Science.gov

Sample records for cardiac autonomic regulation

  1. Auditory stimulation and cardiac autonomic regulation

    PubMed Central

    Valenti, Vitor E.; Guida, Heraldo L.; Frizzo, Ana C. F.; Cardoso, Ana C. V.; Vanderlei, Luiz Carlos M.; de Abreu, Luiz Carlos

    2012-01-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: “auditory stimulation”, “autonomic nervous system”, “music” and “heart rate variability”. The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders. PMID:22948465

  2. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    PubMed Central

    Cheng, Ching-Feng; Kuo, Terry B. J.; Chen, Wei-Nan

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  3. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    PubMed

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  4. Noninvasive subject-specific monitoring of autonomic-cardiac regulation.

    PubMed

    Ataee, Pedram; Hahn, Jin-Oh; Dumont, Guy A; Boyce, W Thomas

    2014-04-01

    This paper presents a feasibility study of a model-based approach to noninvasive and subject-specific monitoring of autonomic-cardiac regulation. The proposed approach is built upon individualizing a physiologically-based model by applying a parameter estimation method to routine clinical observations, thereby assuring physical transparency, computational efficiency, and clinical adaptability. To develop an efficient parameter estimation procedure, a parametric sensitivity analysis was performed on the autonomic-cardiac regulation model to identify high-sensitivity model parameters whose changes exert significant impacts on the system outputs. Then, a parameter estimation problem formulated as a nonlinear optimization was solved to estimate high-sensitivity model parameters associated with autonomic-cardiac regulation, whereas the remaining parameters were fixed at their nominal values. The proposed approach can potentially monitor temporal changes in autonomic-cardiac regulation by identifying time-varying changes in the autonomic-cardiac model parameters, including sympathetic and parasympathetic nerve activities on the heart (modulating heart rate), and sympathetic nerve activity on the arterial tree (modulating total peripheral resistance). The proof-of-concept for the proposed approach was tested using a number of experimental data from the MIMIC database and the orthostatic hypotension tests. Our finding shows that the proposed approach is able to provide low-variance estimates of the autonomic-cardiac model parameters, which are consistent with their anticipated behaviors inferred from the physiologic knowledge. An extensive comparison study must be conducted in the future to establish the clinical validity of the proposed approach. PMID:24658244

  5. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    PubMed

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12. PMID:11429613

  6. Effects of Emotion Regulation Difficulties on the Tonic and Phasic Cardiac Autonomic Response

    PubMed Central

    Berna, Guillaume; Ott, Laurent; Nandrino, Jean-Louis

    2014-01-01

    Background Emotion regulation theory aims to explain the interactions between individuals and the environment. In this context, Emotion Regulation Difficulties (ERD) disrupt the physiological component of emotions through the autonomic nervous system and are involved in several psychopathological states. Objective We were interested in comparing the influence of a film-elicited emotion procedure on the autonomic nervous system activity of two groups with different levels of emotion regulation difficulties. Methods A total of 63 women (undergraduate students) ranging from 18 to 27 (20.7±1.99) years old were included. Using the upper and lower quartile of a questionnaire assessing the daily difficulties in regulating emotions, two groups, one with low (LERD) and one with high (HERD) levels of emotion regulation difficulties, were constituted and studied during a film-elicited emotion procedure. Cardiac vagal activity (HF-HRV) was analyzed during three periods: baseline, film-elicited emotion, and recovery. Results The cardiovascular results showed a decrease in HF-HRV from baseline to elicitation for both groups. Then, from elicitation to recovery, HF-HRV increased for the LERD group, whereas a low HF-HRV level persisted for the HERD group. Conclusions The HERD group exhibited inappropriate cardiac vagal recovery after a negative emotion elicitation had ended. Cardiac vagal tone took longer to return to its initial state in the HERD group than in the LERD group. Prolonged cardiac vagal suppression might constitute an early marker of emotion regulation difficulties leading to lower cardiac vagal tone. PMID:25054913

  7. Effects of Effortful Swallow on Cardiac Autonomic Regulation.

    PubMed

    Gomes, Lívia M S; Silva, Roberta G; Melo, Monique; Silva, Nayra N; Vanderlei, Franciele M; Garner, David M; de Abreu, Luiz Carlos; Valenti, Vitor E

    2016-04-01

    Swallowing-induced changes in heart rate have been recently reported. However, it is not apparent the responses of heart rate variability (HRV) elicited by effortful swallow maneuver. We investigated the acute effects of effortful swallowing maneuver on HRV. This study was performed on 34 healthy women between 18 and 35 years old. We assessed heart rate variability in the time (SDNN, RMSSD, and pNN50) and frequency (HF, LF, and LF/HF ratio) domains and, visual analysis through the Poincaré plot. The subjects remained at rest for 5 min during spontaneous swallowing and then performed effortful swallowing for 5 min. HRV was analyzed during spontaneous and effortful swallowing. We found no significant differences for SDNN, pNN50, RMSSD, HF in absolute units (ms(2)). There is a trend for increase of LF in absolute (p = 0.05) and normalized (p = 0.08) units during effortful swallowing. HF in normalized units reduced (p = 0.02) during effortful swallowing and LF/HF ratio (p = 0.03) increased during effortful swallowing. In conclusion effortful swallow maneuver in healthy women increased sympathetic cardiac modulation, indicating a cardiac overload. PMID:26650792

  8. Dietary restriction, cardiac autonomic regulation and stress reactivity in bulimic women.

    PubMed

    Vögele, Claus; Hilbert, Anja; Tuschen-Caffier, Brunna

    2009-08-01

    Recent findings suggest sympathetic inhibition during dietary restriction as opposed to increased sympathetic activity during re-feeding. The present study investigated cardiac autonomic regulation and stress reactivity in relation to biochemical markers of dietary restriction status in women diagnosed with bulimia nervosa. We predicted that bulimic individuals (BN) with a biochemical profile indicating dietary restriction exhibit reduced cardiac sympathetic and/or increased vagal activity. We also hypothesized, that BN with a biochemical profile within a normal range (i.e. currently not dieting or malnourished) would show heart rate variability responses (HRV) and reactivity to mental stress indicating increased sympathetic activation compared with non-eating disordered controls. Seventeen female volunteers diagnosed with bulimia nervosa were categorized according to their serum profile (glucose, pre-albumin, IGF-1, TSH, leptin) into currently fasting versus non-fasting and compared with 16 non-eating disordered controls matched for age and BMI. Spectral components of HRV were calculated on heart rate data from resting and mental stress periods (standardized achievement challenge) using autoregressive analysis. Compared to non-fasting BN and controls, fasting BN showed increased vagal and decreased sympathetic modulation during both resting and recovery periods. Cardiac autonomic regulation was not impaired in response to mental challenge. No differences could be found between non-fasting BN and controls. The results confirm the notion of cardiac sympathetic inhibition and vagal dominance during dietary restriction and suggest the specificity of starvation related biochemical changes for cardiac autonomic control. The results are discussed in terms of the higher incidence in cardiac complications in these patients. PMID:19497332

  9. Factors influencing the role of cardiac autonomic regulation in the service of cognitive control.

    PubMed

    Capuana, Lesley J; Dywan, Jane; Tays, William J; Elmers, Jamie L; Witherspoon, Richelle; Segalowitz, Sidney J

    2014-10-01

    Working from a model of neurovisceral integration, we examined whether adding response contingencies and motivational involvement would increase the need for cardiac autonomic regulation in maintaining effective cognitive control. Respiratory sinus arrhythmia (RSA) was recorded during variants of the Stroop color-word task. The Basic task involved "accepting" congruent items and "rejecting" words printed in incongruent colors (BLUE in red font); an added contingency involved rejecting a particular congruent word (e.g., RED in red font), or a congruent word repeated on an immediately subsequent trial. Motivation was increased by adding a financial incentive phase. Results indicate that pre-task RSA predicted accuracy best when response contingencies required the maintenance of a specific item in memory or on the Basic Stroop task when errors resulted in financial loss. Overall, RSA appeared to be most relevant to performance when the task encouraged a more proactive style of cognitive control, a control strategy thought to be more metabolically costly, and hence, more reliant on flexible cardiac autonomic regulation. PMID:25079341

  10. [Effect of aerobic training on cardiac autonomic regulation revealed by heart rate variability analysis].

    PubMed

    Zhang, L; Wang, S; Zhang, Z; Zheng, J; Wang, X

    1997-11-01

    The aim of the present work is to elucidate the effect of aerobiac training on cardic autonomic function and to clarify whether there is any association between the changes in cardiac regulation and the heart rate dynamics and orthostatic tolerance during LBNP testing. To achieve this, the heart rate variability (HRV) signals obtained from a group of eight students before and after a 6-mon aerobic training, as well as from six athletes (medium- and long distance runners) were analyzed by conventional spectral, dynamic spectral and non-linear analysis. Our results showed that the conventional AR spectral analysis could not provide data with significance, owing to its greater variance and inherent limitation in being able to reflect only the average statistical characters over a certain period. While from the data obtained by use of the time-varying AR spectral analysis we could follow the time course of cardiac vagal withdrawl and sympathetic excitation during LBNP exposure. Regarding the non linear methods used, beta estimates didn't provide any significant result, but the ApEn analysis of the HRV signal could detect subtle changes in heart rate dynamics associated with aerobic training. Moreover, after aerobic training, the increments delta ApEn and delta DNP during LB NP testing were closely correlated. Our results would have important implications for further work in elucidating the effect of aerobic training on heart rate dynamics and improving the work on HRV signal analysis. PMID:10322949

  11. Modulation of sphingosine receptors influences circadian pattern of cardiac autonomic regulation.

    PubMed

    Simula, Sakari; Laitinen, Tomi P; Laitinen, Tiina M; Hartikainen, Päivi; Hartikainen, Juha E K

    2016-09-01

    Fingolimod is an oral sphingosine-1-phospate (S1P) receptor modulator for the treatment of relapsing-remitting multiple sclerosis (RRMS). In addition to therapeutic effects on lymphoid and neural tissue, fingolimod influences cardiovascular system by specific S1P-receptor modulation. The effects of S1P-receptor modulation on the endogenous circadian pattern of cardiac autonomic regulation (CAR), however, are not known. We examined the effects of fingolimod on the circadian pattern of CAR Ambulatory 24-h ECG recordings were undertaken in 27 RRMS patients before fingolimod (baseline), at the day of fingolimod initiation (1D) and after 3 months of fingolimod treatment (3M). The mean time between two consecutive R-peaks (RR-interval) and mean values for measures of heart rate variability (HRV) in time- and frequency domain were calculated from ECG recording at daytime and nighttime. The mean night:day-ratio of RR-interval was 1.23 ± 0.12 at baseline, decreased temporarily at 1D (1.16 ± 0.12; P < 0.01) and was higher at 3M (1.32 ± 0.11; P < 0.001) than at baseline. The night:day-ratio of HRV parameters reflecting parasympathetic cardiac regulation (pNN50, rMSSD, HFnu) decreased at 1D but recovered back to baseline at 3M (P < 0.05 for all). On the other hand, the night:day-ratio of TP, a parameter reflecting overall HRV gradually decreased and was lower at 3M than at baseline (P < 0.05). Our findings suggest that physiological relation between the circadian pattern of RR-interval and overall HRV as well as parasympathetic cardiac regulation becomes uncoupled during fingolimod treatment. In addition, fingolimod shifts the circadian equilibrium of CAR toward greater daytime dominance of overall HRV Accordingly, S1P-receptor modulation influences circadian pattern of CAR. PMID:27624686

  12. Acute Auditory Stimulation with Different Styles of Music Influences Cardiac Autonomic Regulation in Men

    PubMed Central

    da Silva, Sheila Ap. F.; Guida, Heraldo L.; dos Santos Antonio, Ana Marcia; de Abreu, Luiz Carlos; Monteiro, Carlos B. M.; Ferreira, Celso; Ribeiro, Vivian F.; Barnabe, Viviani; Silva, Sidney B.; Fonseca, Fernando L. A.; Adami, Fernando; Petenusso, Marcio; Raimundo, Rodrigo D.; Valenti, Vitor E.

    2014-01-01

    Background: No clear evidence is available in the literature regarding the acute effect of different styles of music on cardiac autonomic control. Objectives: The present study aimed to evaluate the acute effects of classical baroque and heavy metal musical auditory stimulation on Heart Rate Variability (HRV) in healthy men. Patients and Methods: In this study, HRV was analyzed regarding time (SDNN, RMSSD, NN50, and pNN50) and frequency domain (LF, HF, and LF / HF) in 12 healthy men. HRV was recorded at seated rest for 10 minutes. Subsequently, the participants were exposed to classical baroque or heavy metal music for five minutes through an earphone at seated rest. After exposure to the first song, they remained at rest for five minutes and they were again exposed to classical baroque or heavy metal music. The music sequence was random for each individual. Standard statistical methods were used for calculation of means and standard deviations. Besides, ANOVA and Friedman test were used for parametric and non-parametric distributions, respectively. Results: While listening to heavy metal music, SDNN was reduced compared to the baseline (P = 0.023). In addition, the LF index (ms2 and nu) was reduced during exposure to both heavy metal and classical baroque musical auditory stimulation compared to the control condition (P = 0.010 and P = 0.048, respectively). However, the HF index (ms2) was reduced only during auditory stimulation with music heavy metal (P = 0.01). The LF/HF ratio on the other hand decreased during auditory stimulation with classical baroque music (P = 0.019). Conclusions: Acute auditory stimulation with the selected heavy metal musical auditory stimulation decreased the sympathetic and parasympathetic modulation on the heart, while exposure to a selected classical baroque music reduced sympathetic regulation on the heart. PMID:25177673

  13. Cardiac Autonomic Regulation in Autism and Fragile X Syndrome: A Review

    PubMed Central

    Klusek, Jessica; Roberts, Jane E.; Losh, Molly

    2014-01-01

    Despite the significance of efforts to understand the biological basis of autism, progress in this area has been hindered, in part, by the considerable heterogeneity in the disorder. Fragile X syndrome (FXS), a monogenic condition associated with high risk for autism, may pave the way for the dissection of biological heterogeneity within idiopathic autism. This paper adopts a cross-syndrome biomarker approach to evaluate potentially overlapping profiles of cardiac arousal dysregulation (and broader autonomic dysfunction) in autism and FXS. Approaches such as this, aimed at delineating shared mechanisms across genetic syndromes, hold great potential for improving diagnostic precision, promoting earlier identification, and uncovering key systems that can be targeted in pharmaceutical/behavioral interventions. Biomarker approaches may be vital to deconstructing complex psychiatric disorders, and are currently promoted as such by major research initiatives such as the NIMH Research Domain Criteria (RDoC). Evidence reviewed here supports physiological dysregulation in a subset of individuals with autism, as evidenced by patterns of hyperarousal and dampened parasympathetic vagal tone, which overlap with the well-documented physiological profile of FXS. Moreover, there is growing support for a link between aberrant cardiac activity and core deficits associated with autism, such as communication and social impairment. The delineation of physiological mechanisms common to autism and FXS could lend insight into relationships between genetic etiology and behavioral endstates, highlighting FMR1 as a potential candidate gene. Research gaps and potential pitfalls are discussed to inform timely, well-controlled biomarker research that will ultimately promote better diagnosis and treatment of autism and associated conditions. PMID:25420222

  14. Cardiac autonomic regulation in autism and Fragile X syndrome: a review.

    PubMed

    Klusek, Jessica; Roberts, Jane E; Losh, Molly

    2015-01-01

    Despite the significance of efforts to understand the biological basis of autism, progress in this area has been hindered, in part, by the considerable heterogeneity in the disorder. Fragile X syndrome (FXS), a monogenic condition associated with high risk for autism, may pave the way for the dissection of biological heterogeneity within idiopathic autism. This article adopts a cross-syndrome biomarker approach to evaluate potentially overlapping profiles of cardiac arousal dysregulation (and broader autonomic dysfunction) in autism and FXS. Approaches such as this, aimed at delineating shared mechanisms across genetic syndromes, hold great potential for improving diagnostic precision, promoting earlier identification, and uncovering key systems that can be targeted in pharmaceutical/behavioral interventions. Biomarker approaches may be vital to deconstructing complex psychiatric disorders and are currently promoted as such by major research initiatives such as the NIMH Research Domain Criteria (RDoC). Evidence reviewed here supports physiological dysregulation in a subset of individuals with autism, as evidenced by patterns of hyperarousal and dampened parasympathetic vagal tone that overlap with the well-documented physiological profile of FXS. Moreover, there is growing support for a link between aberrant cardiac activity and core deficits associated with autism, such as communication and social impairment. The delineation of physiological mechanisms common to autism and FXS could lend insight into relationships between genetic etiology and behavioral endstates, highlighting FMR1 as a potential candidate gene. Research gaps and potential pitfalls are discussed to inform timely, well-controlled biomarker research that will ultimately promote better diagnosis and treatment of autism and associated conditions. PMID:25420222

  15. Cardiac coherence, self-regulation, autonomic stability, and psychosocial well-being

    PubMed Central

    McCraty, Rollin; Zayas, Maria A.

    2014-01-01

    The ability to alter one’s emotional responses is central to overall well-being and to effectively meeting the demands of life. One of the chief symptoms of events such as trauma, that overwhelm our capacities to successfully handle and adapt to them, is a shift in our internal baseline reference such that there ensues a repetitive activation of the traumatic event. This can result in high vigilance and over-sensitivity to environmental signals which are reflected in inappropriate emotional responses and autonomic nervous system dynamics. In this article we discuss the perspective that one’s ability to self-regulate the quality of feeling and emotion of one’s moment-to-moment experience is intimately tied to our physiology, and the reciprocal interactions among physiological, cognitive, and emotional systems. These interactions form the basis of information processing networks in which communication between systems occurs through the generation and transmission of rhythms and patterns of activity. Our discussion emphasizes the communication pathways between the heart and brain, as well as how these are related to cognitive and emotional function and self-regulatory capacity. We discuss the hypothesis that self-induced positive emotions increase the coherence in bodily processes, which is reflected in the pattern of the heart’s rhythm. This shift in the heart rhythm in turn plays an important role in facilitating higher cognitive functions, creating emotional stability and facilitating states of calm. Over time, this establishes a new inner-baseline reference, a type of implicit memory that organizes perception, feelings, and behavior. Without establishing a new baseline reference, people are at risk of getting “stuck” in familiar, yet unhealthy emotional and behavioral patterns and living their lives through the automatic filters of past familiar or traumatic experience. PMID:25324802

  16. Linking an Anxiety-Related Personality Trait to Cardiac Autonomic Regulation in Well-Defined Healthy Adults: Harm Avoidance and Resting Heart Rate Variability

    PubMed Central

    Kao, Lien-Cheng; Liu, Yu-Wen; Tzeng, Nian-Sheng; Kuo, Terry B. J.; Huang, San-Yuan

    2016-01-01

    Objective Anxiety trait, anxiety and depression states have all been reported to increase risks for cardiovascular disease (CVD), possibly through altering cardiac autonomic regulation. Our aim was to investigate whether the relationship between harm avoidance (HA, an anxiety-related personality trait) and cardiac autonomic regulation is independent of anxiety and depression states in healthy adults. Methods We recruited 535 physically and mentally healthy volunteers. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI) and Tri-dimensional Personality Questionnaire. Participants were divided into high or low HA groups as discriminated by the quartile value. Cardiac autonomic function was evaluated by measuring heart rate variability (HRV). We obtained the time and frequency-domain indices of HRV including variance (total HRV), the low-frequency power (LF; 0.05–0.15 Hz), which may reflect baroreflex function, the high-frequency power (HF; 0.15–0.40 Hz), which reflects cardiac parasympathetic activity, as well as the LF/HF ratio. Results The BDI and HA scores showed associations with HRV parameters. After adjustment for the BDI scores and other control variables, HA is still associated with reduced variance, LF and HF power. Compared with the participants with low HA, those with high HA displayed significant reductions in variance, LF and HF power and a significant increase in their LF/HF ratio. Conclusion This study highlights the independent role of HA in contributing to decreased autonomic cardiac regulation in healthy adults and provides a potential underlying mechanism for anxiety trait to confer increased risk for CVD. PMID:27482240

  17. Autonomic Regulation Therapy in Heart Failure

    PubMed Central

    Buckley, Una; Shivkumar, Kalyanam; Ardell, Jeffrey L.

    2015-01-01

    Autonomic Regulation Therapy (ART) is a rapidly emerging therapy in the management of congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical research in ART for systolic heart failure. Understanding mechanistically what is being stimulated within the autonomic nervous system by such device-based therapy and how the system reacts to such stimuli is essential for optimizing stimulation parameters and for the future development of effective ART. PMID:26054327

  18. Autonomic Regulation Therapy in Heart Failure.

    PubMed

    Buckley, Una; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2015-08-01

    Autonomic regulation therapy (ART) is a rapidly emerging therapy in the management of congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical research in ART for systolic heart failure. Understanding mechanistically what is being stimulated within the autonomic nervous system by such device-based therapy and how the system reacts to such stimuli is essential for optimizing stimulation parameters and for the future development of effective ART. PMID:26054327

  19. Cardiac Autonomic Control in Individuals With Down Syndrome

    ERIC Educational Resources Information Center

    Goulopoulou, Styliani; Baynard, Tracy; Collier, Scott; Giannopoulou, Ifigenia; Figueroa, Arturo; Beets, Michael; Pitetti, Kenneth; Fernhall, Bo

    2006-01-01

    Our goal in this study was to compare cardiac autonomic control at rest between 50 individuals with Down syndrome and 24 control participants without disabilities. Resting autonomic function was assessed using analysis of heart rate variability. Participants with Down syndrome had reduced total heart rate variability, which indicates possible…

  20. Effects of short-term food deprivation on interoceptive awareness, feelings and autonomic cardiac activity.

    PubMed

    Herbert, Beate M; Herbert, Cornelia; Pollatos, Olga; Weimer, Katja; Enck, Paul; Sauer, Helene; Zipfel, Stephan

    2012-01-01

    The perception of internal bodily signals (interoception) plays a relevant role for emotion processing and feelings. This study investigated changes of interoceptive awareness and cardiac autonomic activity induced by short-term food deprivation and its relationship to hunger and affective experience. 20 healthy women were exposed to 24h of food deprivation in a controlled setting. Interoceptive awareness was assessed by using a heartbeat tracking task. Felt hunger, cardiac autonomic activity, mood and subjective appraisal of interoceptive sensations were assessed before and after fasting. Results show that short-term fasting intensifies interoceptive awareness, not restricted to food cues, via changes of autonomic cardiac and/or cardiodynamic activity. The increase of interoceptive awareness was positively related to felt hunger. Additionally, the results demonstrate the role of cardiac vagal activity as a potential index of emotion related self-regulation, for hunger, mood and the affective appraisal of interoceptive signals during acute fasting. PMID:21958594

  1. Regular Football Practice Improves Autonomic Cardiac Function in Male Children

    PubMed Central

    Fernandes, Luis; Oliveira, Jose; Soares-Miranda, Luisa; Rebelo, Antonio; Brito, Joao

    2015-01-01

    Background: The role of the autonomic nervous system (ANS) in the cardiovascular regulation is of primal importance. Since it has been associated with adverse conditions such as cardiac arrhythmias, sudden death, sleep disorders, hypertension and obesity. Objectives: The present study aimed to investigate the impact of recreational football practice on the autonomic cardiac function of male children, as measured by heart rate variability. Patients and Methods: Forty-seven male children aged 9 - 12 years were selected according to their engagement with football oriented practice outside school context. The children were divided into a football group (FG; n = 22) and a control group (CG; n = 25). The FG had regular football practices, with 2 weekly training sessions and occasional weekend matches. The CG was not engaged with any physical activity other than complementary school-based physical education classes. Data from physical activity, physical fitness, and heart rate variability measured in time and frequency domains were obtained. Results: The anthropometric and body composition characteristics were similar in both groups (P > 0.05). The groups were also similar in time spent daily on moderate-to-vigorous physical activities (FG vs. CG: 114 ± 64 vs. 87 ± 55 minutes; P > 0.05). However, the FG performed better (P < 0.05) in Yo-Yo intermittent endurance test (1394 ± 558 vs. 778 ± 408 m) and 15-m sprint test (3.06 ± 0.17 vs. 3.20 ± 0.23 s). Also, the FG presented enhanced autonomic function. Significant differences were detected (P < 0.05) between groups for low frequency normalized units (38.0 ± 15.2 vs. 47.3 ± 14.2 n.u (normalized units)), high frequency normalized units (62.1 ± 15.2 vs. 52.8 ± 14.2 n.u.), and LF:HF ratio (0.7 ± 0.4 vs. 1.1 ± 0.6 ms2). Conclusions: Children engaged with regular football practice presented enhanced physical fitness and autonomic function, by increasing vagal tone at rest. PMID:26448848

  2. Cardiac Autonomic Function in Patients With Ankylosing Spondylitis

    PubMed Central

    Wei, Cheng-Yu; Kung, Woon-Man; Chou, Yi-Sheng; Wang, Yao-Chin; Tai, Hsu-Chih; Wei, James Cheng-Chung

    2016-01-01

    Abstract Ankylosing spondylitis (AS) is a chronic inflammatory disease involing spine and enthesis. The primary aim of this study is to investigate the autonomic nervous system (ANS) function and the association between ANS and the functional status or disease activity in AS. The study included 42 AS patients, all fulfilling the modified New York criteria. All the patients are totally symptom free for ANS involvement and had normal neurological findings. These AS patients and 230 healthy volunteers receive analysis of 5 minutes heart rate variability (HRV) in lying posture. In addition, disease activity and functional status of these AS patients are assessed by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Bath Ankylosing Spondylitis Global Score (BAS-G). Both groups were age and sex-matched. Although the HRV analysis indicates that the peaks of total power (TP, 0–0.5 Hz) and high-frequency power (HF, 0.15–0.40 Hz) are similar in both groups, the activities of low-frequency power (LF, 0.04–0.15 Hz), LF in normalized units (LF%), and the ratio of LF to HF (LF/HF) in AS patients are obviously lower than healthy controls. The erythrocyte sedimentation rate and C-reactive protein revealed negative relationship with HF. The AS patients without peripheral joint disease have higher LF, TP, variance, LF%, and HF than the patients with peripheral joint disease. The AS patients without uvetis have higher HF than the patients with uvetis. The total scores of BASDI, BASFI, and BAS-G do not show any association to HRV parameters. AS patients have significantly abnormal cardiac autonomic regulation. This is closely related with some inflammatory activities. Reduced autonomic function may be one of the factors of high cardiovascular risk in AS patients. PMID:27227940

  3. Exercise improves cardiac autonomic function in obesity and diabetes.

    PubMed

    Voulgari, Christina; Pagoni, Stamatina; Vinik, Aaron; Poirier, Paul

    2013-05-01

    Physical activity is a key element in the prevention and management of obesity and diabetes. Regular physical activity efficiently supports diet-induced weight loss, improves glycemic control, and can prevent or delay type 2 diabetes diagnosis. Furthermore, physical activity positively affects lipid profile, blood pressure, reduces the rate of cardiovascular events and associated mortality, and restores the quality of life in type 2 diabetes. However, recent studies have documented that a high percentage of the cardiovascular benefits of exercise cannot be attributed solely to enhanced cardiovascular risk factor modulation. Obesity in concert with diabetes is characterized by sympathetic overactivity and the progressive loss of cardiac parasympathetic influx. These are manifested via different pathogenetic mechanisms, including hyperinsulinemia, visceral obesity, subclinical inflammation and increased thrombosis. Cardiac autonomic neuropathy is an underestimated risk factor for the increased cardiovascular morbidity and mortality associated with obesity and diabetes. The same is true for the role of physical exercise in the restoration of the heart cardioprotective autonomic modulation in these individuals. This review addresses the interplay of cardiac autonomic function in obesity and diabetes, and focuses on the importance of exercise in improving cardiac autonomic dysfunction. PMID:23084034

  4. Social stress, autonomic neural activation, and cardiac activity in rats.

    PubMed

    Sgoifo, A; Koolhaas, J; De Boer, S; Musso, E; Stilli, D; Buwalda, B; Meerlo, P

    1999-11-01

    Animal models of social stress represent a useful experimental tool to investigate the relationship between psychological stress, autonomic neural activity and cardiovascular disease. This paper summarizes the results obtained in a series of experiments performed on rats and aimed at verifying whether social challenges produce specific modifications in the autonomic neural control of heart rate and whether these changes can be detrimental for cardiac electrical stability. Short-term electrocardiographic recordings were performed via radiotelemetry and the autonomic input to the heart evaluated by means of time-domain heart rate variability measures. Compared to other stress contexts, a social defeat experience produces a strong shift of autonomic balance toward sympathetic dominance, poorly antagonized by vagal rebound, and associated with the occurrence of cardiac tachyarrhythmias. These effects were particularly severe when a wild-type strain of rats was studied. The data also suggest that the cardiac autonomic responses produced by different types of social contexts (dominant-subordinate interaction, dominant-dominant confrontation, social defeat) are related to different degrees of emotional activation, which in turn are likely modulated by the social rank of the experimental animal and the opponent, the prior experience with the stressor, and the level of controllability over the stimulus. PMID:10580306

  5. Epigenetic regulation in cardiac fibrosis

    PubMed Central

    Yu, Li-Ming; Xu, Yong

    2015-01-01

    Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this mini-review, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs. PMID:26635926

  6. Functional Imaging of Autonomic Regulation: Methods and Key Findings

    PubMed Central

    Macey, Paul M.; Ogren, Jennifer A.; Kumar, Rajesh; Harper, Ronald M.

    2016-01-01

    regions mediating postural and motoric actions, including respiration, and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by neuroimaging have assisted understanding of such regulation, and may lead to new treatment options for conditions with disrupted autonomic function. PMID:26858595

  7. Dysregulation of cardiac autonomic function in offspring exposed to alcohol during antenatal period.

    PubMed

    Chandran, Sajish; Abhishekh, Hulegar A; Murthy, Pratima; Raju, Trichur R; Sathyaprabha, Talakad N

    2015-10-01

    Several lines of investigations have shown the deleterious effect of an alcohol on the autonomic nervous system. Recent evidence shows that infants exposed to alcohol during the antenatal period displayed aberration in the cardiac autonomic function after the birth. However, there is dearth of literature on the long term influence of antenatal alcohol exposure. In this study we measured the cardiac autonomic functions in children who were exposed to alcohol in the antenatal period and compared them with non-exposed control children. Twenty eight children (age: 9±2 years) in the antenatal alcohol exposed group and age, gender matched 30 non exposed healthy volunteers as a control (age: 10±2 years) were recruited. Electrocardiogram was recorded in all subjects at rest in the supine position. HRV parameters were analyzed in the time and frequency domains using customized software. The average heart rate was similar between both the groups. There was no statistical significant difference in the time domain measures between the groups. However, the low frequency power, normalized units and low frequency to high frequency ratio were significantly higher in the antenatal alcohol exposed children compared to the controls. This suggests sympathetic predominance in children who were exposed to alcohol in the antenatal period. In this study we provide evidence for the deleterious long lasting effect of antenatal exposure of alcohol on cardiac autonomic regulation. Further prospective studies are needed to confirm the causal relationship between antenatal alcohol exposure and autonomic dysregulation. PMID:26211431

  8. Cardiac autonomic functions in children with familial Mediterranean fever.

    PubMed

    Şahin, Murat; Kır, Mustafa; Makay, Balahan; Keskinoğlu, Pembe; Bora, Elçin; Ünsal, Erbil; Ünal, Nurettin

    2016-05-01

    Familial Mediterranean fever (FMF) is the most common inherited autoinflammatory disease in the world. The long-term effects of subclinical inflammation in FMF are not well recognized. Some studies have suggested that FMF is associated with cardiac autonomic dysfunction in adult FMF patients. The objective of this study was to investigate the cardiac autonomic functions in pediatric FMF patients by using several autonomic tests. Thirty-five patients with FMF and 35 healthy controls were enrolled in this cross-sectional study. Demographic data, disease-specific data, and orthostatic symptoms were recorded. In all participants, 12-lead electrocardiography (ECG), 24 h ambulatory electrocardiographic monitoring, transthoracic echocardiography, treadmill exercise test, and head upright tilt-table (HUTT) test were performed. The heart rate recovery (HRR) indices of the two groups were similar. Also, chronotropic response was similar in both groups. The time-domain parameters of heart rate variability (HRV) were similar in both groups, except mean RR (p = 0.024). Frequencies of ventricular and supraventricular ectopic stimuli were similar in both groups. There were no statistically significant differences between the groups in average QT and average corrected QT interval length, average QT interval dispersion, and average QT corrected dispersion. There was no significant difference between the two groups regarding the ratio of clinical dysautonomic reactions on HUTT. However, we observed a significantly higher rate of dysautonomic reactions on HUTT in patients with exertional leg pain than that in patients without (p = 0.013). When the fractal dimension of time curves were compared, FMF patients exhibited significantly lower diastolic blood pressure parameters than controls in response to HUTT. Cardiovascular autonomic dysfunction in children with FMF is not prominent. Particularly, patients with exertional leg pain are more prone to have dysautonomic features

  9. Diabetes and cardiac autonomic neuropathy: Clinical manifestations, cardiovascular consequences, diagnosis and treatment

    PubMed Central

    Balcıoğlu, Akif Serhat; Müderrisoğlu, Haldun

    2015-01-01

    Cardiac autonomic neuropathy (CAN) is a frequent chronic complication of diabetes mellitus with potentially life-threatening outcomes. CAN is caused by the impairment of the autonomic nerve fibers regulating heart rate, cardiac output, myocardial contractility, cardiac electrophysiology and blood vessel constriction and dilatation. It causes a wide range of cardiac disorders, including resting tachycardia, arrhythmias, intraoperative cardiovascular instability, asymptomatic myocardial ischemia and infarction and increased rate of mortality after myocardial infarction. Etiological factors associated with autonomic neuropathy include insufficient glycemic control, a longer period since the onset of diabetes, increased age, female sex and greater body mass index. The most commonly used methods for the diagnosis of CAN are based upon the assessment of heart rate variability (the physiological variation in the time interval between heartbeats), as it is one of the first findings in both clinically asymptomatic and symptomatic patients. Clinical symptoms associated with CAN generally occur late in the disease process and include early fatigue and exhaustion during exercise, orthostatic hypotension, dizziness, presyncope and syncope. Treatment is based on early diagnosis, life style changes, optimization of glycemic control and management of cardiovascular risk factors. Medical therapies, including aldose reductase inhibitors, angiotensin-converting enzyme inhibitors, prostoglandin analogs and alpha-lipoic acid, have been found to be effective in randomized controlled trials. The following article includes the epidemiology, clinical findings and cardiovascular consequences, diagnosis, and approaches to prevention and treatment of CAN. PMID:25685280

  10. Cardiac myofilaments: mechanics and regulation

    NASA Technical Reports Server (NTRS)

    de Tombe, Pieter P.; Bers, D. M. (Principal Investigator)

    2003-01-01

    The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.

  11. Paroxysmal autonomic instability with dystonia (PAID) syndrome following cardiac arrest

    PubMed Central

    Kapoor, Dheeraj; Singla, Deepak; Singh, Jasveer; Jindal, Rohit

    2014-01-01

    Paroxysmal autonomic instability with dystonia (PAID) appears to be a unique syndrome following brain injury. It can echo many life-threatening conditions, making its early recognition and management a challenge for intensivists. A delay in early recognition and subsequent management may result in increased morbidity, which is preventable in affected patients. Herein, we report the case of a patient who was diagnosed with PAID syndrome following prolonged cardiac arrest, and discuss the pathophysiology, clinical presentation and management of this rare and under-recognised clinical entity. PMID:25189311

  12. Cardiac autonomic function and oesophageal acid sensitivity in patients with non-cardiac chest pain

    PubMed Central

    Tougas, G; Spaziani, R; Hollerbach, S; Djuric, V; Pang, C; Upton, A; Fallen, E; Kamath, M

    2001-01-01

    BACKGROUND—Acid reflux can elicit non-cardiac chest pain (NCCP), possibly through altered visceral sensory or autonomic function. The interactions between symptoms, autonomic function, and acid exposure are poorly understood.
AIM—To examine autonomic function in NCCP patients during exposure to oesophageal acid infusion.
SUBJECTS AND METHODS—Autonomic activity was assessed using power spectral analysis of heart rate variability (PSHRV), before and during oesophageal acidification (0.1 N HCl), in 28 NCCP patients (40.5 (10) years; 13 females) and in 10 matched healthy controls. Measured PSHRV indices included high frequency (HF) (0.15-0.5 Hz) and low frequency (LF) (0.06-0.15 Hz) power to assess vagal and sympathetic activity, respectively.
RESULTS—A total of 19/28 patients had angina-like symptoms elicited by acid. There were no significant manometric changes observed in either acid sensitive or insensitive patients. Acid sensitive patients had a higher baseline heart rate (82.9 (3.1) v 66.7 (3.5) beats/min; p<0.005) and lower baseline vagal activity (HF normalised area: 31.1 (1.9)% v 38.9 (2.3)%; p< 0.03) than acid insensitive patients. During acid infusion, vagal cardiac outflow increased (p<0.03) in acid sensitive but not in acid insensitive patients.
CONCLUSIONS—Patients with angina-like pain during acid infusion have decreased resting vagal activity. The symptoms elicited by perception of acid are further associated with a simultaneous increase in vagal activity in keeping with a vagally mediated pseudoaffective response.


Keywords: reflux disease; non-cardiac chest pain; acid reflux; autonomic nervous system; vagal response; sympathetic activity; heart rate variability; power spectrum analysis PMID:11600476

  13. Cardiac autonomic dysfunction in obese normotensive children and adolescents

    PubMed Central

    Freitas, Isabelle Magalhães G.; Miranda, Josiane Aparecida; Mira, Pedro Augusto C.; Lanna, Carla Marcia M.; Lima, Jorge Roberto P.; Laterza, Mateus Camaroti

    2014-01-01

    OBJECTIVE: To test the hypothesis that obese normotensive children and adolescents present impaired cardiac autonomic control compared to non-obese normotensive ones. METHODS: For this cross-sectional study, 66 children and adolescents were divided into the following groups: Obese (n=31, 12±3 years old) and Non-Obese (n=35, 13±3 years old). Obesity was defined as body mass index greater than the 95th percentile for age and gender. Blood pressure was measured by oscillometric method after 15 minutes of rest in supine position. The heart rate was continuously registered during ten minutes in the supine position with spontaneous breathing. The cardiac autonomic control was assessed by heart rate variability, which was calculated from the five-minute minor variance of the signal. The derivations were the index that indicates the proportion of the number of times in which normal adjacent R-R intervals present differences >50 miliseconds (pNN50), for the time domain, and, for the spectral analysis, low (LF) and high frequency (HF) bands, besides the low and high frequencies ratio (LF/HF). The results were expressed as mean±standard deviation and compared by Student's t-test or Mann-Whitney's U-test. RESULTS: Systolic blood pressure (116±14 versus 114±13mmHg, p=0.693) and diastolic blood pressure (59±8 versus 60±11mmHg, p=0.458) were similar between the Obese and Non-Obese groups. The pNN50 index (29±21 versus 43±23, p=0.015) and HF band (54±20 versus 64±14 normalized units - n.u., p=0.023) were lower in the Obese Group. The LF band (46±20 versus 36±14 n.u., p=0.023) and LF/HF ratio (1.3±1.6 versus 0.7±0.4, p=0.044) were higher in Obese Group. CONCLUSIONS: Obese normotensive children and adolescents present impairment of cardiac autonomic control. PMID:25119757

  14. Cardiac autonomic impairment and chronotropic incompetence in fibromyalgia

    PubMed Central

    2011-01-01

    Introduction We aimed to gather knowledge on the cardiac autonomic modulation in patients with fibromyalgia (FM) in response to exercise and to investigate whether this population suffers from chronotropic incompetence (CI). Methods Fourteen women with FM (age: 46 ± 3 years; body mass index (BMI): 26.6 ± 1.4 kg/m2) and 14 gender-, BMI- (25.4 ± 1.3 kg/m2), and age-matched (age: 41 ± 4 years) healthy individuals (CTRL) took part in this cross-sectional study. A treadmill cardiorespiratory test was performed and heart-rate (HR) response during exercise was evaluated by the chronotropic reserve. HR recovery (deltaHRR) was defined as the difference between HR at peak exercise and at both first (deltaHRR1) and second (deltaHRR2) minutes after the exercise test. Results FM patients presented lower maximal oxygen consumption (VO2 max) when compared with healthy subjects (22 ± 1 versus CTRL: 32 ± 2 mL/kg/minute, respectively; P < 0.001). Additionally, FM patients presented lower chronotropic reserve (72.5 ± 5 versus CTRL: 106.1 ± 6, P < 0.001), deltaHRR1 (24.5 ± 3 versus CTRL: 32.6 ± 2, P = 0.059) and deltaHRR2 (34.3 ± 4 versus CTRL: 50.8 ± 3, P = 0.002) than their healthy peers. The prevalence of CI was 57.1% among patients with FM. Conclusions Patients with FM who undertook a graded exercise test may present CI and delayed HR recovery, both being indicative of cardiac autonomic impairment and higher risk of cardiovascular events and mortality. PMID:22098761

  15. Inhomogeneous derangement of cardiac autonomic nerve control in diabetic rats.

    PubMed

    Sanyal, Shamarendra Nath; Arita, Makoto; Ono, Katsushige

    2002-03-01

    The present study compared autonomic nervous function in Kob [Spontaneously Diabetic, Bio-Breeding (BB)] rats with control Wistar rats to determine the development of cardiac neuropathy in diabetic rats. Telemetric ECG signals were obtained from an ECG radio-transmitter placed in a dorsal subcutaneous pouch of male Kob and Wistar rats for 30min every 6h at a sample rate of 5kHz. Heart rate (HR) and HR variability (HRV) were analyzed in each group by power spectrograms obtained by a fast Fourier transform algorithm. RR interval, total power (TP), low frequency (LF) power (0.04-0.67 Hz), high frequency (HF) power (0.79-1.48 Hz) and LF/HF ratio were also measured. The Kob rats had lower HRV than the control Wistar rats; HR, TP, and HF power, but not the LF/HF ratio, in the Kob rats were significantly lower than those of the control rats (p<0.001). However, in the Kob rats the response of these parameters to a muscarinic antagonist (atropine: 2mg/kg) was left intact, but their response to a beta-adrenergic antagonist (propranolol: 4mg/kg) was impeded. Autonomic nervous control of HR in spontaneously diabetic rats was inhomogeneously deranged in terms of the balance in sympathetic and parasympathetic tone, not only in the baseline condition, but also in the regulatory systems, including postsynaptic receptor function. PMID:11922279

  16. Diabetic cardiac autonomic neuropathy: insights from animal models.

    PubMed

    Stables, Catherine L; Glasser, Rebecca L; Feldman, Eva L

    2013-10-01

    Cardiac autonomic neuropathy (CAN) is a relatively common and often devastating complication of diabetes. The major clinical signs are tachycardia, exercise intolerance, and orthostatic hypotension, but the most severe aspects of this complication are high rates of cardiac events and mortality. One of the earliest manifestations of CAN is reduced heart rate variability, and detection of this, along with abnormal results in postural blood pressure testing and/or the Valsalva maneuver, are central to diagnosis of the disease. The treatment options for CAN, beyond glycemic control, are extremely limited and lack evidence of efficacy. The underlying molecular mechanisms are also poorly understood. Thus, CAN is associated with a poor prognosis and there is a compelling need for research to understand, prevent, and reverse CAN. In this review of the literature we examine the use and usefulness of animal models of CAN in diabetes. Compared to other diabetic complications, the number of animal studies of CAN is very low. The published studies range across a variety of species, methods of inducing diabetes, and timescales examined, leading to high variability in study outcomes. The lack of well-characterized animal models makes it difficult to judge the relevance of these models to the human disease. One major advantage of animal studies is the ability to probe underlying molecular mechanisms, and the limited numbers of mechanistic studies conducted to date are outlined. Thus, while animal models of CAN in diabetes are crucial to better understanding and development of therapies, they are currently under-used. PMID:23562143

  17. Cardiac Vagal Regulation and Early Peer Status

    ERIC Educational Resources Information Center

    Graziano, Paulo A.; Keane, Susan P.; Calkins, Susan D.

