Science.gov

Sample records for cardiomyocyte nfat activation

  1. Leptin-induced cardiomyocyte hypertrophy reveals both calcium-dependent and calcium-independent/RhoA-dependent calcineurin activation and NFAT nuclear translocation.

    PubMed

    Rajapurohitam, Venkatesh; Izaddoustdar, Farzad; Martinez-Abundis, Eduardo; Karmazyn, Morris

    2012-12-01

    Leptin, a product of the obesity gene, has been shown to produce cardiac hypertrophy. Although leptin's mechanism of action is poorly understood activation of the RhoA/ROCK pathway has been proposed as a contributing mechanism. The Ca(2+)-dependent phosphatase calcineurin plays a critical role in the hypertrophic program although it is not known whether leptin can activate this signaling pathway or whether there is a relationship between RhoA activation and calcineurin. Accordingly, we determined the effect of leptin on calcineurin activation and assessed the possible role of RhoA. Experiments were performed using cultured neonatal rat ventricular myocytes exposed to 50 ng/ml leptin for 24h which resulted in a robust hypertrophic response. Moreover, leptin significantly increased intracellular Ca(2+) and Na(+) concentrations which was associated with significantly reduced activity of the 3Na(+)-2K(+)ATPase. The hypertrophic response to leptin were completely abrogated by both C3 exoenzyme (C3), a RhoA inhibitor as well as the reverse mode 3Na(+)-1Ca(2+) exchange inhibitor KB-R7943 ((2-[2-[4-(4-nitrobenzyloxy)phenyl] ethyl]isothiourea methanesulfonate), however only the effect of the latter was associated with attenuation of intracellular Ca(2+) concentrations whereas Ca(2+) concentrations were unaffected by C3. Similarly, C3 and KB-R7943 significantly attenuated early leptin-induced increase in calcineurin activity as well as the increase in nuclear translocation of the transcriptional factor nuclear factor of activated T cells. The hypertrophic response to leptin was also associated with increased p38 and ERK1/2 MAPK phosphorylation and increased p38, but not ERK1/2, translocation into nuclei. Both p38 responses as well as hypertrophy were abrogated by KB-R7943 as well as the calcineurin inhibitor FK-506 although ERK1/2 phosphorylation was unaffected. Our study therefore demonstrates a critical role for the calcineurin pathway in mediating leptin

  2. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    SciTech Connect

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj; Schönberger, Tanja; Noegel, Angelika A.; Gawaz, Meinrad; Lang, Florian

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  3. Oxytocin-Stimulated NFAT Transcriptional Activation in Human Myometrial Cells

    PubMed Central

    McArdle, Craig A.; López Bernal, Andrés

    2012-01-01

    Oxytocin (OXT) is a peptide hormone that binds the OXT receptor on myometrial cells, initiating an intracellular signaling cascade, resulting in accumulation of intracellular calcium and smooth muscle contraction. In other systems, an elevation of intracellular Ca2+ stimulates nuclear translocation of the transcription factor, nuclear factor of activated T cells (NFAT), which is transcriptionally active in arterial and ileal smooth muscle. Here we have investigated the role of NFAT in the mechanism of action of OXT. Human myometrial cells expressed all five NFAT isoforms (NFATC1–C4 and -5). Myometrial cells were transduced with a recombinant adenovirus expressing a NFATC1-EFP reporter, and a semi-automated imaging system was used to monitor effects of OXT on reporter localization in live cells. OXT induced a concentration-dependent nuclear translocation of NFATC1-EFP in a reversible manner, which was inhibited by OXT antagonists and calcineurin inhibitors. Pulsatile stimulation with OXT caused intermittent, pulse-frequency-dependent, nuclear translocation of NFATC1-EFP, which was more efficient than sustained stimulation. OXT induced nuclear translocation of endogenous NFAT that was transcriptionally active, because OXT stimulated activity of a NFAT-response element-luciferase reporter and induced calcineurin-NFAT dependent expression of RGS2, RCAN1, and PTGS2 (COX2) mRNA. Furthermore, OXT-dependent transcription was dependent on protein neosynthesis; cycloheximide abolished RGS2 transcription but augmented RCAN1 and COX2 transcriptional readouts. This study identifies a novel signaling mechanism within the myometrium, whereby calcineurin-NFAT signaling mediates OXT-induced transcriptional activity. Furthermore, we show NFATC1-EFP is responsive to pulses of OXT, a mechanism by which myometrial cells could decode OXT pulse frequency. PMID:22902539

  4. Nuclear Factor of Activated T-cells (NFAT) plays a role in SV40 infection

    PubMed Central

    Manley, Kate; O’Hara, Bethany A; Atwood, Walter J

    2008-01-01

    Recent evidence highlighted a role for the transcription factor, Nuclear Factor of Activated T-cells (NFAT), in the transcription of the human polyomavirus JCV. Here we show that NFAT is also important in the transcriptional control of the related polyomavirus, Simian Virus 40 (SV40). Inhibition of NFAT activity reduced SV40 infection of Vero, 293A and HeLa cells, and this block occurred at the stage of viral transcription. Both NFAT3 and NFAT4 bound to the SV40 promoter through κB sites located within the 72bp repeated enhancer region. In Vero cells NFAT was involved in late transcription, but in HeLa and 293A cells both early and late viral transcription required NFAT activity. SV40 large T-Ag was found to increase NFAT activity and provided a positive feedback loop to transactivate the SV40 promoter. PMID:18031784

  5. Nuclear factor of activated T-cells (NFAT) plays a role in SV40 infection

    SciTech Connect

    Manley, Kate; O'Hara, Bethany A.; Atwood, Walter J.

    2008-03-01

    Recent evidence highlighted a role for the transcription factor, nuclear factor of activated T-cells (NFAT), in the transcription of the human polyomavirus JCV. Here we show that NFAT is also important in the transcriptional control of the related polyomavirus, Simian Virus 40 (SV40). Inhibition of NFAT activity reduced SV40 infection of Vero, 293A, and HeLa cells, and this block occurred at the stage of viral transcription. Both NFAT3 and NFAT4 bound to the SV40 promoter through {kappa}B sites located within the 72 bp repeated enhancer region. In Vero cells, NFAT was involved in late transcription, but in HeLa and 293A cells both early and late viral transcription required NFAT activity. SV40 large T-Ag was found to increase NFAT activity and provided a positive feedback loop to transactivate the SV40 promoter.

  6. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling.

    PubMed

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj; Schönberger, Tanja; Noegel, Angelika A; Gawaz, Meinrad; Lang, Florian

    2014-02-28

    Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca(2+) signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7(-/-)) and wild-type mice (anxa7(+/+)) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7(-/-) mice than in anxa7(+/+) mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions. PMID:24508799

  7. NFAT5 Is Activated by Hypoxia: Role in Ischemia and Reperfusion in the Rat Kidney

    PubMed Central

    Villanueva, Sandra; Suazo, Cristian; Santapau, Daniela; Pérez, Francisco; Quiroz, Mariana; Carreño, Juan E.; Illanes, Sebastián; Lavandero, Sergio; Michea, Luis; Irarrazabal, Carlos E.

    2012-01-01

    The current hypothesis postulates that NFAT5 activation in the kidney's inner medulla is due to hypertonicity, resulting in cell protection. Additionally, the renal medulla is hypoxic (10–18 mmHg); however there is no information about the effect of hypoxia on NFAT5. Using in vivo and in vitro models, we evaluated the effect of reducing the partial pressure of oxygen (PO2) on NFAT5 activity. We found that 1) Anoxia increased NFAT5 expression and nuclear translocation in primary cultures of IMCD cells from rat kidney. 2) Anoxia increased transcriptional activity and nuclear translocation of NFAT5 in HEK293 cells. 3) The dose-response curve demonstrated that HIF-1α peaked at 2.5% and NFAT5 at 1% of O2. 4) At 2.5% of O2, the time-course curve of hypoxia demonstrated earlier induction of HIF-1α gene expression than NFAT5. 5) siRNA knockdown of NFAT5 increased the hypoxia-induced cell death. 6) siRNA knockdown of HIF-1α did not affect the NFAT5 induction by hypoxia. Additionally, HIF-1α was still induced by hypoxia even when NFAT5 was knocked down. 7) NFAT5 and HIF-1α expression were increased in kidney (cortex and medulla) from rats subjected to an experimental model of ischemia and reperfusion (I/R). 7) Experimental I/R increased the NFAT5-target gene aldose reductase (AR). 8) NFAT5 activators (ATM and PI3K) were induced in vitro (HEK293 cells) and in vivo (I/R kidneys) with the same timing of NFAT5. 8) Wortmannin, which inhibits ATM and PI3K, reduces hypoxia-induced NFAT5 transcriptional activation in HEK293 cells. These results demonstrate for the first time that NFAT5 is induced by hypoxia and could be a protective factor against ischemic damage. PMID:22768306

  8. Transcription factor NFAT1 controls allergic contact hypersensitivity through regulation of activation induced cell death program

    PubMed Central

    Kwon, Ho-Keun; Kim, Gi-Cheon; Hwang, Ji Sun; Kim, Young; Chae, Chang-Suk; Nam, Jong Hee; Jun, Chang-Duk; Rudra, Dipayan; Surh, Charles D.; Im, Sin-Hyeog

    2016-01-01

    Allergic contact hypersensitivity (CHS) is an inflammatory skin disease mediated by allergen specific T cells. In this study, we investigated the role of transcription factor NFAT1 in the pathogenesis of contact hypersensitivity. NFAT1 knock out (KO) mice spontaneously developed CHS-like skin inflammation in old age. Healthy young NFAT1 KO mice displayed enhanced susceptibility to hapten-induced CHS. Both CD4+ and CD8+ T cells from NFAT1 KO mice displayed hyper-activated properties and produced significantly enhanced levels of inflammatory T helper 1(Th1)/Th17 type cytokines. NFAT1 KO T cells were more resistant to activation induced cell death (AICD), and regulatory T cells derived from these mice showed a partial defect in their suppressor activity. NFAT1 KO T cells displayed a reduced expression of apoptosis associated BCL-2/BH3 family members. Ectopic expression of NFAT1 restored the AICD defect in NFAT1 KO T cells and increased AICD in normal T cells. Recipient Rag2−/− mice transferred with NFAT1 KO T cells showed more severe CHS sensitivity due to a defect in activation induced hapten-reactive T cell apoptosis. Collectively, our results suggest the NFAT1 plays a pivotal role as a genetic switch in CD4+/CD8+ T cell tolerance by regulating AICD process in the T cell mediated skin inflammation. PMID:26777750

  9. NFAT-133 increases glucose uptake in L6 myotubes by activating AMPK pathway.

    PubMed

    Thakkar, Chandni S; Kate, Abhijeet S; Desai, Dattatraya C; Ghosh, Asit Ranjan; Kulkarni-Almeida, Asha A

    2015-12-15

    NFAT-133 is an aromatic compound with cinammyl alcohol moiety, isolated from streptomycetes strain PM0324667. We have earlier reported that NFAT-133 increases insulin stimulated glucose uptake in L6 myotubes using a PPARγ independent mechanism and reduces plasma or blood glucose levels in diabetic mice. Here we investigated the effects of NFAT-133 on cellular signaling pathways leading to glucose uptake in L6 myotubes. Our studies demonstrate that NFAT-133 increases glucose uptake in a dose- and time-dependent manner independent of the effects of insulin. Treatment with Akti-1/2, wortmannin and increasing concentrations of insulin had no effect on NFAT-133 mediated glucose uptake. NFAT-133 induced glucose uptake is completely mitigated by Compound C, an AMPK inhibitor. Further, the kinases upstream of AMPK activation namely; LKB-1 and CAMKKβ are not involved in NFAT-133 mediated AMPK activation nor does the compound NFAT-133 have any effect on AMPK enzyme activity. Further analysis confirmed that NFAT-133 indirectly activates AMPK by reducing the mitochondrial membrane potential and increasing the ratio of AMP:ATP. PMID:26546724

  10. Band-pass processing in a GPCR signaling pathway selects for NFAT transcription factor activation.

    PubMed

    Sumit, M; Neubig, R R; Takayama, S; Linderman, J J

    2015-11-01

    Many biological processes are rhythmic and proper timing is increasingly appreciated as being critical for development and maintenance of physiological functions. To understand how temporal modulation of an input signal influences downstream responses, we employ microfluidic pulsatile stimulation of a G-protein coupled receptor, the muscarinic M3 receptor, in single cells with simultaneous real-time imaging of both intracellular calcium and NFAT nuclear localization. Interestingly, we find that reduced stimulation with pulses of ligand can give more efficient transcription factor activation, if stimuli are timed appropriately. Our experiments and computational analyses show that M3 receptor-induced calcium oscillations form a low pass filter while calcium-induced NFAT translocation forms a high pass filter. The combination acts as a band-pass filter optimized for intermediate frequencies of stimulation. We demonstrate that receptor desensitization and NFAT translocation rates determine critical features of the band-pass filter and that the band-pass may be shifted for different receptors or NFAT dynamics. As an example, we show that the two NFAT isoforms (NFAT4 and NFAT1) have shifted band-pass windows for the same receptor. While we focus specifically on the M3 muscarinic receptor and NFAT translocation, band-pass processing is expected to be a general theme that applies to multiple signaling pathways. PMID:26374065

  11. Dual effect of lithium on NFAT5 activity in kidney cells

    PubMed Central

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2015-01-01

    Lithium salts are used widely for treatment of bipolar and other mental disorders. Lithium therapy is accompanied frequently by renal side effects, such as nephrogenic diabetes insipidus or chronic kidney disease (CKD), but the molecular mechanisms underlying these effects are still poorly understood. In the present study we examined the effect of lithium on the activity of the osmosensitive transcriptional activator nuclear factor of activated T cells 5 (NFAT5, also known as TonEBP), which plays a key role in renal cellular osmoprotection and urinary concentrating ability. Interestingly, we found different effects of lithium on NFAT5 activity, depending on medium osmolality and incubation time. When cells were exposed to lithium for a relative short period (24 h), NFAT5 activity was significantly increased, especially under isosmotic conditions, resulting in an enhanced expression of the NFAT5 target gene heat shock protein 70 (HSP70). Further analysis revealed that the increase of NFAT5 activity depended primarily on an enhanced activity of the c-terminal transactivation domain (TAD), while NFAT5 protein abundance was largely unaffected. Enhanced activity of the TAD is probably mediated by lithium-induced inhibitory phosphorylation of glycogen synthase kinase 3β (GSK-3β), which is in accordance with previous studies. When cells were exposed to lithium for a longer period (96 h), cellular NFAT5 activity and subsequently expression of HSP70 significantly decreased under hyperosmotic conditions, due to diminished NFAT5 protein abundance, also resulting from GSK-3β inhibition. Taken together, our results provide evidence that lithium has opposing effects on NFAT5 activity, depending on environmental osmolality and exposure duration. The potential impacts of these observations on the diverse effects of lithium on kidney function are discussed. PMID:26441681

  12. Dual effect of lithium on NFAT5 activity in kidney cells.

    PubMed

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2015-01-01

    Lithium salts are used widely for treatment of bipolar and other mental disorders. Lithium therapy is accompanied frequently by renal side effects, such as nephrogenic diabetes insipidus or chronic kidney disease (CKD), but the molecular mechanisms underlying these effects are still poorly understood. In the present study we examined the effect of lithium on the activity of the osmosensitive transcriptional activator nuclear factor of activated T cells 5 (NFAT5, also known as TonEBP), which plays a key role in renal cellular osmoprotection and urinary concentrating ability. Interestingly, we found different effects of lithium on NFAT5 activity, depending on medium osmolality and incubation time. When cells were exposed to lithium for a relative short period (24 h), NFAT5 activity was significantly increased, especially under isosmotic conditions, resulting in an enhanced expression of the NFAT5 target gene heat shock protein 70 (HSP70). Further analysis revealed that the increase of NFAT5 activity depended primarily on an enhanced activity of the c-terminal transactivation domain (TAD), while NFAT5 protein abundance was largely unaffected. Enhanced activity of the TAD is probably mediated by lithium-induced inhibitory phosphorylation of glycogen synthase kinase 3β (GSK-3β), which is in accordance with previous studies. When cells were exposed to lithium for a longer period (96 h), cellular NFAT5 activity and subsequently expression of HSP70 significantly decreased under hyperosmotic conditions, due to diminished NFAT5 protein abundance, also resulting from GSK-3β inhibition. Taken together, our results provide evidence that lithium has opposing effects on NFAT5 activity, depending on environmental osmolality and exposure duration. The potential impacts of these observations on the diverse effects of lithium on kidney function are discussed. PMID:26441681

  13. Selective NFAT targeting in T cells ameliorates GvHD while maintaining antitumor activity.

    PubMed

    Vaeth, Martin; Bäuerlein, Carina A; Pusch, Tobias; Findeis, Janina; Chopra, Martin; Mottok, Anja; Rosenwald, Andreas; Beilhack, Andreas; Berberich-Siebelt, Friederike

    2015-01-27

    Graft-versus-host disease (GvHD) is a life-threatening immunological complication after allogenic hematopoietic stem cell transplantation (allo-HCT). The intrinsic graft-versus-leukemia (GvL) effect, however, is the desirable curative benefit. Patients with acute GvHD are treated with cyclosporine A (CsA) or tacrolimus (FK506), which not only often causes severe adverse effects, but also interferes with the anticipated GvL. Both drugs inhibit calcineurin, thus at first suppressing activation of the nuclear factor of activated T cells (NFAT). Therefore, we explored the specific contribution of individual NFAT factors in donor T cells in animal models of GvHD and GvL. Ablation of NFAT1, NFAT2, or a combination of both resulted in ameliorated GvHD, due to reduced proliferation, target tissue homing, and impaired effector function of allogenic donor T cells. In contrast, the frequency of Foxp3(+) regulatory T (Treg) cells was increased and NFAT-deficient Tregs were fully protective in GvHD. CD8(+) T-cell recall response and, importantly, the beneficial antitumor activity were largely preserved in NFAT-deficient effector T cells. Thus, specific inhibition of NFAT opens an avenue for an advanced therapy of GvHD maintaining protective GvL. PMID:25583478

  14. Arterial Wall Stress Controls NFAT5 Activity in Vascular Smooth Muscle Cells

    PubMed Central

    Scherer, Clemens; Pfisterer, Larissa; Wagner, Andreas H.; Hödebeck, Maren; Cattaruzza, Marco; Hecker, Markus; Korff, Thomas

    2014-01-01

    Background Nuclear factor of activated T‐cells 5 (NFAT5) has recently been described to control the phenotype of vascular smooth muscle cells (VSMCs). Although an increase in wall stress or stretch (eg, elicited by hypertension) is a prototypic determinant of VSMC activation, the impact of this biomechanical force on the activity of NFAT5 is unknown. This study intended to reveal the function of NFAT5 and to explore potential signal transduction pathways leading to its activation in stretch‐stimulated VSMCs. Methods and Results Human arterial VSMCs were exposed to biomechanical stretch and subjected to immunofluorescence and protein‐biochemical analyses. Stretch promoted the translocation of NFAT5 to the nucleus within 24 hours. While the protein abundance of NFAT5 was regulated through activation of c‐Jun N‐terminal kinase under these conditions, its translocation required prior activation of palmitoyltransferases. DNA microarray and ChiP analyses identified the matrix molecule tenascin‐C as a prominent transcriptional target of NFAT5 under these conditions that stimulates migration of VSMCs. Analyses of isolated mouse femoral arteries exposed to hypertensive perfusion conditions verified that NFAT5 translocation to the nucleus is followed by an increase in tenascin‐C abundance in the vessel wall. Conclusions Collectively, our data suggest that biomechanical stretch is sufficient to activate NFAT5 both in native and cultured VSMCs where it regulates the expression of tenascin‐C. This may contribute to an improved migratory activity of VSMCs and thus promote maladaptive vascular remodeling processes such as hypertension‐induced arterial stiffening. PMID:24614757

  15. Inhibition of Nuclear Factor of Activated T-Cells (NFAT) Suppresses Accelerated Atherosclerosis in Diabetic Mice

    PubMed Central

    Zetterqvist, Anna V.; Berglund, Lisa M.; Blanco, Fabiana; Garcia-Vaz, Eliana; Wigren, Maria; Dunér, Pontus; Andersson, Anna-Maria Dutius; To, Fong; Spegel, Peter; Nilsson, Jan; Bengtsson, Eva; Gomez, Maria F.

    2013-01-01

    Objective of the Study Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. Methodology and Principal Findings Streptozotocin (STZ)-induced diabetes in apolipoprotein E−/− mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. Conclusions Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications. PMID:23755169

  16. AKAP-Anchored PKA Maintains Neuronal L-type Calcium Channel Activity and NFAT Transcriptional Signaling

    PubMed Central

    Murphy, Jonathan G.; Sanderson, Jennifer L.; Gorski, Jessica A.; Scott, John D.; Catterall, William A.; Sather, William A.; Dell’Acqua, Mark L.

