copolymerization of styrene and carboxylic acid monomers. [Gamma radiation

    SciTech Connect

    Egusa, S.; Makuuchi, K.

    1982-03-01

    The emulsion copolymerization of styrene and carboxylic acid monomers such as acrylic, methacrylic, and itaconic acids (AAc, MAAc, IAc) was studied by using /sup 60/Co ..gamma..-rays as initiator and sodium dodecylsulfate as emulsifier. The polymerization behavior of these acid monomers was followed by simultaneous conductometric and potentiometric titrations for a latex sample taken in polymerization. The polymerization rate of these acid monomers increases in the following order of hydrophobicity: IAc < AAc < MAAc; this suggests that their polymerization sites are mainly the surface and/or subsurface regions of latex particles. The copolymerization rate of styrene and acid monomer increases with an increase in the acid monomer content for AAc and MAAc, whereas for IAc the rate decreases. The particle sizes determined by the stopped-flow method reveal that this variation of copolymerization rate cannot be explained by the number of growing particles and should be attributed to another factor; for instance, the transfer rate of styrene molecules from oil droplets to growing particles.

  4. Perfluorinated carboxylic acids in human breast milk from Spain and estimation of infant's daily intake.

    PubMed

    Motas Guzmàn, Miguel; Clementini, Chiara; Pérez-Cárceles, Maria Dolores; Jiménez Rejón, Sandra; Cascone, Aurora; Martellini, Tania; Guerranti, Cristiana; Cincinelli, Alessandra

    2016-02-15

    Human milk samples were collected from 67 mothers in 2014 at a Primary Care Centre in Murcia (Spain) and analyzed for perfluorinated carboxylic acids (PFCAs). Concentrations measured for perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorododecanoic acid (PFDoDA) ranged from

  5. Synthesis, spectroscopic characterization and molecular modeling of a tetranuclear platinum(II) complex with thiazolidine-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Corbi, Pedro P.; Formiga, Andr L. B.; Bonk, Fbio A.; Quinto, Frederico A.; Ferraresi, Diego K. D.; Lustri, Wilton R.; Massabni, Antonio C.

    2012-07-01

    The synthesis, spectroscopic characterization and molecular modeling of a novel tetranuclear platinum(II) complex with thiazolidine-4-carboxylic acid (THC) are described. Elemental analysis is consistent with the composition PtCl2C4H7NO2SH2O. Infrared (IR) spectroscopic results and solid-state 13C and 15N nuclear magnetic resonance (NMR) data indicate coordination of the ligand to Pt(II) through the nitrogen and sulfur atoms. The square planar geometry of the platinum(II) complex is completed by chlorine atoms. Density functional theory (DFT) suggests the formation of a tetrameric cluster as the most probable structure, where each THC molecule bridges between two metal centers. The compound is insoluble in water.

  6. The Biosynthetic Pathway of Indole-3-Carbaldehyde and Indole-3-Carboxylic Acid Derivatives in Arabidopsis1[W

    PubMed Central

    Bttcher, Christoph; Chapman, Alexandra; Fellermeier, Franziska; Choudhary, Manisha; Scheel, Dierk; Glawischnig, Erich

    2014-01-01

    Indolic secondary metabolites play an important role in pathogen defense in cruciferous plants. In Arabidopsis (Arabidopsis thaliana), in addition to the characteristic phytoalexin camalexin, derivatives of indole-3-carbaldehyde (ICHO) and indole-3-carboxylic acid (ICOOH) are synthesized from tryptophan via the intermediates indole-3-acetaldoxime and indole-3-acetonitrile. Based on feeding experiments combined with nontargeted metabolite profiling, their composition in nontreated and silver nitrate (AgNO3)-treated leaf tissue was comprehensively analyzed. As major derivatives, glucose conjugates of 5-hydroxyindole-3-carbaldehyde, ICOOH, and 6-hydroxyindole-3-carboxylic acid were identified. Quantification of ICHO and ICOOH derivative pools after glucosidase treatment revealed that, in response to AgNO3 treatment, their total accumulation level was similar to that of camalexin. ARABIDOPSIS ALDEHYDE OXIDASE1 (AAO1), initially discussed to be involved in the biosynthesis of indole-3-acetic acid, and Cytochrome P450 (CYP) 71B6 were found to be transcriptionally coexpressed with camalexin biosynthetic genes. CYP71B6 was expressed in Saccharomyces cerevisiae and shown to efficiently convert indole-3-acetonitrile into ICHO and ICOOH, thereby releasing cyanide. To evaluate the role of both enzymes in the biosynthesis of ICHO and ICOOH derivatives, knockout and overexpression lines for CYP71B6 and AAO1 were established and analyzed for indolic metabolites. The observed metabolic phenotypes suggest that AAO1 functions in the oxidation of ICHO to ICOOH in both nontreated and AgNO3-treated leaves, whereas CYP71B6 is relevant for ICOOH derivative biosynthesis specifically after induction. In summary, a model for the biosynthesis of ICHO and ICOOH derivatives is presented. PMID:24728709

  7. Influence of cyclic dimer formation on the phase behavior of carboxylic acids. II. Cross-associating systems.

    PubMed

    Jane?ek, Ji?; Paricaud, Patrice

    2013-08-15

    The doubly bonded dimer association scheme (DBD) proposed by Sear and Jackson is extended to mixtures exhibiting both self- and cross-associations. The PC-SAFT equation of state is combined with the new DBD association contribution to describe the vapor-liquid equilibria of binary mixtures of carboxylic acids + associating compounds (water, alcohols, and carboxylic acids). The effect of doubly bonded dimers on the phase behavior in such systems is less important than in mixtures of carboxylic acids with nonassociating compounds, due to the cross-associations that compete with the formation of DBDs. Nevertheless, a clear improvement in the description of vapor-liquid coexistence curves is achieved over the classical 2B association model, particularly for the dew point curves. PMID:23806104

  8. Ascorbic acid absorption in Crohn's disease. Studies using L-(carboxyl-/sup 14/C)ascorbic acid

    SciTech Connect

    Pettit, S.H.; Shaffer, J.L.; Johns, C.W.; Bennett, R.J.; Irving, M.H.

    1989-04-01

    Total body pool and intestinal absorption of ascorbic acid were studied in 12 patients undergoing operation for Crohn's disease (six with fistulae and six without) and in six control patients undergoing operation for reasons other than Crohn's disease. L-(carboxyl-/sup 14/C)Ascorbic acid, 0.19-0.40 megabecquerels (MBq), was given orally. After a period of equilibration, the labeled ascorbic acid was flushed out of the patient's body tissues using large doses of unlabeled ascorbic acid. Intestinal absorption of ascorbic acid, assessed from the total cumulative urinary /sup 14/C recovery, was found to be similar in patients with fistulizing Crohn's disease (73.9 +/- 8.45%), those without fistulas (72.8 +/- 11.53%), and in controls (80.3 +/- 8.11%). Total body pools of ascorbic acid, calculated using the plasma /sup 14/C decay curves, were similar in patients with Crohn's disease with fistulas (17.1 +/- 5.91 mg/kg), patients without fistulas (9.6 +/- 3.58 mg/kg), and in controls (13.3 +/- 4.28 mg/kg). The results indicate that ascorbic acid absorption is normal in patients with both fistulizing and nonfistulizing Crohn's disease. The results suggest that routine supplements of vitamin C are not necessary unless oral ascorbic acid intake is low.

  9. Comparison of unimolecular decomposition pathways for carboxylic acids of relevance to biofuels.

    PubMed

    Clark, Jared M; Nimlos, Mark R; Robichaud, David J

    2014-01-01

    Quantum mechanical molecular modeling is used [M06-2X/6-311++G(2df,p)] to compare activation energies and rate constants for unimolecular decomposition pathways of saturated and unsaturated carboxylic acids that are important in the production of biofuels and that are models for plant and algae-derived intermediates. Dehydration and decarboxylation reactions are considered. The barrier heights to decarboxylation and dehydration are similar in magnitude for saturated acids (?71 kcal mol(-1)), with an approximate 1:1 [H2O]/[CO2] branching ratio over the temperature range studied (500-2000 K). ?,?-Unsaturation lowers the barrier to decarboxylation between 2.2 and 12.2 kcal mol(-1) while increasing the barriers to dehydration by ?3 kcal mol(-1). The branching ratio, as a result, is an order of magnitude smaller, [H2O]/[CO2] = 0.07. For some ?,?-unsaturated acids, six-center transition states are available for dehydration, with barrier heights of ?35.0 kcal mol(-1). The branching ratio for these acids can be as high as 370:1. ?,?-Unsaturation results in a small lowering in the barrier height to decarboxylation (?70.0 kcal mol(-1)). ?,?-Unsaturation also leads to a lowering in the dehydration pathway from 1.7 to 5.1 kcal mol(-1). These results are discussed with respect to predicted kinetic values for acids of importance in biofuels production. PMID:24295398

  10. Dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes impregnated polydimethylsiloxane nanocomposite

    NASA Astrophysics Data System (ADS)

    Sagar, Sadia; Iqbal, Nadeem; Maqsood, Asghari

    2013-06-01

    The dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes (F-MWCNT) incorporated into the polydimethylsiloxane (PDMS) were evaluated to determine their potential in the field of electronic materials. Carboxylic functionalization of the pristine multi walled carbon tubes (Ps-MWCNT) was confirmed through Fourier transform infrared spectroscopy, X-ray diffraction patterns for both Ps-MWCNTs and F-MWCNTs elaborated that crystalline behavior did not change with carboxylic moieties. Thermogravimetric and differential thermal analyses were performed to elucidate the thermal stability with increasing weight % addition of F-MWCNTs in the polymer matrix. Crystallization/glass transition / melting temperatures were evaluated using differential scanning calorimeter and it was observed that glass transition and crystallization temperatures were diminished while temperatures of first and second melting transitions were progressed with increasing F-MWCNT concentration in the PDMS matrix. Scanning electron microscopy and energy dispersive x-ray spectroscopy were carried out to confirm the morphology, functionalization, and uniform dispersion of F-MWCNTs in the polymer matrix. Electrical resistivity at temperature range (100-300C), dielectric loss (tan?) and dielectric parameters (epsilon/ epsilon//) were measured in the frequency range (1MHz-3GHz). The measured data simulate that the aforementioned properties were influenced by increasing filler contents in the polymer matrix because of the high polarization of conductive F-MWCNTs at the reinforcement/polymer interface.

  11. ABIOTIC FORMATION OF CARBOXYLIC ACIDS (RCOOH) IN INTERSTELLAR AND SOLAR SYSTEM MODEL ICES

    SciTech Connect

    Kim, Y. S.; Kaiser, R. I.

    2010-12-10

    The present laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar and solar system model ices of carbon dioxide (CO{sub 2})-hydrocarbon mix C{sub n} H{sub 2n+2} (n = 1-6). The pristine model ices were irradiated at 10 K under contamination-free, ultrahigh vacuum conditions with energetic electrons generated in the track of galactic cosmic-ray particles. The chemical processing of the ices was monitored by a Fourier transform infrared spectrometer and a quadrupole mass spectrometer during the irradiation phase and subsequent warm-up phases on line and in situ in order to extract qualitative (carriers) and quantitative (rate constants and yields) information on the newly synthesized species. Carboxylic acids were identified to be the main carrier, together with carbon monoxide (CO) and a trace of formyl (HCO) and hydroxycarbonyl (HOCO) radicals at 10 K. The upper limit of acid column density at 10 K was estimated as much as (1.2 {+-} 0.1) x 10{sup 17} molecules cm{sup -2} at doses of 17 {+-} 2 eV molecule{sup -1}, or the yield of 39% {+-} 4% from the initial column density of carbon dioxide. The temporal column density profiles of the products were then numerically fit using two independent kinetic schemes of reaction mechanisms. Finally, we transfer this laboratory simulation to star-forming regions of the interstellar medium, wherein cosmic-ray-induced processing of icy grains at temperatures as low as 10 K could contribute to the current level of chemical complexity as evidenced in astronomical observations and in extracts of carbonaceous meteorites.

  12. Sulfonated poly(ether ether ketone) membranes containing pendent carboxylic acid groups and their application in vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Chen, Dongju; Li, Xianfeng

    2014-02-01

    Sulfonated poly(ether ether ketone) (C-SPEEK) membranes with pendent carboxylic acid groups are prepared and first investigated for vanadium flow battery (VFB) application. The introduction of carboxylic acid groups can effectively improve the ion conductivities of C-SPEEK membranes, while, keep their ion selectivities. The prepared C-SPEEK membranes exhibit excellent performance under VFB operating condition. VFB single cell assembled with C-SPEEK-50 membranes shows much higher energy efficiency (85% Vs 82%) and columbic efficiency (97.3% Vs 94.6%) than that assembled with Nafion 115. The membrane keeps a stable performance after more than 180 cycles charge-discharge test, showing good stability.

  13. Supported Palladium Nanoparticle-Catalyzed Carboxylation of Aryl Halides, Alkenylsilanes, and Organoboronic Acids Employing Oxalic Acid as the C1 Source.

    PubMed

    Shil, Arun K; Kumar, Sandeep; Reddy, C Bal; Dadhwal, Sumit; Thakur, Vandna; Das, Pralay

    2015-11-01

    Polystyrene-supported palladium(0) (Pd@PS) nanoparticles as a heterogeneous catalyst have been developed for caboxylation of aryl halides, alkenylsilanes, and organoboronic acids to produce the corresponding carboxylic acids with minor quantities of corresponding aldehydes using bench-stable and inexpensive oxalic acid as the C1 source under focused microwave irradiation. The close vicinity of oxalic acid to Pd@PS maintained through ionic bonding helped to produce CO2 over the catalytic surface that concurrently participated in the carboxylation reaction. PMID:26479944

  14. Determination of carboxylic acids in vinegars and in Aceto Balsamico Tradizionale di Modena by HPLC and GC methods.

    PubMed

    Cocchi, Marina; Lambertini, Paolo; Manzini, Daniela; Marchetti, Andrea; Ulrici, Alessandro

    2002-09-11

    The presence of carboxylic acids in grape products has been investigated for a long time by researchers, from both the qualitative and quantitative points of view. Evaluation of carboxylic acids requires the study and optimization of some operative variables which are strictly related to the matrix. In particular, the determination of organic acids in real matrixes such as Aceto Balsamico Tradizionale of Modena (ABTM; a traditional balsamic vinegar made from cooked grape must) is often difficult because of the presence of numerous interferences that need to be removed by separation techniques. To this aim, in the present work a solid-phase extraction (SPE) method with C18 and NH(2) exchangers was used to clean the ABTM samples prior to analysis or further treatments. Both HPLC and GC techniques were used to determine organic acids. The efficiency of these two different analytical techniques in the study of ABTM acidic composition has been evaluated. Both methods separately were not able to supply all the data related to carboxylic acids. In particular, HPLC allows acetic and lactic acids quantification, but gluconic and succinic acids are better determined by GC. As far as tartaric, citric, and malic acids are concerned, both HPLC and GC methods give statistically equivalent results. The variation of the single acidic species composition along a series of casks furnished interesting information regarding the chemical transformations taking place during the aging process of this product. PMID:12207457

  15. Novel Carbazole (Cbz)-Based Carboxylated Functional Monomers: Design, Synthesis, and Characterization

    PubMed Central

    Mondal, Ejabul; Lellouche, Jean-Paul; Naddaka, Maria

    2015-01-01

    A series of novel functional carbazole (Cbz)-based carboxylated monomers were synthesized and characterized. A Clauson-Kaas procedure, a deprotection step, amide coupling, and hydrolysis were utilized as key chemical reactions towards the multistep synthesis of monomers in good to excellent isolated yields. The design strategy was further extended to complex carbazole-COOH monomers incorporated arylazo groups as photoreactive moieties. In addition, photoreactive hybrid carbazole (Cbz)-pyrrole (Pyr)-based carboxylated monomers, comprising a pyrrole core linking a carbazole and a photoreactive phenylazide or benzophenone moiety through an amide spacer in the molecular structure, were also synthesized. The latter can be utilized for surface modification of polymeric films in their monomeric form or as polymeric microparticles (MPs). PMID:26478845

  16. A mechanistic study on the Hooker oxidation: synthesis of novel indane carboxylic acid derivatives from lapachol.

    PubMed

    Eyong, Kenneth O; Puppala, Manohar; Kumar, Ponminor Senthil; Lamshöft, Marc; Folefoc, Gabriel N; Spiteller, Michael; Baskaran, Sundarababu

    2013-01-21

    The Hooker oxidation is one of the most intriguing transformations wherein lapachol (1) is readily converted to norlapachol (2) in very good yield. This one-pot reaction involves a very intricate mechanism in which the alkyl side chain of lapachol is shortened by one carbon unit. Previous studies have unequivocally established the involvement of an indane carboxylic acid derivative 3, as a key intermediate (Hooker intermediate), and its simultaneous conversion to norlapachol (2) via the oxidative cleavage of vicinol diol and subsequent intramolecular aldol reaction of the resulting keto acid. However, the formation of the key Hooker intermediate 3 from lapachol (1) remains ambiguous. The present study has thrown some light on the formation of the key intermediate 3 from lapachol (1) via benzilic acid rearrangement of the corresponding labile o-diquinone intermediate 8 derived from lapachol. The involvement of o-diquinone intermediate 8 in the Hooker oxidation has been further established by trapping of this labile intermediate as the corresponding phenazine derivative 9. The involvement of benzilic acid rearrangement as a key step in the Hooker oxidation is further shown with a variety of o-quinones prepared from lapachol (1). PMID:23196897

  17. Effects of carboxylic acids on the rheological properties of crumb rubber modified asphalt

    SciTech Connect

    Tauer, J.E.; Robertson, R.E.

    1996-12-31

    The Federal mandate of 1991-1995 on the use of scrap tires in Federal roadway construction sparked a major interest in gaining a fundamental understanding of the behavior of rubber in asphalt. This study is a systematic elucidation of what chemistry controls the final crumb rubber modified asphalt (CRMA) product quality. We discovered that the type and total acid content in the asphalt are the most influential chemical factors that determine the changes in the important roadway properties of shear modulus (G*) and loss angle ({delta}) of CRMA. Low acid (<0.005 m/L) asphalts were modified with three types of carboxylic acid and each made into CRMA using typical field mixing conditions of 1 hour at 175{degrees}C. Rheological measurements were then made at various storage times up to 192 hours following storage at both 156 and 200{degrees}C. We found the changes in CRMA theological properties correspond to the acid type spiked into the asphalt.

  18. Understanding Potential Exposure Sources of Perfluorinated Carboxylic Acids in the Workplace

    PubMed Central

    Kaiser, Mary A.; Dawson, Barbara J.; Barton, Catherine A.; Botelho, Miguel A.

    2010-01-01

    This paper integrates perspectives from analytical chemistry, environmental engineering, and industrial hygiene to better understand how workers may be exposed to perfluorinated carboxylic acids when handling them in the workplace in order to identify appropriate exposure controls. Due to the dramatic difference in physical properties of the protonated acid form and the anionic form, this family of chemicals provides unique industrial hygiene challenges. Workplace monitoring, experimental data, and modeling results were used to ascertain the most probable workplace exposure sources and transport mechanisms for perfluorooctanoic acid (PFOA) and its ammonium salt (APFO). PFOA is biopersistent and its measurement in the blood has been used to assess human exposure since it integrates exposure from all routes of entry. Monitoring suggests that inhalation of airborne material may be an important exposure route. Transport studies indicated that, under low pH conditions, PFOA, the undissociated (acid) species, actively partitions from water into air. In addition, solid-phase PFOA and APFO may also sublime into the air. Modeling studies determined that contributions from surface sublimation and loss from low pH aqueous solutions can be significant potential sources of workplace exposure. These findings suggest that keeping surfaces clean, preventing accumulation of material in unventilated areas, removing solids from waste trenches and sumps, and maintaining neutral pH in sumps can lower workplace exposures. PMID:20974675

  19. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X− = Cl−, Br−) generates ethyl halides via halogen atom abstraction from FeXn3−n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ≥0.05 M X−. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M−1 s−1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M−1 s−1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  20. Polymorphism in Self-Assembled Structures of 9-Anthracene Carboxylic Acid on Ag(111)

    PubMed Central

    Lu, Chao; Wei, Yinying; Zhu, Erkuang; Reutt-Robey, Janice E.; Xu, Bo

    2012-01-01

    Surface self-assembly process of 9-anthracene carboxylic acid (AnCA) on Ag(111) was investigated using STM. Depending on the molecular surface density, four spontaneously formed and one annealed AnCA ordered phases were observed, namely a straight belt phase, a zigzag double-belt phase, two simpler dimer phases, and a kagome phase. The two high-density belt phases possess large unit cells on the scale length of 10 nm, which are seldom observed in molecular self-assembled structures. This structural diversity stems from a complicated competition of different interactions of AnCA molecules on metal surface, including intermolecular and molecular-substrate interactions, as well as the steric demand from high molecular surface density. PMID:22837666

  1. Hydrogen bond dynamics in crystalline ?-9-anthracene carboxylic acid--a combined crystallographic and spectroscopic study.

    PubMed

    Mor, Ren; Scholz, Mirko; Busse, Gehard; Busse, Lennart; Paulmann, Carsten; Tolkiehn, Martin; Techert, Simone

    2012-08-01

    We compare results from single crystal X-ray diffraction and FTIR spectroscopy to elucidate the nature of hydrogen bonding in ?-9-anthracene carboxylic acid (?-9AC, C(15)H(10)O(2)). The crystallographic studies indicate a disorder for the protons in the cyclic hydrogen bond. This disorder allows the determination of the energy difference between two proton sites along the hydrogen bond. The temperature dependent Fourier transform infrared spectroscopy (FTIR) underpins the crystallographic results. The combination of both methods allows the estimation of a one-dimensional potential curve describing the OH-stretching motion. The dynamical properties of the proton transfer along the hydrogen bond are extracted from this potential. The work presented here has profound implication on future studies of photochemical dynamics of crystalline ?-9AC, which can deliver a deeper understanding of the mechanism of photochemical driven molecular machines and the optical and electronic properties of molecular organic semiconductors. PMID:22735829

  2. Identification of a unique isoform of 1-aminocyclopropane-1-carboxylic acid synthase by monoclonal antibody

    PubMed Central

    Mehta, Arkesh M.; Jordan, Ramon L.; Anderson, James D.; Mattoo, Autar K.

    1988-01-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) synthase (EC 4.4.1.14) is a key enzyme regulating ethylene biosynthesis in higher plants. A monoclonal antibody (mAb T20C) that immunoprecipitates the ACC synthase activity from tomato pericarp tissue extracts revealed that mAb T20C immunodecorates an ?67-kDa polypeptide. On isoelectric focusing gels, ACC synthase activity in cell-free preparations was resolved into three distinct activity peaks with pI values 5.3, 7, and 9. mAb T20C specifically recognized the pI 7 form of the enzyme on electrophoretic transfer (Western) blots. When analyzed by sodium dodecyl sulfate gel electrophoresis under reducing conditions, the eluted pI 7 form was confirmed to migrate as a polypeptide of 67 kDa. The 67-kDa pI 7 isoform is a previously undescribed form of ACC synthase. Images PMID:16593998

  3. Azetidine-2-carboxylic acid resistant mutants of Arabidopsis thaliana with increased salt tolerance

    SciTech Connect

    Lehle, F.R.; Murphy, M.A.; Khan, R.A. )

    1989-04-01

    Nineteen mutant Arabidopsis families resistant to the proline analog azetidine-2-carboxylic acid (ACA) were characterized in terms of NaCl tolerance and proline content. Mutants were selected from about 64,000 progeny of about 16,000 self-pollinated Columbia parents which had been mutated with ethyl methane sulfonate during seed imbibition. Selections were performed during seed germination on aseptic agar medium containing 0.2 to 0.25 mM ACA. Nineteen mutant families, 12 clearly independent, retained resistance to ACA in the M{sub 4} generation. Based on germination on 150 mM NaCl, 13 of the mutant families were more tolerant than the wild type. Two mutants of intermediate resistance to ACA were markedly more salt tolerant than the others. Four mutant families appeared to overproduce proline. Of these, only 3 showed slight increases in salt tolerance.