    2007-01-01

    A sample of 341 5 1/2-year-old children participating in an ongoing longitudinal study was the focus of a study on the relation between cardiac vagal regulation and peer status. To assess cardiac vagal regulation, resting measures of respiratory sinus arrhythmia (RSA) and RSA change (suppression) to 3 cognitively and emotionally challenging tasks…

  18. Analysis of cardiac autonomic modulation in obese and eutrophic children

    PubMed Central

    Vanderlei, Luiz Carlos Marques; Pastre, Carlos Marcelo; Júnior, Ismael Forte Freitas; de Godoy, Moacir Fernandes

    2010-01-01

    INTRODUCTION: Obesity causes alterations in cardiac autonomic function. However, there are scarce and conflicting data on this function with regard to heart rate variability in obese children. OBJECTIVE: To compare the autonomic function of obese and eutrophic children by analyzing heart rate variability. METHODS: One hundred twenty-one children (57 male and 64 female) aged 8 to 12 years were distributed into two groups based on nutritional status [obese (n  =  56) and eutrophic (ideal weight range; n  =  65) according to the body mass index reference for gender and age]. For the analysis of heart rate variability, heart rates were recorded beat by beat as the children rested in the dorsal (prone) position for 20 minutes. Heart rate variability analysis was carried out using linear approaches in the domains of frequency and time. Either Student's t-test or the Mann-Whitney U-test was applied to compare variables between groups. Statistical significance was set at 5%. RESULTS: The SDNN, RMSSD, pNN50, SD1, SD2, LF and HF indices in milliseconds squared were lower among the obese children when compared to the eutrophic group. There were no alterations in the SD1/SD2 ratio, LF/HF ratio, LF index or HF index in normalized units. There was a significant difference between groups in the RR interval (R-to-R EKG interval). CONCLUSION: The obese children exhibited modifications in heart rate variability, characterized by a reduction in both sympathetic and parasympathetic activity. These findings stress the need for the early holistic care of obese children to avoid future complications. PMID:20835556

  19. Obesity is associated with impaired cardiac autonomic modulation in children

    PubMed Central

    Rodríguez-Colón, Sol M.; Bixler, Edward O.; Li, Xian; Vgontzas, Alexandros N.; Liao, Duanping

    2013-01-01

    Objective To examine the cross-sectional association between measurements of obesity and subclinical impairment of cardiac autonomic modulation (CAM) in a population-based sample of children. Methods Data from 616 grade K-5 children randomly selected from Central Pennsylvania were utilized. Obesity was defined using the International Obesity Task Force (IOTF) age and sex specific cut off criteria and classified as normal weight, overweight, and obese. CAM was measured by heart rate variability (HRV) analysis of beat-to-beat RR intervals, including time domain measures i.e., the standard deviation of all RR intervals (SDNN), the square root of the mean of the sum of squares of differences between adjacent RR intervals (RMSSD), and mean heart rate (HR); and frequency domain measures i.e., high frequency power (HF), low frequency power (LF), and LF/HF ratio. Results The prevalence of obesity and overweight in children was 12.3%, and 16.5%, respectively. Age, race, sex, and sleep disorder breathing (SDB) adjusted means (SE) of SDNN were 98(1.24), 90.2(2.58), and 81.9(3.03) milliseconds (ms) in normal weight, overweight, and obese groups, respectively; and that for (log) HF were 6.83(0.04), 6.56(0.08), and 6.35(0.09) ms2, respectively. Comparing the magnitude of effects from BMI, weight, and height percentiles, and waist circumference on HRV indices revealed that body weight was the strongest correlate of HRV indices. Conclusion Childhood obesity is significantly associated with lower HRV, indicative of sympathetic overflow unopposed by parasympathetic modulation. These findings support the need to target childhood-obesity, before traditional “high risk age” for cardiac events. PMID:20919806

  20. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    PubMed

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  1. Cardiac Autonomic Dysfunction from Occupational Exposure to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Lee, Mi-Sun; Magari, Shannon; Christiani, David C.

    2013-01-01

    Objectives Polycyclic aromatic hydrocarbons (PAHs) exposures have been associated with cardiopulmonary mortality and cardiovascular events. This study investigated the association between a biological marker of PAHs exposure, assessed by urinary 1-hydroxypyrene (1-OHP), and heart rate variability (HRV) in an occupational cohort of boilermakers. Methods Continuous 24-hour monitoring of the ambulatory electrocardiogram (ECG) and pre and post shift urinary 1-OHP were repeated over extended periods of the work week. Mixed effects models were fit for the 5-minute standard deviation of normal-to-normal intervals (SDNN) in relation to urinary 1-OHP levels pre and post workshift on the day they wore the monitor, controlling for potential confounders. Results We found a significant decrease in 5-min SDNN during work of −13.6% (95% confidence interval, −17.2% to −9.8%) for every standard deviation (0.53 microgram/gram [μg/g] creatinine) increase in the next-morning pre-shift 1-OHP levels. The magnitude of reduction in 5-min SDNN were largest during the late night period after work and increased with every standard deviation (0.46 μg/g creatinine) increase in post-shift 1-OHP levels. Conclusion This is the first report providing evidence that occupational exposure to PAHs is associated with altered cardiac autonomic function. Acute exposure to PAHs may be an important predictor of cardiovascular disease risk in the work environment. PMID:21172795

  2. Diabetic cardiac autonomic neuropathy: Do we have any treatment perspectives?

    PubMed Central

    Serhiyenko, Victoria A; Serhiyenko, Alexandr A

    2015-01-01

    Cardiac autonomic neuropathy (CAN) is a serious and common complication of diabetes mellitus (DM). Despite its relationship to an increased risk of cardiovascular mortality and its association with multiple symptoms and impairments, the significance of CAN has not been fully appreciated. CAN among DM patients is characterized review the latest evidence and own data regarding the treatment and the treatment perspectives for diabetic CAN. Lifestyle modification, intensive glycemic control might prevent development or progression of CAN. Pathogenetic treatment of CAN includes: balanced diet and physical activity; optimization of glycemic control; treatment of dyslipoproteinemia; correction of metabolic abnormalities in myocardium; prevention and treatment of thrombosis; use of aldose reductase inhibitors; dihomo-γ-linolenic acid (DGLA), acetyl-L-carnitine, antioxidants, first of all α-lipoic acid (α-LA), use of long-chain ω-3 and ω-6 polyunsaturated fatty acids (ω-3 and ω-6 PUFAs), vasodilators, fat-soluble vitamin B1, aminoguanidine; substitutive therapy of growth factors, in severe cases-treatment of orthostatic hypotension. The promising methods include research and use of tools that increase blood flow through the vasa vasorum, including prostacyclin analogues, thromboxane A2 blockers and drugs that contribute into strengthening and/or normalization of Na+, K+-ATPase (phosphodiesterase inhibitor), α-LA, DGLA, ω-3 PUFAs, and the simultaneous prescription of α-LA, ω-3 PUFA and DGLA. PMID:25789106

  3. ROS Regulate Cardiac Function via a Distinct Paracrine Mechanism

    PubMed Central

    Lim, Hui-Ying; Wang, Weidong; Chen, Jianming; Ocorr, Karen; Bodmer, Rolf

    2014-01-01

    SUMMARY Reactive oxygen species (ROS) can act cell autonomously and in a paracrine manner by diffusing into nearby cells. Here, we reveal a ROS-mediated paracrine signaling mechanism that does not require entry of ROS into target cells. We found that under physiological conditions, nonmyocytic pericardial cells (PCs) of the Drosophila heart contain elevated levels of ROS compared to the neighboring cardiomyocytes (CMs). We show that ROS in PCs act in a paracrine manner to regulate normal cardiac function, not by diffusing into the CMs to exert their function, but by eliciting a downstream D-MKK3-D-p38 MAPK signaling cascade in PCs that acts on the CMs to regulate their function. We find that ROS-D-p38 signaling in PCs during development is also important for establishing normal adult cardiac function. Our results provide evidence for a previously unrecognized role of ROS in mediating PC/CM interactions that significantly modulates heart function. PMID:24656823

  4. Cardiac autonomic responses after resistance exercise in treated hypertensive subjects

    PubMed Central

    Trevizani, Gabriela A.; Peçanha, Tiago; Nasario-Junior, Olivassé; Vianna, Jeferson M.; Silva, Lilian P.; Nadal, Jurandir

    2015-01-01

    The aim of this study was to assess and to compare heart rate variability (HRV) after resistance exercise (RE) in treated hypertensive and normotensive subjects. Nine hypertensive men [HT: 58.0 ± 7.7 years, systolic blood pressure (SBP) = 133.6 ± 6.5 mmHg, diastolic blood pressure (DBP) = 87.3 ± 8.1 mmHg; under antihypertensive treatment] and 11 normotensive men (NT: 57.1 ± 6.0 years, SBP = 127 ± 8.5 mmHg, DBP = 82.7 ± 5.5 mmHg) performed a single session of RE (2 sets of 15–20 repetitions, 50% of 1 RM, 120 s interval between sets/exercise) for the following exercises: leg extension, leg press, leg curl, bench press, seated row, triceps push-down, seated calf flexion, seated arm curl. HRV was assessed at resting and during 10 min of recovery period by calculating time (SDNN, RMSSD, pNN50) and frequency domain (LF, HF, LF/HF) indices. Mean values of HRV indices were reduced in the post-exercise period compared to the resting period (HT: lnHF: 4.7 ± 1.4 vs. 2.4 ± 1.2 ms2; NT: lnHF: 4.8 ± 1.5 vs. 2.2 ± 1.1 ms2, p < 0.01). However, there was no group vs. time interaction in this response (p = 0.8). The results indicate that HRV is equally suppressed after RE in normotensive and hypertensive individuals. These findings suggest that a single session of RE does not bring additional cardiac autonomic stress to treated hypertensive subjects. PMID:26441677

  5. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects

    NASA Technical Reports Server (NTRS)

    Koh, J.; Brown, T. E.; Beightol, L. A.; Ha, C. Y.; Eckberg, D. L.

    1994-01-01

    1. We studied eight young men (age range: 20-37 years) with chronic, clinically complete high cervical spinal cord injuries and ten age-matched healthy men to determine how interruption of connections between the central nervous system and spinal sympathetic motoneurones affects autonomic cardiovascular control. 2. Baseline diastolic pressures and R-R intervals (heart periods) were similar in the two groups. Slopes of R-R interval responses to brief neck pressure changes were significantly lower in tetraplegic than in healthy subjects, but slopes of R-R interval responses to steady-state arterial pressure reductions and increases were comparable. Plasma noradrenaline levels did not change significantly during steady-state arterial pressure reductions in tetraplegic patients, but rose sharply in healthy subjects. The range of arterial pressure and R-R interval responses to vasoactive drugs (nitroprusside and phenylephrine) was significantly greater in tetraplegic than healthy subjects. 3. Resting R-R interval spectral power at respiratory and low frequencies was similar in the two groups. During infusions of vasoactive drugs, low-frequency R-R interval spectral power was directly proportional to arterial pressure in tetraplegic patients, but was unrelated to arterial pressure in healthy subjects. Vagolytic doses of atropine nearly abolished both low- and respiratory-frequency R-R interval spectral power in both groups. 4. Our conclusions are as follows. First, since tetraplegic patients have significant levels of low-frequency arterial pressure and R-R interval spectral power, human Mayer arterial pressure waves may result from mechanisms that do not involve stimulation of spinal sympathetic motoneurones by brainstem neurones. Second, since in tetraplegic patients, low-frequency R-R interval spectral power is proportional to arterial pressure, it is likely to be mediated by a baroreflex mechanism. Third, since low-frequency R-R interval rhythms were nearly abolished

  6. Respiration and Autonomic Regulation and Orexin

    PubMed Central

    Nattie, Eugene; Li, Aihua

    2015-01-01

    Orexin, a small neuropeptide released from neurons in the hypothalamus with widespread projections throughout the central nervous system, has broad biological roles including the modulation of breathing and autonomic function. That orexin activity is fundamentally dependent on sleep-wake state and circadian cycle requires consideration of orexin function in physiological control systems in respect to these two state-related activity patterns. Both transgenic mouse studies and focal orexin receptor antagonism support a role for orexins in respiratory chemosensitivity to CO2 predominantly in wakefulness, with further observations limiting this role to the dark period. In addition, orexin neurons participate in the regulation of sympathetic activity, including effects on blood pressure and thermoregulation. Orexin is also essential in physiological responses to stress. Orexin-mediated processes may operate at two levels: 1) in sleep-wake and circadian states; and 2) in stress, e.g., the defense or “fight or flight” response and panic anxiety syndrome. PMID:22813968

  7. Mechanical regulation of cardiac development

    PubMed Central

    Lindsey, Stephanie E.; Butcher, Jonathan T.; Yalcin, Huseyin C.

    2014-01-01

    Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development. PMID:25191277

  8. [Drug with a high metabolic activity, cocarnit, in the treatment of diabetic cardiac autonomic neuropathy].

    PubMed

    Popov, S V; Melekhovets', O K; Demikhova, N V; Vynnychenko, L B

    2012-01-01

    Left ventricular diastolic dysfunction in patients with diabetes is formed in the absence of atherosclerotic changes as a consequence of diabetic cardiac autonomic neuropathy in the early stages of diabetes. Progression of autonomic cardiac neuropathy in cardio-vascular type is associated with the violation of energy supply of cells, protein synthesis, electrolyte exchange, the exchange of trace elements, oxidation reduction processes, oxygen-transport function of blood, so that metabolic therapy is carried out to optimize the processes of formation and energy costs. The drug cocarnit activates processes of aerobic oxidation of glucose, as well as providing regulatory influence on the oxidation of fatty acids. Applying of cocarnit in complex therapy in patients with diabetic cardiac autonomic neuropathy found improvement of left ventricular diastolic function, and positive dynamics in the efferent activity balance of the sympathetic and parasympathetic control of heart rate variability, which provides the regression of clinical symptoms. PMID:23356142

  9. Cyclic nucleotide regulation of cardiac sympatho-vagal responsiveness.

    PubMed

    Li, Dan; Paterson, David J

    2016-07-15

    Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are now recognized as important intracellular signalling molecules that modulate cardiac sympatho-vagal balance in the progression of heart disease. Recent studies have identified that a significant component of autonomic dysfunction associated with several cardiovascular pathologies resides at the end organ, and is coupled to impairment of cyclic nucleotide targeted pathways linked to abnormal intracellular calcium handling and cardiac neurotransmission. Emerging evidence also suggests that cyclic nucleotide coupled phosphodiesterases (PDEs) play a key role limiting the hydrolysis of cAMP and cGMP in disease, and as a consequence this influences the action of the nucleotide on its downstream biological target. In this review, we illustrate the action of nitric oxide-CAPON signalling and brain natriuretic peptide on cGMP and cAMP regulation of cardiac sympatho-vagal transmission in hypertension and ischaemic heart disease. Moreover, we address how PDE2A is now emerging as a major target that affects the efficacy of soluble/particulate guanylate cyclase coupling to cGMP in cardiac dysautonomia. PMID:26915722

  10. Cardiac Autonomic Function in Patients With Ankylosing Spondylitis: A Case-Control Study.

    PubMed

    Wei, Cheng-Yu; Kung, Woon-Man; Chou, Yi-Sheng; Wang, Yao-Chin; Tai, Hsu-Chih; Wei, James Cheng-Chung

    2016-05-01

    Ankylosing spondylitis (AS) is a chronic inflammatory disease involing spine and enthesis. The primary aim of this study is to investigate the autonomic nervous system (ANS) function and the association between ANS and the functional status or disease activity in AS.The study included 42 AS patients, all fulfilling the modified New York criteria. All the patients are totally symptom free for ANS involvement and had normal neurological findings. These AS patients and 230 healthy volunteers receive analysis of 5 minutes heart rate variability (HRV) in lying posture. In addition, disease activity and functional status of these AS patients are assessed by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Bath Ankylosing Spondylitis Global Score (BAS-G).Both groups were age and sex-matched. Although the HRV analysis indicates that the peaks of total power (TP, 0-0.5 Hz) and high-frequency power (HF, 0.15-0.40 Hz) are similar in both groups, the activities of low-frequency power (LF, 0.04-0.15 Hz), LF in normalized units (LF%), and the ratio of LF to HF (LF/HF) in AS patients are obviously lower than healthy controls. The erythrocyte sedimentation rate and C-reactive protein revealed negative relationship with HF. The AS patients without peripheral joint disease have higher LF, TP, variance, LF%, and HF than the patients with peripheral joint disease. The AS patients without uvetis have higher HF than the patients with uvetis. The total scores of BASDI, BASFI, and BAS-G do not show any association to HRV parameters.AS patients have significantly abnormal cardiac autonomic regulation. This is closely related with some inflammatory activities. Reduced autonomic function may be one of the factors of high cardiovascular risk in AS patients. PMID:27227940

  11. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  12. Modulation of Cardiac Autonomic Dysfunction in Ischemic Stroke following Ayurveda (Indian System of Medicine) Treatment

    PubMed Central

    Jaideep, Sriranjini Sitaram; Nagaraja, Dindagur; Pal, Pramod Kumar; Sudhakara, D.; Talakad, Sathyaprabha N.

    2014-01-01

    Objectives. Cardiac autonomic dysfunction in stroke has implications on morbidity and mortality. Ayurveda (Indian system of medicine) describes stroke as pakshaghata. We intended to study the effect of Ayurveda therapies on the cardiac autonomic dysfunction. Methods. Fifty patients of ischemic stroke (middle cerebral artery territory) (mean age 39.26 ± 9.88 years; male 43, female 7) were recruited within one month of ictus. All patients received standard allopathic medications as advised by neurologist. In addition, patients were randomized to receive physiotherapy (Group I) or Ayurveda treatment (Group II) for 14 days. Continuous electrocardiogram and finger arterial pressure were recorded for 15 min before and after treatments and analyzed offline to obtain heart rate and blood pressure variability and baroreflex sensitivity (BRS). Results were analysed by RMANOVA. Results. Patients in Group II showed statistically significant improvement in cardiac autonomic parameters. The standard deviation of normal to normal intervals,and total and low frequency powers were significantly enhanced (F = 8.16, P = 0.007, F = 9.73, P = 0.004, F = 13.51, and P = 0.001, resp.). The BRS too increased following the treatment period (F = 10.129, P = 0.004). Conclusions. The current study is the first to report a positive modulation of cardiac autonomic activity after adjuvant Ayurveda treatment in ischemic stroke. Further long term studies are warranted. PMID:24971149

  13. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  14. Teaching Cardiac Autonomic Function Dynamics Employing the Valsalva (Valsalva-Weber) Maneuver

    ERIC Educational Resources Information Center

    Junqueira, Luiz Fernando, Jr.

    2008-01-01

    In this report, a brief history of the Valsalva (Valsalva-Weber) maneuver is outlined, followed by an explanation on the use of this approach for the evaluation of cardiac autonomic function based on underlying heart rate changes. The most important methodological and interpretative aspects of the Valsalva-Weber maneuver are critically updated,…

  15. DAILY VARIATION OF PARTICULATE AIR POLLUTION AND POOR CARDIAC AUTONOMIC CONTROL IN THE ELDERLY

    EPA Science Inventory

    Particulate matter air pollution (PM) has been related to cardiovascular disease mortality in a number of recent studies. The pathophysiologic mechanisms for this association are under study. Low heart rate variability, a marker of poor cardiac autonomic control, is associated wi...

  16. Slow breathing influences cardiac autonomic responses to postural maneuver: Slow breathing and HRV.

    PubMed

    Vidigal, Giovanna Ana de Paula; Tavares, Bruna S; Garner, David M; Porto, Andrey A; Carlos de Abreu, Luiz; Ferreira, Celso; Valenti, Vitor E

    2016-05-01

    Chronic slow breathing has been reported to improve Heart Rate Variability (HRV) in patients with cardiovascular disorders. However, it is not clear regarding its acute effects on HRV responses on autonomic analysis. We evaluated the acute effects of slow breathing on cardiac autonomic responses to postural change manoeuvre (PCM). The study was conducted on 21 healthy male students aged between 18 and 35 years old. In the control protocol, the volunteer remained at rest seated for 15 min under spontaneous breathing and quickly stood up within 3 s and remained standing for 15 min. In the slow breathing protocol, the volunteer remained at rest seated for 10 min under spontaneous breath, then performed slow breathing for 5 min and rapidly stood up within 3 s and remained standing for 15 min. Slow breathing intensified cardiac autonomic responses to postural maneuver. PMID:27157952

  17. Device-Based Approaches to Modulate the Autonomic Nervous System and Cardiac Electrophysiology

    PubMed Central

    Hucker, William J; Singh, Jagmeet P; Parks, Kimberly

    2014-01-01

    Alterations in resting autonomic tone can be pathogenic in many cardiovascular disease states, such as heart failure and hypertension. Indeed, autonomic modulation by way of beta-blockade is a standard treatment of these conditions. There is a significant interest in developing non-pharmacological methods of autonomic modulation as well. For instance, clinical trials of vagal stimulation and spinal cord stimulation in the treatment of heart failure are currently underway, and renal denervation has been studied recently in the treatment of resistant hypertension. Notably, autonomic stimulation is also a potent modulator of cardiac electrophysiology. Manipulating the autonomic nervous system in studies designed to treat heart failure and hypertension have revealed that autonomic modulation may have a role in the treatment of common atrial and ventricular arrhythmias as well. Experimental data on vagal nerve and spinal cord stimulation suggest that each technique may reduce ventricular arrhythmias. Similarly, renal denervation may play a role in the treatment of atrial fibrillation, as well as in controlling refractory ventricular arrhythmias. In this review, we present the current experimental and clinical data on the effect of these therapeutic modalities on cardiac electrophysiology and their potential role in arrhythmia management. PMID:26835062

  18. Cardiac autonomic imbalance in children with allergic rhinitis.

    PubMed

    Tascilar, Emre; Yokusoglu, Mehmet; Dundaroz, Rusen; Baysan, Oben; Ozturk, Sami; Yozgat, Yilmaz; Kilic, Ayhan

    2009-11-01

    The involvement of autonomic imbalance has been reported in the pathogenesis of hypersensitivity reactions. Allergic diseases are more frequent in children and some of predisposing factors may be changed according to the increasing age, but the involvement of autonomic imbalance has not been investigated in pediatric population. In this cross-sectional, case-control study, we evaluated the autonomic system by measuring heart rate variability (HRV) in pediatric patients with allergic rhinitis. Thirty-five pediatric patients with allergic rhinitis and 36 healthy children (mean age 11 +/- 2.7, and 12 +/- 3 years, respectively) were enrolled in the study. Age and gender were not different between the groups. The diagnosis of allergic rhinitis was based on the history, symptoms, and skin prick tests. Participants with acute infection, nasal polyposis, bronchial asthma, and any other medical problems, assessed by history, physical examination and routine laboratory tests, were excluded. Twenty-four hour ambulatory electrocardiographic recordings were obtained, and the time domain and frequency domain indices of HRV were analyzed. We found significant increase in calculated HRV variables in children with allergic rhinitis compared to controls, which reflect parasympathetic tones, such as number of R-R intervals exceeding 50 ms, root mean square of successive differences between normal sinus R-R intervals, the percentage of difference between adjacent normal R-R intervals, and high frequency. These results indicate that HRV is increased, which implies sympathetic withdrawal and parasympathetic predominance. We propose that autonomic imbalance may be involved in the pathophysiology of allergic rhinitis in pediatric patients. PMID:19851046

  19. The Insular Cortex and the Regulation of Cardiac Function.

    PubMed

    Oppenheimer, Stephen; Cechetto, David

    2016-04-01

    Cortical representation of the heart challenges the orthodox view that cardiac regulation is confined to stereotyped, preprogrammed and rigid responses to exteroceptive or interoceptive environmental stimuli. The insula has been the region most studied in this regard; the results of clinical, experimental, and functional radiological studies show a complex interweave of activity with patterns dynamically varying regarding lateralization and antero-posterior distribution of responsive insular regions. Either acting alone or together with other cortical areas including the anterior cingulate, medial prefrontal, and orbito-frontal cortices as part of a concerted network, the insula can imbue perceptions with autonomic color providing emotional salience, and aiding in learning and behavioral decision choice. In these functions, cardiovascular input and the right anterior insula appear to play an important, if not pivotal role. At a more basic level, the insula gauges cardiovascular responses to exteroceptive and interoceptive stimuli, taking into account memory, cognitive, and reflexive constructs thereby ensuring appropriate survival responses and maintaining emotional and physiological homeostasis. When acquired derangements to the insula occur after stroke, during a seizure or from abnormal central processing of interoceptive or exteroceptive environmental cues as in psychiatric disorders, serious consequences can arise including cardiac electrophysiological, structural and contractile dysfunction and sudden cardiac death. PMID:27065176

  20. Impairment of cardiac autonomic control in patients with amyotrophic lateral sclerosis.

    PubMed

    Pavlovic, Sanja; Stevic, Zorica; Milovanovic, Branislav; Milicic, Biljana; Rakocevic-Stojanovic, Vidosava; Lavrnic, Dragana; Apostolski, Slobodan

    2010-05-01

    The aim of this study was to investigate autonomic cardiac control in patients with amyotrophic lateral sclerosis (ALS). Fifty-five patients with sporadic ALS (28 female and 27 male; average age 56.00 +/- 10.34 years) were compared to 30 healthy controls (17 female and 13 male; average age 42.87 +/- 11.91 years). Patients with previous history of cardiac disease, diabetes mellitus, and impaired respiratory function were excluded from the study. Cardiovascular autonomic tests according to Ewing, power spectrum analysis of RR variability (low- and high-frequency bands - LF and HF, LF/HF index), real-time beat-to-beat ECG signal monitoring with heart rate variability analysis and baroreflex function analysis were carried out in all patients. Time-domain parameters of heart rate variability (mean RR interval, SDNN, SDANN, SDNN index, rMSSD and pNN50%) were obtained from 24-h ECG monitoring. ALS patients had a significantly higher score of sympathetic (p <0.01) and parasympathetic (p <0.001) dysfunction, as well as of the overall score of autonomic dysfunction (p <0.001). LF/HF index was significantly increased; baroreflex sensitivity and time-domain parameters of heart rate variability were highly significantly decreased in ALS patients (p <0.001). Our results demonstrated impaired cardiac autonomic control in ALS with marked parasympathetic dysfunction and sympathetic predominance. PMID:20001491

  1. Cardiac Autonomic Adjustments During Baroreflex Test in Obese and Non-Obese Preadolescents

    PubMed Central

    Paschoal, Mário Augusto; Brunelli, Aline Carnio; Tamaki, Gabriela Midori; Magela, Sofia Serafim

    2016-01-01

    Background Recent studies have shown changes in cardiac autonomic control of obese preadolescents. Objective To assess the heart rate responses and cardiac autonomic modulation of obese preadolescents during constant expiratory effort. Methods This study assessed 10 obese and 10 non-obese preadolescents aged 9 to 12 years. The body mass index of the obese group was between the 95th and 97th percentiles of the CDC National Center for Health Statistics growth charts, while that of the non-obese group, between the 5th and 85th percentiles. Initially, they underwent anthropometric and clinical assessment, and their maximum expiratory pressures were obtained. Then, the preadolescents underwent a constant expiratory effort of 70% of their maximum expiratory pressure for 20 seconds, with heart rate measurement 5 minutes before, during and 5 minutes after it. Heart rate variability (HRV) and heart rate values were analyzed by use of a software. Results The HRV did not differ when compared before and after the constant expiratory effort intra- and intergroup. The heart rate values differed (p < 0.05) during the effort, being the total variation in non-obese preadolescents of 18.5 ± 1.5 bpm, and in obese, of 12.2 ± 1.3 bpm. Conclusion The cardiac autonomic modulation did not differ between the groups when comparing before and after the constant expiratory effort. However, the obese group showed lower cardiovascular response to baroreceptor stimuli during the effort, suggesting lower autonomic baroreflex sensitivity. PMID:27007224

  2. Is baseline cardiac autonomic modulation related to performance and physiological responses following a supramaximal Judo test?

    PubMed

    Blasco-Lafarga, Cristina; Martínez-Navarro, Ignacio; Mateo-March, Manuel

    2013-01-01

    Little research exists concerning Heart Rate (HR) Variability (HRV) following supramaximal efforts focused on upper-body explosive strength-endurance. Since they may be very demanding, it seems of interest to analyse the relationship among performance, lactate and HR dynamics (i.e. HR, HRV and complexity) following them; as well as to know how baseline cardiac autonomic modulation mediates these relationships. The present study aimed to analyse associations between baseline and post-exercise HR dynamics following a supramaximal Judo test, and their relationship with lactate, in a sample of 22 highly-trained male judoists (20.70±4.56 years). A large association between the increase in HR from resting to exercise condition and performance suggests that individuals exerted a greater sympathetic response to achieve a better performance (Rating of Perceived Exertion: 20; post-exercise peak lactate: 11.57±2.24 mmol/L; 95.76±4.13 % of age-predicted HR(max)). Athletes with higher vagal modulation and lower sympathetic modulation at rest achieved both a significant larger ∆HR and a faster post-exercise lactate removal. A enhanced resting parasympathetic modulation might be therefore related to a further usage of autonomic resources and a better immediate metabolic recovery during supramaximal exertions. Furthermore, analyses of variance displayed a persistent increase in α₁ and a decrease in lnRMSSD along the 15 min of recovery, which are indicative of a diminished vagal modulation together with a sympathovagal balance leaning to sympathetic domination. Eventually, time-domain indices (lnRMSSD) showed no lactate correlations, while nonlinear indices (α₁ and lnSaEn) appeared to be moderate to strongly correlated with it, thus pointing to shared mechanisms between neuroautonomic and metabolic regulation. PMID:24205273

  3. Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges.

    PubMed

    Bush, Nicole R; Caron, Zoe K; Blackburn, Katherine S; Alkon, Abbey

    2016-01-01

    The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences (1). ANS measures in children have been found to be related to behavior problems, emotion regulation, and health (2-7). Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change (8-11). However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence

  4. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited.

    PubMed

    Paton, J F R; Boscan, P; Pickering, A E; Nalivaiko, E

    2005-11-01

    We review the pattern of activity in the parasympathetic and sympathetic nerves innervating the heart. Unlike the conventional textbook picture of reciprocal control of cardiac vagal and sympathetic nervous activity, as seen during a baroreceptor reflex, many other reflexes involve simultaneous co-activation of both autonomic limbs. Indeed, even at 'rest', the heart receives tonic drives from both sympathetic and parasympathetic cardiac nerves. Autonomic co-activation occurs during peripheral chemoreceptor, diving, oculocardiac, somatic nociceptor reflex responses as well as being evoked from structures within the brain. It is suggested that simultaneous co-activation may lead to a more efficient cardiac function giving greater cardiac output than activation of the sympathetic limb alone; this permits both a longer time for ventricular filling and a stronger contraction of the myocardium. This may be important when pumping blood into a constricted vascular tree such as is the case during the diving response. We discuss that in some instances, high drive to the heart from both autonomic limbs may also be arrhythmogenic. PMID:16269319

  5. The Role of the Suprachiasmatic Nucleus in Cardiac Autonomic Control during Sleep

    PubMed Central

    Joustra, S. D.; Reijntjes, R. H.; Pereira, A. M.; Lammers, G. J.; Biermasz, N. R.; Thijs, R. D.

    2016-01-01

    Background The suprachiasmatic nucleus (SCN) may play an important role in central autonomic control, since its projections connect to (para)sympathetic relay stations in the brainstem and spinal cord. The cardiac autonomic modifications during nighttime may therefore not only result from direct effects of the sleep-related changes in the central autonomic network, but also from endogenous circadian factors as directed by the SCN. To explore the influence of the SCN on autonomic fluctuations during nighttime, we studied heart rate and its variability (HRV) in a clinical model of SCN damage. Methods Fifteen patients in follow-up after surgical treatment for nonfunctioning pituitary macroadenoma (NFMA) compressing the optic chiasm (8 females, 26–65 years old) and fifteen age-matched healthy controls (5 females, 30–63 years) underwent overnight ambulatory polysomnography. Eleven patients had hypopituitarism and received adequate replacement therapy. HRV was calculated for each 30-second epoch and corrected for sleep stage, arousals, and gender using mixed effect regression models. Results Compared to controls, patients spent more time awake after sleep onset and in NREM1-sleep, and less in REM-sleep. Heart rate, low (LF) and high frequency (HF) power components and the LF/HF ratio across sleep stages were not significantly different between groups. Conclusions These findings suggest that the SCN does not play a dominant role in cardiac autonomic control during sleep. PMID:27010631

  6. Cardiac autonomic control in high level Brazilian power and endurance track-and-field athletes.

    PubMed

    Abad, C C C; do Nascimento, A M; Gil, S; Kobal, R; Loturco, I; Nakamura, F Y; Mostarda, C T; Irigoyen, M C

    2014-08-01

    The autonomic nervous system (ANS) has an important role in physical performance. However, the cardiac ANS activity in high-level track and field athletes has been poorly explored. Thus, we tested the hypothesis that endurance and power athletes would present a markedly different cardiac autonomic control at rest. We analyzed the cardiac ANS by means of time and frequency domains heart rate variability (HRV) analyses and by symbolic analysis. Endurance athletes showed higher pulse interval than power athletes (1,265±126 vs. 1,031±98 ms respectively; p<0.05). No differences were found in time and frequency domains between the groups. However, the LF%, HF% and LF/HF ratio presented high effect sizes (1.46, 1.46 and 1.30, respectively). The symbolic analysis revealed that endurance athletes had higher 2V parasympathetic modulation (36±6.5) than power athletes (24±9.3; p<0.05). A reduced 0V sympathetic modulation was observed in endurance athletes (21±9.9) compared to power athletes (33±11; p<0.05 and ES=1.30). Our results suggest greater parasympathetic modulation and less sympathetic modulation in endurance athletes compared to power athletes. Additionally, the type of HRV analysis needs to be chosen with well-defined criteria and caution because their use in assessing cardiac autonomic modulation can interfere with the interpretation of results. In practical terms, symbolic analysis appears to better discriminate between cardiac autonomic activities of athletes with different training backgrounds than frequency domain analysis. PMID:24771131

  7. Autonomic control of cardiac function and myocardial oxygen consumption during hypoxic hypoxia.

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Stone, H. L.

    1972-01-01

    Investigation in 19 conscious dogs of the importance of the sympathetic nervous system in the coronary and cardiac response to altitude (hypoxic) hypoxia. Beta-adrenergic blockade was used to minimize the cardiac effect associated with sympathetic receptors. It is shown that the autonomic nervous system, and particularly the sympathetic nervous system, is responsible for the increase in ventricular function and myocardial oxygen consumption that occurs during hypoxia. Minimizing this response through appropriate conditioning and training may improve the operating efficiency of the heart and reduce the hazard of hypoxia and other environmental stresses, such as acceleration, which are encountered in advanced aircraft systems.

  8. Cardiac Autonomic Drive during Arterial Hypertension and Metabolic Disturbances.

    PubMed

    Kseneva, S I; Borodulina, E V; Trifonova, O Yu; Udut, V V

    2016-06-01

    ANS support of the cardiac work was assessed with analysis of heart rate variability in representative samples of patients with arterial hypertension and metabolic disturbances manifested by overweight, classes I-II obesity, compromised glucose tolerance, and type II diabetes. Initially enhanced sympathetic effects on the heart rate demonstrated no further increase during the orthostatic test in contrast to suprasegmentary influences enhanced by this test. The pronouncedness of revealed peculiarities in ANS drive to the heart correlated with metabolic disturbances, and these peculiarities attained maximum in patients with type II diabetes. PMID:27383176

  9. Cardiac autonomic function measured by heart rate variability and turbulence in pre-hypertensive subjects.

    PubMed

    Erdem, Alim; Uenishi, Masahiro; Küçükdurmaz, Zekeriya; Matsumoto, Kazuo; Kato, Ritsushi; Hara, Motoki; Yazıcı, Mehmet

    2013-01-01

    Non-dipping blood pressure pattern was shown to be associated with increased cardiovascular events. In addition, cardiac autonomic dysfunction was found to be associated with non-dipper phenomenon. In this study, we aimed to evaluate the cardiac autonomic functions in dipper and non-dipper pre-hypertensive subjects. A total of 65 pre-hypertensive subjects were enrolled in this study. They were divided into two groups as non-dippers (40 subjects, 52% female) and dippers (25 subjects, 52.5% female). Cardiac autonomic functions of the two groups were compared with the aid of heart rate variability, heart rate turbulence (HRT), atrial premature contractions (APCs), ventricular premature contractions (VPCs), and mean heart rate (MHR). There was no significant difference between non-dippers and dippers in basal characteristics. The two parameters of HRT, turbulence onset and turbulence slope, were found to be significantly abnormal in non-dippers than in dippers (P < .011 and P < .002, respectively). Heart rate variability parameters, including SDNN, SDANN, RMSSD, and pNN50, were found to be similar in dipper and non-dipper pre-hypertensive subjects (P < .998, P < .453, P < .205, and P < .788, respectively). APCs, VPCs, and MHR were compared, and there were statistical differences between the groups (APCs 5.80 ± 4.55, 9.14 ± 7.33, P < .024; VPCs 8.48 ± 8.83, 13.23 ± 9.68, P < .044; and MHR 70.16 ± 11.08, 76.26 ± 11.31, P < .035; respectively). This study demonstrated a possible cardiac autonomic dysfunction in pre-hypertensive subjects with non-dipper pattern. This may be a basis for future studies related to pre-hypertension and non-dipping BP pattern. PMID:22676318

  10. Response of cardiac autonomic modulation after a single exposure to musical auditory stimulation

    PubMed Central

    Ferreira, Lucas L.; Vanderlei, Luiz Carlos M.; Guida, Heraldo L.; de Abreu, Luiz Carlos; Garner, David M.; Vanderlei, Franciele M.; Ferreira, Celso; Valenti, Vitor E.