    2014-01-01

    Summary In neurons, Ca2+ influx through L-type voltage-gated Ca2+ channels (LTCC) couples electrical activity to changes in transcription. LTCC activity is elevated by the cAMP-dependent protein kinase (PKA) and depressed by the Ca2+-dependent phosphatase calcineurin (CaN), with both enzymes localized to the channel by A-kinase anchoring protein (AKAP) 79/150. AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T-cells (NFAT). We report here that genetic disruption of PKA anchoring to AKAP79/150 also interferes with LTCC activation of CaN-NFAT signaling in neurons. Disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of dendritic spines, profound decreases in LTCC phosphorylation and Ca2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Our findings support a model wherein basal activity of AKAP79/150-anchored PKA opposes CaN to preserve LTCC phosphorylation, thereby sustaining LTCC activation of CaN-NFAT signaling to the neuronal nucleus. PMID:24835999

  17. Focal adhesion kinase regulates the activity of the osmosensitive transcription factor TonEBP/NFAT5 under hypertonic conditions

    PubMed Central

    Neuhofer, Wolfgang; Küper, Christoph; Lichtnekert, Julia; Holzapfel, Konstantin; Rupanagudi, Khader V.; Fraek, Maria-Luisa; Bartels, Helmut; Beck, Franz-Xaver

    2014-01-01

    TonEBP/NFAT5 is a major regulator of the urinary concentrating process and is essential for the osmoadaptation of renal medullary cells. Focal adhesion kinase (FAK) is a mechanosensitive non-receptor protein tyrosine kinase expressed abundantly in the renal medulla. Since osmotic stress causes cell shrinkage, the present study investigated the contribution of FAK on TonEBP/NFAT5 activation. Osmotic stress induced time-dependent activation of FAK as evidenced by phosphorylation at Tyr-397, and furosemide reduces FAK Tyr-397 phosphorylation in the rat renal medulla. Both pharmacological inhibition of FAK and siRNA-mediated knockdown of FAK drastically reduced TonEBP/NFAT5 transcriptional activity and target gene expression in HEK293 cells. This effect was not mediated by impaired nuclear translocation or by reduced transactivating activity of TonEBP/NFAT5. However, TonEBP/NFAT5 abundance under hypertonic conditions was diminished by 50% by FAK inhibition or siRNA knockdown of FAK. FAK inhibition only marginally reduced transcription of the TonEBP/NFAT5 gene. Rather, TonEBP/NFAT5 mRNA stability was diminished significantly by FAK inhibition, which correlated with reduced reporter activity of the TonEBP/NFAT5 mRNA 3′ untranslated region (3′-UTR). In conclusion, FAK is a major regulator of TonEBP/NFAT5 activity by increasing its abundance via stabilization of the mRNA. This in turn, depends on the presence of the TonEBP/NFAT5 3′-UTR. PMID:24772088

  18. Hyperactivation of nuclear factor of activated T cells 1 (NFAT1) in T cells attenuates severity of murine autoimmune encephalomyelitis

    PubMed Central

    Ghosh, Srimoyee; Koralov, Sergei B.; Stevanovic, Irena; Sundrud, Mark S.; Sasaki, Yoshiteru; Rajewsky, Klaus; Rao, Anjana; Müller, Martin R.

    2010-01-01

    Nuclear factor of activated T cells (NFAT) proteins are a group of Ca2+-regulated transcription factors residing in the cytoplasm of resting cells. Dephosphorylation by calcineurin results in nuclear translocation of NFAT and subsequent expression of target genes; rephosphorylation by kinases, including casein kinase 1 (CK1), restores NFAT to its latent state in the cytoplasm. We engineered a hyperactivable version of NFAT1 with increased affinity for calcineurin and decreased affinity for casein kinase 1. Mice expressing hyperactivable NFAT1 in their T-cell compartment exhibited a dramatically increased frequency of both IL-17– and IL-10–producing cells after differentiation under Th17 conditions—this was associated with direct binding of NFAT1 to distal regulatory regions of Il-17 and Il-10 gene loci in Th17 cells. Despite higher IL-17 production in culture, the mice were significantly less prone to myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis than controls, correlating with increased production of the immunomodulatory cytokine IL-10 and enhanced accumulation of regulatory T cells within the CNS. Thus, NFAT hyperactivation paradoxically leads to decreased susceptibility to experimental autoimmune encephalomyelitis, supporting previous observations linking defects in Ca2+/NFAT signaling to lymphoproliferation and autoimmune disease. PMID:20696888

  19. TonEBP/NFAT5 regulates ACTBL2 expression in biomechanically activated vascular smooth muscle cells

    PubMed Central

    Hödebeck, Maren; Scherer, Clemens; Wagner, Andreas H.; Hecker, Markus; Korff, Thomas

    2014-01-01

    Cytoskeletal reorganization and migration are critical responses which enable vascular smooth muscle cells (VSMCs) cells to evade, compensate, or adapt to alterations in biomechanical stress. An increase in wall stress or biomechanical stretch as it is elicited by arterial hypertension promotes their reorganization in the vessel wall which may lead to arterial stiffening and contractile dysfunction. This adaptive remodeling process is dependent on and driven by subtle phenotype changes including those controlling the cytoskeletal architecture and motility of VSMCs. Recently, it has been reported that the transcription factor nuclear factor of activated T-cells 5 (TonEBP/NFAT5) controls critical aspects of the VSMC phenotype and is activated by biomechanical stretch. We therefore hypothesized that NFAT5 controls the expression of gene products orchestrating cytoskeletal reorganization in stretch-stimulated VSMCs. Automated immunofluorescence and Western blot analyses revealed that biomechanical stretch enhances the expression and nuclear translocation of NFAT5 in VSMCs. Subsequent in silico analyses suggested that this transcription factor binds to the promotor region of ACTBL2 encoding kappa-actin which was shown to be abundantly expressed in VSMCs upon exposure to biomechanical stretch. Furthermore, ACTBL2 expression was inhibited in these cells upon siRNA-mediated knockdown of NFAT5. Kappa-actin appeared to be aligned with stress fibers under static culture conditions, dispersed in lamellipodia and supported VSMC migration as its knockdown diminishes lateral migration of these cells. In summary, our findings delineated biomechanical stretch as a determinant of NFAT5 expression and nuclear translocation controlling the expression of the cytoskeletal protein ACTBL2. This response may orchestrate the migratory activity of VSMCs and thus promote maladaptive rearrangement of the arterial vessel wall during hypertension. PMID:25520667

  20. Lithium Regulates Keratinocyte Proliferation Via Glycogen Synthase Kinase 3 and NFAT2 (Nuclear Factor of Activated T Cells 2)

    PubMed Central

    Hampton, Philip J; Jans, Ralph; Flockhart, Ross J; Parker, Graeme; Reynolds, Nick J

    2012-01-01

    Certain environmental factors including drugs exacerbate or precipitate psoriasis. Lithium is the commonest cause of drug-induced psoriasis but underlying mechanisms are currently unknown. Lithium inhibits glycogen synthase kinase 3 (GSK-3). As lithium does not exacerbate other T-cell-mediated chronic inflammatory diseases, we investigated whether lithium may be acting directly on epidermal keratinocytes by inhibiting GSK-3. We report that lithium-induced keratinocyte proliferation at therapeutically relevant doses (1–2 mM) and increased the proportion of cells in S phase of the cell cycle. Inhibition of GSK-3 in keratinocytes by retroviral transduction of GSK-binding protein (an endogenous inhibitory protein) or through a highly selective pharmacological inhibitor also resulted in increased keratinocyte proliferation. Nuclear factor of activated T cells (NFAT) is an important substrate for GSK-3 and for cyclosporin, an effective treatment for psoriasis that inhibits NFAT activation in keratinocytes as well as in lymphocytes. Both lithium and genetic/pharmacological inhibition of GSK-3 resulted in increased nuclear localization of NFAT2 (NFATc1) and increased NFAT transcriptional activation. Finally, retroviral transduction of NFAT2 increased keratinocyte proliferation whereas siRNA-mediated knockdown of NFAT2 reduced keratinocyte proliferation and decreased epidermal thickness in an organotypic skin equivalent model. Taken together, these data identify GSK-3 and NFAT2 as key regulators of keratinocyte proliferation and as potential molecular targets relevant to lithium-provoked psoriasis. J. Cell. Physiol. 227: 1529–1537, 2012. © 2011 Wiley Periodicals, Inc. PMID:21678407

  1. Activation of the Ca{sup 2+}/calcineurin/NFAT{sub 2} pathway controls smooth muscle cell differentiation

    SciTech Connect

    Larrieu, Daniel; Thiebaud, Pierre; Duplaa, Cecile; Sibon, Igor; Theze, Nadine; Lamaziere, Jean-Marie Daniel . E-mail: jean-marie.d-lamaziere@bordeaux.inserm.fr

    2005-10-15

    Cellular mechanisms controlling smooth muscle cells (SMCs) phenotypic modulation are largely unknown. Intracellular Ca{sup 2+} movements are essential to ensure SMC functions; one of the roles of Ca{sup 2+} is to regulate calcineurin, which in turn induces nuclear localization of the nuclear factor of activated T-cell (NFAT). In order to investigate, during phenotypic differentiation of SMCs, the effect of calcineurin inhibition on NFAT{sub 2} nuclear translocation, we used a culture model of SMC differentiation in serum-free conditions. We show that the treatment of cultured SMC with the calcineurin inhibitor cyclosporine A induced their dedifferentiation while preventing their differentiation. These findings suggest that nuclear translocation of NFAT{sub 2} is dependent of calcineurin activity during the in vitro SMC differentiation kinetic and that the nuclear presence of NFAT{sub 2} is critical in the acquisition and maintenance of SMC differentiation.

  2. Brx Mediates the Response of Lymphocytes to Osmotic Stress Through the Activation of NFAT5

    PubMed Central

    Kino, Tomoshige; Takatori, Hiroaki; Manoli, Irini; Wang, Yonghong; Tiulpakov, Anatoly; Blackman, Marc R.; Su, Yan A.; Chrousos, George P.; DeCherney, Alan H.; Segars, James H.

    2010-01-01

    Extracellular hyperosmolarity, or osmotic stress, generally caused by differences in salt and macromolecule concentrations across the plasma membrane, occurs in lymphoid organs and at inflammatory sites. The response of immune cells to osmotic stress is regulated by nuclear factor of activated T cells 5 (NFAT5), a transcription factor that induces the expression of hyperosmolarity-responsive genes and stimulates cytokine production. We report that the guanine nucleotide exchange factor (GEF) Brx [also known as protein kinase A–anchoring protein 13 (AKAP13)] is essential for the expression of nfat5 in response to osmotic stress, thus transmitting the extracellular hyperosmolarity signal and enabling differentiation of splenic B cells and production of immunoglobulin. This process required the activity of p38 mitogen-activated protein kinase (MAPK) and NFAT5 and involved a physical interaction between Brx and c-Jun N-terminal kinase (JNK)–interacting protein 4 (JIP4), a scaffold molecule specific to activation of the p38 MAPK cascade. Our results indicate that Brx integrates the responses of immune cells to osmotic stress and inflammation by elevating intracellular osmolarity and stimulating the production of cytokines. PMID:19211510

  3. Nickel differentially regulates NFAT and NF-{kappa}B activation in T cell signaling

    SciTech Connect

    Saito, Rumiko; Hirakawa, Satoshi; Ohara, Hiroshi; Yasuda, Makoto; Yamazaki, Tomomi; Nishii, Shigeaki; Aiba, Setsuya

    2011-08-01

    Nickel is a potent hapten that induces contact hypersensitivity in human skin. While nickel induces the maturation of dendritic cells via NF-{kappa}B and p38 MAPK activation, it also exerts immunosuppressive effects on T cells through an unknown mechanism. To elucidate the molecular mechanisms of its effects on T cells, we examined the effects of NiCl{sub 2} on mRNA expression in human CD3+ T cells stimulated with CD3 and CD28 antibodies. Using a DNA microarray and Gene Ontology, we identified 70 up-regulated (including IL-1{beta}, IL-6 and IL-8) and 61 down-regulated (including IL-2, IL-4, IL-10 and IFN-{gamma}) immune responsive genes in NiCl{sub 2}-treated T cells. The DNA microarray results were verified using real-time PCR and a Bio-Plex{sup TM} suspension protein array. Suppression of IL-2 and IFN-{gamma} gene transcription by NiCl{sub 2} was also confirmed using Jurkat T cells transfected with IL-2 or IFN-{gamma} luciferase reporter genes. To explore the NiCl{sub 2}-regulated signaling pathway, we examined the binding activity of nuclear proteins to NFAT, AP-1, and NF-{kappa}B consensus sequences. NiCl{sub 2} significantly and dose-dependently suppressed NFAT- and AP-1-binding activity, but augmented NF-{kappa}B-binding activity. Moreover, NiCl{sub 2} decreased nuclear NFAT expression in stimulated T cells. Using Jurkat T cells stimulated with PMA/ionomycin, we demonstrated that NiCl{sub 2} significantly suppressed stimulation-evoked cytosolic Ca{sup 2+} increases, suggesting that NiCl{sub 2} regulates NFAT signals by acting as a blocker of Ca{sup 2+} release-activated Ca{sup 2+} (CRAC) channels. These data showed that NiCl{sub 2} decreases NFAT and increases NF-{kappa}B signaling in T cells. These results shed light on the effects of nickel on the molecular regulation of T cell signaling. - Graphical Abstract: Nickel suppresses stimulation-evoked cytosolic Ca{sup 2+} increase, which results in the suppression of NFAT signals. On the other hand, Ni rather

  4. Activation and Cellular Localization of the Cyclosporine A-sensitive Transcription Factor NF-AT in Skeletal Muscle Cells

    PubMed Central

    Abbott, Karen L.; Friday, Bret B.; Thaloor, Deepa; Murphy, T.J.; Pavlath, Grace K.

    1998-01-01

    The widely used immunosuppressant cyclosporine A (CSA) blocks nuclear translocation of the transcription factor, NF-AT (nuclear factor of activated T cells), preventing its activity. mRNA for several NF-AT isoforms has been shown to exist in cells outside of the immune system, suggesting a possible mechanism for side effects associated with CSA treatment. In this study, we demonstrate that CSA inhibits biochemical and morphological differentiation of skeletal muscle cells while having a minimal effect on proliferation. Furthermore, in vivo treatment with CSA inhibits muscle regeneration after induced trauma in mice. These results suggest a role for NF-AT–mediated transcription outside of the immune system. In subsequent experiments, we examined the activation and cellular localization of NF-AT in skeletal muscle cells in vitro. Known pharmacological inducers of NF-AT in lymphoid cells also stimulate transcription from an NF-AT–responsive reporter gene in muscle cells. Three isoforms of NF-AT (NF-ATp, c, and 4/x/c3) are present in the cytoplasm of muscle cells at all stages of myogenesis tested. However, each isoform undergoes calcium-induced nuclear translocation from the cytoplasm at specific stages of muscle differentiation, suggesting specificity among NF-AT isoforms in gene regulation. Strikingly, one isoform (NF-ATc) can preferentially translocate to a subset of nuclei within a single multinucleated myotube. These results demonstrate that skeletal muscle cells express functionally active NF-AT proteins and that the nuclear translocation of individual NF-AT isoforms, which is essential for the ability to coordinate gene expression, is influenced markedly by the differentiation state of the muscle cell. PMID:9763451

  5. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation.

    PubMed

    Zhang, Yichi; Storey, Kenneth B

    2016-01-01

    The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through

  6. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    SciTech Connect

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-07-11

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies.

  7. The calcineurin/NFAT pathway is activated in diagnostic breast cancer cases and is essential to survival and metastasis of mammary cancer cells

    PubMed Central

    Tran Quang, C; Leboucher, S; Passaro, D; Fuhrmann, L; Nourieh, M; Vincent-Salomon, A; Ghysdael, J

    2015-01-01

    Nuclear factor of activated T cells 1 (NFAT1) expression has been associated with increased migratory/invasive properties of mammary tumor-derived cell lines in vitro. It is unknown, however, if NFAT activation actually occurs in breast cancer cases and whether the calcineurin/NFAT pathway is important to mammary tumorigenesis. Using a cohort of 321 diagnostic cases of the major subgroup of breast cancer, we found Cn/NFAT pathway activated in ER−PR−HER2− triple-negative breast cancer subtype, whereas its prevalence is less in other subgroups. Using a small hairpin RNA-based gene expression silencing approach in murine mammary tumor cell line (4T1), we show that not only NFAT1 but also NFAT2 and their upstream activator Cn are essential to the migratory and invasive properties of mammary tumor cells. We also demonstrate that Cn, NFAT1 and NFAT2 are essential to the tumorigenic and metastatic properties of these cells in mice, a phenotype which coincides with increased apoptosis in vivo. Finally, global gene expression analyses identified several NFAT-deregulated genes, many of them being previously associated with mammary tumorigenesis. In particular, we identified the gene encoding a disintegrin and metalloproteinase with thrombonspondin motifs 1, as being a potential direct target of NFAT1. Thus, our results show that the Cn/NFAT pathway is activated in diagnostic cases of breast cancers and is essential to the tumorigenic and metastatic potential of mammary tumor cell line. These results suggest that pharmacological inhibition of the Cn/NFAT pathway at different levels could be of therapeutical interest for breast cancer patients. PMID:25719243

  8. Virion encapsidated HIV-1 Vpr induces NFAT to prime non-activated T cells for productive infection

    PubMed Central

    Höhne, Kristin; Businger, Ramona; van Nuffel, Anouk; Bolduan, Sebastian; Koppensteiner, Herwig; Baeyens, Ann; Vermeire, Jolien; Malatinkova, Eva; Verhasselt, Bruno; Schindler, Michael

    2016-01-01

    The majority of T cells encountered by HIV-1 are non-activated and do not readily allow productive infection. HIV-1 Vpr is highly abundant in progeny virions, and induces signalling and HIV-1 LTR transcription. We hence hypothesized that Vpr might be a determinant of non-activated T-cell infection. Virion-delivered Vpr activated nuclear factor of activated T cells (NFAT) through Ca2+ influx and interference with the NFAT export kinase GSK3β. This leads to NFAT translocation and accumulation within the nucleus and was required for productive infection of unstimulated primary CD4+ T cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT activation with its ability to enhance LTR transcription and mediate cell cycle arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection, and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr renders unstimulated T cells more permissive for productive HIV-1 infection and stimulates activation of productively infected as well as virus-exposed T cells. Therefore, it could be involved in the establishment and reactivation of HIV-1 from viral reservoirs and might have an impact on the levels of immune activation, which are determinants of HIV-1 pathogenesis. PMID:27383627

  9. SH3BP2 is an activator of NFAT activity and osteoclastogenesis

    SciTech Connect

    Lietman, Steven A. Yin Lihong; Levine, Michael A.

    2008-07-11

    Heterozygous activating mutations in exon 9 of SH3BP2 have been found in most patients with cherubism, an unusual genetic syndrome characterized by excessive remodeling of the mandible and maxilla due to spontaneous and excessive osteoclastic bone resorption. Osteoclasts differentiate after binding of sRANKL to RANK induces a number of downstream signaling effects, including activation of the calcineurin/NFAT (nuclear factor of activated T cells) pathway. Here, we have investigated the functional significance of SH3BP2 protein on osteoclastogenesis in the presence of sRANKL. Our results indicate that SH3BP2 both increases nuclear NFATc1 in sRANKL treated RAW 264.7 preosteoclast cells and enhances expression of tartrate resistant acid phosphatase (TRAP), a specific marker of osteoclast differentiation. Moreover, overexpression of SH3BP2 in RAW 264.7 cells potentiates sRANKL-stimulated phosphorylation of PLC{gamma}1 and 2, thus providing a mechanistic pathway for the rapid translocation of NFATc1 into the nucleus and increased osteoclastogenesis in cherubism.