  4. Conformational analysis of a nucleoside of 1,4-dihydro-4-oxoquinoline-3-carboxylic acid analogue

    NASA Astrophysics Data System (ADS)

    Zaccur Leal, Ktia; Rudolf Seidl, Peter; Diniz Yoneda, Julliane; Santos, CarlaV. B.; Marques, Isakelly P.; Souza, Maria Ceclia B. V.; Francisco Ferreira, Vitor

    2005-06-01

    The synthesis of new ribonucleosides is an essential research area in the investigation of new therapeutically useful agents, particularly those used in the treatment of HIV infection. The conformation of these nucleosides may have direct implications for their ability to bind to receptor targets. We have prepared the 7-methoxy-1,4-dihydro-4-oxoquinoline-3-carboxylic acid derivatives and used the ensemble of low-energy minima to develop conformational profiles of quinolonic nucleosides and verify their accuracy in different calculations of structural parameters. Results are compared with experimental data obtained by X-ray and NMR analysis. Finally, we intend to test the applicability of these methods to conformational analysis of other nucleosides and verify if the preferential conformation is the one which gives the best anti-HIV or antiviral activity.

  5. Hemp oil ingestion causes positive urine tests for delta 9-tetrahydrocannabinol carboxylic acid.

    PubMed

    Costantino, A; Schwartz, R H; Kaplan, P

    1997-10-01

    A hemp oil product (Hemp Liquid Gold) was purchased from a specialty food store. Fifteen milliliters was consumed by seven adult volunteers. Urine samples were taken from the subjects before ingestion and at 8, 24, and 48 h after the dose was taken. All specimens were screened by enzyme immunoassay with SYVA EMIT II THC 20, THC 50, and THC 100 kits. The tetrahydrocannabinol carboxylic acid (THCA) concentration was determined on all samples by gas chromatography-mass spectrometry (GC-MS) (5). A total of 18 postingestion samples were submitted. Fourteen of the samples screened above the 20-ng cutoff, seven were above the 50-ng cutoff, and two screened greater than the 100-ng cutoff. All of the postingestion samples showed the presence of THCA by GC-MS. PMID:9323529

  6. Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues--synthesis and biochemical characterization.

    PubMed

    Hollenstein, Marcel

    2013-08-21

    Modified nucleoside triphosphates (dA(Hs)TP, dU(POH)TP, and dC(Val)TP) bearing imidazole, hydroxyl, and carboxylic acid residues connected to the purine and pyrimidine bases through alkyne linkers were prepared. These modified dN*TPs were excellent substrates for various DNA polymerases in primer extension reactions. Moreover, the combined use of terminal deoxynucleotidyl transferase (TdT) and the modified dNTPs led to efficient tailing reactions that rival those of natural counterparts. Finally, the triphosphates were tolerated by polymerases under PCR conditions, and the ensuing modified oligonucleotides served as templates for the regeneration of unmodified DNA. Thus, these modified dN*TPs are fully compatible with in vitro selection methods and can be used to develop artificial peptidases based on DNA. PMID:23817514

  7. Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation

    SciTech Connect

    Davis, K.E.; Meinhardt, N.A.

    1980-11-18

    Carboxylic acid acylating agents are derived from polyalkenes such as polybutenes, and a dibasic, carboxylic reactant such as maleic or fumaric acid or certain derivatives thereof. These acylating agents are characterized in that the polyalkenes from which they are derived have a mn value of about 1300 to about 5000 and a mw/mn value of about 1.5 to about 4. The acylating agents are further characterized by the presence within their structure of at least 1.3 groups derived from the dibasic, carboxylic reactant for each equivalent weight of the groups derived from the polyalkene. The acylating agents can be reacted with a further reactant subject to being acylated such as polyethylene polyamines and polyols (e.g., pentaerythritol) to produce derivatives useful per se as lubricant additives or as intermediates to be subjected to post-treatment with various other chemical compounds and compositions, such as epoxides, to produce still other derivatives useful as lubricant additives.

  8. Synthesis of ?,?-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and Wittig reaction

    PubMed Central

    Duan, Yitao; Yao, Peiyuan; Du, Yuncheng; Feng, Jinhui

    2015-01-01

    Summary ?,?-Unsaturated esters are versatile building blocks for organic synthesis and of significant importance for industrial applications. A great variety of synthetic methods have been developed, and quite a number of them use aldehydes as precursors. Herein we report a chemo-enzymatic chain elongation approach to access ?,?-unsaturated esters by combining an enzymatic carboxylic acid reduction and Wittig reaction. Recently, we have found that Mycobacterium sp. was able to reduce phenylacetic acid (1a) to 2-phenyl-1-ethanol (1c) and two sequences in the Mycobacterium sp. genome had high identity with the carboxylic acid reductase (CAR) gene from Nocardia iowensis. These two putative CAR genes were cloned, overexpressed in E. coli and one of two proteins could reduce 1a. The recombinant CAR was purified and characterized. The enzyme exhibited high activity toward a variety of aromatic and aliphatic carboxylic acids, including ibuprofen. The Mycobacterium CAR catalyzed carboxylic acid reduction to give aldehydes, followed by a Wittig reaction to afford the products ?,?-unsaturated esters with extension of two carbon atoms, demonstrating a new chemo-enzymatic method for the synthesis of these important compounds. PMID:26664647

  9. Synthesis of ?,?-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and Wittig reaction.

    PubMed

    Duan, Yitao; Yao, Peiyuan; Du, Yuncheng; Feng, Jinhui; Wu, Qiaqing; Zhu, Dunming

    2015-01-01

    ?,?-Unsaturated esters are versatile building blocks for organic synthesis and of significant importance for industrial applications. A great variety of synthetic methods have been developed, and quite a number of them use aldehydes as precursors. Herein we report a chemo-enzymatic chain elongation approach to access ?,?-unsaturated esters by combining an enzymatic carboxylic acid reduction and Wittig reaction. Recently, we have found that Mycobacterium sp. was able to reduce phenylacetic acid (1a) to 2-phenyl-1-ethanol (1c) and two sequences in the Mycobacterium sp. genome had high identity with the carboxylic acid reductase (CAR) gene from Nocardia iowensis. These two putative CAR genes were cloned, overexpressed in E. coli and one of two proteins could reduce 1a. The recombinant CAR was purified and characterized. The enzyme exhibited high activity toward a variety of aromatic and aliphatic carboxylic acids, including ibuprofen. The Mycobacterium CAR catalyzed carboxylic acid reduction to give aldehydes, followed by a Wittig reaction to afford the products ?,?-unsaturated esters with extension of two carbon atoms, demonstrating a new chemo-enzymatic method for the synthesis of these important compounds. PMID:26664647

  10. Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s).

    PubMed

    O'Donnell, Ryan M; Sampaio, Renato N; Li, Guocan; Johansson, Patrik G; Ward, Cassandra L; Meyer, Gerald J

    2016-03-23

    Excited state proton transfer studies of six Ru polypyridyl compounds with carboxylic acid/carboxylate group(s) revealed that some were photoacids and some were photobases. The compounds [Ru(II)(btfmb)2(LL)](2+), [Ru(II)(dtb)2(LL)](2+), and [Ru(II)(bpy)2(LL)](2+), where bpy is 2,2'-bipyridine, btfmb is 4,4'-(CF3)2-bpy, and dtb is 4,4'-((CH3)3C)2-bpy, and LL is either dcb = 4,4'-(CO2H)2-bpy or mcb = 4-(CO2H),4'-(CO2Et)-2,2'-bpy, were synthesized and characterized. The compounds exhibited intense metal-to-ligand charge-transfer (MLCT) absorption bands in the visible region and room temperature photoluminescence (PL) with long τ > 100 ns excited state lifetimes. The mcb compounds had very similar ground state pKa's of 2.31 ± 0.07, and their characterization enabled accurate determination of the two pKa values for the commonly utilized dcb ligand, pKa1 = 2.1 ± 0.1 and pKa2 = 3.0 ± 0.2. Compounds with the btfmb ligand were photoacidic, and the other compounds were photobasic. Transient absorption spectra indicated that btfmb compounds displayed a [Ru(III)(btfmb(-))L2](2+)* localized excited state and a [Ru(III)(dcb(-))L2](2+)* formulation for all the other excited states. Time dependent PL spectral shifts provided the first kinetic data for excited state proton transfer in a transition metal compound. PL titrations, thermochemical cycles, and kinetic analysis (for the mcb compounds) provided self-consistent pKa* values. The ability to make a single ionizable group photobasic or photoacidic through ligand design was unprecedented and was understood based on the orientation of the lowest-lying MLCT excited state dipole relative to the ligand that contained the carboxylic acid group(s). PMID:26901780

  11. Phase-separated structures of mixed Langmuir-Blodgett films of fatty acid and hybrid carboxylic acid.

    PubMed

    Kimura, Hideto; Watanabe, Satoshi; Shibata, Hirobumi; Azumi, Reiko; Sakai, Hideki; Abe, Masahiko; Matsumoto, Mutsuyoshi

    2008-12-01

    Phase separation often occurs in mixed Langmuir-Blodgett (LB) films. Usually circular domains at the micrometer length scale form in the LB films. The size and shape of the domains are governed by a compromise between two competing interactions of line tension and dipole-dipole interaction. An attempt was made to control the line tension by varying systematically the hydrophobic moieties of the film-forming molecules. Phase-separated structures of two-component mixed LB films of fatty acid [C(k)H(2k+1)COOH (HkA)] and hybrid carboxylic acid [C(m)F(2m+1)C(n)H(2n)COOH (FmHnA)] were investigated. IR spectra of the mixed LB films of H17A and F8H10A revealed that the alkyl chains were in an all-trans conformation and that the molecular orientation remained unchanged when the two components were mixed. Nanowires formed in the mixed LB films of HkA and F8H10A. The width of the nanowires increased with an increase in k. Domain size and shape in the mixed LB films of H17A and FmHnA depended strongly on the values of m and n. Circular domains at the micrometer length scale formed in the region m + n < 16. In contrast, domains at the nanometer length scale formed in the region m + n > or = 16 except for F6H10A. These results were explained by using a lattice model that considers the effect of the hydrophobic moieties of fatty acid and hybrid carboxylic acid on the line tension. PMID:19006269

  12. ANALYSIS OF AIRBORNE CARBOXYLIC ACIDS AND PHENOLS AS THEIR PENTAFLUOROBENZYL DERIVATIVES: GAS CHROMATOGRAPHY/ION TRAP MASS SPECTROMETRY WITH A NOVEL CHEMICAL IONIZATION REAGENT, PFBOH. (R826247)

    EPA Science Inventory

    The complex photochemical transformations of biogenic
    hydrocarbons such as isoprene and of anthropogenic
    hydrocarbons such as aromatics are an important source
    of carboxylic acids in the troposphere. The
    identification
    of unknown carboxylic acids can be difficul...

  13. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation.

    PubMed

    Ali, Ahmed Mahmoud Abdelhaleem; Ali, Adel Ahmed; Maghrabi, Ibrahim Abdullah

    2015-06-01

    This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ) and various carboxylic acid plasticizers (CAPs). The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2) showed the highest dissolution percentage (>95% in 20 minutes) compared to pure crystalline CZ (56%). Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism. PMID:26011930

  14. EFFECTS OF CARBOXYLIC ACIDS ON LIQUID-PHASE ADSORPTION OF ETHANOL AND WATER BY HIGH-SILICA ZSM-5

    EPA Science Inventory

    Adsorption isotherms were measured for each compound adsorbed on commercially available ZSM-5 (Si/Al = 140) powder from binary and ternary liquid mixtures of ethanol, carboxylic acids, and water at room temperature. The amounts adsorbed were measured using a recently developed t...

  15. An Enantioselective Assembly of Dihydropyranones through an NHC/LiCl-Mediated in situ Activation of ?,?-Unsaturated Carboxylic Acids.

    PubMed

    Que, Yonglei; Lu, Yinan; Wang, Wenjing; Wang, Yuhong; Wang, Haotian; Yu, Chenxia; Li, Tuanjie; Wang, Xiang-Shan; Shen, Shide; Yao, Changsheng

    2016-03-01

    A straightforward N-heterocyclic carbene (NHC)/LiCl-mediated synthesis of dihydropyranones from ?,?-unsaturated carboxylic acids and 1,3-dicarbonyl compounds was realized through the in situ activation strategy. The key advantages of this protocol include ready availability and high stability of starting materials, good yields, and excellent enantioselectivity. PMID:26864639

  16. Selective Nickel- and Manganese-Catalyzed Decarboxylative Cross Coupling of Some α,β-Unsaturated Carboxylic Acids with Cyclic Ethers

    PubMed Central

    Zhang, Jia-Xiang; Wang, Yan-Jing; Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Xing, Ya-Lan; Li, Yi-He; Wen, Jia-Long

    2014-01-01

    A nickel- and manganese-catalyzed decarboxylative cross coupling of α, β-unsaturated carboxylic acids with cyclic ethers such as tetrahydrofuran and 1, 4-dioxane was developed. Oxyalkylation was achieved when nickel acetate was used as catalyst, while manganese acetate promoted the reaction of alkenylation. PMID:25502282

  17. Selective Nickel- and Manganese-Catalyzed Decarboxylative Cross Coupling of Some ?,?-Unsaturated Carboxylic Acids with Cyclic Ethers

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Xiang; Wang, Yan-Jing; Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Xing, Ya-Lan; Li, Yi-He; Wen, Jia-Long

    2014-12-01

    A nickel- and manganese-catalyzed decarboxylative cross coupling of ?, ?-unsaturated carboxylic acids with cyclic ethers such as tetrahydrofuran and 1, 4-dioxane was developed. Oxyalkylation was achieved when nickel acetate was used as catalyst, while manganese acetate promoted the reaction of alkenylation.

  18. Transition-Metal-Free Tandem Chlorocyclization of Amines with Carboxylic Acids: Access to Chloroimidazo[1,2-?]pyridines.

    PubMed

    Xiao, Xinsheng; Xie, Ying; Bai, Siyi; Deng, Yuanfu; Jiang, Huanfeng; Zeng, Wei

    2015-08-21

    An efficient one-pot and transition-metal-free chlorocyclization cascade of 2-aminopyridines with aliphatic carboxylic acids is reported. This transformation provides a novel approach to 2-chloro- or 3-chloro-substituted imidazo[1, 2-?]pyridines with a broad range of substrate scopes. PMID:26230657

  19. 40 CFR 721.4097 - 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, methyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., methyl ester. 721.4097 Section 721.4097 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances 721.4097 7-Oxabicyclo heptane-3-carboxylic acid, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  20. 40 CFR 721.4097 - 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, methyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., methyl ester. 721.4097 Section 721.4097 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances 721.4097 7-Oxabicyclo heptane-3-carboxylic acid, methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  1. Novel Antiphytopathogenic Compound 2-Heptyl-5-Hexylfuran-3-Carboxylic Acid, Produced by Newly Isolated Pseudomonas sp. Strain SJT25 ?

    PubMed Central

    Wang, Xiao-Ying; Xu, Yu-Quan; Lin, Shuang-Jun; Liu, Zhen-Zhen; Zhong, Jian-Jiang

    2011-01-01

    Pseudomonas sp. strain SJT25, which strongly antagonizes plant pathogens, was isolated from rice rhizosphere soil by a bioactivity-guided approach. A novel antiphytopathogenic compound was isolated from the fermentation broth of Pseudomonas sp. SJT25 and identified as 2-heptyl-5-hexylfuran-3-carboxylic acid. This compound showed antimicrobial activities both in vitro and in vivo. PMID:21742907

  2. Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides.

    PubMed

    Subramanian, Palaniappan; Mazurenko, Ievgen; Zaitsev, Vladimir; Coffinier, Yannick; Boukherroub, Rabah; Szunerits, Sabine

    2014-09-01

    Coating boron-doped diamond nanowires (BDD NWs) with a conducting polymer, poly[3-(pyrrolyl)carboxylic acid], has been reported. Polymer coating was achieved through electropolymerization of 3-(pyrrolyl)carboxylic acid at the electrode interface by amperometrically biasing the BDD NWs interface until a predefined charge has passed. The poly[3-(pyrrolyl)carboxylic acid] modified BDD NWs (PPA-BDD NWs) were characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Using a deposition charge of 11 mC cm(-2) resulted in a thin polymer film deposition. The availability of the carboxylic groups of the polymer coated BDD NWs electrode was demonstrated through copper ion (Cu(2+)) chelation. The resulting complex was successfully used for the site-specific immobilization of histidine-tagged peptides. The binding process was followed by electrochemical impedance spectroscopy (EIS). The Cu(2+)-chelated PPA-BDD NWs interface showed peptide loading capability comparable to those of commercially available interfaces and can be easily regenerated several times using ethylenediaminetetraacetic acid (EDTA). PMID:25009833

  3. [N-Methyl-2-pyrrolidone][C1-C4 carboxylic acid]: a novel solvent system with exceptional lignin solubility.

    PubMed

    Mu, Liwen; Shi, Yijun; Chen, Long; Ji, Tuo; Yuan, Ruixia; Wang, Huaiyuan; Zhu, Jiahua

    2015-09-11

    Novel solvent systems composed of N-methyl-2-pyrrolidone and C1-C4 carboxylic acid exhibit unique physicochemical properties, e.g. large polarity, low viscosity and excellent hydrogen bonding capacity, which have demonstrated excellent lignin solubility that outperforms conventional solvents and ionic liquids. PMID:26222773

  4. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  5. Copper-catalyzed ring expansion of 2-aminobenzothiazoles with alkynyl carboxylic acids to 1,4-benzothiazines.

    PubMed

    Qiu, Jing-Wen; Hu, Bo-Lun; Zhang, Xing-Guo; Tang, Ri-Yuan; Zhong, Ping; Li, Jin-Heng

    2015-03-14

    A new ring expansion of 2-aminobenzothiazoles with alkynyl carboxylic acids was developed, which allows for one-pot synthesis of 1,4-benzothiazines in moderate to excellent yields. The cascade reaction was achieved through decarboxylative coupling, nucleophilic ring-opening reaction and intramolecular hydroamination process. PMID:25632941

  6. Selective nickel- and manganese-catalyzed decarboxylative cross coupling of some ?,?-unsaturated carboxylic acids with cyclic ethers.

    PubMed

    Zhang, Jia-Xiang; Wang, Yan-Jing; Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Xing, Ya-Lan; Li, Yi-He; Wen, Jia-Long

    2014-01-01

    A nickel- and manganese-catalyzed decarboxylative cross coupling of ?, ?-unsaturated carboxylic acids with cyclic ethers such as tetrahydrofuran and 1, 4-dioxane was developed. Oxyalkylation was achieved when nickel acetate was used as catalyst, while manganese acetate promoted the reaction of alkenylation. PMID:25502282

  7. Investigation of supramolecular synthons and structural characterisation of aminopyridine-carboxylic acid derivatives

    PubMed Central

    2014-01-01

    Background Co-crystal is a structurally homogeneous crystalline material that contains two or more neutral building blocks that are present in definite stoichiometric amounts. The main advantage of co-crystals is their ability to generate a variety of solid forms of a drug that have distinct physicochemical properties from the solid co-crystal components. In the present investigation, five co-crystals containing 2-amino-6-chloropyridine (AMPY) moiety were synthesized and characterized. Results The crystal structure of 2-amino-6-chloropyridine (AMPY) (I), and the robustness of pyridine-acid supramolecular synthon were discussed in four stoichiometry co-crystals of AMPYBA (II), AMPY2ABA (III), AMPY3CLBA (IV) and AMPY4NBA (V). The abbreviated designations used are benzoic acid (BA), 2-aminobenzoic acid (2ABA), 3-chlorobenzoic acid (3CLBA) and 4-nitrobenzoic acid (4NBA). All the crystalline materials have been characterized by 1HNMR, 13CNMR, IR, photoluminescence, TEM analysis and X-ray diffraction. The supramolecular assembly of each co-crystal is analyzed and discussed. Conclusions Extensive N---H????N/N---H????O/O---H????N hydrogen bonds are found in (I-V), featuring different supramolecular synthons. In the crystal structure, for compound (I), the 2-amino-6-chloropyridine molecules are linked together into centrosymmetric dimers by hydrogen bonds to form homosynthon, whereas for compounds (II-V), the carboxylic group of the respective acids (benzoic acid, 2-aminobenzoic acid, 3-chlorobenzoic acid and 4-nitrobenzoic acid) interacts with pyridine molecule in a linear fashion through a pair of N---H????O and O---H????N hydrogen bonds, generating cyclic hydrogen-bonded motifs with the graph-set notation R 2 2 8 , to form heterosynthon. In compound (II), another intermolecular N---H????O hydrogen bonds further link these heterosynthons into zig-zag chains. Whereas in compounds (IV) and (V), these heterosynthons are centrosymmetrically paired via N---H????O hydrogen bonds and each forms a complementary DADA [D?=?donor and A?=?acceptor] array of quadruple hydrogen bonds, with graph-set notation R238, R228 and R238. PMID:24887234

  8. Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Epstein, S.; Krishnamurthy, R. V.; Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1987-01-01

    The isotopic composition of hydrogen, nitrogen, and carbon in amino acid and monocarboxylic acid extracts from the Murchison meteorite has been determined. The unusually high D/H and N-15/N-14 ratios in the amino acid fraction are uniquely characteristic of known interstellar organic materials. The delta D value of the monocarboxylic acid fraction is lower but still consistent with an interstellar origin. These results confirm the extraterrestrial origin of both classes of compound and provide the first evidence suggesting a direct relationship between the massive organosynthesis occurring in interstellar clouds and the presence of prebiotic compounds in primitive planetary bodies.

  9. Studies on terpenoids produced by actinomycetes. 5-dimethylallylindole-3-carboxylic Acid and A80915G-8"-acid produced by marine-derived Streptomyces sp. MS239.