    2015-01-01

    The acute effects after exposure to different styles of music on cardiac autonomic modulation assessed through heart rate variability (HRV) analysis have not yet been well elucidated. We aimed to investigate the recovery response of cardiac autonomic modulation in women after exposure to musical auditory stimulation of different styles. The study was conducted on 30 healthy women aged between 18 years and 30 years. We did not include subjects having previous experience with musical instruments and those who had an affinity for music styles. The volunteers remained at rest for 10 min and were exposed to classical baroque (64-84 dB) and heavy metal (75-84 dB) music for 10 min, and their HRV was evaluated for 30 min after music cessation. We analyzed the following HRV indices: Standard deviation of normal-to-normal (SDNN) intervals, root mean square of successive differences (RMSSD), percentage of normal-to-normal 50 (pNN50), low frequency (LF), high frequency (HF), and LF/HF ratio. SDNN, LF in absolute units (ms2) and normalized (nu), and LF/HF ratio increased while HF index (nu) decreased after exposure to classical baroque music. Regarding the heavy metal music style, it was observed that there were increases in SDNN, RMSSD, pNN50, and LF (ms2) after the musical stimulation. In conclusion, the recovery response of cardiac autonomic modulation after exposure to auditory stimulation with music featured an increased global activity of both systems for the two musical styles, with a cardiac sympathetic modulation for classical baroque music and a cardiac vagal tone for the heavy metal style. PMID:25774614

  11. Response of cardiac autonomic modulation after a single exposure to musical auditory stimulation.

    PubMed

    Ferreira, Lucas L; Vanderlei, Luiz Carlos M; Guida, Heraldo L; de Abreu, Luiz Carlos; Garner, David M; Vanderlei, Franciele M; Ferreira, Celso; Valenti, Vitor E

    2015-01-01

    The acute effects after exposure to different styles of music on cardiac autonomic modulation assessed through heart rate variability (HRV) analysis have not yet been well elucidated. We aimed to investigate the recovery response of cardiac autonomic modulation in women after exposure to musical auditory stimulation of different styles. The study was conducted on 30 healthy women aged between 18 years and 30 years. We did not include subjects having previous experience with musical instruments and those who had an affinity for music styles. The volunteers remained at rest for 10 min and were exposed to classical baroque (64-84 dB) and heavy metal (75-84 dB) music for 10 min, and their HRV was evaluated for 30 min after music cessation. We analyzed the following HRV indices: Standard deviation of normal-to-normal (SDNN) intervals, root mean square of successive differences (RMSSD), percentage of normal-to-normal 50 (pNN50), low frequency (LF), high frequency (HF), and LF/HF ratio. SDNN, LF in absolute units (ms 2 ) and normalized (nu), and LF/HF ratio increased while HF index (nu) decreased after exposure to classical baroque music. Regarding the heavy metal music style, it was observed that there were increases in SDNN, RMSSD, pNN50, and LF (ms 2 ) after the musical stimulation. In conclusion, the recovery response of cardiac autonomic modulation after exposure to auditory stimulation with music featured an increased global activity of both systems for the two musical styles, with a cardiac sympathetic modulation for classical baroque music and a cardiac vagal tone for the heavy metal style. PMID:25774614

  12. Transcranial direct current stimulation influences the cardiac autonomic nervous control.

    PubMed

    Montenegro, Rafael Ayres; Farinatti, Paulo de Tarso Veras; Fontes, Eduardo Bodnariuc; Soares, Pedro Paulo da Silva; Cunha, Felipe Amorim da; Gurgel, Jonas Lírio; Porto, Flávia; Cyrino, Edilson Serpeloni; Okano, Alexandre Hideki

    2011-06-15

    To investigate whether the manipulation of brain excitability by transcranial direct current stimulation (tDCS) modulates the heart rate variability (HRV), the effect of tDCS applied at rest on the left temporal lobe in athletes (AG) and non-athletes (NAG) was evaluated. The HRV parameters (natural logarithms of LF, HF, and LF/HF) was assessed in 20 healthy men before, and immediately after tDCS and sham stimulation. After anodal tDCS in AG the parasympathetic activity (HF(log)) increased (P<0.01) and the sympathetic activity (LF(log)) and sympatho-vagal balance (LF/HF(log)) decreased (P<0.01), whereas no significant effects were detected in NAG (P>0.05). No significant changes in HRV indexes were provoked by sham stimulation in both AG and NAG (P>0.05). In conclusion, tDCS applied on the left temporal lobe significantly increased the overall HRV in AG, enhancing the parasympathetic and decreasing the sympathetic modulation of heart rate. Consequently the sympatho-vagal balance decreased at rest in AG but not in NAG. Releasing a weak electric current to stimulate selected brain areas may induce favorable effects on the autonomic control to the heart in highly fit subjects. PMID:21527314

  13. Daytime cardiac autonomic activity during one week of continuous night shift.

    PubMed

    Holmes, A L; Burgess, H J; McCulloch, K; Lamond, N; Fletcher, A; Dorrian, J; Roach, G; Dawson, D

    2001-12-01

    Shift workers encounter an increased risk of cardiovascular disease compared to their day working counterparts. To explore this phenomenon, the effects of one week of simulated night shift on cardiac sympathetic (SNS) and parasympathetic (PNS) activity were assessed. Ten (5m; 5f) healthy subjects aged 18-29 years attended an adaptation and baseline night before commencing one week of night shift (2300-0700 h). Sleep was recorded using a standard polysomnogram and circadian phase was tracked using salivary melatonin data. During sleep, heart rate (HR), cardiac PNS activity (RMSSD) and cardiac SNS activity (pre-ejection period) were recorded. Night shift did not influence seep quality, but reduced sleep duration by a mean of 52 +/- 29 min. One week of night shift evoked a small chronic sleep debt of 5 h 14 +/- 56 min and a cumulative circadian phase delay of 5 h +/- 14 min. Night shift had no significant effect on mean HR, but mean cardiac SNS activity during sleep was consistently higher and mean cardiac PNS activity during sleep declined gradually across the week. These results suggest that shiftwork has direct and unfavourable effects on cardiac autonomic activity and that this might be one mechanism via which shiftwork increases the risk of cardiovascular disease. It is postulated that sleep loss could be one mediator of the association between shiftwork and cardiovascular health. PMID:14564886

  14. Influence of Smoking Consumption and Nicotine Dependence Degree in Cardiac Autonomic Modulation

    PubMed Central

    dos Santos, Ana Paula Soares; Ramos, Dionei; de Oliveira, Gabriela Martins; dos Santos, Ana Alice Soares; Freire, Ana Paula Coelho Figueira; It, Juliana Tiyaki; Fernandes, Renato Peretti Prieto; Vanderlei, Luiz Carlos Marques; Ramos, Ercy Mara Cipulo

    2016-01-01

    Background Smoking consumption alters cardiac autonomic function. Objective Assess the influence of the intensity of smoking and the nicotine dependence degree in cardiac autonomic modulation evaluated through index of heart rate variability (HRV). Methods 83 smokers, of both genders, between 50 and 70 years of age and with normal lung function were divided according to the intensity of smoking consumption (moderate and severe) and the nicotine dependency degree (mild, moderate and severe). The indexes of HRV were analyzed in rest condition, in linear methods in the time domain (TD), the frequency domain (FD) and through the Poincaré plot. For the comparison of smoking consumption, unpaired t test or Mann-Whitney was employed. For the analysis between the nicotine dependency degrees, we used the One-way ANOVA test, followed by Tukey's post test or Kruskal-Wallis followed by Dunn's test. The significance level was p < 0,05. Results Differences were only found when compared to the different intensities of smoking consumption in the indexes in the FD. LFun (62.89 ± 15.24 vs 75.45 ± 10.28), which corresponds to low frequency spectrum component in normalized units; HFun (37.11 ± 15.24 vs 24.55 ± 10.28), which corresponds to high frequency spectrum component in normalized units and in the LF/HF ratio (2.21 ± 1.47 vs 4.07 ± 2.94). However, in the evaluation of nicotine dependency, significant differences were not observed (p > 0.05). Conclusion Only the intensity of smoking consumption had an influence over the cardiac autonomic modulation of the assessed tobacco smokers. Tobacco smokers with severe intensity of smoking consumption presented a lower autonomic modulation than those with moderate intensity. PMID:27142649

  15. Abnormal left ventricular torsion and cardiac autonomic dysfunction in subjects with type 1 diabetes mellitus

    PubMed Central

    Piya, Milan K.; Shivu, Ganesh Nallur; Tahrani, Abd; Dubb, Kiran; Abozguia, Khalid; Phan, T.T.; Narendran, Parth; Pop-Busui, Rodica; Frenneaux, Michael; Stevens, Martin J.

    2011-01-01

    Left ventricular torsion is increased and cardiac energetics are reduced in uncomplicated type 1 diabetes mellitus (T1DM). Our aim was to determine the relationships of these abnormalities to cardiovascular autonomic neuropathy (CAN) in subjects with T1DM. A cross-sectional study was conducted in 20 subjects with T1DM free of known coronary heart disease attending an outpatient clinic. Cardiovascular autonomic neuropathy was assessed using heart rate variability studies and the continuous wavelet transform method. Left ventricular function was determined by speckle tracking echocardiography. Magnetic resonance spectroscopy and stress magnetic resonance imaging were used to measure cardiac energetics and myocardial perfusion reserve index, respectively. Twenty subjects (age, 35 ± 8 years; diabetes duration, 16 ± 9 years; hemoglobin A1c, 8.0% ± 1.1%) were recruited. Forty percent of the subjects exhibited definite or borderline CAN. Log peak radial strain was significantly increased in subjects with CAN compared with those without (1.56 ± 0.06 vs 1.43 ± 0.14, respectively; P = .011). Data were adjusted for log duration of diabetes, and log left ventricular torsion correlated (r = 0.593, P = .01) with log low-frequency to high-frequency ratio during the Valsalva maneuver. Log isovolumic relaxation time correlated significantly with log Valsalva ratio and log proportion of differences in consecutive RR intervals of normal beats greater than 50 milliseconds during deep breathing. However, CAN did not correlate with cardiac energetics or myocardial perfusion reserve index. Spectral analysis of low-frequency to high-frequency ratio power during the Valsalva maneuver is associated with altered left ventricular torsion in subjects with T1DM. Parasympathetic dysfunction is closely associated with diastolic deficits. Cardiovascular autonomic neuropathy is not however the principal cause of impaired cardiac energetics. The role of CAN in the development of cardiomyopathy

  16. PM-induced cardiac oxidative stress and dysfunction are mediated by autonomic stimulation.

    PubMed

    Rhoden, Claudia R; Wellenius, Gregory A; Ghelfi, Elisa; Lawrence, Joy; González-Flecha, Beatriz

    2005-10-10

    Epidemiological studies show that increases in particulate air pollution (PM) are associated with increases in cardiopulmonary morbidity and mortality. However, the mechanism(s) underlying the cardiac effects of PM remain unknown. We used pharmacological strategies to determine whether oxidants are implicated in PM-dependent cardiac dysfunction and whether PM-induced increase in autonomic stimulation on the heart mediates cardiac oxidative stress and toxicity. Adult Sprague-Dawley rats were exposed to either intratracheal instillation of urban air particles (UAP 750 microg) or to inhalation of concentrated ambient particles (CAPs mass concentration 700+/-180 microg/m3) for 5 h. Oxidative stress and cardiac function were evaluated 30 min after UAP instillation or immediately after exposure to CAPs. Instillation of UAP led to significant increases in heart oxidants measured as organ chemiluminescence (UAP: 38+/-5 cps/cm2, sham: 10+/-1 cps/cm2) or thiobarbituric acid reactive substances (TBARS, UAP: 76+/-10, Sham 30+/-6 pmol/mg protein). Heart rate increased immediately after exposure (UAP: 390+/-20 bpm, sham: 350+/-10 bpm) and returned to basal levels over the next 30 min. Heart rate variability (SDNN) was unchanged immediately after exposure, but significantly increased during the recovery phase (UAP: 3.4+/-0.2, Sham: 2.4+/-0.3). To determine the role of ROS in the development of cardiac malfunction, rats were treated with 50 mg/kg N-acetylcysteine (NAC) 1 h prior to UAP instillation or CAPs inhalation. NAC prevented changes in heart rate and SDNN in UAP-exposed rats (340+/-8 and 2.9+/-0.3, respectively). To investigate the role of the autonomic nervous system in PM-induced oxidative stress, rats were given 5 mg/kg atenolol (beta-1 receptor antagonist), 0.30 mg/kg glycopyrrolate (muscarinic receptor antagonist) or saline immediately before exposure to CAPs aerosols. Both atenolol and glycopyrrolate effectively prevented CAPs-induced cardiac oxidative stress (CL

  17. Previous exposure to musical auditory stimulation immediately influences the cardiac autonomic responses to the postural change maneuver in women

    PubMed Central

    2013-01-01

    Background Chronic exposure to musical auditory stimulation has been reported to improve cardiac autonomic regulation. However, it is not clear if music acutely influences it in response to autonomic tests. We evaluated the acute effects of music on heart rate variability (HRV) responses to the postural change maneuver (PCM) in women. Method We evaluated 12 healthy women between 18 and 28 years old and HRV was analyzed in the time (SDNN, RMSSD, NN50 and pNN50) and frequency (LF, HF and LF/HF ratio) domains. In the control protocol, the women remained at seated rest for 10 minutes and quickly stood up within three seconds and remained standing still for 15 minutes. In the music protocol, the women remained at seated rest for 10 minutes, were exposed to music for 10 minutes and quickly stood up within three seconds and remained standing still for 15 minutes. HRV was recorded at the following time: rest, music (music protocol) 0–5, 5–10 and 10–15 min during standing. Results In the control protocol the SDNN, RMSSD and pNN50 indexes were reduced at 10–15 minutes after the volunteers stood up, while the LF (nu) index was increased at the same moment compared to seated rest. In the protocol with music, the indexes were not different from control but the RMSSD, pNN50 and LF (nu) were different from the music period. Conclusion Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM. PMID:23941333

  18. Preserved cardiac autonomic dynamics during sleep in patients with spinal cord injury

    PubMed Central

    Tobaldini, Eleonora; Proserpio, Paola; Sambusida, Katrina; Lanza, Andrea; Redaelli, Tiziana; Frigerio, Pamela; Fratticci, Lara; Rosa, Silvia; Casali, Karina R.; Somers, Virend K; Nobili, Lino; Montano, Nicola

    2015-01-01

    Spinal cord injuries (SCI) are associated with altered cardiovascular autonomic control. Sleep is characterized by modifications of autonomic control across sleep stages; however, no data are available on the effects of SCI on CAC during sleep. The aim of our study was to assess cariac autonomic modulation during sleep in SCI patients. Overnight polysomnographic recordings were obtained in 27 patients with cervical (Cerv) and thoracic (Thor) SCI and in healthy subjects (Controls). ECG and respiration were extracted from PSG, divided into sleep stages (W, N2, N3 and REM) for assessment of CAC, using symbolic analysis and Corrected Conditional Entropy. SA identifies three main indices, 0V%, index of sympathetic modulation, and 2LV% and 2UV%, markers of vagal modulation. CCE evaluates the complexity of heart period time series. Symbolic analysis revealed a reduction of 0V% in N2 and N3 compared to W and REM and an increase of 2LV% and 2UV% in N2 and N3 compared to W and REM in SCI patients, independent of the level of the lesion, and similar to Controls. Corrected Conditional Entropy was higher in N2 and N3 compared to W and REM in all three groups. In SCI patients, cardiac autonomic control changed across sleep stages, with a reduction of sympathetic and an increase of parasympathetic modulation during NREM compared to W and REM and a parallel increase of complexity during NREM, similar to Controls. Cardiac autonomic dynamics during sleep are maintained in SCI, independent of the level of the lesion. PMID:25953303

  19. Assessment of Cardiac Autonomic Functions in Medical Students With Type D Personality

    PubMed Central

    Panwar, R. Abhilasha Singh

    2016-01-01

    Introduction Type D personality experiences joint occurrence of Negative Affectivity and Social Inhibition. It is an emerging risk factor for cardiovascular disease, with prevalence being 18-53% among cardiac patients. Type D personality people have exaggerated cardiovascular activity mediated by increased sympathetic drive and decreased vagal control of the heart which leads to enhanced risk of hypertension and is an independent risk factor for coronary heart disease. Aim To compare the cardiac autonomic function of Type D and non-Type D students. To compare cardiac autonomic functions among male and female students and students with and without family history of hypertension and coronary artery disease among Type D. To find the most affected test among Type D students. Materials and Methods Thirty Type D and 30 non- Type D medical students were identified by DS14. The Parasympathetic cardiac autonomic tests done assessed Heart Rate response to valsalva manoeuvre, immediate heart rate response to standing and heart rate variation during deep breathing. Sympathetic tests assessed BP response to standing and Sustained Hand Grip. The heart rate and R-R interval measurement were got from lead II of ECG recordings on Polyrite D. Statistical analysis was done using SPSS software. Unpaired student’s t-test was used and p-value <0.05 was considered to be statistically significant. Results Type D students showed slightly decreased parasympathetic activity and increased sympathetic activity when compared to non-Type D students even though there was no statistically significant difference between them. There is a statistically significant decrease in valsalva ratio among females (p<0.01) when compared to males. There is a statistically significant decrease in 30:15 ratio and BP response to handgrip (p<0.05) among students with family history of hypertension and coronary artery disease when compared with students with no family history of coronary artery disease. Valsalva

  20. (Non-invasive evaluation of the cardiac autonomic nervous system by PET)

    SciTech Connect

    Not Available

    1992-01-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  1. Silent myocardial infarction secondary to cardiac autonomic neuropathy in a patient with rheumatoid arthritis.

    PubMed

    Unnikrishnan, Dileep; Jacob, Aasems; Anthony Diaz, Mark; Lederman, Jeffrey

    2016-01-01

    An 83-year-old female patient with rheumatoid arthritis and hypertension presented to the emergency department with fever and chills of 1 day duration. On examination, temperature was 100.9 F, heart rate 111/min and she had orthostatic hypotension. Laboratory tests showed elevated blood urea nitrogen and white cell count. The patient underwent treatment for symptomatic urinary tract infection and while her fever and leucocytosis resolved, tachycardia persisted. An EKG done showed T inversions in leads II, III, arteriovenous fistula, V2 and V3. Troponin-I was elevated. Nuclear stress test revealed apical wall motion abnormality confirming myocardial infarction. Ewing's tests were carried out at bedside and these diagnosed severe autonomic neuropathy. Rheumatoid arthritis can cause cardiac autonomic neuropathy from chronic inflammation. This case entails the importance of assessing and detecting cardiac autonomic neuropathy in chronic inflammatory conditions, and the need to be cautious of acute coronary events in these patients, even for minimal or no symptoms. PMID:27489064

  2. Effects of training periodization on cardiac autonomic modulation and endogenous stress markers in volleyball players.

    PubMed

    Mazon, J; Gastaldi, A; Di Sacco, T; Cozza, I; Dutra, S; Souza, H

    2013-02-01

    We investigated the effects of selective loads of periodization model (SLPM) on autonomic modulation of heart rate variability (HRV) and endogenous stress markers before and after a competition period in volleyball players (N=32). The experimental protocol for the evaluation of HRV consisted of using spectral analysis of time series composed of the R-R intervals derived from electrocardiogram obtained in the supine position and during the tilt test. Stress marker levels were determined by quantifying the plasma concentration of endogenous catecholamines, cortisol and free testosterone. The results showed no changes between the levels of HRV before and after a competition period. In contrast, the quantification of the plasma concentration of endogenous stress markers revealed reductions in the levels of total catecholamines, noradrenaline and cortisol. These changes were accompanied by increases in the concentration of free testosterone and in the testosterone/cortisol ratio. In conclusion, our results demonstrate that the SLPM did not change the cardiac autonomic modulation of HRV, but promoted beneficial adaptations in athletes, including positive changes in the plasma concentration of the endogenous stress markers. The absence of changes in HRV indicates that there is no direct relationship between cardiac autonomic modulation and endogenous stress markers in the present study. PMID:21812826

  3. Abnormal autonomic cardiac response to transient hypoxia in sickle cell anemia

    PubMed Central

    Sangkatumvong, S; Coates, T D; Khoo, M C K

    2010-01-01

    The objective of this study was to non-invasively assess cardiac autonomic control in subjects with sickle cell anemia (SCA) by tracking the changes in heart rate variability (HRV) that occur following brief exposure to a hypoxic stimulus. Five African–American SCA patients and seven healthy control subjects were recruited to participate in this study. Each subject was exposed to a controlled hypoxic stimulus consisting of five breaths of nitrogen. Time-varying spectral analysis of HRV was applied to estimate the cardiac autonomic response to the transient episode of hypoxia. The confounding effects of changes in respiration on the HRV spectral indices were reduced by using a computational model. A significant decrease in the parameters related to parasympathetic control was detected in the post-hypoxic responses of the SCA subjects relative to normal controls. The spectral index related to sympathetic activity, on the other hand, showed a tendency to increase the following hypoxic stimulation, but the change was not significant. This study suggests that there is some degree of cardiovascular autonomic dysfunction in SCA that is revealed by the response to transient hypoxia. PMID:18460753

  4. Neural network regulation driven by autonomous neural firings

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  5. Cardiac Autonomic Dysfunction in Patients with Schizophrenia and Their Healthy Relatives – A Small Review

    PubMed Central

    Bär, Karl-Jürgen

    2015-01-01

    The majority of excess mortality among people with schizophrenia seems to be caused by cardiovascular complications, and in particular, coronary heart disease. In addition, the prevalence of heart failure and arrhythmias is increased in this population. Reduced efferent vagal activity, which has been consistently described in these patients and their healthy first-degree relatives, might be one important mechanism contributing to their increased cardiac mortality. A decrease in heart rate variability and complexity was often shown in unmedicated patients when compared to healthy controls. In addition, faster breathing rates, accompanied by shallow breathing, seem to influence autonomic cardiac functioning in acute unmedicated patients substantially. Moreover, low-physical fitness is a further and independent cardiac risk factor present in this patient population. Interestingly, new studies describe chronotropic incompetence during physical exercise as an important additional risk factor in patients with schizophrenia. Some studies report a correlation of the autonomic imbalance with the degree of positive symptoms (i.e., delusions) and some with the duration of disease. The main body of psychiatric research is focused on mental aspects of the disease, thereby neglecting obvious physical health needs of these patients. Here, a joint effort is needed to design interventional strategies in everyday clinical settings to improve physical health and quality of life. PMID:26157417

  6. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats

    PubMed Central

    Klippel, Brunella F.; Duemke, Licia B.; Leal, Marcos A.; Friques, Andreia G. F.; Dantas, Eduardo M.; Dalvi, Rodolfo F.; Gava, Agata L.; Pereira, Thiago M. C.; Andrade, Tadeu U.; Meyrelles, Silvana S.; Campagnaro, Bianca P.; Vasquez, Elisardo C.

    2016-01-01

    Aims: It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. Methods: SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1−adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Results: Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1

  7. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Doubutamine Challenges in Heart Failure-Prone Rats

    EPA Science Inventory

    Background: Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) is an ubiquitous air pollutant believed to provoke cardiac events partly through imbalance of the sympathetic and parasympathetic branches of the autonomic nervo...

  8. [Autonomic cardiovascular regulation in patients with tics and Tourette syndrome].

    PubMed

    Zykov, V P; Komarova, I B; Nazarova, E K; Begasheva, O I; Kabanova, S A

    2005-01-01

    Autonomic cardiovascular regulation has been assessed in patients aged 4-15 years with Tourette syndrome (n = 22) and other tic disorders (n = 48). Symptom significance was estimated by a number of hyperkinetic episodes per 20 minutes, tic scale and variants of the disease course. The functional condition of autonomic nervous system was studied clinically and using spectral analysis of heart rate variability in both upright and supine positions. Negative correlation between the ratio of sympathetic and vagus influences and severity of the disease was found: the severer were tic symptoms, the stronger was a trend to vagotonia (beta = -0.36; p < 0.0025; F > 4.0). In orthostatic test, patients with Tourette syndrome demonstrated an unfavorable hypersympathicotonic type of cardiovascular system reaction. Patients were treated during 4 weeks with glycinum (0.2 +/- 0.1 mg/day), phenibutum (0.5 +/- 0.25 mg/day), clonazepam (1.5 +/- 0.5 mg/day), tiapride (200 +/- 100 mg/day), haloperidol (1-1.5 mg/day), rispolept (2 mg/day). There was no negative effect of the drugs on heart rate variability. On the contrary, the therapy reduced hyperkinetic symptoms and corrected autonomic influences on the sinus rhythm. It is suggested that changes in autonomic cardiovascular regulation might be of secondary character and do not need any special correction. PMID:16252383

  9. Fitness, autonomic regulation and orthostatic tolerance

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C.

    1991-01-01

    Work on this grant has consisted of two major studies of cardiovascular regulation in athletes along with several smaller supporting studies. This summary will give a brief overview of two major studies, and then conclude with an analysis of what the findings from these studies mean practically, and how they can be applied to current problems with post-flight orthostatic intolerance. The first study addresses a cross-sectional analysis of orthostatic intolerance in highly aerobically trained individuals; the second addresses ventricular pressure/volume relationships in athletes.

  10. Cardiac sodium channel regulator MOG1 regulates cardiac morphogenesis and rhythm

    PubMed Central

    Zhou, Juan; Wang, Longfei; Zuo, Mengxia; Wang, Xiaojing; Ahmed, Abu Shufian Ishtiaq; Chen, Qiuyun; Wang, Qing K.

    2016-01-01

    MOG1 was initially identified as a protein that interacts with the small GTPase Ran involved in transport of macromolecules into and out of the nucleus. In addition, we have established that MOG1 interacts with the cardiac sodium channel Nav1.5 and regulates cell surface trafficking of Nav1.5. Here we used zebrafish as a model system to study the in vivo physiological role of MOG1. Knockdown of mog1 expression in zebrafish embryos significantly decreased the heart rate (HR). Consistently, the HR increases in embryos with over-expression of human MOG1. Compared with wild type MOG1 or control EGFP, mutant MOG1 with mutation E83D associated with Brugada syndrome significantly decreases the HR. Interestingly, knockdown of mog1 resulted in abnormal cardiac looping during embryogenesis. Mechanistically, knockdown of mog1 decreases expression of hcn4 involved in the regulation of the HR, and reduces expression of nkx2.5, gata4 and hand2 involved in cardiac morphogenesis. These data for the first time revealed a novel role that MOG1, a nucleocytoplasmic transport protein, plays in cardiac physiology and development. PMID:26903377

  11. Sympathetic cardiac hyperinnervation and atrial autonomic imbalance in diet-induced obesity promote cardiac arrhythmias

    PubMed Central

    Hasan, Wohaib; Streiff, Cole T.; Houle, Jennifer C.; Woodward, William R.; Giraud, George D.; Brooks, Virginia L.; Habecker, Beth A.

    2013-01-01

    Obesity increases the risk of arrhythmias and sudden cardiac death, but the mechanisms are unknown. This study tested the hypothesis that obesity-induced cardiac sympathetic outgrowth and hyperinnervation promotes the development of arrhythmic events. Male Sprague-Dawley rats (250–275 g), fed a high-fat diet (33% kcal/fat), diverged into obesity-resistant (OR) and obesity-prone (OP) groups and were compared with rats fed normal chow (13% kcal/fat; CON). In vitro experiments showed that both OR and OP rats exhibited hyperinnervation of the heart and high sympathetic outgrowth compared with CON rats, even though OR rats are not obese. Despite the hyperinnervation and outgrowth, we showed that, in vivo, OR rats were less susceptible to arrhythmic events after an intravenous epinephrine challenge compared with OP rats. On examining total and stimulus-evoked neurotransmitter levels in an ex vivo system, we demonstrate that atrial acetylcholine content and release were attenuated in OP compared with OR and CON groups. OP rats also expressed elevated atrial norepinephrine content, while norepinephrine release was suppressed. These findings suggest that the consumption of a high-fat diet, even in the absence of overt obesity, stimulates sympathetic outgrowth and hyperinnervation of the heart. However, normalized cardiac parasympathetic nervous system control may protect the heart from arrhythmic events. PMID:24014675

  12. Cardiac Na+ Current Regulation by Pyridine Nucleotides

    PubMed Central

    Liu, Man; Sanyal, Shamarendra; Gao, Ge; Gurung, Iman S.; Zhu, Xiaodong; Gaconnet, Georgia; Kerchner, Laurie J.; Shang, Lijuan L.; Huang, Christopher L-H.; Grace, Andrew; London, Barry; Dudley, Samuel C.

    2009-01-01

    Rationale Mutations in glycerol-3-phosphate dehydrogenase 1-like (GPD1-L) protein reduce cardiac Na+ current (INa) and cause Brugada Syndrome (BrS). GPD1-L has >80% amino acid homology with glycerol-3-phosphate dehydrogenase, which is involved in nicotinamide adenine dinucleotide (NAD)-dependent energy metabolism. Objective Therefore, we tested whether NAD(H) could regulate human cardiac sodium channels (Nav1.5). Methods and Results HEK293 cells stably expressing Nav1.5 and rat neonatal cardiomyocytes were used. The influence of NADH/NAD+ on arrhythmic risk was evaluated in wild-type or SCN5A+/− mouse heart. A280V GPD1-L caused a 2.48 ± 0.17-fold increase in intracellular NADH level (P<0.001). NADH application or co-transfection with A280V GPD1-L resulted in decreased INa (0.48 ± 0.09 or 0.19 ±0.04 of control group, respectively; P<0.01), which was reversed by NAD+, chelerythrine, or superoxide dismutase (SOD). NAD+ antagonism of the Na+ channel downregulation by A280V GPD1-L or NADH was prevented by a protein kinase A (PKA) inhibitor, PKAI6–22. The effects of NADH and NAD+ were mimicked by a phorbol ester and forskolin, respectively. Increasing intracellular NADH was associated with an increased risk of ventricular tachycardia (VT) in wild-type mouse hearts. Extracellular application of NAD+ to SCN5A+/− mouse hearts ameliorated the risk of VT. Conclusions Our results show that Nav1.5 is regulated by pyridine nucleotides, suggesting a link between metabolism and INa. This effect required protein kinase C (PKC) activation and was mediated by oxidative stress. NAD+ could prevent this effect by activating PKA. Mutations of GPD1-L may downregulate Nav1.5 by altering the oxidized to reduced NAD(H) balance. PMID:19745168

  13. Evolutionary and comparative anatomical investigations of the autonomic cardiac nervous system in the African Cercopithecidae.

    PubMed

    Kawashima, Tomokazu; Akita, Keiichi; Sato, Kenji; Sasaki, Hiroshi

    2007-09-01

    The purpose of this study was to clarify the general architecture and morphological variations of the autonomic cardiac nervous system (ACNS) in the African Cercopithecidae (Old World monkeys), and to discuss the evolutionary changes between this system in African/Asian Cercopithecidae and humans. A detailed macroscopic comparative morphological investigation of the ACNS was performed by examining the left and right sides of 11 African cercopithecid specimens, including some previously unreported species (Abyssinian colobus, Angola pied colobus, Savanna monkey, and lesser white-nosed guenon). The common characteristics of the ACNS in the African Cercopithecidae are described in detail. Consequently, homologies of the ACNS between Asian (macaques) and African Cercopithecidae, and differences between the Asian/African Cercopithecidae and humans, were found. In particular, differences in the sympathetic (cardiac) systems of the Cercopithecidae and humans were recognized, despite the similar morphology of the parasympathetic vagal (cardiac) system. These differences include the composition of the cervicothoracic ganglion, the lower positions of the middle cervical and cervicothoracic ganglia, and the narrow range for the origin of the cardiac nerves in the Cercopithecidae, compared with that in humans. In conclusion, these findings are considered with regard to the morphology of the last common ancestors of the Cercopithecidae. PMID:17591730

  14. Regulation of cardiac C-protein phosphorylation

    SciTech Connect

    Titus, F.L.

    1985-01-01

    Molecular mechanisms of cardiac sympathetic and parasympathetic responses were addressed by studying subcellular changes in protein phosphorylation, cAMP-dependent protein kinase activity and protein phosphatase activity in frog hearts. B-adrenergic agonists increased and muscarinic cholinergic agonists decreased (/sup 32/P)phosphate incorporation into C-protein, a thick filament component. Regulation of protein phosphatase activity by Iso and methacholine (MCh) was assayed using extracts of drug treated frog hearts and (/sup 32/P)phospho-C-protein as substrate. Total phosphatase activity decreased 21% in extracts from hearts perfused with 0.1 ..mu..M Iso and 17% in hearts exposed to Iso plus 1 ..mu..M methacholine. This decrease reflected decreased phosphatase-2A activity. No changes in total phosphatase activity were measurable in broken cells treated with Iso or MCh. The results suggest adrenergic stimulation changes contractile activity in frog hearts by activating cAMP-dependent protein kinase associated with particulate cellular elements and inactivating soluble protein phosphatase-2A. This is the first demonstration of coordinated regulation of these enzymes by B-adrenergic agonists favoring phosphorylation of effector proteins. Coordinated regulation by methacholine in the presence of Iso was not observed.

  15. Altered cardiovascular autonomic regulation in overweight children engaged in regular physical activity.

    PubMed

    Lucini, Daniela; de Giacomi, Gaia; Tosi, Fabio; Malacarne, Mara; Respizzi, Stefano; Pagani, Massimo

    2013-03-01

    Overweight (OW) and obesity in children are important forerunners of cardiovascular risk, possibly through autonomic nervous system (ANS) dysregulation, while physical exercise exerts a beneficial influence. In this observational study we hypothesise that OW might influence ANS profile even in a population performing high volume of supervised exercise. We study 103 young soccer players, homogeneous in terms of gender (all male), cultural background, school, age (11.2 ± 1 years) and exercise routine, since they all belong to the same soccer club, thus guaranteeing equality of supervised training and similar levels of competitiveness. ANS is evaluated by autoregressive spectral analysis of heart rate and systolic arterial pressure (SAP) variabilities. We estimate also the accumulated weekly Metabolic Equivalents and time spent in sedentary activities. We subdivide the entire population in two subgroups (normal weight and OW) based on the International Obesity Task Force criteria. In OW soccer players (10.7% of total group) we observe an altered profile of autonomic cardiovascular regulation, characterised by higher values of SAP (113 ± 4 vs 100 ± 1 mm Hg, 39.7 ± 3 vs 66.2 ± 10%), higher Low Frequency variability power of SAP (an index of vasomotor sympathetic regulation) (12 ± 3 vs 4.5 mm Hg(2)) and smaller spontaneous baroreflex gain (an index of cardiac vagal regulation) (19 ± 3 vs 33 ± 3 ms/mm Hg) (all (p < 0.02)). Moreover Correlation analysis on the entire study population shows a significant link between anthropometric and autonomic indices. These data show that OW is associated to a clear autonomic impairment even in children subjected to an intense aerobic training. PMID:23086975

  16. Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.

    PubMed

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2011-06-01

    The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P < 0.05). Heart rate increased at rest and during submaximal exercise after smoking (P < 0.05). The raw high frequency and low frequency power were significantly reduced by smoking, both at rest and during exercise (P < 0.05). The low to high frequency ratio was higher after smoking (P < 0.05). The normalised low frequency power was also significantly increased by smoking, but only at rest (P < 0.05). These data demonstrate that the tachycardic effect elicited by smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance. PMID:21547834

  17. Effect of Yoga on migraine: A comprehensive study using clinical profile and cardiac autonomic functions

    PubMed Central

    Kisan, Ravikiran; Sujan, MU; Adoor, Meghana; Rao, Raghavendra; Nalini, A; Kutty, Bindu M; Chindanda Murthy, BT; Raju, TR; Sathyaprabha, TN

    2014-01-01

    Context and Aims: Migraine is an episodic disabling headache requiring long-term management. Migraine management through Yoga therapy would reduce the medication cost with positive health benefits. Yoga has shown to improve the quality of life, reduce the episode of headache and medication. The aim of the present study was to evaluate the efficacy of Yoga as an adjuvant therapy in migraine patients by assessing clinical outcome and autonomic functions tests. Subjects and Methods: Migraine patients were randomly given either conventional care (n = 30) or Yoga with conventional care (n = 30). Yoga group received Yoga practice session for 5 days a week for 6 weeks along with conventional care. Clinical assessment (frequency, intensity of headache and headache impact) and autonomic function test were done at baseline and at the end of the intervention. Results: Yoga with conventional care and convention care groups showed significant improvement in clinical variables, but it was better with Yoga therapy. Improvement in the vagal tone along with reduced sympathetic activity was observed in patients with migraine receiving Yoga as adjuvant therapy. Conclusions: Intervention showed significant clinical improvement in both groups. Headache frequency and intensity were reduced more in Yoga with conventional care than the conventional care group alone. Furthermore, Yoga therapy enhanced the vagal tone and decreased the sympathetic drive, hence improving the cardiac autonomic balance. Thus, Yoga therapy can be effectively incorporated as an adjuvant therapy in migraine patients. PMID:25035622

  18. Evaluation of Cardiac Autonomic Functions in Older Parkinson's Disease Patients: a Cross-Sectional Study.

    PubMed

    Yalcin, Ahmet; Atmis, Volkan; Cengiz, Ozlem Karaarslan; Cinar, Esat; Aras, Sevgi; Varli, Murat; Atli, Teslime

    2016-01-01

    In Parkinson's disease (PD), non-motor symptoms may occur such as autonomic dysfunction. We aimed to evaluate both parasympathetic and sympathetic cardiovascular autonomic dysfunction in older PD cases. 84 PD cases and 58 controls, for a total of 142, participated in the study. Parasympathetic tests were performed using electrocardiography. Sympathetic tests were assessed by blood pressure measurement and 24-hour ambulatory blood pressure measurement. The prevalence of orthostatic hypotension in PD patients was 40.5% in PD patients and 24.1% in the control group (p> 0.05). The prevalence of postprandial hypotension was 47.9% in the PD group and 27.5% in the controls (p <0.05). The prevalence of impairment in heart rate response to deep breathing was 26.2% in the PD group and 6.9% in the control group (p <0.05). The prevalence of postprandial hypotension in PD with orthostatic hypotension was 94% and 16% in PD patients without orthostatic hypotension (p <0.05). The prevalence of impairment in heart rate response to deep breathing was 52.9% in PD patients with orthostatic hypotension and 8% in PD cases without orthostatic hypotension (p<0.05). The prevalence of impairment in heart rate response to postural change was 41% in PD cases with orthostatic hypotension and 12% in PD cases without orthostatic hypotension (p <0.05).Although there are tests for assessing cardiovascular autonomic function that are more reliable, they are more complicated, and evaluation of orthostatic hypotension by blood pressure measurement and cardiac autonomic tests by electrocardiography are recommended since these tests are cheap and easy. PMID:26816661

  19. Analyzing Systolic-Diastolic Interval Interaction Characteristics in Diabetic Cardiac Autonomic Neuropathy Progression

    PubMed Central

    Imam, Mohammad Hasan; Jelinek, Herbert F.; Palaniswami, Marimuthu; Khandoker, Ahsan H.