  10. The transcription factor NFAT promotes exhaustion of activated CD8⁺ T cells.

    PubMed

    Martinez, Gustavo J; Pereira, Renata M; Äijö, Tarmo; Kim, Edward Y; Marangoni, Francesco; Pipkin, Matthew E; Togher, Susan; Heissmeyer, Vigo; Zhang, Yi Chen; Crotty, Shane; Lamperti, Edward D; Ansel, K Mark; Mempel, Thorsten R; Lähdesmäki, Harri; Hogan, Patrick G; Rao, Anjana

    2015-02-17

    During persistent antigen stimulation, CD8(+) T cells show a gradual decrease in effector function, referred to as exhaustion, which impairs responses in the setting of tumors and infections. Here we demonstrate that the transcription factor NFAT controls the program of T cell exhaustion. When expressed in cells, an engineered form of NFAT1 unable to interact with AP-1 transcription factors diminished T cell receptor (TCR) signaling, increased the expression of inhibitory cell surface receptors, and interfered with the ability of CD8(+) T cells to protect against Listeria infection and attenuate tumor growth in vivo. We defined the genomic regions occupied by endogenous and engineered NFAT1 in primary CD8(+) T cells and showed that genes directly induced by the engineered NFAT1 overlapped with genes expressed in exhausted CD8(+) T cells in vivo. Our data show that NFAT promotes T cell anergy and exhaustion by binding at sites that do not require cooperation with AP-1. PMID:25680272

  11. Leishmania infantum-chagasi activates SHP-1 and reduces NFAT5/TonEBP activity in the mouse kidney inner medulla.

    PubMed

    Zhou, Xiaoming; Wang, Hong; Koles, Nancy L; Zhang, Aihong; Aronson, Naomi E

    2014-09-01

    Visceral leishmaniasis patients have been reported to have a urine concentration defect. Concentration of urine by the renal inner medulla is essentially dependent on a transcription factor, NFAT5/TonEBP, because it activates expression of osmoprotective genes betaine/glycine transporter 1 (BGT1) and sodium/myo-inositol transporter (SMIT), and water channel aquaporin-2, all of which are imperative for concentrating urine. Leishmania parasites evade macrophage immune defenses by activating protein tyrosine phosphatases, among which SHP-1 is critical. We previously demonstrated that SHP-1 inhibits tonicity-dependent activation of NFAT5/TonEBP in HEK293 cells through screening a genome-wide small interfering (si) RNA library against phosphatases (Zhou X, Gallazzini M, Burg MB, Ferraris JD. Proc Natl Acad Sci USA 107: 7072-7077, 2010). We sought to examine whether Leishmania can activate SHP-1 and inhibit NFAT5/TonEBP activity in the renal inner medulla in a murine model of visceral leishmaniasis by injection of female BALB/c mice with a single intravenous dose of 5 × 10(5) L. chagasi metacyclic promastigotes. We found that SHP-1 is expressed in the kidney inner medulla. L. chagasi activates SHP-1 with an increase in stimulatory phosphorylation of SHP-1-Y536 in the region. L. chagasi reduces expression of NFAT5/TonEBP mRNA and protein as well as expression of its targeted genes: BGT1, SMIT, and aquaporin-2. The culture supernatant from L. chagasi metacyclic promastigotes increases SHP-1 protein abundance and potently inhibits NFAT5 transcriptional activity in mIMCD3 cells. However, L. chagasi in our animal model has no significant effect on urinary concentration. We conclude that L. chagasi, most likely through its secreted virulence factors, activates SHP-1 and reduces NFAT5/TonEBP gene expression, which leads to reduced NFAT5/TonEBP transcriptional activity in the kidney inner medulla. PMID:24990897

  12. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF. PMID:12504106

  13. Identification and evolution of an NFAT gene involving Branchiostoma belcheri innate immunity.

    PubMed

    Song, Xiaojun; Hu, Jing; Jin, Ping; Chen, Liming; Ma, Fei

    2013-10-01

    The Nuclear Factor of Activated T cells (NFAT) plays an important role in innate and adaptive immunity, but no NFAT genes have yet been identified in amphioxus species. Here we identified and characterized an NFAT-like gene from Branchiostoma belcheri, and also studied extensively the evolutionary history of NFAT family genes. We found that the amphioxus genome contains an AmphiNFAT gene encoding an NFAT homolog. The AmphiNFAT gene was found to be involved in the innate immune response to LPS stimulation in B. belcheri and was ubiquitously and differentially expressed in all investigated tissues. The NFAT family genes were present in a common ancestor with cnidaria, and NFAT1-4 paralogs were lost early in Branchiostoma and Strongylocentrotus genomes. We discovered that NFAT family genes underwent strong purifying selection. Taken together, our findings provide an insight into the innate immune response of amphioxus and the evolution of the NFAT gene family. PMID:23657135

  14. PKC-α contributes to high NaCl-induced activation of NFAT5 (TonEBP/OREBP) through MAPK ERK1/2.

    PubMed

    Wang, Hong; Ferraris, Joan D; Klein, Janet D; Sands, Jeff M; Burg, Maurice B; Zhou, Xiaoming

    2015-01-15

    High NaCl in the renal medullary interstitial fluid powers the concentration of urine but can damage cells. The transcription factor nuclear factor of activated T cells 5 (NFAT5) activates the expression of osmoprotective genes. We studied whether PKC-α contributes to the activation of NFAT5. PKC-α protein abundance was greater in the renal medulla than in the cortex. Knockout of PKC-α reduced NFAT5 protein abundance and expression of its target genes in the inner medulla. In human embryonic kidney (HEK)-293 cells, high NaCl increased PKC-α activity, and small interfering RNA-mediated knockdown of PKC-α attenuated high NaCl-induced NFAT5 transcriptional activity. Expression of ERK1/2 protein and phosphorylation of ERK1/2 were higher in the renal inner medulla than in the cortex. Knockout of PKC-α decreased ERK1/2 phosphorylation in the inner medulla, as did knockdown of PKC-α in HEK-293 cells. Also, knockdown of ERK2 reduced high NaCl-dependent NFAT5 transcriptional activity in HEK-293 cells. Combined knockdown of PKC-α and ERK2 had no greater effect than knockdown of either alone. Knockdown of either PKC-α or ERK2 reduced the high NaCl-induced increase of NFAT5 transactivating activity. We have previously found that the high NaCl-induced increase of phosphorylation of Ser(591) on Src homology 2 domain-containing phosphatase 1 (SHP-1-S591-P) contributes to the activation of NFAT5 in cell culture, and here we found high levels of SHP-1-S591-P in the inner medulla. PKC-α has been previously shown to increase SHP-1-S591-P, which raised the possibility that PKC-α might be acting through SHP-1. However, we did not find that knockout of PKC-α in the renal medulla or knockdown in HEK-293 cells affected SHP-1-S591-P. We conclude that PKC-α contributes to high NaCl-dependent activation of NFAT5 through ERK1/2 but not through SHP-1-S591. PMID:25391900

  15. The azetidine derivative, KHG26792 protects against ATP-induced activation of NFAT and MAPK pathways through P2X7 receptor in microglia.

    PubMed

    Kim, Eun-A; Cho, Chang Hun; Kim, Jiae; Hahn, Hoh-Gyu; Choi, Soo Young; Yang, Seung-Ju; Cho, Sung-Woo

    2015-12-01

    Azetidine derivatives are of interest for drug development because they may be useful therapeutic agents. However, their mechanisms of action remain to be completely elucidated. Here, we have investigated the effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792) on ATP-induced activation of NFAT and MAPK through P2X7 receptor in the BV-2 mouse microglial cell line. KHG26792 decreased ATP-induced TNF-α release from BV-2 microglia by suppressing, at least partly, P2X7 receptor stimulation. KHG26792 also inhibited the ATP-induced increase in IL-6, PGE2, NO, ROS, CXCL2, and CCL3. ATP induced NFAT activation through P2X7 receptor, with KHG26792 reducing the ATP-induced NFAT activation. KHG26792 inhibited an ATP-induced increase in iNOS protein and ERK phosphorylation. KHG26792 prevented an ATP-induced increase in MMP-9 activity through the P2X7 receptor as a result of degradation of TIMP-1 by cathepsin B. Our data provide mechanistic insights into the role of KHG26792 in the inhibition of TNF-α produced via P2X7 receptor-mediated activation of NFAT and MAPK pathways in ATP-treated BV-2 cells. This study highlights the potential use of KHG26792 as a therapeutic agent for the many diseases of the CNS related to activated microglia. PMID:26522449

  16. Phagocytosis-dependent activation of a TLR9–BTK–calcineurin–NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus

    PubMed Central

    Herbst, Susanne; Shah, Anand; Mazon Moya, Maria; Marzola, Vanessa; Jensen, Barbara; Reed, Anna; Birrell, Mark A; Saijo, Shinobu; Mostowy, Serge; Shaunak, Sunil; Armstrong-James, Darius

    2015-01-01

    Transplant recipients on calcineurin inhibitors are at high risk of invasive fungal infection. Understanding how calcineurin inhibitors impair fungal immunity is a key priority for defining risk of infection. Here, we show that the calcineurin inhibitor tacrolimus impairs clearance of the major mould pathogen Aspergillus fumigatus from the airway, by inhibiting macrophage inflammatory responses. This leads to defective early neutrophil recruitment and fungal clearance. We confirm these findings in zebrafish, showing an evolutionarily conserved role for calcineurin signalling in neutrophil recruitment during inflammation. We find that calcineurin–NFAT activation is phagocytosis dependent and collaborates with NF-κB for TNF-α production. For yeast zymosan particles, activation of macrophage calcineurin–NFAT occurs via the phagocytic Dectin-1–spleen tyrosine kinase pathway, but for A. fumigatus, activation occurs via a phagosomal TLR9-dependent and Bruton's tyrosine kinase-dependent signalling pathway that is independent of MyD88. We confirm the collaboration between NFAT and NF-κB for TNF-α production in primary alveolar macrophages. These observations identify inhibition of a newly discovered macrophage TLR9–BTK–calcineurin–NFAT signalling pathway as a key immune defect that leads to organ transplant-related invasive aspergillosis. PMID:25637383

  17. Physical interactions between Ets and NF-kappaB/NFAT proteins play an important role in their cooperative activation of the human immunodeficiency virus enhancer in T cells.

    PubMed Central

    Bassuk, A G; Anandappa, R T; Leiden, J M

    1997-01-01

    The transcriptional regulatory elements of many inducible T-cell genes contain adjacent or overlapping binding sites for the Ets and NF-kappaB/NFAT families of transcription factors. Similar arrays of functionally important NF-kappaB/NFAT and Ets binding sites are present in the transcriptional enhancers of human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2), suggesting that this pattern of nuclear protein binding sites reflects an evolutionarily conserved mechanism for regulating inducible T-cell gene expression that has been co-opted during HIV evolution. Despite these findings, the molecular mechanisms by which Ets and NF-kappaB/NFAT proteins cooperatively regulate inducible T-cell gene expression remained unknown. In the studies described in this report, we demonstrated a physical interaction between multiple Ets and NF-kappaB/NFAT proteins both in vitro and in activated normal human T cells. This interaction is mediated by the Ets domain of Ets proteins and the C-terminal region of the Rel homology domains of NF-kappaB/NFAT proteins. In addition, the Ets-NF-kappaB/NFAT interaction requires the presence of DNA binding sites for both proteins, as it is abolished by the DNA intercalating agents propidium iodide and ethidium bromide and enhanced by the presence of synthetic oligonucleotides containing binding sites for Ets and NF-kappaB proteins. A dominant-negative mutant of NF-kappaB p50 that binds DNA but fails to interact with Ets proteins inhibits the synergistic activation of the HIV-1 and HIV-2 enhancers by NF-kappaB (p50 + p65) and Ets-1, suggesting that physical interaction between Ets and NF-kappaB proteins is required for the transcriptional activity of the HIV-1 and HIV-2 enhancers. Taken together, these findings suggest that evolutionarily conserved physical interactions between Ets and NF-kappaB/NFAT proteins are important in regulating the inducible expression of T-cell genes and viruses. These interactions represent a potential target

  18. Osmotic induction of placental growth factor in retinal pigment epithelial cells in vitro: contribution of NFAT5 activity.

    PubMed

    Hollborn, Margrit; Reichmuth, Konrad; Prager, Philipp; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2016-08-01

    One risk factor of neovascular age-related macular degeneration is systemic hypertension; hypertension is mainly caused by extracellular hyperosmolarity after consumption of dietary salt. In retinal pigment epithelial (RPE) cells, high extracellular osmolarity induces vascular endothelial growth factor (VEGF)-A (Hollborn et al. in Mol Vis 21:360-377, 2015). The aim of the present study was to determine whether extracellular hyperosmolarity and chemical hypoxia trigger the expression of further VEGF family members including placental growth factor (PlGF) in human RPE cells. Hyperosmotic media were made up by addition of 100 mM NaCl or sucrose. Chemical hypoxia was induced by CoCl2. Gene expression was quantified by real-time RT-PCR, and secretion of PlGF-2 was investigated with ELISA. Nuclear factor of activated T cell 5 (NFAT5) was depleted using siRNA. Extracellular hyperosmolarity triggered expression of VEGF-A, VEGF-D, and PlGF genes, and secretion of PlGF-2. Hypoosmolarity decreased PlGF gene expression. Hypoxia induced expression of VEGF-A, VEGF-B, VEGF-D, and PlGF genes. Extracellular hyperosmolarity and hypoxia produced additive PlGF gene expression. Both hyperosmolarity and hypoxia induced expression of KDR and FLT-4 receptor genes, while hyperosmolarity caused neuropilin-2 and hypoxia neuropilin-1 gene expression. The hyperosmotic, but not the hypoxic, PlGF gene expression was in part mediated by NFAT5. The expression of PlGF in RPE cells depends on the extracellular osmolarity. The data suggest that high consumption of dietary salt may exacerbate the angiogenic response of RPE cells in the hypoxic retina via transcriptional activation of various VEGF family member genes. PMID:27230578

  19. Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import.

    PubMed Central

    Luo, C; Shaw, K T; Raghavan, A; Aramburu, J; Garcia-Cozar, F; Perrino, B A; Hogan, P G; Rao, A

    1996-01-01

    The nuclear import of the nuclear factor of activated T cells (NFAT)-family transcription factors is initiated by the protein phosphatase calcineurin. Here we identify a regulatory region of NFAT1, N terminal to the DNA-binding domain, that controls nuclear import of NFAT1. The regulatory region of NFAT1 binds directly to calcineurin, is a substrate for calcineurin in vitro, and shows regulated subcellular localization identical to that of full-length NFAT1. The corresponding region of NFATc likewise binds calcineurin, suggesting that the efficient activation of NFAT1 and NFATc by calcineurin reflects a specific targeting of the phosphatase to these proteins. The presence in other NFAT-family transcription factors of several sequence motifs from the regulatory region of NFAT1, including its probable nuclear localization sequence, indicates that a conserved protein domain may control nuclear import of all NFAT proteins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8799126

  20. Application of intact cell-based NFAT-β-lactamase reporter assay for Pasteurella multocida toxin-mediated activation of calcium signaling pathway

    PubMed Central

    Luo, Shuhong; Ho, Mengfei; Wilson, Brenda A.

    2009-01-01

    Pasteurella multocida toxin (PMT) stimulates and subsequently uncouples phospholipase C β1 (PLCβ1) signal transduction through its selective action on the alpha subunit of the Gq protein. Here, we describe the application of an NFAT-β-lactamase reporter assay as a functional readout for PMT-induced activation of the Gq-protein-coupled PLCβ1-IP3-Ca2+ signaling pathway. Use of the NFAT-β-lactamase reporter assay with a cell-permeable fluorogenic substrate provides high sensitivity due to the absence of endogenous β-lactamase activity in mammalian cells. This assay system was optimized for cell density, dose and time exposure of PMT stimulation. It is suited for quantitative characterization of PMT activity in mammalian cells and for use as a high-throughput screening method for PMT deletion and point mutants suitable for vaccine development. This method has application for diagnostic screening of clinical isolates of toxinogenic P. multocida. PMID:18190943

  1. The Amiloride Derivative Phenamil Attenuates Pulmonary Vascular Remodeling by Activating NFAT and the Bone Morphogenetic Protein Signaling Pathway ▿

    PubMed Central

    Chan, Mun Chun; Weisman, Alexandra S.; Kang, Hara; Nguyen, Peter H.; Hickman, Tyler; Mecker, Samantha V.; Hill, Nicholas S.; Lagna, Giorgio; Hata, Akiko

    2011-01-01

    Pulmonary artery hypertension (PAH) is characterized by elevated pulmonary artery resistance and increased medial thickness due to deregulation of vascular remodeling. Inactivating mutations of the BMPRII gene, which encodes a receptor for bone morphogenetic proteins (BMPs), are identified in ∼60% of familial PAH (FPAH) and ∼30% of idiopathic PAH (IPAH) patients. It has been hypothesized that constitutive reduction in BMP signal by BMPRII mutations may cause abnormal vascular remodeling by promoting dedifferentiation of vascular smooth muscle cells (vSMCs). Here, we demonstrate that infusion of the amiloride analog phenamil during chronic-hypoxia treatment in rat attenuates development of PAH and vascular remodeling. Phenamil induces Tribbles homolog 3 (Trb3), a positive modulator of the BMP pathway that acts by stabilizing the Smad family signal transducers. Through induction of Trb3, phenamil promotes the differentiated, contractile vSMC phenotype characterized by elevated expression of contractile genes and reduced cell growth and migration. Phenamil activates the Trb3 gene transcription via activation of the calcium-calcineurin-nuclear factor of activated T cell (NFAT) pathway. These results indicate that constitutive elevation of Trb3 by phenamil is a potential therapy for IPAH and FPAH. PMID:21135135

  2. NFAT1 Directly Regulates IL8 and MMP3 to Promote Melanoma Tumor Growth and Metastasis.

    PubMed

    Shoshan, Einav; Braeuer, Russell R; Kamiya, Takafumi; Mobley, Aaron K; Huang, Li; Vasquez, Mayra E; Velazquez-Torres, Guermarie; Chakravarti, Nitin; Ivan, Cristina; Prieto, Victor; Villares, Gabriel J; Bar-Eli, Menashe

    2016-06-01

    Nuclear factor of activated T cell (NFAT1, NFATC2) is a transcription factor that binds and positively regulates IL2 expression during T-cell activation. NFAT1 has important roles in both innate and adaptive immune responses, but its involvement in cancer is not completely understood. We previously demonstrated that NFAT1 contributes to melanoma growth and metastasis by regulating the autotaxin gene (Enpp2). Here, we report a strong correlation between NFAT1 expression and metastatic potential in melanoma cell lines and tumor specimens. To elucidate the mechanisms underlying NFAT1 overexpression during melanoma progression, we conducted a microarray on a highly metastatic melanoma cell line in which NFAT1 expression was stably silenced. We identified and validated two downstream targets of NFAT1, IL8, and MMP3. Accordingly, NFAT1 depletion in metastatic melanoma cell lines was associated with reduced IL8 and MMP3 expression, whereas NFAT1 overexpression in a weakly metastatic cell line induced expression of these targets. Restoration of NFAT1 expression recovered IL8 and MMP3 expression levels back to baseline, indicating that both are direct targets of NFAT1. Moreover, in vivo studies demonstrated that NFAT1 and MMP3 promoted melanoma tumor growth and lung metastasis. Collectively, our findings assign a new role for NFAT1 in melanoma progression, underscoring the multifaceted functions that immunomodulatory factors may acquire in an unpredictable tumor microenvironment. Cancer Res; 76(11); 3145-55. ©2016 AACR. PMID:27013197

  3. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    SciTech Connect

    Holowachuk, Eugene W. . E-mail: geneh@telenet.net

    2007-09-21

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3{beta} inhibitors (Li{sup +} or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNF{alpha}-induced rates of lipolysis by 50%. Adipocytes preincubated with Li{sup +} or TZDZ-8 prior to CsA and/or TNF{alpha}, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPAR{gamma}, ACS and Adn), compared with control or TNF{alpha}-treatment, whereas Li{sup +} pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPAR{gamma}, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li{sup +} treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis.

  4. The Profile of Immune Modulation by Cannabidiol (CBD) Involves Deregulation of Nuclear Factor of Activated T Cells (NFAT)

    PubMed Central

    Kaplan, Barbara L. F.; Springs, Alison E. B.; Kaminski, Norbert E.

    2009-01-01

    Cannabidiol (CBD) is a cannabinoid compound derived from Cannabis Sativa that does not possess high affinity for either the CB1 or CB2 cannabinoid receptors. Similar to other cannabinoids, we demonstrated previously that CBD suppressed interleukin-2 (IL-2) production from phorbol ester plus calcium ionophore (PMA/Io)-activated murine splenocytes. Thus, the focus of the present studies was to further characterize the effect of CBD on immune function. CBD also suppressed IL-2 and interferon-γ (IFN-γ) mRNA expression, proliferation, and cell surface expression of the IL-2 receptor alpha chain, CD25. While all of these observations support the fact that CBD suppresses T cell function, we now demonstrate that CBD suppressed IL-2 and IFN-γ production in purified splenic T cells. CBD also suppressed activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) transcriptional activity, which are critical regulators of IL-2 and IFN-γ. Furthermore, CBD suppressed the T cell-dependent anti-sheep red blood cell immunoglobulin M antibody forming cell (anti-sRBC IgM AFC) response. Finally, using splenocytes derived from CB1-/-/CB2-/- mice, it was determined that suppression of IL-2 and IFN-γ and suppression of the in vitro anti-sRBC IgM AFC response occurred independently of both CB1 and CB2. However, the magnitude of the immune response to sRBC was significantly depressed in CB1-/-/CB2-/- mice. Taken together, these data suggest that CBD suppresses T cell function and that CB1 and/or CB2 play a critical role in the magnitude of the in vitro anti-sRBC IgM AFC response. PMID:18656454

  5. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation.

    PubMed

    Aix, Esther; Gutiérrez-Gutiérrez, Óscar; Sánchez-Ferrer, Carlota; Aguado, Tania; Flores, Ignacio

    2016-06-01

    The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc(-/-)) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc(-/-) newborns but rescued in G3 Terc(-/-)/p21(-/-) mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts. PMID:27241915

  6. TIM-3 Suppresses Anti-CD3/CD28-Induced TCR Activation and IL-2 Expression through the NFAT Signaling Pathway

    PubMed Central

    Tomkowicz, Brian; Walsh, Eileen; Cotty, Adam; Verona, Raluca; Sabins, Nina; Kaplan, Fred; Santulli-Marotto, Sandy; Chin, Chen-Ni; Mooney, Jill; Lingham, Russell B.; Naso, Michael; McCabe, Timothy

    2015-01-01

    TIM-3 (T cell immunoglobulin and mucin-domain containing protein 3) is a member of the TIM family of proteins that is preferentially expressed on Th1 polarized CD4+ and CD8+ T cells. Recent studies indicate that TIM-3 serves as a negative regulator of T cell function (i.e. T cell dependent immune responses, proliferation, tolerance, and exhaustion). Despite having no recognizable inhibitory signaling motifs, the intracellular tail of TIM-3 is apparently indispensable for function. Specifically, the conserved residues Y265/Y272 and surrounding amino acids appear to be critical for function. Mechanistically, several studies suggest that TIM-3 can associate with interleukin inducible T cell kinase (ITK), the Src kinases Fyn and Lck, and the p85 phosphatidylinositol 3-kinase (PI3K) adaptor protein to positively or negatively regulate IL-2 production via NF-κB/NFAT signaling pathways. To begin to address this discrepancy, we examined the effect of TIM-3 in two model systems. First, we generated several Jurkat T cell lines stably expressing human TIM-3 or murine CD28-ECD/human TIM-3 intracellular tail chimeras and examined the effects that TIM-3 exerts on T cell Receptor (TCR)-mediated activation, cytokine secretion, promoter activity, and protein kinase association. In this model, our results demonstrate that TIM-3 inhibits several TCR-mediated phenotypes: i) NF-kB/NFAT activation, ii) CD69 expression, and iii) suppression of IL-2 secretion. To confirm our Jurkat cell observations we developed a primary human CD8+ cell system that expresses endogenous levels of TIM-3. Upon TCR ligation, we observed the loss of NFAT reporter activity and IL-2 secretion, and identified the association of Src kinase Lck, and PLC-γ with TIM-3. Taken together, our results support the conclusion that TIM-3 is a negative regulator of TCR-function by attenuating activation signals mediated by CD3/CD28 co-stimulation. PMID:26492563

  7. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5?