    PubMed

    Motohashi, Keiichiro; Irie, Kiyofumi; Toda, Takashi; Matsuo, Yoshihide; Kasai, Hiroaki; Sue, Masayuki; Furihata, Kazuo; Seto, Haruo

    2008-02-01

    As a result of screening for terpenoids produced by marine-derived Streptomyces sp. MS239, two new terpenoids named 5-dimethylallylindole-3-carboxylic acid and A80915G-8''-acid were isolated and their structures were determined mainly by NMR analyses. PMID:18408326

  10. Tunneling isomerization of small carboxylic acids and their complexes in solid matrixes: a computational insight.

    PubMed

    Tsuge, Masashi; Khriachtchev, Leonid

    2015-03-19

    We have studied hydrogen-atom tunneling in the cis-to-trans conformational change of some carboxylic acid monomers and formic acid (FA) complexes and dimers at the MP2(full) and CCSD(T) levels of theory within the Wentzel-Kramers-Brillouin approximation. The barrier for the minimum energy path, where the OH bond length and the COH bending angle are optimized, is found to be a good approximation for providing the highest barrier transparency. The matrix effect on the transmission coefficients of cis-FA monomer, trans-cis FA dimer (tc1), and cis-acetic acid monomer are modeled by the polarizable continuum model (PCM) at the MP2(full) level of theory in different environments. For the cis-FA monomer and trans-cis FA dimer (tc1), the calculated transmission coefficients agree with the experimental lifetimes observed in noble-gas solids. However, this method cannot reproduce the experimental results obtained for cis-acetic acid. Moreover, the long lifetime of cis-FA and cis-acetic acid in the N2 environment cannot be reproduced either, which is most probably due to specific interactions that are not included in the PCM. The calculation for cis-HCOOD shows a strong decrease of the barrier transparency compared to that for cis-HCOOH, which is consistent with the experiments. In general, good agreement is observed between the calculated barrier transparency (including PCM) and experimental tunneling rate. However, some exceptions are found, which shows that additional factors influence the tunneling rate. PMID:25393052

  11. Highly stereoselective biosynthesis of (R)-?-hydroxy carboxylic acids through rationally re-designed mutation of d-lactate dehydrogenase

    PubMed Central

    Zheng, Zhaojuan; Sheng, Binbin; Gao, Chao; Zhang, Haiwei; Qin, Tong; Ma, Cuiqing; Xu, Ping

    2013-01-01

    An NAD-dependent d-lactate dehydrogenase (d-nLDH) of Lactobacillus bulgaricus ATCC 11842 was rationally re-designed for asymmetric reduction of a homologous series of ?-keto carboxylic acids such as phenylpyruvic acid (PPA), ?-ketobutyric acid, ?-ketovaleric acid, ?-hydroxypyruvate. Compared with wild-type d-nLDH, the Y52L mutant d-nLDH showed elevated activities toward unnatural substrates especially with large substitutes at C-3. By the biocatalysis combined with a formate dehydrogenase for in situ generation of NADH, the corresponding (R)-?-hydroxy carboxylic acids could be produced at high yields and highly optical purities. Taking the production of chiral (R)-phenyllactic acid (PLA) from PPA for example, 50?mM PPA was completely reduced to (R)-PLA in 90?min with a high yield of 99.0% and a highly optical purity (>99.9% e.e.) by the coupling system. The results presented in this work suggest a promising alternative for the production of chiral ?-hydroxy carboxylic acids. PMID:24292439

  12. Dissociative Binding of Carboxylic Acid Ligand on Nanoceria Surface in Aqueous Solution: A Joint in Situ Spectroscopic Characterization and First-Principles Study

    SciTech Connect

    Lu, Zhou; Karakoti, Ajay S.; Velarde Ruiz Esparza, Luis A.; Wang, Weina; Yang, Ping; Thevuthasan, Suntharampillai; Wang, Hongfei

    2013-11-21

    Carboxylic acid is a common ligand anchoring group to functionalize nanoparticle surfaces. Its binding structures and mechanisms as a function of the oxidation states of metal oxide nanoparticle surfaces are not well characterized experimentally. We present an in situ sum frequency generation vibrational spectroscopy (SFG-VS) study on the binding of deuterated acetic acid on ceria nanoparticles in the aqueous solution. In the SFG experiment, ceria nanoparticles were deposited on the flat surface of a CaF2 hemisphere in contact with acetic acid solutions. While the ceria nanoparticle deprotonated the acetic acid, the CaF2 surface could not. Thus, the binding of the deprotonated acetic acid on ceria can be selectively probed. SFG spectra revealed that the binding modes of the carboxylate group depend on the oxidation states of the ceria surfaces. SFG polarization analysis suggested that the bidentate chelating and bridging binding modes co-exist on the reduced ceria surfaces, while the oxidized ceria surfaces are dominated by the bidentate bridging mode. The direct spectroscopic evidence helps to clarify the binding structures and mechanisms on the ceria nanoparticles. Furthermore, the middle-infrared (IR) transparent CaF2 and its chemical inertness make CaF2 and similar substrate materials good candidates for direct SFG-VS measurement of nanoparticle surface reactions and binding chem-istry.

  13. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    PubMed

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. PMID:26585017

  14. Comparison of acid anhydrides with carboxylic acids in enantioselective enzymatic esterification of racemic menthol.

    PubMed

    Xu, J; Zhu, J; Kawamoto, T; Atsuo, T; Hu, Y

    1997-01-01

    Optical resolution of racemic menthol has been efficiently achieved by lipase-catalyzed enantioselective esterification in an organic solvent. The performance of the reaction using an acid anhydride as an acyl donor was compared with that using its corresponding free acid. The reactivities of acid anhydrides were found to be higher than their corresponding free acids, but acid anhydrides were also found to be easily hydrolyzed into free acids under the catalysis of the same enzyme. The existence of a too-high concentration of an acid anhydride in a micro-aqueous reaction system will cause dehydration and thus deactivation of the enzyme, and will enhance non-selective esterification of a chiral alcohol, which will reduce the optical purity of the product. All these drawbacks, however, could be effectively overcome in a semi-batch reaction system into which propionic anhydride was continuously fed. This system showed some advantages over a batch reaction system using free propionic acid: the reaction time of dl-menthol was shortened by half, the stability of the enzyme was much enhanced, and the optical purity of the product (l-menthyl ester) was kept at a similarly high level (> 98% ee). PMID:9631262

  15. Selective reduction of carboxylic acids to aldehydes catalyzed by B(C6F5)3.

    PubMed

    Bzier, David; Park, Sehoon; Brookhart, Maurice

    2013-02-01

    B(C(6)F(5))(3) efficiently catalyzes hydrosilylation of aliphatic and aromatic carboxylic acids to produce disilyl acetals under mild conditions. Catalyst loadings can be as low as 0.05 mol %, and bulky tertiary silanes are favored to give selectively the acetals. Acidic workup of the disilyl acetals results in the formation of aldehydes in good to excellent yields. PMID:23317512

  16. Modification of agarose: 6-aminoagarose mediated syntheses of fluorogenic pyridine carboxylic acid amides.

    PubMed

    Kondaveeti, Stalin; Mehta, Gaurav K; Siddhanta, A K

    2014-06-15

    A facile 6-aminoagarose (AA) mediated synthesis of new fluorogenic amides of agarose with nicotinic (AA-NA) and picolinic acids (AA-PA) employing carbodiimide chemistry have been described. 6-Amino agarose (AA) was synthesized in a facile Mitsunobu-inspired microwave mediated method involving the reaction of agarose with phthalimide in presence of diisopropyl azodicarboxylate and triphenylphosphene (DIAD/TPP) followed by hydrazinolysis. All compounds were characterized by GPC, UV spectrophotometry, fluorescence spectroscopy, FT-IR, (1)H and (13)C NMR spectra. The fluorescence emissions (λmax 430 and 412 nm) of 1 × 10(-3)M solutions of AA-NA and AA-PA in water were significantly higher (ca. 82% and ca. 90%) than those of the molar equivalents (0.2mg) of NA and PA present in the 1 × 10(-3)M solutions of the amides, respectively. These fluorogenic pyridine carboxylic acid amides of agarose may find applications as sensors in biomedical and pharmaceutical industries. PMID:24721091

  17. Photochemical formation of silver metal films from silver salt of natural high molecular carboxylic acid

    NASA Astrophysics Data System (ADS)

    Yonezawa, Yoshiro; Takami, Akinori; Sato, Tomoo; Yamamoto, Katsuhiko; Sasanuma, Takako; Ishida, Hideyuki; Ishitani, Akira

    1990-08-01

    Thin films of silver salt of alginic acid, a typical high molecular carboxylic acid in nature, were photolyzed by 253.7 nm light. On irradiating with a 15-W sterilization lamp in air at relative humidity of more than 70%, the silver alginate films first became yellow-brown colored due to formation of photolytic colloidal silver particles. When irradiation was continued, the irradiated surface of the films finally changed into clear silver mirror. The morphology of these films was observed by means of a high-resolution scanning electron microscope. Colloidal silver particles (10-50 nm diam) formed by a short-time irradiation were sparsely distributed at the film surface. As a result of prolonged irradiation for 180 min, film surface was covered with aggregated colloidal silver. The x-ray diffraction study of the irradiated films revealed sharp diffraction lines, indicating that the colloidal silver was in a highly crystalline state. A preliminary observation of a microtomed cross section of the film showed that colloidal silver particles had a tendency to precipitate at the irradiated side of the film. These observations were consistent with more than a 108 -fold decrease of the sheet resistance and change in transmittance spectra of the films caused by photolysis. It has been proposed that silver atoms from the silver alginate migrate and coalesce to yield the colloidal silver. The colloidal silver particles further diffuse in the film and aggregate themselves at the irradiated surface, giving rise to silver metal films.

  18. Design, Synthesis and Antibacterial Evaluation of Some New 2-Phenyl-quinoline-4-carboxylic Acid Derivatives.

    PubMed

    Wang, Xiaoqin; Xie, Xiaoyang; Cai, Yuanhong; Yang, Xiaolan; Li, Jiayu; Li, Yinghan; Chen, Wenna; He, Minghua

    2016-01-01

    A series of new 2-phenyl-quinoline-4-carboxylic acid derivatives was synthesized starting from aniline, 2-nitrobenzaldehyde, pyruvic acid followed by Doebner reaction, amidation, reduction, acylation and amination. All of the newly-synthesized compounds were characterized by ¹H-NMR, (13)C-NMR and HRMS. The antibacterial activities of these compounds against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), as well as one strain of methicillin-resistant Staphylococcus aureus (MRSA) bacteria were evaluated by the agar diffusion method (zone of inhibition) and a broth dilution method (minimum inhibitory concentration (MIC)), and their structure-activity relationships were obtained and discussed. The results revealed that some compounds displayed good antibacterial activity against Staphylococcus aureus, and Compounds 5a₄ and 5a₇ showed the best inhibition with an MIC value of 64 μg/mL against Staphylococcus aureus and with an MIC value of 128 μg/mL against Escherichia coli, respectively. The results of the MTT assay illustrated the low cytotoxicity of Compound 5a₄. PMID:26978336

  19. Perfluorinated carboxylic acids in directly fluorinated high-density polyethylene material.

    PubMed

    Rand, Amy A; Mabury, Scott A

    2011-10-01

    Perfluorinated carboxylic acids (PFCAs) are ubiquitous in the environment and have been detected in human blood worldwide. One potential route is direct exposure to PFCAs through contact with polymers that have been fluorinated through a process referred to as direct fluorination. PFCAs are hypothesized to be reaction byproducts of direct fluorination when trace amounts of oxygen are present. The objective of this research was to investigate whether PFCAs could be measured in directly fluorinated high-density polyethylene (HDPE) bottles. PFCAs were quantified using Soxhlet extraction with methanol, followed by LC-MS/MS analysis. Total concentrations of PFCAs ranged from 8.5 0.53 to 113 2.5 ng/bottle (1 L), with the short-chain PFCAs, perfluoropropanoic, perfluorobutanoic, perfluoropentanoic, and perfluorohexanoic acids, being the dominant congeners observed. Relative PFCA concentrations varied depending on fluorination level. Structural isomers were detected using (19)F NMR and are hypothesized to have formed during the fluorination process; NMR data revealed the linear isomer typically comprised 55% of the examined sample. Internally branched, isopropyl branched, and t-butyl PFCA isomers of varying chain length were also identified. Electrochemical fluorination was previously thought to be the only source of branched PFCA isomers. The observation here of branched isomers suggests direct fluorination may be an additional source of exposure to these chemicals. The purpose of this study was to measure PFCAs in directly fluorinated material, serving as a previously unidentified source contributing to the environmental load of PFCAs, with potential for human exposure. PMID:21688793

  20. Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides.

    PubMed

    Nockemann, Peter; Thijs, Ben; Parac-Vogt, Tatjana N; Van Hecke, Kristof; Van Meervelt, Luc; Tinant, Bernard; Hartenbach, Ingo; Schleid, Thomas; Ngan, Vu Thi; Nguyen, Minh Tho; Binnemans, Koen

    2008-11-01

    Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethylsulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by (1)H NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined. PMID:18841931

  1. Enzymes for the resolution of alpha-tertiary-substituted carboxylic acid esters.

    PubMed

    Kallwass, H K; Yee, C; Blythe, T A; McNabb, T J; Rogers, E E; Shames, S L

    1994-07-01

    Aromatic alpha-amino-alpha-methyl acids and alpha-hydrazino-alpha-methyl acids are known aromatic amino acid decarboxylase inhibitors. Specific derivatives such as 2-amino-2-methyl-3-(3,4- dihydroxyphenyl)propanoate, Aldomet, and 2-hydrazino-2-methyl-3-(3,4- dihydroxyphenyl)propanoate, Lodosyn, have been developed as therapeutic agents to treat hypertension and Parkinson's disease, respectively. We recently reported a method for the kinetic resolution of the racemic esters of such compounds using a crude preparation of a novel enzyme catalyst from the yeast Candida lipolytica (Yee, C.; Blythe, T.A., McNabb, T.J.; Walts, A.E. J. Org. Chem. 1992, 57, 3525-3527). Here we report the purification and initial characterization of the active enzyme component, an enzyme given the name Candida lipolytica ester hydrolase (CLEH). CLEH was purified to > 95% homogeneity by chromatography on Matrex Blue B resin. The enzyme was found to be a glycoprotein with M(r) = 80,000-300,000. In addition to esterolytic activity, the enzyme was found to catalyze the hydrolysis of amides, anilides and peptides. Sequence analysis of internal peptides of CLEH revealed striking homology to a number of enzymes belonging to the group of serine carboxypeptidases (E.C. 3.4.16.1). One peptide aligned with the canonical serine carboxypeptidase active site sequence, GESYAG. Based on the structural relationship of CLEH to serine carboxypeptidases, three representative serine carboxypeptidases were evaluated for their utility in resolving racemic alpha-tertiary ester substrates and compared with the activity of CLEH. All enzymes revealed similarly high activity and enantioselectivity towards the alpha-hydrazino-alpha-methyl ester precursor of the Parkinson-drug Carbidopa. However, differences in enantioselectivity were observed with other alpha-tertiary-substituted ester substrates. Serine carboxypeptidase-catalyzed ester resolutions thus offer a new route to many sterically hindered homochiral alpha-amino, alpha-hydrazino and alpha-hydroxy carboxylic acids. PMID:7858960

  2. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    NASA Astrophysics Data System (ADS)

    Gomes, Ruth; Dutta, Saikat; Bhaumik, Asim

    2014-11-01

    A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD) analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H)-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  3. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    SciTech Connect

    Gomes, Ruth; Bhaumik, Asim; Dutta, Saikat

    2014-11-01

    A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state {sup 13}C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N{sub 2} sorption, HR-TEM, and NH{sub 3} temperature programmed desorption-thermal conductivity detector (TPD-TCD) analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, ?-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H)-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  4. From molecular salt to pseudo CAB cocrystal: Expanding solid-state landscape of carboxylic acids based on charge-assisted COOH⋯COO- hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Lou, Benyong; Perumalla, Sathyanarayana Reddy; Sun, Changquan Calvin

    2015-11-01

    Using three carboxylic acids, we show that the COOH⋯COO- synthon is robust for directing the cocrystallization between a carboxylic acid and a carboxylate of either the same or a chemically different molecule to form a CAB or pseudo CAB cocrystal, respectively. For a given carboxylic acid and a counterion, only one salt could be prepared. However, additional one CAB cocrystals and two pseudo CAB cocrystals could be prepared based on the COOH⋯COO- synthon. The same synthon has the potential to enable the preparation of additional molecular pseudo CAB cocrystals using other chemically distinct carboxylic acids. This significantly increased number of solid forms highlights the values of charge-assisted synthons, such as COOH⋯COO-, in crystal engineering for expanding the range of material properties of a given molecule for optimum performance in product design.

  5. Ion-exclusion chromatographic determination of carboxylic acids used to support the microbially mediated reductive dechlorination of tetrachloroethene

    SciTech Connect

    Xu, N.; Vandegrift, S.; Fine, D.D.; Sewell, G.W.

    1997-11-01

    An analytical method was developed for the determination of lactic acid, formic acid, acetic acid, propionic acid, and butyric acid in environmental microcosm samples using ion-exclusion chromatography. The chromatographic behavior of various eluents was studied to determine the optimum analytical conditions for eluent concentration and flow rate. Matrix effects caused by inorganic anions including carbonate were investigated. Methods for carbonate removal were also examined. Sub mg/L detection limits and small analytical variations (less than 1%) were obtained with all five acids. Calibration curves with regression coefficients (r{sup 2}) of 0.998 to 1.000 were obtained for acid concentrations ranging from 2.00 to 200.00 mg/L. The total run time for five carboxylic acids was less than 20 min with a relatively small sample volume requirement. The recoveries of the acids from microcosm samples were between 80 to 102%.

  6. Discriminating the carboxylic groups from the total acidic sites in oxidized multi-wall carbon nanotubes by means of acid base titration

    NASA Astrophysics Data System (ADS)

    Gonzlez-Guerrero, Ana Beln; Mendoza, Ernest; Pellicer, Eva; Alsina, Francesc; Fernndez-Snchez, Csar; Lechuga, Laura M.

    2008-09-01

    This work reports on the quantitative determination of the carboxylic groups created upon HNO 3 treatment at multi-wall carbon nanotube (MWCNT) surface. To this purpose, MWCNTs have been oxidized by refluxing in acid for different periods of time (from 1 h to 12 h). The main goal of the present study comprises the development of a simple analytical methodology based on Boehm's titration that enables the rapid estimation of the total carboxylic groups and their discrimination from the total oxidized sites created at MWCNT surface as a result of the acid treatment. The trends observed are correlated with Raman spectroscopy analyses.

  7. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    PubMed

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  8. Carboxylic Acid Ionophores as Probes of the Role of Calcium in Biological Systems

    NASA Technical Reports Server (NTRS)

    Reed, P. W.

    1983-01-01

    The biological effects of calcium ionophores are described, focusing on arachidonic acid oxygenation, and the formation of a number of oxygenated metabolites of arachidonic acid. These metabolites are involved in a number of bodily functions, and their production may be regulated by calcium.

  9. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR.

    PubMed

    del Campo, Gloria; Zuriarrain, Juan; Zuriarrain, Andoni; Berregi, Iñaki

    2016-04-01

    A method using (1)H NMR spectroscopy has been developed to quantify simultaneously thirteen analytes in honeys without previous separation or pre-concentration steps. The method has been successfully applied to determine carboxylic acids (acetic, formic, lactic, malic and succinic acids), amino acids (alanine, phenylalanine, proline and tyrosine), carbohydrates (α- and β-glucose and fructose), ethanol and hydroxymethylfurfural in eucalyptus, heather, lavender, orange blossom, thyme and rosemary honeys. Quantification was performed by using the area of the signal of each analyte in the honey spectra, together with external standards. The regression analysis of the signal area against concentration plots, used for the calibration of each analyte, indicates a good linearity over the concentration ranges found in honeys, with correlation coefficients higher than 0.985 for the thirteen quantified analytes. The recovery studies give values over the 93.7-105.4% range with relative standard deviations lower than 7.4%. Good precision, with relative standard deviations over the range of 0.78-5.21% is obtained. PMID:26593586

  10. Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Russell, L. M.; Covert, D. S.; Quinn, P. K.; Bates, T. S.

    2010-07-01

    Submicron particles were collected on board the NOAA R/V Ronald H. Brown during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific marine boundary layer in October and November 2008. The aerosol in this region was characterized by low numbers of particles (150-700 cm-3) that were dominated by sulfate ions at concentrations of 0.9 0.7 ?g m-3 and organic mass at 0.6 0.4 ?g m-3, with no measurable nitrate and low ammonium ion concentrations. Measurements of submicron organic aerosol functional groups and trace elements show that continental outflow of anthropogenic emissions is the dominant source of organic mass (OM) to the southeast Pacific with an additional, smaller contribution of organic mass from primary marine sources. This continental source is supported by a correlation between OM and radon. Saturated aliphatic C-CH (alkane) composed 41 27% of OM. Carboxylic acid COOH (32 23% of OM) was observed in single particles internally mixed with ketonic carbonyl, carbonate, and potassium. Organosulfate COSO3 (4 8% of OM) was observed only during the periods of highest organic and sulfate concentrations and lowest ammonium concentrations, consistent with a sulfuric acid epoxide hydrolysis for proposed surrogate compounds (e.g., isoprene oxidation products) or reactive glyoxal uptake mechanisms from laboratory studies. This correlation suggests that in high-sulfate, low-ammonium conditions, the formation of organosulfate compounds in the atmosphere contributes a significant fraction of aerosol OM (up to 13% in continental air masses). Organic hydroxyl C-OH composed 20 12% of OM and up to 50% of remote marine OM and was inversely correlated with radon indicating a marine source. A two-factor solution of positive matrix factorization (PMF) analysis resulted in one factor dominated by organic hydroxyl (>70% by mass) and one factor dominated by saturated aliphatic C-CH (alkane) and carboxylic acid (together, 90% by mass), identified as the marine and combustion factors, respectively. Measurements of particle concentrations in the study region compared with concentrations estimated from MODIS aerosol optical depth indicate that continental outflow results in MBL particle concentrations elevated up to 2 times the background level (less than 300 cm-3) away from shore and up to 10 times the background level at the coast. The presence of both coastal fossil fuel combustion and marine sources of oxygenated organic aerosol results in little change in the oxygenated fraction and oxygen to carbon ratio (O/C) along the outflow of the region's dominant organic particle source.

  11. Identification of indole-3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina.

    PubMed

    Gamir, J; Pastor, V; Cerezo, M; Flors, V

    2012-12-01

    Plant resistance against the necrotrophic pathogen Plectosphaerella cucumerina is mediated by a combination of several hormonal-controlled signalling pathways. The priming agent ?-aminobutyric acid (BABA) is able to induce effective resistance against this pathogen by stimulating callose-rich cell wall depositions. In the present research it is demonstrated that BABA-Induced Resistance (BABA-IR) against P.cucumerina in Arabidopsis has additional components such as the induction of defences mediated by indolic derivatives. Chromatographic approach for the detection and characterization of metabolites enhanced by BABA compared with water-treated plants only when the challenge is present has been developed. The metabolites matching this criteria are considered to be primed by BABA. The analytic procedure is based on the combination of liquid chromatography (LC) with a triple quadrupole (TQD) detector in a precursor ion scanning mode. Using this analytical system a signal in negative electro-spray mode of 160 m/z is primed by BABA in infected plants. A subsequent exact mass analysis in a quadrupole time-of-flight mass spectrometer demonstrated that this ion was the indole-derivative metabolite indole-3-carboxylic acid (I3CA). The identity of indole-3-carboxilic acid was definitively confirmed by comparing its retention time and fragmentation spectra with a commercial standard. Quantification of I3CA in primed plants showed that this indolic metabolite is specifically primed by BABA upon P.cucumerina infection, while other indolic compounds such as IAA and camalexin are not. Taking together these observations with the known role of callose in priming against this pathogen, suggests that priming is not a single mechanism but rather a multicomponent defence. PMID:23116603

  12. FT-IR, Laser-Raman spectra and computational analysis of 5-Methyl-3-phenylisoxazole-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Mahendra, M.; Keskinoğlu, S.; Chandra; Srikantamurthy, N.; Umesha, K. B.; Çırak, Ç.

    2015-03-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.

  13. The biosynthetic implications of acetate and glutamate incorporation into (3R,5R)-carbapenam-3-carboxylic acid and (5R)-carbapen-2-em-3-carboxylic acid by Serratia sp.

    PubMed

    Bycroft, B W; Maslen, C; Box, S J; Brown, A; Tyler, J W

    1988-09-01

    Two new beta-lactams have been isolated from strains of Serratia and Erwinia sp. and identified as (3R,5R)- and (3S,5R)-carbapenam-3-carboxylic acid. These novel carbapenams lack antibacterial activity, are resistant to both beta-lactamases I and II from Bacillus cereus and are not detected by the lactamase induction assay. Radiolabelled and stable isotope experiments have established that both metabolites together with the antibiotic 5R-carbapenem-3-carboxylic acid are glutamate and acetate derived. A number of possible pathways for the biosynthesis of these compounds as well as their relationship to the more complex members of the carbapenem family of beta-lactam antibiotics are discussed. PMID:3182403

  14. From serendipity to rational antituberculosis drug discovery of mefloquine-isoxazole carboxylic acid esters.

    PubMed

    Mao, Jialin; Yuan, Hai; Wang, Yuehong; Wan, Baojie; Pieroni, Marco; Huang, Qingqing; van Breemen, Richard B; Kozikowski, Alan P; Franzblau, Scott G

    2009-11-26

    Both in vitro and in vivo metabolism studies suggested that 5-(2,8-bis(trifluoromethyl)quinolin-4-yloxymethyl)isoxazole-3-carboxylic acid ethyl ester (compound 3) with previously reported antituberculosis activity is rapidly converted to two metabolites 3a and 3b. In order to improve the metabolic stability of this series, chemistry efforts were focused on the modification of the oxymethylene linker of compound 3 in the present study. Compound 9d with an alkene linker was found to be both more metabolically stable and more potent than compound 3, with a minimum inhibitory concentration (MIC) of 0.2 microM and 2.6 microM against replicating and nonreplicating Mycobaterium tuberculosis, respectively. These attributes make 9d an interesting lead compound. A number of modifications were made to the structure of 9d, and a series of active compounds were discovered. Although some neurotoxicity was observed at a high dosage, this new series was endowed with both improved in vitro anti-TB activity and metabolic stability in comparison to compound 3. PMID:19863050

  15. Oxidation of benzene with hydrogen peroxide catalyzed with ferrocene in the presence of pyrazine carboxylic acid

    NASA Astrophysics Data System (ADS)

    Shul'pina, L. S.; Durova, E. L.; Kozlov, Yu. N.; Kudinov, A. R.; Strelkova, T. V.; Shul'pin, G. B.