    2015-01-01

    Cardiac autonomic neuropathy (CAN), one of the major complications in diabetes, if detected at the subclinical stage allows for effective treatment and avoiding further complication including cardiovascular pathology. Surface ECG (Electrocardiogram)-based diagnosis of CAN is useful to overcome the limitation of existing cardiovascular autonomic reflex tests traditionally used for CAN identification in clinical settings. The aim of this paper is to analyze the changes in the mechanical function of the ventricles in terms of systolic-diastolic interval interaction (SDI) from a surface ECG to assess the severity of CAN progression [no CAN, early CAN (ECAN) or subclinical CAN, and definite CAN (DCAN) or clinical CAN]. ECG signals recorded in supine resting condition from 72 diabetic subjects without CAN (CAN-) and 70 diabetic subjects with CAN were analyzed in this paper. The severity of CAN was determined by Ewing’s Cardiovascular autonomic reflex tests. Fifty-five subjects of the CAN group had ECAN and 15 subjects had DCAN. In this paper, we propose an improved version of the SDI parameter (i.e., TQ/RR interval ratio) measured from the electrical diastolic interval (i.e., TQ interval) and the heart rate interval (i.e., RR interval). The performance of the proposed SDI measure was compared with the performance of the existing SDI measure (i.e., QT/TQ interval ratio). The proposed SDI parameter showed significant differences among three groups (no CAN, ECAN, and DCAN). In addition, the proposed SDI parameter was found to be more sensitive in detecting CAN progression than other ECG interval-based features traditionally used for CAN diagnosis. The modified SDI parameter might be used as an alternative measure for the Ewing autonomic reflex tests to identify CAN progression for those subjects who are unable to perform the traditional tests. These findings could also complement the echocardiographic findings of the left ventricular diastolic dysfunction by providing

  20. Arginyltransferase regulates alpha cardiac actin, myofibril formation and contractility during heart development

    PubMed Central

    Rai, Reena; Wong, Catherine C. L.; Xu, Tao; Leu, N. Adrian; Dong, Dawei W.; Guo, Caiying; McLaughlin, K. John; Yates, John R.; Kashina, Anna

    2008-01-01

    Summary Posttranslational arginylation mediated by arginyltransferase (Ate1) is essential for cardiovascular development and angiogenesis in mammals and directly affects the myocardium structure in the developing heart. We recently showed that arginylation exerts a number of intracellular effects by modifying proteins involved in the functioning of actin cytoskeleton and the events of cell motility. Here we investigate the role of arginylation in the development and function of cardiac myocytes and their actin-containing structures during embryogenesis. Biochemical and mass spectrometry analysis shows that alpha cardiac actin undergoes arginylation on multiple sites during development. Ultrastructural analysis of the myofibrils in wild type and Ate1 knockout mouse hearts shows that the absence of arginylation results in defects in myofibril structure that delay their development and affect the continuity of myofibrils throughout the heart, predicting defects in cardiac contractility. Comparison of cardiac myocytes derived from wild type and Ate1 knockout mouse embryos show that the absence of arginylation results in abnormal beating patterns. Our results demonstrate cell-autonomous cardiac myocyte defects in arginylation knockout mice that lead to severe congenital abnormalities similar to those observed in human disease, and outline a new function of arginylation in the regulation of actin cytoskeleton in cardiac myocytes. PMID:18948421

  1. Regulation of cardiac output in hypoxia.

    PubMed

    Siebenmann, Christoph; Lundby, Carsten

    2015-12-01

    This brief review addresses the regulation of cardiac output (Q) at rest and during submaximal exercise in acute and chronic hypoxia. To preserve systemic O2 delivery in acute hypoxia Q is increased by an acceleration of heart rate, whereas stroke volume (SV) remains unchanged. Tachycardia is governed by activation of carotid and aortic chemoreceptors and a concomitant reduction in arterial baroreflex activation, all balancing sympathovagal activity toward sympathetic dominance. As hypoxia extends over several days a combination of different adaptive processes restores arterial O2 content to or beyond sea level values and hence Q normalizes. The latter however occurs as a consequence of a decrease in SV whereas tachycardia persists. The diminished SV reflects a lower left ventricular end-diastolic volume which is primarily related to hypoxia-generated reduction in plasma volume. Hypoxic pulmonary vasoconstriction may contribute by increasing right ventricular afterload and thus decreasing its ejection fraction. In summary, the Q response to hypoxia is the result of a complex interplay between several physiological mechanisms. Future studies are encouraged to establish the individual contributions of the different components from an integrative perspective. PMID:26589118

  2. The cardiac cycle: regulation and energy oscillations.

    PubMed

    Wikman-Coffelt, J; Sievers, R; Coffelt, R J; Parmley, W W

    1983-08-01

    Cyclical changes in energy-related metabolites were observed in glucose-perfused but not pyruvate-perfused isolated working rat hearts. A chronological study of various phases of the cardiac cycle indicated maximum changes in metabolites occurred at half time to peak pressure (dF/dtmax). The high-energy phosphates ATP and phosphocreatine, as well as the glycolytic metabolites, glucose 6-phosphate and pyruvate, reached minimum values immediately prior to peak systole and maximum values during late diastole. The products of high-energy phosphate hydrolysis, ADP, inorganic phosphate, and creatine, as well as the regulator, adenosine 3',5'-cyclic monophosphate, showed the phase alternate. It was necessary to study cyclical changes in a maximally stressed glucose-perfused heart because the cyclical changes were small and appeared to be the result of rate-limiting steps in glycolysis and the slow transport of NADH into the mitochondria. For stressing the heart, thereby increasing ATP utilization and augmenting cyclical changes, the afterload chamber was set at 110 mmHg, and the perfusate contained high concentrations of calcium (3.5 mM, free) and isoproterenol (5 X 10(-9) M). When correction was made for binding and compartmentation of metabolites, data indicated that the free energy of ATP hydrolysis was preserved during the contraction process by a continuous binding and recycling of ADP. PMID:6881368

  3. From Syncitium to Regulated Pump: A Cardiac Muscle Cellular Update

    ERIC Educational Resources Information Center

    Korzick, Donna H.

    2011-01-01

    The primary purpose of this article is to present a basic overview of some key teaching concepts that should be considered for inclusion in an six- to eight-lecture introductory block on the regulation of cardiac performance for graduate students. Within the context of cardiac excitation-contraction coupling, this review incorporates information…

  4. Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia

    PubMed Central

    Berglund, Eric D.; Liu, Tiemin; Kong, Xingxing; Sohn, Jong-Woo; Vong, Linh; Deng, Zhuo; Lee, Charlotte E.; Lee, Syann; Williams, Kevin W.; Olson, David P.; Scherer, Philipp E.; Lowell, Bradford B.; Elmquist, Joel K.

    2014-01-01

    SUMMARY Melanocortin 4 receptors (Mc4rs) are expressed by extra-hypothalamic neurons including cholinergic autonomic pre-ganglionic neurons. However, whether Mc4rs in these neurons are required to control energy and glucose homeostasis is unclear. Here we report that Mc4rs in sympathetic, but not parasympathetic, pre-ganglionic neurons are required to regulate energy expenditure and body weight including brown and white adipose tissue thermogenic responses to diet and cold exposure. In addition, deletion of Mc4rs in both sympathetic and parasympathetic cholinergic neurons impairs glucose homeostasis. PMID:24908101

  5. Gender differences in autonomic cardiovascular regulation: spectral, hormonal, and hemodynamic indexes

    NASA Technical Reports Server (NTRS)

    Evans, J. M.; Ziegler, M. G.; Patwardhan, A. R.; Ott, J. B.; Kim, C. S.; Leonelli, F. M.; Knapp, C. F.

    2001-01-01

    The autonomic nervous system drives variability in heart rate, vascular tone, cardiac ejection, and arterial pressure, but gender differences in autonomic regulation of the latter three parameters are not well documented. In addition to mean values, we used spectral analysis to calculate variability in arterial pressure, heart rate (R-R interval, RRI), stroke volume, and total peripheral resistance (TPR) and measured circulating levels of catecholamines and pancreatic polypeptide in two groups of 25 +/- 1.2-yr-old, healthy men and healthy follicular-phase women (40 total subjects, 10 men and 10 women per group). Group 1 subjects were studied supine, before and after beta- and muscarinic autonomic blockades, administered singly and together on separate days of study. Group 2 subjects were studied supine and drug free with the additional measurement of skin perfusion. In the unblocked state, we found that circulating levels of epinephrine and total spectral power of stroke volume, TPR, and skin perfusion ranged from two to six times greater in men than in women. The difference (men > women) in spectral power of TPR was maintained after beta- and muscarinic blockades, suggesting that the greater oscillations of vascular resistance in men may be alpha-adrenergically mediated. Men exhibited muscarinic buffering of mean TPR whereas women exhibited beta-adrenergic buffering of mean TPR as well as TPR and heart rate oscillations. Women had a greater distribution of RRI power in the breathing frequency range and a less negative slope of ln RRI power vs. ln frequency, both indicators that parasympathetic stimuli were the dominant influence on women's heart rate variability. The results of our study suggest a predominance of sympathetic vascular regulation in men compared with a dominant parasympathetic influence on heart rate regulation in women.

  6. Cardiac autonomic imbalance by social stress in rodents: understanding putative biomarkers

    PubMed Central

    Wood, Susan K.

    2014-01-01

    Exposure to stress or traumatic events can lead to the development of depression and anxiety disorders. In addition to the debilitating consequences on mental health, patients with psychiatric disorders also suffer from autonomic imbalance, making them susceptible to a variety of medical disorders. Emerging evidence utilizing spectral analysis of heart rate variability (HRV), a reliable non-invasive measure of cardiovascular autonomic regulation, indicates that patients with depression and various anxiety disorders (i.e., panic, social, generalized anxiety disorders, and post traumatic stress disorder) are characterized by decreased HRV. Social stressors in rodents are ethologically relevant experimental stressors that recapitulate many of the dysfunctional behavioral and physiological changes that occur in psychological disorders. In this review, evidence from clinical studies and preclinical stress models identify putative biomarkers capable of precipitating the comorbidity between disorders of the mind and autonomic dysfunction. Specifically, the role of corticotropin releasing factor, neuropeptide Y and inflammation are investigated. The impetus for this review is to highlight stress-related biomarkers that may prove critical in the development of autonomic imbalance in stress -related psychiatric disorders. PMID:25206349

  7. Physical training induced resting bradycardia and its association with cardiac autonomic nervous activities.

    PubMed

    Alom, M M; Bhuiyan, N I; Hossain, M M; Hoque, M F; Rozario, R J; Nessa, W

    2011-10-01

    Regular physical exercise causes resting bradycardia. This exercise-induced resting bradycardia may be associated with exercise-induced changes in Cardiac autonomic nervous activities (CANA). Power Spectral Analysis (PSA) of Heart rate variability (HRV) is one of the most promising new techniques to quantify CANA. Regular physical exercise induced bradycardia is associated with exercise-induced adaptation in CANA. To observe the HRV parameters by frequency domain method (PSA), in male adolescent athletes in order to find out the influence of regular physical exercise on resting heart rate (HR) and CANA. The cross sectional study was carried out on 62 adolescent male athletes aged 12-18 years (group B), in the Department of Physiology, Bangabandhu Sheikh Mujib Medical University from 1st July 2007 to 30th June 2008. For comparison 30 age, sex and socioeconomic condition matched apparently healthy sedentary subjects (group A) were also studied. The study group was selected from the BKSP (Bangladesh Krira Shikka Prothistan, Savar, Dhaka) and the control from a residential school of Dhaka city. HRV parameters were assessed by Polygraph (Polyrite D, version 2.2). For statistical analysis Independent-Samples t-test was done as applicable. Resting mean HR was significantly (p<0.001) lower in the athletes. The mean value of Total (variance), VLF, LF and HF power was significantly (p<0.001) higher in athletes than that of non-athetes. Regular physical exercise-induced resting bradycardia is associated with exercise-induced adaptation in cardiac autonomic nervous activities. PMID:22081187

  8. P-wave dispersion: an indicator of cardiac autonomic dysfunction in children with neurocardiogenic syncope.

    PubMed

    Köse, Melis Demir; Bağ, Özlem; Güven, Barış; Meşe, Timur; Öztürk, Aysel; Tavlı, Vedide

    2014-04-01

    Neurocardiogenic syncope is the most frequent cause of fainting in childhood and adolescence. Although head-up tilt table testing (HUTT) was previously considered as the reference standard in the diagnosis of syncope, in children with a typical history of reflex syncope, normal physical examination, and electrocardiogram (ECG) are sufficient to cease investigation; however, according to recent reports, TT is indicated in patients in whom this diagnosis cannot be proven by initial evaluation. The hypothesis of this study is that P-wave dispersion (PWD) can be a useful electrocardiographic predictor of cardiac autonomic dysfunction in children with vasovagal syncope (VVS). The study was designed prospectively and included 50 children with positive and 50 children with negative HUTT who presented with at least two previous unexplained episodes of syncope as well as 50 sex- and age-matched healthy children as the control group. All standard 12-lead ECGs were obtained in patients and controls, and the difference between maximum and minimum durations of the P wave was defined as the PWD. A total of 100 children with VVS and 50 healthy controls were evaluated for the study. The P maximum values of HUTT-positive (HUTT[+]) patients were significantly greater than those in the HUTT-negative (HUTT[-]) and control groups(p < 0.05). In addition, mean PWD values were 50.2 ± 18.5, 39.6 ± 11.2 and 32.0 ± 11.2 ms in the HUTT(+), HUTT(-), and control groups, respectively. The difference between groups was statistically significant (p < 0.05). We suggest that PWD is an early sign of cardiac autonomic dysfunction in children with neurally mediated syncope and can be used as a noninvasive electrocardiographic test to evaluate orthostatic intolerance syndromes. PMID:24633236

  9. Oxidative Stress and Systemic Inflammation as Modifiers of Cardiac Autonomic Responses to Particulate Air Pollution

    PubMed Central

    Lee, Mi-Sun; Eum, Ki-Do; Fang, Shona C.; Rodrigues, Ema G.; Modest, Geoffrey A.; Christiani, David C.

    2014-01-01

    Background The role of oxidative stress and systemic inflammation on the association between personal exposures to ambient fine particulate matter ≤ 2.5 μm in diameter (PM2.5) and cardiac autonomic dysfunction, indicated by reduction in heart rate variability (HRV), has not been examined. Methods We performed a repeated measures study on community adults in a densely populated inner city neighborhood in Boston, Massachusetts. Continuous ambulatory electrocardiogram (ECG) monitoring and personal exposure to PM2.5 were measured for up to two consecutive days. Peripheral blood and spot urine samples were collected at 12-hour intervals for the measurements of markers of inflammation including C-reactive protein (CRP), fibrinogen, white blood cell (WBC) and platelet counts as well as for the analysis of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Results After adjusting for confounders, we found a pronounced decrease in nighttime standard deviation of normal-to normal intervals (SDNN): an interquartile range (IQR) increase in PM2.5 (13.6 μg/m3) was associated with an 8.4% decrease in SDNN (95% CI: −11.3 to −5.5). Compared with the lower eightieth percentile, significantly greater PM2.5 associated nighttime SDNN reductions were observed among subjects in the upper twentieth percentile of 8-OHdG by −25.3%, CRP by −24.9%, fibrinogen by −28.7%, WBC by −23.4%, and platelet counts by −24.0% (all P < 0.0001; all Pinteraction <0.01). Conclusions These data suggest that oxidative stress and systemic inflammation exacerbate the adverse effects of PM2.5 on the cardiac autonomic function even at ambient levels of exposure. PMID:25074558

  10. A novel quantitative method for diabetic cardiac autonomic neuropathy assessment in type 1 diabetic mice.

    PubMed

    Chon, Ki H; Yang, Bufan; Posada-Quintero, Hugo F; Siu, Kin L; Rolle, Marsha; Brink, Peter; Birzgalis, Aija; Moore, Leon C

    2014-11-01

    In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention. HRV parameters were measured by processing PPG signals from conscious 1.5- to 5-month-old C57/BL6 control mice and in Akita mice, a model of insulin-dependent type 1 diabetes, and compared with the gold-standard Western blot and immunohistochemical analyses. The PDM results indicate significant cardiac autonomic impairment in the diabetic mice in comparison to the controls. When tail-cuff PPG recordings were collected and analyzed starting from 1.5 months of age in both C57/Bl6 controls and Akita mice, onset of DCAN was seen at 3 months in the Akita mice, which persisted up to the termination of the recording at 5 months. Western blot and immunohistochemical analyses also showed a reduction in nerve density in Akita mice at 3 and 4 months as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. Western blot analysis of autonomic nerve proteins corroborated the PPG-based HRV analysis via the PDM approach. In contrast, traditional HRV analysis (based on either the power spectral density or time-domain measures) failed to detect the nerve rarefaction. PMID:25097056

  11. A Novel Quantitative Method for Diabetic Cardiac Autonomic Neuropathy Assessment in Type 1 Diabetic Mice

    PubMed Central

    Yang, Bufan; Posada-Quintero, Hugo F.; Siu, Kin L.; Rolle, Marsha; Brink, Peter; Birzgalis, Aija; Moore, Leon C.

    2014-01-01

    In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention. HRV parameters were measured by processing PPG signals from conscious 1.5- to 5-month-old C57/BL6 control mice and in Akita mice, a model of insulin-dependent type 1 diabetes, and compared with the gold-standard Western blot and immunohistochemical analyses. The PDM results indicate significant cardiac autonomic impairment in the diabetic mice in comparison to the controls. When tail-cuff PPG recordings were collected and analyzed starting from 1.5 months of age in both C57/Bl6 controls and Akita mice, onset of DCAN was seen at 3 months in the Akita mice, which persisted up to the termination of the recording at 5 months. Western blot and immunohistochemical analyses also showed a reduction in nerve density in Akita mice at 3 and 4 months as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. Western blot analysis of autonomic nerve proteins corroborated the PPG-based HRV analysis via the PDM approach. In contrast, traditional HRV analysis (based on either the power spectral density or time-domain measures) failed to detect the nerve rarefaction. PMID:25097056

  12. Influence of hydrotherapy on clinical and cardiac autonomic function in migraine patients

    PubMed Central

    Sujan, M. U.; Rao, M. Raghavendra; Kisan, Ravikiran; Abhishekh, Hulegar A.; Nalini, Atchayaram; Raju, Trichur R.; Sathyaprabha, T. N.

    2016-01-01

    Background: Migraine is associated with autonomic symptoms. The growing body of literature suggests that the dysfunctional autonomic nervous system might play a pivotal role in the pathogenesis of migraine. Thermal therapies have been hypothesized to modulate these changes and alleviate pain. However, data regarding the efficacy of hydrotherapy in migraine remain scant. We evaluated the effect of add on hydrotherapy procedure (a hot arm and foot bath with ice massage to head) in migraine patients. Methods: Forty chronic migraine patients fulfilling the International Classification of Headache Disorders II criteria were recruited from the neurology outpatient clinic. Patients were randomized to receive either hydrotherapy plus conventional pharmacological care (n = 20) or conventional medication only (n = 20). Hydrotherapy group received treatment with hot arm and foot bath (103°F to 110°F) and ice massage to head daily for 20 min for 45 days. Patients were assessed using headache impact test (HIT), visual analog scale for pain and cardiac autonomic function by heart rate variability (HRV) before and after intervention period. Results: There was a significant decrease in HIT score, frequency, and intensity of headaches following treatment in both the groups. However, it was more evident in add on hydrotherapy group compared to pharmacological treatment alone group. There was also significant improvement in the HRV parameters. In particular, there was a significant decrease in heart rate (P = 0.017), increase in high frequency (HF) (P = 0.014) and decrease in low frequency/HF ratio (P = 0.004) in add on hydrotherapy group. Conclusion: Our study shows that add on hydrotherapy enhanced the vagal tone in addition to reducing the frequency and intensity of headaches in migraine patients. PMID:26933356

  13. Distinctive cardiac autonomic dysfunction following stress exposure in both sexes in an animal model of PTSD.

    PubMed

    Koresh, Ori; Kaplan, Zeev; Zohar, Joseph; Matar, Michael A; Geva, Amir B; Cohen, Hagit

    2016-07-15

    It is unclear whether the poor autonomic flexibility or dysregulation observed in patients with posttraumatic stress disorder (PTSD) represents a pre-trauma vulnerability factor or results from exposure to trauma. We used an animal model of PTSD to assess the association between the behavioral response to predator scent stress (PSS) and the cardiac autonomic modulation in male and female rats. The rats were surgically implanted with radiotelemetry devices to measure their electrocardiograms and locomotor activity (LMA). Following baseline telemetric monitoring, the animals were exposed to PSS or sham-PSS. Continuous telemetric monitoring (24h/day sampling) was performed over the course of 7days. The electrocardiographic recordings were analyzed using the time- and frequency-domain indexes of heart rate variability (HRV). The behavioral response patterns were assessed using the elevated plus maze and acoustic startle response paradigms for the retrospective classification of individuals according to the PTSD-related cut-off behavioral criteria. During resting conditions, the male rats had significantly higher heart rates (HR) and lower HRV parameters than the female rats during both the active and inactive phases of the daily cycle. Immediately after PSS exposure, both the female and male rats demonstrated a robust increase in HR and a marked drop in HRV parameters, with a shift of sympathovagal balance towards sympathetic predominance. In both sexes, autonomic system habituation and recovery were selectively inhibited in the rats whose behavior was extremely disrupted after exposure to PSS. However, in the female rats, exposure to the PSS produced fewer EBR rats, with a more rapid recovery curve than that of the male rats. PSS did not induce changes to the circadian rhythm of the LMA. According to our results, PTSD can be conceptualized as a disorder that is related to failure-of-recovery mechanisms that impede the restitution of physiological homeostasis. PMID

  14. Cardiac Autonomic Effects of Acute Exposures to Airborne Particulates in Men and Women

    NASA Technical Reports Server (NTRS)

    Howarth, M. S.; Schlegel, T. T.; Knapp, C. F.; Patwardhan, A. R.; Jenkins, R. A.; Ilgner, R. H.; Evans, J. M.

    2007-01-01

    The aim of this research was to investigate cardiac autonomic changes associated with acute exposures to airborne particulates. Methods: High fidelity 12-lead ECG (CardioSoft, Houston, TX) was acquired from 19 (10 male / 9 female) non-smoking volunteers (age 33.6 +/- 6.6 yrs) during 10 minutes pre-exposure, exposure and post-exposure to environmental tobacco smoke (ETS), cooking oil fumes, wood smoke and sham (water vapor). To control exposure levels, noise, subject activity, and temperature, all studies were conducted inside an environmental chamber. Results: The short-term fractal scaling exponent (Alpha-1) and the ratio of low frequency to high frequency Heart Rate Variability (HRV) powers (LF/HF, a purported sympathetic index) were both higher in males (p<0.017 and p<0.05, respectively) whereas approximate entropy (ApEn) and HF/(LF+HF) (a purported parasympathetic index) were both lower in males (p<0.036, and p<0.044, respectively). Compared to pre-exposure (p<0.0002) and sham exposure (p<0.047), male heart rates were elevated during early ETS post-exposure. Our data suggest that, in addition to tonic HRV gender differences, cardiac responses to some acute airborne particulates are gender related.

  15. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Dobutamine Challenges in Heart Failure–Prone Rats

    PubMed Central

    Farraj, Aimen K.

    2013-01-01

    Cardiac disease exacerbation is associated with short-term exposure to vehicular emissions. Diesel exhaust (DE) might impair cardiac performance in part through perturbing efferent sympathetic and parasympathetic autonomic nervous system (ANS) input to the heart. We hypothesized that acute changes in ANS balance mediate decreased cardiac performance upon DE inhalation. Young adult heart failure–prone rats were implanted with radiotelemeters to measure heart rate (HR), HR variability (HRV), blood pressure (BP), core body temperature, and pre-ejection period (PEP, a contractility index). Animals pretreated with sympathetic antagonist (atenolol), parasympathetic antagonist (atropine), or saline were exposed to DE (500 µg/m3 fine particulate matter, 4h) or filtered air and then treadmill exercise challenged. At 1 day postexposure, separate rats were catheterized for left ventricular pressure (LVP), contractility, and lusitropy and assessed for autonomic influence using the sympathoagonist dobutamine and surgical vagotomy. During DE exposure, atenolol inhibited increases in HR, BP, and contractility, but not body temperature, suggesting a role for sympathetic dominance. During treadmill recovery at 4h post-DE exposure, HR and HRV indicated parasympathetic dominance in saline- and atenolol-pretreated groups that atropine inhibited. Conversely, at treadmill recovery 21h post-DE exposure, HRV and PEP indicated sympathetic dominance and subsequently diminished contractility that only atenolol inhibited. LVP at 1 day postexposure indicated that DE impaired contractility and lusitropy while abolishing parasympathetic-regulated cardiac responses to dobutamine. This is the first evidence that air pollutant inhalation both causes time-dependent oscillations between sympathetic and parasympathetic dominance and decreases cardiac performance via aberrant sympathetic dominance. PMID:23872579

  16. Validation of a questionnaire measuring the regulation of autonomic function

    PubMed Central

    Kröz, M; Feder, G; von Laue, HB; Zerm, R; Reif, M; Girke, M; Matthes, H; Gutenbrunner, C; Heckmann, C

    2008-01-01

    Background To broaden the range of outcomes that we can measure for patients undergoing treatment for oncological and other chronic conditions, we aimed to validate a questionnaire measuring self-reported autonomic regulation (aR), i.e. to characterise a subject's autonomic functioning by questions on sleeping and waking, vertigo, morningness-eveningness, thermoregulation, perspiration, bowel movements and digestion. Methods We administered the questionnaire to 440 participants (♀: N = 316, ♂: N = 124): 95 patients with breast cancer, 49 with colorectal cancer, 60 with diabetes mellitus, 39 with coronary heart disease, 28 with rheumatological conditions, 32 with Hashimoto's disease, 22 with multiple morbidities and 115 healthy people. We administered the questionnaire a second time to 50.2% of the participants. External convergence criteria included the German version of the Hospital Anxiety and Depression Scale (HADS-D), a short questionnaire on morningness-eveningness, the Herdecke Quality of Life Questionnaire (HLQ) and a short version questionnaire on self-regulation. Results A principal component analysis yielded a three dimensional 18-item inventory of aR. The subscales orthostatic-circulatory, rest/activity and digestive regulation had internal consistency (Cronbach-α: rα = 0.65 – 0.75) and test-retest reliability (rrt = 0.70 – 85). AR was negatively associated with anxiety, depression, and dysmenorrhoea but positively correlated to HLQ, self-regulation and in part to morningness (except digestive aR) (0.49 – 0.13, all p < 0.05). Conclusion An internal validation of the long-version scale of aR yielded consistent relationships with health versus illness, quality of life and personality. Further studies are required to clarify the issues of external validity, clinical and physiological relevance. PMID:18533043

  17. Nine months in space: effects on human autonomic cardiovascular regulation.

    PubMed

    Cooke, W H; Ames JE, I V; Crossman, A A; Cox, J F; Kuusela, T A; Tahvanainen, K U; Moon, L B; Drescher, J; Baisch, F J; Mano, T; Levine, B D; Blomqvist, C G; Eckberg, D L

    2000-09-01

    We studied three Russian cosmonauts to better understand how long-term exposure to microgravity affects autonomic cardiovascular control. We recorded the electrocardiogram, finger photoplethysmographic pressure, and respiratory flow before, during, and after two 9-mo missions to the Russian space station Mir. Measurements were made during four modes of breathing: 1) uncontrolled spontaneous breathing; 2) stepwise breathing at six different frequencies; 3) fixed-frequency breathing; and 4) random-frequency breathing. R wave-to-R wave (R-R) interval standard deviations decreased in all and respiratory frequency R-R interval spectral power decreased in two cosmonauts in space. Two weeks after the cosmonauts returned to Earth, R-R interval spectral power was decreased, and systolic pressure spectral power was increased in all. The transfer function between systolic pressures and R-R intervals was reduced in-flight, was reduced further the day after landing, and had not returned to preflight levels by 14 days after landing. Our results suggest that long-duration spaceflight reduces vagal-cardiac nerve traffic and decreases vagal baroreflex gain and that these changes may persist as long as 2 wk after return to Earth. PMID:10956348

  18. The Relationship between Expressive/Suppressive Hostility Behavior and Cardiac Autonomic Activations in Patients with Coronary Artery Disease

    PubMed Central

    Lin, I-Mei; Weng, Chia-Ying; Lin, Tin-Kwang; Lin, Chin-Lon

    2015-01-01

    Background Hostility is an important psychosocial risk factor in coronary artery disease (CAD). Expressive and suppressive hostility behaviors are related to cardiovascular response in healthy adults. However, the relationships of these behavioral dimensions to cardiac autonomic activations in CAD remain unclear. Method This study involved 76 patients with CAD to whom a hostility inventory was administered, who were instructed to recall a neutral event and an anger-related event. Heart rate and blood pressure were obtained for each patient as the indices of cardiovascular response; heart rate variability was transformed from electrocardiograph and as the indices of cardiac autonomic activation. Results The results showed that CAD patients with expressive hostility behavior experienced higher cardiovascular autonomic activations during the neutral and anger recall tasks, and lower parasympathetic activations during the recovery after an anger episode. On the other hand, CAD patients with suppressive hostility behavior experienced both sympathetic and parasympathetic activations during the baseline and recovery stages, as well as simultaneously activated higher parasympathetic response. Conclusions The results of this study suggested that it is appropriate to extend the cardiac autonomic activation model for expressive and suppressive hostility behaviors in patients with CAD. PMID:27122887

  19. The use of pupillometry in the assessment of cardiac autonomic function in elite different type trained athletes.

    PubMed

    Kaltsatou, Antonia; Kouidi, Evangelia; Fotiou, Dimitrios; Deligiannis, Pantazis

    2011-09-01

    The aim of the present study was to evaluate cardiac autonomic function by pupillometry in male athletes. Fifteen elite endurance- (END) and eleven power-trained (POWER) athletes and fifteen sedentary individuals (CONTROL) were studied. All subjects underwent three pupillometric measurements: at rest, peak exercise testing and recovery phase. The pupillometric indices studied were: baseline pupil radius (R1), minimum pupil radius (R2), maximum constriction velocity (VC(max)), maximum constriction acceleration (AC(max)), amplitude (AMP, R1-R2), constriction ratio (AMP%). During exercise, RR intervals were obtained for each subject with a Polar S810i for time and frequency domain heart rate variability (HRV) analysis. The following parameters of HRV were measured: standard deviation of all NN intervals (SDNN), the mean square successive differences (rMSSD), percent of NN intervals differing >50 ms from the preceding NN (pNN50), low (LF)- and high (HF)- frequency components of the autoregressive power spectrum of the NN intervals and their ratio (LF/HF). At rest and recovery, END showed significantly increased VC(max) and AC(max) compared to POWER and CONTROL. AMP% was significantly greater in END at rest, peak exercise and recovery compared to POWER and CONTROL. END and POWER had significantly greater AMP at rest and recovery compared to CONTROL. Moreover, all HRV indices were significantly increased in END compared to POWER and CONTROL. However, POWER showed significantly increased rMSSD and LF compared to CONTROL. HRV parameters were significantly correlated with pupillometric parameters during exercise. Our results indicated that any kind of exercise training and mainly endurance one affects autonomic regulation of pupillary light reflex. PMID:21259023

  20. Acute toxicant exposure and cardiac autonomic dysfunction from smoking a single narghile waterpipe with tobacco and with a "healthy" tobacco-free alternative.

    PubMed

    Cobb, Caroline O; Sahmarani, Kamar; Eissenberg, Thomas; Shihadeh, Alan

    2012-11-23

    Tobacco smoking using a waterpipe (narghile, hookah, shisha) has become a global epidemic. Unlike cigarette smoking, little is known about the health effects of waterpipe use. One acute effect of cigarette smoke inhalation is dysfunction in autonomic regulation of the cardiac cycle, as indicated by reduction in heart rate variability (HRV). Reduced HRV is implicated in adverse cardiovascular health outcomes, and is associated with inhalation exposure-induced oxidative stress. Using a 32 participant cross-over study design, we investigated toxicant exposure and effects of waterpipe smoking on heart rate variability when, under controlled conditions, participants smoked a tobacco-based and a tobacco-free waterpipe product promoted as an alternative for "health-conscious" users. Outcome measures included HRV, exhaled breath carbon monoxide (CO), plasma nicotine, and puff topography, which were measured at times prior to, during, and after smoking. We found that waterpipe use acutely decreased HRV (p<0.01 for all measures), independent of product smoked. Plasma nicotine, blood pressure, and heart rate increased only with the tobacco-based product (p<0.01), while CO increased with both products (p<0.01). More smoke was inhaled during tobacco-free product use, potentially reflecting attempted regulation of nicotine intake. The data thus indicate that waterpipe smoking acutely compromises cardiac autonomic function, and does so through exposure to smoke constituents other than nicotine. PMID:23059956

  1. Impact of a soccer match on the cardiac autonomic control of referees.

    PubMed

    Boullosa, Daniel Alexandre; Abreu, Laurinda; Tuimil, José Luis; Leicht, Anthony Scott

    2012-06-01

    The purpose of this study was to assess the effect of a soccer match on the cardiac autonomic control of heart rate (HR) in soccer referees. Sixteen Spanish regional and third division referees (11 males: 26 ± 7 years, 74.4 ± 4.1 kg, 178 ± 3 cm, Yo-Yo IR1 ~600-1,560 m; 5 females: 22 ± 3 years, 59.3 ± 4.8 kg, 158 ± 8 cm, Yo-Yo IR1 ~200-520 m) participated with 24-h HR recordings measured with a Polar RS800 during a rest and a match day. Autonomic control of HR was assessed from HR variability (HRV) analysis. Inclusion of a soccer match (92.5% spent at >75% maximum HR) reduced pre-match (12:00-17:00 hours; small to moderate), post-match (19:00-00:00 hours; moderate to almost perfect), and night-time (00:00-05:00 hours; small to moderate) HRV. Various moderate-to-large correlations were detected between resting HRV and the rest-to-match day difference in HRV. The rest-to-match day differences of low and high-frequency bands ratio (LF/HF) and HR in the post-match period were moderately correlated with time spent at different exercise intensities. Yo-Yo IR1 performance was highly correlated with jump capacity and peak lactate, but not with any HRV parameter. These results suggest that a greater resting HRV may allow referees to tolerate stresses during a match day with referees who spent more time at higher intensities during matches exhibiting a greater LF/HF increment in the post-match period. The relationship between match activities, [Formula: see text] and HR recovery kinetics in referees and team sport athletes of different competitive levels remains to be clarified. PMID:21997680

  2. Metabolic and cardiac autonomic effects of high-intensity resistance training protocol in Wistar rats.

    PubMed

    de Deus, Ana Paula; de Oliveira, Claudio Ricardo; Simões, Rodrigo Polaquini; Baldissera, Vilmar; da Silva, Carlos Alberto; Rossi, Bruno Rafael Orsini; de Sousa, Hugo Celso Dutra; Parizotto, Nivaldo Antonio; Arena, Ross; Borghi-Silva, Audrey

    2012-03-01

    The aim of this study was to assess the effects of metabolic and autonomic nervous control on high-intensity resistance training (HRT) as determined by pancreatic glucose sensitivity (GS), insulin sensitivity (IS), blood lactate ([La]), and heart rate variability (HRV) in rats. Thirty male, albino Wistar rats (292 ± 20 g) were divided into 3 groups: sedentary control (SC), low-resistance training (LRT), and HRT. The animals in the HRT group were submitted to a high-resistance protocol with a progressively increasing load relative to body weight until exhaustion, whereas the LRT group performed the same exercise regimen with no load progression. The program was conducted 3 times per week for 8 weeks. The [La], parameters related to the functionality of pancreatic tissue, and HRV were measured. There was a significant increase in peak [La] only in the HRT group, but there was a reduction in [La] when corrected to the maximal load in both trained groups (LRT and HRT, p < 0.05). Both trained groups exhibited an increase in IS; however, compared with SC and LRT, HRT demonstrated a significantly higher GS posttraining (p < 0.05). With respect to HRV, the low-frequency (LF) band, in milliseconds squared, reduced in both trained groups, but the high-frequency band, in milliseconds squared and nu, increased, and the LF in nu, decreased only in the HRT group (p < 0.05). The HRT protocol produced significant and beneficial metabolic and cardiac autonomic adaptations. These results provide evidence for the positive benefits of HRT in counteracting metabolic and cardiovascular dysfunction. PMID:22067239

  3. From syncitium to regulated pump: a cardiac muscle cellular update

    PubMed Central

    2011-01-01

    The primary purpose of this article is to present a basic overview of some key teaching concepts that should be considered for inclusion in an six- to eight-lecture introductory block on the regulation of cardiac performance for graduate students. Within the context of cardiac excitation-contraction coupling, this review incorporates information on Ca2+ microdomains and local control theory, with particular emphasis on the role of Ca2+ sparks as a key regulatory component of ventricular myocyte contraction dynamics. Recent information pertaining to local Ca2+ cycling in sinoatrial nodal cells (SANCs) as a mechanism underlying cardiac automaticity is also presented as part of the recently described coupled-clock pacemaker system. The details of this regulation are emerging; however, the notion that the sequestration and release of Ca2+ from internal stores in SANCs (similar to that observed in ventricular myocytes) regulates the rhythmic excitation of the heart (i.e., membrane ion channels) is an important advancement in this area. The regulatory role of cardiac adrenergic receptors on cardiac rate and function is also included, and fundamental concepts related to intracellular signaling are discussed. An important point of emphasis is that whole organ cardiac dynamics can be traced back to cellular events regulating intracellular Ca2+ homeostasis and, as such, provides an important conceptual framework from which students can begin to think about whole organ physiology in health and disease. Greater synchrony of Ca2+-regulatory mechanisms between ventricular and pacemaker cells should enhance student comprehension of complex regulatory phenomenon in cardiac muscle. PMID:21385997

  4. Cardiac autonomic function during sleep: effects of alcohol dependence and evidence of partial recovery with abstinence

    PubMed Central

    de Zambotti, Massimiliano; Willoughby, Adrian R.; Baker, Fiona C.; Sugarbaker, David S.; Colrain, Ian M.

    2015-01-01

    Chronic alcoholism is associated with the development of cardiac and peripheral autonomic nervous system (ANS) pathology. The aim of the present study was to evaluate the extent to which recovery in ANS function could be demonstrated over the first 4 months of abstinence. Fifteen alcoholics (7 women) were studied on three occasions: within a month of detoxification, at approximately 2 months post-detox, and at 4 months post-detox. Thirteen control subjects (6 women) were also studied on three occasions with inter-study intervals matching those of the alcoholics. Six alcoholics relapsed, 48.7 ± 27.9 days following the initial PSG session. ANS function was assessed in the first part of stable non-rapid eye movement sleep. Frequency-domain power spectral analysis of heart rate variability (HRV) produced variables including: heart rate (HR), total power (TP; an index representing total HR variability), High Frequency power (HFa; an index reflecting cardiac vagal modulation), HF proportion of total power (HFprop sympathovagal balance), and HF peak frequency (HFpf; an index reflecting respiration rate). Overall, high total and high frequency variability and low sympathovagal balance and myocardial contractility are considered as desired conditions to promote cardiovascular health. At initial assessment, alcoholics had a higher HR (p < 0.001) and respiratory rate (p < 0.01), and lower vagal activity (HFa; p < 0.01) than controls. Alcoholics showed evidence of recovery in HR (p = 0.039) and HFa (p = 0.031) with 4 months of abstinence. Alcoholics with higher TP at the initial visit showed a greater improvement in TP from the initial to the 4-month follow-up session (r = 0.75, p < 0.05). Alcoholics showed substantial recovery in HR and vagal modulation of HRV with 4 months of abstinence, with evidence that the extent of recovery in HRV may be partially determined by the extent of alcohol dependence-related insult to the cardiac ANS system. These data support other studies

  5. Cardiac autonomic function during sleep: effects of alcohol dependence and evidence of partial recovery with abstinence.

    PubMed

    de Zambotti, Massimiliano; Willoughby, Adrian R; Baker, Fiona C; Sugarbaker, David S; Colrain, Ian M

    2015-06-01

    Chronic alcoholism is associated with the development of cardiac and peripheral autonomic nervous system (ANS) pathology. The aim of the present study was to evaluate the extent to which recovery in ANS function could be demonstrated over the first 4 months of abstinence. Fifteen alcoholics (7 women) were studied on three occasions: within a month of detoxification, at approximately 2 months post-detox, and at 4 months post-detox. Thirteen control subjects (6 women) were also studied on three occasions with inter-study intervals matching those of the alcoholics. Six alcoholics relapsed, 48.7 ± 27.9 days following the initial PSG session. ANS function was assessed in the first part of stable non-rapid eye movement sleep. Frequency-domain power spectral analysis of heart rate variability (HRV) produced variables including: heart rate (HR), total power (TP; an index representing total HR variability), High Frequency power (HFa; an index reflecting cardiac vagal modulation), HF proportion of total power (HFprop sympathovagal balance), and HF peak frequency (HFpf; an index reflecting respiration rate). Overall, high total and high frequency variability and low sympathovagal balance and myocardial contractility are considered as desired conditions to promote cardiovascular health. At initial assessment, alcoholics had a higher HR (p < 0.001) and respiratory rate (p < 0.01), and lower vagal activity (HFa; p < 0.01) than controls. Alcoholics showed evidence of recovery in HR (p = 0.039) and HFa (p = 0.031) with 4 months of abstinence. Alcoholics with higher TP at the initial visit showed a greater improvement in TP from the initial to the 4 month follow-up session (r = 0.75, p < 0.05). Alcoholics showed substantial recovery in HR and vagal modulation of HRV with 4 months of abstinence, with evidence that the extent of recovery in HRV may be partially determined by the extent of alcohol dependence-related insult to the cardiac ANS system. These data support other studies

  6. Epigenetic and lncRNA regulation of cardiac pathophysiology.

    PubMed

    Chang, Ching-Pin; Han, Pei

    2016-07-01

    Our developmental studies provide an insight into the pathogenesis of heart failure in adults. These studies reveal a mechanistic link between fetal cardiomyocytes and pathologically stressed adult cardiomyocytes at the level of chromatin regulation. In embryos, chromatin-regulating factors within the cardiomyocytes respond to developmental signals to program cardiac gene expression to promote cell proliferation and inhibit premature cell differentiation. In the neonatal period, the activity of these developmental chromatin regulators is quickly turned off in cardiomyocytes, coinciding with the cessation of cell proliferation and advance in cell differentiation toward adult maturity. When the mature hearts are pathologically stressed, those chromatin regulators essential for cardiomyocyte development in embryos are reactivated, triggering gene reprogramming to a fetal-like state and pathological cardiac hypertrophy. Furthermore, in the study of chromatin regulation and cardiac gene expression, we identified a long noncoding RNA that interacts with chromatin remodeling factor to regulate the cardiac response to environmental changes. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26969820

  7. Regulation of autonomic nervous system in space and magnetic storms

    NASA Astrophysics Data System (ADS)

    Baevsky, R. M.; Petrov, V. M.; Chernikova, A. G.