    PubMed Central

    Zhou, Xiaoming

    2016-01-01

    NFAT5 plays a critical role in maintaining the renal functions. Its dis-regulation in the kidney leads to or is associated with certain renal diseases or disorders, most notably the urinary concentration defect. Hypertonicity, which the kidney medulla is normally exposed to, activates NFAT5 through phosphorylation of a signaling molecule or NFAT5 itself. Hypotonicity inhibits NFAT5 through a similar mechanism. More than a dozen of protein and lipid kinases have been identified to contribute to tonicity-dependent regulation of NFAT5. Hypertonicity activates NFAT5 by increasing its nuclear localization and transactivating activity in the early phase and protein abundance in the late phase. The known mechanism for inhibition of NFAT5 by hypotonicity is a decrease of nuclear NFAT5. The present article reviews the effect of each kinase on NFAT5 nuclear localization, transactivation and protein abundance, and the relationship among these kinases, if known. Cyclosporine A and tacrolimus suppress immune reactions by inhibiting the phosphatase calcineurin-dependent activation of NFAT1. It is hoped that this review would stimulate the interest to seek explanations from the NFAT5 regulatory pathways for certain clinical presentations and to explore novel therapeutic approaches based on the pathways. On the basic science front, this review raises two interesting questions. The first one is how these kinases can specifically signal to NFAT5 in the context of hypertonicity or hypotonicity, because they also regulate other cellular activities and even opposite activities in some cases. The second one is why these many kinases, some of which might have redundant functions, are needed to regulate NFAT5 activity. This review reiterates the concept of signaling through cooperation. Cells need these kinases working in a coordinated way to provide the signaling specificity that is lacking in the individual one. Redundancy in regulation of NFAT5 is a critical strategy for cells to

  8. NGF Upregulates the Plasminogen Activation Inhibitor-1 in Neurons via the Calcineurin/NFAT Pathway and the Down Syndrome-Related Proteins DYRK1A and RCAN1 Attenuate This Effect

    PubMed Central

    Stefos, Georgios C.; Soppa, Ulf; Dierssen, Mara; Becker, Walter

    2013-01-01

    Background Plasminogen activator inhibitor 1 (PAI-1) is a key regulator of the plasminogen activation system. Although several lines of evidence support a significant role of PAI-1 in the brain, the regulation of its expression in neurons is poorly understood. In the present study we tested the hypothesis that NGF induces the upregulation of PAI-1 via the calcineurin/nuclear factor of activated T cells (NFAT) pathway and analysed whether the overexpression of the Down syndrome-related proteins DYRK1A and RCAN1 modulated the effect of NGF on PAI-1 expression. Results NGF upregulated PAI-1 mRNA levels in primary mouse hippocampal neurons cultured for 3 days in vitro and in the rat pheochromocytoma cell line PC12. Reporter gene assays revealed that NGF activated the calcineurin/NFAT pathway in PC12 cells. Induction of PAI-1 by NGF was sensitive to the calcineurin inhibitor FK506 and the specific inhibition of NFAT activation by the cell permeable VIVIT peptide. Activation of calcineurin/NFAT signalling through other stimuli resulted in a much weaker induction of PAI-1 expression, suggesting that other NGF-induced pathways are involved in PAI-1 upregulation. Overexpression of either DYRK1A or RCAN1 negatively regulated NFAT-dependent transcriptional activity and reduced the upregulation of PAI-1 levels by NGF. Conclusion The present results show that the calcineurin/NFAT pathway mediates the upregulation of PAI-1 by NGF. The negative effect of DYRK1A and RCAN1 overexpression on NGF signal transduction in neural cells may contribute to the altered neurodevelopment and brain function in Down syndrome. PMID:23825664

  9. TRPC6 channel activation promotes neonatal glomerular mesangial cell apoptosis via calcineurin/NFAT and FasL/Fas signaling pathways

    PubMed Central

    Soni, Hitesh; Adebiyi, Adebowale

    2016-01-01

    Glomerular mesangial cell (GMC) proliferation and death are involved in the pathogenesis of glomerular disorders. The mechanisms that control GMC survival are poorly understood, but may include signal transduction pathways that are modulated by changes in intracellular Ca2+ ([Ca2+]i) concentration. In this study, we investigated whether activation of the canonical transient receptor potential (TRPC) 6 channels and successive [Ca2+]i elevation alter neonatal GMC survival. Hyperforin (HF)-induced TRPC6 channel activation increased [Ca2+]i concentration, inhibited proliferation, and triggered apoptotic cell death in primary neonatal pig GMCs. HF-induced neonatal GMC apoptosis was not associated with oxidative stress. However, HF-induced TRPC6 channel activation stimulated nuclear translocation of the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). HF also increased cell death surface receptor Fas ligand (FasL) level and caspase-8 activity in the cells; effects mitigated by [Ca2+]i chelator BAPTA, calcineurin/NFAT inhibitor VIVIT, and TRPC6 channel knockdown. Accordingly, HF-induced neonatal GMC apoptosis was attenuated by BAPTA, VIVIT, Fas blocking antibody, and a caspase-3/7 inhibitor. These findings suggest that TRPC6 channel-dependent [Ca2+]i elevation and the ensuing induction of the calcineurin/NFAT, FasL/Fas, and caspase signaling cascades promote neonatal pig GMC apoptosis. PMID:27383564

  10. Moesin is activated in cardiomyocytes in experimental autoimmune myocarditis and mediates cytoskeletal reorganization with protrusion formation.

    PubMed

    Miyawaki, Akimitsu; Mitsuhara, Yusuke; Orimoto, Aya; Nakayasu, Yusuke; Tsunoda, Shin-Ichi; Obana, Masanori; Maeda, Makiko; Nakayama, Hiroyuki; Yoshioka, Yasuo; Tsutsumi, Yasuo; Fujio, Yasushi

    2016-08-01

    Acute myocarditis is a self-limiting disease. Most patients with myocarditis recover without cardiac dysfunction in spite of limited capacity of myocardial regeneration. Therefore, to address intrinsic reparative machinery of inflamed hearts, we investigated the cellular dynamics of cardiomyocytes in response to inflammation using experimental autoimmune myocarditis (EAM) model. EAM was induced by immunization of BALB/c mice with α-myosin heavy chain peptides twice. The inflammatory reaction was evoked with myocardial damage with the peak at 3 wk after the first immunization (EAM3w). Morphological and functional restoration started from EAM3w, when active protrusion formation, a critical process of myocardial healing, was observed in cardiomyocytes. Shotgun proteomics revealed that cytoskeletal proteins were preferentially increased in cardiomyocytes at EAM3w, compared with preimmunized (EAM0w) hearts, and that moesin was the most remarkably upregulated among them. Immunoblot analyses demonstrated that the expression of both total and phosphorylated moesin was upregulated in isolated cardiomyocytes from EAM3w hearts. Immunofluorescence staining showed that moesin was localized at cardiomyocyte protrusions at EAM3w. Adenoviral vectors expressing wild-type, constitutively active and inactive form of moesin (wtMoesin, caMoesin, and iaMoesin, respectively) were transfected in neonatal rat cardiomyocytes. The overexpression of wtMoesin and caMoesin resulted in protrusion formation, while not iaMoesin. Finally, we found that cardiomyocyte protrusions were accompanied by cell-cell contact formation. The expression of moesin was upregulated in cardiomyocytes under inflammation, inducing protrusion formation in a phosphorylation-dependent fashion. Moesin signal could be a novel therapeutic target that stimulates myocardial repair by promoting contact formation of cardiomyocytes. PMID:27342875

  11. Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca(++)/NFAT.

    PubMed

    Bochkov, Valery N; Mechtcheriakova, Diana; Lucerna, Marcus; Huber, Joakim; Malli, Roland; Graier, Wolfgang F; Hofer, Erhard; Binder, Bernd R; Leitinger, Norbert

    2002-01-01

    Activation of endothelial cells by lipid oxidation products is a key event in the initiation and progression of the atherosclerotic lesion. Minimally modified low-density lipoprotein (MM-LDL) induces the expression of certain inflammatory molecules such as tissue factor (TF) in endothelial cells. This study examined intracellular signaling pathways leading to TF up-regulation by oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), a biologically active component of MM-LDL. OxPAPC induced TF activity and protein expression in human umbilical vein endothelial cells (HUVECs). However, OxPAPC neither induced phosphorylation or degradation of I kappa B alpha nor DNA binding of nuclear factor-kappa B (NF-kappa B). Furthermore, OxPAPC-induced TF expression was not inhibited by overexpression of I kappa B alpha. These results strongly indicate that OxPAPC-induced TF expression is independent of the classical NF-kappa B pathway. However, OxPAPC stimulated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and expression of early growth response factor 1 (EGR-1). Inhibitors of mitogen-activated kinase/ERK (MEK) or protein kinase C (PKC) blocked elevation of both EGR-1 and TF. Furthermore, overexpression of NAB2, a corepressor of EGR-1, inhibited effects of OxPAPC. In addition, OxPAPC induced rapid and reversible elevation of free cytosolic Ca(++) levels and nuclear factor of activated T cells (NFAT)/DNA binding. Induction of TF expression by OxPAPC was partially inhibited by cyclosporin A, known to block calcineurin, a Ca(++)-dependent phosphatase upstream of NFAT. Treatment of OxPAPC with phospholipase A(2) destroyed its biologic activity and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine was identified as one biologically active component of OxPAPC that induces TF expression. Together, the results demonstrate that OxPAPC induces TF expression in HUVECs through activation of PKC/ERK/EGR-1 and Ca(++)/calcineurin/NFAT pathways

  12. NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation

    SciTech Connect

    Adachi, Atsuo; Takahashi, Tomosaburo; Ogata, Takehiro; Imoto-Tsubakimoto, Hiroko; Nakanishi, Naohiko; Ueyama, Tomomi; Matsubara, Hiroaki

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer NFAT5 protein expression is downregulated during cardiomyogenesis. Black-Right-Pointing-Pointer Inhibition of NFAT5 function suppresses canonical Wnt signaling. Black-Right-Pointing-Pointer Inhibition of NFAT5 function attenuates mesodermal induction. Black-Right-Pointing-Pointer NFAT5 function is required for cardiomyogenesis. -- Abstract: While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expression was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2 Prime Z, 3 Prime E]-6-bromoindirubin-3 Prime -oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.

  13. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player.

    PubMed

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca(2+)-regulated members (NFAT1-NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis. PMID:27100893

  14. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player

    PubMed Central

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis. PMID:27100893

  15. Inhibition of antigen receptor-dependent Ca(2+) signals and NF-AT activation by P2X7 receptors in human B lymphocytes.

    PubMed

    Pippel, Anja; Beßler, Björn; Klapperstück, Manuela; Markwardt, Fritz

    2015-04-01

    One of the first intracellular signals after antigen binding by the antigen receptor of B lymphocytes is the increased intracellular Ca(2+) concentration ([Ca(2+)]i), which is followed by several intracellular signaling events like the nuclear translocation of the transcription factor NF-AT controlling the fate of B lymphocytes after their activation. Extracellular ATP, which is released from cells under several pathological conditions, is considered a danger-associated signal serving as an immunomodulator. We investigated the interaction of antigen receptor (BCR) and P2X7 receptor (P2X7R) activation on [Ca(2+)]i signaling and on nuclear translocation of the transcription factor NF-AT in human B lymphocytes. Although the P2X7R is an ATP-gated Ca(2+)-permeable ion channel, P2X7R activation inhibits the BCR-mediated [Ca(2+)]i responses. This effect is mimicked by cell membrane depolarization induced by an increase in the extracellular K(+) concentration or by application of the Na(+) ionophore gramicidin, but is abolished by stabilization of the membrane potential using the K(+) ionophore valinomycin, by extracellular Mg(2+), which is known to inhibit P2X7R-dependent effects, or by replacing Na(+) by the less P2X7R-permeable Tris(+) ion. Furthermore, P2X7R activation by ATP inhibits the BCR-dependent translocation of the transcription factor NF-ATc1 to the nucleus. We therefore conclude that extracellular ATP via the P2X7R mediates inhibitory effects on B cell activation. This may be of relevance for understanding of the activation of the BCR under pathological conditions and for the development of therapeutic strategies targeting human B lymphocytes or P2X7 receptors. PMID:25678443

  16. Calcineurin-NFAT Signaling Controls Somatic Cell Reprogramming in a Stage-Dependent Manner.

    PubMed

    Sun, Ming; Liao, Bing; Tao, Yu; Chen, Hao; Xiao, Feng; Gu, Junjie; Gao, Shaorong; Jin, Ying

    2016-05-01

    Calcineurin-NFAT signaling is critical for early lineage specification of mouse embryonic stem cells and early embryos. However, its roles in somatic cell reprogramming remain unknown. Here, we report that calcineurin-NFAT signaling has a dynamic activity and plays diverse roles at different stages of reprogramming. At the early stage, calcineurin-NFAT signaling is transiently activated and its activation is required for successful reprogramming. However, at the late stage of reprogramming, activation of calcineurin-NFAT signaling becomes a barrier for reprogramming and its inactivation is critical for successful induction of pluripotency. Mechanistically, calcineurin-NFAT signaling contributes to the reprogramming through regulating multiple early events during reprogramming, including mesenchymal to epithelial transition (MET), cell adhesion and emergence of SSEA1(+) intermediate cells. Collectively, this study reveals for the first time the important roles of calcineurin-NFAT signaling during somatic cell reprogramming and provides new insights into the molecular regulation of reprogramming. PMID:26448199

  17. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  18. Inhibiting NFAT1 for breast cancer therapy: New insights into the mechanism of action of MDM2 inhibitor JapA

    PubMed Central

    Voruganti, Sukesh; Wang, Hui; Zhang, Wei-Dong; Zhang, Ruiwen

    2015-01-01

    Transcription factor NFAT1 has been recently identified as a new regulator of the MDM2 oncogene. Targeting the NFAT1-MDM2 pathway represents a novel approach to cancer therapy. We have recently identified a natural product MDM2 inhibitor, termed JapA. As a specific and potent MDM2 inhibitor, JapA inhibits MDM2 at transcriptional and post-translational levels. However, the molecular mechanism remains to be fully elucidated for its inhibitory effects on MDM2 transcription. Herein, we reported that JapA inhibited NFAT1 and NFAT1-mediated MDM2 transcription, which contributed to the anticancer activity of JapA. Its effects on the expression and activity of NFAT1 were examined in various breast cancer cell lines in vitro and in MCF-7 and MDA-MB-231 xenograft tumors in vivo. The specificity of JapA in targeting NFAT1 and NFAT1-MDM2 pathway and the importance of NFAT1 inhibition in JapA's anticancer activity were demonstrated using NFAT1 overexpression and knockdown cell lines and the pharmacological activators and inhibitors of NFAT1 signaling. Our results indicated that JapA inhibited NFAT1 signaling in breast cancer cells in vitro and in vivo, which plays a pivotal role in its anticancer activity. JapA inhibited the nuclear localization of NFAT1, disrupted the NFAT1-MDM2 P2 promoter complex, and induced NFAT1 proteasomal degradation, resulting in the repression of MDM2 transcription. In conclusion, JapA is a novel NFAT1 inhibitor and the NFAT1 inhibition is responsible for the JapA-induced repression of MDM2 transcription, contributing to its anticancer activity. The results may pave an avenue for validating the NFAT1-MDM2 pathway as a novel molecular target for cancer therapy. PMID:26461225

  19. NFAT regulates calcium-sensing receptor-mediated TNF production

    SciTech Connect

    abdullah, huda ismail; Pedraza, Paulina L.; Hao, Shoujin; Rodland, Karin D.; McGiff, John C.; Ferreri, Nicholas R.

    2006-05-01

    Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca2+ (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca2+ were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.

  20. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    SciTech Connect

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  1. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    PubMed

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. PMID:26577527

  2. Activity-dependent Transcriptional Regulation of M-type (Kv7) K+ Channels by AKAP79/150-mediated NFAT Actions

    PubMed Central

    Zhang, Jie; Shapiro, Mark S.

    2013-01-01

    Summary M-type K+ channels, encoded by the KCNQ2-5 (Kv7) gene family, play key roles in regulation of neuronal excitability; however, less is known about the mechanisms controlling their transcriptional expression. Here, we discovered a novel mechanism regulating KCNQ2/3 transcriptional expression by neuronal activity in rodent neurons, involving activation of calcineurin and Nuclear Factor of Activated T-cells (NFAT) transcription factors, orchestrated by A-kinase-anchoring protein (AKAP)79/150. The signal requires Ca2+ influx through L-type Ca2+ channels and both local and global Ca2+ elevations. We postulate increased M-channel expression to act as a negative-feedback to suppress hyper-excitability of neurons, demonstrated by profoundly up-regulated KCNQ2/3 transcription in hippocampi from wild-type mice after drug-induced seizures, an effect nearly eliminated in AKAP150−/− mice. Thus, we suggest a distinct role of AKAP79/150 and the complex it organizes in activity-dependent M-channel transcription, which may potentially serve throughout the nervous system to limit over-excitability associated with disease states such as epilepsy. PMID:23259949

  3. Proteins Secreted By Embryonic Stem Cells Activate Cardiomyocytes Through Ligand Binding Pathways

    PubMed Central

    LaFramboise, W. A.; Petrosko, P.; Krill-Burger, J. M.; Morris, D. R.; McCoy, A. R.; Scalise, D.; Malehorn, D. E.; Guthrie, R. D.; Becich, M. J.; Dhir, R.

    2010-01-01

    Human embryonic stem cells (hESC) underly embryogenesis but paracrine signals associated with the process are unknown. This study was designed to 1) profile native proteins secreted by undifferentiated hESC and 2) determine their biological effects on primary neonatal cardiomyocytes. We utilized multi-analyte, immunochemical assays to characterize media conditioned by undifferentiated hESC versus unconditioned media. Expression profiling was performed on cardiomyocytes subjected to these different media conditions and altered transcripts were mapped to critical pathways. Thirty-two of 109 proteins were significantly elevated in conditioned media ranging in concentration from thrombospondin (57.2 ± 5.0 ng/ml) to nerve growth factor (7.4 ± 1.2 pg/ml) and comprising chemokines, cytokines, growth factors, and proteins involved in cell adhesion and extracellular matrix remodeling. Conditioned media induced karyokinesis, cytokinesis and proliferation in mono- and binucleate cardiomyocytes. Pathway analysis revealed comprehensive activation of the ROCK 1 and 2 G-protein coupled receptor (GPCR) pathway associated with cytokinesis, and the RAS/RAF/MEK/ERK receptor tyrosine kinase (RTK) and JAK/STAT-cytokine pathway involved in cell cycle progression. These results provide a partial database of proteins secreted by pluripotent hESC that potentiate cell division in cardiomyocytes via a paracrine mechanism suggesting a potential role for these stem cell factors in cardiogenesis and cardiac repair. PMID:20045494

  4. Balanced interactions of calcineurin with AKAP79 regulate Ca2+-calcineurin-NFAT signaling

    SciTech Connect

    Li, Huiming; Pink, Matthew D; Murphy, Jonathan G; Stein, Alexander; Dell,; Acqua, Mark L; Hogan, Patrick G

    2012-04-30

    In hippocampal neurons, the scaffold protein AKAP79 recruits the phosphatase calcineurin to L-type Ca2+ channels and couples Ca2+ influx to activation of calcineurin and of its substrate, the transcription factor NFAT. Here we show that an IAIIIT anchoring site in human AKAP79 binds the same surface of calcineurin as the PxIxIT recognition peptide of NFAT, albeit more strongly. A modest decrease in calcineurin-AKAP affinity due to an altered anchoring sequence is compatible with NFAT activation, whereas a further decrease impairs activation. Counterintuitively, increasing calcineurin-AKAP affinity increases recruitment of calcineurin to the scaffold but impairs NFAT activation; this is probably due to both slower release of active calcineurin from the scaffold and sequestration of active calcineurin by 'decoy' AKAP sites. We propose that calcineurin-AKAP79 scaffolding promotes NFAT signaling by balancing strong recruitment of calcineurin with its efficient release to communicate with NFAT.

  5. Expression, fermentation and purification of a predicted intrinsically disordered region of the transcription factor, NFAT5.

    PubMed

    DuMond, Jenna F; He, Yi; Burg, Maurice B; Ferraris, Joan D

    2015-11-01

    Hypertonicity stimulates Nuclear Factor of Activated T-cells 5 (NFAT5) nuclear localization and transactivating activity. Many transcription factors are known to contain intrinsically disordered regions (IDRs) which become more structured with local environmental changes such as osmolality, temperature and tonicity. The transactivating domain of NFAT5 is predicted to be intrinsically disordered under normal tonicity, and under high NaCl, the activity of this domain is increased. To study the binding of co-regulatory proteins at IDRs a cDNA construct expressing the NFAT5 TAD was created and transformed into Escherichia coli cells. Transformed E. coli cells were mass produced by fermentation and extracted by cell lysis to release the NFAT5 TAD. The NFAT5 TAD was subsequently purified using a His-tag column, cation exchange chromatography as well as hydrophobic interaction chromatography and then characterized by mass spectrometry (MS). PMID:26256058

  6. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    SciTech Connect

    Feng, Shan-Li; Sun, Ming-Rui; Li, Ting-Ting; Yin, Xin; Xu, Chang-Qing; Sun, Yi-Hua

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  7. Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells.

    PubMed Central

    Shaw, K T; Ho, A M; Raghavan, A; Kim, J; Jain, J; Park, J; Sharma, S; Rao, A; Hogan, P G

    1995-01-01

    The immunosuppressive drugs cyclosporin A and FK506 interfere with the inducible transcription of cytokine genes in T cells and in other immune cells, in part by preventing the activation of NF-AT (nuclear factor of activated T cells). We show that transcription factor NFAT1 in T cells is rapidly dephosphorylated on stimulation, that dephosphorylation occurs before translocation of NFAT1 into the cell nucleus, and that dephosphorylation increases the affinity of NFAT1 for its specific sites in DNA. Cyclosporin A prevents the dephosphorylation and the nuclear translocation of NFAT1 in T cells, B cells, macrophages, and mast cells, delineating at least one mechanism that contributes to the profound immunosuppressive effects of this compound. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7479966

  8. Hypertonic-induced lamin A/C synthesis and distribution to nucleoplasmic speckles is mediated by TonEBP/NFAT5 transcriptional activator

    SciTech Connect

    Favale, Nicolas O.; Sterin Speziale, Norma B.; Fernandez Tome, Maria C.