    2013-12-01

    It is found that ferrocene in the presence of small amounts of pyrazine carboxylic acid (PCA) effectively catalyzes the oxidation of benzene to phenol with hydrogen peroxide. Two main differences upon the oxidation of two different substrates, i.e., cyclohexane and benzene, with the same H2O2-ferrocene-PCA catalytic system are revealed: the rates of benzene oxidation and hydrogen peroxide decomposition are several times lower than the rate of cyclohexane oxidation at close concentrations of both substrates, and the rate constant ratios for the reactions of oxidizing particles with benzene and acetonitrile are significantly lower than would be expected for reactions involving free hydroxyl radicals. The overall rate of hydrogen peroxide decomposition, including both the catalase and oxidase routes, is lower in the presence of benzene than in the presence of cyclohexane. It is suggested on the grounds of these data that a catalytically active particle different from the one generated in the absence of benzene is formed in the presence of benzene. This particle catalyzes hydrogen peroxide decomposition less efficiently than the initial complex and generates a dissimilar oxidizing particle that exhibits higher selectivity. It is shown that reactivity of the system at higher concentrations of benzene differs from that of an initial system not containing an aromatic component with the capability of π-coordination with metal ions.

  16. Synthesis, antifungal activity and QSAR of some novel carboxylic acid amides.

    PubMed

    Du, Shijie; Lu, Huizhe; Yang, Dongyan; Li, Hong; Gu, Xilin; Wan, Chuan; Jia, Changqing; Wang, Mian; Li, Xiuyun; Qin, Zhaohai

    2015-01-01

    A series of novel aromatic carboxylic acid amides were synthesized and tested for their activities against six phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to good activity. Among them N-(2-(1H-indazol-1-yl)phenyl)-2-(trifluoromethyl)benzamide (3c) exhibited the highest antifungal activity against Pythium aphanidermatum (EC50 = 16.75 g/mL) and Rhizoctonia solani (EC50 = 19.19 g/mL), compared to the reference compound boscalid with EC50 values of 10.68 and 14.47 g/mL, respectively. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were employed to develop a three-dimensional quantitative structure-activity relationship model for the activity of the compounds. In the molecular docking, a fluorine atom and the carbonyl oxygen atom of 3c formed hydrogen bonds toward the hydroxyl hydrogens of TYR58 and TRP173. PMID:25749678

  17. Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale.

    PubMed

    Jasim, B; Anisha, C; Rohini, Sabu; Kurian, Jacob Manoj; Jyothis, Mathew; Radhakrishnan, E K

    2014-05-01

    Ginger (Zingiber officinale) is cultivated commercially in most parts of the world especially in India for its culinary and medicinal applications. One of the major challenges that limit the yield of ginger is rhizome rot disease caused by organisms including Pythium myriotylum. A feasible ecofriendly method is yet to be devised to prevent the plant from this threatening disease. Recent studies on plant microbiome show the possibility of having endophytic organisms with plant protective characteristics associated with the plants. Because of the uniquely evolved underground nature of the ginger rhizome and its peculiar survival in soil for a long time, many interesting endophytic microbes with plant protective characters can be well expected from it. In the current study, previously isolated endophytic Pseudomonas aeruginosa from ginger was investigated in detail for its effect on Pythium myriotylum. The rhizome protective effect of the organism was also studied by co-inoculation studies, which confirmed that Pseudomonas aeruginosa has very potent inhibitory effect on Pythium myriotylum. On further studies, the active antifungal compound was identified as phenazine 1-carboxylic acid. PMID:24353040

  18. Solid phase extraction purification of carboxylic acid products from 96-well format solution phase synthesis with DOWEX 1x8-400 formate anion exchange resin.

    PubMed

    Bookser, B C; Zhu, S

    2001-01-01

    The anion exchange resin DOWEX 1x8-400 formate has been developed for the isolation or resin capture of carboxylic acids from solution phase reactions in a 96-well format using a batchwise solid phase extraction technique. Eleven different anion exchange resins (formate forms) were evaluated for their efficiency at scavenging aryl and aliphatic carboxylic acids from solution. The model carboxylic acids had pK(a)s ranging from 3.40 to 4.89. Exchange efficiency onto the resin was pK(a) dependent with the carboxylic acids but not with their diisopropylethylammonium salts. Exchange off of the resin also showed pK(a) dependence with the stronger acids requiring more concentrated solvent acid for exchange. DOWEX 1x8-400 formate was determined to have superior capacity and the fastest exchange rate. Solvents suitable for exchanging the acids onto the resin were CH2Cl2, methanol, and various solvent/water mixtures. Solvents suitable for exchanging the carboxylic acids off of the resin were TFA/solvent or HCO2H/solvent mixtures. The resin was found to swell best in CH2Cl2 and in polar protic solvents such as water, alcohols, and acids. Application of this technique to the crude product mixtures from an arrayed reductive amination and an arrayed Stille reaction provided product carboxylic acids in yields averaging 57% and purities averaging 89%. PMID:11300862

  19. Solubility and spectroscopic studies of the interaction of palladium with simple carboxylic acids and fulvic acid at low temperature

    SciTech Connect

    Wood, S.A. ); Tait, C.D.; Janecky, D.R. ); Vlassopoulos, D. )

    1994-01-01

    The interaction of Pd with some O-donor organic acid anions has been investigated using solubility measurements and a variety of spectroscopic techniques (UV-visible, Raman, FTIR, [sup 13]C NMR). Some of the ligands investigated (acetate, oxalate, and fulvic acid) occur naturally in relatively high concentrations, whereas others (phthalate and salicylate) serve as models of potential binding sites on humic and fulvic acids. Solubility measurements show that the presence of acetate, phthalate, salicylate, and fulvic acid (oxalate was not studied via solubility methods) can increase the mobility of Pd over various pH ranges, depending on the organic ligand. In the case of acetate, UV-visible and Raman spectroscopy provide strong evidence for the formation of electrostatically bound, possibly outer-sphere palladium acetate complexes. Oxalate was confirmed by UV-visible and FTIR spectroscopy to compete favorably with chloride (0.56 M NaCl) for Pd even at oxalate concentrations as low as 1 mM at pH = 6-7. Available data from the literature suggest that oxalate may have an influence on Pd mobility at free oxalate concentrations as low as 10[sup [minus]8]=10[sup [minus]9] M. UV-visible spectroscopy provides evidence of an initially rapid, followed by a slower, reaction between PdCl[sup 2-][sub 4] and o-phthalate ion. These findings lend support to the idea that similar bindings sites on fulvic acid may be capable of complexing and solubilizing Pd in the natural environment. Although thermodynamic data are required to fully quantify the extent, it is concluded that simple carboxylic acid anions and/or fulvic and humic acids should be capable of significantly enhancing Pd transport in the surficial environment by forming truly dissolved complexes. On the other hand, flocculation of fulvic/humic acids, owing to changing ionic strengths or pH, or adsorption of these acids onto mineral surfaces, may also provide effective means of immobilizing Pd.

  20. Solubility and spectroscopic studies of the interaction of palladium with simple carboxylic acids and fulvic acid at low temperature

    NASA Astrophysics Data System (ADS)

    Wood, Scott A.; Tait, C. Drew; Vlassopoulos, Dimitri; Janecky, D. R.

    1994-01-01

    The interaction of Pd with some O-donor organic acid anions has been investigated using solubility measurements and a variety of spectroscopic techniques (UV-visible, Raman, FTIR, 13C NMR). Some of the ligands investigated (acetate, oxalate and fulvic acid) occur naturally in relatively high concentrations, whereas others (phthalate and salicylate) serve as models of potential binding sites on humic and fulvic acids. Solubility measurements show that the presence of acetate, phthalate, salicylate and fulvic acid (oxalate was not studied via solubility methods) can increase the mobility of Pd over various pH ranges, depending on the organic ligand. In the case of acetate, UV-visible and Raman spectroscopy ( 13C NMR results were inconclusive) provide strong evidence for the formation of electrostatically bound, possibly outer-sphere palladium acetate complexes. Oxalate was confirmed by UV-visible and FTIR spectroscopy to compete favorably with chloride (0.56 M NaCl) for Pd even at oxalate concentrations as low as 1 mM at pH = 6-7. Available data from the literature suggest that oxalate may have an influence on Pd mobility at free oxalate concentrations as low as 10 -8-10 -9 M. UV-visible spectroscopy provides evidence of an initially rapid, followed by a slower, reaction between PdCl 42- and o-phthalate ion. Our findings lend support to the idea that similar binding sites on fulvic acid may be capable of complexing and solubilizing Pd in the natural environment. Although thermodynamic data are required to fully quantify the extent, it is concluded that simple carboxylic acid anions and/or fulvic and humic acids should be capable of significantly enhancing Pd transport in the surficial environment by forming truly dissolved complexes. On the other hand, flocculation of fulvic/humic acids, owing to changing ionic strengths or pH, or adsorption of these acids onto mineral surfaces, may also provide effective means of immobilizing Pd. These results have applications in exploration geochemistry and disposal of radioactive waste containing 107Pd.

  1. Kinetic resolution of racemic alpha-arylalkanoic acids with achiral alcohols via the asymmetric esterification using carboxylic anhydrides and acyl-transfer catalysts.

    PubMed

    Shiina, Isamu; Nakata, Kenya; Ono, Keisuke; Onda, Yu-suke; Itagaki, Makoto

    2010-08-25

    A variety of optically active carboxylic esters are produced by the kinetic resolution of racemic alpha-substituted carboxylic acids using achiral alcohols, aromatic or aliphatic carboxylic anhydrides, and chiral acyl-transfer catalysts. The combination of 4-methoxybenzoic anhydride (PMBA) or pivalic anhydride with the modified benzotetramisole-type catalyst ((S)-beta-Np-BTM) is the most effective for promotion of the enantioselective coupling reaction between racemic carboxylic acids and a novel nucleophile, bis(alpha-naphthyl)methanol, to give the corresponding esters with high ee's. This protocol was successfully applied to the production of nonracemic nonsteroidal anti-inflammatory drugs from racemic compounds utilizing the transacylation process to generate the mixed anhydrides from the acid components with the suitable carboxylic anhydrides. PMID:20681552

  2. Carboxylic and Dicarboxylic Acids Extracted from Crushed Magnesium Oxide Single Crystals

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Gupta, Alka D.; Kumar, Devendra; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THE) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and (sup 1)H-NMR (Nuclear Magnetic Resonance). The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS (Gas Chromatography - Mass Spectroscopy) analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P2(sub 1)/c with a(sub o) = 5.543 A, b(sub o) = 8.845 A, c(sub o) = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg/g MgO. The MgO crystals from which these organic acids were extracted grew from the 2360 C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H, and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)(sup n-). The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  3. Carboxylic and dicarboxylic acids extracted from crushed magnesium oxide single crystals

    NASA Technical Reports Server (NTRS)

    Freund, F.; Gupta, A. D.; Kumar, D.

    1999-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THF) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and 1H-NMR. The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P21/c with ao = 5.543 A, bo = 8.845 A, co = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg g-1 MgO. The MgO crystals from which these organic acids were extracted grew from the 2860 degrees C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)n-. The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  4. Carboxylic and dicarboxylic acids extracted from crushed magnesium oxide single crystals.

    PubMed

    Freund, F; Gupta, A D; Kumar, D

    1999-10-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THF) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and 1H-NMR. The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P21/c with ao = 5.543 A, bo = 8.845 A, co = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg g-1 MgO. The MgO crystals from which these organic acids were extracted grew from the 2860 degrees C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)n-. The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds. PMID:10573690

  5. Room-temperature cobalt-catalyzed arylation of aromatic acids: overriding the ortho-selectivity via the oxidative assembly of carboxylate and aryl titanate reagents using oxygen.

    PubMed

    Liu, Kun-Ming; Zhang, Rui; Duan, Xin-Fang

    2016-01-27

    A room temperature phosphine or NHC ligand-free cobalt-catalyzed arylation of (hetero)aromatic acids has been developed. It involves an oxidative cross-coupling between carboxylate and aryl titanate reagents using oxygen as an oxidant, and the arylation at the position ortho, meta and para to the carboxylic acid group could all be achieved. As application, various (hetero)aromatic acids including xenalipin, tafamidis and the key intermediate for a cardioprotective compound have been efficiently synthesized. PMID:26732625

  6. Short-chain carboxylic acids, a new class of teratogens: studies of potential biochemical mechanisms

    SciTech Connect

    Coakley, M.E.; Rawlings, S.J.; Brown, N.A.

    1986-12-01

    Certain short-chain carboxylic acids (SCCA) appear to share a common teratogenic potential, although the structural requirements for activity remain obscure. By using a whole rat embryo culture model system, several biochemical processes have been examined, either as potential initial sites of teratogenic action or as early steps in the pathway to malformation. Valproate, methoxyacetate, and butyrate were the prototype SCCA examined. Measurement of (/sup 14/C)glucose utilization and lactate production confirmed that energy production by the early organogenesis embryo is predominantly from glycolysis. While the positive control agent, iodoacetate, caused a significant inhibition of lactate production, none of the SCCA affected this process or glucose utilization at teratogenic concentrations. Pinocytosis by the visceral yolk sac (VYS) was measured by the uptake of (/sup 125/I)polyvinylpyrrolidone. This process ultimately supplies the embryo with amino-acids and is essential for normal development. SCCA induce morphological abnormalities of the VYS in embryo culture. Pinocytosis was slightly reduced by valproate, but not the other SCCA. However, comparison with the action of an antiserum, for which inhibition of pinocytosis is the initial teratogenic insult, suggests that this is not the mechanism for valproate. Incorporation of (/sup 3/H)thymidine into embryo or yolk sac was not affected after 3 hr of SCCA exposure, but there was a marked effect of the positive control, hydroxyurea. This suggests that DNA synthesis is not directly influenced by SCCA. It can be concluded that SCCA do not exert their teratogenic effects by actions on glycolysis; maintenance of cellular acetyl CoA; pinocytosis or DNA synthesis. These observations contrast with preliminary results which suggest significant effects of SCCA on embryonic and yolk sac lipid metabolic pathways.

  7. Distinct Pathways of ERK1/2 Activation by Hydroxy-Carboxylic Acid Receptor-1

    PubMed Central

    Li, Guo; Wang, Hui-qian; Wang, Li-hui; Chen, Ru-ping; Liu, Jun-ping

    2014-01-01

    Mechanistic investigations have shown that, upon agonist activation, hydroxy-carboxylic acid receptor-1(HCA1) couples to a Gi protein and inhibits adenylate cyclase activity, leading to inhibition of liberation of free fatty acid. However, the underlying molecular mechanisms for HCA1 signaling remain largely unknown. Using CHO-K1 cells stably expressing HCA1, and L6 cells, which endogenously express rat HCA1 receptors, we found that activation of ERK1/2 by HCA1 was rapid, peaking at 5 min, and was significantly blocked by pertussis toxin. Furthermore, time course experiments with different kinase inhibitors demonstrated that HCA1 induced ERK1/2 activation via the extracellular Ca2+, PKC and IGF-I receptor transactivation-dependent pathways. In addition, we observed that pretreated the cells with M119K, an inhibitor of G?? subunit-dependent signaling, effectively attenuated the ERK1/2 activation triggered by HCA1, suggesting a critical role for ??-subunits in HCA1-activated ERK1/2 phosphorylation. Furthermore, the present results also indicated that the arrestin2/3 were not required for ERK1/2 activation. In conclusion, our findings demonstrate that upon binding to agonist, HCA1 receptors initially activate Gi, leading to dissociation of the G?? subunit from activated Gi, and subsequently induce ERK1/2 activation via two distinct pathways: one PKC-dependent pathway and the other IGF-IR transactivation-dependent pathway. Our results provide the first in-depth evidence that defines the molecular mechanism of HCA1-mediated ERK1/2 activation. PMID:24671202

  8. Selective complexation of α-amino acids and simple peptides via their carboxylate groups.

    PubMed

    Schnitter, Roland; Gallego, Daniel; Kersting, Berthold

    2014-09-28

    The complexation of anions of selected α-amino acids (alanine, valine, proline, tyrosine) and small peptides (L-alanyl-L-alanine, L-alanyl-L-alanyl-L-alanine, and L-alanyl-L-alanyl-L-alanyl-L-alanine) by the dinuclear nickel(II) complex [LNi2(μ-Cl)]+ (1), where (L)2− represents a 24-membered binucleating hexamine-dithiophenolato ligand, has been investigated. The following complexes were prepared, isolated as perchlorate or tetraphenylborate salts, and characterized by UV/Vis, IR, and CD spectroscopy: [LNi2(μ-L-alaninato)]+ (2), [LNi2(μ-L-valinato)]+ (3), [LNi2(μ-L-prolinato)]+ (4), [LNi2(μ-L-tyrosinato)]+ (5a), [LNi2(μ-D-tyrosinato)]+ (5b), [LNi2(μ-L,D-tyrosinato)]+ (5c), [LNi2(μ-L-alanyl-L-alaninato)]+ (6), [LNi2(μ-(L-alanyl)2-L-alaninato)]+ (7), [LNi2(μ-(L-alanyl)3-L-alaninato)]+ (8). Compounds 4, 5a and 6 were additionally identified by X-ray crystallography. In contrast to unsupported amino carboxylate complexes which typically contain five membered NO chelate rings, the [LNi2]2+ fragment selectively binds the α-amino acids and peptides via μ1,3-bridging carboxylato groups. Coordination of the carboxylato coligands in this way confers dissymmetry on the complexes. The CD spectra of the syn,syn-bridged structures are significantly different from those of the NO chelates, and can distinguish between the two coordination modes. The encapsulation of the peptides increases their solubility in the solvent system MeOH–MeCN by up to two orders of magnitude. This is discussed in terms of the absence of intermolecular hydrogen bonding interactions as indicated in the X-ray structure of 6. PMID:25098239

  9. Micro-solid phase extraction of perfluorinated carboxylic acids from human plasma.

    PubMed

    Lashgari, Maryam; Lee, Hian Kee

    2016-02-01

    Micro-solid phase extraction (μ-SPE), with liquid chromatography-tandem mass spectrometry has been developed for the determination of trace levels of perfluorinated carboxylic acids (PFCAs) in human plasma. The μ-SPE sorbent was surfactant-templated mesoporous silica. Extraction time, desorption time and salt concentration were chosen as the most effective parameters and were optimized simultaneously by use of central composite design. Under the optimized extraction conditions, good linearity in the range of 100 and 5000ngL(-1) was obtained with coefficients of determination of between 0.986 and 0.995. The limits of detection (at a signal to noise ratio of 3) were measured to be in the range of between 21.23 and 65.07ngL(-1), and limits of quantification (at a signal to noise ratio of 10) were in the range of between 70.77 and 216.92ngL(-1). The relative recoveries of spiked PFCAs in different samples were in the range of between 87.58 and 102.45%. As expected from the global distribution of PFCs, contaminations at low levels (less than 200ngL(-1)) were detected (with the highest concentration recorded for perfluorooctanoic acid (PFOA)). Considering the complex nature of biological samples and the issue of matrix effects in the analysis of PFCAs, μ-SPE as an extraction method was shown to be advantageous; it combined extraction and concentration in one single step with no additional sample clean-up, and was able to remove significant matrix interferences. PMID:26795278

  10. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors.

    PubMed

    Wang, Zhanyun; Cousins, Ian T; Scheringer, Martin; Hungerbhler, Konrad

    2013-10-01

    Since 2000 there has been an on-going industrial transition to replace long-chain perfluoroalkyl carboxylic acids(PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their precursors. To date, information on these replacements including their chemical identities, however, has not been published or made easily accessible to the public, hampering risk assessment and management of these chemicals. Here we review information on fluorinated alternatives in the public domain. We identify over 20 fluorinated substances that are applied in [i] fluoropolymer manufacture, [ii] surface treatment of textile, leather and carpets, [iii] surface treatment of food contact materials,[iv] metal plating, [v] fire-fighting foams, and [vi] other commercial and consumer products.We summarize current knowledge on their environmental releases, persistence, and exposure of biota and humans. Based on the limited information available, it is unclear whether fluorinated alternatives are safe for humans and the environment.We identify three major data gaps that must be filled to perform meaningful risk assessments and recommend generation of the missing data through cooperation among all stakeholders (industry, regulators, academic scientists and the public). PMID:24660230

  11. Novel amino acid crystals for phase-matched second-harmonic generation: L-pyrrolidone-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Kitazawa, Manabu; Higuchi, Ryoichi; Takahashi, Mitsuo; Wada, Tatsuo; Sasabe, Hiroyuki

    1995-07-01

    A novel nonlinear optical amino acid derivative, L-pyrrolidone-2-carboxylic acid (L-PCA), has been studied for the application of UV generation by frequency upconversion of laser radiation. L-PCA is relatively easy to grow from solution to a large size, typically 402020 mm3, by a slow cooling method. This crystal is chemically stable because the crystal lattice is composed of a network of hydrogen-bonded molecules. L-PCA has a wide transparency extending to the UV region (the cutoff wavelength is 260 nm) and is therefore a good candidate for the second-harmonic generation (SHG) of Nd:YAG laser radiation (1064 nm). The nonlinear-optical coefficient d14 was measured to be 0.22 pm/V, and the measured phase-matching angles agreed with values calculated using refractive index data. The effective nonlinear optical coefficient deff of the type-I phase-matched SHG has also been measured to be 0.20 pm/V. UV generation down to 266 nm was achieved by phase-matched SHG in L-PCA crystals.

  12. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    PubMed

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated. PMID:23138252

  13. Synthesis of (3S,5R)-carbapenam-3-carboxylic acid and its role in carbapenem biosynthesis and the stereoinversion problem.

    PubMed

    Stapon, Anthony; Li, Rongfeng; Townsend, Craig A

    2003-12-24

    (5R)-Carbapenem-3-carboxylic acid is the simplest structurally among the naturally occurring carbapenem beta-lactam antibiotics. It is the produced from (3S,5S)-carbapenam-3-carboxylic acid utilizing a remarkable stereoinversion/desaturation process by CarC (carbapenem synthase), an alpha-ketoglutarate dependent non-heme iron oxygenase. In this communication, we demonstrate for the first time that the epimeric (3S,5R)-carbapenam-3-carboxylic acid is an intermediate in the overall catalytic cycle to the carbapenem antibiotic. The role of alpha-ketoglutarate in the stereoinversion and desaturation processes is also examined. PMID:14677956

  14. Functionalization of carboxylated multiwall nanotubes with imidazole derivatives and their toxicity investigations

    PubMed Central

    Azizian, Javad; Tahermansouri, Hasan; Biazar, Esmaeil; Heidari, Saeed; Khoei, Davood Chobfrosh

    2010-01-01

    Imidazoles and their derivatives are compounds with chemotherapeutic applications. In this study, we investigated the chemical functionalization of carboxylated multiwalled carbon nanotubes (MWNT–COOH) by 1,2-phenylendiamine. Multiwalled nanotube (MWNT)–benzimidazole was obtained by an MWNT–amide reaction with POCl3 after 72 hours, which was confirmed by Fourier transform infrared, scanning electron microscopy, thermal gravimetric analysis, and elemental analysis. These functionalizations were chosen due to -NH2 and NHCO active sites in MWNT–amide for future application. Toxicity assays with fibroblast cells and MTT test for measurement of viable cell numbers were also performed. Cellular results did not show any toxicity change in modified samples from that of the reference samples. PMID:21116331

  15. A mechanistic study into the epoxidation of carboxylic acid and alkene in a mono, di-acylglycerol lipase.

    PubMed

    Wang, Xuping; Tang, Qingyun; Popowicz, Grzegorz Maria; Yang, Bo; Wang, Yonghua

    2015-05-01

    More and more industrial chemistry reactions rely on green technologies. Enzymes are finding increasing use in diverse chemical processes. Epoxidized vegetable oils have recently found applications as plasticizers and additives for PVC production. We report here an unusual activity of the Malassezia globosa lipase (SMG1) that is able to catalyze epoxidation of alkenes. SMG1 catalyzes formation of peroxides from long chain carboxylic acids that subsequently react with double bonds of alkenes to produce epoxides. The SMG1 is selective towards carboxylic acids and active also as a mutant lacking hydrolase activity. Moreover we present previously unobserved mechanism of catalysis that does not rely on acyl-substrate complex nor tetrahedral intermediate. Since SMG1 lipase is activated by allosteric change upon binding to the lipophilic-hydrophilic phase interface we reason that it can be used to drive the epoxidation in the lipophilic phase exclusively. PMID:25783054

  16. Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine

    NASA Astrophysics Data System (ADS)

    Zaazaa, Hala E.; Mohamed, Afaf O.; Hawwam, Maha A.; Abdelkawy, Mohamed

    2015-01-01

    A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance.