    Variations in the earth's magnetic field and magnetic storms are known to be a risk factor for the development of cardiovascular disorders. The main ``targets'' for geomagnetic perturbations are the central nervous system and the neural regulation of vascular tone and heart rate variability. This paper presents the data about effect of geomagnetic fluctuations on human body in space. As a method for research the analysis of heart rate variability was used, which allows evaluating the state of the sympathetic and parasympathetic parts of the autonomic nervous system, vasomotor center and subcortical neural centers activity. Heart rate variability data were analyzed for 30 cosmonauts at the 2-nd day of space flight on transport spaceship Soyuz (32nd orbit). There were formed three groups of cosmonauts: without magnetic storm (n=9), on a day with magnetic storm (n=12) and 1-2 days after magnetic storm (n=9). The present study was the first to demonstrate a specific impact of geomagnetic perturbations on the system of autonomic circulatory control in cosmonauts during space flight. The increasing of highest nervous centers activity was shown for group with magnetic storms, which was more significant on 1-2 days after magnetic storm. The use of discriminate analysis allowed to classify indicated three groups with 88 % precision. Canonical variables are suggested to be used as criterions for evaluation of specific and non-specific components of cardiovascular reactions to geomagnetic perturbations. The applied aspect of the findings from the present study should be emphasized. They show, in particular, the need to supplement the medical monitoring of cosmonauts with predictions of probable geomagnetic perturbations in view of the prevention of unfavorable states appearances if the adverse reactions to geomagnetic perturbations are added to the tension experienced by regulatory systems during various stresses situations (such as work in the open space).

  8. Sequential modulation of cardiac autonomic control induced by cardiopulmonary and arterial baroreflex mechanisms

    NASA Technical Reports Server (NTRS)

    Furlan, R.; Jacob, G.; Palazzolo, L.; Rimoldi, A.; Diedrich, A.; Harris, P. A.; Porta, A.; Malliani, A.; Mosqueda-Garcia, R.; Robertson, D.

    2001-01-01

    BACKGROUND: Nonhypotensive lower body negative pressure (LBNP) induces a reflex increase in forearm vascular resistance and muscle sympathetic neural discharge without affecting mean heart rate. We tested the hypothesis that a reflex change of the autonomic modulation of heartbeat might arise during low intensity LBNP without changes of mean heart rate. METHODS AND RESULTS: Ten healthy volunteers underwent plasma catecholamine evaluation and a continuous recording of ECG, finger blood pressure, respiratory activity, and central venous pressure (CVP) during increasing levels of LBNP up to -40 mm Hg. Spectrum and cross-spectrum analyses assessed the changes in the spontaneous variability of R-R interval, respiration, systolic arterial pressure (SAP), and CVP and in the gain (alpha(LF)) of arterial baroreflex control of heart rate. Baroreceptor sensitivity was also evaluated by the SAP/R-R spontaneous sequences technique. LBNP began decreasing significantly: CVP at -10, R-R interval at -20, SAP at -40, and the indexes alpha(LF) and baroreceptor sensitivity at -30 and -20 mm Hg, compared with baseline conditions. Plasma norepinephrine increased significantly at -20 mm Hg. The normalized low-frequency component of R-R variability (LF(R-R)) progressively increased and was significantly higher than in the control condition at -15 mm Hg. CONCLUSIONS: Nonhypotensive LBNP elicits a reflex increase of cardiac sympathetic modulation, as evaluated by LF(R-R), which precedes the changes in the hemodynamics and in the indexes of arterial baroreflex control.

  9. Prenatal Stress and Balance of the Child's Cardiac Autonomic Nervous System at Age 5-6 Years

    PubMed Central

    van Dijk, Aimée E.; van Eijsden, Manon; Stronks, Karien; Gemke, Reinoud J. B. J.; Vrijkotte, Tanja G. M.

    2012-01-01

    Objective Autonomic nervous system (ANS) misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. Methods Mothers from a prospective birth cohort (ABCD study) filled out a questionnaire at gestational week 16 [IQR 12–20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80th percentiles). Indicators of cardiac ANS in the offspring at age 5–6 years are: pre-ejection period (PEP), heart rate (HR), respiratory sinus arrhythmia (RSA) and cardiac autonomic balance (CAB), measured with electrocardiography and impedance cardiography in resting supine and sitting positions. Results 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p≥0.17). Accumulation of maternal stress was also not associated with HR, PEP, RSA and CAB (p≥0.07). Conclusion Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac ANS balance in the offspring, at least in rest, and at the age of five-six years. PMID:22272345

  10. Assesment of Heart Rate Variability As A Measure of Cardiac Autonomic Status in Psychiatric Patients Exposed to Chemical Irritants

    PubMed Central

    Gupta, Supriya; Rastogi, Rajesh; Gupta, Manushree

    2015-01-01

    Background and Purpose However, little is known about the cardiac autonomic activity due to chemicals in psychiatric patients. Therefore, the objective of this study was to assess the effect of chemical irritants on the ANS of the person and measure that in the form of Heart Rate Variability (HRV), a noninvasive method to estimate the cardiac autonomic activity. The autonomic nervous system can significantly compromised by use of chemical irritants. Materials and Methods A cross-sectional hospital based study was conducted in which 33 patients (mean age: 29.94 years) of depression/anxiety were compared with 37 age matched controls (mean age: 28.10). The patients who were diagnosed as either depressed or anxious by the psychiatry were included in the study group by random sampling. Out of these 8 patients gave positive history of odour use. Thirty seven age matched healthy persons were taken as controls. Grading of patients was done according to DSMV-IV criteria and short- term HRV was recorded. Five minute HRV recording was done and time domain and frequency domain indices of HRV were assessed using RMS Polyearite D. The result in case and control groups was compared. Results We have reported a poor HRV compared to control group in patients of depression/anxiety as reflected by NN50 values (p< 0.05). Although not significant the trend shows a better HRV control in almost all the time domain and frequency domain parameters in controls compared to cases. Regarding the history of use of chemical irritants the trend showed a poor HRV control in these cases compared to the patients who did not give any such history. Conclusion Our results suggest that impaired cardiac autonomic nerve function characterized by sympathetic over activity may occur in depression/phobic patients. The study also proves a poor HRV in psychiatric subjects with history of use of odoriferous substances. PMID:26266195

  11. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue

    PubMed Central

    Welsh, David K.

    2016-01-01

    Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+. PMID:27459195

  12. Adaptation of autonomic heart rate regulation in astronauts after spaceflight

    PubMed Central

    Vandeput, Steven; Widjaja, Devy; Aubert, Andre E.; Van Huffel, Sabine

    2013-01-01

    Background Spaceflight causes changes in the cardiovascular control system. The aim of this study was to evaluate postflight recovery of linear and nonlinear neural markers of heart rate modulation, with a special focus on day-night variations. Material/Methods Twenty-four-hour Holter ECG recordings were obtained in 8 astronauts participating in space missions aboard the International Space Station (ISS). Data recording was performed 1 month before launch, and 5 and 30 days after return to Earth from short- and long-term flights. Cardiovascular control was inferred from linear and nonlinear heart rate variability (HRV) parameters, separately during 2-hour day and 2-hour night recordings. Results No remarkable differences were found in the postflight recovery between astronauts from short- and long-duration spaceflights. Five days after return to Earth, vagal modulation was significantly decreased compared to the preflight condition (day: p=0.001; night: p=0.019), while the sympathovagal balance was strongly increased, but only at night (p=0.017). A few nonlinear parameters were reduced early postflight compared to preflight values, but these were not always statistically significant. No significant differences remained after 30 days of postflight recovery. Conclusions Our results show that 5 days after return from both short- and long-duration space missions, neural mechanisms of heart rate regulation are still disturbed. After 1 month, autonomic control of heart rate recovered almost completely. PMID:23291736

  13. Exercise Type Affects Cardiac Vagal Autonomic Recovery After a Resistance Training Session.

    PubMed

    Mayo, Xián; Iglesias-Soler, Eliseo; Fariñas-Rodríguez, Juán; Fernández-Del-Olmo, Miguel; Kingsley, J Derek

    2016-09-01

    Mayo, X, Iglesias-Soler, E, Fariñas-Rodríguez, J, Fernández-del-Olmo, M, and Kingsley, JD. Exercise type affects cardiac vagal autonomic recovery after a resistance training session. J Strength Cond Res 30(9): 2565-2573, 2016-Resistance training sessions involving different exercises and set configurations may affect the acute cardiovascular recovery pattern. We explored the interaction between exercise type and set configuration on the postexercise cardiovagal withdrawal measured by heart rate variability and their hypotensive effect. Thirteen healthy participants (10 repetitions maximum [RM] bench press: 56 ± 10 kg; parallel squat: 91 ± 13 kg) performed 6 sessions corresponding to 2 exercises (Bench press vs. Parallel squat), 2 set configurations (Failure session vs. Interrepetition rest session), and a Control session of each exercise. Load (10RM), volume (5 sets), and rest (720 seconds) were equated between exercises and set configurations. Parallel squat produced higher reductions in cardiovagal recovery vs. Bench press (p = 0.001). These differences were dependent on the set configuration, with lower values in Parallel squat vs. Bench press for Interrepetition rest session (1.816 ± 0.711 vs. 2.399 ± 0.739 Ln HF/IRR × 10, p = 0.002), but not for Failure session (1.647 ± 0.904 vs. 1.808 ± 0.703 Ln HF/IRR × 10, p > 0.05). Set configuration affected the cardiovagal recovery, with lower values in Failure session in comparison with Interrepetition rest (p = 0.027) and Control session (p = 0.022). Postexercise hypotension was not dependent on the exercise type (p > 0.05) but was dependent on the set configuration, with lower values of systolic (p = 0.004) and diastolic (p = 0.011) blood pressure after the Failure session but not after an Interrepetition rest session in comparison with the Control session (p > 0.05). These results suggest that the exercise type and an Interrepetition rest design could blunt the decrease of cardiac vagal activity after

  14. Cardiac and neuroprotection regulated by α1-adrenergic receptor subtypes

    PubMed Central

    Perez, Dianne M.; Doze, Van A.

    2013-01-01

    Sympathetic nervous system regulation by the α1-adrenergic receptor (AR) subtypes (α1A, α1B, α1D) is complex, whereby chronic activity can be either detrimental or protective for both heart and brain function. This review will summarize the evidence that this dual regulation can be mediated through the different α1-AR subtypes in the context of cardiac hypertrophy, heart failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration, cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness. PMID:21338248

  15. Cardiac autonomic response following high-intensity running work-to-rest interval manipulation.

    PubMed

    Cipryan, Lukas; Laursen, Paul B; Plews, Daniel J

    2016-10-01

    The cardiorespiratory, cardiac autonomic (via heart rate variability (HRV)) and plasma volume responses to varying sequences of high-intensity interval training (HIT) of consistent external work were investigated. Twelve moderately trained males underwent three HIT bouts and one control session. The HIT trials consisted of warm-up, followed by 12 min of 15 s, 30 s or 60 s work:relief HIT sequences at an exercise intensity of 100% of the individual velocity at [Formula: see text]O2max (v[Formula: see text]O2max), interspersed by relief intervals at 60% [Formula: see text]O2max (work/relief ratio = 1). HRV was evaluated via the square root of the mean sum of the squared differences between R-R intervals (rMSSD) before, 1 h, 3 h and 24 h after the exercise. Plasma volume was assessed before, immediately after, and 3 h and 24 h after. There were no substantial between-trial differences in acute cardiorespiratory responses. The rMSSD values remained decreased 1 h after the exercise cessation in all exercise groups. The rMSSD subsequently increased between 1 h and 3 h after exercise, with the most pronounced change in the 15/15 group. There were no relationships between HRV and plasma volume. All HIT protocols resulted in similar cardiorespiratory responses with slightly varying post-exercise HRV responses, with the 30/30 protocol eliciting the least disruption to post-exercise HRV. These post-exercise HRV findings suggest that the 30/30 sequence may be the preferable HIT prescription when the between-training period is limited. PMID:26523343

  16. PER3 polymorphism and cardiac autonomic control: effects of sleep debt and circadian phase.

    PubMed

    Viola, Antoine U; James, Lynette M; Archer, Simon N; Dijk, Derk-Jan

    2008-11-01

    A variable number tandem repeat polymorphism in the coding region of the circadian clock PERIOD3 (PER3) gene has been shown to affect sleep. Because circadian rhythms and sleep are known to modulate sympathovagal balance, we investigated whether homozygosity for this PER3 polymorphism is associated with changes in autonomic nervous system (ANS) activity during sleep and wakefulness at baseline and after sleep deprivation. Twenty-two healthy participants were selected according to their PER3 genotype. ANS activity, evaluated by heart rate (HR) and HR variability (HRV) indexes, was quantified during baseline sleep, a 40-h period of wakefulness, and recovery sleep. Sleep deprivation induced an increase in slow-wave sleep (SWS), a decrease in the global variability, and an unbalance of the ANS with a loss of parasympathetic predominance and an increase in sympathetic activity. Individuals homozygous for the longer allele (PER3(5/5)) had more SWS, an elevated sympathetic predominance, and a reduction of parasympathetic activity compared with PER3(4/4), in particular during baseline sleep. The effects of genotype were strongest during non-rapid eye movement (NREM) sleep and absent or much smaller during REM sleep. The NREM-REM cycle-dependent modulation of the low frequency-to-(low frequency + high frequency) ratio was diminished in PER3(5/5) individuals. Circadian phase modulated HR and HRV, but no interaction with genotype was observed. In conclusion, the PER3 polymorphism affects the sympathovagal balance in cardiac control in NREM sleep similar to the effect of sleep deprivation. PMID:18835917

  17. Cardiac autonomic recovery after a single session of resistance exercise with and without vascular occlusion.

    PubMed

    Okuno, Nilo M; Pedro, Rafael E; Leicht, Anthony S; de Paula Ramos, Solange; Nakamura, Fábio Y

    2014-04-01

    The aim of this study was to investigate the heart rate variability (HRV) after resistance training with and without vascular occlusion. It was hypothesized that low intensity (LI) with vascular occlusion (LIO) would elicit comparable postexercise HRV responses with that of high intensity (HI) without vascular occlusion. Nine subjects undertook 4 experimental sessions of leg press exercise on different days: (a) 1 repetition maximum (1RM) test, (b) 4 sets of 8 repetitions + 1 set until exhaustion at 80% of 1RM without vascular occlusion (HI), (c) 4 sets of 16 repetitions + 1 set until exhaustion at 40% of 1RM with vascular occlusion (LIO), and (d) 4 sets of 16 repetitions + 1 set with the number of repetitions equal to the last set of LIO but at 40% of 1RM without vascular occlusion (LI). Heart rate variability was analyzed 10 minutes, 20 minutes, 30 minutes, 1 hour, 5 hours, and 24 hours after the HI, LIO, and LI sessions. The HI session increased the heart rate (HR) and reduced the root mean square of the successive difference of R-R intervals (RMSSD) and log-transformed high-frequency (lnHF) power during prolonged recovery (HR = 5 hours; RMSSD = 30 minutes; lnHF = 1 hour) at a greater magnitude when compared with LIO and LI. Despite the same intensity of exercise for LIO and LI, the occlusion delayed the recovery of HR and HRV variables. Postexercise blood lactate concentration was moderate to strongly correlated with peak HR (r = 0.87), RMSSD (r = -0.64), and lnHF (r = -0.68). This study has demonstrated that LIO was able to reduce cardiac autonomic stress when compared with HI. PMID:24077384

  18. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report, September 1991--September 1992

    SciTech Connect

    Not Available

    1992-09-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  19. Cardiac autonomic modulation in non-frail, pre-frail and frail elderly women: a pilot study.

    PubMed

    Katayama, Pedro Lourenço; Dias, Daniel Penteado Martins; Silva, Luiz Eduardo Virgilio; Virtuoso-Junior, Jair Sindra; Marocolo, Moacir

    2015-10-01

    Frailty has been defined as a geriatric syndrome that results in high vulnerability to health adverse outcomes. This increased vulnerability state results from dysregulation of multiple physiological systems and its complex interactions. Thus, assessment of physiological systems integrity and of its dynamic interactions seems to be useful in the context of frailty management. Heart rate variability (HRV) analysis provides information about autonomic nervous system (ANS) function, which is responsible to control several physiologic functions. This study investigated the cardiac autonomic modulation by HRV analysis in community-dwelling elderly women classified as non-frail, pre-frail and frail. Twenty-three elderly women were assigned to the following groups: non-frail (n = 8), pre-frail (n = 8) and frail (n = 7). HRV assessment was performed through linear and non-linear analysis of cardiac interval variability. It was observed a higher sympathetic and lower parasympathetic modulation in frail when compared with non-frail and pre-frail groups (p < 0.05) as indicated by frequency domain indices. Additionally, frail group had a decreased 2LV % pattern (that reflects parasympathetic modulation) in the symbolic analysis in comparison with non-frail group. These findings suggest that frail elderly women present an autonomic imbalance characterized by a shift towards sympathetic predominance. Thus, monitoring ANS function in the context of frailty management may be an important strategy to prevention, diagnosis and treatment of this syndrome and its consequences. PMID:25673231

  20. HypoxamiRs: regulators of cardiac hypoxia and energy metabolism.

    PubMed

    Azzouzi, Hamid El; Leptidis, Stefanos; Doevendans, Pieter A; De Windt, Leon J

    2015-09-01

    Hypoxia and its intricate regulation are at the epicenter of cardiovascular research. Mediated by hypoxia-inducible factors as well as by several microRNAs, recently termed 'hypoxamiRs', hypoxia affects several cardiac pathophysiological processes. Hypoxia is the driving force behind the regulation of the characteristic metabolic switch from predominant fatty acid oxidation in the healthy heart to glucose utilization in the failing myocardium, but also instigates reactivation of the fetal gene program, induces the cardiac hypertrophy response, alters extracellular matrix composition, influences mitochondrial biogenesis, and impacts upon myocardial contractility. HypoxamiR regulation adds a new level of complexity to this multitude of hypoxia-mediated effects, rendering the understanding of the hypoxic response a fundamental piece in solving the cardiovascular disease puzzle. PMID:26197955

  1. CaMKII regulation of cardiac K channels

    PubMed Central

    Mustroph, Julian; Maier, Lars S.; Wagner, Stefan

    2014-01-01

    Cardiac K channels are critical determinants of cardiac excitability. In hypertrophied and failing myocardium, alterations in the expression and activity of voltage-gated K channels are frequently observed and contribute to the increased propensity for life-threatening arrhythmias. Thus, understanding the mechanisms of disturbed K channel regulation in heart failure (HF) is of critical importance. Amongst others, Ca/calmodulin-dependent protein kinase II (CaMKII) has been identified as an important regulator of K channel activity. In human HF but also various animal models, increased CaMKII expression and activity has been linked to deteriorated contractile function and arrhythmias. This review will discuss the current knowledge about CaMKII regulation of several K channels, its influence on action potential properties, dispersion of repolarization, and arrhythmias with special focus on HF. PMID:24600393

  2. Examining the role of TRPA1 in air pollution-induced cardiac arrhythmias and autonomic imbalance

    EPA Science Inventory

    Here we describe how air pollution causes cardiac arrhythmogenesis through sensory irritation in the airways. Time-series studies show the risk of adverse cardiac events increases significantly in the hours to days after expos...

  3. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis

    PubMed Central

    Jiang, Jianming; Burgon, Patrick G.; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M.; O’Meara, Caitlin C.; Fomovsky, Gregory; McConnell, Bradley K.; Lee, Richard T.; Seidman, J. G.; Seidman, Christine E.

    2015-01-01

    Homozygous cardiac myosin binding protein C-deficient (Mybpct/t) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpct/t myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpct/t myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpct/t mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3+/− individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3−/− mice is primarily myocyte hyperplasia. PMID:26153423

  4. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis.

    PubMed

    Jiang, Jianming; Burgon, Patrick G; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M; O'Meara, Caitlin C; Fomovsky, Gregory; McConnell, Bradley K; Lee, Richard T; Seidman, J G; Seidman, Christine E

    2015-07-21

    Homozygous cardiac myosin binding protein C-deficient (Mybpc(t/t)) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpc(t/t) myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpc(t/t) myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpc(t/t) mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3(+/-) individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3(-/-) mice is primarily myocyte hyperplasia. PMID:26153423

  5. Regulation of Breathing and Autonomic Outflows by Chemoreceptors

    PubMed Central

    Guyenet, Patrice G.

    2016-01-01

    Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes. PMID:25428853

  6. Regulation of breathing and autonomic outflows by chemoreceptors.

    PubMed

    Guyenet, Patrice G

    2014-10-01

    Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes. PMID:25428853

  7. Maladaptive autonomic regulation in PTSD accelerates physiological aging

    PubMed Central

    Williamson, John B.; Porges, Eric C.; Lamb, Damon G.; Porges, Stephen W.

    2015-01-01

    A core manifestation of post-traumatic stress disorder (PTSD) is a disconnection between physiological state and psychological or behavioral processes necessary to adequately respond to environmental demands. Patients with PTSD experience abnormal oscillations in autonomic states supporting either fight and flight behaviors or withdrawal, immobilization, and dissociation without an intervening “calm” state that would provide opportunities for positive social interactions. This defensive autonomic disposition is adaptive in dangerous and life threatening situations, but in the context of every-day life may lead to significant psychosocial distress and deteriorating social relationships. The perpetuation of these maladaptive autonomic responses may contribute to the development of comorbid mental health issues such as depression, loneliness, and hostility that further modify the nature of cardiovascular behavior in the context of internal and external stressors. Over time, changes in autonomic, endocrine, and immune function contribute to deteriorating health, which is potently expressed in brain dysfunction and cardiovascular disease. In this theoretical review paper, we present an overview of the literature on the chronic health effects of PTSD. We discuss the brain networks underlying PTSD in the context of autonomic efferent and afferent contributions and how disruption of these networks leads to poor health outcomes. Finally, we discuss treatment approaches based on our theoretical model of PTSD. PMID:25653631

  8. The transcription factor GATA-6 regulates pathological cardiac hypertrophy

    PubMed Central

    van Berlo, Jop H.; Elrod, John W.; van den Hoogenhof, Maarten M.G.; York, Allen J.; Aronow, Bruce J.; Duncan, Stephen A.; Molkentin, Jeffery D.

    2010-01-01

    Rationale The transcriptional code that programs maladaptive cardiac hypertrophy involves the zinc finger-containing DNA binding factor GATA-4. The highly related transcription factor GATA-6 is also expressed in the adult heart, although its role in controlling the hypertrophic program is unknown. Objective To determine the role of GATA-6 in cardiac hypertrophy and homeostasis. Methods and Results Here we performed a cardiomyocyte-specific conditional gene targeting approach for Gata6, as well as a transgenic approach to overexpress GATA-6 in the mouse heart. Deletion of Gata6-loxP with Nkx2.5-cre produced late embryonic lethality with heart defects, while deletion with β-myosin heavy chain-cre (βMHC-cre) produced viable adults with greater than 95% loss of GATA-6 protein in the heart. These later mice were subjected to pressure overload induced hypertrophy for 2 and 6 weeks, which showed a significant reduction in cardiac hypertrophy similar to that observed Gata4 heart-specific deleted mice. Gata6-deleted mice subjected to pressure overload also developed heart failure while control mice maintained proper cardiac function. Gata6-deleted mice also developed less cardiac hypertrophy following 2 weeks of angiotensin II/phenylephrine infusion. Controlled GATA-6 overexpression in the heart induced hypertrophy with aging and predisposed to greater hypertrophy with pressure overload stimulation. Combinatorial deletion of Gata4 and Gata6 from the adult heart resulted in dilated cardiomyopathy and lethality by 16 weeks of age. Mechanistically, deletion of Gata6 from the heart resulted in fundamental changes in the levels of key regulatory genes and myocyte differentiation-specific genes. Conclusions These results indicate that GATA-6 is both necessary and sufficient for regulating the cardiac hypertrophic response and differentiated gene expression, both alone and in coordination with GATA-4. PMID:20705924

  9. Development of regulation of the cardiac chronotropic function in albino rats during the early postnatal ontogeny according to the results of spectral analysis of heart rhythm variability.

    PubMed

    Kurjanova, E V; Teplyj, D L; Zereninova, N V

    2012-04-01

    Regulation of the cardiac chronotropic function was studied by spectral analysis of cardiac rhythm variability in HF, LF, and VLF bands in rats at various stages of the early postnatal ontogeny. The inadequacy of the regulatory mechanisms during the first days of life manifested by low power of all waves (particularly HF) in the cardiac rhythm variability spectrum. On day 14 of life, the cardiointerval variability was formed by HF waves, their low power together with increasing heart rate indicating more intense sympathetic effects. On day 21 of life, a potent elevation of the VLF power reflected a stronger centralization of regulation from higher autonomic centers. The age of 28 days was characterized by a sharp increase of HF activity and could be regarded as the turning point in the development of parasympathetic effects and activity of the autonomic regulation contour. From the age of 35 days, the wave power and the proportion of the spectral components of cardiac rhythm variability in albino rats corresponded to the adult pattern; a trend to the central regulation predominance and to greater rigidity of cardiac rhythm formed only with the onset of sexual maturation. PMID:22803162

  10. Regulation of cardiac metabolism and function by lipogenic factors.

    PubMed

    Bednarski, Tomasz; Pyrkowska, Aleksandra; Opasińska, Agnieszka; Dobrzyń, Paweł

    2016-01-01

    The heart has a limited capacity for lipogenesis and de novo lipid synthesis. However, expression of lipogenic genes in cardiomyocytes is unexpectedly high. Recent studies showed that lipogenic genes are important factors regulating cardiac metabolism and function. Long chain fatty acids are a major source of ATP required for proper heart function, and under aerobic conditions, the heart derives 60-90% of the energy necessary for contractile function from fatty acid oxidation. On the other hand, cardiac lipid over-accumulation (e.g. ceramides, diacylglycerols) leads to heart dysfunction. Downregulation of the lipogenic genes' expression (e.g. sterol regulatory element binding protein 1, stearoyl-CoA desaturase, acetyl-CoA kwacarboxylase) decreased heart steatosis and cardiomyocyte apoptosis, improving systolic and diastolic function of the left ventricle. Lipogenic factors also regulate fatty acids and glucose utilization in the heart, underlining their important role in maintaining energetic homeostasis in pathological states. Fatty acid synthase, the enzyme catalyzing fatty acids de novo synthesis, affects cardiac calcium signaling through regulation of L-type calcium channel activity. Thus, a growing body of evidence suggests that the role of lipogenic genes in cardiomyocytes may be distinct from other tissues. Here, we review recent advances made in understanding the role of lipogenic genes in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathy. PMID:27333934

  11. Scaffold Proteins Regulating Extracellular Regulated Kinase Function in Cardiac Hypertrophy and Disease

    PubMed Central

    Liang, Yan; Sheikh, Farah

    2016-01-01

    The mitogen activated protein kinase (MAPK)-extracellular regulated kinase 1/2 (ERK1/2) pathway is a central downstream signaling pathway that is activated in cardiac muscle cells during mechanical and agonist-mediated hypertrophy. Studies in genetic mouse models deficient in ERK-associated MAPK components pathway have further reinforced a direct role for this pathway in stress-induced cardiac hypertrophy and disease. However, more recent studies have highlighted that these signaling pathways may exert their regulatory functions in a more compartmentalized manner in cardiac muscle. Emerging data has uncovered specific MAPK scaffolding proteins that tether MAPK/ERK signaling specifically at the sarcomere and plasma membrane in cardiac muscle and show that deficiencies in these scaffolding proteins alter ERK activity and phosphorylation, which are then critical in altering the cardiac myocyte response to stress-induced hypertrophy and disease progression. In this review, we provide insights on ERK-associated scaffolding proteins regulating cardiac myofilament function and their impact on cardiac hypertrophy and disease. PMID:26973524

  12. Glial TDP-43 regulates axon wrapping, GluRIIA clustering and fly motility by autonomous and non-autonomous mechanisms

    PubMed Central

    Romano, Giulia; Appocher, Chiara; Scorzeto, Michele; Klima, Raffaella; Baralle, Francisco E.; Megighian, Aram; Feiguin, Fabian

    2015-01-01

    Alterations in the glial function of TDP-43 are becoming increasingly associated with the neurological symptoms observed in Amyotrophic Lateral Sclerosis (ALS), however, the physiological role of this protein in the glia or the mechanisms that may lead to neurodegeneration are unknown. To address these issues, we modulated the expression levels of TDP-43 in the Drosophila glia and found that the protein was required to regulate the subcellular wrapping of motoneuron axons, promote synaptic growth and the formation of glutamate receptor clusters at the neuromuscular junctions. Interestingly, we determined that the glutamate transporter EAAT1 mediated the regulatory functions of TDP-43 in the glia and demonstrated that genetic or pharmacological compensations of EAAT1 activity were sufficient to modulate glutamate receptor clustering and locomotive behaviors in flies. The data uncovers autonomous and non-autonomous functions of TDP-43 in the glia and suggests new experimentally based therapeutic strategies in ALS. PMID:26276811

  13. Short-term ECG recording for the identification of cardiac autonomic neuropathy in people with diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Jelinek, Herbert F.; Pham, Phuong; Struzik, Zbigniew R.; Spence, Ian

    2007-07-01

    Diabetes mellitus (DM) is a serious and increasing health problem worldwide. Compared to non-diabetics, patients experience an increased risk of all cardiovascular diseases, including dysfunctional neural control of the heart. Poor diagnoses of cardiac autonomic neuropathy (CAN) may result in increased incidence of silent myocardial infarction and ischaemia, which can lead to sudden death. Traditionally the Ewing battery of tests is used to identify CAN. The purpose of this study is to examine the usefulness of heart rate variability (HRV) analyses of short-term ECG recordings as a method for detecting CAN. HRV may be able to identify asymptomatic individuals, which the Ewing battery is not able to do. Several HRV parameters are assessed, including time and frequency domain, as well as nonlinear parameters. Eighteen out of thirty-eight individuals with diabetes were positive for two or more of the Ewing battery of tests indicating CAN. Approximate Entropy (ApEn), log normalized total power (LnTP) and log normalized high frequency (LnHF) power demonstrate a significant difference at p < 0.05 between CAN+ and CAN-. This indicates that nonlinear scaling parameters are able to identify people with cardiac autonomic neuropathy in short ECG recordings. Our study paves the way to assess the utility of nonlinear parameters in identifying asymptomatic CAN.

  14. Effects of psychological stress test on the cardiac response of public safety workers: alternative parameters to autonomic balance

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, M. R.; Vargas-Luna, F. M.; Delgadillo-Holtfort, I.

    2015-01-01

    It is well known that public safety workers (PSW) face many stressful situations that yield them as high-risk population for suffering chronic stress diseases. In this multidisciplinary research the cardiac response to induced psychological stress by a short duration Stroop test was evaluated in 20 female and 19 male PSW, in order to compare traditionally used cardiac response parameters with alternative ones. Electrocardiograms have been recorded using the Eindhoven electrodes configuration for 1 min before, 3 min during and 1 min after the test. Signals analysis has been performed for the heart rate and the power spectra of its variability and of the variability of the amplitude of the R-wave, i.e. the highest peak of the electrocardiographic signal periodic sequence. The results demonstrated that the traditional autonomic balance index shows no significant differences between stages. In contrast, the median of the area of the power spectrum of the R-wave amplitude variability in the frequency region dominated by the autonomous nervous system (0.04-to-0.4 Hz) is the more sensitive parameter. Moreover, this parameter allows to identify gender differences consistent with those encountered in other studies.

  15. Alterations in the ultrastructure of cardiac autonomic nervous system triggered by crotoxin from rattlesnake (Crotalus durissus cumanensis) venom.

    PubMed

    Hernández, Miguelina; Scannone, Héctor; Finol, Héctor J; Pineda, Maria E; Fernández, Irma; Vargas, Alba M; Girón, María E; Aguilar, Irma; Rodríguez-Acosta, Alexis

    2007-10-01

    This study explored the toxic effects of crotoxin isolated from Crotalus durissus cumanensis venom on the ultrastructure of mice cardiac autonomic nervous system. Mice were intravenously injected with saline (control group) and crotoxin diluted in saline venom (study group) at a dose of 0.107 mg/kg mouse body weight. Samples from the inter-ventricular septum were prepared for electron microscopy after 6 h (G1), 12 h (G2), 24 h (G3) and 48 h (G4). The G1 group showed some cardiomyocyte with pleomorphic mitochondria. Capillary swollen walls, nerve cholinergic endings with depleted acetylcholine vesicles in their interior and other depletions were observed. A space completely lacking in contractile elements was noticed. The G2 group demonstrated a myelinic figure, a subsarcolemic region with few myofibrils and nervous cholinergic terminal with scarce vacuoles in their interior. The G3 group demonstrated a structure with a depleted axonic terminal, mitochondrias varying in size and enhanced electron density. In addition, muscular fibers with myofibrillar structure disorganization, a depleted nervous structure surrounded by a Schwann cell along with an abundance of natriuretic peptides, were seen. An amyelinic terminal with depleted Schwann cell and with scarce vesicles was also observed. Finally, axonic lysis with autophagic vacuoles in their interior and condensed mitochondria was observed in the G4 group. This work describes the first report of ultrastructural damage caused by crotoxin on mice cardiac autonomic nervous system. PMID:17616380

  16. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: a cross-over study.

    PubMed

    Cole-Hunter, Tom; Weichenthal, Scott; Kubesch, Nadine; Foraster, Maria; Carrasco-Turigas, Glòria; Bouso, Laura; Martínez, David; Westerdahl, Dane; de Nazelle, Audrey; Nieuwenhuijsen, Mark

    2016-01-01

    People are often exposed to traffic-related air pollution (TRAP) during physical activity (PA), but it is not clear if PA modifies the impact of TRAP on cardiac autonomic modulation. We conducted a panel study among 28 healthy adults in Barcelona, Spain to examine how PA may modify the impact of TRAP on cardiac autonomic regulation. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Time- and frequency-domain measures of heart rate variability (HRV) were monitored during each exposure period along with continuous measures of TRAP. Linear mixed-effects models were used to estimate the impact of TRAP on HRV as well as potential effect modification by PA. Exposure to TRAP was associated with consistent decreases in HRV; however, exposure-response relationships were not always linear over the broad range of exposures. For example, each 10 μg/m(3) increase in black carbon was associated with a 23% (95% CI: -31, -13) decrease in high frequency power at the low-traffic site, whereas no association was observed at the high-traffic site. PA modified the impact of TRAP on HRV at the high-traffic site and tended to weaken inverse associations with measures reflecting parasympathetic modulation (P ≤ 0.001). Evidence of effect modification at the low-traffic site was less consistent. The strength and direction of the relationship between TRAP and HRV may vary across exposure gradients. PA may modify the impact of TRAP on HRV, particularly at higher concentrations. PMID:26486990

  17. Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population.

    PubMed

    Ziegler, D; Zentai, C; Perz, S; Rathmann, W; Haastert, B; Meisinger, C; Löwel, H

    2006-04-01

    Both cardiac autonomic dysfunction adn cardiovascular risk factors are related to and excess risk of mortality. We sought to determine whether the major cardiovascular risk factors are associated with diminished heart rate variability (HRV), prolonged QTc interval, or increased QT dispersion (QTD). Male (n = 1030) and female (n = 957) subjects, aged 55-74 years, who participated in the population-based MONICA Augsburg survey 1989/90 were assessed for the presence of cardiovascular risk factors such as diabetes, hypertension, obesity, dyslipidemia, smoking, and low physical activity. Lowest quartiles for time domain indexes of HRV (SD of R-R intervals [SDNN], max-min difference), QTc > 440 ms, and QTD > 60 ms determined from 12-lead resting ECG were used as cutpoints. In men, after adjustment for age and alcohol consumption, significant independent determinants for the lowest quartiles of SDNN were diabetes, obesity, and smoking. Independent contributors to prolonged QTc were hypertension, obesity, smoking, and low physical activity, whereas for increased QTD it was only hypertension. In women, diabetes was the only contributor to low SDNN, and hypertension was the only determinant of prolonged QTc. In conclusion, diabetes is the primary determinant of reduced HRV in the general population, while hypertension is the primary contributor to prolonged QTc in both sexes. However, obesity and smoking contribute to autonomic dysfunction in men but not women. Thus, a selectivity and sex-related differences exist among the various cardiovascular risk factors as to their influence on autonomic dysfunction. PMID:16710813

  18. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    PubMed Central

    Janssens, Karin A. M.; Riese, Harriëtte; Van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Objective Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous system (ANS) levels during a standardized stressful situation, and whether these associations are symptom-specific. Methods We examined 715 adolescents (16.1 years, 51.3% girls) from the Dutch cohort study Tracking Adolescents’ Individual Lives Sample during the Groningen Social Stress Test (GSST). FSS were assessed by the Youth Self-Report, and clustered into a cluster of overtiredness, dizziness and musculoskeletal pain and a cluster of headache and gastrointestinal symptoms. Perceived stress levels (i.e. unpleasantness and arousal) were assessed by the Self-Assessment Manikin, and cardiac ANS activity by assessing heart rate variability (HRV-HF) and pre-ejection period (PEP). Perceived stress and cardiac ANS levels before, during, and after the GSST were studied as well as cardiac ANS reactivity. Linear regression analyses were used to examine the associations. Results Perceived arousal levels during (beta = 0.09, p = 0.04) and after (beta = 0.07, p = 0.047) the GSST, and perceived unpleasantness levels before (beta = 0.07, p = 0.048) and during (beta = 0.12, p = 0.001) the GSST were related to FSS during the past couple of months. The association between perceived stress and FSS was stronger for the FSS cluster of overtiredness, dizziness and musculoskeletal pain than for the cluster of headache and gastrointestinal symptoms. Neither ANS activity levels before, during, and after the GSST, nor maximal HF-HRV and PEP reactivity were related to FSS. Conclusions This study suggests that perceived stress levels during social stress are related to FSS, whereas cardiac ANS activity and reactivity are not related to FSS. PMID:27089394

  19. Cardiac autonomic activity predicts dominance in verbal over spatial reasoning tasks: results from a preliminary study.

    PubMed

    Solernó, Juan I; Chada, Daniela Pérez; Guinjoan, Salvador M; Lloret, Santiago Pérez; Hedderwick, Alejandro; Vidal, María Florencia; Cardinali, Daniel P; Vigo, Daniel E

    2012-04-01

    The present study sought to determine whether autonomic activity is associated with dominance in verbal over spatial reasoning tasks. A group of 19 healthy adults who performed a verbal and spatial aptitude test was evaluated. Autonomic function was assessed by means of heart rate variability analysis, before and during the tasks. The results showed that a better relative performance in verbal over spatial reasoning tasks was associated with vagal prevalence in normal subjects. PMID:22118959

  20. Tribute to P. L. Lutz: cardiac performance and cardiovascular regulation during anoxia/hypoxia in freshwater turtles.