    2007-12-21

    Lamin A/C is the most studied nucleoskeletal constituent. Lamin A/C expression indicates cell differentiation and is also a structural component of nuclear speckles, which are involved in gene expression regulation. Hypertonicity has been reported to induce renal epithelial cell differentiation and expression of TonEBP (NFAT5), a transcriptional activator of hypertonicity-induced gene transcription. In this paper, we investigate the effect of hypertonicity on lamin A/C expression in MDCK cells and the involvement of TonEBP. Hypertonicity increased lamin A/C expression and its distribution to nucleoplasm with speckled pattern. Microscopy showed codistribution of TonEBP and lamin A/C in nucleoplasmic speckles, and immunoprecipitation demonstrated their interaction. TonEBP silencing caused lamin A/C redistribution from nucleoplasmic speckles to the nuclear rim, followed by lamin decrease, thus showing that hypertonicity induces lamin A/C speckles through a TonEBP-dependent mechanism. We suggest that lamin A/C speckles could serve TonEBP as scaffold thus favoring its role in hypertonicity.

  9. Effect of Citrocard on functional activity of cardiomyocyte mitochondria during chronic alcohol intoxication.

    PubMed

    Perfilova, V N; Ostrovskii, O V; Verovskii, V E; Popova, T A; Lebedeva, S A; Dib, H

    2007-03-01

    Chronic administration of 50% ethanol in a dose of 8 g/kg produces a toxic effect on functional activity of cardiomyocyte mitochondria, which manifested in decreased rates of respiration and oxidative phosphorylation. Structural GABA analogue Citrocard (phenibut citrate) and reference preparation piracetam in doses of 50 and 200 mg/kg, respectively, prevented the damaging effect of alcohol, which was seen from increased indexes of oxidative phosphorylation in treated animals compared to the control group. PMID:18225758

  10. SIRT1 contributes to aldose reductase expression through modulating NFAT5 under osmotic stress: In vitro and in silico insights.

    PubMed

    Timucin, Ahmet Can; Bodur, Cagri; Basaga, Huveyda

    2015-11-01

    So far, a myriad of molecules were characterized to modulate NFAT5 and its downstream targets. Among these NFAT5 modifiers, SIRT1 was proposed to have a promising role in NFAT5 dependent events, yet the exact underlying mechanism still remains obscure. Hence, the link between SIRT1 and NFAT5-aldose reductase (AR) axis under osmotic stress, was aimed to be delineated in this study. A unique osmotic stress model was generated and its mechanistic components were deciphered in U937 monocytes. In this model, AR expression and nuclear NFAT5 stabilization were revealed to be positively regulated by SIRT1 through utilization of pharmacological modulators. Overexpression and co-transfection studies of NFAT5 and SIRT1 further validated the contribution of SIRT1 to AR and NFAT5. The involvement of SIRT1 activity in these events was mediated via modification of DNA binding of NFAT5 to AR ORE region. Besides, NFAT5 and SIRT1 were also shown to co-immunoprecipitate under isosmotic conditions and this interaction was disrupted by osmotic stress. Further in silico experiments were conducted to investigate if SIRT1 directly targets NFAT5. In this regard, certain lysine residues of NFAT5, when kept deacetylated, were found to contribute to its DNA binding and SIRT1 was shown to directly bind K282 of NFAT5. Based on these in vitro and in silico findings, SIRT1 was identified, for the first time, as a novel positive regulator of NFAT5 dependent AR expression under osmotic stress in U937 monocytes. PMID:26297866

  11. NFAT5 regulates transcription of the mouse telomerase reverse transcriptase gene

    SciTech Connect

    Fujiki, Tsukasa; Udono, Miyako; Kotake, Yojiro; Yamashita, Makiko; Shirahata, Sanetaka; Katakura, Yoshinori

    2010-12-10

    We aimed to clarify the transcription-regulation mechanisms of the mouse telomerase reverse transcriptase gene (mTERT). First, we searched for the promoter region required for transcriptional activation of mTERT and identified an enhancer cis-element (named mTERT-EE) located between - 200 and - 179 bp of the mouse TERT gene (mTERT). EMSA results suggested that nuclear factor of activated T cells (NFAT) member proteins bind to mTERT-EE. We then identified NFAT5 as the factor binding to mTERT-EE and found that it activates the transcription of the mTERT core promoter. The results that siRNA directed against NFAT5 significantly reduced mTERT expression and mTERT core promoter activity and that the expressions of NFAT5 and mTERT were well correlated in various mouse tissues except liver suggest that NFAT5 dominantly and directly regulates mTERT expression. To clarify their functionality further, we investigated the effect of hypertonic stress, a known stimulus affecting the expression and transcriptional activity of NFAT5, on mTERT expression. The result indicated that hypertonic stress activates mTERT transcription via the activation and recruitment of NFAT5 to the mTERT promoter. These results provide useful information about the transcription-regulation mechanisms of mTERT.

  12. Estrogen-related receptor gamma regulates dopaminergic neuronal phenotype by activating GSK3β/NFAT signaling in SH-SY5Y cells.

    PubMed

    Lim, Juhee; Choi, Hueng-Sik; Choi, Hyun Jin

    2015-05-01

    The orphan nuclear receptor estrogen-related receptor gamma (ERRγ) is highly expressed in the nervous system during embryogenesis and in adult brains, but its physiological role in neuronal development remains unknown. In this study, we evaluated the relevance of ERRγ in regulating dopaminergic (DAergic) phenotype and the corresponding signaling pathway. We used retinoic acid (RA) to differentiate human neuroblastoma SH-SY5Y cells. RA induced neurite outgrowth of SH-SY5Y cells with an increase in DAergic neuron-like properties, including up-regulation of tyrosine hydroxylase, dopamine transporter, and vesicular monoamine transporter 2. ERRγ, but not ERRα, was up-regulated by RA, and participated in RA effect on SH-SY5Y cells. ERRγ over-expression enhanced mature DAergic neuronal phenotype with neurite outgrowth as with RA treatment; and RA-induced increase in DAergic phenotype was attenuated by silencing ERRγ expression. ERRγ appears to have a crucial role in morphological and functional regulation of cells that is selective for DAergic neurons. Polo-like kinase 2 was up-regulated in ERRγ-over-expressing SH-SY5Y cells, which was involved in phosphorylation of glycogen synthase kinase 3β and resulting downstream activation of nuclear factor of activated T cells. The likely involvement of ERRγ in regulating the DAergic neuronal phenotype makes this orphan nuclear receptor a novel target for understanding DAergic neuronal differentiation. We propose the relevance of estrogen-related receptor gamma (ERRγ) in regulating dopaminergic neuronal phenotype: ERRγ is up-regulated by retinoic acid in SH-SY5Y cells, and enhances dopaminergic phenotypes and induces neurite outgrowth; Polo-like kinase 2 (PLK2) and glycogen synthase kinase 3 beta/nuclear factor of activated T cells (GSK3β/NFAT) signaling are responsible for the ERRγ effect. Our findings provide the first insights into the role of ERRγ in the brain, as a novel approach toward understanding

  13. Cardiac peroxisome proliferator-activated receptor-γ expression is modulated by oxidative stress in acutely infrasound-exposed cardiomyocytes.

    PubMed

    Pei, Zhaohui; Meng, Rongsen; Zhuang, Zhiqiang; Zhao, Yiqiao; Liu, Fangpeng; Zhu, Miao-Zhang; Li, Ruiman

    2013-12-01

    The aim of the present study was to examine the effects of acute infrasound exposure on oxidative damage and investigate the underlying mechanisms in rat cardiomyocytes. Neonatal rat cardiomyocytes were cultured and exposed to infrasound for several days. In the study, the expression of CAT, GPx, SOD1, and SOD2 and their activities in rat cardiomyocytes in infrasound exposure groups were significantly decreased compared to those in the various time controls, along with significantly higher levels of O2 (-) and H2O2. Decreased cardiac cell viability was not observed in various time controls. A significant reduction in cardiac cell viability was observed in the infrasound group compared to the control, while significantly increased cardiac cell viability was observed in the infrasound exposure and rosiglitazone pretreatment group. Compared to the control, rosiglitazone significantly upregulated CAT, GPx, SOD1, and SOD2 expression and their activities in rat cardiomyocytes exposed to infrasound, while the levels of O2 (-) or H2O2 were significantly decreased. A potential link between a significant downregulation of PPAR-γ expression in rat cardiomyocytes in the infrasound group was compared to the control and infrasound-induced oxidative stress. These findings indicate that infrasound can induce oxidative damage in rat cardiomyocytes by inactivating PPAR-γ. PMID:23632742

  14. AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes.

    PubMed

    Balteau, Magali; Van Steenbergen, Anne; Timmermans, Aurélie D; Dessy, Chantal; Behets-Wydemans, Gaetane; Tajeddine, Nicolas; Castanares-Zapatero, Diego; Gilon, Patrick; Vanoverschelde, Jean-Louis; Horman, Sandrine; Hue, Louis; Bertrand, Luc; Beauloye, Christophe

    2014-10-15

    Exposure of cardiomyocytes to high glucose concentrations (HG) stimulates reactive oxygen species (ROS) production by NADPH oxidase (NOX2). NOX2 activation is triggered by enhanced glucose transport through a sodium-glucose cotransporter (SGLT) but not by a stimulation of glucose metabolism. The aim of this work was to identify potential therapeutic approaches to counteract this glucotoxicity. In cultured adult rat cardiomyocytes incubated with 21 mM glucose (HG), AMP-activated protein kinase (AMPK) activation by A769662 or phenformin nearly suppressed ROS production. Interestingly, glucagon-like peptide 1 (GLP-1), a new antidiabetic drug, concomitantly induced AMPK activation and prevented the HG-mediated ROS production (maximal effect at 100 nM). α2-AMPK, the major isoform expressed in cardiomyocytes (but not α1-AMPK), was activated in response to GLP-1. Anti-ROS properties of AMPK activators were not related to changes in glucose uptake or glycolysis. Using in situ proximity ligation assay, we demonstrated that AMPK activation prevented the HG-induced p47phox translocation to caveolae, whatever the AMPK activators used. NOX2 activation by either α-methyl-d-glucopyranoside, a glucose analog transported through SGLT, or angiotensin II was also counteracted by GLP-1. The crucial role of AMPK in limiting HG-mediated NOX2 activation was demonstrated by overexpressing a constitutively active form of α2-AMPK using adenoviral infection. This overexpression prevented NOX2 activation in response to HG, whereas GLP-1 lost its protective action in α2-AMPK-deficient mouse cardiomyocytes. Under HG, the GLP-1/AMPK pathway inhibited PKC-β2 phosphorylation, a key element mediating p47phox translocation. In conclusion, GLP-1 induces α2-AMPK activation and blocks HG-induced p47phox translocation to the plasma membrane, thereby preventing glucotoxicity. PMID:25128166

  15. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ{sup 9}-tetrahydrocannabinol in human CD4{sup +} T cells

    SciTech Connect

    Ngaotepprutaram, Thitirat; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2013-11-15

    We have previously reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4{sup +} T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ{sup 9}-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ{sup 9}-THC attenuated CD40L expression in human CD4{sup +} T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ{sup 9}-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ{sup 9}-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ{sup 9}-THC suppresses human T cell function. - Highlights: • Δ{sup 9}-THC attenuated CD40L expression in activated human CD4+ T cells. • Δ{sup 9}-THC suppressed DNA-binding activity of NFAT and NFκB. • Δ{sup 9}-THC impaired elevation of intracellular Ca2+. • Δ{sup 9}-THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β.

  16. Methylglyoxal increases cardiomyocyte ischemia-reperfusion injury via glycative inhibition of thioredoxin activity

    PubMed Central

    Wang, Xiao-Liang; Lau, Wayne B.; Yuan, Yue-Xing; Wang, Ya-Jing; Yi, Wei; Christopher, Theodore A.; Lopez, Bernard L.; Liu, Hui-Rong

    2010-01-01

    Diabetes mellitus (DM) is closely related to cardiovascular morbidity and mortality, but the specific molecular basis linking DM with increased vulnerability to cardiovascular injury remains incompletely understood. Methylglyoxal (MG), a precursor to advanced glycation end products (AGEs), is increased in diabetic patient plasma, but its role in diabetic cardiovascular complications is unclear. Thioredoxin (Trx), a cytoprotective molecule with antiapoptotic function, has been demonstrated to be vulnerable to glycative inhibition, but whether Trx is glycatively inhibited by MG, thus contributing to increased cardiac injury, has never been investigated. Cultured H9c2 cardiomyocytes were treated with MG (200 μM) for 6 days. The following were determined pre- and post-simulated ischemia-reperfusion (SI-R; 8 h of hypoxia followed by 3 h of reoxygenation): cardiomyocyte death/apoptosis, Trx expression and activity, AGE formation, Trx-apoptosis-regulating kinase-1 (Trx-ASK1) complex formation, and p38 mitogen-activated protein kinase (MAPK) phosphorylation and activity. Compared with vehicle, MG significantly increased SI-R-induced cardiomyocyte LDH release and apoptosis (P < 0.01). Prior to SI-R, Trx activity was reduced in MG-treated cells, but Trx expression was increased moderately. Moreover, Trx-ASK1 complex formation was reduced, and both p38 MAPK activity and phosphorylation were increased. To investigate the effects of MG on Trx directly, recombinant human Trx (hTrx) was incubated with MG in vitro. Compared with vehicle, MG incubation markedly increased CML formation (a glycation footprint) and inhibited Trx activity. Finally, glycation inhibitor aminoguanidine administration during MG treatment of cultured cells reduced AGE formation, increased Trx activity, restored Trx-ASK1 interaction, and reduced p38 MAPK phosphorylation and activity, caspase-3 activation, and LDH release (P < 0.01). We demonstrated for the first time that methylglyoxal sensitized cultured

  17. Inhibition of FOXP3/NFAT Interaction Enhances T Cell Function after TCR Stimulation.

    PubMed

    Lozano, Teresa; Villanueva, Lorea; Durántez, Maika; Gorraiz, Marta; Ruiz, Marta; Belsúe, Virginia; Riezu-Boj, José I; Hervás-Stubbs, Sandra; Oyarzábal, Julen; Bandukwala, Hozefa; Lourenço, Ana R; Coffer, Paul J; Sarobe, Pablo; Prieto, Jesús; Casares, Noelia; Lasarte, Juan J

    2015-10-01

    Regulatory T cell (Treg) activity is modulated by a cooperative complex between the transcription factor NFAT and FOXP3, a lineage specification factor for Tregs. FOXP3/NFAT interaction is required to repress expression of IL-2, upregulate expression of the Treg markers CTLA4 and CD25, and confer suppressor function to Tregs. However, FOXP3 is expressed transiently in conventional CD4(+) T cells upon TCR stimulation and may lead to T cell hyporesponsiveness. We found that a short synthetic peptide able to inhibit FOXP3/NFAT interaction impaired suppressor activity of conventional Tregs in vitro. Specific inhibition of FOXP3/NFAT interaction with this inhibitory peptide revealed that FOXP3 downregulates NFAT-driven promoter activity of CD40L and IL-17. Inhibition of FOXP3/NFAT interaction upregulated CD40L expression on effector T cells and enhanced T cell proliferation and IL-2, IFN-γ, IL-6, or IL-17 production in response to TCR stimulation. The inhibitory peptide impaired effector T cell conversion into induced Tregs in the presence of TGF-β. Moreover, in vivo peptide administration showed antitumor efficacy in mice bearing Hepa129 or TC1 tumor cells when combined with sorafenib or with an antitumor vaccine, respectively. Our results suggest that inhibition of NFAT/FOXP3 interaction might improve antitumor immunotherapies. PMID:26324768

  18. NFAT Gene Family in Inflammation and Cancer

    PubMed Central

    Pan, M.-G.; Xiong, Y.; Chen, F.

    2013-01-01

    Calcineurin-NFAT signaling is critical for numerous aspects of vertebrate function during and after embryonic development. Initially discovered in T cells, the NFAT gene family, consisting of five members, regulates immune system, inflammatory response, angiogenesis, cardiac valve formation, myocardial development, axonal guidance, skeletal muscle development, bone homeostasis, development and metastasis of cancer, and many other biological processes. In this review we will focus on the NFAT literature relevant to the two closely related pathological systems: inflammation and cancer. PMID:22950383

  19. Role of NFAT5 in Inflammatory Disorders Associated with Osmotic Stress

    PubMed Central

    Neuhofer, Wolfgang

    2010-01-01

    Nuclear factor of activated T cells 5 (NFAT5) is the most recently described member of the Rel family of transcription factors, including NF-κB and NFAT1-4, which play central roles in inducible gene expression during the immune response. NFAT5 was initially described to drive osmoprotective gene expression in renal medullary cells, which are routinely faced by high extracellular osmolalities. Recent data however indicate profound biological importance of the mammalian osmotic stress response in view of NFAT5 dependent gene regulation in non-renal tissues. In mononuclear cells and epithelial cells, NFAT5 stimulates the expression of various pro-inflammatory cytokines during elevated ambient tonicity. Accordingly, compared to plasma, the interstitial tonicity of lymphoid organs like spleen and thymus and that of liver is substantially hypertonic under physiological conditions. In addition, anisotonic disorders (hypernatremia, diabetes mellitus, dehydration) entail systemic hyperosmolality, and, in inflammatory disorders, the skin, intestine, and cornea are sites of local hyperosmolality. This article summarizes the current knowledge regarding systemic and local osmotic stress in anisotonic and inflammatory disorders in view of NFAT5 activation and regulation, and NFAT5 dependent cytokine production. PMID:21629436

  20. Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress.

    PubMed

    Reuland, Danielle J; Khademi, Shadi; Castle, Christopher J; Irwin, David C; McCord, Joe M; Miller, Benjamin F; Hamilton, Karyn L

    2013-03-01

    Increased production of reactive oxygen species has been implicated in the pathogenesis of cardiovascular disease (CVD), and enhanced endogenous antioxidants have been proposed as a mechanism for regulating redox balance. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcriptional regulator of phase II antioxidant enzymes, and activation of Nrf2 has been suggested to be an important step in attenuating oxidative stress associated with CVD. A well-defined combination of five widely studied medicinal plants derived from botanical sources (Bacopa monniera, Silybum marianum (milk thistle), Withania somnifera (Ashwagandha), Camellia sinensis (green tea), and Curcuma longa (turmeric)) has been shown to activate Nrf2 and induce phase II enzymes through the antioxidant response element. The purpose of these experiments was to determine if treatment of cardiomyocytes with this phytochemical composition, marketed as Protandim, activates Nrf2, induces phase II detoxification enzymes, and protects cardiomyocytes from oxidant-induced apoptosis in a Nrf2-dependent manner. In cultured HL-1 cardiomyocytes, phytochemical treatment was associated with nuclear accumulation of Nrf2, significant induction of phase II enzymes, and concomitant protection against hydrogen peroxide-induced apoptosis. The protection against oxidant stress was abolished when Nrf2 was silenced by shRNA, suggesting that our phytochemical treatment worked through the Nrf2 pathway. Interestingly, phytochemical treatment was found to be a more robust activator of Nrf2 than oxidant treatment, supporting the use of the phytochemicals as a potential treatment to increase antioxidant defenses and protect heart cells against an oxidative challenge. PMID:23201694

  1. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling.

    PubMed

    Bush, Erik W; Hood, David B; Papst, Philip J; Chapo, Joseph A; Minobe, Wayne; Bristow, Michael R; Olson, Eric N; McKinsey, Timothy A

    2006-11-01

    The calcium/calmodulin-dependent phosphatase calcineurin plays a central role in the control of cardiomyocyte hypertrophy in response to pathological stimuli. Although calcineurin is present at high levels in normal heart, its activity appears to be unaffected by calcium during the course of a cardiac cycle. The mechanism(s) whereby calcineurin is selectively activated by calcium under pathological conditions has remained unclear. Here, we demonstrate that diverse signals for cardiac hypertrophy stimulate expression of canonical transient receptor potential (TRPC) channels. TRPC consists of a family of seven membrane-spanning nonselective cation channels that have been implicated in the nonvoltage-gated influx of calcium in response to G protein-coupled receptor signaling, receptor tyrosine kinase signaling, and depletion of internal calcium stores. TRPC3 expression is up-regulated in multiple rodent models of pathological cardiac hypertrophy, whereas TRPC5 expression is induced in failing human heart. We demonstrate that TRPC promotes cardiomyocyte hypertrophy through activation of calcineurin and its downstream effector, the nuclear factor of activated T cells transcription factor. These results define a novel role for TRPC channels in the control of cardiac growth, and suggest that a TRPC-derived pool of calcium contributes to selective activation of calcineurin in diseased heart. PMID:16950785

  2. Role of protein phosphatase 2A in the regulation of mitogen-activated protein kinase activity in ventricular cardiomyocytes.

    PubMed

    Braconi Quintaje, S; Church, D J; Rebsamen, M; Valloton, M B; Hemmings, B A; Lang, U

    1996-04-25

    Incubation of cultured, neonatal rat ventricular cardiomyocytes with 100 nM phorbol 12-myristate-13-acetate (PMA) induced a transient suppression of PP2A activity at 5 min, an effect that was reversed after 15 min of exposure to PMA. This inactivation was correlated with a transient increase in the phosphorylation level of the catalytic subunit of PP2A (193 +/- 38% of control levels at 5 min). Simultaneously to the transient inactivation of PP2A, we observed a rapid and reversible phosphorylation of 42-kDa MAP kinase (474 +/- 65% of control levels at 5 min, and 316 +/- 44% at 15 min) in cardiomyocytes treated with PMA. This transient phosphorylation was accompanied by a transient increase in cytosolic MAP kinase activity (209 +/- 17% of control values at 5 min and 125 +/- 7% at 15 min). Okadaic acid (1 microM ) completely blocked the decrease in the phosphorylation level and activity of MAP kinase occurring after 5 min of exposure to PMA. These data demonstrate that PP2A inactivation and MAP kinase activation are very strongly correlated in cardiomyocytes, indicating that PP2A plays a negative modulatory role in the regulation of MAP kinase activity. PMID:8629997

  3. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate.