  17. Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine.

    PubMed

    Zaazaa, Hala E; Mohamed, Afaf O; Hawwam, Maha A; Abdelkawy, Mohamed

    2015-01-01

    A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance. PMID:25004902

  18. Isotachophoresis on a chip with indirect fluorescence detection as a field deployable system for analysis of carboxylic acids.

    PubMed

    Smejkal, Petr; Breadmore, Michael C; Guijt, Rosanne M; Foret, Frantiek; Bek, Fritz; Macka, Mirek

    2012-11-01

    ITP with indirect fluorescence detection (IFD) was introduced three decades ago. Despite this fact, the method has never become widely adopted. The main aim of this work was to utilize the ITP-IFD for the separation of carboxylic acids by using a commercially available, portable, microfluidic chip electrophoresis system. On the 16.8-mm effective length separation channel, a maximum of eight carboxylic acids could be separated, with LOD values in a range from 0.12 to 0.4 mM. The commercial chips used for all experiments have multichannel structures important for analysis of more than one sample per a chip in case of standard use. This multichannel structure was used to investigate the possibility of multiple sample loading for ITP separation. Application of ITP-IFD was investigated for analysis of benzoate in diet soft drinks and the results were in good agreement with results of a CE method. PMID:23065658

  19. Interaction of carboxylic acids with rutile TiO2(110): IR-investigations of terephthalic and benzoic acid adsorbed on a single crystal substrate

    NASA Astrophysics Data System (ADS)

    Buchholz, Maria; Xu, Mingchun; Noei, Heshmat; Weidler, Peter; Nefedov, Alexei; Fink, Karin; Wang, Yuemin; Wll, Christof

    2016-01-01

    The adsorption of two carboxylic acids, benzoic acid (BA) and terephthalic acid (TPA), on a single crystal rutile TiO2(110) substrate was studied using infrared reflection-absorption spectroscopy (IRRAS) in conjunction with DFT calculations. On the basis of the high-quality IR data (in particular for the OH bands), various adsorbate species with different geometries could be identified. The adsorption of both, BA and TPA, on TiO2(110) leads to deprotonation of carboxylic acids and protonation of substrate O-atoms. At low coverage, the deprotonated BA molecule adsorbs on TiO2(110) in an upright, bidentate configuration, while the TPA molecule adopts a flat-lying geometry with both carboxylates bound to the surface in a monodentate geometry. At higher coverages, a transition from flat-lying to upright-oriented TPA molecules occurs. At saturation coverage, both BA and TPA molecules undergo dimerization indicating the presence of pronounced attractive intermolecular interactions. We propose that the BA dimers are stabilized by the interaction between adjacent phenyl rings, while the TPA dimerization is attributed to the formation of double hydrogen bonds between adjacent apical carboxylic groups.

  20. Copper-catalyzed regioselective synthesis of furan via tandem cycloaddition of ketone with an unsaturated carboxylic acid under air.

    PubMed

    Ghosh, Monoranjan; Mishra, Subhajit; Monir, Kamarul; Hajra, Alakananda

    2015-01-01

    A catalytic decarboxylative annulation has been developed for the regioselective synthesis of trisubstituted furans by the cycloaddition of ketones with α,β-unsaturated carboxylic acids under ambient air. A library of furan derivatives were obtained in good yields from the readily available substrates in the combination of a catalytic amount of Cu-salt and a stoichiometric amount of water. Water plays a crucial role in this catalytic transformation. PMID:25370303

  1. Do protic ionic liquids and water display analogous behavior in terms of Hammett acidity function?

    NASA Astrophysics Data System (ADS)

    Shukla, Shashi Kant; Kumar, Anil

    2013-04-01

    We address an issue whether the strength of carboxylic acids in water is linear with respect to that in ionic liquids. Strength of carboxylic acids in water and different PILs using Hammett function (Ho) has revealed interesting linear correlation between the Ho function for all acids in PILs and PIL-water in spite of large structural and electronic differences. These observations suggest that different structural and electronic features of PILs and water behave analogously towards Ho. This linearity in Ho functions between PILs and PIL-water systems can be used to develop predictive method to calculate Ho values.

  2. 14,15-Epoxyeicosa-5,8,11-trienoic Acid (14,15-EET) Surrogates: Carboxylate Modifications

    PubMed Central

    2015-01-01

    The cytochrome P450 eicosanoid 14,15-epoxyeicosa-5,8,11-trienoic acid (14,15-EET) is a powerful endogenous autacoid that has been ascribed an impressive array of physiologic functions including regulation of blood pressure. Because 14,15-EET is chemically and metabolically labile, structurally related surrogates containing epoxide bioisosteres were introduced and have become useful in vitro pharmacologic tools but are not suitable for in vivo applications. A new generation of EET mimics incorporating modifications to the carboxylate were prepared and evaluated for vasorelaxation and inhibition of soluble epoxide hydrolase (sEH). Tetrazole 19 (ED50 0.18 ?M) and oxadiazole-5-thione 25 (ED50 0.36 ?M) were 12- and 6-fold more potent, respectively, than 14,15-EET as vasorelaxants; on the other hand, their ability to block sEH differed substantially, i.e., 11 vs >500 nM. These data will expedite the development of potent and specific in vivo drug candidates. PMID:25119815

  3. Evaluation of a 7-Methoxycoumarin-3-carboxylic Acid Ester Derivative as a Fluorescent, Cell-Cleavable, Phosphonate Protecting Group.

    PubMed

    Wiemer, Andrew J; Shippy, Rebekah R; Kilcollins, Ashley M; Li, Jin; Hsiao, Chia-Hung Christine; Barney, Rocky J; Geng, M Lei; Wiemer, David F

    2016-01-01

    Cell-cleavable protecting groups often enhance cellular delivery of species that are charged at physiological pH. Although several phosphonate protecting groups have achieved clinical success, it remains difficult to use these prodrugs in live cells to clarify biological mechanisms. Here, we present a strategy that uses a 7-methoxycoumarin-3-carboxylic acid ester as a fluorescent protecting group. This strategy was applied to synthesis of an (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) analogue to assess cellular uptake and human V?9V?2 T?cell activation. The fluorescent ester displayed low cellular toxicity (IC50 >100??m) and strong T?cell activation (EC50 =0.018??m) relative to the unprotected anion (EC50 =23??m). The coumarin-derived analogue allowed no-wash analysis of biological deprotection, which revealed rapid internalization of the prodrug. These results demonstrate that fluorescent groups can be applied both as functional drug delivery tools and useful biological probes of drug uptake. PMID:26503489

  4. Misincorporation of the proline analog azetidine-2-carboxylic acid in the pathogenesis of multiple sclerosis: a hypothesis.

    TOXLINE Toxicology Bibliographic Information

    Rubenstein E

    2008-11-01

    The misconstruction of proteins as a result of the displacement of one of more proline residues by their congener, azetidine-2-carboxylic acid (Aze), can result in various disorders. A number of lines of evidence suggest that multiple sclerosis may be among these. This concept adheres to the current view that multiple sclerosis lesions originate in the myelin sheath and that the underlying molecular abnormality involves the myelin basic protein. The Aze hypothesis posits that myelin basic protein and possibly other closely related molecules are misassembled in sites of lesion formation because of the substitution of Aze for one or more prolines within consensual epitopes. These include a highly conserved myelin basic protein hexapeptide sequence, PRTPPP, and an alpha helix bounded by prolyls. Recent studies have focused on the immunopathogenetic effects of posttranslational modification of this region. This hypothesis proposes that the domain is structurally, functionally, and antigenically altered by the intrusion of Aze in place of proline and that such misassembly may involve other proteins and adversely affect interactions with neighboring molecules. This report reviews evidence supporting the hypothesis that ingestion of Aze in the diet, in conjunction with genetic susceptibility, may predispose or contribute to the pathogenesis of multiple sclerosis.

  5. Structure of six anhydrous molecular salts assembled from noncovalent associations between carboxylic acids and bis-N-imidazoles

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Guo, Ming; Wang, Daqi

    2012-08-01

    Six crystalline organic acid-base adducts derived from bis(N-imidazolyl) and carboxylic acids (3,5-dinitrobenzoic acid, 5-nitrosalicylic acid, 3,5-dinitrosalicylic acid, and phthalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. The six compounds are all organic salts. In salts 1, 2, 4, 5, and 6 the corresponding bis(imidazole) derivatives are diprotonated, while in 3, the corresponding bis(imidazole) derivative is only monoprotonated. All supramolecular architectures of the salts 1-6 involve extensive Nsbnd H⋯O, Osbnd H⋯O, CH⋯O, and CH2⋯O hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. All the salts displayed 3D framework structures under the cooperation of these weak interactions. The results presented herein indicate that the strength and directionality of the N+sbnd H⋯O-, Osbnd H⋯O, and Nsbnd H⋯N hydrogen bonds between carboxylic acids and ditopic imidazoles are sufficient to bring about the formation of binary organic salts.

  6. Effect of storage time and natural corrosion inhibitor on carbohydrate and carboxylic acids content in canned tomato puree.

    PubMed

    Grassino, A Nincevic; Grabaric, Z; De Sio, F; Cacace, D; Pezzani, A; Squitieri, G

    2012-06-01

    In this research compositional changes of tinplate-canned tomato purées, with or without the addition of essential onion oil were investigated. The study was focused on the analyses of carbohydrates and carboxylic acids in two groups of canned samples (with or without nitrates) to determine whether their chemical composition was affected with storage time. The measurements were performed by high performance liquid chromatography, during six months of storage. The contents of glucose, fructose and two major organic acids, citric and malic, were found in the concentration range 1.77-1.97%, 1.86-2.09%, 0.60-0.75% and 0.23-0.30%, respectively, in all canned samples. Compared to carbohydrates and organic acids, amino acids were found in minor quantities, among them, as most abundant ones were glutamic acid, arginine, aspartic and γ-amino butyric acids. The results show that contents of carbohydrates and carboxylic acids are significantly affected by the change of storage time in majority of analyzed samples. The results also indicated that the influence of essential onion oil on composition of canned tomato purée is within the range of changes due to storage time measured for all other types of cans. Therefore the addition of essential onion oil as natural efficient corrosion inhibitor, as it was found in our previous work, can be recommended for canned tomato purée. PMID:22701055

  7. How CO2 Interacts with Carboxylic Acids: A Rotational Study of Formic Acid-CO2.

    PubMed

    Vigorito, Annalisa; Gou, Qian; Calabrese, Camilla; Melandri, Sonia; Maris, Assimo; Caminati, Walther

    2015-10-01

    The rotational spectra of the 1:1 formic acid-carbon dioxide molecular complex and of its monodeuterated isotopologues are analysed in the 6.5-18.5 and 59.6-74.4 GHz frequency ranges using a pulsed jet Fourier transform microwave spectrometer and a free-jet absorption millimetre wave spectrometer, respectively. Precise values of the rotational and quartic centrifugal distortion constants are obtained from the measured frequencies, and quadrupole coupling constants are determined from the deuterium hyperfine splittings. Structural parameters are estimated from the moments of inertia and their differences among isotopologues: the complex has a planar structure with the two subunits held together by a HC(O)OH???O=C=O (2.075 ) and a HC(OH)O???CO2 (2.877 ) interactions. The ab initio intermolecular binding energy, obtained at the counterpoise corrected MP2/aug-cc-pVTZ level of calculation, is De =17 kJ?mol(-1). PMID:26247850

  8. Preparation and characterization of tannase immobilized onto carboxyl-functionalized superparamagnetic ferroferric oxide nanoparticles.

    PubMed

    Wu, Changzheng; Xu, Caiyun; Ni, Hui; Yang, Qiuming; Cai, Huinong; Xiao, Anfeng

    2016-04-01

    Tannase from Aspergillus tubingensis was immobilized onto carboxyl-functionalized Fe3O4 nanoparticles (CMNPs), and conditions affecting tannase immobilization were investigated. Successful binding between CMNPs and tannase was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Vibrating sample magnetometry and X-ray diffraction showed that the CMNPs and immobilized tannase exhibit distinct magnetic responses and superparamagnetic properties. Free and immobilized tannase exhibited identical optimal temperatures of 50°C and differing pH optima at 6 and 7, respectively. The thermal, pH, and storage stabilities of the immobilized tannase were superior to those of free tannase. After six cycles of catalytic hydrolysis of propyl gallate, the immobilized tannase maintained over 60% of its initial activity. The Michaelis constant (Km) of the immobilized enzyme indicated its higher affinity for substrate binding than the free enzyme. PMID:26809129

  9. Electronically Rich N-Substituted Tetrahydroisoquinoline 3-Carboxylic Acid Esters: Concise Synthesis and Conformational Studies

    PubMed Central

    Al-Horani, Rami A.; Desai, Umesh R.

    2012-01-01

    Recent work in our laboratory has shown that the highly substituted, electronically rich 1,2,3,4tetrahydroisoquinoline3carboxylic acid (THIQ3CA) scaffold is a key building block for a novel class of promising anticoagulants (Al-Horani et al. J. Med. Chem. 2011, 54, 61256138). The synthesis of THIQ3CA analogs, especially containing specific, electronically rich substituents, has been a challenge and essentially no efficient methods have been reported in the literature. We describe three complementary, glycine donor-based strategies for high yielding synthesis of highly substituted, electronically rich THIQ3CA esters. Three glycine donors studied herein include hydantoin 1, ()-Boc-?-phosphonoglycine trimethyl ester 2 and ()-Z-?-phosphonoglycine trimethyl ester 3. Although the synthesis of THIQ3CA analogs could be achieved using either of the three, an optimal, high yielding approach for the desired THIQ3CA esters was best achieved using 3 in three mild, efficient steps. Using this approach, a focused library of advanced N-arylacyl, N-arylalkyl, and bis-THIQ3CA analogs was synthesized. Variable temperature and solvent-dependent NMR chemical shift studies indicated the presence of two major conformational rotamers in 3:1 proportion for NarylacylTHIQ3CA analogs, which were separated by a high kinetic barrier of ~17 kcal/mol. In contrast, Narylalkyl and bisTHIQ3CA variants displayed no rotamerism, which implicates restricted rotation around the amide bond as the origin for high-barrier conformational interconversion. This phenomenon is of major significance because structure-based drug design typically utilizes only one conformation. Overall, the work presents fundamental studies on the synthesis and conformational properties of highly substituted, electronically rich THIQ3CA analogs. PMID:22665943

  10. Spectral and biological evaluation of a synthetic antimicrobial peptide derived from 1-aminocyclohexane carboxylic acid.

    PubMed

    Abercrombie, J J; Leung, Kai P; Chai, Hanbo; Hicks, Rickey P

    2015-03-15

    Ac-GF(A6c)G(A6c)K(A6c)G(A6c)F(A6c)G(A6c)GK(A6c)KKKK-amide (A6c=1-aminocyclohexane carboxylic acid) is a synthetic antimicrobial peptide (AMP) that exhibits in vitro inhibitory activity against drug resistant strains of Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterococcus faecium at concentrations ranging from 10.9 to 43?M. Spectroscopic investigations were conducted to determine how this AMP interacts with simple membrane model systems in order to provide insight into possible mechanisms of action. CD and 2D-(1)H NMR experiments indicated this AMP on binding to SDS and DPC micelles adopts conformations with varying percentages of helical and random coil conformers. CD investigations in the presence of three phospholipid SUVs consisting of POPC, 4:1 POPC/POPG, and 60% POPE/21%POPG/19%POPC revealed: (1) The interactions occurring with POPC SUVs have minimal effect on the conformational diversity of the AMP yielding conformations similar to those observed in buffer. (2) The interactions with 4:1 POPC/POPG, and 60% POPE/21%POPG/19%POPC SUVs exhibited a greater influence on the percentage of different conformers contributing to the CD spectra. (3) The presence of a high of percentage of helical conformers was not observed in the presence of SUVs as was the case with micelles. This data indicates that the diversity of surface bound conformations adopted by this AMP are very different from the diversity of conformations adopted by this AMP on insertion into the lipid bilayer. CD spectra of this AMP in the presence of SUVs consisting of LPS isolated from P. aeruginosa, K. pneumoniae and Escherichia coli exhibited characteristics associated with various helical conformations. PMID:25684423

  11. Transport and Metabolism of 1-Aminocyclopropane-1-carboxylic Acid in Sunflower (Helianthus annuus L.) Seedlings 1

    PubMed Central

    Finlayson, Scott A.; Foster, Kenneth R.; Reid, David M.

    1991-01-01

    Transport and metabolism of [2,3-14C] 1-aminocyclopropane-1-carboxylic acid (ACC) from roots to shoots in 4-day-old sunflower (Helianthus annuus L.) seedlings were studied. [14C]ACC was detected in, and 14C2H4 was evolved from, shoots 0.5 hours after [14C]ACC was supplied to roots. Ethylene emanation from the shoots returned to normal levels after 6 hours. The roots showed a similar pattern, although at 24 hours ethylene emanation was still slightly higher than in those plants that did not receive ACC. [14C]N-malonyl-ACC (MACC) was detected in both tissues at all times sampled. [14C]MACC levels surpassed [14C]ACC levels in the shoot at 2 hours, whereas [14C]MACC levels in the root remained below [14C]ACC levels until 6 hours, after which they were higher. Thin-layer chromatography analysis identified [14C] ACC in 1-hour shoot extracts, and [14C]MACC was identified in root tissues at 1 and 12 hours after treatment. [14C]ACC and [14C] MACC in the xylem sap of treated seedlings were identified by thin-layer chromatography. Xylem transport of [14C]ACC in treated seedlings, and transport of ACC in untreated seedlings, was confirmed by gas chromatography-mass spectrometry. Some evidence for the presence of [14C]MACC in xylem sap in [14C]ACC-treated seedlings is presented. A substantial amount of radioactivity in both ACC and MACC fractions was detected leaking from the roots over 24 hours. A second radiolabeled volatile compound was trapped in a CO2-trapping solution but not in mercuric perchlorate. Levels of this compound were highest after the peak of ACC levels and before peak MACC levels in both tissues, suggesting that an alternate pathway of ACC metabolism was operating in this system. PMID:16668342

  12. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion.

    PubMed

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2015-01-01

    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread. PMID:25523885

  13. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  14. Rotational isomerization of small carboxylic acids isolated in argon matrices: tunnelling and quantum yields for the photoinduced processes.

    PubMed

    Maçôas, Ermelinda M S; Khriachtchev, Leonid; Pettersson, Mika; Fausto, Rui; Räsänen, Markku

    2005-03-01

    The quantum yields for internal rotation around the C-O bond induced by excitation of the first overtone of the hydroxyl stretching mode in formic, acetic, and propionic acids isolated in solid Ar are comparatively discussed. The tunnelling kinetics for isomerization from the higher energy arrangement of the carboxylic group (cis) to the lower energy arrangement (trans) in this series of compounds is also analysed. Finally, the quantum yield for the C(alpha)-C isomerization in propionic acid was investigated and, in contrast with the C-O isomerization, shown to be probably sensitive to the local matrix morphology. PMID:19791357

  15. Laccase-mediator system for alcohol oxidation to carbonyls or carboxylic acids: toward a sustainable synthesis of profens.

    PubMed

    Galletti, Paola; Pori, Matteo; Funiciello, Federica; Soldati, Roberto; Ballardini, Alberto; Giacomini, Daria

    2014-09-01

    By combining two green and efficient catalysts, such as the commercially available enzyme laccase from Trametes versicolor and the stable free radical 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), the oxidation in water of some primary alcohols to the corresponding carboxylic acids or aldehydes and of selected secondary alcohols to ketones can be accomplished. The range of applicability of bio-oxidation is widened by applying the optimized protocol to the oxidation of enantiomerically pure 2-arylpropanols (profenols) into the corresponding 2-arylpropionic acids (profens), in high yields and with complete retention of configuration. PMID:25044433

  16. Pyrimidine-2-carboxylic Acid as an Electron-Accepting and Anchoring Group for Dye-Sensitized Solar Cells.

    PubMed

    Wu, Zhifang; Li, Xin; gren, Hans; Hua, Jianli; Tian, He

    2015-12-01

    We report a new dye (INPA) adopting pyrimidine-2-carboxylic acid as an electron-accepting and anchoring group to be used in dye-sensitized solar cells. IR spectral analysis indicates that the anchoring group may form two coordination bonds with TiO2 and so facilitate the interaction between the anchoring group and TiO2. The INPA-based cell exhibits an overall conversion efficiency of 5.45%, which is considerably higher than that obtained with cyanoacrylic acid commonly used as the electron acceptor. PMID:26581583

  17. Amide Bond Cleavage: The Acceleration Due to a 1,3-Diaxial Interaction with a Carboxylic Acid

    PubMed Central

    Gerschler, Jared J.; Wier, Kevin A.; Hansen, David E.

    2008-01-01

    To independently assess the contribution of ground-state pseudoallylic strain to the enormous rates of amide bond cleavage in tertiary amide derivatives of Kemps triacid, we have studied four amide derivatives of (1?-3?-5?)-5-t-butyl-1,3-cyclohexanedicarboxylic acid. Our results confirm that absent pseudoallylic strain, a 1,3-diaxial interaction of an amide with a carboxylic acid leads to only a 2,400-fold increase in the rate of amide bond cleavage as compared with the rate of hydrolysis of an unactivated peptide bond. PMID:17221991

  18. Separation of the isomers of benzene poly(carboxylic acid)s by quaternary ammonium salt via formation of deep eutectic solvents.

    PubMed

    Hou, Yucui; Li, Jian; Ren, Shuhang; Niu, Muge; Wu, Weize

    2014-11-26

    Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency. PMID:25351281

  19. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 2. Application for the analysis of Loy Yang coal oxidation products

    SciTech Connect

    Kawamura, K.; Okuwaki, A.; Verheyen, T.V.; Perry, G.J.

    2006-07-01

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.

  20. Biosynthesis of 1-aminocyclopropane-1-carboxylic acid and ethylene from delta-aminolevulinic acid in ripening tomato fruits

    SciTech Connect

    El-Rayes, D.E.D.A.

    1987-01-01

    A new pathway for ethylene (C/sub 2/H/sub 4/) biosynthesis, which utilizes delta-aminolevulinic acid (ALA) as a precursor of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of C/sub 2/H/sub 4/, is presented. ALA enhanced ACC accumulation to 410% and C/sub 2/H/sub 4/ production to 232% of the control. The C/sub 2/H/sub 4/ production rate varied with the ALA concentration and the stage of tomato fruit development. As the ALA concentration increased from zero to 40 mM, the C/sub 2/H/sub 4/ production rate increased. Both treated and untreated pericarp discs from fruits at the pink stage of development yielded the largest C/sub 2/H/sub 4/ production rate. Radioactivity from (2,3-/sup 3/H)ALA was detected in both ACC and C/sub 2/H/sub 4/, and radioactivity from (4-/sup 14/C)ALA was detected in ACC and CO/sub 2/ but not in C/sub 2/H/sub 4/. However, radioactivity from (5-/sup 14/C)ALA was detected in CO/sub 2/, and its amount was greater than that obtained from (4-/sup 14/C)ALA. Neither ACC nor C/sub 2/H/sub 4/ showed any radioactivity when (5-/sup 14/C)ALA was supplied to the fruit discs. In addition, when (2,3-/sup 3/H)ALA or (4-/sup 14/C)ALA was supplied to the fruit discs, radioactivity was detected in other metabolites such as fumarate, succinate, malate, glutamate, glutamine, ..cap alpha..-ketoglutarate, and methionine, but the amount of radioactivity was insignificant as compared with the amount of radioactivity found in C/sub 2/H/sub 4/ and ACC.