    PubMed

    Overgaard, Johannes; Gesser, Hans; Wang, Tobias

    2007-05-01

    Freshwater turtles overwintering in ice-covered ponds in North America may be exposed to prolonged anoxia, and survive this hostile environment by metabolic depression. Here, we review their cardiovascular function and regulation, with particular emphasis on the factors limiting cardiac performance. The pronounced anoxia tolerance of the turtle heart is based on the ability to match energy consumption with the low anaerobic ATP production during anoxia. Together with a well-developed temporal and spatial energy buffering by creatine kinase, this allows for cellular energy charge to remain high during anoxia. Furthermore, the turtle heart is well adapted to handle the adverse effects of free phosphate arising when phosphocreatine stores are used. Anoxia causes tenfold reductions in heart rate and blood flows that match the metabolic depression, and blood pressure is largely maintained through increased systemic vascular resistance. Depression of the heart rate is not driven by the autonomic nervous system and seems to arise from direct effects of oxygen lack and the associated hyperkalaemia and acidosis on the cardiac pacemaker. These intra- and extracellular changes also affect cardiac contractility, and both acidosis and hyperkalaemia severely depress cardiac contractility. However, increased levels of adrenaline and calcium may, at least partially, salvage cardiac function under prolonged periods of anoxia. PMID:17488932

  1. Mathematical biomarkers for the autonomic regulation of cardiovascular system

    PubMed Central

    Campos, Luciana A.; Pereira, Valter L.; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia

    2013-01-01

    Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance. PMID:24109456

  2. Evaluation of Cardiac Autonomic Functions in Older Parkinson’s Disease Patients: a Cross-Sectional Study

    PubMed Central

    Yalcin, Ahmet; Atmis, Volkan; Cengiz, Ozlem Karaarslan; Cinar, Esat; Aras, Sevgi; Varli, Murat; Atli, Teslime

    2016-01-01

    In Parkinson’s disease (PD), non-motor symptoms may occur such as autonomic dysfunction. We aimed to evaluate both parasympathetic and sympathetic cardiovascular autonomic dysfunction in older PD cases. 84 PD cases and 58 controls, for a total of 142, participated in the study. Parasympathetic tests were performed using electrocardiography. Sympathetic tests were assessed by blood pressure measurement and 24-hour ambulatory blood pressure measurement. The prevalence of orthostatic hypotension in PD patients was 40.5% in PD patients and 24.1% in the control group (p> 0.05). The prevalence of postprandial hypotension was 47.9% in the PD group and 27.5% in the controls (p <0.05). The prevalence of impairment in heart rate response to deep breathing was 26.2% in the PD group and 6.9% in the control group (p <0.05). The prevalence of postprandial hypotension in PD with orthostatic hypotension was 94% and 16% in PD patients without orthostatic hypotension (p <0.05). The prevalence of impairment in heart rate response to deep breathing was 52.9% in PD patients with orthostatic hypotension and 8% in PD cases without orthostatic hypotension (p<0.05). The prevalence of impairment in heart rate response to postural change was 41% in PD cases with orthostatic hypotension and 12% in PD cases without orthostatic hypotension (p <0.05).Although there are tests for assessing cardiovascular autonomic function that are more reliable, they are more complicated, and evaluation of orthostatic hypotension by blood pressure measurement and cardiac autonomic tests by electrocardiography are recommended since these tests are cheap and easy. PMID:26816661

  3. Ankyrin-based Cellular Pathways for Cardiac Ion Channel and Transporter Targeting and Regulation

    PubMed Central

    Cunha, Shane R.; Mohler, Peter J.

    2010-01-01

    The coordinate activities of ion channels and transporters regulate myocyte membrane excitability and normal cardiac function. Dysfunction in cardiac ion channel and transporter function may result in cardiac arrhythmias and sudden cardiac death. While the past fifteen years have linked defects in ion channel biophysical properties with human disease, more recent findings illustrate that ion channel and transporter localization within cardiomyocytes is equally critical for normal membrane excitability and tissue function. Ankyrins are a family of multifunctional adapter proteins required for the expression, membrane localization, and regulation of select cardiac ion channels and transporters. Notably, loss of ankyrin expression in mice, and ankyrin loss-of-function in humans is now associated with defects in myocyte excitability and cardiac physiology. Here, we provide an overview of the roles of ankyrin polypeptides in cardiac physiology, as well as review other recently identified pathways required for the membrane expression and regulation of key cardiac ion channels and transporters. PMID:20934528

  4. Measurement and regulation of cardiac ventricular repolarization: from the QT interval to repolarization morphology

    PubMed Central

    Couderc, Jean-Philippe

    2009-01-01

    Ventricular repolarization (VR) is a crucial step in cardiac electrical activity because it corresponds to a recovery period setting the stage for the next heart contraction. Small perturbations of the VR process can predispose an individual to lethal arrhythmias. In this review, I aim to provide an overview of the methods developed to analyse static and dynamic aspects of the VR process when recorded from a surface electrocardiogram (ECG). The first section describes the list of physiological and clinical factors that can affect the VR. Technical aspects important to consider when digitally processing ECGs are provided as well. Special attention is given to the analysis of the effect of heart rate on the VR and its regulation by the autonomic nervous system. The final section provides the rationale for extending the analysis of the VR from its duration to its morphology. Several modelling techniques and measurement methods will be presented and their role within the arena of cardiac safety will be discussed. PMID:19324709

  5. Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting)

    NASA Technical Reports Server (NTRS)

    Balaban, C. D.

    1999-01-01

    Autonomic manifestations of vestibular dysfunction and motion sickness are well established in the clinical literature. Recent studies of 'vestibular autonomic regulation' have focused predominantly on autonomic responses to stimulation of the vestibular sense organs in the inner ear. These studies have shown that autonomic responses to vestibular stimulation are regionally selective and have defined a 'vestibulosympathetic reflex' in animal experiments. Outside the realm of experimental preparations, however, the importance of vestibular inputs in autonomic regulation is unclear because controls for secondary factors, such as affective/emotional responses and cardiovascular responses elicited by muscle contraction and regional blood pooling, have been inadequate. Anatomic and physiologic evidence of an extensive convergence of vestibular and autonomic information in the brainstem suggests though that there may be an integrated representation of gravitoinertial acceleration from vestibular, somatic, and visceral receptors for somatic and visceral motor control. In the case of vestibular dysfunction or motion sickness, the unpleasant visceral manifestations (e.g. epigastric discomfort, nausea or vomiting) may contribute to conditioned situational avoidance and the development of agoraphobia.

  6. Role of cardiac output and the autonomic nervous system in the antinatriuretic response to acute constriction of the thoracic superior vena cava.

    NASA Technical Reports Server (NTRS)

    Schrier, R. W.; Humphreys, M. H.; Ufferman, R. C.

    1971-01-01

    Study of the differential characteristics of hepatic congestion and decreased cardiac output in terms of potential afferent stimuli in the antinatriuretic effect of acute thoracic inferior vena cava (TIVC) constriction. An attempt is made to see if the autonomic nervous system is involved in the antinatriuretic effect of acute TIVC or thoracic superior vena cava constriction.

  7. Systemic TLR2 agonist exposure regulates hematopoietic stem cells via cell-autonomous and cell-non-autonomous mechanisms.

    PubMed

    Herman, A C; Monlish, D A; Romine, M P; Bhatt, S T; Zippel, S; Schuettpelz, L G

    2016-01-01

    Toll-like receptor 2 (TLR2) is a member of the TLR family of receptors that play a central role in innate immunity. In addition to regulating effector immune cells, where it recognizes a wide variety of pathogen-associated and nonpathogen-associated endogenous ligands, TLR2 is expressed in hematopoietic stem cells (HSCs). Its role in HSCs, however, is not well understood. Furthermore, augmented TLR2 signaling is associated with myelodysplastic syndrome, an HSC disorder characterized by ineffective hematopoiesis and a high risk of transformation to leukemia, suggesting that aberrant signaling through this receptor may have clinically significant effects on HSCs. Herein, we show that systemic exposure of mice to a TLR2 agonist leads to an expansion of bone marrow and spleen phenotypic HSCs and progenitors, but a loss of HSC self-renewal capacity. Treatment of chimeric animals shows that these effects are largely cell non-autonomous, with a minor contribution from cell-autonomous TLR2 signaling, and are in part mediated by granulocyte colony-stimulating factor and tumor necrosis factor-α. Together, these data suggest that TLR2 ligand exposure influences HSC cycling and function via unique mechanisms from TLR4, and support an important role for TLR2 in the regulation of HSCs. PMID:27315114

  8. Impact of regular relaxation training on the cardiac autonomic nervous system of hospital cleaners and bank employees.

    PubMed

    Toivanen, H; Länsimies, E; Jokela, V; Hänninen, O

    1993-10-01

    The work-related strain of 50 female hospital cleaners and 48 female bank employees was recorded during a period of rationalization in the workplace, and the effect of daily relaxation to help the workers cope was tested. The subjects were arranged into age-matched pairs and randomly allocated into intervention and reference groups. The intervention period lasted six months. The relaxation method was brief and easily introduced as an alternative break in the workplace. Each training session lasted 15 min. A microcomputer-based system was used to record heart rate variability in response to quiet breathing, the Valsalva maneuver, deep breathing, and active orthostatic tests. Cardiac reflexes indicated that occupational strain (especially of a mental nature) caused the functioning of the autonomic nervous system to deteriorate. Regular deep relaxation normalized the function and improved the ability to cope. PMID:8296180

  9. Mediator Complex Dependent Regulation of Cardiac Development and Disease

    PubMed Central

    Grueter, Chad E.

    2013-01-01

    Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD. PMID:23727265

  10. Exercise training associated with diet improves heart rate recovery and cardiac autonomic nervous system activity in obese children.

    PubMed

    Prado, D M; Silva, A G; Trombetta, I C; Ribeiro, M M; Guazzelli, I C; Matos, L N; Santos, M S; Nicolau, C M; Negrão, C E; Villares, S M

    2010-12-01

    The purpose of this study was to test the hypotheses that in obese children: 1) hypocaloric diet (D) improves both heart rate recovery at 1 min (Δ HRR1) cfter an exercise test, and cardiac autonomic nervous system activity (CANSA) in obese children; 2) Diet and exercise training (DET) combined leads to greater improvement in both Δ HRR1 after an exercise test and in CANSA, than D alone. Moreover, we examined the relationships among Δ HRR1, CANSA, cardiorespiratory fitness and anthropometric variables (AV) in obese children submitted to D and to DET. 33 obese children (10 ± 0.2 years; body mass index (BMI) >95 (th) percentile) were divided into 2 groups: D (n=15; BMI=31 ± 1 kg/m²)) and DET (n=18; 29 ± 1 kg/m²). All children performed a maximal cardiopulmonary exercise test on a treadmill. The Δ HRR1 or LF/HF ratio (P>0.05). In contrast, the DET group showed increased peak VO₂ ( P=0.01) and improved Δ HRR1 (Δ HRR1=37.3 ± 2.6; P=0.01) and LF/HF ratio ( P=0.001). The DET group demonstrated significant relationships among Δ HRR1, peak VO₂ and CANSA (P<0.05). In conclusion, DET, in contrast to D, promoted improved ÄΔ HRR1 and CANSA in obese children, suggesting a positive influence of increased levels of cardiorespiratory fitness by exercise training on cardiac autonomic activity. PMID:21072735

  11. Fatalities after taking ibogaine in addiction treatment could be related to sudden cardiac death caused by autonomic dysfunction.

    PubMed

    Maas, U; Strubelt, S

    2006-01-01

    Ibogaine is the most important alkaloid of the Central African Iboga-shrub. It is the central drug in Gabonian initiation ceremonies in which it is used to cause a near-death experience. In Western countries it is used in private clinics to treat addiction. However, in the United States and most European countries it is classified as an illegal drug because at least eight persons have died after having taken Ibogaine. These fatalities occurred in most cases several days after ingestion or following the intake of very small doses. There is no conclusive explanation at the present time for these deaths. We hypothesize, that these deaths may be a result of cardiac arrhythmias, caused by a dysregulation of the autonomic nervous system. Ibogaine affects the autonomic nervous system by influencing several neurotransmitter-systems and the fastigial nucleus. The cerebellar nucleus responds to small doses with a stimulation of the sympathetic system, leading to a fight or flight reaction. High doses, however, lead to a vagal dominance: a "feigned death". The risk of cardiac arrhythmias is increased in situations of sympathetic stimulation or coincidence of a high parasympathetic tonus and a left-sided sympathetic stimulation. This could occur under influence of small doses of ibogaine and also at times of exhaustion with a high vagal tonus, when sudden fear reactions could cause a critical left-sided sympathetic stimulation. Gabonian healers prevent these risks by isolating their patients from normal life and by inducing a trance-state with right-hemispheric and vagal dominance for several days. PMID:16698188

  12. Regulation of cardiac cellular bioenergetics: mechanisms and consequences

    PubMed Central

    Tran, Kenneth; Loiselle, Denis S; Crampin, Edmund J

    2015-01-01

    The regulation of cardiac cellular bioenergetics is critical for maintaining normal cell function, yet the nature of this regulation is not fully understood. Different mechanisms have been proposed to explain how mitochondrial ATP production is regulated to match changing cellular energy demand while metabolite concentrations are maintained. We have developed an integrated mathematical model of cardiac cellular bioenergetics, electrophysiology, and mechanics to test whether stimulation of the dehydrogenase flux by Ca2+ or Pi, or stimulation of complex III by Pi can increase the rate of mitochondrial ATP production above that determined by substrate availability (ADP and Pi). Using the model, we show that, under physiological conditions the rate of mitochondrial ATP production can match varying demand through substrate availability alone; that ATP production rate is not limited by the supply of reducing equivalents in the form of NADH, as a result of Ca2+ or Pi activation of the dehydrogenases; and that ATP production rate is sensitive to feedback activation of complex III by Pi. We then investigate the mechanistic implications on cytosolic ion homeostasis and force production by simulating the concentrations of cytosolic Ca2+, Na+ and K+, and activity of the key ATPases, SERCA pump, Na+/K+ pump and actin-myosin ATPase, in response to increasing cellular energy demand. We find that feedback regulation of mitochondrial complex III by Pi improves the coupling between energy demand and mitochondrial ATP production and stabilizes cytosolic ADP and Pi concentrations. This subsequently leads to stabilized cytosolic ionic concentrations and consequentially reduced energetic cost from cellular ATPases. PMID:26229005

  13. MeCP2 regulation of cardiac fibroblast proliferation and fibrosis by down-regulation of DUSP5.

    PubMed

    Tao, Hui; Yang, Jing-Jing; Hu, Wei; Shi, Kai-Hu; Deng, Zi-Yu; Li, Jun

    2016-01-01

    Cardiac fibrosis is a complex pathological process that includes the abnormal proliferation of cardiac fibroblasts and deposition of the extracellular matrix (ECM) proteins and collagens. Methyl-CpG-binding protein 2 (MeCP2) is a multifunctional nuclear protein, and plays a key role in the fibrotic diseases. However, the potential role of MeCP2 in cardiac fibrosis remains unclear. We report that MeCP2 modulates cardiac fibrosis via down-regulation of dual-specificity phosphatase 5 (DUSP5), a nuclear phosphatase that negatively regulates prohypertrophic signaling by ERK1/2. MeCP2 is a critical participant in the epigenetic silencing of regulatory genes. Here, we found that down-regulation of DUSP5 in cardiac fibrosis is associated with MeCP2 over-expression. Treatment of cardiac fibroblasts with MeCP2-siRNA blocked proliferation. Knockdown of MeCP2 elevated DUSP5 expression in activated cardiac fibroblasts. Moreover, we investigated the effect of DUSP5 on the ERK1/2 activation. Our results demonstrated that MeCP2 modulates DUSP5 mediated activation of ERK1/2 in cardiac fibrosis. Taken together, these results indicated that MeCP2 acts as a key regulator of pathological cardiac fibrosis, promotes cardiac fibroblasts proliferation and fibrosis by down-regulation of DUSP5. PMID:26511729

  14. Cardiac autonomic functions and the emergence of violence in a highly realistic model of social conflict in humans

    PubMed Central

    Haller, Jozsef; Raczkevy-Deak, Gabriella; Gyimesine, Katalin P.; Szakmary, Andras; Farkas, Istvan; Vegh, Jozsef

    2014-01-01

    Among the multitude of factors that can transform human social interactions into violent conflicts, biological features received much attention in recent years as correlates of decision making and aggressiveness especially in critical situations. We present here a highly realistic new model of human aggression and violence, where genuine acts of aggression are readily performed and which at the same time allows the parallel recording of biological concomitants. Particularly, we studied police officers trained at the International Training Centre (Budapest, Hungary), who are prepared to perform operations under extreme conditions of stress. We found that aggressive arousal can transform a basically peaceful social encounter into a violent conflict. Autonomic recordings show that this change is accompanied by increased heart rates, which was associated earlier with reduced cognitive complexity of perceptions (“attentional myopia”) and promotes a bias toward hostile attributions and aggression. We also observed reduced heart rate variability in violent subjects, which is believed to signal a poor functioning of prefrontal-subcortical inhibitory circuits and reduces self-control. Importantly, these autonomic particularities were observed already at the beginning of social encounters i.e., before aggressive acts were initiated, suggesting that individual characteristics of the stress-response define the way in which social pressure affects social behavior, particularly the way in which this develops into violence. Taken together, these findings suggest that cardiac autonomic functions are valuable external symptoms of internal motivational states and decision making processes, and raise the possibility that behavior under social pressure can be predicted by the individual characteristics of stress responsiveness. PMID:25374519

  15. Autonomous and nonautonomous roles of Hedgehog signaling in regulating limb muscle formation

    PubMed Central

    Hu, Jimmy Kuang-Hsien; McGlinn, Edwina; Harfe, Brian D.; Kardon, Gabrielle; Tabin, Clifford J.

    2012-01-01

    Muscle progenitor cells migrate from the lateral somites into the developing vertebrate limb, where they undergo patterning and differentiation in response to local signals. Sonic hedgehog (Shh) is a secreted molecule made in the posterior limb bud that affects patterning and development of multiple tissues, including skeletal muscles. However, the cell-autonomous and non-cell-autonomous functions of Shh during limb muscle formation have remained unclear. We found that Shh affects the pattern of limb musculature non-cell-autonomously, acting through adjacent nonmuscle mesenchyme. However, Shh plays a cell-autonomous role in maintaining cell survival in the dermomyotome and initiating early activation of the myogenic program in the ventral limb. At later stages, Shh promotes slow muscle differentiation cell-autonomously. In addition, Shh signaling is required cell-autonomously to regulate directional muscle cell migration in the distal limb. We identify neuroepithelial cell transforming gene 1 (Net1) as a downstream target and effector of Shh signaling in that context. PMID:22987639

  16. The effects of chewing versus caffeine on alertness, cognitive performance and cardiac autonomic activity during sleep deprivation.

    PubMed

    Kohler, Mark; Pavy, Alan; van den Heuvel, Cameron

    2006-12-01

    Chewing has been shown to alleviate feelings of sleepiness and improve cognitive performance during the day. This study investigated the effect of chewing on alertness and cognitive performance across one night without sleep as well as the possible mediating role of cardiac autonomic activity. Fourteen adults participated in a randomized, counterbalanced protocol employing a chewing, placebo and caffeine condition. Participants completed tasks assessing psychomotor vigilance, tracking, grammatical reasoning, alertness and sleepiness each hour across the night. All participants received either placebo or caffeine (200 mg), while the chewing condition also chewed on a tasteless and odorless substance for 15 min each hour. Heart rate (HR), root mean square of the successive differences in R-R intervals on the ECG (RMSSD), and preejection period (PEP) were simultaneously recorded. Alertness and cognitive performance amongst the chewing condition did not differ or were in fact worse when compared with placebo. Similarly, measures of HR and RMSSD remained the same between these two conditions; however, PEP was reduced in the later part of the night in the chewing condition compared with a relative increase for placebo. Caffeine led to improved speed and accuracy on cognitive tasks and increased alertness when compared with chewing. Relative increases in RMSSD and reductions in HR were demonstrated following caffeine; however, no change in PEP was seen. Strong associations between cardiac parasympathetic activity and complex cognitive tasks, as well as between subjective alertness and simpler cognitive tasks, suggest a differential process mediating complex versus simple cognitive performance during sleep deprivation. PMID:17118092

  17. Acute hypoxia during organogenesis affects cardiac autonomic balance in pregnant rats.

    PubMed

    Maslova, M V; Graf, A V; Maklakova, A S; Krushinskaya, Ya V; Sokolova, N A; Koshelev, V B

    2005-02-01

    Changes in ECG parameters were studied in pregnant rats exposed to acute hypobaric hypoxia during the period of organogenesis (gestation days 9 to 10). Rats with low, medium, and high tolerance to hypoxia exhibited pronounced autonomic nervous system imbalance, which become apparent as a loss of correlation between various parameters of ECG signals recorded at rest and during exposure to some stress factors existing under normal conditions. PMID:16027800

  18. Analysis of cardiac autonomic modulation of children with attention deficit hyperactivity disorder

    PubMed Central

    de Carvalho, Tatiana Dias; Wajnsztejn, Rubens; de Abreu, Luiz Carlos; Marques Vanderlei, Luiz Carlos; Godoy, Moacir Fernandes; Adami, Fernando; Valenti, Vitor E; Monteiro, Carlos B M; Leone, Claudio; da Cruz Martins, Karen Cristina; Ferreira, Celso

    2014-01-01

    Background Attention deficit hyperactivity disorder (ADHD) is characterized by decreased attention span, impulsiveness, and hyperactivity. Autonomic nervous system imbalance was previously described in this population. We aim to compare the autonomic function of children with ADHD and controls by analyzing heart rate variability (HRV). Methods Children rested in supine position with spontaneous breathing for 20 minutes. Heart rate was recorded beat by beat. HRV analysis was performed in the time and frequency domains and Poincaré plot. Results Twenty-eight children with ADHD (22 boys, aged 9.964 years) and 28 controls (15 boys, age 9.857 years) participated in this study. It was determined that the mean and standard deviation of indexes which indicate parasympathetic activity is higher in children with ADHD than in children without the disorder: high frequency in normalized units, 46.182 (14.159) versus 40.632 (12.247); root mean square of successive differences, 41.821 (17.834) versus 38.150 (18.357); differences between adjacent normal-to-normal intervals greater than 50 milliseconds, 199.75 (144.00) versus 127.46 (102.21) (P<0.05); percentage of differences between adjacent normal-to-normal intervals greater than 50 milliseconds, 23.957 (17.316) versus 16.211 (13.215); standard deviation of instantaneous beat-to-beat interval, 29.586 (12.622) versus 26.989 (12.983). Conclusion Comparison of the autonomic function by analyzing HRV suggests an increase in the activity of the parasympathetic autonomic nervous systems in children with ADHD in relation to the control group. PMID:24748797

  19. Self-Monitoring of Cardiac Autonomic Function at Home Is Feasible

    PubMed Central

    Fleischer, Jesper; Nielsen, Roni; Laugesen, Esben; Nygaard, Hans; Poulsen, Per Logstrup; Ejskjaer, Niels

    2011-01-01

    Background Cardiovascular autonomic neuropathy (CAN) is associated with diabetes and may be related to the development of hypertension, ischemic stroke, and a number of other late complications. The earliest sign of CAN is a reduction of heart rate variability (HRV). Standard HRV tests for CAN include expiration-to-inspiration ratio, response to active standing (30:15), and the Valsalva maneuver. Because of the technical requirements for these tests, they are limited to the point-of-care office or a clinical laboratory setting. It is unknown if a “white-coat“ phenomenon exists in autonomic neuropathy testing and if home testing is feasible. The aims of this study were (1) to evaluate the reproducibility of CAN testing in a clinical setting, (2) to evaluate the feasibility of self-monitoring of cardiovascular autonomic function at home, and (3) report possible differences in measurements taken at the hospital versus those taken at home. Method Ten healthy subjects were included. Participants underwent in-hospital testing for CAN before and after home monitoring. For 6 consecutive days, participants measured autonomic function once a day at home. The intra- and interindividual reproducibility was determined by coefficient of variation (CV) and the reproducibility coefficient (RC). Agreement between hospital and home testing was analyzed using Pearson r, mean difference, and Bland–Altman analysis with Pitman’s test of difference in variance. Results Pitman’s test showed no significant difference in variance between hospital and home measurements, indicating suitable agreement between the two measurements. Reproducibility was moderate to high in all measures, with RC ranging from 66–94% and CV ranging from 5–10%. Conclusions Home testing of CAN is feasible. The evaluations showed no significant systematic error of in-hospital testing compared with self-monitoring at home. In this study, we were not able to demonstrate the presses of “white coat

  20. Hypothalamic-pituitary-adrenal and cardiac autonomic responses to transrectal examination differ with behavioral reactivity in dairy cows.

    PubMed

    Kovács, L; Kézér, F L; Kulcsár-Huszenicza, M; Ruff, F; Szenci, O; Jurkovich, V

    2016-09-01

    Behavior, hypothalamic-pituitary-adrenal axis, and cardiac autonomic nervous system (ANS) activity were evaluated in response to transrectal examination in nonlactating Holstein-Friesian cows with different behavioral reactivity. According to behavioral reactions shown to the procedure of fixing the heart rate (HR) monitors, the 20 cows with the highest and the 20 cows with the lowest behavioral reactivity were involved in the study (high responder, n=20; and low responder, n=20, respectively). Activity of the ANS was assessed by HR and HR variability parameters. Blood and saliva were collected at 5 min before (baseline) and 0, 5 10, 15, 20, 30, 40, 60, and 120 min after the examination to determine cortisol concentrations. The examination lasted for 5 min. Cardiac parameters included HR, the root mean square of successive differences between the consecutive interbeat intervals, the high frequency (HF) component of heart rate variability, and the ratio between the low frequency (LF) and HF parameter (LF/HF). Following the examination, peak plasma and saliva cortisol levels and the amplitude of the plasma and saliva cortisol response were higher in high responder cows than in low responders. Areas under the plasma and saliva cortisol response curves were greater in high responder cows. Plasma and salivary cortisol levels correlated significantly at baseline (r=0.91), right after examination (r=0.98), and at peak levels (r=0.96). Area under the HR response curve was higher in low responder cows; however, maximum HR and the amplitude of the HR response showed no differences between groups. Minimum values of both parameters calculated for the examination were higher in high responders. Following the examination, response parameters of root mean square of successive differences and HF did not differ between groups. The maximum and the amplitude of LF/HF response and area under the LF/HF response curve were lower in low responder cows, suggesting a lower sympathetic

  1. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    NASA Astrophysics Data System (ADS)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  2. Reduced cardiac autonomic response to deep breathing: A heritable vulnerability trait in patients with schizophrenia and their healthy first-degree relatives.

    PubMed

    Liu, Yu-Wen; Tzeng, Nian-Sheng; Yeh, Chin-Bin; Kuo, Terry B J; Huang, San-Yuan; Chang, Chuan-Chia; Chang, Hsin-An

    2016-09-30

    Reduced resting heart rate variability (HRV) has been observed in patients with schizophrenia and their relatives, suggesting genetic predispositions. However, findings have not been consistent. We assessed cardiac autonomic response to deep breathing in first-degree relatives of patients with schizophrenia (n=45; 26 female; aged 39.69±14.82 years). Data were compared to healthy controls (n=45; 26 female; aged 38.27±9.79 years) matched for age, gender, body mass index and physical activity as well as to unmedicated patients with acute schizophrenia (n=45; 25 female; aged 37.31±12.65 years). Electrocardiograms were recorded under supine resting and deep-breathing conditions (10-12breaths/min). We measured HRV components including variance, low-frequency (LF) power, which may reflect baroreflex function, high-frequency (HF) power, which reflects cardiac parasympathetic activity, and LF/HF ratio, which may reflect sympatho-vagal balance. Patients rather than relatives exhibited lower resting-state HRV (variance, LF, and HF) than controls. As expected, deep breathing induced an increase in variance and HF-HRV in controls. However, such a response was significantly reduced in both patients and their relatives. In conclusion, the diminished cardiac autonomic reactivity to deep breathing seen in patients and their unaffected relatives indicates that this pattern of cardiac autonomic dysregulation may be regarded as a genetic trait marker for schizophrenia. PMID:27442977

  3. EH domain proteins regulate cardiac membrane protein targeting

    PubMed Central

    Gudmundsson, Hjalti; Hund, Thomas J.; Wright, Patrick J.; Kline, Crystal F.; Snyder, Jedidiah S.; Qian, Lan; Koval, Olha M.; Cunha, Shane R.; George, Manju; Rainey, Mark A.; Kashef, Farshid E.; Dun, Wen; Boyden, Penelope A.; Anderson, Mark E.; Band, Hamid; Mohler, Peter J.

    2010-01-01

    Rationale Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. Objective We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. Methods and Results We report the initial characterization of a large family of membrane trafficking proteins in human heart. We employed a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified four members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are co-expressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. Conclusions Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin

  4. Vascular Endothelial Function and Blood Pressure Regulation in Afferent Autonomic Failure

    PubMed Central

    Jelani, Qurat-ul-ain; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio

    2015-01-01

    BACKGROUND Familial dysautonomia (FD) is a rare hereditary disease characterized by loss of afferent autonomic neural fiber signaling and consequent profound impairment of arterial baroreflex function and blood pressure regulation. Whether vascular endothelial dysfunction contributes to defective vasomotor control in this form of afferent autonomic failure is not known. METHODS We assessed blood pressure response to orthostatic stress and vascular endothelial function with brachial artery reactivity testing in 34 FD subjects with afferent autonomic failure and 34 healthy control subjects. RESULTS Forty-four percent of the afferent autonomic failure subjects had uncontrolled hypertension at supine rest (median systolic blood pressure = 148mm Hg, interquartile range (IQR) = 144–155mm Hg; median diastolic blood pressure = 83mm Hg, IQR = 78–105mm Hg), and 88% had abnormal response to orthostatic stress (median decrease in systolic blood pressure after upright tilt = 48mm Hg, IQR = 29–61mm Hg). Flow-mediated brachial artery reactivity did not differ in subjects with afferent autonomic failure vs. healthy control subjects (median = 6.00%, IQR = 1.86–11.77%; vs. median = 6.27%, IQR = 4.65–9.34%; P = 0.75). In afferent autonomic failure subjects, brachial artery reactivity was not associated with resting blood pressure or the magnitude of orthostatic hypotension but was decreased in association with reduced glomerular filtration rate (r = 0.62; P < 0.001). CONCLUSIONS Brachial artery reactivity was preserved in subjects with afferent autonomic failure despite the presence of marked blood pressure dysregulation. Comorbid renal dysfunction was associated with reduced brachial artery reactivity. PMID:25128693

  5. Transcriptional regulation of cardiac conduction system development: 2004 FASEB cardiac conduction system minimeeting, Washington, DC.

    PubMed

    Harris, Brett S; Jay, Patrick Y; Rackley, Mary S; Izumo, Seigo; O'brien, Terrence X; Gourdie, Robert G

    2004-10-01

    The development of the complex network of specialized cells that form the atrioventricular conduction system (AVCS) during cardiac morphogenesis occurs by progressive recruitment within a multipotent cardiomyogenic lineage. Understanding the molecular control of this developmental process has been the focus of recent research. Transcription factors representative of multiple subfamilies have been identified and include members of zinc-finger subfamilies (GATA4, GATA6 HF-1b), skeletal muscle transcription factors (MyoD), T-box genes (Tbx5), and also homeodomain transcription factors (Msx2 and Nkx2.5). Mutations in some of these transcription factors cause congenital heart disease and are associated with cardiac abnormalities, including deficits within the AVCS. Mouse models that closely phenocopy known human heart disease provide powerful tools for the study of molecular effectors of AVCS development. Indeed, investigations of the Nkx2.5 haploinsufficient mouse have shown that peripheral Purkinje fibers are significantly underrepresented. This piece of data corroborates our previous work showing in chick, mouse, and humans that Nkx2.5 is elevated in the differentiating AVCS relative to adjacent working ventricular myocardial tissues. Using the chick embryo as a model, we show that this elevation of Nkx2.5 is transient in the network of conduction cells comprising the peripheral Purkinje fiber system. Functional studies using defective adenoviral constructs, which disrupt the normal variation in level of this gene, result in perturbations of Purkinje fiber phenotype. Thus, the precise spatiotemporal regulation of Nkx2.5 levels during development may be required for the progressive emergence of gene expression patterns specific to differentiated Purkinje fiber cells. PMID:15368344

  6. Nonlinearity and fractality in the variability of cardiac period in the lizard, Gallotia galloti: effects of autonomic blockade.

    PubMed

    De Vera, Luis; Santana, Alejandro; Gonzalez, Julian J

    2008-10-01

    Both nonlinear and fractal properties of beat-to-beat R-R interval variability signal (RRV) of freely moving lizards (Gallotia galloti) were studied in baseline and under autonomic nervous system blockade. Nonlinear techniques allowed us to study the complexity, chaotic behavior, nonlinearity, stationarity, and regularity over time of RRV. Scaling behavior of RRV was studied by means of fractal techniques. The autonomic nervous system blockers used were atropine, propranolol, prazosin, and yohimbine. The nature of RRV was linear in baseline and under beta-, alpha(1)- and alpha(2)-adrenoceptor blockades. Atropine changed the linear nature of RRV to nonlinear and increased its stationarity, regularity and fractality. Propranolol increased the complexity and chaotic behavior, and decreased the stationarity, regularity, and fractality of RRV. Both prazosin and yohimbine did not change any of the nonlinear and fractal properties of RRV. It is suggested that 1) the use of both nonlinear and fractal analysis is an appropriate approach for studying cardiac period variability in reptiles; 2) the cholinergic activity, which seems to make the alpha(1)-, alpha(2)- and beta-adrenergic activity interaction unnecessary, determines the linear behavior in basal RRV; 3) fractality, as well as both RRV regularity and stationarity over time, may result from the balance between cholinergic and beta-adrenergic activities opposing actions; 4) beta-adrenergic activity may buffer both the complexity and chaotic behavior of RRV, and 5) neither the alpha(1)- nor the alpha(2)-adrenergic activity seem to be involved in the mediation of either nonlinear or fractal components of RRV. PMID:18685061

  7. Cardiac autonomic modulation in healthy elderly after different intensities of dynamic exercise

    PubMed Central

    Droguett, Viviane Santos López; Santos, Amilton da Cruz; de Medeiros, Carlos Eduardo; Marques, Douglas Porto; do Nascimento, Leone Severino; Brasileiro-Santos, Maria do Socorro

    2015-01-01

    Purpose To investigate the heart rate (HR) and its autonomic modulation at baseline and during dynamic postexercise (PEX) with intensities of 40% and 60% of the maximum HR in healthy elderly. Methods This cross-sectional study included ten apparently healthy people who had been submitted to a protocol on a cycle ergometer for 35 minutes. Autonomic modulation was evaluated by spectral analysis of HR variability (HRV). Results A relevant increase in HR response was observed at 15 minutes postexercise with intensities of 60% and 40% of the maximum HR (10±2 bpm versus 5±1 bpm, respectively; P=0.005), and a significant reduction in HRV was also noted with 40% and 60% intensities during the rest period, and significant reduction in HRV (RR variance) was also observed in 40% and 60% intensities when compared to the baseline, as well as between the post-exercise intensities (1032±32 ms versus 905±5 ms) (P<0.001). In the HRV spectral analysis, a significant increase in the low frequency component HRV and autonomic balance at 40% of the maximum HR (68±2 normalized units [nu] versus 55±1 nu and 2.0±0.1 versus 1.2±0.1; P<0.001) and at 60% of the maximum HR (77±1 nu versus 55±1 nu and 3.2±0.1 versus 1.2±0.1 [P<0.001]) in relation to baseline was observed. A significant reduction of high frequency component at 40% and 60% intensities, however, was observed when compared to baseline (31±2 nu and 23±1 nu versus 45±1 nu, respectively; P<0.001). Moreover, significant differences were observed for the low frequency and high frequency components, as well as for the sympathovagal balance between participants who reached 40% and 60% of the maximum HR. Conclusion There was an increase in the HR, sympathetic modulation, and sympathovagal balance, as well as a reduction in vagal modulation in the elderly at both intensities of the PEX. PMID:25653509

  8. Effect of Head-Down Bed Rest and Artificial Gravity Countermeasure on Cardiac Autonomic and Advanced Electrocardiographic Function

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Platts, S.; Stenger, M.; Ribeiro, C.; Natapoff, A.; Howarth, M.; Evans, J.

    2007-01-01

    To study the effects of 21 days of head-down bed rest (HDBR), with versus without an artificial gravity (AG) countermeasure, on cardiac autonomic and advanced electrocardiographic function. Fourteen healthy men participated in the study: seven experienced 21 days of HDBR alone ("HDBR controls") and seven the same degree and duration of HDBR but with approximately 1hr daily short-arm centrifugation as an AG countermeasure ("AG-treated"). Five minute supine high-fidelity 12-lead ECGs were obtained in all subjects: 1) 4 days before HDBR; 2) on the last day of HDBR; and 3) 7 days after HDBR. Besides conventional 12-lead ECG intervals and voltages, all of the following advanced ECG parameters were studied: 1) both stochastic (time and frequency domain) and deterministic heart rate variability (HRV); 2) beat-to-beat QT interval variability (QTV); 3) T-wave morphology, including signal-averaged T-wave residua (TWR) and principal component analysis ratios; 4) other SAECG-related parameters including high frequency QRS ECG and late potentials; and 5) several advanced ECG estimates of left ventricular (LV) mass. The most important results by repeated measures ANOVA were that: 1) Heart rates, Bazett-corrected QTc intervals, TWR, LF/HF power and the alpha 1 of HRV were significantly increased in both groups (i.e., by HDBR), but with no relevant HDBR*group differences; 2) All purely "vagally-mediated" parameters of HRV (e.g., RMSSD, HF power, Poincare SD1, etc.), PR intervals, and also several parameters of LV mass (Cornell and Sokolow-Lyon voltages, spatial ventricular activation times, ventricular gradients) were all significantly decreased in both groups (i.e., by HDBR), but again with no relevant HDBR*group differences); 3) All "generalized" or "vagal plus sympathetic" parameters of stochastic HRV (i.e., SDNN, total power, LF power) were significantly more decreased in the AG-treated group than in the HDBR-only group (i.e., here there was a relevant HDBR*group difference

  9. Bariatric Surgery Restores Cardiac and Sudomotor Autonomic C-Fiber Dysfunction towards Normal in Obese Subjects with Type 2 Diabetes

    PubMed Central

    Lieb, David C.; Wohlgemuth, Stephen D.

    2016-01-01

    Objective The aim was to evaluate the impact of bariatric surgery on cardiac and sudomotor autonomic C-fiber function in obese subjects with and without Type 2 diabetes mellitus (T2DM), using sudorimetry and heart rate variability (HRV) analysis. Method Patients were evaluated at baseline, 4, 12 and 24 weeks after vertical sleeve gastrectomy or Roux-en-Y gastric bypass. All subjects were assessed using SudoscanTM to measure electrochemical skin conductance (ESC) of hands and feet, time and frequency domain analysis of HRV, Neurologic Impairment Scores of lower legs (NIS-LL), quantitative sensory tests (QST) and sural nerve conduction studies. Results Seventy subjects completed up to 24-weeks of follow-up (24 non-T2DM, 29 pre-DM and 17 T2DM). ESC of feet improved significantly towards normal in T2DM subjects (Baseline = 56.71±3.98 vs 12-weeks = 62.69±3.71 vs 24-weeks = 70.13±2.88, p<0.005). HRV improved significantly in T2DM subjects (Baseline sdNN (sample difference of the beat to beat (NN) variability) = 32.53±4.28 vs 12-weeks = 44.94±4.18 vs 24-weeks = 49.71±5.19, p<0,001 and baseline rmsSD (root mean square of the difference of successive R-R intervals) = 23.88±4.67 vs 12-weeks = 38.06±5.39 vs 24-weeks = 43.0±6.25, p<0.0005). Basal heart rate (HR) improved significantly in all groups, as did weight, body mass index (BMI), percent body fat, waist circumference and high-density lipoprotein (HDL). Glycated hemoglobin (HbA1C), insulin and HOMA2-IR (homeostatic model assessment) levels improved significantly in pre-DM and T2DM subjects. On multiple linear regression analysis, feet ESC improvement was independently associated with A1C, insulin and HOMA2-IR levels at baseline, and improvement in A1C at 24 weeks, after adjusting for age, gender and ethnicity. Sudomotor function improvement was not associated with baseline weight, BMI, % body fat or lipid levels. Improvement in basal HR was also independently associated with A1C, insulin and HOMA2-IR levels at

  10. Validation of the state version questionnaire on autonomic regulation (state-aR) for cancer patients

    PubMed Central

    2011-01-01

    Objectives Current quality of life inventories used in oncology mainly measure the effects of chemo- or radiotherapy alongside functional and role scales. A new approach is to measure the autonomic state of regulation with the trait-inventory of autonomic regulation (Trait-aR). Loss of Trait-aR has been shown in different medical conditions such as breast cancer (BC) but not in colorectal cancer patients (CRC). In this paper we report the validation of a new state autonomic regulation scale (State-aR) of the last week. Methods Study 1 included 114 participants: (41 women/16 men with cancer and 57 age- and gender-matched healthy people) to conduct a reliability-, factor- and validity-analysis. Concurrent and convergent validity was evaluated with Trait-aR, Fatigue-Numeri-cal-Scale, Hospital Anxiety and Depression Scale (HADS-D) and the self-regulation scale, 65 participants were retested. Study 2 completed 42 participants: 17 with BC and 25 with CRC receiving chemotherapy. The State-aR was administered prior, during and after chemotherapy for measuring responsiveness. Results The factor analysis loaded to four subscales of State-aR (rest-activity, orthostatic-circulatory, thermosweating and digestive regulation) with a: Cronbach-α rα = 0.77-0.83 and a test-retest-reliability rrt = 0.60-0.80. The sum- and sub scales correlated with their concurrent subscales in the Trait-aR (0.48-0.74) and with the sum-scale moderately with all convergent criteria (r = 0.41 --0.44; p < 0.001). During chemotherapy the State-aR-sum and rest-activity-scale decreased significantly compared to the change in the Trait-aR (p < 0.05). Conclusions These findings support that the state autonomic regulation scale has satisfactory to good reliability, good validity and acceptable responsiveness in the context of chemotherapy treatment. PMID:22024425

  11. Effect of overreaching on cognitive performance and related cardiac autonomic control.

    PubMed

    Dupuy, O; Lussier, M; Fraser, S; Bherer, L; Audiffren, M; Bosquet, L

    2014-02-01

    The purpose of this study was to characterize the effect of a 2-week overload period immediately followed by a 1-week taper period on different cognitive processes including executive and nonexecutive functions, and related heart rate variability. Eleven male endurance athletes increased their usual training volume by 100% for 2 weeks, and decreased it by 50% for 1 week. A maximal graded test, a constant speed test at 85% of peak treadmill speed, and a Stroop task with the measurement of heart rate variability were performed at each period. All participants were considered as overreached. We found a moderate increase in the overall reaction time to the three conditions of the Stroop task after the overload period (816 ± 83 vs 892 ± 117 ms, P = 0.03) followed by a return to baseline after the taper period (820 ± 119 ms, P = 0.013). We found no association between cognitive performance and cardiac parasympathetic control at baseline, and no association between changes in these measures. Our findings clearly underscore the relevance of cognitive performance in the monitoring of overreaching in endurance athletes. However, contrary to our hypothesis, we did not find any relationship between executive performance and cardiac parasympathetic control. PMID:22537000

  12. Intervention study on cardiac autonomic nervous effects of methylmercury from seafood.

    PubMed

    Yaginuma-Sakurai, Kozue; Murata, Katsuyuki; Shimada, Miyuki; Nakai, Kunihiko; Kurokawa, Naoyuki; Kameo, Satomi; Satoh, Hiroshi

    2010-01-01

    To scrutinize whether the provisional tolerable weekly intake (PTWI, 3.4 microg/kg body weight/week) of methylmercury in Japan is safe for adults, we conducted an intervention study using heart rate variability (HRV) that has been considered to reflect cardiac events. Fifty-four healthy volunteers were recruited and divided into experimental and control groups. The experimental group was exposed to methylmercury at the PTWI level through consumption of bigeye tuna and swordfish for 14 weeks, and HRV parameters were compared between the two groups. In the experimental group, mean hair mercury levels, determined before and after the dietary methylmercury exposure and after 15-week wash-out period following the cessation of exposure, were 2.30, 8.76 and 4.90 microg/g, respectively. The sympathovagal balance index of HRV was significantly elevated after the exposure, and decreased to the baseline level at the end of this study. Still, such changes in HRV parameters were not found in the control group with a mean hair mercury level of around 2.1 microg/g. In conclusion, the PTWI does not appear to be safe for adult health, because methylmercury exposure from fish consumption induced a temporary sympathodominant state. Rather, long-term exposure to methylmercury may pose a potential risk for cardiac events involving sympathovagal imbalance among fish-consuming populations. PMID:19732823

  13. Evidence for vestibular regulation of autonomic functions in a mouse genetic model

    NASA Technical Reports Server (NTRS)

    Murakami, Dean M.; Erkman, Linda; Hermanson, Ola; Rosenfeld, Michael G.; Fuller, Charles A.