    PubMed

    Boudreau-Béland, Jonathan; Duverger, James Elber; Petitjean, Estelle; Maguy, Ange; Ledoux, Jonathan; Comtois, Philippe

    2015-01-01

    In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS) is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog. PMID:26035822

  4. Spatiotemporal Stability of Neonatal Rat Cardiomyocyte Monolayers Spontaneous Activity Is Dependent on the Culture Substrate

    PubMed Central

    Boudreau-Béland, Jonathan; Duverger, James Elber; Petitjean, Estelle; Maguy, Ange; Ledoux, Jonathan; Comtois, Philippe

    2015-01-01

    In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS) is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog. PMID:26035822

  5. Generation of a conditional knockout allele for the NFAT5 gene in mice.

    PubMed

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2014-01-01

    The osmosensitive transcription factor nuclear factor of activated T-cells 5 (NFAT5), also known as tonicity enhancer element binding protein (TonEBP) plays a crucial role in protection of renal medullary cells against hyperosmotic stress, urinary concentration, the adaptive immune response, and other physiological systems. Since it is also important for development, conventional homozygous-null mutations result in perinatal death, which hinders the analysis of NFAT5 function in specific tissues in vivo. Here we describe the generation of mice with a conditional-null allele, in which loxP sites are inserted around exon 4. Mice harboring the floxed allele (NFAT5(flx) ) were mated to a strain expressing a tamoxifen-inducible derivative of the Cre-recombinase (Cre (+)) under the control of the ubiqitinC promoter. The resultant homozygous conditional knockout mice (Cre (+) NFAT5 (flx/flx) ) are viable, fertile, and show normal expression of NFAT5 and NFAT5 target genes, indicating that the conditional alleles retain their wild-type function. Induction of Cre-mediated recombination by administration of tamoxifen in 8-week-old mice resulted in a decrease in NFAT5 expression of about 70-90% in all tested tissues (renal cortex, renal outer medulla, renal inner medulla, heart, lung, spleen, skeletal muscle). Accordingly, the expression of the NFAT5 target genes aldose reductase and heat shock protein 70 in the renal medulla was also significantly decreased. Mice harboring this conditional knockout allele should be useful in future studies for gaining a better understanding of tissue and cell-type specific functions of NFAT5 in adult animals under physiological and pathophysiological conditions. PMID:25601839

  6. AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K(+) currents in ventricular myocytes following myocardial infarction.

    PubMed

    Nieves-Cintrón, Madeline; Hirenallur-Shanthappa, Dinesh; Nygren, Patrick J; Hinke, Simon A; Dell'Acqua, Mark L; Langeberg, Lorene K; Navedo, Manuel; Santana, Luis F; Scott, John D

    2016-07-01

    The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias. Although recent studies infer that calcineurin is activated by local and transient Ca(2+) signals the molecular mechanism that underlies the process is unclear in ventricular myocytes. Here we test the hypothesis that sequestering of calcineurin to the sarcolemma of ventricular myocytes by the anchoring protein AKAP150 is required for acute activation of NFATc3 and the concomitant down-regulation of Kv channels following MI. Biochemical and cell based measurements resolve that approximately 0.2% of the total calcineurin activity in cardiomyocytes is associated with AKAP150. Electrophysiological analyses establish that formation of this AKAP150-calcineurin signaling dyad is essential for the activation of the phosphatase and the subsequent down-regulation of Kv channel currents following MI. Thus AKAP150-mediated targeting of calcineurin to sarcolemmal micro-domains in ventricular myocytes contributes to the local and acute gene remodeling events that lead to the down-regulation of Kv currents. PMID:26724383

  7. Peroxisome Proliferator-Activated Receptor γ Activity is Required for Appropriate Cardiomyocyte Differentiation

    PubMed Central

    Peymani, Maryam; Ghaedi, Kamran; Irani, Shiva; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Objective Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the PPAR nuclear receptor superfamily. Although PPARγ acts as a master transcription factor in adipocyte differentiation, it is also associated with a variety of cell functions including carbohydrate and lipid metabolism, glucose homeostasis, cell proliferation and cell differentiation. This study aimed to assess the expression level of PPARγ in order to address its role in cardiac cell differentiation of mouse embryonic stem cells (mESCs). Materials and Methods In this an intervening study, mESCs were subjected to cardiac differentiation. Total RNA was extracted from the cells and quantitative real time polymerase chain reaction (qPCR) was carried out to estimate level of gene expression. Furthermore, the requirement of PPARγ in cardiac differentiation of mESCs, during cardiac progenitor cells (CPCs) formation, was examined by applying the respective agonist and antagonist. Results The obtained data revealed an elevation in the expression level of PPARγ during spontaneous formation of CPCs and cardiomyocytes. Our results indicated that during CPC formation, PPARγ inactivation via treatment with GW9662 (GW) reduced expression of CPC and cardiac markers. Conclusion We conclude that PPARγ modulation has an effective role on cardiac differentiation of mESCs at the early stage of cardiomyogenesis. PMID:27540527

  8. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    PubMed

    Frolova, Sheyda R; Gaiko, Olga; Tsvelaya, Valeriya A; Pimenov, Oleg Y; Agladze, Konstantin I

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  9. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

    PubMed Central

    Frolova, Sheyda R.; Gaiko, Olga; Tsvelaya, Valeriya A.; Pimenov, Oleg Y.; Agladze, Konstantin I.

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  10. Co-operative interactions between NFAT (nuclear factor of activated T cells) c1 and the zinc finger transcription factors Sp1/Sp3 and Egr-1 regulate MT1-MMP (membrane type 1 matrix metalloproteinase) transcription by glomerular mesangial cells.

    PubMed Central

    Alfonso-Jaume, Maria Alejandra; Mahimkar, Rajeev; Lovett, David H

    2004-01-01

    The transition of normally quiescent glomerular MCs (mesangial cells) to a highly proliferative phenotype with characteristics of myofibroblasts is a process commonly observed in inflammatory diseases affecting the renal glomerulus, the ultimate result of which is glomerulosclerosis. Generation of proteolytically active MMP (matrix metalloproteinase)-2 by the membrane-associated membrane type 1 (MT1)-MMP is responsible for the transition of mesangial cells to the myofibroblast phenotype [Turck, Pollock, Lee, Marti and Lovett (1996) J. Biol. Chem. 271, 15074-15083]. In the present study, we show that the expression of MT1-MMP within the context of MCs is mediated by three discrete cis -acting elements: a proximal non-canonical Sp1 site that preferentially binds Sp1; an overlapping Sp1/Egr-1-binding site that preferentially binds Egr-1; and a more distal binding site for the NFAT (nuclear factor of activated T cells) that binds the NFAT c1 isoform present in MC nuclear extracts. Transfection with an NFAT c1 expression plasmid, or activation of calcineurin with a calcium ionophore, yielded major increases in NFAT c1 nuclear DNA-binding activity, MT1-MMP transcription and protein synthesis, which were additive with the lower levels of transactivation provided by the proximal Sp1 and the overlapping Sp1/Egr-1 sites. Specific binding of NFAT c1 to the MT1-MMP promoter was confirmed by chromatin immunoprecipitation studies, while MT1-MMP expression was suppressed by treatment with the calcineurin inhibitor, cyclosporin A. These studies are the first demonstration that a specific NFAT isoform enhances transcription of an MMP (MT1-MMP) that plays a major role in the proteolytic events that are a dominant feature of acute glomerular inflammation. Suppression of MT1-MMP by commonly used calcineurin inhibitors may play a role in the development of renal fibrosis following renal transplantation. PMID:14979875

  11. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    SciTech Connect

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-07-05

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.

  12. Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes.

    PubMed

    Bliksøen, Marte; Mariero, Lars Henrik; Torp, May Kristin; Baysa, Anton; Ytrehus, Kirsti; Haugen, Fred; Seljeflot, Ingebjørg; Vaage, Jarle; Valen, Guro; Stensløkken, Kåre-Olav

    2016-07-01

    Acute myocardial infarction (AMI) causes sterile inflammation, which exacerbates tissue injury. Elevated levels of circulating mitochondrial DNA (mtDNA) have been associated with AMI. We hypothesized that mtDNA triggers an innate immune response via TLR9 and NF-κB activation, causing cardiomyocyte injury. Murine cardiomyocytes express TLR9 mRNA and protein and were able to internalize fluorescently labeled mouse mtDNA. Incubation of human embryonic kidney cells with serum from AMI patients containing naturally elevated levels of mtDNA induced TLR9-dependent NF-κB activity. This effect was mimicked by isolated mtDNA. mtDNA activated NF-κB in reporter mice both in vivo and in isolated cardiomyocytes. Moreover, incubation of isolated cardiomyocytes with mtDNA induced cell death after 4 and 24 h. Laser confocal microscopy showed that incubation of cardiomyocytes with mtDNA accelerated mitochondrial depolarization induced by reactive oxygen species. In contrast to mtDNA, isolated total DNA did not activate NF-κB nor induce cell death. In conclusion, mtDNA can induce TLR9-dependent NF-κB activation in reporter cells and activate NF-κB in cardiomyocytes. In cardiomyocytes, mtDNA causes mitochondrial dysfunction and death. Endogenous mtDNA in the extracellular space is a danger signal with direct detrimental effects on cardiomyocytes. PMID:27164906

  13. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    SciTech Connect

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  14. NFAT5 Contributes to Osmolality-Induced MCP-1 Expression in Mesothelial Cells

    PubMed Central

    Küper, Christoph; Beck, Franz-X.; Neuhofer, Wolfgang

    2012-01-01

    Increased expression of the C-C chemokine monocyte chemoattractant protein-1 (MCP-1) in mesothelial cells in response to high glucose concentrations and/or high osmolality plays a crucial role in the development of peritoneal fibrosis during continuous ambulatory peritoneal dialysis (CAPD). Recent studies suggest that in kidney cells osmolality-induced MCP-1 upregulation is mediated by the osmosensitive transcription factor, nuclear factor of activated T cells 5 (NFAT5). The present study addressed the question of whether activation of NFAT5 by hyperosmolality, as present in PD fluids, contributes to MCP-1 expression in the mesothelial cell line Met5A. Hyperosmolality, induced by addition of glucose, NaCl, or mannitol to the growth medium, increased NFAT5 activity and stimulated MCP-1 expression in Met5A cells. siRNA-mediated knockdown of NFAT5 attenuated osmolality-induced MCP-1 upregulation substantially. Hyperosmolality also induced activation of nuclear factor-κB (NF-κB). Accordingly, pharmacological inhibition of NF-κB significantly decreased osmolality-induced MCP-1 expression. Taken together, these results indicate that high osmolalities activate the transcription factor NFAT5 in mesothelial cells. NFAT5 in turn upregulates MCP-1, likely in combination with NF-κB, and thus may participate in the development of peritoneal fibrosis during CAPD. PMID:22619484

  15. Rapid fusion between mesenchymal stem cells and cardiomyocytes yields electrically active, non-contractile hybrid cells

    PubMed Central

    Shadrin, Ilya Y.; Yoon, Woohyun; Li, Liqing; Shepherd, Neal; Bursac, Nenad

    2015-01-01

    Cardiac cell therapies involving bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promising results, although their mechanisms of action are still poorly understood. Here, we investigated direct interactions between hMSCs and cardiomyocytes in vitro. Using a genetic Ca2+ indicator gCaMP3 to efficiently label hMSCs in co-cultures with neonatal rat ventricular myocytes (NRVMs), we determined that 25–40% of hMSCs (from 4 independent donors) acquired periodic Ca2+ transients and cardiac markers through spontaneous fusion with NRVMs. Sharp electrode and voltage-clamp recordings in fused cells showed action potential properties and Ca2+ current amplitudes in between those of non-fused hMSCs and NRVMs. Time-lapse video-microscopy revealed the first direct evidence of active fusion between hMSCs and NRVMs within several hours of co-culture. Application of blebbistatin, nifedipine or verapamil caused complete and reversible inhibition of fusion, suggesting potential roles for actomyosin bridging and Ca2+ channels in the fusion process. Immunostaining for Cx43, Ki67, and sarcomeric α-actinin showed that fused cells remain strongly coupled to surrounding NRVMs, but downregulate sarcomeric structures over time, acquiring a non-proliferative and non-contractile phenotype. Overall, these results describe the phenotype and mechanisms of hybrid cell formation via fusion of hMSCs and cardiomyocytes with potential implications for cardiac cell therapy. PMID:26159124

  16. Ceramide-mediated depression in cardiomyocyte contractility through PKC activation and modulation of myofilament protein phosphorylation

    PubMed Central

    Simon, Jillian N.; Chowdhury, Shamim A.K.; Warren, Chad M.; Sadayappan, Sakthivel; Wieczorek, David F.; Solaro, R. John; Wolska, Beata M.

    2015-01-01

    Although ceramide accumulation in the heart is considered a major factor in promoting apoptosis and cardiac disorders, including heart failure, lipotoxicity and ischemia-reperfusion injury, little is known about ceramide’s role in mediating changes in contractility. In the present study, we measured the functional consequences of acute exposure of isolated field stimulated adult rat cardiomyocytes to C6-ceramide. Exogenous ceramide treatment depressed the peak amplitude and the maximal velocity of shortening without altering intracellular calcium levels or kinetics. The inactive ceramide analog C6-dihydroceramide had no effect on myocyte shortening or [Ca2+]i transients. Experiments testing a potential role for C6-ceramide-mediated effects on activation of protein kinase C (PKC) demonstrated evidence for signaling through the calcium-independent isoform, PKCε. We employed 2 dimensional electrophoresis and anti-phospho-peptide antibodies to test whether treatment of the cardiomyocytes with C6-ceramide altered myocyte shortening via PKC dependent phosphorylation of myofilament proteins. Compared to controls, myocytes treated with ceramide exhibited increased phosphorylation of myosin binding protein-C (cMyBP-C), specifically at Ser273 and Ser302, and troponin I (cTnI) at sites apart from Ser23/24, which could be attenuated with PKC inhibition. We conclude that the altered myofilament response to calcium resulting from multiple sites of PKC-dependent phosphorylation contributes to contractile dysfunction that is associated with cardiac diseases in which elevations in ceramides are present. PMID:25280528

  17. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes.

    PubMed

    Kijlstra, Jan David; Hu, Dongjian; Mittal, Nikhil; Kausel, Eduardo; van der Meer, Peter; Garakani, Arman; Domian, Ibrahim J

    2015-12-01

    The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening. PMID:26626178

  18. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Kijlstra, Jan David; Hu, Dongjian; Mittal, Nikhil; Kausel, Eduardo; van der Meer, Peter; Garakani, Arman; Domian, Ibrahim J.

    2015-01-01

    Summary The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening. PMID:26626178

  19. UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy

    PubMed Central

    Wang, Li; Burmeister, Brian T.; Johnson, Keven R.; Baillie, George S.; Karginov, Andrei V.; Skidgel, Randal A.; O’Bryan, John P.; Carnegie, Graeme K.

    2015-01-01

    Hypertrophy increases the risk of heart failure and arrhythmia. Prevention or reversal of the maladaptive hypertrophic phenotype has thus been proposed to treat heart failure. Chronic β-adrenergic receptor (β-AR) stimulation induces cardiomyocyte hypertrophy by elevating 3′, 5′-cyclic adenosine monophosphate (cAMP) levels and activating downstream effectors such protein kinase A (PKA). Conversely, hydrolysis of cAMP by phosphodiesterases (PDEs) spatiotemporally restricts cAMP signaling. Here, we demonstrate that PDE4, but not PDE3, is critical in regulating cardiomyocyte hypertrophy, and may represent a potential target for preventing maladaptive hypertrophy. We identify a sequence within the upstream conserved region 1 of PDE4D, termed UCR1C, as a novel activator of PDE4 long isoforms. UCR1C activates PDE4 in complex with A-Kinase anchoring protein (AKAP)-Lbc resulting in decreased PKA signaling facilitated by AKAP-Lbc. Expression of UCR1C in cardiomyocytes inhibits hypertrophy in response to chronic β-AR stimulation. This effect is partially due to inhibition of nuclear PKA activity, which decreases phosphorylation of the transcription factor cAMP response element-binding protein (CREB). In conclusion, PDE4 activation by UCR1C attenuates cardiomyocyte hypertrophy by specifically inhibiting nuclear PKA activity. PMID:25683917

  20. NFAT5 in cellular adaptation to hypertonic stress - regulations and functional significance.

    PubMed

    Cheung, Chris Yk; Ko, Ben Cb

    2013-01-01

    The Nuclear Factor of Activated T Cells-5 (NFAT5), also known as OREBP or TonEBP, is a member of the nuclear factors of the activated T cells family of transcription factors. It is also the only known tonicity-regulated transcription factor in mammals. NFAT5 was initially known for its role in the hypertonic kidney inner medulla for orchestrating a genetic program to restore the cellular homeostasis. Emerging evidence, however, suggests that NFAT5 might play a more diverse functional role, including a pivotal role in blood pressure regulation and the development of autoimmune diseases. Despite the growing significance of NFAT5 in physiology and diseases, our understanding of how its activity is regulated remains very limited. Furthermore, how changes in tonicities are converted into functional outputs via NFAT5 remains elusive. Therefore, this review aims to summarize our current knowledge on the functional roles of NFAT5 in osmotic stress adaptation and the signaling pathways that regulate its activity. PMID:23618372

  1. Crystal Structure of NFAT Bound to the HIV-1 LTR Tandem κB Enhancer Element

    SciTech Connect

    Bates, Darren L.; Barthel, Kristen K.B.; Wu, Yongqing; Kalhor, Reza; Stroud, James C.; Giffin, Michael J.; Chen, Lin

    2008-05-27

    Here, we have determined the crystal structure of the DNA binding domain of NFAT bound to the HIV-1 long terminal repeat (LTR) tandem {kappa}B enhancer element of 3.05 {angstrom} resolution. NFAT binds as a dimer to the upstream {kappa}B site (Core II), but as a monomer to the 3' end of the downstream {kappa}B site (Core I). The DNA shows a significant bend near the 5' end of Core I, where a lysine residue from NFAT bound to the 3' end of Core II inserts into the minor groove and seems to cause DNA bases to flip out. Consistent with this structural feature, the 5' end of Core I become hypersensitive to dimethylsulfate in the in vivo footprinting upon transcriptional activation of the HIV-1 LTR. Our studies provide a basis for futher investigating the functional mechanism of NFAT in HIV-1 transcription and replication.