  1. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation from aliphatic or aromatic precursors is coupled to the formation of carboxylic acids by saturation of reactive radical sites with oxygen, but carboxylic acids themselves can be destroyed by RHS, leading to further fragmentation of the carbon structure. References Cai, X., and Griffin, R. J.: Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms, J. Geophys. Res., 111, D14206/14201-D14206/14214, 2006. Cai, X., Ziemba, L. D., and Griffin, R. J.: Secondary aerosol formation from the oxidation of toluene by chlorine atoms, Atmos. Environ., 42, 7348-7359, 2008. Ofner, J., Krger, H.-U., and Zetzsch, C.: Circular multireflection cell for optical spectroscopy, Appl. Opt., 49, 5001-5004, 2010. Ofner, J., Balzer, N., Buxmann, J., Grothe, H., Schmitt-Kopplin, Ph., Platt, U., and Zetzsch, C.: Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms, Atmos. Chem. Phys., 12, 5787-5806, 2012.

  2. Regioselective Formation of Enol Esters from the Ruthenium-Catalyzed Markovnikov Addition of Carboxylic Acids to Alkynes.

    PubMed

    Jeschke, Janine; Gbler, Christian; Lang, Heinrich

    2016-01-15

    The ruthenium complexes [Ru(CO)2(P(p-C6H4-X)3)2(O2CPh)2] (1a, X = CF3; 1b, X = Cl; 1c, X = H; 1d, X = Me; 1e, X = OMe) were successfully applied in the regioselective Markovnikov addition of carboxylic acids to terminal alkynes, yielding valuable enol esters. Catalyst screening revealed a significant influence of phosphine's electronic nature on activity and selectivity. The highest activity was achieved with catalyst 1a, featuring the most electron-withdrawing phosphine ligand. Selectivity and activity could be further improved by the addition of catalytic amounts of AgOTf. Moreover, excellent selectivities with up to 99% of the Markovnikov product were achieved. The electronic influence of the substrates on the reaction rate was quantified by Hammett plots. By the use of electron-rich alkynes or highly acidic carboxylic acids, the reaction rate could be increased. Hence, the addition of highly acidic pentafluorobenzoic acid to electron-rich 4-methoxyphenylacetylene can even be carried out quantitatively at 25 C within 4 h. Furthermore, a broad range of simple as well as electronically or sterically challenging substrates could be isolated in good to excellent yields with high regioselectivity and under mild reaction conditions (25-70 C). The best reported activities and selectivities were obtained for the conversion of aromatic alkynes. PMID:26682729

  3. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37C and restored growth at 10C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant. PMID:26225744

  4. Equilibrium 2H/ 1H fractionations in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols and ethers

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Equilibrium 2H/ 1H fractionation factors (? eq) for various H positions in alkanes, alkenes, ketones, carboxylic acids, esters, alcohols, and ethers were calculated between 0 and 100 C using vibrational frequencies from ab initio QM calculations (B3LYP/6-311G**). Results were then corrected using a temperature-dependent linear calibration curve based on experimental data for H ? in ketones ( Wang et al., 2009). The total uncertainty in reported ? eq values is estimated at 10-20. The effects of functional groups were found to increase the value of ? eq for H next to electron-donating groups, e.g. sbnd OR, sbnd OH or sbnd O(C dbnd O)R, and to decrease the value of ? eq for H next to electron-withdrawing groups, e.g. sbnd (C dbnd O)R or sbnd (C dbnd O)OR. Smaller but significant functional group effects are also observed for H ? and sometimes H ?. By summing over individual H positions, we estimate the equilibrium fractionation relative to water to be -90 to -70 for n-alkanes and around -100 for pristane and phytane. The temperature dependence of these fractionations is very weak between 0 and 100 C. Our estimates of ? eq agree well with field data for thermally mature hydrocarbons (? 2H values between -80 and -110 relative to water). Therefore the observed ? 2H increase of individual hydrocarbons and the disappearance of the biosynthetic ? 2H offset between n-alkyl and linear isoprenoid lipids during maturation of organic matter can be confidently attributed to H exchange towards an equilibrium state. Our results also indicate that many n-alkyl lipids are biosynthesized with ? 2H values that are close to equilibrium with water. In these cases, constant down-core ? 2H values for n-alkyl lipids cannot be reliably used to infer a lack of isotopic exchange.

  5. Carboxylic acids in PM 2.5 over Pinus morrisonicola forest and related photoreaction mechanisms identified via Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuo, Su-Ching; Tsai, Ying I.; Tsai, Cheng-Hsien; Hsieh, Li-Ying

    2011-12-01

    The PM 2.5 aerosol from within an area of Pinus morrisonicola Hayata in Taiwan was collected and analyzed for its low molecular weight carboxylic acid (LMWCAs) content. Oxalic acid was the major LMWCA in the aerosol, followed by acetic, tartaric and maleic acids. This differs significantly from the LMWCA composition of PM 2.5 aerosol reported for a southern Taiwan suburban region (oxalic > succinic > malonic) [Atmospheric Environment 42, 6836-6850 (2008)]. P. morrisonicola Hayata emits oxalic, malic and formic acids and yet there was an abundance of maleic and tartaric acids in the PM 2.5 forest aerosol, indicating that tartaric acid is derived from the transformation of other P. morrisonicola Hayata emissions. Raman spectroscopy was applied and 28 species of LMWCAs and inorganic species were identified. The photochemical mechanisms of maleic and tartaric acids were studied and it was found that the abundant tartaric acid in forest aerosol is most probably the photochemical product from reactions of maleic acid. Furthermore, tartaric acid is photochemically transformed into formic acid and ultimately into CO 2.

  6. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    PubMed

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the ? and ? positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization. Graphical Abstract ?. PMID:26689207

  7. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling

    NASA Astrophysics Data System (ADS)

    Duncan, Kyle D.; Volmer, Dietrich A.; Gill, Chris G.; Krogh, Erik T.

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H]-) ions with limited selective fragmentation. However, carboxylates cationized with Ba2+ have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba]+ precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH]+ and [BaOH]+). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  8. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling

    NASA Astrophysics Data System (ADS)

    Duncan, Kyle D.; Volmer, Dietrich A.; Gill, Chris G.; Krogh, Erik T.

    2015-12-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H]-) ions with limited selective fragmentation. However, carboxylates cationized with Ba2+ have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba]+ precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH]+ and [BaOH]+). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  9. Interorgan Translocation of 1-Aminocyclopropane-1-Carboxylic Acid and Ethylene Coordinates Senescence in Emasculated Cymbidium Flowers

    PubMed Central

    Woltering, Ernst J.

    1990-01-01

    In Cymbidium flowers, emasculation by removal of the pollinia and the anther cap leads within 24 hours to red coloration of the labellum (lip). Lip coloration, being the first sign of senescence in these flowers, has been ascribed to the action of ethylene in the lip. When a small incision in the base of the lip is made prior to emasculation, or when the lip is excised and placed in water within 10 to 15 hours after emasculation, coloration is considerably delayed. This indicates that a coloration-associated factor is moving in or out of the lip. Measurements of ethylene production of excised flower parts, isolated at different times after emasculation, showed an increase only in the central column; the other flower parts, including the lip, did not show a measurable change. In contrast, in situ measurements of the ethylene production of the central column and the remaining portion of the flower revealed a simultaneous increase in all the flower parts following emasculation. Similarly, application of radiolabeled 1-aminocyclopropane-1-carboxylic acid (ACC) to the top of the central column in situ leads to the production of radiolabeled ethylene by all the flower parts. In addition, the ethylene production of isolated lips, measured immediately after excision, was initially high but ceased within 10 to 15 minutes. Treatment of the central column in situ with ethylene or ethephon did not stimulate ACC production but did stimulate lip coloration and this was accompanied by an increased internal ethylene concentration in the lip. The data indicate that endogenously produced as well as applied ACC is rapidly translocated from the site of production or application to all the other flower parts where it is immediately converted into ethylene. By excision of a flower organ, the influx of ACC is prevented, causing a rapid decrease in ethylene production. In addition, it was found that ethylene may also be translocated in physiologically significant amounts within the flower. The roles of ACC and ethylene as mobile senescence or wilting factors in emasculation- and pollination-induced senescence is discussed. PMID:16667357

  10. Di-?-aqua-bis[aqua(5-carboxylato-1H-1,2,3-triazole-4-carboxylic acid-?2 N 3,O 4)lithium

    PubMed Central

    Starosta, Wojciech; Leciejewicz, Janusz

    2013-01-01

    The crystal structure of the title compound, [Li2(C4H2N3O4)2(H2O)4], contains centrosymmetric dinuclear molecules in which two LiI ions are bridged by two water O atoms. The metal ion is coordinated by one N,O-bidentate ligand and three water O atoms (one of them is symmetry generated), with one of the bridging water O atoms in the apical position of a distorted square pyramid. The carboxylate group that participates in coordination to the metal ion remains protonated; the other is deprotonated and coordination inactive. An intramolecular OH?O hydrogen bond between carboxylate groups is observed. In the crystal, dimers are linked by OH?O, OH?N and NH?O hydrogen bonds, generating a three-dimensional network. PMID:24427005

  11. Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl (13)C NMR relaxation.

    PubMed

    Wallerstein, Johan; Weininger, Ulrich; Khan, M Ashhar I; Linse, Sara; Akke, Mikael

    2015-03-01

    Proton-transfer dynamics plays a critical role in many biochemical processes, such as proton pumping across membranes and enzyme catalysis. The large majority of enzymes utilize acid-base catalysis and proton-transfer mechanisms, where the rates of proton transfer can be rate limiting for the overall reaction. However, measurement of proton-exchange kinetics for individual side-chain carboxyl groups in proteins has been achieved in only a handful of cases, which typically have involved comparative analysis of mutant proteins in the context of reaction network modeling. Here we describe an approach to determine site-specific protonation and deprotonation rate constants (kon and koff, respectively) of carboxyl side chains, based on (13)C NMR relaxation measurements as a function of pH. We validated the method using an extensively studied model system, the B1 domain of protein G, for which we measured rate constants koff in the range (0.1-3) 10(6) s(-1) and kon in the range (0.6-300) 10(9) M(-1) s(-1), which correspond to acid-base equilibrium dissociation constants (Ka) in excellent agreement with previous results determined by chemical shift titrations. Our results further reveal a linear free-energy relationship between log kon and pKa, which provides information on the free-energy landscape of the protonation reaction, showing that the variability among residues in these parameters arises primarily from the extent of charge stabilization of the deprotonated state by the protein environment. We find that side-chain carboxyls with extreme values of koff or kon are involved in hydrogen bonding, thus providing a mechanistic explanation for the observed stabilization of the protonated or deprotonated state. PMID:25665463

  12. 10-Iodo-11H-indolo[3,2-c]quinoline-6-carboxylic Acids Are Selective Inhibitors of DYRK1A

    PubMed Central

    2015-01-01

    The protein kinase DYRK1A has been suggested to act as one of the intracellular regulators contributing to neurological alterations found in individuals with Down syndrome. For an assessment of the role of DYRK1A, selective synthetic inhibitors are valuable pharmacological tools. However, the DYRK1A inhibitors described in the literature so far either are not sufficiently selective or have not been tested against closely related kinases from the DYRK and the CLK protein kinase families. The aim of this study was the identification of DYRK1A inhibitors exhibiting selectivity versus the structurally and functionally closely related DYRK and CLK isoforms. Structure modification of the screening hit 11H-indolo[3,2-c]quinoline-6-carboxylic acid revealed structure–activity relationships for kinase inhibition and enabled the design of 10-iodo-substituted derivatives as very potent DYRK1A inhibitors with considerable selectivity against CLKs. X-ray structure determination of three 11H-indolo[3,2-c]quinoline-6-carboxylic acids cocrystallized with DYRK1A confirmed the predicted binding mode within the ATP binding site. PMID:25730262

  13. 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A.

    PubMed

    Falke, Hannes; Chaikuad, Apirat; Becker, Anja; Loac, Nadge; Lozach, Olivier; Abu Jhaisha, Samira; Becker, Walter; Jones, Peter G; Preu, Lutz; Baumann, Knut; Knapp, Stefan; Meijer, Laurent; Kunick, Conrad

    2015-04-01

    The protein kinase DYRK1A has been suggested to act as one of the intracellular regulators contributing to neurological alterations found in individuals with Down syndrome. For an assessment of the role of DYRK1A, selective synthetic inhibitors are valuable pharmacological tools. However, the DYRK1A inhibitors described in the literature so far either are not sufficiently selective or have not been tested against closely related kinases from the DYRK and the CLK protein kinase families. The aim of this study was the identification of DYRK1A inhibitors exhibiting selectivity versus the structurally and functionally closely related DYRK and CLK isoforms. Structure modification of the screening hit 11H-indolo[3,2-c]quinoline-6-carboxylic acid revealed structure-activity relationships for kinase inhibition and enabled the design of 10-iodo-substituted derivatives as very potent DYRK1A inhibitors with considerable selectivity against CLKs. X-ray structure determination of three 11H-indolo[3,2-c]quinoline-6-carboxylic acids cocrystallized with DYRK1A confirmed the predicted binding mode within the ATP binding site. PMID:25730262

  14. Metabolism of Benzoic Acid by Bacteria: 3,5- Cyclohexadiene-1,2-Diol-1-Carboxylic Acid Is an Intermediate in the Formation of Catechol

    PubMed Central

    Reiner, Albey M.

    1971-01-01

    3,5-Cyclohexadiene-1,2-diol-1-carboxylic acid (1,2-dihydro-1,2-dihydroxy-benzoic acid) is converted enzymatically to catechol in cell extracts from Acinetobacter, Alcaligenes, Azotobacter, and three Pseudomonas species. This enzymatic activity is present only in cultures which have been grown in the presence of benzoic acid, and which convert benzoic acid to catechol rather than to protocatechuic acid. The reaction is assayed by the concomitant formation of reduced nicotinamide adenine dinucleotide from nicotinamide adenine dinucleotide. The conversion of [14C]benzoic acid to [14C]dihydrodihydroxybenzoic acid is demonstrated in cell extracts. A scheme for the conversion of benzoic acid to catechol in bacteria is presented, involving the formation of dihydrodihydroxybenzoic acid from benzoic acid by a dioxygenase which is unstable in cell extracts, followed by the dehydrogenation and decarboxylation of dihydrodihydroxybenzoic acid to catechol by a previously undescribed enzyme. Experiments with anthranilic acid and phthalic acid suggest that dihydrodihydroxybenzoic acid is a metabolite unique to benzoic acid metabolism. Two new methods for assaying benzoic acid dioxygenase are suggested. PMID:4399343

  15. The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis.

    PubMed

    Rodriguez-Salus, Melinda; Bektas, Yasemin; Schroeder, Mercedes; Knoth, Colleen; Vu, Trang; Roberts, Philip; Kaloshian, Isgouhi; Eulgem, Thomas

    2016-01-01

    Synthetic elicitors are drug-like compounds that induce plant immune responses but are structurally distinct from natural defense elicitors. Using high-throughput screening, we previously identified 114 synthetic elicitors that activate the expression of a pathogen-responsive reporter gene in Arabidopsis (Arabidopsis thaliana). Here, we report on the characterization of one of these compounds, 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid (BHTC). BHTC induces disease resistance of plants against bacterial, oomycete, and fungal pathogens and has a unique mode of action and structure. Surprisingly, we found that low doses of BHTC enhanced root growth in Arabidopsis, while high doses of this compound inhibited root growth, besides inducing defense. These effects are reminiscent of the hormetic response, which is characterized by low-dose stimulatory effects of a wide range of agents that are toxic or inhibitory at higher doses. Like its effects on defense, BHTC-induced hormesis in Arabidopsis roots is partially dependent on the WRKY70 transcription factor. Interestingly, BHTC-induced root hormesis is also affected in the auxin-response mutants axr1-3 and slr-1. By messenger RNA sequencing, we uncovered a dramatic difference between transcriptional profiles triggered by low and high doses of BHTC. Only high levels of BHTC induce typical defense-related transcriptional changes. Instead, low BHTC levels trigger a coordinated intercompartmental transcriptional response manifested in the suppression of photosynthesis- and respiration-related genes in the nucleus, chloroplasts, and mitochondria as well as the induction of development-related nuclear genes. Taken together, our functional characterization of BHTC links defense regulation to hormesis and provides a hypothetical transcriptional scenario for the induction of hormetic root growth. PMID:26530314

  16. Multiple effects of anthracene-9-carboxylic acid on the TMEM16B/anoctamin2 calcium-activated chloride channel.

    PubMed

    Cherian, O Lijo; Menini, Anna; Boccaccio, Anna

    2015-04-01

    Ca(2+)-activated Cl(-) currents (CaCCs) play important roles in many physiological processes. Recent studies have shown that TMEM16A/anoctamin1 and TMEM16B/anoctamin2 constitute CaCCs in several cell types. Here we have investigated for the first time the extracellular effects of the Cl(-) channel blocker anthracene-9-carboxylic acid (A9C) and of its non-charged analogue anthracene-9-methanol (A9M) on TMEM16B expressed in HEK 293T cells, using the whole-cell patch-clamp technique. A9C caused a voltage-dependent block of outward currents and inhibited a larger fraction of the current as depolarization increased, whereas the non-charged A9M produced a small, not voltage dependent block of outward currents. A similar voltage-dependent block by A9C was measured both when TMEM16B was activated by 1.5 and 13μM Ca(2+). However, in the presence of 1.5μM Ca(2+) (but not in 13μM Ca(2+)), A9C also induced a strong potentiation of tail currents measured at -100mV after depolarizing voltages, as well as a prolongation of the deactivation kinetics. On the contrary, A9M did not produce potentiation of tail currents, showing that the negative charge is required for potentiation. Our results provide the first evidence that A9C has multiple effects on TMEM16B and that the negative charge of A9C is necessary both for voltage-dependent block and for potentiation. Future studies are required to identify the molecular mechanisms underlying these complex effects of A9C on TMEM16B. Understanding these mechanisms will contribute to the elucidation of the structure and functional properties of TMEM16B channels. PMID:25620774

  17. Selective Two-Photon-Absorption-Induced Reactions of Anthracene-2-Carboxylic Acid on Tunable Plasmonic Substrate with Incoherent Light Source.

    PubMed

    Pincella, Francesca; Isozaki, Katsuhiro; Taguchi, Tomoya; Song, Yeji; Miki, Kazushi

    2015-02-01

    In this research, we report the development, characterization and application of various plasmonic substrates (with localized surface plasmon resonance wavelength tunable by gold nanoparticle size) for two-photon absorption (TPA)-induced photodimerization of an anthracene derivative, anthracene carboxylic acid, in both surface and solution phase under incoherent visible light irradiation. Despite the efficient photoreaction property of anthracene derivatives and the huge number of publications about them, there has never been a report of a multiphoton photoreaction involving an anthracene derivative with the exception of a reverse photoconversion of anthracene photodimer to monomer with three-photon absorption. We examined the progress of the TPA-induced photoreaction by means of surface-enhanced Raman scattering, taking advantage of the ability of our plasmonic substrate to enhance and localize both incident light for photoreaction and Raman scattering signal for analysis of photoreaction products. The TPA-induced photoreaction in the case of anthracene carboxylic acid coated 2D array of gold nanoparticles gave different results according to the properties of the plasmonic substrate, such as the size of the gold nanoparticle and also its resultant optical properties. In particular, a stringent requirement to achieve TPA-induced photodimerization was found to be the matching between irradiation wavelength, localized surface plasmon resonance of the 2D array, and twice the wavelength of the molecular excitation of the target material (in this case, anthracene carboxylic acid). These results will be useful for the future development of efficient plasmonic substrates for TPA-induced photoreactions with various materials. PMID:26353628

  18. Trace Amounts of Furan-2-Carboxylic Acids Determine the Quality of Solid Agar Plates for Bacterial Culture

    PubMed Central

    Hara, Shintaro; Isoda, Reika; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2012-01-01

    Background Many investigators have recognised that a significant proportion of environmental bacteria exist in a viable but non-culturable state on agar plates, and some researchers have also noticed that some of such bacteria clearly recover their growth on matrices other than agar. However, the reason why agar is unsuitable for the growth of some bacteria has not been addressed. Methodology/Principal Findings According to the guide of a bioassay for swarming inhibition, we identified 5-hydroxymethylfuran-2-carboxylic acid (5-HMFA) and furan-2-carboxylic acid (FA) as factors that inhibit bacterial swarming and likely inhibit extracellular polysaccharide production on agar. The furan-2-carboxylic acids 5-HMFA and FA effectively inhibited the swarming and swimming of several environmental bacteria at concentrations of 1.8 and 2.3 g L?1 (13 and 21 nmol L?1), respectively, which are equivalent to the concentrations of these compounds in 0.3% agar. On Luria-Bertani (LB) plates containing 1.0% agar that had been previously washed with MeOH, a mixture of 5-HMFA and FA in amounts equivalent to their original concentrations in the unwashed agar repressed the swarming of Escherichia coli K12 strain W3110, a representative swarming bacterium. Conclusions/Significance Agar that contains trace amounts of 5-HMFA and FA inhibits the proliferation of some slow-growing or difficult-to-culture bacteria on the plates, but it is useful for single colony isolation due to the ease of identification of swarmable bacteria as the non-swarmed colonies. PMID:22848437

  19. Synthesis of novel derivatives of 4-pyridine carboxylic acid hydrazide and their activity on central nervous system.

    PubMed

    Naeem, Sabahat; Akhtar, Shamim; Mushtaq, Nousheen; Kamil, Arfa; Zafar, Shaista; Anwar, Sana; Arif, Muhammad

    2014-09-01

    Six novel derivatives (2-7) of 4-Pyridine carboxylic acid hydrazide (PCH) were synthesized by treating this lead molecule with substituted arylsulphonyl and benzoyl chlorides. The molecular structures of the newly derived products were characterized by the help of UV Visible, IR, FAB, 1HNMR spectroscopy and CHN analysis. During the preliminary pharmacological screening, it was observed that the synthesized compounds induced noticeable changes on motor activity of the animals. Interesting structure activity relationship was also observed among the synthesized molecules. Because of the interesting affect on motor activity, the newly synthesized derivatives can further be evaluated for their effects on CNS. PMID:25176234

  20. Diastereomeric complex of ( R/ S)-piperidine-3-carboxylic acid with (2 R,3 R)-tartaric acid: Structural, spectroscopic and computational studies

    NASA Astrophysics Data System (ADS)

    Bartoszak-Adamska, E.; Dega-Szafran, Z.; Jasklski, M.; Szafran, M.

    2011-07-01

    2:2 Complex of ( R) and ( S)-piperidine-3-carboxylic acids (P3C) with (2 R,3 R) -tartaric acid (TA), 1, has been characterized by single-crystal X-ray analysis, FTIR and NMR spectroscopies, and by DFT calculations. The crystals of 1 are monoclinic, space group P2 1. The crystal structure is formed by two distinct P3CH +TA - components, A and B, linked by an O-H⋯O hydrogen bond of 2.603(2) . The A and B components differ in the absolute configuration of the C(3) atom of P3CH +; ( S) in A and ( R) in B. The piperidinium-3-carboxylic acid and (2 R,3 R)-semi-tartrate anion moieties of the components A and B are linked by O-H⋯O hydrogen bonds of 2.517(1) and 2.535(1) , respectively. In A and B the piperidinium rings adopt the chair conformation with the carboxyl group in the equatorial position. The structures of the monomers of P3CH +TA -, 3A and 3B, as well as of a dimer 2, have been optimized by the B3LYP/6-31G(d,p) approach. The chemical shift assignments were based on two-dimensional 1H- 1H and 1H- 13C experiments.