    2002-01-01

    Physiological responses to changes in the gravitational field and body position, as well as symptoms of patients with anxiety-related disorders, have indicated an interrelationship between vestibular function and stress responses. However, the relative significance of cochlear and vestibular information in autonomic regulation remains unresolved because of the difficulties in distinguishing the relative contributions of other proprioceptive and interoceptive inputs, including vagal and somatic information. To investigate the role of cochlear and vestibular function in central and physiological responses, we have examined the effects of increased gravity in wild-type mice and mice lacking the POU homeodomain transcription factor Brn-3.1 (Brn-3bPou4f3). The only known phenotype of the Brn-3.1(-/-) mouse is related to hearing and balance functions, owing to the failure of cochlear and vestibular hair cells to differentiate properly. Here, we show that normal physiological responses to increased gravity (2G exposure), such as a dramatic drop in body temperature and concomitant circadian adjustment, were completely absent in Brn-3.1(-/-) mice. In line with the lack of autonomic responses, the massive increase in neuronal activity after 2G exposure normally detected in wild-type mice was virtually abolished in Brn-3.1(-/-) mice. Our results suggest that cochlear and vestibular hair cells are the primary regulators of autonomic responses to altered gravity and provide genetic evidence that these cells are sufficient to alter neural activity in regions involved in autonomic and neuroendocrine control.

  14. Creative motivation: creative achievement predicts cardiac autonomic markers of effort during divergent thinking.

    PubMed

    Silvia, Paul J; Beaty, Roger E; Nusbaum, Emily C; Eddington, Kari M; Kwapil, Thomas R

    2014-10-01

    Executive approaches to creativity emphasize that generating creative ideas can be hard and requires mental effort. Few studies, however, have examined effort-related physiological activity during creativity tasks. Using motivational intensity theory as a framework, we examined predictors of effort-related cardiac activity during a creative challenge. A sample of 111 adults completed a divergent thinking task. Sympathetic (PEP and RZ) and parasympathetic (RSA and RMSSD) outcomes were assessed using impedance cardiography. As predicted, people with high creative achievement (measured with the Creative Achievement Questionnaire) showed significantly greater increases in sympathetic activity from baseline to task, reflecting higher effort. People with more creative achievements generated ideas that were significantly more creative, and creative performance correlated marginally with PEP and RZ. The results support the view that creative thought can be a mental challenge. PMID:25063471

  15. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    PubMed Central

    Machi, Jacqueline Freire; Dias, Danielle da Silva; Freitas, Sarah Cristina; de Moraes, Oscar Albuquerque; da Silva, Maikon Barbosa; Cruz, Paula Lázara; Mostarda, Cristiano; Salemi, Vera M C; Morris, Mariana; De Angelis, Kátia; Irigoyen, Maria-Cláudia

    2016-01-01

    Objective The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX). Methods Female Wistar rats (3 or 22 months old) were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal). After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index) were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG) was reduced in young ovariectomized, old controls, and old ovariectomized groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=−0.6, P<0.003). Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009) and vagal tonus (r=−0.7, P<0.0002); and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002), sympathetic tonus (r=0.55, P<0.006), and physical capacity (r=−0.55, P<0.003). The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction

  16. Effort Deficits and Depression: The Influence of Anhedonic Depressive Symptoms on Cardiac Autonomic Activity During a Mental Challenge

    PubMed Central

    Silvia, Paul J.; Nusbaum, Emily C.; Eddington, Kari M.; Beaty, Roger E.; Kwapil, Thomas R.

    2014-01-01

    Motivational approaches to depression emphasize the role of dysfunctional motivational dynamics, particularly diminished reward and incentive processes associated with anhedonia. A study examined how anhedonic depressive symptoms, measured continuously across a wide range of severity, influenced the physiological mobilization of effort during a cognitive task. Using motivational intensity theory as a guide, we expected that the diminished incentive value associated with anhedonic depressive symptoms would reduce effort during a “do your best” challenge (also known as an unfixed or self-paced challenge), in which effort is a function of the value of achieving the task’s goal. Using impedance cardiography, two cardiac autonomic responses were assessed: pre-ejection period (PEP), a measure of sympathetic activity and our primary measure of interest, and respiratory sinus arrhythmia (RSA), a measure of parasympathetic activity. As expected, PEP slowed from baseline to task as anhedonic depressive symptoms increased (as measured with the DASS Depression scale), indicating diminished effort-related sympathetic activity. No significant effects appeared for RSA. The findings support motivational intensity theory as a translational model of effort processes in depression and clarify some inconsistent effects of depressive symptoms on effort-related physiology found in past work. PMID:25431505

  17. Up-Regulation of the Cardiac Lipid Metabolism at the Onset of Heart Failure

    PubMed Central

    AbdAlla, Said; Fu, Xuebin; Elzahwy, Sherif S; Klaetschke, Kristin; Streichert, Thomas; Quitterer, Ursula

    2011-01-01

    Chronic pressure overload and atherosclerosis are primary etiologic factors for cardiac hypertrophy and failure. However, mechanisms underlying the transition from hypertrophy to heart failure are incompletely understood. We analyzed the development of heart failure in mice with chronic pressure overload induced by aortic constriction and compared the results with aged apolipoprotein E-deficient mice suffering from advanced atherosclerosis. We combined cardiac function analysis by echocardiography and invasive hemodynamics with a comprehensive microarray gene expression study (GSE25765-8). The microarray data showed that the onset of heart failure induced by pressure overload or advanced atherosclerosis was accompanied by a strong up-regulation of key lipid metabolizing enzymes involved in fat synthesis, storage and oxidation. Cardiac lipid overload may be involved in the progression of heart failure by enhancing cardiomyocyte death. Up-regulation of the cardiac lipid metabolism was related to oxygen and ATP depletion of failing hearts because anti-ischemic treatment with ranolazine normalized the cardiac lipid metabolism and improved cardiac function. Vice versa, inhibition of cellular respiration and ATP generation by mild thiol-blocking with cystamine triggered the cardiac lipid metabolism and caused signs of heart failure. Cardiac tissue specimens of patients with heart failure also showed high protein levels of key fat metabolizing enzymes as well as lipid accumulation. Taken together, our data strongly indicate that up-regulation of the cardiac lipid metabolism and myocardial lipid overload are underlying the development of heart failure. PMID:21711241

  18. TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans.

    PubMed

    McCallum, Katie C; Liu, Bin; Fierro-González, Juan Carlos; Swoboda, Peter; Arur, Swathi; Miranda-Vizuete, Antonio; Garsin, Danielle A

    2016-05-01

    The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. PMID:26920757

  19. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism.

    PubMed

    Souza, N S; Dos-Santos, R C; Silveira, Anderson Luiz Bezerra da; R, Sonoda-Côrtes; Gantus, Michel Alexandre Villani; Fortes, F S; Olivares, Emerson Lopes

    2016-04-01

    Premenopausal women are known to show lower incidence of cardiovascular disease than men. During myocardial infarction (MI), homeostatic responses are activated, including the sympathetic autonomic nervous system and the rennin-angiotensin-aldosterone system, which is related to the fluid and electrolyte balance, both aiming to maintain cardiac output. This study sought to perform a serial evaluation of sexual dimorphism in cardiac autonomic control and fluid and electrolyte balance during the development of MI-induced heart failure in rats. Experimental MI was induced in male (M) and female (F) adult (7-9 weeks of age) Wistar rats. The animals were placed in metabolic cages to assess fluid intake and urine volume 1 and 4 weeks after inducing MI (male myocardial infarction (MMI) and female myocardial infarction (FMI) groups). They subsequently underwent echocardiographic evaluation and spectral analysis of heart rate variability. After completing each protocol, the animals were killed for postmortem evaluation and histology. The MMI group showed earlier and more intense cardiac morphological and functional changes than the FMI group, although the extent of MI did not differ between groups (P > 0.05). The MMI group showed higher sympathetic modulation and sodium and water retention than the FMI group (P < 0.05), which may partly explain both the echocardiographic and pathological findings. Females subjected to infarction seem to show attenuation of sympathetic modulation, more favourable fluid and electrolyte balances, and better preserved cardiac function compared to males subjected to the same infarction model. PMID:26748814

  20. Effects of negative air ions on activity of neural substrates involved in autonomic regulation in rats

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoko; Yanagita, Shinya; Amemiya, Seiichiro; Kato, Yumi; Kubota, Natsuko; Ryushi, Tomoo; Kita, Ichiro

    2008-07-01

    The neural mechanism by which negative air ions (NAI) mediate the regulation of autonomic nervous system activity is still unknown. We examined the effects of NAI on physiological responses, such as blood pressure (BP), heart rate (HR), and heart rate variability (HRV) as well as neuronal activity, in the paraventricular nucleus of the hypothalamus (PVN), locus coeruleus (LC), nucleus ambiguus (NA), and nucleus of the solitary tract (NTS) with c-Fos immunohistochemistry in anesthetized, spontaneously breathing rats. In addition, we performed cervical vagotomy to reveal the afferent pathway involved in mediating the effects of NAI on autonomic regulation. NAI significantly decreased BP and HR, and increased HF power of the HRV spectrum. Significant decreases in c-Fos positive nuclei in the PVN and LC, and enhancement of c-Fos expression in the NA and NTS were induced by NAI. After vagotomy, these physiological and neuronal responses to NAI were not observed. These findings suggest that NAI can modulate autonomic regulation through inhibition of neuronal activity in PVN and LC as well as activation of NA neurons, and that these effects of NAI might be mediated via the vagus nerves.

  1. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    SciTech Connect

    Not Available

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  2. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report

    SciTech Connect

    Not Available

    1992-12-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  3. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study

    PubMed Central

    Vrijkotte, Tanja G. M.; van den Born, Bert-Jan H.; Hoekstra, Christine M. C. A.; Gademan, Maaike G. J.; van Eijsden, Manon; de Rooij, Susanne R.; Twickler, Marcel T. B.

    2015-01-01

    Background In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5–6 years. Methods Cross-sectional data from an apparently healthy population (within the ABCD study) were collected at age 5–6 years in 1540 children. Heart rate (HR), respiratory sinus arrhythmia (RSA; parasympathetic activity) and pre-ejection period (PEP; sympathetic activity) were assessed during rest. Metabolic components were waist-height ratio (WHtR), systolic blood pressure (SBP), fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed. Results In analysis adjusted for child’s physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01), higher SBP (p<0.001) and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01). Lower PEP was only associated with higher SBP (p <0.05). Of all children, 5.6% had 3 or more (out of 5) adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001). Conclusions This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5–6 years. PMID:26394362

  4. Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium Cardiac Myosin Binding Protein C

    PubMed Central

    Moss, Richard L.; Fitzsimons, Daniel P.; Ralphe, J. Carter

    2014-01-01

    Cardiac myosin binding protein-C (cMyBP-C) is a thick filament-associated protein that appears to contribute to the regulation of cardiac contraction through interactions with either myosin or actin or both. Several studies over the past several years have suggested that the interactions of cMyBP-C with its binding partners vary with its phosphorylation state, binding predominantly to myosin when dephosphorylated and to actin when it is phosphorylated by PKA or other kinases. Here, we summarize evidence suggesting that phosphorylation of cMyBP-C is a key regulator of the kinetics and amplitude of cardiac contraction during β-adrenergic stimulation and increased stimulus frequency. We propose a model for these effects via a phosphorylation-dependent regulation of the kinetics and extent of cooperative recruitment of cross-bridges to the thin filament – phosphorylation of cMyBP-C accelerates cross-bridge binding to actin, thereby accelerating recruitment and increasing the amplitude of the cardiac twitch. In contrast, enhanced lusitropy as a result of phosphorylation appears to be due to a direct effect of phosphorylation to accelerate cross-bridge detachment rate. Depression or elimination of one or both of these processes in a disease such as end-stage heart failure appears to contribute to the systolic and diastolic dysfunction that characterizes the disease. PMID:25552695

  5. Comparing the accuracy of ES-BC, EIS-GS, and ES Oxi on body composition, autonomic nervous system activity, and cardiac output to standardized assessments

    PubMed Central

    Lewis, John E; Tannenbaum, Stacey L; Gao, Jinrun; Melillo, Angelica B; Long, Evan G; Alonso, Yaima; Konefal, Janet; Woolger, Judi M; Leonard, Susanna; Singh, Prabjot K; Chen, Lawrence; Tiozzo, Eduard

    2011-01-01

    Background and purpose The Electro Sensor Complex (ESC) is software that combines three devices using bioelectrical impedance, galvanic skin response, and spectrophotometry: (1) ES-BC (Electro Sensor-Body Composition; LD Technology, Miami, FL) to assess body composition, (2) EIS-GS (Electro Interstitial Scan-Galvanic Skin; LD Technology) to predict autonomic nervous system activity, and (3) ES Oxi (Electro Sensor Oxi; LD Technology) to assess cardiac output. The objective of this study was to compare each to a standardized assessment: ES-BC to dual-energy X-ray absorptiometry (DXA), EIS-GS to heart rate variability, and ES Oxi to BioZ Dx Diagnostic System (BioZ Dx; SonoSite Inc, Bothell, WA). Patients and methods The study was conducted in two waves. Fifty subjects were assessed for body composition and autonomic nervous system activity. Fifty-one subjects were assessed for cardiac output. Results We found adequate relative and absolute agreement between ES-BC and DXA for fat mass (r = 0.97, P < 0.001) with ES-BC overestimating fat mass by 0.1 kg and for body fat percentage (r = 0.92, P < 0.001) with overestimation of fat percentage by 0.4%. For autonomic nervous system activity, we found marginal relative agreement between EIS-GS and heart rate variability by using EIS-GS as the predictor in a linear regression equation (adjusted R2 = 0.56, P = 0.03). For cardiac output, adequate relative and absolute agreement was found between ES Oxi and BioZ Dx at baseline (r = 0.60, P < 0.001), after the first exercise stage (r = 0.79, P < 0.001), and after the second exercise stage (r = 0.86, P < 0.001). Absolute agreement was found at baseline and after both bouts of exercise; ES Oxi overestimated baseline and stage 1 exercise cardiac output by 0.3 L/minute and 0.1 L/minute, respectively, but exactly estimated stage 2 exercise cardiac output. Conclusion ES-BC and ES Oxi accurately assessed body composition and cardiac output compared to standardized instruments, whereas EIS

  6. A-kinase anchoring proteins: molecular regulators of the cardiac stress response.

    PubMed

    Diviani, Dario; Maric, Darko; Pérez López, Irene; Cavin, Sabrina; Del Vescovo, Cosmo D

    2013-04-01

    In response to stress or injury the heart undergoes a pathological remodeling process, associated with hypertrophy, cardiomyocyte death and fibrosis, that ultimately causes cardiac dysfunction and heart failure. It has become increasingly clear that signaling events associated with these pathological cardiac remodeling events are regulated by scaffolding and anchoring proteins, which allow coordination of pathological signals in space and time. A-kinase anchoring proteins (AKAPs) constitute a family of functionally related proteins that organize multiprotein signaling complexes that tether the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to ensure integration and processing of multiple signaling pathways. This review will discuss the role of AKAPs in the cardiac response to stress. Particular emphasis will be given to the adaptative process associated with cardiac hypoxia as well as the remodeling events linked to cardiac hypertrophy and heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. PMID:22889610

  7. Cardiorespiratory and cardiac autonomic responses to 30-15 intermittent fitness test in team sport players.

    PubMed

    Buchheit, Martin; Al Haddad, Hani; Millet, Grégoire Paul; Lepretre, Pierre Marie; Newton, Michael; Ahmaidi, Said

    2009-01-01

    The 30-15 Intermittent Fitness Test (30-15IFT) is an attractive alternative to classic continuous incremental field tests for defining a reference velocity for interval training prescription in team sport athletes. The aim of the present study was to compare cardiorespiratory and autonomic responses to 30-15IFT with those observed during a standard continuous test (CT). In 20 team sport players (20.9 +/- 2.2 years), cardiopulmonary parameters were measured during exercise and for 10 minutes after both tests. Final running velocity, peak lactate ([La]peak), and rating of perceived exertion (RPE) were also measured. Parasympathetic function was assessed during the postexercise recovery phase via heart rate (HR) recovery time constant (HRR[tau]) and HR variability (HRV) vagal-related indices. At exhaustion, no difference was observed in peak oxygen uptake VO2peak), respiratory exchange ratio, HR, or RPE between 30-15IFT and CT. In contrast, 30-15IFT led to significantly higher minute ventilation, [La]peak, and final velocity than CT (p < 0.05 for all parameters). All maximal cardiorespiratory variables observed during both tests were moderately to well correlated (e.g., r = 0.76, p = 0.001 for [latin capital VO2peak). Regarding ventilatory thresholds (VThs), all cardiorespiratory measurements were similar and well correlated between the 2 tests. Parasympathetic function was lower after 30-15IFT than after CT, as indicated by significantly longer HHR[tau] (81.9 +/- 18.2 vs. 60.5 +/- 19.5 for 30-15IFT and CT, respectively, p < 0.001) and lower HRV vagal-related indices (i.e., the root mean square of successive R-R intervals differences [rMSSD]: 4.1 +/- 2.4 and 7.0 +/- 4.9 milliseconds, p < 0.05). In conclusion, the 30-15IFT is accurate for assessing VThs and VO2peak, but it alters postexercise parasympathetic function more than a continuous incremental protocol. PMID:19057401

  8. The protein kinase A-regulated cardiac Cl- channel resembles the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Nagel, G; Hwang, T C; Nastiuk, K L; Nairn, A C; Gadsby, D C

    1992-11-01

    Stimulation of beta-adrenoceptors in cardiac ventricular myocytes activates a strong chloride ion conductance as a result of phosphorylation by cyclic AMP-dependent protein kinase (PKA). This Cl- conductance, which is time- and voltage-independent, counters the tendency of the simultaneously enhanced Ca2+ channel current to prolong the ventricular action potential. Using inside-out giant patches excised from guinea-pig myocytes, we show here that phosphorylation by the PKA catalytic subunit plus Mg-ATP elicits discrete Cl- channel currents. In almost symmetrical Cl- solutions (approximately 150 mM), unitary current amplitude scales with membrane potential, and reverses sign near 0 mV, to yield a single channel conductance of approximately 12 pS. Opening of the phosphorylated channels requires hydrolysable nucleoside triphosphate, indicating that phosphorylation by PKA is necessary, but not sufficient, for channel activation. The properties of these PKA-regulated cardiac Cl- channels are very similar, if not identical, to those of the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial cell Cl- channel whose regulation is defective in patients with cystic fibrosis. The full cardiological impact of these Cl- channels and of their possible malfunction in patients with cystic fibrosis remains to be determined. PMID:1279437

  9. Extracellular Superoxide Dismutase Regulates Cardiac Function and Fibrosis

    PubMed Central

    Kliment, Corrine R; Suliman, Hagir B; Tobolewski, Jacob M; Reynolds, Crystal M; Day, Brian J; Zhu, Xiaodong; McTiernan, Charles F; McGaffin, Kenneth R; Piantadosi, Claude A; Oury, Tim D

    2009-01-01

    Aims Extracellular superoxide dismutase (EC-SOD) is an antioxidant that protects the heart from ischemia and the lung from inflammation and fibrosis. The role of cardiac EC-SOD under normal conditions and injury remains unclear. Cardiac toxicity, a common side effect of doxorubicin, involves oxidative stress. We hypothesize that EC-SOD is critical for normal cardiac function and protects the heart from oxidant-induced fibrosis and loss of function. Methods C57BL/6 and EC-SOD-null mice were treated with doxorubicin, 15 mg/kg (i.p.). After 15 days, echocardiography was used to assess cardiac function. Left ventricle (LV) tissue was used to assess fibrosis and inflammation by staining, western blot, and hydroxyproline analysis. Results At baseline EC-SOD-null mice have LV wall thinning and increases in LV end diastolic dimensions compared to wild type mice, but have normal cardiac function. After doxorubicin, EC-SOD-null mice have decreases in fractional shortening not apparent in WT mice. Lack of EC-SOD also leads to increases in myocardial apoptosis and significantly more LV fibrosis and inflammatory cell infiltration. Administration of the metalloporphyrin AEOL 10150 abrogates the loss of cardiac function, and potentially fibrosis, associated with doxorubicin treatment in both wild type and EC-SOD KO mice. Conclusions EC-SOD is critical for normal cardiac morphology and protects the heart from oxidant-induced fibrosis, apoptosis and loss of function. The antioxidant metalloporphyrin, AEOL 10150 effectively protects cardiac function from doxorubicin-induced oxidative stress, in vivo. These findings identify targets for the use of antioxidant agents in oxidant-induced cardiac fibrosis. PMID:19695260

  10. Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis

    PubMed Central

    Tupone, Domenico; Madden, Christopher J.; Morrison, Shaun F.

    2014-01-01

    From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis. PMID:24570653

  11. FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy

    PubMed Central

    Touchberry, Chad D.; Green, Troy M.; Tchikrizov, Vladimir; Mannix, Jaimee E.; Mao, Tiffany F.; Carney, Brandon W.; Girgis, Magdy; Vincent, Robert J.; Wetmore, Lori A.; Dawn, Buddhadeb; Bonewald, Lynda F.; Stubbs, Jason R.

    2013-01-01

    Fibroblast growth factor 23 (FGF23) is a hormone released primarily by osteocytes that regulates phosphate and vitamin D metabolism. Recent observational studies in humans suggest that circulating FGF23 is independently associated with cardiac hypertrophy and increased mortality, but it is unknown whether FGF23 can directly alter cardiac function. We found that FGF23 significantly increased cardiomyocyte cell size in vitro, the expression of gene markers of cardiac hypertrophy, and total protein content of cardiac muscle. In addition, FGFR1 and FGFR3 mRNA were the most abundantly expressed FGF receptors in cardiomyocytes, and the coreceptor α-klotho was expressed at very low levels. We tested an animal model of chronic kidney disease (Col4a3−/− mice) that has elevated serum FGF23. We found elevations in common hypertrophy gene markers in Col4a3−/− hearts compared with wild type but did not observe changes in wall thickness or cell size by week 10. However, the Col4a3−/− hearts did show reduced fractional shortening (−17%) and ejection fraction (−11%). Acute exposure of primary cardiomyocytes to FGF23 resulted in elevated intracellular Ca2+ ([Ca2+]i; F/Fo + 86%) which was blocked by verapamil pretreatment. FGF23 also increased ventricular muscle strip contractility (67%), which was inhibited by FGF receptor antagonism. We hypothesize that although FGF23 can acutely increase [Ca2+]i, chronically this may lead to decreases in contractile function or stimulate cardiac hypertrophy, as observed with other stress hormones. In conclusion, FGF23 is a novel bone/heart endocrine factor and may be an important mediator of cardiac Ca2+ regulation and contractile function during chronic kidney disease. PMID:23443925

  12. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function.

    PubMed

    Lakhal-Littleton, Samira; Wolna, Magda; Carr, Carolyn A; Miller, Jack J J; Christian, Helen C; Ball, Vicky; Santos, Ana; Diaz, Rebeca; Biggs, Daniel; Stillion, Richard; Holdship, Philip; Larner, Fiona; Tyler, Damian J; Clarke, Kieran; Davies, Benjamin; Robbins, Peter A

    2015-03-10

    Iron is essential to the cell. Both iron deficiency and overload impinge negatively on cardiac health. Thus, effective iron homeostasis is important for cardiac function. Ferroportin (FPN), the only known mammalian iron-exporting protein, plays an essential role in iron homeostasis at the systemic level. It increases systemic iron availability by releasing iron from the cells of the duodenum, spleen, and liver, the sites of iron absorption, recycling, and storage respectively. However, FPN is also found in tissues with no known role in systemic iron handling, such as the heart, where its function remains unknown. To explore this function, we generated mice with a cardiomyocyte-specific deletion of Fpn. We show that these animals have severely impaired cardiac function, with a median survival of 22 wk, despite otherwise unaltered systemic iron status. We then compared their phenotype with that of ubiquitous hepcidin knockouts, a recognized model of the iron-loading disease hemochromatosis. The phenotype of the hepcidin knockouts was far milder, with normal survival up to 12 mo, despite far greater iron loading in the hearts. Histological examination demonstrated that, although cardiac iron accumulates within the cardiomyocytes of Fpn knockouts, it accumulates predominantly in other cell types in the hepcidin knockouts. We conclude, first, that cardiomyocyte FPN is essential for intracellular iron homeostasis and, second, that the site of deposition of iron within the heart determines the severity with which it affects cardiac function. Both findings have significant implications for the assessment and treatment of cardiac complications of iron dysregulation. PMID:25713362

  13. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function

    PubMed Central

    Lakhal-Littleton, Samira; Wolna, Magda; Carr, Carolyn A.; Miller, Jack J. J.; Christian, Helen C.; Ball, Vicky; Santos, Ana; Diaz, Rebeca; Biggs, Daniel; Stillion, Richard; Holdship, Philip; Clarke, Kieran; Davies, Benjamin; Robbins, Peter A.

    2015-01-01

    Iron is essential to the cell. Both iron deficiency and overload impinge negatively on cardiac health. Thus, effective iron homeostasis is important for cardiac function. Ferroportin (FPN), the only known mammalian iron-exporting protein, plays an essential role in iron homeostasis at the systemic level. It increases systemic iron availability by releasing iron from the cells of the duodenum, spleen, and liver, the sites of iron absorption, recycling, and storage respectively. However, FPN is also found in tissues with no known role in systemic iron handling, such as the heart, where its function remains unknown. To explore this function, we generated mice with a cardiomyocyte-specific deletion of Fpn. We show that these animals have severely impaired cardiac function, with a median survival of 22 wk, despite otherwise unaltered systemic iron status. We then compared their phenotype with that of ubiquitous hepcidin knockouts, a recognized model of the iron-loading disease hemochromatosis. The phenotype of the hepcidin knockouts was far milder, with normal survival up to 12 mo, despite far greater iron loading in the hearts. Histological examination demonstrated that, although cardiac iron accumulates within the cardiomyocytes of Fpn knockouts, it accumulates predominantly in other cell types in the hepcidin knockouts. We conclude, first, that cardiomyocyte FPN is essential for intracellular iron homeostasis and, second, that the site of deposition of iron within the heart determines the severity with which it affects cardiac function. Both findings have significant implications for the assessment and treatment of cardiac complications of iron dysregulation. PMID:25713362

  14. Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure.

    PubMed

    Karavaev, Anatoly S; Ishbulatov, Yurii M; Ponomarenko, Vladimir I; Prokhorov, Mikhail D; Gridnev, Vladimir I; Bezruchko, Boris P; Kiselev, Anton R

    2016-03-01

    A model of human cardiovascular system is proposed which describes the main heart rhythm, the regulation of heart function and blood vessels by the autonomic nervous system, baroreflex, and the formation of arterial blood pressure. The model takes into account the impact of respiration on these processes. It is shown that taking into account nonlinearity and introducing the autonomous loop of mean arterial blood pressure in the form of self-oscillating time-delay system allow to obtain the model signals whose statistical and spectral characteristics are qualitatively and quantitatively similar to those for experimental signals. The proposed model demonstrates the phenomenon of synchronization of mean arterial pressure regulatory system by the signal of respiration with the basic period close to 10 seconds, which is observed in the physiological experiments. PMID:26847603

  15. Exposure to medium and high ambient levels of ozone causes adverse systemic inflammatory and cardiac autonomic effects.

    PubMed

    Arjomandi, Mehrdad; Wong, Hofer; Donde, Aneesh; Frelinger, Jessica; Dalton, Sarah; Ching, Wendy; Power, Karron; Balmes, John R

    2015-06-15

    Epidemiological evidence suggests that exposure to ozone increases cardiovascular morbidity. However, the specific biological mechanisms mediating ozone-associated cardiovascular effects are unknown. To determine whether short-term exposure to ambient levels of ozone causes changes in biomarkers of cardiovascular disease including heart rate variability (HRV), systemic inflammation, and coagulability, 26 subjects were exposed to 0, 100, and 200 ppb ozone in random order for 4 h with intermittent exercise. HRV was measured and blood samples were obtained immediately before (0 h), immediately after (4 h), and 20 h after (24 h) each exposure. Bronchoscopy with bronchoalveolar lavage (BAL) was performed 20 h after exposure. Regression modeling was used to examine dose-response trends between the endpoints and ozone exposure. Inhalation of ozone induced dose-dependent adverse changes in the frequency domains of HRV across exposures consistent with increased sympathetic tone [increase of (parameter estimate ± SE) 0.4 ± 0.2 and 0.3 ± 0.1 in low- to high-frequency domain HRV ratio per 100 ppb increase in ozone at 4 h and 24 h, respectively (P = 0.02 and P = 0.01)] and a dose-dependent increase in serum C-reactive protein (CRP) across exposures at 24 h [increase of 0.61 ± 0.24 mg/l in CRP per 100 ppb increase in ozone (P = 0.01)]. Changes in HRV and CRP did not correlate with ozone-induced local lung inflammatory responses (BAL granulocytes, IL-6, or IL-8), but changes in HRV and CRP were associated with each other after adjustment for age and ozone level. Inhalation of ozone causes adverse systemic inflammatory and cardiac autonomic effects that may contribute to the cardiovascular mortality associated with short-term exposure. PMID:25862833

  16. How to Calculate Renyi Entropy from Heart Rate Variability, and Why it Matters for Detecting Cardiac Autonomic Neuropathy

    PubMed Central

    Cornforth, David J.;  Tarvainen, Mika P.; Jelinek, Herbert F.

    2014-01-01

    Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to an abnormal control of heart rate. An open question is to what extent this condition is detectable from heart rate variability (HRV), which provides information only on successive intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG recording. A variety of measures may be extracted from HRV, including time domain, frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been proposed as a suitable measure that can be used to discriminate CAN from controls. However, all entropy methods require estimation of probabilities, and there are a number of ways in which this estimation can be made. In this work, we calculate Renyi entropy using several variations of the histogram method and a density method based on sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and compare their effectiveness in separating the different classes of participants. We found that the histogram method using single RR intervals yields an entropy measure that is either incapable of discriminating CAN from controls, or that it provides little information that could not be gained from the SD of the RR intervals. In contrast, probabilities calculated using a density method based on sequences of RR intervals yield an entropy measure that provides good separation between groups of participants and provides information not available from the SD. The main contribution of this work is that different approaches to calculating probability may affect the success of detecting disease. Our results bring new clarity to the methods used to calculate the Renyi entropy in general, and in particular, to the successful detection of CAN. PMID:25250311

  17. Pioglitazone reverses down-regulation of cardiac PPAR{gamma} expression in Zucker diabetic fatty rats

    SciTech Connect

    Pelzer, Theo . E-mail: pelzer_t@klinik.uni-wuerzburg.de; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-04-08

    Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPAR{gamma} in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPAR{gamma} agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPAR{gamma}, glucose transporter-4 and {alpha}-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPAR{gamma}, glut-4, and {alpha}-MHC expression levels in diabetic ZDF rats. Cardiac [{sup 18}F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPAR{gamma} agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPAR{gamma} expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.

  18. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure

    PubMed Central

    Marcus, Noah J; Rio, Rodrigo; Schultz, Evan P; Xia, Xiao-Hong; Schultz, Harold D

    2014-01-01

    ± 0.06), and was attenuated in CHF–CBD animals (0.59 ± 0.05) (P < 0.05 for all comparisons). Arrhythmia incidence was increased in CHF–sham and reduced in CHF–CBD animals (213 ± 58 events h–1 CHF, 108 ± 48 events h–1 CHF–CBD, P < 0.05). Furthermore, ventricular systolic (3.8 ± 0.7 vs. 6.3 ± 0.5 ml, P < 0.05) and diastolic (6.3 ± 1.0 vs. 9.1 ± 0.5 ml, P < 0.05) volumes were reduced, and ejection fraction preserved (41 ± 5% vs. 54 ± 2% reduction from pre-pace, P < 0.05) in CHF–CBD compared to CHF–sham rabbits. Similar patterns of changes were observed longitudinally within the CHF–CBD group before and after CBD. In conclusion, CBD is effective in reducing RSNA, SRC and arrhythmia incidence, while improving breathing stability and cardiac function in pacing-induced CHF rabbits. Key points A strong correlation between disordered breathing patterns, elevated sympathetic nerve activity and enhanced chemoreflex sensitivity exists in patients with heart failure. Evidence indicates that disordered breathing patterns and increased sympathetic nerve activity increases arrhythmia incidence in patients with heart failure. Enhanced coupling between sympathetic and respiratory neural drive underlies elevated sympathetic nerve activity in an animal model of sleep apnoea. We investigated the impact of carotid body chemoreceptor denervation on sympathetic nerve activity, disordered breathing and sympatho-respiratory coupling in an animal model of heart failure. Renal sympathetic nerve activity, apnoea/hypopnoea incidence, variability measures of tidal volume and respiratory rate and arrhythmia incidence were quantified during resting breathing in heart failure animals with and without carotid body ablation. Our results indicate that carotid body chemoreceptor denervation reduces sympathetic nerve activity, disordered breathing patterns, arrhythmia incidence and sympatho-respiratory coupling in

  19. Anti-rat soluble IL-6 receptor antibody down-regulates cardiac IL-6 and improves cardiac function following trauma-hemorrhage.

    PubMed

    Yang, Shaolong; Hu, Shunhua; Choudhry, Mashkoor A; Rue, Loring W; Bland, Kirby I; Chaudry, Irshad H

    2007-03-01

    Although anti-IL-6-mAb down-regulates cardiac IL-6 and attenuates IL-6-mediated cardiac dysfunction following trauma-hemorrhage, it is not known whether blockade of IL-6 receptor will down-regulate cardiac IL-6 and improve cardiac function under those conditions. Six groups of male adult rats (275-325 g) were used: sham/trauma-hemorrhage+vehicle, sham/trauma-hemorrhage+IgG, sham/trauma-hemorrhage+anti-rat sIL-6R. Rats underwent trauma-hemorrhage (removal of 60% of the circulating blood volume and fluid resuscitation after 90 min). Vehicle (V), normal goat IgG or anti-rat sIL-6R (16.7 microg/kg BW) was administered intra-peritoneally in the middle of resuscitation. Two hours later, cardiac function was measured by ICG dilution technique; blood samples collected, cardiomyocytes isolated, and cardiomyocyte nuclei were then extracted. Cardiac IL-6, IL-6R, gp130, IkappaB-alpha/P-IkappaB-alpha, NF-kappaB, and ICAM-1 expressions were measured by immunoblotting. Plasma IL-6 and cardiomyocyte NF-kappaB DNA-binding activity were determined by ELISA. In additional animals, heart harvested and cardiac MPO activity and CINC-1 and -3 were also measured. In another group of rats, cardiac function was measure by microspheres at 24 h following trauma-hemorrhage. Cardiac function was depressed and cardiac IL-6, P-IkappaB-alpha, NF-kappaB and its DNA-binding activity, ICAM-1, MPO activity, and CINC-1 and -3 were markedly increased after trauma-hemorrhage. Moreover, cardiac dysfunction was evident even 24 h after trauma-hemorrhage. Administration of sIL-6R following trauma-hemorrhage: (1) improved cardiac output at 2 h and 24 h (p<0.05); (2) down-regulated both cardiac IL-6 and IL-6R (p<0.05); and (3) attenuated cardiac P-IkappaB-alpha, NF-kappaB, NF-kappaB DNA-binding activity, ICAM-1, CINC-1, -3, and MPO activity (p<0.05). IgG did not significantly influence the above parameters. Thus, IL-6-mediated up-regulation of cardiac NF-kappaB, ICAM-1, CINC-1, -3, and MPO activity likely

  20. Profound Autonomic Instability Complicated by Multiple Episodes of Cardiac Asystole and Refractory Bradycardia in a Patient with Anti-NMDA Encephalitis

    PubMed Central

    Mehr, Stephanie R.; Neeley, Roy C.; Wiley, Melissa; Kumar, Avinash B.

    2016-01-01

    Anti-N-methyl-d-aspartate receptor encephalitis (anti-NMDARE) is autoimmune encephalitis primarily affecting young adults and children. First described about a decade ago, it frequently manifests as a syndrome that includes progressive behavioral changes, psychosis, central hypoventilation, seizures, and autonomic instability. Although cardiac arrhythmias often accompany anti-NMDARE, the need for long-term electrophysiological support is rare. We describe the case of NMDARE whose ICU course was complicated by progressively worsening episodes of tachyarrhythmia-bradyarrhythmia and episodes of asystole from which she was successfully resuscitated. Her life-threatening episodes of autonomic instability were successfully controlled only after the placement of a permanent pacemaker during her ICU stay. She made a clinical recovery and was discharged to a skilled nursing facility after a protracted hospital course. PMID:27190663

  1. FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth.

    PubMed

    Karuppaiah, Kannan; Yu, Kai; Lim, Joohyun; Chen, Jianquan; Smith, Craig; Long, Fanxin; Ornitz, David M

    2016-05-15

    Fibroblast growth factor (FGF) signaling is important for skeletal development; however, cell-specific functions, redundancy and feedback mechanisms regulating bone growth are poorly understood. FGF receptors 1 and 2 (Fgfr1 and Fgfr2) are both expressed in the osteoprogenitor lineage. Double conditional knockout mice, in which both receptors were inactivated using an osteoprogenitor-specific Cre driver, appeared normal at birth; however, these mice showed severe postnatal growth defects that include an ∼50% reduction in body weight and bone mass, and impaired longitudinal bone growth. Histological analysis showed reduced cortical and trabecular bone, suggesting cell-autonomous functions of FGF signaling during postnatal bone formation. Surprisingly, the double conditional knockout mice also showed growth plate defects and an arrest in chondrocyte proliferation. We provide genetic evidence of a non-cell-autonomous feedback pathway regulating Fgf9, Fgf18 and Pthlh expression, which led to increased expression and signaling of Fgfr3 in growth plate chondrocytes and suppression of chondrocyte proliferation. These observations show that FGF signaling in the osteoprogenitor lineage is obligately coupled to chondrocyte proliferation and the regulation of longitudinal bone growth. PMID:27052727

  2. Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization.