  2. NFAT1 and NFAT3 Cooperate with HDAC4 during Regulation of Alternative Splicing of PMCA Isoforms in PC12 Cells

    PubMed Central

    Kosiorek, Michalina; Podszywalow-Bartnicka, Paulina; Zylinska, Ludmila; Pikula, Slawomir

    2014-01-01

    Background The bulk of human genes undergo alternative splicing (AS) upon response to physiological stimuli. AS is a great source of protein diversity and biological processes and is associated with the development of many diseases. Pheochromocytoma is a neuroendocrine tumor, characterized by an excessive Ca2+-dependent secretion of catecholamines. This underlines the importance of balanced control of calcium transport via regulation of gene expression pattern, including different calcium transport systems, such as plasma membrane Ca2+-ATPases (PMCAs), abundantly expressed in pheochromocytoma chromaffin cells (PC12 cells). PMCAs are encoded by four genes (Atp2b1, Atp2b2, Atp2b3, Atp2b4), whose transcript products undergo alternative splicing giving almost 30 variants. Results In this scientific report, we propose a novel mechanism of regulation of PMCA alternative splicing in PC12 cells through cooperation of the nuclear factor of activated T-cells (NFAT) and histone deacetylases (HDACs). Luciferase assays showed increased activity of NFAT in PC12 cells, which was associated with altered expression of PMCA. RT-PCR experiments suggested that inhibition of the transcriptional activity of NFAT might result in the rearrangement of PMCA splicing variants in PC12 cells. NFAT inhibition led to dominant expression of 2x/c, 3x/a and 4x/a PMCA variants, while in untreated cells the 2w,z/b, 3z,x/b,c,e,f, and 4x/b variants were found as well. Furthermore, chromatin immunoprecipitation experiments showed that NFAT1-HDAC4 or NFAT3-HDAC4 complexes might be involved in regulation of PMCA2x splicing variant generation. Conclusions We suggest that the influence of NFAT/HDAC on PMCA isoform composition might be important for altered dopamine secretion by PC12 cells. PMID:24905014

  3. Vav-2 controls NFAT-dependent transcription inB- but not T-lymphocytes

    PubMed Central

    Doody, Gina M.; Billadeau, Daniel D.; Clayton, Elizabeth; Hutchings, Amanda; Berland, Robert; McAdam, Simon; Leibson, Paul J.; Turner, Martin

    2000-01-01

    We show here that Vav-2 is tyrosine phosphorylated following antigen receptor engagement in both B- and T-cells, but potentiates nuclear factor of activated T cells (NFAT)-dependent transcription only in B cells. Vav-2 function requires the N-terminus, as well as functional Dbl homology and SH2 domains. More over, the enhancement of NFAT-dependent transcription by Vav-2 can be inhibited by a number of dominant-negative GTPases. The ability of Vav-2 to potentiate NFAT-dependent transcription correlates with its ability to promote a sustained calcium flux. Thus, Vav-2 augments the calcium signal in B cells but not T cells, and a truncated form of Vav-2 can neither activate NFAT nor augment calcium signaling. The CD19 co-receptor physically interacts with Vav-2 and synergistically enhances Vav-2 phosphorylation induced by the B-cell receptor (BCR). In addition, we found that Vav-2 augments CD19-stimulated NFAT- dependent transcription, as well as transcription from the CD5 enhancer. These data suggest a role for Vav-2 in transducing BCR signals to the transcription factor NFAT and implicate Vav-2 in the integration of BCR and CD19 signaling. PMID:11080163

  4. Effect of Berberine on PPARα/NO Activation in High Glucose- and Insulin-Induced Cardiomyocyte Hypertrophy

    PubMed Central

    Wang, Mingfeng; Wang, Jia; Tan, Rui; Wu, Qin; Qiu, Hongmei; Yang, Junqing; Jiang, Qingsong

    2013-01-01

    Rhizoma coptidis, the root of Coptis chinensis Franch, has been used in China as a folk medicine in the treatment of diabetes for thousands of years. Berberine, one of the active ingredients of Rhizoma coptidis, has been reported to improve symptoms of diabetes and to treat experimental cardiac hypertrophy, respectively. The objective of this study was to evaluate the potential effect of berberine on cardiomyocyte hypertrophy in diabetes and its possible influence on peroxisome proliferator-activated receptor-α (PPARα)/nitric oxide (NO) signaling pathway. The cardiomyocyte hypertrophy induced by high glucose (25.5 mmol/L) and insulin (0.1 μmol/L) (HGI) was characterized in rat primary cardiomyocyte by measuring the cell surface area, protein content, and atrial natriuretic factor mRNA expression level. Protein and mRNA expression were measured by western blot and real-time RT-PCR, respectively. The enzymatic activity of NO synthase (NOS) was measured using a spectrophotometric assay, and NO concentration was measured using the Griess assay. HGI significantly induced cardiomyocyte hypertrophy and decreased the expression of PPARα and endothelial NOS at the mRNA and protein levels, which occurred in parallel with declining NOS activity and NO concentration. The effect of HGI was inhibited by berberine (0.1 to 100 μmol/L), fenofibrate (0.3 μmol/L), or L-arginine (100 μmol/L). MK886 (0.3 μmol/L), a selective PPARα antagonist, could abolish the effects of berberine and fenofibrate. NG-nitro-L-arginine-methyl ester (100 μmol/L), a NOS inhibitor, could block the effects of L-arginine, but only partially blocked the effects of berberine. These results suggest that berberine can blunt HGI-induced cardiomyocyte hypertrophy in vitro, through the activation of the PPARα/NO signaling pathway. PMID:23573121

  5. Members Only: Hypoxia-Induced Cell-Cycle Activation in Cardiomyocytes.

    PubMed

    Sharma, Arun; Wu, Sean M

    2015-09-01

    A low level of cardiomyocyte turnover occurs in the adult mammalian heart, but the source of these new cells remains unknown. Kimura et al., 2015 utilized a novel hypoxia-induced fate mapping system to identify a rare population of adult cardiomyocytes undergoing cell-cycle entry and expansion in healthy adult hearts and following ischemic injury. PMID:26331604

  6. Placental TonEBP/NFAT5 osmolyte regulation in an ovine model of intrauterine growth restriction.

    PubMed

    Arroyo, Juan A; Garcia-Jones, Pastora; Graham, Amanda; Teng, Cecilia C; Battaglia, Frederick C; Galan, Henry L

    2012-03-01

    TonEBP/NFAT5 (the tonicity-responsive enhancer binding protein/nuclear factor of activated T cells) modulates cellular response to osmotic changes by accumulating inositol and sorbitol inside the cells. Our objective was to assess placental osmolytes, TonEBP/NFAT5 RNA and protein expression, and signaling molecules across gestation between control and intrauterine growth restriction (IUGR) ovine pregnancies. Pregnant sheep were placed in hyperthermic conditions to induce IUGR. Placental tissues were collected at 55, 95, and 130 days gestational age (dGA) to measure inositol, sorbitol, TonEBP/NFAT5 (NFAT5), sodium-dependent myo-inositol transporter (SMIT; official symbol SLC5A3), aldose reductase (AR), and NADPH (official symbol DE-CR1). Placental weight was reduced in IUGR compared to controls at 95 and 130 dGA. Osmolyte concentrations were similar between control and IUGR placentas, but both groups demonstrated a significant decrease in inositol concentration and an increase in sorbitol concentration with advancing gestation. Cytosolic NFAT5 protein decreased significantly from 55 to 95 dGA in both groups, and nuclear NFAT5 protein increased only at 130 dGA in the IUGR group, but no differences were seen between groups for either cytosolic or nuclear NFAT5 protein concentrations. DE-CR1 concentrations were similar between groups and increased significantly with advancing gestational age. AR was lowest at 55dGA, and SLC5A3 increased with advancing gestational age. We conclude that both placental osmolytes inositol and sorbitol (and their corresponding proteins SLC5A3 and AR) change with gestational age and are regulated, at least in part, by NFAT5 and DE-CR1 (NADPH). The inverse relationship between each osmolyte across gestation (e.g., inositol higher in early gestation and sorbitol higher in late gestation) may reflect nutritional needs that change across gestation. PMID:22190709

  7. Cardiomyocyte-Specific Deletion of the Vitamin D Receptor Gene Results in Cardiac Hypertrophy

    PubMed Central

    Chen, Songcang; Law, Christopher S.; Grigsby, Christopher L.; Olsen, Keith; Hong, Ting-Ting; Zhang, Yan; Yeghiazarians, Yerem; Gardner, David G.

    2014-01-01

    Background A variety of studies carried out using either human subjects or laboratory animals suggest that vitamin D and its analogues possess important beneficial activity in the cardiovascular system. Using Cre-Lox technology we have selectively deleted the vitamin D receptor (VDR) gene in the cardiac myocyte in an effort to better understand the role of vitamin D in regulating myocyte structure and function. Methods and Results Targeted deletion of exon 4 coding sequence in the VDR gene resulted in an increase in myocyte size and left ventricular weight/body weight versus controls both at baseline and following a 7-day infusion of isoproterenol. There was no increase in interstitial fibrosis. These knockout mice demonstrated a reduction in end diastolic and end systolic volume by echocardiography, activation of the fetal gene program (i.e. increased atrial natriuretic peptide and alpha skeletal actin gene expression) and increased expression of MCIP 1, a direct downstream target of calcineurin/NFAT signaling. Treatment of neonatal cardiomyocytes with 1,25- dihydroxyvitamin D partially reduced isoproterenol-induced MCIP 1 mRNA and protein levels and MCIP 1 gene promoter activity. Conclusions Collectively, these studies demonstrate that the vitamin D-VDR signaling system possesses direct, anti-hypertrophic activity in the heart. This appears to involve, at least in part, suppression of the pro-hypertrophic calcineurin/NFAT/MCIP 1 pathway. These studies identify a potential mechanism to account for the reported beneficial effects of vitamin D in the cardiovascular system. PMID:21947295

  8. Evidence for deactivation of both ectosolic and cytosolic 5'-nucleotidase by adenosine A1 receptor activation in the rat cardiomyocytes.

    PubMed Central

    Kitakaze, M; Hori, M; Minamino, T; Takashima, S; Komamura, K; Node, K; Kurihara, T; Morioka, T; Sato, H; Inoue, M

    1994-01-01

    Adenosine, an important regulator of many cardiac functions, is produced by ectosolic and cytosolic 5'-nucleotidase. The activity of these enzymes is influenced by several ischemia-sensitive metabolic factors, e.g., ATP, ADP, H+, and inorganic phosphate. However, there is no clear evidence that adenosine itself affects 5'-nucleotidase activity. This study tested whether adenosine decreases the activity of ectosolic and cytosolic 5'-nucleotidase. Cardiomyocytes were isolated from adult male Wistar rats and suspended in the modified Hepes-Tyrode buffer solution. After stabilization, isolated cardiomyocytes were incubated with and without adenosine (10(-9) - 10(-4) M). Ectosolic and cytosolic 5'-nucleotidase activity was decreased by exogenous adenosine (ectosolic 5'-nucleotidase activity, 20.6 +/- 2.3 vs. 8.6 +/- 1.6 mumol/min per 10(6) cells [P < 0.05]; cytosolic 5'-nucleotidase activity, 2.47 +/- 0.58 vs. 1.61 +/- 0.54 mumol/min per 10(6) cells [P < 0.05] at 10(-6) M adenosine) after 30 min. The decrease in ectosolic and cytosolic 5'-nucleotidase activity was inhibited by 8-phenyltheophylline and pertussis toxin, and was mimicked by N6-cyclohexyladenosine, an adenosine A1 receptor agonist. Neither CGS21680C, and A2 receptor agonist, nor cycloheximide deactivated ectosolic and cytosolic 5'-nucleotidase. Thus, we conclude that activation of adenosine A1 receptors is coupled to Gi proteins and attenuates ectosolic and cytosolic 5'-nucleotidase activity in rat cardiomyocytes. Images PMID:7989602

  9. Exposure of cardiomyocytes to angiotensin II induces over-activation of monoamine oxidase type A: implications in heart failure.

    PubMed

    Manni, Maria Elena; Zazzeri, Marina; Musilli, Claudia; Bigagli, Elisabetta; Lodovici, Maura; Raimondi, Laura

    2013-10-15

    Several evidences indicate that increased cardiac mitochondrial monoamine oxidase type A (MAO-A) activity associates with a failing phenotype. Till now, the mechanism underlying such relation is largely unknown. We explored the hypothesis that exposure of cardiomyocytes to AT-II caused activation of MAO-A and also of catalase and aldehyde dehydrogenase activities, enzymes involved in degrading MAO's end products. Left ventricular cardiomyocytes were isolated from normoglycemic (N) and streptozotocin-injected (50 mg/kg) rats (D) treated or not treated with losartan (20 mg/kg/day in drinking water; DLos and NLos, respectively), a type 1 receptor (AT1) antagonist, for 3 weeks. In each group of cells, MAO, catalase and aldehyde dehydrogenase activities were measured radiochemically and spectrophotometrically. The same enzymes were also measured in HL-1 immortalized cardiomyocytes not exposed and exposed to AT-II (100 nM for 18 h) in the absence and in the presence of irbesartan (1 μM), an AT1 antagonist. MAO-A catalase and aldehyde dehydrogenase activities were found significantly higher in D, than in N cells. MAO-A positively correlated with catalase activity in D cells. MAO-A and aldehyde dehydrogenase but not catalase over-activation, were prevented in DLos cells. Similarly, MAO-A activity, but not catalase and aldehyde dehydrogenase increased significantly in HL-1 cells acutely exposed to AT-II and this increase was prevented when irbesartan, an AT1 antagonist was present. Over-activation of cardiomyocyte MAO-A activity is among acute (18 h) and short-term (2-weeks of diabetes) cardiac effects of AT-II and a novel target of AT1 antagonists, first line treatments of diabetic cardiomyopathy. PMID:24012905

  10. NFAT5-mediated expression of S100A4 contributes to proliferation and migration of renal carcinoma cells.

    PubMed

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2014-01-01

    The osmosensitive transcription factor nuclear factor of activated T-cells (NFAT) 5, also known as tonicity enhancer binding protein (TonEBP), has been associated with the development of a variety of tumor entities, among them breast cancer, colon carcinoma, and melanoma. The aim of the present study was to determine whether NFAT5 is also involved in the development of renal cell carcinoma (RCC). The most common type of RCC, the clear cell RCC, originates from the proximal convoluted tubule. We tested our hypothesis in the clear cell RCC cell line CaKi-1 and the non-cancerous proximal tubule cell line HK-2, as control. Basal expression of NFAT5 and NFAT5 activity in CaKi-1 cells was several times higher than in HK-2 cells. Osmotic stress induced an increased NFAT5 activity in both CaKi-1 and HK-2 cells, again with significantly higher activities in CaKi-1 cells. Analysis of NFAT5-regulating signaling pathways in CaKi-1 cells revealed that inhibition of the MAP kinases p38, c-Jun-terminal kinase (JNK) and extracellular regulated kinase (ERK) and of the focal adhesion kinase (FAK) partially blunted NFAT5 activity. FAK and ERK were both constitutively active, even under isotonic conditions, which may contribute to the high basal expression and activity of NFAT5 in CaKi-1 cells. In contrast, the MAP kinases p38 and JNK were inactive under isotonic conditions and became activated under osmotic stress conditions, indicating that p38 and JNK mediate upregulation of NFAT5 activity under these conditions. siRNA-mediated knockdown of NFAT5 in CaKi-1 cells reduced the expression of S100A4, a member of the S100 family of proteins, which promotes metastasis. Knockdown of NFAT5 was accompanied by a significant decrease in proliferation and migration activity. Taken together, our results indicate that NFAT5 induces S100A4 expression in CaKi-1 cells, thereby playing an important role in RCC proliferation and migration. PMID:25152734

  11. NFAT5-mediated expression of S100A4 contributes to proliferation and migration of renal carcinoma cells

    PubMed Central

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2014-01-01

    The osmosensitive transcription factor nuclear factor of activated T-cells (NFAT) 5, also known as tonicity enhancer binding protein (TonEBP), has been associated with the development of a variety of tumor entities, among them breast cancer, colon carcinoma, and melanoma. The aim of the present study was to determine whether NFAT5 is also involved in the development of renal cell carcinoma (RCC). The most common type of RCC, the clear cell RCC, originates from the proximal convoluted tubule. We tested our hypothesis in the clear cell RCC cell line CaKi-1 and the non-cancerous proximal tubule cell line HK-2, as control. Basal expression of NFAT5 and NFAT5 activity in CaKi-1 cells was several times higher than in HK-2 cells. Osmotic stress induced an increased NFAT5 activity in both CaKi-1 and HK-2 cells, again with significantly higher activities in CaKi-1 cells. Analysis of NFAT5-regulating signaling pathways in CaKi-1 cells revealed that inhibition of the MAP kinases p38, c-Jun-terminal kinase (JNK) and extracellular regulated kinase (ERK) and of the focal adhesion kinase (FAK) partially blunted NFAT5 activity. FAK and ERK were both constitutively active, even under isotonic conditions, which may contribute to the high basal expression and activity of NFAT5 in CaKi-1 cells. In contrast, the MAP kinases p38 and JNK were inactive under isotonic conditions and became activated under osmotic stress conditions, indicating that p38 and JNK mediate upregulation of NFAT5 activity under these conditions. siRNA-mediated knockdown of NFAT5 in CaKi-1 cells reduced the expression of S100A4, a member of the S100 family of proteins, which promotes metastasis. Knockdown of NFAT5 was accompanied by a significant decrease in proliferation and migration activity. Taken together, our results indicate that NFAT5 induces S100A4 expression in CaKi-1 cells, thereby playing an important role in RCC proliferation and migration. PMID:25152734

  12. A state of reversible compensated ventricular dysfunction precedes pathological remodelling in response to cardiomyocyte-specific activity of angiotensin II type-1 receptor in mice

    PubMed Central

    Frentzou, Georgia A.; Drinkhill, Mark J.; Turner, Neil A.; Ball, Stephen G.; Ainscough, Justin F. X.

    2015-01-01

    ABSTRACT Cardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood. We previously reported a conditional mouse model in which a human angiotensin II type-I receptor transgene (HART) was expressed in differentiated cardiomyocytes after they had fully matured, but not during development. Twelve-month-old HART mice exhibited ventricular dysfunction and cardiomyocyte hypertrophy with interstitial fibrosis following full receptor stimulation, without affecting blood pressure. Here, we show that chronic HART activity in young adult mice causes ventricular dysfunction without hypertrophy, fibrosis or cardiomyocyte death. Dysfunction correlated with reduced expression of pro-hypertrophy markers and increased expression of pro-angiogenic markers in the cardiomyocytes experiencing increased receptor load. This stimulates responsive changes in closely associated non-myocyte cells, including the downregulation of pro-angiogenic genes, a dampened inflammatory response and upregulation of Tgfβ. Importantly, this state of compensated dysfunction was reversible. Furthermore, increased stimulation of the receptors on the cardiomyocytes caused a switch in the secondary response from the non-myocyte cells. Progressive cardiac remodelling was stimulated through hypertrophy and death of individual cardiomyocytes, with infiltration, proliferation and activation of fibroblast and inflammatory cells, leading to increased angiogenic and inflammatory signalling. Together, these data demonstrate that a state of pre-hypertrophic compensated dysfunction can exist in affected individuals before common markers of heart disease are detectable. The data also suggest that

  13. Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes

    PubMed Central

    Liu, Mi-Hua; Shan, Jian; Li, Jian; Zhang, Yuan; Lin, Xiao-Long

    2016-01-01

    Doxorubicin (DOX) is an efficient drug used in cancer therapy; however, it can induce severe cytotoxicity, which limits its clinical application. In the present study, the effects of resveratrol (RES) on sirtuin 1 (SIRT1) activation in mediating DOX-induced cytotoxicity in H9c2 cardiac cells was investigated. H9c2 cells were exposed to 5 µM DOX for 24 h to establish a model of DOX cardiotoxicity. Apoptosis of H9c2 cardiomyocytes was assessed using the MTT assay and Hoechst nuclear staining. The results demonstrated that pretreating H9c2 cells with RES prior to the exposure of DOX resulted in increased cell viability and a decreased quantity of apoptotic cells. Western blot analysis demonstrated that DOX decreased the expression level of SIRT1. These effects were significantly alleviated by co-treatment with RES. In addition, the results demonstrated that DOX administration amplified forkhead box O1 (FoxO1) and P53 expression levels in H9c2 cells. RES was also found to protect against DOX-induced increases of FoxO1 and P53 expression levels in H9c2 cells. Furthermore, the protective effects of RES were arrested by the SIRT1 inhibitor nicotinamide. In conclusion, the results demonstrated that RES protected H9c2 cells against DOX-induced injuries via SIRT1 activation. PMID:27446329

  14. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways.

    PubMed

    Li, Chengqiu; Wang, Ting; Zhang, Chunyuan; Xuan, Jichang; Su, Changjiang; Wang, Yuqi

    2016-02-15

    Quercetin (Que), a plant-derived flavonoid, possesses various biological functions. Moreover, Que exerts multiple beneficial actions in treatment of cardiovascular diseases and there are an inverse association between Que intakes and occurrence and development of various cardiovascular diseases. Some researchers have inferred that the mechanisms of Que to protect cardiomyocytes from ischemia/reperfusion (I/R) injury may be involved in modulation of intracellular signal pathways and regulation of proteins expression in vivo. The current study investigated whether Que has any protective effects on cardiomyocytes from hypoxia/reoxygenation (H/R) in vitro and its potential cardioprotective mechanisms. The cell viability of Que on H9c2 cardiomyoblast cells was assessed by MTT. Apoptosis was evaluated by both Hoechst33342 staining and Flow cytometric analysis (FACS). Furthermore, the effect of Que, SP600125 (JNK inhibitor) and SB203580 (p38 inhibitor) on mitogen-activated protein kinases (MAPKs) and the expression of apoptosis related proteins (Bcl-2, Bax and caspase-3) was determined by Western blotting. MTT assays showed that pretreatment with Que could increase the viability of H9c2 cardiomyocytes that suffered H/R. Both Hoechst33342 staining and FACS confirmed that Que could remarkably suppress the H/R-induced apoptotic cardiomyocytes. In addition, Que significantly alleviated H/R-induced the phosphorylation of JNK and p38, which further increased Bcl-2 expression and inhibited the activation of Bax and caspase-3 directly or indirectly. In summary, our results imply that Que can induce cardioprotection by inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways and modulate the expression of Bcl-2 and Bax proteins that provides a new experimental foundation for myocardial ischemia disease therapy. PMID:26680104

  15. The potential role of NFAT5 and osmolarity in peritoneal injury.

    PubMed

    Seeger, Harald; Kitterer, Daniel; Latus, Joerg; Alscher, Mark Dominik; Braun, Niko; Segerer, Stephan

    2015-01-01

    A rise in osmotic concentration (osmolarity) activates the transcription factor Nuclear Factor of Activated T Cells 5 (NFAT5, also known as Tonicity-responsive Enhancer Binding Protein, TonEBP). This is part of a regulatory mechanism of cells adjusting to environments of high osmolarity. Under physiological conditions these are particularly important in the kidney. Activation of NFAT5 results in the modulation of various genes including some which promote inflammation. The osmolarity increases in patients with renal failure. Additionally, in peritoneal dialysis the cells of the peritoneal cavity are repeatedly exposed to a rise and fall in osmotic concentrations. Here we review the current information about NFAT5 activation in uremic patients and patients on peritoneal dialysis. We suggest that high osmolarity promotes injury in the "uremic" milieu, which results in inflammation locally in the peritoneal membrane, but most likely also in the systemic circulation. PMID:26495302

  16. NFAT restricts osteochondroma formation from entheseal progenitors

    PubMed Central

    Ge, Xianpeng; Tsang, Kelly; He, Lizhi; Garcia, Roberto A.; Ermann, Joerg; Mizoguchi, Fumitaka; Zhang, Minjie; Zhou, Bin; Zhou, Bin; Aliprantis, Antonios O.