  1. [Synthesis of thieno(2,3-b)pyridines with oxalamidic acid or an oxalamidic alkylester residues and of 4-alkoxy-pyrido(3',2':4,5)thieno(3,2-d)pyridine-2-carboxylic acid derivates].

    PubMed

    Wagner, G; Leistner, S; Vieweg, H; Krasselt, U; Prantz, J

    1993-05-01

    N-(2-Alkoxycarbonyl-thieno[2,3-b]pyrid-3-yl)oxalamide acid alkylester B were synthesized by the reaction of 3-amino-2-carboxylic esters A with oxalic acid diethylester in presence of sodium alkoxides. The 3-amino-2-cyano-thieno[2,3-b]pyridines C yielded under the same conditions via the N-(2-cyano-thieno[2,3-b]pyrid-3-yl)oxalamidic acid alkylesters D/1-D/4 the 4-alkoxy-pyrido[3',2':4,5]thieno[3,2-d]pyrimidine-2-carboxylic acid alkylesters E/1-E/8. The compounds D/1, D/2 and E/1-E/5 were hydrolyzed to give the corresponding carboxylic acids. The 3-amino-furo[2,3-b]pyridine-2-carboxylic acid ethylester H reacted with oxalic ethylester chloride to give the oxalamide ethylester I. The synthesized substances showed an antinaphylactic activity. PMID:8327562

  2. Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals.

    PubMed

    Qiao, Han; Zhou, Yanmei; Yu, Fang; Wang, Enze; Min, Yinghao; Huang, Qi; Pang, Lanfang; Ma, Tongsen

    2015-12-01

    A novel carboxylate-functionalized adsorbent (CNM) based on cellulose nanocrystals (CNCs) was prepared and adsorptive removal of multiple cationic dyes (crystal violet, methylene blue, malachite green and basic fuchsin) were investigated. The maximum cationic dyes uptakes ranged from 30.0 to 348.9mgg(-1) following the order of: CNM>CNCs>raw cellulose. Furthermore, the removal of crystal violet by CNM was investigated representatively where kinetics, thermodynamics and isotherm analysis were employed to explain in-depth information associated with the adsorption process. The adsorption kinetics fitted well to the pseudo-second-order model and thermodynamic analysis revealed that the adsorption process was spontaneous and exothermic. Meanwhile, isothermal study demonstrated a monolayer adsorption behavior following the Langmuir model with a calculated maximum absorption capacity of 243.9mgg(-1), which is higher than those of many other reported adsorbents. These findings prefigure the promising potentials of CNM as a versatile adsorbent for the efficient removal of cationic dyes from wastewater. PMID:26298027

  3. Improved preparation of haloalkyl bridged carboxylic ortho esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protection of a carboxylic acid function as a bridged ortho ester derivative enables the use of strong basic conditions in the synthetic strategy. For example, a protected 3-halopropionic acid can behave like an alkyl halide because the protons, alpha to the halide function, are less acidic. Ester...

  4. Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh.

    PubMed

    Binnie, Jan E; McManus, Michael T

    2009-02-01

    Two 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) genes have been cloned from RNA isolated from leaf tissue of apple (Malus domestica cv. Royal Gala). The genes, designated MD-ACO2 (with an ORF of 990bp) and MD-ACO3 (966bp) have been compared with a previously cloned gene of apple, MD-ACO1 (with an ORF of 942bp). MD-ACO1 and MD-ACO2 share a close nucleotide sequence identity of 93.9% in the ORF but diverge in the 3' untranslated regions (3'-UTR) (69.5%). In contrast, MD-ACO3 shares a lower sequence identity with both MD-ACO1 (78.5%) and MD-ACO2 (77.8%) in the ORF, and 68.4% (MD-ACO1) and 71% (MD-ACO2) in the 3'-UTR. Southern analysis confirmed that MD-ACO3 is encoded by a distinct gene, but the distinction between MD-ACO1 and MD-ACO2 is not as definitive. Gene expression analysis has shown that MD-ACO1 is restricted to fruit tissues, with optimal expression in ripening fruit, MD-ACO2 expression occurs more predominantly in younger fruit tissue, with some expression in young leaf tissue, while MD-ACO3 is expressed predominantly in young and mature leaf tissue, with less expression in young fruit tissue and least expression in ripening fruit. Protein accumulation studies using western analysis with specific antibodies raised to recombinant MD-ACO1 and MD-ACO3 produced in E. coli confirmed the accumulation of MD-ACO1 in mature fruit, and an absence of accumulation in leaf tissue. In contrast, MD-ACO3 accumulation occurred in younger leaf tissue, and in younger fruit tissue. Further, the expression of MD-ACO3 and accumulation of MD-ACO3 in leaf tissue is linked to fruit longevity. Analysis of the kinetic properties of the three apple ACOs using recombinant enzymes produced in E. coli revealed apparent Michaelis constants (K(m)) of 89.39 microM (MD-ACO1), 401.03 microM (MD-ACO2) and 244.5 microM (MD-ACO3) for the substrate ACC, catalytic constants (K(cat)) of 6.6x10(-2) (MD-ACO1), 3.44x10(-2) (Md-ACO2) and 9.14x10(-2) (MD-ACO3) and K(cat)/K(m) (microMs(-1)) values of 7.38x10(-4) microMs(-1) (MD-ACO1), 0.86x10(-4)Ms(-1) (MD-ACO2) and 3.8x10(-4) microMs(-1) (MD-ACO3). These results show that MD-ACO1, MD-ACO2 and MD-ACO3 are differentially expressed in apple fruit and leaf tissue, an expression pattern that is supported by some variation in kinetic properties. PMID:19223050

  5. Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection

    SciTech Connect

    Christensen, E.; Alleman, T. L.; McCormick, R. L.

    2013-01-01

    Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products due to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.

  6. Surface chemistry of nanostructures: 1) interactions of mixed monolayers of carboxylic acids on titania, 2) synthesis and immobilization of aqueous cadmium selenide quantum dots

    NASA Astrophysics Data System (ADS)

    Nevins, Jeremy S.

    2011-12-01

    This thesis will focus on (1) characterization of mixed monolayers of thiol-terminated (T) and methyl-terminated (Me) carboxylic acids on nanocrystalline TiO2 thin films, (2) the synthesis of aqueous CdSe quantum dots (QDs), with particular emphasis on the influence of capping-group functionality and reaction conditions on the kinetics and mechanism of particle growth, and (3) attachment of CdSe QDs to TiO2 thin films and their photoelectrochemical performance as a function of surfactant in QD-sensitized solar cells (QDSSCs). Mixed monolayers have been used in many applications, such as chemical sensing, biomolecular recognition, molecular electronics, catalysis, and as building blocks for materials assembly. Mixed monolayers of T and Me on TiO 2 underwent dimerization-induced compositional changes. Me was displaced on the surface by T because of the formation of intermolecular disulfide bonds between thiol groups of T adsorbed to the TiO2 surface. The compositional changes were found to vary as a function of solvent, alkyl chain length of T, steric bulk of adsorbates, and surface-binding and terminal functional groups. The findings illustrate that dimerization and other intermolecular interactions between adsorbates may dramatically influence the composition and terminal functionalization of mixed monolayers. Semiconductor QDs are attractive alternatives to molecular chromophores and bulk semiconductors for light-harvesting applications in photovoltaics and photocatalysis. Aqueous QDs are of particular interest due to their straightforward, cost-effective, and environmentally-benign syntheses. CdSe QDs were synthesized in basic aqueous suspensions at room temperature under ambient conditions by mixing a cadmium precursor, selenide precursor, and one of several carboxylate-functionalized capping groups (cysteinate, mercaptopropionate, and mercaptosuccinate). The photophysical properties of the QDs varied with capping-group functionality, concentration of precursors, and pH of the aqueous reaction mixture. Varying these parameters allowed for systematic control of the kinetics and mechanism of particle growth, as well as the size and size distribution of QDs at equilibrium. Under certain conditions, "magic-sized" clusters (MSCs) of CdSe, rather than regular QDs, were preferentially synthesized. The carboxylated capping groups of aqueous QDs were used as bifunctional linkers, allowing for facile attachment to nanocrystalline TiO2 thin films. Equilibrium binding experiments were performed to quantify the adsorption of regular QDs and MSCs to nanocrystalline TiO2 thin films. Finally, photoelectrochemistry was used to quantify the influence of capping-group functionality on the efficiency of electron injection from adsorbed QDs into TiO2 and the power-conversion efficiency of QDSSCs.

  7. Investigation of the role of aromatic carboxylic acids in cross-linking processes in low-rank coals

    SciTech Connect

    Eskay, T.P.; Britt, P.F.; Buchanan, A.C. III

    1997-03-01

    In the pyrolysis and liquefaction of low-rank coals, low-temperature cross-linking reactions have been correlated with the loss of carboxyl groups and the evolution of CO{sub 2} and H{sub 2}O. It is not clearly understood how decarboxylation leads to cross-linking beyond the suggestion that decarboxylation could be a radical process that involves radical recombination or radical addition reactions. We have recently conducted a study of the pyrolysis of 1,2-(3,3{prime}-dicarboxyphenyl)ethane (1) and 1,2-(4,4{prime}-dicarboxyphenyl)ethane (2) and found that decarboxylation occurs readily between 350-425 {degrees}C with no evidence of coupling products or products representative of cross-links. We proposed that decarboxylation occurred primarily by an acid-promoted cationic pathway, and the source of acid was a second carboxylic acid. The decarboxylation of 1 and 2 was investigated in diphenyl ether and naphthalene as inert diluents. In each solvent, the rate of decarboxylation dropped by roughly a factor of 2 upon dilution from the neat liquid to ca. 0.4 mole fraction of acid, but further dilution had no effect on the rate. This could be a consequence of hydrogen bonding or an intramolecular protonation. Molecular mechanics calculations indicated that 1 and 2 can adopt an appropriate conformation for internal proton transfer from a carboxy group on one ring to the second aryl ring without a significant energy penalty. In addition, the dicarboxylic acid could internally hydrogen bond, which may further complicate the reaction mechanism. Therefore, we have conducted a study of the pyrolysis of a monocarboxybibenzyl, 1-(3-carboxyphenyl)-2-(4-biphenyl)ethane (3), to determine if decarboxylation occurs by an ionic pathway in the absence of intramolecular pathways.

  8. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    PubMed Central

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogusław

    2015-01-01

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. Based on the structure, it was possible to identify dynamic structural differences among rice, human, and bacterial enzymes. PMID:26284087

  9. Functional properties and structural characterization of rice ?(1)-pyrroline-5-carboxylate reductase.

    PubMed

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogus?aw

    2015-01-01

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for ?(1)-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP(+) were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP(+) ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40- resolution, showing a decameric quaternary assembly. Based on the structure, it was possible to identify dynamic structural differences among rice, human, and bacterial enzymes. PMID:26284087

  10. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    DOE PAGESBeta

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogusław

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to usemore » in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.« less

  11. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin.

    PubMed

    Kuo, Hsiou-Ting; Liu, Shing-Lung; Chiu, Wen-Chieh; Fang, Chun-Jen; Chang, Hsien-Chen; Wang, Wei-Ren; Yang, Po-An; Li, Jhe-Hao; Huang, Shing-Jong; Huang, Shou-Ling; Cheng, Richard P

    2015-05-01

    β-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, β-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the β-hairpin motif. PMID:25646959

  12. Synthesis, characterization, theoretical study and biological activities of oxovanadium (IV) complexes with 2-thiophene carboxylic acid hydrazide.

    PubMed

    Jabeen, Mudassir; Ali, Saqib; Shahzadi, Saira; Sharma, Saroj K; Qanungo, Kushal

    2014-07-01

    Oxovanadium (IV) complexes (1)-(3) have been synthesized by treating 2-thiophene carboxylic acid hydrazide with VOSO4?xH2O and VCl3(THF)3 in different M/L ratios. These complexes have been characterized by elemental analysis, UV-vis, FT-IR and mass spectrometry. The FT-IR data predicts the bidentate nature of the ligand which is also confirmed by semi-empirical study. Mass spectrometric data shows that molecular ion peak is only observed for 2-thiophene carboxylic acid hydrazide. The ESP map and thermodynamic parameters shows the presence of partial charge on atoms and stability of synthesized oxovanadium complexes, respectively. DNA binding study of complexes (1)-(3) was carried out by UV-vis and cyclic voltammetric methods which suggests the intercalative binding mode of the complexes with DNA. Cytotoxicity was checked by brine shrimp lethality assay and complex (1) showed greater cytotoxicity towards Artemia salina as compared to free ligand. Immuno-modulatory activity data shows that hydrazide ligand was more active as compared to oxovanadium complexes and standard drug. Complex (2) shows significant urease inhibition activity. The ligand and synthesized complexes were found inactive against all tested bacterial and fungal strains. PMID:24844618

  13. Cysteine amide adduct formation from carboxylic acid drugs via UGT-mediated bioactivation in human liver microsomes.

    PubMed

    Harada, H; Toyoda, Y; Endo, T; Kobayashi, M

    2015-10-01

    Although chemical trapping has been widely used to evaluate cytochrome P450-mediated drug bioactivation, thus far, only a few in vitro-trapping studies have been performed on UDP-glucuronosyltransferase (UGT)-mediated drug bioactivation. In this study, we used cysteine (Cys) as trapping agent to gain new insights into the UGT-mediated bioactivation involving acyl glucuronides of carboxylic acid drugs. Diclofenac, ketoprofen and ibuprofen were incubated in human liver microsomes with UDPGA and Cys, followed by analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The N-acyl-Cys amide adduct of diclofenac was characterized by mass analysis and was detectable even in photodiode array analysis. Our data indicated that the formation of such adducts reflects the reactivity of the corresponding acyl glucuronides. In addition, it was suggested that the adduct formation requires an N-terminal Cys moiety with both a free amine and a free thiol group, from the results using various cysteine derivatives. We propose that the S-acyl-Cys thioester adduct can form via transacylation of an acyl glucuronide and can then form to an N-acyl-Cys amide adduct through intramolecular S- to N-acyl rearrangement. This series of the reactions has important implications as a possible bioactivation mechanism for covalent binding of carboxylic acid drugs to macromolecules. PMID:26601426

  14. Intracellular Sites of Synthesis and Storage of 1-(Malonylamino)cyclopropane-1-Carboxylic Acid in Acer pseudoplatanus Cells 1

    PubMed Central

    Bouzayen, Mondher; Latch, Alain; Alibert, Gilbert; Pech, Jean-Claude

    1988-01-01

    Vacuoles were isolated from Acer pseudoplatanus cells that were incubated with [14C]1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of [14C]1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) formation are consistent with the interpretation that MACC is synthesized in the cytosol, transported through the tonoplast, and accumulated in the vacuole. Twenty hours after chasing the labeled ACC with unlabeled ACC and adding 1 millimolar unlabeled MACC, all the [14C]MACC synthesized is located in the vacuole. Whole cells preloaded with [14C]MACC and then submitted to a continuous washing out, readily release their cytosolic MACC until complete exhaustion. The half-time of MACC efflux from the cytosol, calculated by the technique of compartmental analysis, is about 22 minutes. In contrast, vacuolar MACC remains sequestered within the vacuole. The transport of labeled MACC into the vacuole is stimulated by the presence of unlabeled MACC in the suspension medium, probably as a result of a reduced efflux of the labeled MACC from the cytosol into the suspending medium. PMID:16666357

  15. Benzene-Poly-Carboxylic Acid Complex, a Novel Anti-Cancer Agent Induces Apoptosis in Human Breast Cancer Cells

    PubMed Central

    Fares, Fuad; Azzam, Naiel; Fares, Basem; Larsen, Stig; Lindkaer-Jensen, Steen

    2014-01-01

    Some cases of breast cancer are composed of clones of hormonal-independent growing cells, which do not respond to therapy. In the present study, the effect of Benzene-Poly-Carboxylic Acid Complex (BP-C1) on growth of human breast-cancer cells was tested. BP-C1 is a novel anti-cancer complex of benzene-poly-carboxylic acids with a very low concentration of cis-diammineplatinum (II) dichloride. Human breast cancer cells, MCF-7 and T47D, were used. Cell viability was detected by XTT assay and apoptosis was detected by Flow Cytometry and by annexin V/FITC/PI assay. Caspases were detected by western blot analysis and gene expression was measured by using the Applied Biosystems® TaqMan® Array Plates. The results showed that exposure of the cells to BP-C1 for 48 h, significantly (P<0.001) reduced cell viability, induced apoptosis and activated caspase 8 and caspace 9. Moreover, gene expression experiments indicated that BP-C1 increased the expression of pro-apoptotic genes (CASP8AP1, TNFRSF21, NFkB2, FADD, BCL10 and CASP8) and lowered the level of mRNA transcripts of inhibitory apoptotic genes (BCL2L11, BCL2L2 and XIAP. These findings may lead to the development of new therapeutic strategies for treatment of human cancer using BP-C1 analog. PMID:24523856

  16. Chemo-enzymatic Baeyer-Villiger oxidation of 4-methylcyclohexanone via kinetic resolution of racemic carboxylic acids: direct access to enantioenriched lactone.

    PubMed

    Dro?d?, Agnieszka; Chrobok, Anna

    2016-01-01

    A new method for the asymmetric chemo-enzymatic Baeyer-Villiger oxidation of prochiral 4-methylcyclohexanone to (R)-4-methylcaprolactone in the presence of ()-4-methyloctanoic acid, Candida Antarctica lipase B and 30% aq. H2O2 has been developed. A mechanism for the asymmetric induction based on kinetic resolution of racemic carboxylic acids is proposed. PMID:26612109

  17. Structure-activity studies of 6-substituted decahydroisoquinoline-3-carboxylic acid AMPA receptor antagonists. 2. Effects of distal acid bioisosteric substitution, absolute stereochemical preferences, and in vivo activity.

    PubMed

    Ornstein, P L; Arnold, M B; Allen, N K; Bleisch, T; Borromeo, P S; Lugar, C W; Leander, J D; Lodge, D; Schoepp, D D

    1996-05-24

    We have explored the excitatory amino acid antagonist activity in a series of decahydroiso-quinoline-3-carboxyic acids, and within this series found the potent and selective AMPA antagonist (3SR,4aRS,6RS,8aRS)-6-(2-(1H-tetrazol-5-yl )ethyl) decahydroisoquinoline-3-carboxylic acid (1). In this and the preceding paper, we looked at the structure-activity relationships for AMPA antagonist activity in this series of compounds. We have already shown that 1 had the optimal stereochemical array and that AMPA antagonist activity was maximized for a two-carbon spacer separating a tetrazole from the bicyclic nucleus. In this paper, we explored the effects of varying the distal acid and the absolute stereochemical preferences of many of these analogs. We looked at a variety of different acid bioisosteres, including 5-membered hetereocyclic acids such as tetrazole, 1,2,4-triazole, and 3-isoxazolone; carboxylic,phosphonic, and sulfonic acid; and acyl sulfonamides. Compounds were evaluated in rat cortical tissue for their ability to inhibit the binding of radioligands selective for AMPA ([3H]AMPA), NMDA ([3H]CGS 19755), and kainic acid ([3H]kainic acid) receptors and for their ability to inhibit depolarizations induced by AMPA (40 microM), NMDA (40 microM), and kainic acid (10 microM). A number of compounds from this and the preceding paper were also evaluated in mice for their ability to block maximal electroshock-induced convulsions and ATPA-induced rigidity in mice. PMID:8667366

  18. New family of silver(I) complexes based on hydroxyl and carboxyl groups decorated arenesulfonic acid: syntheses, structures, and luminescent properties.

    PubMed

    Fang, Xiang-Qian; Deng, Zhao-Peng; Huo, Li-Hua; Wan, Wang; Zhu, Zhi-Biao; Zhao, Hui; Gao, Shan

    2011-12-19

    Self-assembly of silver(I) salts and three ortho-hydroxyl and carboxyl groups decorated arenesulfonic acids affords the formation of nine silver(I)-sulfonates, (NH(4))[Ag(HL1)(NH(3))(H(2)O)] (1), {(NH(4))[Ag(3)(HL1)(2)(NH(3))(H(2)O)]}(n) (2), [Ag(2)(HL1)(H(2)O)(2)](n) (3), [Ag(2)(HL2)(NH(3))(2)]H(2)O (4), [Ag(H(2)L2)(H(2)O)](n) (5), [Ag(2)(HL2)](n) (6), [Ag(3)(L3)(NH(3))(3)](n) (7), [Ag(2)(HL3)](n) (8), and [Ag(6)(L3)(2)(H(2)O)(3)](n) (9) (H(3)L1 = 2-hydroxyl-3-carboxyl-5-bromobenzenesulfonic acid, H(3)L2 = 2-hydroxyl-4-carboxylbenzenesulfonic acid, H(3)L3 = 2-hydroxyl-5-carboxylbenzenesulfonic acid), which are characterized by elemental analysis, IR, TGA, PL, and single-crystal X-ray diffraction. Complex 1 is 3-D supramolecular network extended by [Ag(HL1)(NH(3))(H(2)O)](-) anions and NH(4)(+) cations. Complex 2 exhibits 3-D host-guest framework which encapsulates ammonium cations as guests. Complex 3 presents 2-D layer structure constructed from 1-D tape of sulfonate-bridged Ag1 dimers linked by [(Ag2)(2)(COO)(2)] binuclear units. Complex 4 exhibits 3-D hydrogen-bonding host-guest network which encapsulates water molecules as guests. Complex 5 shows 3-D hybrid framework constructed from organic linker bridged 1-D Ag-O-S chains while complex 6 is 3-D pillared layered framework with the inorganic substructure constructing from the Ag2 polyhedral chains interlinked by Ag1 dimers and sulfonate tetrahedra. The hybrid 3-D framework of complex 7 is formed by L3(-) trianions bridging short trisilver(I) sticks and silver(I) chains. Complex 8 also presents 3-D pillared layered framework, and the inorganic layer substructure is formed by the sulfonate tetrahedrons bridging [(Ag1O(4))(2)(Ag2O(5))(2)](?) motifs. Complex 9 represents the first silver-based metal-polyhedral framework containing four kinds of coordination spheres with low coordination numbers. The structural diversities and evolutions can be attributed to the synthetic methods, different ligands and coordination modes of the three functional groups, that is, sulfonate, hydroxyl and carboxyl groups. The luminescent properties of the nine complexes have also been investigated at room temperature, especially, complex 1 presents excellent blue luminescence and can sensitize Tb(III) ion to exhibit characteristic green emission. PMID:22087743

  19. Direct Synthesis of Amides from Carboxylic Acids and Amines Using B(OCH2CF3)3

    PubMed Central

    2013-01-01

    B(OCH2CF3)3, prepared from readily available B2O3 and 2,2,2-trifluoroethanol, is as an effective reagent for the direct amidation of a variety of carboxylic acids with a broad range of amines. In most cases, the amide products can be purified by a simple filtration procedure using commercially available resins, with no need for aqueous workup or chromatography. The amidation of N-protected amino acids with both primary and secondary amines proceeds effectively, with very low levels of racemization. B(OCH2CF3)3 can also be used for the formylation of a range of amines in good to excellent yield, via transamidation of dimethylformamide. PMID:23586467

  20. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.