    PubMed

    Yoshiko, Yuji; Candeliere, G Antonio; Maeda, Norihiko; Aubin, Jane E

    2007-06-01

    The complex pathogenesis of mineralization defects seen in inherited and/or acquired hypophosphatemic disorders suggests that local inorganic phosphate (P(i)) regulation by osteoblasts may be a rate-limiting step in physiological bone mineralization. To test whether an osteoblast autonomous phosphate regulatory system regulates mineralization, we manipulated well-established in vivo and in vitro models to study mineralization stages separately from cellular proliferation/differentiation stages of osteogenesis. Foscarnet, an inhibitor of NaP(i) transport, blocked mineralization of osteoid formation in osteoblast cultures and local mineralization after injection over the calvariae of newborn rats. Mineralization was also down- and upregulated, respectively, with under- and overexpression of the type III NaP(i) transporter Pit1 in osteoblast cultures. Among molecules expressed in osteoblasts and known to be related to P(i) handling, stanniocalcin 1 was identified as an early response gene after foscarnet treatment; it was also regulated by extracellular P(i), and itself increased Pit1 accumulation in both osteoblast cultures and in vivo. These results provide new insights into the functional role of osteoblast autonomous P(i) handling in normal bone mineralization and the abnormalities seen in skeletal tissue in hypophosphatemic disorders. PMID:17438129

  3. Identification of genes regulated during mechanical load-induced cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Johnatty, S. E.; Dyck, J. R.; Michael, L. H.; Olson, E. N.; Abdellatif, M.; Schneider, M. (Principal Investigator)

    2000-01-01

    Cardiac hypertrophy is associated with both adaptive and adverse changes in gene expression. To identify genes regulated by pressure overload, we performed suppressive subtractive hybridization between cDNA from the hearts of aortic-banded (7-day) and sham-operated mice. In parallel, we performed a subtraction between an adult and a neonatal heart, for the purpose of comparing different forms of cardiac hypertrophy. Sequencing more than 100 clones led to the identification of an array of functionally known (70%) and unknown genes (30%) that are upregulated during cardiac growth. At least nine of those genes were preferentially expressed in both the neonatal and pressure over-load hearts alike. Using Northern blot analysis to investigate whether some of the identified genes were upregulated in the load-independent calcineurin-induced cardiac hypertrophy mouse model, revealed its incomplete similarity with the former models of cardiac growth. Copyright 2000 Academic Press.

  4. Assessment of the cardiac autonomic neuropathy among the known diabetics and age-matched controls using noninvasive cardiovascular reflex tests in a South-Indian population: A case–control study

    PubMed Central

    Sukla, Pradeep; Shrivastava, Saurabh RamBihariLal; Shrivastava, Prateek Saurabh; Rao, Nambaru Lakshmana

    2016-01-01

    Aim: Diabetes mellitus is a chronic condition characterized by hyperglycemia. The objective of the study was to estimate the prevalence of cardiac autonomic neuropathy in a rural area of South India, among the known diabetics after comparing them with the age-matched healthy controls, utilizing noninvasive cardiac autonomic neuropathy reflex tests. Materials and Methods: A case–control study was conducted for 4 months (October 2014 to January 2015) at an Urban Health and Training Center (UHTC) of a Medical College located in Kancheepuram district, Tamil Nadu. The study was conducted among 126 diagnosed Type 2 diabetes patients and in 152 age- and sex-matched healthy controls to ensure comparability between the cases and controls and, thus, reduce variability due to demographic variables. All the study subjects (cases and controls) were selected from the patients attending UHTC during the study duration, provided they satisfied the inclusion and exclusion criteria. Study participants were subjected to undergo noninvasive cardiac autonomic neuropathy reflex tests. The associations were tested using paired t-test for the continuous (mean ± standard deviation) variables. Results: The overall prevalence of cardiac autonomic neuropathy among diabetic patients was found to be as 53.2% (67/126). On further classification, positive (abnormal) results were obtained in 56 (sympathetic – 44.4%) and 51 (parasympathetic – 40.5%) diabetic cases. Overall, heart rate variation during deep breathing was found to be the most sensitive test to detect parasympathetic autonomic neuropathy while the diastolic blood pressure response to sustained handgrip exercise was the most sensitive method to detect sympathetic neuropathy dysfunction. Conclusion: The overall prevalence of cardiac autonomic neuropathy among diabetic patients was found to be as 53.2%. Even though cardiac autonomic neuropathy can be detected by various invasive tests, noninvasive tests remain a key tool to detect

  5. Childhood Psychopathology and Autonomic Dysregulation: Exploring the Links Using Heart Rate Variability

    ERIC Educational Resources Information Center

    Srinivasan, Krishnamachari

    2007-01-01

    Changes in cardiovascular reactivity have been used as a psychophysiological marker of various emotional states in both children and adults. Recent decades have seen increasing use of heart rate variability as a non-invasive marker of cardiac autonomic function and of central processes involved in autonomic function regulation. Developmental…

  6. Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells.

    PubMed Central

    Argentin, S; Ardati, A; Tremblay, S; Lihrmann, I; Robitaille, L; Drouin, J; Nemer, M

    1994-01-01

    Cardiac myocytes undergo a major genetic switch within the first week of postnatal development, when cell division ceases terminally and many cardiac genes are either activated or silenced. We have developed stage-specific cardiocyte cultures to analyze transcriptional control of the rat atrial natriuretic factor (ANF) gene to identify the mechanisms underlying tissue-specific and developmental regulation of this gene in the heart. The first 700 bp of ANF flanking sequences was sufficient for cardiac muscle- and stage-specific expression in both atrial and ventricular myocytes, and a cardiac muscle-specific enhancer was localized between -136 and -700 bp. Deletion of this enhancer markedly reduced promoter activity in cardiac myocytes and derepressed ANF promoter activity in nonexpressing cells. Two distinct domains of the enhancer appeared to contribute differentially to cardiac specificity depending on the differentiation stage of the myocytes. DNase I footprinting of the enhancer domain active in differentiated cells revealed four putative regulatory elements including an A+T-rich region and a CArG element. Deletion mutagenesis and promoter reconstitution assays revealed an important role for the CArG-containing element exclusively in cardiac cells, where its activity was switched on in differentiated myocytes. Transcriptional activity of the ANF-CArG box correlated with the presence of a cardiac- and stage-specific DNA-binding complex which was not recognized by the c-fos serum response element. Thus, the use of this in vitro model system representing stage-specific cardiac development unraveled the presence of different regulatory mechanisms for transcription of the ANF gene during cardiac differentiation and may be useful for studying the regulatory pathways of other genes that undergo switching during cardiac myogenesis. Images PMID:8264645

  7. ERRgamma regulates cardiac, gastric, and renal potassium homeostasis.

    PubMed

    Alaynick, William A; Way, James M; Wilson, Stephanie A; Benson, William G; Pei, Liming; Downes, Michael; Yu, Ruth; Jonker, Johan W; Holt, Jason A; Rajpal, Deepak K; Li, Hao; Stuart, Joan; McPherson, Ruth; Remlinger, Katja S; Chang, Ching-Yi; McDonnell, Donald P; Evans, Ronald M; Billin, Andrew N

    2010-02-01

    Energy production by oxidative metabolism in kidney, stomach, and heart, is primarily expended in establishing ion gradients to drive renal electrolyte homeostasis, gastric acid secretion, and cardiac muscle contraction, respectively. In addition to orchestrating transcriptional control of oxidative metabolism, the orphan nuclear receptor, estrogen-related receptor gamma (ERRgamma), coordinates expression of genes central to ion homeostasis in oxidative tissues. Renal, gastric, and cardiac tissues subjected to genomic analysis of expression in perinatal ERRgamma null mice revealed a characteristic dysregulation of genes involved in transport processes, exemplified by the voltage-gated potassium channel, Kcne2. Consistently, ERRgamma null animals die during the first 72 h of life with elevated serum potassium, reductions in key gastric acid production markers, and cardiac arrhythmia with prolonged QT intervals. In addition, we find altered expression of several genes associated with hypertension in ERRgamma null mice. These findings suggest a potential role for genetic polymorphisms at the ERRgamma locus and ERRgamma modulators in the etiology and treatment of renal, gastric, and cardiac dysfunction. PMID:19965931

  8. ERRγ Regulates Cardiac, Gastric, and Renal Potassium Homeostasis

    PubMed Central

    Alaynick, William A.; Way, James M.; Wilson, Stephanie A.; Benson, William G.; Pei, Liming; Downes, Michael; Yu, Ruth; Jonker, Johan W.; Holt, Jason A.; Rajpal, Deepak K.; Li, Hao; Stuart, Joan; McPherson, Ruth; Remlinger, Katja S.; Chang, Ching-Yi; McDonnell, Donald P.; Evans, Ronald M.; Billin, Andrew N.

    2010-01-01

    Energy production by oxidative metabolism in kidney, stomach, and heart, is primarily expended in establishing ion gradients to drive renal electrolyte homeostasis, gastric acid secretion, and cardiac muscle contraction, respectively. In addition to orchestrating transcriptional control of oxidative metabolism, the orphan nuclear receptor, estrogen-related receptor γ (ERRγ), coordinates expression of genes central to ion homeostasis in oxidative tissues. Renal, gastric, and cardiac tissues subjected to genomic analysis of expression in perinatal ERRγ null mice revealed a characteristic dysregulation of genes involved in transport processes, exemplified by the voltage-gated potassium channel, Kcne2. Consistently, ERRγ null animals die during the first 72 h of life with elevated serum potassium, reductions in key gastric acid production markers, and cardiac arrhythmia with prolonged QT intervals. In addition, we find altered expression of several genes associated with hypertension in ERRγ null mice. These findings suggest a potential role for genetic polymorphisms at the ERRγ locus and ERRγ modulators in the etiology and treatment of renal, gastric, and cardiac dysfunction. PMID:19965931

  9. Cardiac Tissue Injury and Remodeling Is Dependent Upon MR Regulation of Activation Pathways in Cardiac Tissue Macrophages.

    PubMed

    Shen, Jimmy Z; Morgan, James; Tesch, Greg H; Rickard, Amanda J; Chrissobolis, Sophocles; Drummond, Grant R; Fuller, Peter J; Young, Morag J

    2016-08-01

    Macrophage mineralocorticoid receptor (MR) signaling is an important mediator of cardiac tissue inflammation and fibrosis. The goal of the present study was to determine the cellular mechanisms of MR signaling in macrophages that promote cardiac tissue injury and remodeling. We sought to identify specific markers of MR signaling in isolated tissue macrophages (cardiac, aortic) vs splenic mononuclear cells from wild-type and myeloid MR-null mice given vehicle/salt or deoxycorticosterone (DOC)/salt for 8 weeks. Cardiac tissue fibrosis in response to 8 weeks of DOC/salt treatment was found in the hearts from wild-type but not myeloid MR-null mice. This was associated with an increased expression of the profibrotic markers TGF-β1 and matrix metalloproteinase-12 and type 1 inflammatory markers TNFα and chemokine (C-X-C motif) ligand-9 in cardiac macrophages. Differential expression of immunomodulatory M2-like markers (eg, arginase-1, macrophage scavenger receptor 1) was dependent on the tissue location of wild-type and MR-null macrophages. Finally, intact MR signaling is required for the phosphorylation of c-Jun NH2-terminal kinase in response to a proinflammatory stimulus in bone marrow monocytes/macrophages in culture. These data suggest that the activation of the c-Jun NH2-terminal kinase pathway in macrophages after a tissue injury and inflammatory stimuli in the DOC/salt model is MR dependent and regulates the transcription of downstream profibrotic factors, which may represent potential therapeutic targets in heart failure patients. PMID:27253999

  10. Metabolic syndrome burden in apparently healthy adolescents are adversely associated with cardiac autonomic modulation- Penn State Children Cohort

    PubMed Central

    Rodríguez-Colón, Sol M.; He, Fan; Bixler, Edward O.; Fernandez-Mendoza, Julio; Vgontzas, Alexandros N.; Calhoun, Susan; Zheng, Zhi-Jie; Liao, Duanping

    2015-01-01

    Background Reduced cardiac autonomic modulation (CAM) has been associated with metabolic syndrome (MetS) in adults. However, the association between MetS component cluster and CAM has not been examined in adolescents. Methods We conducted a cross-sectional analysis using data from the Penn State Child Cohort follow-up examination. CAM was assessed by heart rate variability (HRV) analysis of 39-hour RR intervals, including frequency (high frequency, HF; low frequency, LF; and LF/HF ratio) and time (SDNN, standard deviation of all RR intervals; RMSSD, square root of the mean of the sum of the squares of differences between adjacent RR intervals; and HR, heart rate) domain variables. To assess the MetS burden, we used continuous MetS score (cMetS)–sum of the age and sex-adjusted standardized residual (Z-score) of five established MetS components. Linear mixed-effect models were used to analyze the association between cMetS and CAM in the entire population and stratified by gender. Results After adjusting for age, sex, and race, cMetS was significantly associated with reduced HRV and higher HR. With 1 standard deviation increase in cMetS, there was a significant decrease in HF(−0.10(SE=0.02)), LF(−0.07(SE=0.01)), SDNN(−1.97(SE=0.50)), and RMSSD(−1.70(SE=0.72)), and increase in LF/HF(0.08(SE=0.02)) and HR(1.40(SE=0.26)). All cMetS components, with the exception of high-density lipoprotein (HDL), were associated with significantly decreased HRV and increased HR. High blood pressure (MAP) and triglyceride (TG) levels were also associated with an increase in LF/HF and decrease in RMSSD. An increase in high-density lipoprotein was only associated with higher LF and SDNN. Moreover, cMetS and HRV associations were more pronounced in males than in females. The associations between HRV and. MAP, TG, and HDL were more pronounced in females. Conclusions cMetS score is associated with lower HRV, suggesting an adverse impact on CAM, even in apparently healthy adolescents

  11. Novel role for caspase-activated DNase in the regulation of pathological cardiac hypertrophy.

    PubMed

    Gao, Lu; Huang, Kun; Jiang, Ding-Sheng; Liu, Xiaoxiong; Huang, Dan; Li, Hongliang; Zhang, Xiao-Dong; Huang, Kai

    2015-04-01

    Caspase-activated DNase (CAD) is a double-strand-specific endonuclease that is responsible for the cleavage of nucleosomal spacer regions and subsequent chromatin condensation during apoptosis. Given that several endonucleases (eg, DNase I, DNase II, and Endog) have been shown to regulate pathological cardiac hypertrophy, we questioned whether CAD, which is critical for the induction of DNA fragmentation, plays a pivotal role in pressure overload-elicited cardiac hypertrophy. A CAD-knockout mouse model was generated and subjected to aortic banding for 8 weeks. The extent of cardiac hypertrophy was evaluated by echocardiography and pathological and molecular analyses. Our results demonstrated that the disruption of CAD attenuated pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction. Conversely, transgenic mice with cardiac-specific overexpression of CAD showed an aggravated cardiac hypertrophic response to chronic pressure overload. Mechanistically, we discovered that the expression and activation of mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 was significantly reduced in the CAD-knockout hearts compared with the control hearts; however, they were greatly increased in the CAD-overexpressing hearts after aortic banding. Similar results were observed in ex vivo cultured neonatal rat cardiomyocytes after treatment with angiotensin II for 48 hours. These data indicate that CAD functions as a necessary modulator of the hypertrophic response by regulating the mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 signaling pathway in the heart. Our study suggests that CAD might be a novel target for the treatment of pathological cardiac hypertrophy and heart failure. PMID:25646292

  12. Suppressor of IKKɛ is an essential negative regulator of pathological cardiac hypertrophy

    PubMed Central

    Deng, Ke-Qiong; Wang, Aibing; Ji, Yan-Xiao; Zhang, Xiao-Jing; Fang, Jing; Zhang, Yan; Zhang, Peng; Jiang, Xi; Gao, Lu; Zhu, Xue-Yong; Zhao, Yichao; Gao, Lingchen; Yang, Qinglin; Zhu, Xue-Hai; Wei, Xiang; Pu, Jun; Li, Hongliang

    2016-01-01

    Although pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide, our understanding of the molecular mechanisms underlying this disease is still poor. Here, we demonstrate that suppressor of IKKɛ (SIKE), a negative regulator of the interferon pathway, attenuates pathological cardiac hypertrophy in rodents and non-human primates in a TANK-binding kinase 1 (TBK1)/AKT-dependent manner. Sike-deficient mice develop cardiac hypertrophy and heart failure, whereas Sike-overexpressing transgenic (Sike-TG) mice are protected from hypertrophic stimuli. Mechanistically, SIKE directly interacts with TBK1 to inhibit the TBK1-AKT signalling pathway, thereby achieving its anti-hypertrophic action. The suppression of cardiac remodelling by SIKE is further validated in rats and monkeys. Collectively, these findings identify SIKE as a negative regulator of cardiac remodelling in multiple animal species due to its inhibitory regulation of the TBK1/AKT axis, suggesting that SIKE may represent a therapeutic target for the treatment of cardiac hypertrophy and heart failure. PMID:27249321

  13. VAMP-1, VAMP-2, and syntaxin-4 regulate ANP release from cardiac myocytes.

    PubMed

    Ferlito, Marcella; Fulton, William B; Zauher, Mohamed A; Marbán, Eduardo; Steenbergen, Charles; Lowenstein, Charles J

    2010-11-01

    ANP is a peptide released by cardiac myocytes that regulates blood pressure and natriuresis. However, the molecular mechanisms controlling ANP release from cardiac myocytes are not defined. We now identify three components of the exocytic machinery that regulate ANP release from atrial myocytes. We found that cardiac myocytes express N-ethylmaleimide sensitive factor (NSF), soluble NSF attachment protein (α-SNAP), and SNAP receptors (SNAREs). Additionally we found that specific SNARE molecules, VAMP-1 and VAMP-2, both co-sediment and co-localize with ANP. Also, one SNARE molecule, syntaxin-4, partially co-sediments and partially co-localizes with ANP. Furthermore, these three SNAREs, syntaxin-4 and VAMP-1 and VAMP-2, form a SNARE complex inside cardiac myocytes. Finally, knockdown of VAMP-1, VAMP-2, or syntaxin-4 blocks regulated release of ANP. In contrast, silencing of VAMP-3 did not have an effect on ANP release. Our data suggest that three specific SNAREs regulate cardiac myocyte exocytosis of ANP. Pathways that modify the exocytic machinery may influence natriuresis and blood pressure. PMID:20801128

  14. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes.

    PubMed

    Thaung, H P Aye; Baldi, J Chris; Wang, Heng-Yu; Hughes, Gillian; Cook, Rosalind F; Bussey, Carol T; Sheard, Phil W; Bahn, Andrew; Jones, Peter P; Schwenke, Daryl O; Lamberts, Regis R

    2015-08-01

    Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart. PMID:25784543

  15. Cardiac mast cells regulate myocyte ANP release via histamine H2 receptor in beating rabbit atria.

    PubMed

    Li, Dan; Wen, Jin Fu; Jin, Jing Yu; Quan, He Xiu; Cho, Kyung Woo

    2009-06-01

    It has been shown that histamine inhibits atrial natriuretic peptide (ANP) release. Because cardiac mast cells are the principal source of histamine in the heart, we hypothesized that cardiac mast cells are involved in the regulation of atrial ANP release. To test the hypothesis, experiments were performed in perfused beating rabbit atria allowing atrial pacing and measurements of changes in atrial stroke volume, intraatrial pulse pressure and myocyte ANP release. Mast cell degranulation with Compound 48/80 decreased atrial myocyte ANP release, and the response was blocked by a selective histamine H(2) receptor blocker, cimetidine, indicating that histamine was responsible for the decrease in ANP release. Mast cell stabilization with cromolyn blocked the Compound 48/80-induced decrease in ANP release. These data suggest that mast cell-derived histamine is involved in the regulation of cardiac ANP release. Thus, the cardiac mast cell-cardiomyocyte communication via the histamine-ANP pathway may implicate in the cardiac disorder associated with mast cell degranulation such as in acute coronary syndrome or cardiac hypertrophy. PMID:19328828

  16. Early regulative ability of the neuroepithelium to form cardiac neural crest

    PubMed Central

    Ezin, Akouavi M.; Sechrist, John W.; Zah, Angela; Bronner, Marianne; Fraser, Scott E.

    2010-01-01

    The cardiac neural crest (arising from the level of hindbrain rhombomeres 6–8) contributes to the septation of the cardiac outflow tract and the formation of aortic arches. Removal of this population after neural tube closure results in severe septation defects in the chick, reminiscent of human birth defects. Because neural crest cells from other axial levels have regenerative capacity, we asked whether the cardiac neural crest might also regenerate at early stages in a manner that declines with time. Accordingly, we find that ablation of presumptive cardiac crest at stage 7, as the neural folds elevate, results in reformation of migrating cardiac neural crest by stage 13. Fate mapping reveals that the new population derives largely from the neuroepithelium ventral and rostral to the ablation. The stage of ablation dictates the competence of residual tissue to regulate and regenerate, as this capacity is lost by stage 9, consistent with previous reports. These findings suggest that there is a temporal window during which the presumptive cardiac neural crest has the capacity to regulate and regenerate, but this regenerative ability is lost earlier than in other neural crest populations. PMID:21047505

  17. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    PubMed

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-20

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4. PMID:26987380

  18. Arg16Gly and Gln27Glu β2 adrenergic polymorphisms influence cardiac autonomic modulation and baroreflex sensitivity in healthy young Brazilians.

    PubMed

    Atala, Magda M; Goulart, Alessandra; Guerra, Grazia M; Mostarda, Cristiano; Rodrigues, Bruno; Mello, Priscila R; Casarine, Dulce E; Irigoyen, Maria-Claudia; Pereira, Alexandre C; Consolim-Colombo, Fernanda M

    2015-01-01

    The association between functional β2 adrenergic receptor (β2-AR) polymorphisms and cardiac autonomic modulation is still unclear. Thus, two common polymorphisms in the β2-AR gene (Gln27Glu β2 and Arg16Gly β2) were studied to determine whether they might affect tonic and reflex cardiac sympathetic activity in healthy young subjects. A total of 213 healthy young white subjects of both genders (53% female), aged 18-30 years (23.5±3.4 y), had their continuous blood pressure curves noninvasively recorded by Finometer at baseline, and other hemodynamic parameters, as cardiac autonomic modulation, baroreflex sensitivity, and allele, genotype, and diplotype frequencies calculated. Associations were made between Arg16Gly β2 and Gln27Glu β2 polymorphisms and between β2-AR diplotypes and all variables. The heart rate was significantly lower (P<0.001) in the presence of homozygous Arg/Arg alleles (60.9±1.5 bpm) than in that of Arg/Gly heterozygotes (65.9±1.0 bpm) or Gly/Gly homozygotes (66.3±1.2 bpm). Homozygous carriers of Arg16 allele had an alpha index (19.2±1.3) significantly higher (P<0.001) than that of the subjects with the Gly allele Gly/Gly (14.5±0.7) or Arg/Gly (14.6±0.7). Furthermore, the recessive Glu27Glu and the heterozygous Gln27Glu genotypes had a higher percentage of low-frequency components (LF%) than the homozygous Gln27Gln (15.1% vs. 16.0% vs. 8.2%, P=0.03, respectively). In healthy young subjects, the presence of β2-AR Arg16 allele in a recessive model was associated with higher baroreflex sensitivity, and increased parasympathetic modulation in studied individuals. PMID:25755837

  19. Arg16Gly and Gln27Glu β2 adrenergic polymorphisms influence cardiac autonomic modulation and baroreflex sensitivity in healthy young Brazilians

    PubMed Central

    Atala, Magda M; Goulart, Alessandra; Guerra, Grazia M; Mostarda, Cristiano; Rodrigues, Bruno; Mello, Priscila R; Casarine, Dulce E; Irigoyen, Maria-Claudia; Pereira, Alexandre C; Consolim-Colombo, Fernanda M

    2015-01-01

    The association between functional β2 adrenergic receptor (β2-AR) polymorphisms and cardiac autonomic modulation is still unclear. Thus, two common polymorphisms in the β2-AR gene (Gln27Glu β2 and Arg16Gly β2) were studied to determine whether they might affect tonic and reflex cardiac sympathetic activity in healthy young subjects. A total of 213 healthy young white subjects of both genders (53% female), aged 18-30 years (23.5±3.4 y), had their continuous blood pressure curves noninvasively recorded by Finometer at baseline, and other hemodynamic parameters, as cardiac autonomic modulation, baroreflex sensitivity, and allele, genotype, and diplotype frequencies calculated. Associations were made between Arg16Gly β2 and Gln27Glu β2 polymorphisms and between β2-AR diplotypes and all variables. The heart rate was significantly lower (P<0.001) in the presence of homozygous Arg/Arg alleles (60.9±1.5 bpm) than in that of Arg/Gly heterozygotes (65.9±1.0 bpm) or Gly/Gly homozygotes (66.3±1.2 bpm). Homozygous carriers of Arg16 allele had an alpha index (19.2±1.3) significantly higher (P<0.001) than that of the subjects with the Gly allele Gly/Gly (14.5±0.7) or Arg/Gly (14.6±0.7). Furthermore, the recessive Glu27Glu and the heterozygous Gln27Glu genotypes had a higher percentage of low-frequency components (LF%) than the homozygous Gln27Gln (15.1% vs. 16.0% vs. 8.2%, P=0.03, respectively). In healthy young subjects, the presence of β2-AR Arg16 allele in a recessive model was associated with higher baroreflex sensitivity, and increased parasympathetic modulation in studied individuals. PMID:25755837

  20. Differential Patterns and Determinants of Cardiac Autonomic Nerve Dysfunction during Endotoxemia and Oral Fat Load in Humans

    PubMed Central

    Ziegler, Dan; Strom, Alexander; Strassburger, Klaus; Nowotny, Bettina; Zahiragic, Lejla; Nowotny, Peter J.; Carstensen-Kirberg, Maren; Herder, Christian; Szendroedi, Julia; Roden, Michael

    2015-01-01

    The autonomic nervous system (ANS) plays an important role in regulating the metabolic homeostasis and controlling immune function. ANS alterations can be detected by reduced heart rate variability (HRV) in conditions like diabetes and sepsis. We determined the effects of experimental conditions mimicking inflammation and hyperlipidemia on HRV and heart rate (HR) in relation to the immune, metabolic, and hormonal responses resulting from these interventions. Sixteen lean healthy subjects received intravenous (i.v.) low-dose endotoxin (lipopolysaccharide [LPS]), i.v. fat, oral fat, and i.v. glycerol (control) for 6 hours, during which immune, metabolic, hormonal, and five HRV parameters (pNN50, RMSSD, low-frequency (LF) and high-frequency (HF) power, and LF/HF ratio) were monitored and energy metabolism and insulin sensitivity (M-value) were assessed. LPS infusion induced an increase (AUC) in HR and LF/HF ratio and decline in pNN50 and RMSSD, while oral fat resulted in elevated HR and a transient (hours 1-2) decrease in pNN50, RMSSD, and HF power. During LPS infusion, ΔIL-1ra levels and ΔIL-1ra and ΔIL-1ß gene expression correlated positively with ΔLF/HF ratio and inversely with ΔRMSSD. During oral fat intake, ΔGLP-1 tended to correlate positively with ΔHR and inversely with ΔpNN50 and ΔRMSSD. Following LPS infusion, lipid oxidation correlated positively with HR and inversely with pNN50 and RMSSD, whereas HRV was not related to M-value. In conclusion, suppression of vagal tone and sympathetic predominance during endotoxemia are linked to anti-inflammatory processes and lipid oxidation but not to insulin resistance, while weaker HRV changes in relation to the GLP-1 response are noted during oral fat load. Trial Registration ClinicalTrials.gov NCT01054989 PMID:25893426

  1. Mechanical Regulation of Cardiac Aging in Model Systems.

    PubMed

    Sessions, Ayla O; Engler, Adam J

    2016-05-13

    Unlike diet and exercise, which individuals can modulate according to their lifestyle, aging is unavoidable. With normal or healthy aging, the heart undergoes extensive vascular, cellular, and interstitial molecular changes that result in stiffer less compliant hearts that experience a general decline in organ function. Although these molecular changes deemed cardiac remodeling were once thought to be concomitant with advanced cardiovascular disease, they can be found in patients without manifestation of clinical disease. It is now mostly acknowledged that these age-related mechanical changes confer vulnerability of the heart to cardiovascular stresses associated with disease, such as hypertension and atherosclerosis. However, recent studies have aimed at differentiating the initial compensatory changes that occur within the heart with age to maintain contractile function from the maladaptive responses associated with disease. This work has identified new targets to improve cardiac function during aging. Spanning invertebrate to vertebrate models, we use this review to delineate some hallmarks of physiological versus pathological remodeling that occur in the cardiomyocyte and its microenvironment, focusing especially on the mechanical changes that occur within the sarcomere, intercalated disc, costamere, and extracellular matrix. PMID:27174949

  2. Role of cardiac troponin I carboxy terminal mobile domain and linker sequence in regulating cardiac contraction.

    PubMed

    Meyer, Nancy L; Chase, P Bryant

    2016-07-01

    Inhibition of striated muscle contraction at resting Ca(2+) depends on the C-terminal half of troponin I (TnI) in thin filaments. Much focus has been on a short inhibitory peptide (Ip) sequence within TnI, but structural studies and identification of disease-associated mutations broadened emphasis to include a larger mobile domain (Md) sequence at the C-terminus of TnI. For Md to function effectively in muscle relaxation, tight mechanical coupling to troponin's core-and thus tropomyosin-is presumably needed. We generated recombinant, human cardiac troponins containing one of two TnI constructs: either an 8-amino acid linker between Md and the rest of troponin (cTnILink8), or an Md deletion (cTnI1-163). Motility assays revealed that Ca(2+)-sensitivity of reconstituted thin filament sliding was markedly increased with cTnILink8 (∼0.9 pCa unit leftward shift of speed-pCa relation compared to WT), and increased further when Md was missing entirely (∼1.4 pCa unit shift). Cardiac Tn's ability to turn off filament sliding at diastolic Ca(2+) was mostly (61%), but not completely eliminated with cTnI1-163. TnI's Md is required for full inhibition of unloaded filament sliding, although other portions of troponin-presumably including Ip-are also necessary. We also confirm that TnI's Md is not responsible for superactivation of actomyosin cycling by troponin. PMID:26971468

  3. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    PubMed

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  4. Self-esteem and autonomic physiology: parallels between self-esteem and cardiac vagal tone as buffers of threat.

    PubMed

    Martens, Andy; Greenberg, Jeff; Allen, John J B

    2008-11-01

    In this article a potential physiological connection to self-esteem is suggested: cardiac vagal tone, the degree of influence on the heart by the vagus, a primary nerve of the parasympathetic nervous system. This hypothesis emerges from parallels between the two literatures that suggest both self-esteem and cardiac vagal tone function to provide protection from threat responding. This article reviews these literatures and evidence and preliminary findings that suggest in some contexts self-esteem and cardiac vagal tone may exert an influence on each other. Last, the article discusses theoretical and applied health implications of this potential physiological connection to self-esteem. PMID:18927472

  5. Cell-Autonomous and Non-Cell-Autonomous Regulation of a Feeding State-Dependent Chemoreceptor Gene via MEF-2 and bHLH Transcription Factors

    PubMed Central

    Winbush, Ari; van der Linden, Alexander M.

    2016-01-01

    Food and feeding-state dependent changes in chemoreceptor gene expression may allow Caenorhabditis elegans to modify their chemosensory behavior, but the mechanisms essential for these expression changes remain poorly characterized. We had previously shown that expression of a feeding state-dependent chemoreceptor gene, srh-234, in the ADL sensory neuron of C. elegans is regulated via the MEF-2 transcription factor. Here, we show that MEF-2 acts together with basic helix-loop-helix (bHLH) transcription factors to regulate srh-234 expression as a function of feeding state. We identify a cis-regulatory MEF2 binding site that is necessary and sufficient for the starvation-induced down regulation of srh-234 expression, while an E-box site known to bind bHLH factors is required to drive srh-234 expression in ADL. We show that HLH-2 (E/Daughterless), HLH-3 and HLH-4 (Achaete-scute homologs) act in ADL neurons to regulate srh-234 expression. We further demonstrate that the expression levels of srh-234 in ADL neurons are regulated remotely by MXL-3 (Max-like 3 homolog) and HLH-30 (TFEB ortholog) acting in the intestine, which is dependent on insulin signaling functioning specifically in ADL neurons. We also show that this intestine-to-neuron feeding-state regulation of srh-234 involves a subset of insulin-like peptides. These results combined suggest that chemoreceptor gene expression is regulated by both cell-autonomous and non-cell-autonomous transcriptional mechanisms mediated by MEF2 and bHLH factors, which may allow animals to fine-tune their chemosensory responses in response to changes in their feeding state. PMID:27487365

  6. Molecular mechanism regulating myosin and cardiac functions by ELC.

    PubMed

    Lossie, Janine; Köhncke, Clemens; Mahmoodzadeh, Shokoufeh; Steffen, Walter; Canepari, Monica; Maffei, Manuela; Taube, Martin; Larchevêque, Oriane; Baumert, Philipp; Haase, Hannelore; Bottinelli, Roberto; Regitz-Zagrosek, Vera; Morano, Ingo

    2014-07-18

    The essential myosin light chain (ELC) is involved in modulation of force generation of myosin motors and cardiac contraction, while its mechanism of action remains elusive. We hypothesized that ELC could modulate myosin stiffness which subsequently determines its force production and cardiac contraction. Therefore, we generated heterologous transgenic mouse (TgM) strains with cardiomyocyte-specific expression of ELC with human ventricular ELC (hVLC-1; TgM(hVLC-1)) or E56G-mutated hVLC-1 (hVLC-1(E56G); TgM(E56G)). hVLC-1 or hVLC-1(E56G) expression in TgM was around 39% and 41%, respectively of total VLC-1. Laser trap and in vitro motility assays showed that stiffness and actin sliding velocity of myosin with hVLC-1 prepared from TgM(hVLC-1) (1.67 pN/nm and 2.3 μm/s, respectively) were significantly higher than myosin with hVLC-1(E56G) prepared from TgM(E56G) (1.25 pN/nm and 1.7 μm/s, respectively) or myosin with mouse VLC-1 (mVLC-1) prepared from C57/BL6 (1.41 pN/nm and 1.5 μm/s, respectively). Maximal left ventricular pressure development of isolated perfused hearts in vitro prepared from TgM(hVLC-1) (80.0 mmHg) were significantly higher than hearts from TgM(E56G) (66.2 mmHg) or C57/BL6 (59.3±3.9 mmHg). These findings show that ELCs decreased myosin stiffness, in vitro motility, and thereby cardiac functions in the order hVLC-1>hVLC-1(E56G)≈mVLC-1. They also suggest a molecular pathomechanism of hypertrophic cardiomyopathy caused by hVLC-1 mutations. PMID:24911555

  7. Cardiac Innervation and Sudden Cardiac Death

    PubMed Central

    Fukuda, Keiichi; Kanazawa, Hideaki; Aizawa, Yoshiyasu; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2015-01-01

    Afferent and efferent cardiac neurotransmission via the cardiac nerves intricately modulates nearly all physiological functions of the heart (chronotropy, dromotropy, lusitropy and inotropy). Afferent information from the heart is transmitted to higher levels of the nervous system for processing (intrinsic cardiac nervous system, extracardiac-intrathoracic ganglia, spinal cord, brain stem and higher centers) which ultimately results in efferent cardiomotor neural impulses (via the sympathetic and parasympathetic nerves). This system forms interacting feedback loops that provide physiological stability for maintaining normal rhythm and life-sustaining circulation. This system also ensures that there is fine-tuned regulation of sympathetic-parasympathetic balance in the heart under normal and stressed states in the short (beat to beat), intermediate (minutes-hours) and long term (days-years). This important neurovisceral /autonomic nervous system also plays a major role in the pathophysiology and progression of heart disease, including heart failure and arrhythmias leading to sudden cardiac death (SCD). Transdifferentiation of neurons in heart failure, functional denervation, cardiac and extra-cardiac neural remodeling have also been identified and characterized during the progression of disease. Recent advances in understanding the cellular and molecular processes governing innervation and the functional control of the myocardium in health and disease provides a rational mechanistic basis for development of neuraxial therapies for preventing SCD and other arrhythmias. Advances in cellular, molecular, and bioengineering realms have underscored the emergence of this area as an important avenue of scientific inquiry and therapeutic intervention. PMID:26044253

  8. Novel Roles of Epoxyeicosanoids in Regulating Cardiac Mitochondria

    PubMed Central

    El-Sikhry, Haitham E.; Alsaleh, Nasser; Dakarapu, Rambabu; Falck, John R.; Seubert, John M.

    2016-01-01

    Maintenance of a healthy pool of mitochondria is important for the function and survival of terminally differentiated cells such as cardiomyocytes. Epoxyeicosatrienoic acids (EETs) are epoxy lipids derived from metabolism of arachidonic acid by cytochrome P450 epoxygenases. We have previously shown that EETs trigger a protective response limiting mitochondrial dysfunction and reducing cellular death. The aim of this study was to investigate whether EET-mediated effects influence mitochondrial quality in HL-1 cardiac cells during starvation. HL-1 cells were subjected to serum- and amino acid free conditions for 24h. We employed a dual-acting synthetic analog UA-8 (13-(3-propylureido)tridec-8-enoic acid), possessing both EET-mimetic and soluble epoxide hydrolase (sEH) inhibitory properties, or 14,15-EET as model EET molecules. We demonstrated that EET-mediated events significantly improved mitochondrial function as assessed by preservation of the ADP/ATP ratio and oxidative respiratory capacity. Starvation induced mitochondrial hyperfusion observed in control cells was attenuated by UA-8. However, EET-mediated events did not affect the expression of mitochondrial dynamic proteins Fis1, DRP-1 or Mfn2. Rather we observed increased levels of OPA-1 oligomers and increased mitochondrial cristae density, which correlated with the preserved mitochondrial function. Increased DNA binding activity of pCREB and Nrf1/2 and increased SIRT1 activity together with elevated mitochondrial proteins suggest EET-mediated events led to preserved mitobiogenesis. Thus, we provide new evidence for EET-mediated events that preserve a healthier pool of mitochondria in cardiac cells following starvation-induced stress. PMID:27494529

  9. Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation.

    PubMed

    Pei, Zifan; Xiao, Yucheng; Meng, Jingwei; Hudmon, Andy; Cummins, Theodore R

    2016-01-01

    Cardiac voltage-gated sodium channels (Nav1.5) play an essential role in regulating cardiac electric activity by initiating and propagating action potentials in the heart. Altered Nav1.5 function is associated with multiple cardiac diseases including long-QT3 and Brugada syndrome. Here, we show that Nav1.5 is subject to palmitoylation, a reversible post-translational lipid modification. Palmitoylation increases channel availability and late sodium current activity, leading to enhanced cardiac excitability and prolonged action potential duration. In contrast, blocking palmitoylation increases closed-state channel inactivation and reduces myocyte excitability. We identify four cysteines as possible Nav1.5 palmitoylation substrates. A mutation of one of these is associated with cardiac arrhythmia (C981F), induces a significant enhancement of channel closed-state inactivation and ablates sensitivity to depalmitoylation. Our data indicate that alterations in palmitoylation can substantially control Nav1.5 function and cardiac excitability and this form of post-translational modification is likely an important contributor to acquired and congenital arrhythmias. PMID:27337590

  10. Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation

    PubMed Central

    Pei, Zifan; Xiao, Yucheng; Meng, Jingwei; Hudmon, Andy; Cummins, Theodore R.

    2016-01-01

    Cardiac voltage-gated sodium channels (Nav1.5) play an essential role in regulating cardiac electric activity by initiating and propagating action potentials in the heart. Altered Nav1.5 function is associated with multiple cardiac diseases including long-QT3 and Brugada syndrome. Here, we show that Nav1.5 is subject to palmitoylation, a reversible post-translational lipid modification. Palmitoylation increases channel availability and late sodium current activity, leading to enhanced cardiac excitability and prolonged action potential duration. In contrast, blocking palmitoylation increases closed-state channel inactivation and reduces myocyte excitability. We identify four cysteines as possible Nav1.5 palmitoylation substrates. A mutation of one of these is associated with cardiac arrhythmia (C981F), induces a significant enhancement of channel closed-state inactivation and ablates sensitivity to depalmitoylation. Our data indicate that alterations in palmitoylation can substantially control Nav1.5 function and cardiac excitability and this form of post-translational modification is likely an important contributor to acquired and congenital arrhythmias. PMID:27337590