    PubMed

    Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A

    2014-01-01

    A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM). PMID:25302394

  1. Carrier-Mediated Uptake of 1-(Malonylamino)cyclopropane-1-Carboxylic Acid in Vacuoles Isolated from Catharanthus roseus Cells 1

    PubMed Central

    Bouzayen, Mondher; Latch, Alain; Pech, Jean-Claude; Marigo, Grard

    1989-01-01

    The uptake of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the conjugated form of the ethylene precursor, into vacuoles isolated from Catharanthus roseus cells has been studied by silicone layer floatation filtering. The transport across the tonoplast of MACC is stimulated fourfold by 5 millimolar MgATP, has a Km of about 2 millimolar, an optimum pH around 7, and an optimum temperature at 30C. Several effectors known to inhibit ATPase (N,N?-dicyclohexylcarbodiimide) and to collapse the transtonoplastic H+ electrochemical gradient (carbonylcyanide m-chlorophenylhydrazone, gramicidin, and benzylamine) all reduced MACC uptake. Abolishing the membrane potential with SCN? and valinomycin also greatly inhibited MACC transport. Our data demonstrate that MACC accumulates in the vacuole against a concentration gradient by means of a proton motive force generated by a tonoplastic ATPase. The involvement of a protein carrier is suggested by the strong inhibition of uptake by compounds known to block SH, OH, and NH2 groups. MACC uptake is antagonized competitively by malonyl-d-tryptophan, indicating that the carrier also accepts malonyl-d-amino acids. Neither the moities of these compounds taken separately [1-aminocyclopropane-1-carboxylic acid, malonate, d-tryptophan or d-phenylalanine] nor malate act as inhibitors of MACC transport. The absence of inhibition of malate uptake by MACC suggests that MACC and malate are taken up by two different carriers. We propose that the carrier identified here plays an important physiological role in withdrawing from the cytosol MACC and malonyl-d-amino acids generated under stress conditions. PMID:16667182

  2. Isolation of oligomers of 5,6-dihydroxyindole-2-carboxylic acid from the eye of the catfish

    PubMed Central

    Ito, Shosuke; Nicol, J. A. Colin

    1974-01-01

    The reflecting material of the tapetum lucidum of the sea catfish (Arius felis) was chromatographed on Sephadex LH-20 in methanoldimethyl sulphoxideformic acid. Two components were present: one, showing an absorption maximum at 330nm, was tapetal pigment; the other, at 257nm, was an associated nucleoside. The tapetal pigment was extracted in methanolHCl and isolated by adsorption chromatography on Sephadex LH-20. It yielded a methoxy methyl ester on treatment with diazomethane, and permanganate oxidation gave pyrrole-2,3,5-tricarboxylic acid. From the information provided by u.v. and i.r. spectra of the pigment and its methoxy methyl ester, from elemental analyses and from the oxidation products, we suggest that the tapetal pigment is derived from oxidative coupling of 5,6-dihydroxyindole-2-carboxylic acid. A molecular-weight determination and chromatography of the methoxy methyl ester indicate that the pigment is a mixture of oligomers, among which the tetramers probably predominate. We consider that the monomers are joined mainly by C-C linkages at positions 4 and 7. A synthetic pigment having spectral properties nearly identical with those of the natural pigment was prepared by enzymic oxidation of 5,6-dihydroxyindole-2-carboxylic acid with mushroom tyrosinase. The identity of the tapetal pigment with the synthetic pigment was further confirmed by comparing u.v. and i.r. spectra of their methoxy methyl esters. Formation of the tapetal pigment from tyrosine and relationships of the tapetal pigment to melanin are discussed. PMID:4464851

  3. Perfluorinated carboxylic and sulphonic acids in surface water media from the regions of Tibetan Plateau: Indirect evidence on photochemical degradation?

    PubMed

    Yamazaki, Eriko; Falandysz, Jerzy; Taniyasu, Sachi; Hui, Ge; Jurkiewicz, Gabriela; Yamashita, Nobuyoshi; Yang, Yong-Liang; Lam, Paul K S

    2016-01-01

    Perfluorinated surfactants and repellents are synthetic substances that have found numerous industrial and customer applications. Due to their persistence, at least two groups of these substances-perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs)-are diffused widely in the environment. It is hypothesized that the Tibetan Plateau, is one of few unique places on the Earth, due to its topography, specifically the vast space and high elevation above sea level, geographic location, climate, high solar radiation, lack of industry, little urbanization and general lack of significant direct sources of pollution. There it is believed possible to gain an insight into atmospheric fate (possible photochemical degradation of higher molecular mass and formation of lower molecular mass PFCAs and PFSAs) of PFASs under un-disturbed environmental conditions. Ultratrace analytical method for PFCAs and PFSAs and use of transportation and field blanks, laboratory blanks and isotopically labelled surrogates for recovery control has allowed the determination of nine perfluorinated carboxylic acids and six perfluorinated sulfonic acids at ultra-trace levels in water based samples from the alpine dimension regions of the Tibetan Plateau, the eastern slope of Minya Konka peak at the eastern edge of the Tibetan Plateau, and also from the city of Chengdu from the lowland of the Sichuan Province in China. The specific compositional pattern of PFCAs and PFSAs and low levels of pollution with those compounds were observed in the central region of the Tibetan Plateau and in the region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau. The fingerprint of the compositional pattern of PFCAs and PFSAs in water samples in the central region of the Tibetan Plateau and in the alpine region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau may be explained by the result of photochemical degradation with dealkylation of longer chain compounds and formation of shorter chain compounds, which are more resistant to photochemical degradation. PMID:26540117

  4. Exploring the chemical space of ureidothiophene-2-carboxylic acids as inhibitors of the quorum sensing enzyme PqsD from Pseudomonas aeruginosa.

    PubMed

    Sahner, J Henning; Empting, Martin; Kamal, Ahmed; Weidel, Elisabeth; Groh, Matthias; Brger, Carsten; Hartmann, Rolf W

    2015-01-01

    Pseudomonas aeruginosa employs a quorum sensing (QS) communication system that makes use of small diffusible molecules. Among other effects, the QS system coordinates the formation of biofilm which decisively contributes to difficulties in the therapy of Pseudomonas infections. The present work deals with the structure-activity exploration of ureidothiophene-2-carboxylic acids as inhibitors of PqsD, a key enzyme in the biosynthetic pathway of signal molecules in the Pseudomonas QS system. We describe an improvement of the inhibitory activity by successfully combining features from two different PqsD inhibitor classes. Furthermore the functional groups, which are responsible for the inhibitory potency, were identified. Moreover, the inability of the new inhibitors, to prevent signal molecule formation in whole cell assays, is discussed. PMID:25874327

  5. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, SUCCiOlC acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration-based distribution ratios increase from 0.11 to 0.46 as the aqueous phase pH increases from 7.18 to 8.15. Regeneration of the organic extractant solution was carried out by stripping at elevated temperatures to remove the ammonia, with 99% recovery of the ammonia being obtained at 125 C.

  6. Dioxouranium(VI)--carboxylate complexes. Interaction with dicarboxylic acids in aqueous solution: speciation and structure.

    PubMed

    Berto, Silvia; Crea, Francesco; Daniele, Pier G; De Stefano, Concetta; Prenesti, Enrico; Sammartano, Silvio

    2006-01-01

    In this paper we report the results of an investigation performed by potentiometric (H+-glass electrode) and visible spectrophotometric measurements on the interaction of UO2(2+) ion towards some carboxylic ligands (acetate, malonate, succinate, azelate). The measurements were carried out at T= 25 degrees C in different ionic media (KNO3 and NaCl) at different ionic strengths (0.1 < or = I/mol L(-1) < or = 1.0, NaCl; I/mol L(-1) = 0.1, KNO3). The dependence on ionic strength of formation constants was taken into account by using both a simple Debye-Hückel type equation and the SIT (Specific ion Interaction Theory) approach. Different speciation models (depending on concentration of reagents, ionic strength, pH-range) both for different carboxylates and different ionic media have been obtained. Linear combinations between formation constants, stoichiometric coefficients and length of alkyl chain of dicarboxylates have been observed and predicted formation constants at I= 0 mol L(-1) are reported for the interaction of UO2(2+) with HOOC-(CH2)n-COOH with 1 < or = n < or = 7. Finally, a visible absorption spectrum for each complex reaching a significant percentage of formation in solution (KNO3 medium) has been calculated to characterise the compounds found by pH-metric refinement. PMID:16948430

  7. Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead from Water

    PubMed Central

    Atieh, Muataz Ali; Bakather, Omer Yehya; Al-Tawbini, Bassam; Bukhari, Alaadin A.; Abuilaiwi, Faraj Ahmad; Fettouhi, Mohamed B.

    2010-01-01

    The adsorption mechanism of the removal of lead from water by using carboxylic functional group (COOH) functionalized on the surface of carbon nanotubes was investigated. Four independent variables including pH, CNTs dosage, contact time, and agitation speed were carried out to determine the influence of these parameters on the adsorption capacity of the lead from water. The morphology of the synthesized multiwall carbon nanotubes (MWCNTs) was characterized by using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) in order to measure the diameter and the length of the CNTs. The diameters of the carbon nanotubes were varied from 20 to 40?nm with average diameter at 24?nm and 10 micrometer in length. Results of the study showed that 100% of lead was removed by using COOH-MCNTs at pH 7, 150?rpm, and 2 hours. These high removal efficiencies were likely attributed to the strong affinity of lead to the physical and chemical properties of the CNTs. The adsorption isotherms plots were well fitted with experimental data. PMID:21350599

  8. Dielectric relaxation properties of carboxylic acid-terminated n-alkyl monolayers tethered to Si(1 1 1): dynamics of dipoles and gauche defects.

    PubMed

    Godet, C

    2016-03-01

    Molecular-level insights into the organization and dynamics of n-alkyl monolayers covalently bonded to Si(1 1 1) were gained from admittance measurements of dipolar relaxation in rectifying Hg [Formula: see text] HOOC-C10H25-n Si junctions performed as a function of applied voltage and temperature. A collective behavior of dipole dynamics is inferred from the non-Debye asymmetric relaxation peak shape and strong coupling of the dipole relaxation path with some bending vibrations of the n-alkyl OML (multi-excitation entropy model). A variety of relaxation mechanisms is observed in the frequency range (0.1 Hz-10 MHz) with different dependence of relaxation frequency and dipolar strength on measurement temperature and applied voltage. Their microscopic origin is discussed by comparing the activation energy of relaxation frequency with previous molecular mechanics calculations of saddle point energy barriers for structural defects such as gauche conformations or chain kinks in n-alkanes assemblies. Gauche conformations organized in pairs (kinks) have vanishing relaxation strength below an order-disorder transition temperature T D  =  175 K and their probability strongly increases with applied reverse voltage, above T D. The presence of hydrogen bonds between terminal carboxylic acid functionalities is inferred from a comparison with a similar junction bearing a low density of carboxylic acid end groups. This temperature-dependent hydrogen-bond network provides some additional stiffness against external electrostatic stress, as deduced from the rather weak sensitivity of relaxation frequencies to applied bias voltage. PMID:26872003

  9. Dielectric relaxation properties of carboxylic acid-terminated n-alkyl monolayers tethered to Si(1 1 1): dynamics of dipoles and gauche defects

    NASA Astrophysics Data System (ADS)

    Godet, C.

    2016-03-01

    Molecular-level insights into the organization and dynamics of n-alkyl monolayers covalently bonded to Si(1 1 1) were gained from admittance measurements of dipolar relaxation in rectifying Hg \\parallel HOOC-C10H25–n Si junctions performed as a function of applied voltage and temperature. A collective behavior of dipole dynamics is inferred from the non-Debye asymmetric relaxation peak shape and strong coupling of the dipole relaxation path with some bending vibrations of the n-alkyl OML (multi-excitation entropy model). A variety of relaxation mechanisms is observed in the frequency range (0.1 Hz–10 MHz) with different dependence of relaxation frequency and dipolar strength on measurement temperature and applied voltage. Their microscopic origin is discussed by comparing the activation energy of relaxation frequency with previous molecular mechanics calculations of saddle point energy barriers for structural defects such as gauche conformations or chain kinks in n-alkanes assemblies. Gauche conformations organized in pairs (kinks) have vanishing relaxation strength below an order–disorder transition temperature T D  =  175 K and their probability strongly increases with applied reverse voltage, above T D. The presence of hydrogen bonds between terminal carboxylic acid functionalities is inferred from a comparison with a similar junction bearing a low density of carboxylic acid end groups. This temperature-dependent hydrogen-bond network provides some additional stiffness against external electrostatic stress, as deduced from the rather weak sensitivity of relaxation frequencies to applied bias voltage.

  10. Cloning and characterization of a benzoic acid/salicylic acid carboxyl methyltransferase gene involved in floral scent production from lily (Lilium 'Yelloween').

    PubMed

    Wang, H; Sun, M; Li, L L; Xie, X H; Zhang, Q X

    2015-01-01

    In lily flowers, the volatile ester methyl benzoate is one of the major and abundant floral scent compounds; however, knowledge regarding the biosynthesis of methyl benzoate remains unknown for Lilium. In this study, we isolated a benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) gene, LiBSMT, from petals of Lilium 'Yelloween'. The gene has an open reading frame of 1083 base pairs (bp) and encodes a protein of 41.05 kDa. Sequence alignment and phylogenetic analyses of LiBSMT revealed 40-50% similarity with other known benzenoid carboxyl methyltransferases in other plant species, and revealed homology to BSMT of Oryza sativa. Heterologous expression of this gene in Escherichia coli yielded an enzyme responsible for catalyzing benzoic acid and salicylic acid to methyl benzoate and methyl salicylate, respectively. Quantitative real-time polymerase chain reaction analysis showed that LiBSMT was preferentially expressed in petals. Moreover, the expression of LiBSMT in petals was developmentally regulated. These expression patterns correlate well with the emission of methyl benzoate. Our results indicate that LiBSMT plays an important role in floral scent methyl benzoate production and emission in lily flowers. PMID:26600510

  11. Comparison of CO2 and oxygen DC submerged thermal plasmas for decomposition of carboxylic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Safa, S.; Hekmat-Ardakan, A.; Soucy, G.

    2014-11-01

    The feasibility of the carboxylic acid decomposition with two different direct current (DC) thermal plasma torches was investigated. An oxygen DC submerged thermal plasma torch and a newly designed submerged DC plasma torch operating with a mixture of carbon dioxide and methane (CO2/CH4) were used. Sebacic acid was selected as a representative of pollutants in the most wastewater produced by chemical process industries. The effect of different operational conditions including treatment time, the reactor pressure as well as the role of oxidizing agents such as (H2O2) were investigated on the decomposition rate of sebacic acid. Concentration of sebacic acid was quantified by Ion Chromatography/Mass Spectrometry (IC/MS). The oxygen plasma showed higher decomposition rate in basic medium. Adding H2O2 into aqueous solution enhanced the sebacic acid decomposition rate with the CO2/CH4 plasma up to the same decomposition rate of the oxygen plasma. Increasing the pressure also increased the decomposition rate for both plasmas with an increase twice higher for the CO2/CH4 plasma than that of the oxygen plasma. This work therefore presents the conditions in which these plasmas can provide the same decomposition rate for contaminants in aqueous solution.

  12. Electronic and optical response of Ru(II) complexes functionalized by methyl, carboxylate groups: joint theoretical and experimental study

    SciTech Connect

    Tretiak, Sergei

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the complex to the surface of a semiconductor, a linking bridge - a carboxyl group - is added to one or two of the 2,2{prime}-bipyridine ligands. Such changes in the ligand structure, indeed, affect electronic and optical properties and consequently, the charge transfer reactivity of Ru-systems. In this study, we apply both theoretical and experimental approaches to analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the Ru(II) bipyridine complex. First principle calculations based on density functional theory (DFT) and linear response time dependent density functional theory (TDDFT) are used to simulate the ground and excited-state structures of functionalized Ru-complexes in the gas phase, as well as in acetonitrile solution. In addition, an inelaborate Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states. All theoretical results nicely complement experimental absorption spectra of Ru-complexes and contribute to their interpretation. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show a high probability of deprotonation of the carbboxyl group in the Ru-complexes resulted in a slight blue shift and decrease of intensities of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotanated complexes demonstrate strong agreement when acetonitrile solvent is used in simulations. A polar solvent is found to play an important role in calculations of optical spectra: it stabilizes the energy of states localized on the carboxyl or carboxylate groups eliminating artificial charge transport states, which typically appear in TDDFT calculations. Thus, it is validated that the excited-state structure of the functionalized Ru-complexes, specifically in the case of the deprotonated functions, can be accurately modeled by TDDFT with the addition of a dielectric continuum in simulations.

  13. Direct synthesis of large-pore ethane-bridged mesoporous organosilica functionalized with carboxylic groups.

    PubMed

    Fiorilli, Sonia; Camarota, Beatrice; Perrachon, Daniela; Bruzzoniti, Maria Concetta; Garrone, Edoardo; Onida, Barbara

    2009-08-01

    Carboxylic groups have been incorporated in ethane-bridged PMO by one-pot synthesis using a triblock copolymer as template; their pK(a) measured by titration is higher than that of same groups incorporated in SBA-15. PMID:19597606

  14. New silver(I) coordination polymers constructed from pyrazine derivatives and aromatic carboxylic acids: Syntheses, structures and photoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Huang, Hua-Qi; Mei, Hong-Xin; Wang, Dan-Feng; Wang, Xiao-Xiang; Huang, Rong-Bin; Zheng, Lan-Sun

    2015-11-01

    Five one-dimensional to three-dimensional coordination polymers have been synthesized by 2-chlorobenzoic acid (HL1), 2-nitrobenzoic acid (HL2), o-toluic acid (HL3), 2,3,5-trimethylpyrazine (tpyz) and 2,3,5,6-tetramethylpyrazine (mpyz) in the presence of NH3·H2O in mixed solvents systems, namely, {Ag4(tpyz)2(L1)4}n (1), {Ag2(tpyz) (L2)2}n (2), {Ag2(tpyz) (L3)2}n (3), {Ag2(mpyz) (L1)2}n (4), {Ag(mpyz) (L2) (H2O)}n (5). All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Compound 1 shows a 3D framework. The tpyz ligand links 1D chain which was connected by silver atom and L1 anion into 3D framework. Compounds 2 and 4 possess a similar 2D network with (4, 4) topology. Complex 3 also exhibits a two-dimensional structure. There is a 1D silver chain in 3, which is the main difference from 2 and 4. So, 3 shows three-connected (4 8, 3) topology. For 5, only one oxygen of L2 coordinated to Ag(I) ions. The L2 anions were arranged in both sides of the chain, which was connected by silver atoms and mpyz ligands. Then, the uncoordinated carboxylate oxygen with coordinated water 1molecule oxygen through the hydrogen bond made the resultant structure to a 3D framework. Complexes 1-5 spanning from one-dimensional chains to three-dimensional framework suggest that carboxylates and the kinds of pyrazine derivatives play significant roles in the formation of such coordination architectures. The photoluminescence and thermogravimetric analysis (TGA) of the complexes were also investigated.

  15. Structure and Mechanical Property Modifications by Blending Alkyl Carboxylate Salts into Ethylene-co-(Meth)Acrylic Acid Ionomers

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsuyuki; Register, Richard A.

    2004-03-01

    Our previous studies have shown that the addition of magnesium stearate, a saturated linear alkyl carboxylate salt, has a significant effect on the behavior of ethylene-based ionomers, such as the initial suppression of polymer crystallinity and a gradual but substantial increase in the elastic modulus following room temperature annealing. This behavior is believed to originate in the coassembly of the two components, both co-aggregation of the ionic groups and co-crystallization of the alkyl segments. We test this hypothesis by blending either crystallizable or noncrystallizable alkyl carboxylates into ethylene-co-(meth)acrylic acid ionomers. DSC, WAXS and SAXS on a stearate-modified ionomer show that the alkyl chain segments are packed in a more organized fashion compared to the unmodified ionomer, while the resulting crystals are much thinner than those typically found in polyethylene. The non-crystalline magnesium oleate still coassembles with the ionomer in the melt, but does not crystallize at room temperature, acting instead as a plasticizer for the amorphous phase.

  16. Isosteric replacements of the carboxylic acid of drug candidate VX-787: Effect of charge on antiviral potency and kinase activity of azaindole-based influenza PB2 inhibitors.

    PubMed

    Boyd, Michael J; Bandarage, Upul K; Bennett, Hamilton; Byrn, Randal R; Davies, Ioana; Gu, Wenxin; Jacobs, Marc; Ledeboer, Mark W; Ledford, Brian; Leeman, Joshua R; Perola, Emanuele; Wang, Tiansheng; Bennani, Youssef; Clark, Michael P; Charifson, Paul S

    2015-05-01

    VX-787 is a first in class, orally bioavailable compound that offers unparalleled potential for the treatment of pandemic and seasonal influenza. As a part of our routine SAR exploration, carboxylic acid isosteres of VX-787 were prepared and tested against influenza A. It was found that the negative charge is important for maintaining potency and selectivity relative to kinase targets. Neutral carboxylic acid replacements generally resulted in compounds that were significantly less potent and less selective relative to the charged species. PMID:25827523

  17. Functional nucleic acid probes and uses thereof

    DOEpatents

    Nilsen-Hamilton, Marit

    2006-10-03

    The present invention provides functional nucleic acid probes, and methods of using functional nucleic acid probes, for binding a target to carry out a desired function. The probes have at least one functional nucleic acid, at least one regulating nucleic acid, and at least one attenuator. The functional nucleic acid is maintained in an inactive state by the attenuator and activated by the regulating nucleic acid only in the presence of a regulating nucleic acid target. In its activated state the functional nucleic acid can bind to its target to carry out a desired function, such as generating a signal, cleaving a nucleic acid, or catalyzing a reaction.

  18. Hygroscopic Characteristics of Alkylaminium Carboxylate Aerosols.

    PubMed

    Gomez-Hernandez, Mario; McKeown, Megan; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Lavi, Avi; Rudich, Yinon; Collins, Don R; Zhang, Renyi

    2016-03-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity for a series of alkylaminium carboxylate aerosols have been measured using a hygroscopicity tandem differential mobility analyzer coupled to a condensation particle counter and a CCN counter. The particles, consisting of the mixtures of mono- (acetic, propanoic, p-toluic, and cis-pinonic acid) and dicarboxylic (oxalic, succinic, malic, adipic, and azelaic acid) acid with alkylamine (mono-, di-, and trimethylamines), represent those commonly found under diverse environmental conditions. The hygroscopicity parameter (?) of the alkylaminium carboxylate aerosols was derived from the HGF and CCN results and theoretically calculated. The HGF at 90% RH is in the range of 1.3 to 1.8 for alkylaminium monocarboxylates and 1.1 to 2.2 for alkylaminium dicarboxylates, dependent on the molecular functionality (i.e., the carboxylic or OH functional group in organic acids and methyl substitution in alkylamines). The ? value for all alkylaminium carboxylates is in the range of 0.06-1.37 derived from the HGF measurements at 90% RH, 0.05-0.49 derived from the CCN measurements, and 0.22-0.66 theoretically calculated. The measured hygroscopicity of the alkylaminium carboxylates increases with decreasing acid to base ratio. The deliquescence point is apparent for several of the alkylaminium dicarboxylates but not for the alkylaminium monocarboxylates. Our results reveal that alkylaminium carboxylate aerosols exhibit distinct hygroscopic and deliquescent characteristics that are dependent on their molecular functionality, hence regulating their impacts on human health, air quality, and direct and indirect radiative forcing on climate. PMID:26794419

  19. An 17O nuclear quadrupole resonance study of some carboxylic acids

    NASA Astrophysics Data System (ADS)

    Brosnan, S. G. P.; Edmonds, D. T.; Poplett, I. J. F.

    Using the new technique of doule resonance with coupled multiplets the nuclear quadrupole resonance spectra of 17O, naturally abundant at both the C?O and C?O?H sites in formic acid acrylic acid, fumaric acid, ?-oxalic acid, ? oxalic acid, maleic acid, acetic acid, and substituted acetic acids, were measured. The specimens were frozen solutions or powdered solids. For the C?O?H site fine structure is observed on the spectral lines attributable to magnetic interaction with the neighboring proton. Analysis of the structure gives the sign of the quadrupole coupling constant and also information about the principal axes of the electric field gradient at the 17O nucleus. A simple Townes and Dailey analysis is carried out for the C?O?H site.

  20. ANALYSIS OF PERFLUORINATED CARBOXYLIC ACIDS IN SOILS: DETECTION AND QUANTITATION ISSUES AT LOW CONCENTRATIONS

    EPA Science Inventory

    Methods were developed for the extraction from soil, identification, confirmation and quantitation by LC/MS/MS of trace levels of perfluorinated octanoic acid (PFOA), perfluorinated nonanoic acid (PFNA) and perfluorinated decanoic acid (PFDA). Whereas PFOA, PFNA and PFDA all can...