    2016-01-01

    Osteochondromas are common benign osteocartilaginous tumors in children and adolescents characterized by cartilage-capped bony projections on the surface of bones. These tumors often cause pain, deformity, fracture, and musculoskeletal dysfunction, and they occasionally undergo malignant transformation. The pathogenesis of osteochondromas remains poorly understood. Here, we demonstrate that nuclear factor of activated T cells c1 and c2 (NFATc1 and NFATc2) suppress osteochondromagenesis through individual and combinatorial mechanisms. In mice, conditional deletion of NFATc1 in mesenchymal limb progenitors, Scleraxis-expressing (Scx-expressing) tendoligamentous cells, or postnatally in Aggrecan-expressing cells resulted in osteochondroma formation at entheses, the insertion sites of ligaments and tendons onto bone. Combinatorial deletion of NFATc1 and NFATc2 gave rise to larger and more numerous osteochondromas in inverse proportion to gene dosage. A population of entheseal NFATc1- and Aggrecan-expressing cells was identified as the osteochondroma precursor, previously believed to be growth plate derived or perichondrium derived. Mechanistically, we show that NFATc1 restricts the proliferation and chondrogenesis of osteochondroma precursors. In contrast, NFATc2 preferentially inhibits chondrocyte hypertrophy and osteogenesis. Together, our findings identify and characterize a mechanism of osteochondroma formation and suggest that regulating NFAT activity is a new therapeutic approach for skeletal diseases characterized by defective or exaggerated osteochondral growth. PMID:27158674

  17. Challenges measuring cardiomyocyte renewal

    PubMed Central

    Soonpaa, Mark H.; Rubart, Michael; Field, Loren J.

    2012-01-01

    Interventions to effect therapeutic cardiomyocyte renewal have received considerable interest of late. Such interventions, if successful, could give rise to myocardial regeneration in diseased hearts. Regenerative interventions fall into two broad categories, namely approaches based on promoting renewal of pre-existing cardiomyocytes and approaches based on cardiomyogenic stem cell activity. The latter category can be further subdivided into approaches promoting differentiation of endogenous cardiomyogenic stem cells, approaches wherein cardiomyogenic stem cells are harvested, amplified or enriched ex vivo, and subsequently engrafted into the heart, and approaches wherein an exogenous stem cell is induced to differentiate in vitro, and the resulting cardiomyocytes are engrafted into the heart. There is disagreement in the literature regarding the degree to which cardiomyocyte renewal occurs in the normal and injured heart, the mechanism(s) by which this occurs, and the degree to which therapeutic interventions can enhance regenerative growth. This review discusses several caveats which are encountered when attempting to measure cardiomyocyte renewal in vivo which likely contribute, at least in part, to the disagreement regarding the levels at which this occurs in normal, injured and treated hearts. PMID:23142641

  18. E-NTPDase 3 (ATP diphosphohydrolase) from cardiomyocytes, activity and expression are modulated by thyroid hormone.

    PubMed

    Barreto-Chaves, Maria Luiza M; Carneiro-Ramos, Marcela Sorelli; Cotomacci, Guilherme; Júnior, Marconi Barbosa Coutinho; Sarkis, João José Freitas

    2006-06-01

    Degradation of adenine nucleotides by myocardial cells occurs, in part, by a cascade of surface-located enzymes converting ATP into adenosine that has important implications for the regulation of the nucleotide/nucleoside ratio modulating the cardiac functions. Thyroid hormones have profound effects on cardiovascular system, as observed in hypo- and hyperthyroidism. Combined biochemical parameters and gene expression analysis approaches were used to investigate the influence of tri-iodothyronine (T3) on ATP and ADP hydrolysis by isolated myocytes. Cultures of cardiomyocytes were submitted to increasing doses of T3 for 24h. Enzymatic activity and expression were evaluated. T3 (0.1 nM) caused an increase in ATP and ADP hydrolysis. Experiments with specific inhibitors suggest the involvement of an NTPDase, which was confirmed by an increase in NTPDase 3 messenger RNA (mRNA) levels. Since T3 promotes an increase in the contractile protein, leading to cardiac hypertrophy, it is tempting to postulate that the increase in ATP hydrolysis and the decrease in the extracellular levels signify an important factor for prevention of excessive contractility. PMID:16584835

  19. NFAT5 Is Up-Regulated by Hypoxia: Possible Implications in Preeclampsia and Intrauterine Growth Restriction.

    PubMed

    Dobierzewska, Aneta; Palominos, Macarena; Irarrazabal, Carlos E; Sanchez, Marianela; Lozano, Mauricio; Perez-Sepulveda, Alejandra; Monteiro, Lara J; Burmeister, Yara; Figueroa-Diesel, Horacio; Rice, Gregory E; Illanes, Sebastian E

    2015-07-01

    During gestation, low oxygen environment is a major determinant of early placentation process, while persistent placental hypoxia leads to pregnancy-related complications such as preeclampsia (PE) and intrauterine growth restriction (IUGR). PE affects 5%-8% of all pregnancies worldwide and is a cause of maternal and fetal morbidity and mortality. During placental development, persistent hypoxia due to poor trophoblast invasion and reduced uteroplacental perfusion leads to maternal endothelial dysfunction and clinical manifestation of PE. Here we hypothesized that nuclear factor of activated T cells-5 (NFAT5), a well-known osmosensitive renal factor and recently characterized hypoxia-inducible protein, is also activated in vivo in placentas of PE and IUGR complications as well as in the in vitro model of trophoblast hypoxia. In JAR cells, low oxygen tension (1% O2) induced NFAT5 mRNA and increased its nuclear abundance, peaking at 16 h. This increase did not occur in parallel with the earlier HIF1A induction. Real-time PCR and Western blot analysis confirmed up-regulation of NFAT5 mRNA and NFAT5 nuclear content in human preeclamptic placentas and in rabbit placentas of an experimentally induced IUGR model, as compared with the control groups. In vitro lambda protein phosphatase (lambda PPase) treatment revealed that increased abundance of NFAT5 protein in nuclei of either JAR cells (16 h of hypoxia) or PE and IUGR placentas is at least partially due to NFAT5 phosphorylation. NFAT5 downstream targets aldose reductase (AR) and sodium-myo-inositol cotransporter (SMIT; official symbol SLC5A3) were not significantly up-regulated either in JAR cells exposed to hypoxia or in placentas of PE- and IUGR-complicated pregnancies, suggesting that hypoxia-dependent activation of NFAT5 serves as a separate function to its tonicity-dependent stimulation. In conclusion, we propose that NFAT5 may serve as a novel marker of placental hypoxia and ischemia independently of HIF1A. PMID

  20. Elevated Intracellular Calcium Increases Ferritin H Expression Through an NFAT-Independent Posttranscriptional Mechanism Involving mRNA Stabilization

    PubMed Central

    MacKenzie, Elizabeth L.; Tsuji, Yoshiaki

    2009-01-01

    An increase in intracellular Ca2+ is one of the initiating events in T cell activation. A calcium-mediated signaling cascade in T cells involves activation of calcineurin and the dephosphorylation and translocation of Nuclear Factor of Activated T-cells (NFAT), resulting in the transcriptional activation of target genes such as IL-2. In the present study, we found that increased intracellular calcium leads to induction of the antioxidant protein ferritin H. We previously reported that the ferritin H gene is transcriptionally activated under oxidative stress conditions through an antioxidant responsive element (ARE). The facts that the ferritin H ARE contains a composite AP1 site, and that NFAT collaborates with AP1 transcription factors, led us to test whether calcium-activated NFAT is involved in the ferritin H induction through the ARE. Treatment of Jurkat T cells with the calcium ionophore, ionomycin, increased ferritin H mRNA and protein expression. Though NFAT translocated to the nucleus and bound a consensus NFAT sequence located in the IL-2 promoter following ionomycin treatment, it did not activate ferritin H transcription despite the presence of a putative NFAT binding sequence in the ferritin H ARE. In addition, the calcineurin inhibitor cyclosporin A treatment blocked ionomycin-mediated NFAT nuclear translocation but failed to abrogate the increase in ferritin H mRNA. Analysis of mRNA stability following actinomycin D treatment revealed that ionomycin prolongs ferritin H mRNA half-life. Taken together, these results suggest that ionomycin-mediated induction of ferritin H may occur in an NFAT-independent manner but through posttranscriptional stabilization of the ferritin H mRNA. PMID:18076382

  1. Retinol-Binding Protein 4 Induces Cardiomyocyte Hypertrophy by Activating TLR4/MyD88 Pathway.

    PubMed

    Gao, Wei; Wang, Hao; Zhang, Lin; Cao, Yang; Bao, Ji-Zhang; Liu, Zheng-Xia; Wang, Lian-Sheng; Yang, Qin; Lu, Xiang

    2016-06-01

    Insulin resistance plays a major role in the development and progression of cardiac hypertrophy and heart failure. Heart failure in turn promotes insulin resistance and increases the risk for diabetes. The vicious cycle determines significant mortality in patients with heart failure and diabetes. However, the underlying mechanisms for the vicious cycle are not fully elucidated. Here we show that circulating levels and adipose expression of retinol-binding protein 4 (RBP4), an adipokine that contributes to systemic insulin resistance, were elevated in cardiac hypertrophy induced by transverse aortic constriction and angiotensin-II (Ang-II) infusion. Ang-II increased RBP4 expression in adipocytes, which was abolished by losartan, an Ang-II receptor blocker. The elevated RBP4 in cardiac hypertrophy may have pathophysiological consequences because RBP4 increased cell size, enhanced protein synthesis, and elevated the expression of hypertrophic markers including Anp, Bnp, and Myh7 in primary cardiomyocytes. Mechanistically, RBP4 induced the expression and activity of toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) in cardiomyocytes, resulting in enhanced inflammation and reactive oxygen species production. Inhibition or knockdown of the TLR4/MyD88 pathway attenuated inflammatory and hypertrophic responses to RBP4 stimulation. Importantly, RBP4 also reduced the expression of glucose transporter-4 and impaired insulin-stimulated glucose uptake in cardiomyocytes. This impairment was ameliorated in cardiomyocytes from TLR4 knockout mice. Therefore, RBP4 may be a critical modulator promoting the vicious cycle of insulin resistance and heart failure by activating TLR4/MyD88-mediated inflammatory pathways. Potentially, lowering RBP4 might break the vicious cycle and improve both insulin resistance and cardiac hypertrophy. PMID:27100622

  2. Conditional deletion of cardiomyocyte peroxisome proliferator-activated receptor γ enhances myocardial ischemia-reperfusion injury in mice.

    PubMed

    Hobson, Michael J; Hake, Paul W; O'Connor, Michael; Schulte, Christine; Moore, Victoria; James, Jeanne M; Piraino, Giovanna; Zingarelli, Basilia

    2014-01-01

    The nuclear transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is a key regulator of the inflammatory response to an array of biologic insults. We have previously demonstrated that PPARγ ligands reduce myocardial ischemia-reperfusion injury in rodents. In the current study, we directly determined the role of cardiomyocyte PPARγ in ischemia-reperfusion injury, using a model of conditional cardiomyocyte-specific deletion of PPARγ in vivo. In mice, α-myosin heavy chain-restricted Cre-mediated PPARγ deficiency was induced by tamoxifen treatment (30 mg/kg intraperitoneally) for 4 days (PPARγ mice), whereas controls included mice treated with the oil diluent vehicle (PPARγ mice). Western blot and histochemical analyses confirmed that expression of PPARγ protein was abolished in cardiomyocytes of mice treated with tamoxifen, but not with vehicle. After tamoxifen or vehicle treatment, animals were subjected to 30-min ligation of the left anterior descending coronary artery followed by 2-h reperfusion. In PPARγ mice, myocardial ischemia and reperfusion induced extensive myocardial damage, which was associated with elevated tissue activity of myeloperoxidase, indicating infiltration of neutrophils, and elevated plasma levels of troponin I when compared with PPARγ mice. Upon echocardiographic analysis, PPARγ mice also demonstrated ventricular dilatation and systolic dysfunction. Plasma levels of the proinflammatory cytokines interleukin 1β and interleukin 6 were higher in PPARγ mice when compared with PPARγ mice. These pathological events in PPARγ mice were associated with enhanced nuclear factor κB DNA binding in the infarcted hearts. Thus, our data suggest that cardiomyocyte PPARγ is a crucial protective receptor and may prevent reperfusion injury by modulating mechanisms of inflammation. PMID:24089001

  3. Conditional deletion of cardiomyocyte peroxisome proliferator-activated receptor-γ enhances myocardial ischemia-reperfusion injury in mice

    PubMed Central

    Hobson, Michael J.; Hake, Paul W.; O’Connor, Michael; Schulte, Christine; Moore, Victoria; James, Jeanne M.; Piraino, Giovanna; Zingarelli, Basilia

    2013-01-01

    The nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) is a key regulator of the inflammatory response to an array of biologic insults. We have previously demonstrated that PPARγ ligands reduce myocardial ischemia-reperfusion injury in rodents. In the current study, we directly determined the role of cardiomyocyte PPARγ in ischemia-reperfusion injury, employing a model of conditional cardiomyocyte-specific deletion of PPARγ in vivo. In mice, α-myosin heavy chain-restricted Cre-mediated PPARγ deficiency was induced by tamoxifen treatment (30 mg/kg intraperitoneally) for 4 days (PPARγ−/− mice); whereas controls included mice treated with the oil diluent vehicle (PPARγ+/+ mice). Western blot and histochemical analyses confirmed that expression of PPARγ protein was abolished in cardiomyocytes of mice treated with tamoxifen, but not with vehicle. After tamoxifen or vehicle treatment, animals were subjected to 30 min ligation of the left anterior descending coronary artery followed by 2 hrs reperfusion. In PPARγ−/− mice, myocardial ischemia and reperfusion induced extensive myocardial damage, which was associated with elevated tissue activity of myeloperoxidase, indicating infiltration of neutrophils, and elevated plasma levels of troponin-I when compared to PPARγ+/+ mice. PPARγ−/− mice also demonstrated ventricular dilatation and systolic dysfunction upon echocardiographic analysis. Plasma levels of the pro-inflammatory cytokines interleukin-1β and interleukin-6 were higher in PPARγ−/− mice when compared to PPARγ+/+ mice. These pathological events in PPARγ−/− mice were associated with enhanced nuclear factor-κB DNA binding in the infarcted hearts. Thus, our data suggests that cardiomyocyte PPARγ is a crucial protective receptor and may prevent reperfusion injury by modulating mechanisms of inflammation. PMID:24089001

  4. Calcineurin/NFAT signaling and innate host defence: a role for NOD1-mediated phagocytic functions

    PubMed Central

    2014-01-01

    The calcineurin/nuclear factor of activated T cells (NFATs) signaling pathway plays a central role in T cell mediated adaptive immune responses, but a number of recent studies demonstrated that calcineurin/NFAT signaling also plays a key role in the control of the innate immune response by myeloid cells. Calcineurin inhibitors, such as cyclosporine A (CsA) and tacrolimus (FK506), are commonly used in organ transplantation to prevent graft rejection and in a variety of immune diseases. These immunosuppressive drugs have adverse effects and significantly increase host’s susceptibility towards bacterial or fungal infections. Recent studies highlighted the role of NFAT signaling in fungal infection and in the control of the pattern recognition receptor nucleotide-binding oligomerization domain-containing protein 1 (NOD1), which predominantly senses invasive Gram-negative bacteria and mediates neutrophil phagocytic functions. This review summarises some of the current knowledge concerning the role of NFAT signaling in the innate immune response and the recent advances on NFAT-dependent inhibition of NOD1-mediated innate immune response caused by CsA, which may contribute to sensitizing transplant recipients to bacterial infection. PMID:24479879

  5. Origin of Cardiomyocytes in the Adult Heart

    PubMed Central

    Leri, Annarosa; Rota, Marcello; Pasqualini, Francesco S.; Goichberg, Polina; Anversa, Piero

    2014-01-01

    This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the reentry of cardiomyocytes into the cell cycle; dedifferentiation of preexisting cardiomyocytes which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge. PMID:25552694

  6. Calcium and Calcineurin-NFAT Signaling Regulate Granulocyte-Monocyte Progenitor Cell Cycle via Flt3-L

    PubMed Central

    Fric, Jan; Lim, Clarice XF; Mertes, Alexandra; Lee, Bernett TK; Viganò, Elena; Chen, Jinmiao; Zolezzi, Francesca; Poidinger, Michael; Larbi, Anis; Strobl, Herbert; Zelante, Teresa; Ricciardi-Castagnoli, Paola

    2014-01-01

    Abstract Maintenance of myeloid progenitor cells is controlled by complex regulatory mechanisms and is orchestrated by multiple different transcription factors. Here, we report that the activation of the transcription factor nuclear factor of activated T cells (NFAT) by calcium-sensing protein calcineurin inhibits the proliferation of myeloid granulocyte–monocyte progenitors (GMPs). Myeloid progenitor subtypes exhibit variable sensitivity to induced Ca2+ entry and consequently display differential engagement of the calcineurin-NFAT pathway. This study shows that inhibition of the calcineurin-NFAT pathway enhances the proliferation of GMPs both in vitro and in vivo and demonstrates that calcineurin-NFAT signaling in GMPs is initiated by Flt3-L. Inhibition of the calcineurin-NFAT pathway modified expression of the cell cycle regulation genes Cdk4, Cdk6, and Cdkn1a (p21), thus enabling rapid cell cycle progression specifically in GMPs. NFAT inhibitor drugs are extensively used in the clinic to restrict the pathological activation of lymphoid cells, and our data reveal for the first time that these therapies also exert potent effects on maintenance of the myeloid cell compartment through specific regulation of GMP proliferation. Stem Cells 2014;32:3232–3244 PMID:25100642

  7. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    SciTech Connect

    Susilowati, Heni; Okamura, Hirohiko; Hirota, Katsuhiko; Shono, Masayuki; Yoshida, Kaya; Murakami, Keiji; Tabata, Atsushi; Nagamune, Hideaki; Haneji, Tatsuji; Miyake, Yoichiro

    2011-01-07

    Research highlights: {yields} ILY leads to the accumulation of [Ca{sup 2+}]i in the nucleus in HuCCT1 cells. {yields} ILY induced activation of NFAT1 through a calcineurin-dependent pathway. {yields} Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca{sup 2+}]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-{kappa}B translocation in human hepatic HepG2 cells, ILY did not affect NF-{kappa}B localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca{sup 2+}]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.

  8. Retinoic Acid Protects Cardiomyocytes from High Glucose-Induced Apoptosis via Inhibition of Sustained Activation of NF-κB Signaling

    PubMed Central

    Nizamutdinova, Irina T.; Guleria, Rakeshwar S.; Singh, Amar B.; Kendall, Jonathan A.; Baker, Kenneth M.; Pan, Jing

    2012-01-01

    We have previously shown that retinoic acid (RA) has protective effects on high glucose (HG)-induced cardiomyocyte apoptosis. To further elucidate the molecular mechanisms of RA effects, we determined the interaction between nuclear factor (NF)-κB and RA signaling. HG induced a sustained phosphorylation of IKK/IκBα and transcriptional activation of NF-κB in cardiomyocytes. Activated NF-κB signaling has an important role in HG-induced cardiomyocyte apoptosis and gene expression of interleukin-6 (IL-6), tumor necrosis factor (TNF)-α and monocyte chemoattractant protein-1 (MCP-1). All-trans RA (ATRA) and LGD1069, through activation of RAR/RXR-mediated signaling, inhibited the HG-mediated effects in cardiomyocytes. The inhibitory effect of RA on NF-κB activation was mediated through inhibition of IKK/IκBα phosphorylation. ATRA and LGD1069 treatment promoted protein phosphatase 2A (PP2A) activity, which was significantly suppressed by HG stimulation. The RA effects on IKK and IκBα were blocked by okadaic acid or silencing the expression of PP2Ac-subunit, indicating that the inhibitory effect of RA on NF-κB is regulated through activation of PP2A and subsequent dephosphorylation of IKK/IκBα. Moreover, ATRA and LGD1069 reversed the decreased PP2A activity and inhibited the activation of IKK/IκBα and gene expression of MCP-1, IL-6 and TNF-α in the hearts of Zucker diabetic fatty rats. In summary, our findings suggest that the suppressed activation of PP2A contributed to sustained activation of NF-κB in HG-stimulated cardiomyocytes; and that the protective effect of RA on hyperglycemia-induced cardiomyocyte apoptosis and inflammatory responses is partially regulated through activation of PP2A and suppression of NF-κB-mediated signaling and downstream targets. PMID:22718360

  9. Reconciling depressed Ca2+ sparks occurrence with enhanced RyR2 activity in failing mice cardiomyocytes

    PubMed Central

    Li, Linwei; Fernández-Velasco, María; Rueda, Angélica; Lefebvre, Florence; Wang, Yueyi; Mateo, Philippe; Cassan, Cécile; Gellen, Barnabas; Benitah, Jean Pierre

    2015-01-01

    Abnormalities in cardiomyocyte Ca2+ handling contribute to impaired contractile function in heart failure (HF). Experiments on single ryanodine receptors (RyRs) incorporated into lipid bilayers have indicated that RyRs from failing hearts are more active than those from healthy hearts. Here, we analyzed spontaneous Ca2+ sparks (brief, localized increased in [Ca2+]i) to evaluate RyR cluster activity in situ in a mouse post-myocardial infarction (PMI) model of HF. The cardiac ejection fraction of PMI mice was reduced to ∼30% of that of sham-operated (sham) mice, and their cardiomyocytes were hypertrophied. The [Ca2+]i transient amplitude and sarcoplasmic reticulum (SR) Ca2+ load were decreased in intact PMI cardiomyocytes compared with those from sham mice, and spontaneous Ca2+ sparks were less frequent, whereas the fractional release and the frequency of Ca2+ waves were both increased, suggesting higher RyR activity. In permeabilized cardiomyocytes, in which the internal solution can be controlled, Ca2+ sparks were more frequent in PMI cells (under conditions of similar SR Ca2+ load), confirming the enhanced RyR activity. However, in intact cells from PMI mice, the Ca2+ sparks frequency normalized by the SR Ca2+ load in that cell were reduced compared with those in sham mice, indicating that the cytosolic environment in intact cells contributes to the decrease in Ca2+ spark frequency. Indeed, using an internal “failing solution” with less ATP (as found in HF), we observed a dramatic decrease in Ca2+ spark frequency in permeabilized PMI and sham myocytes. In conclusion, our data show that, even if isolated RyR channels show more activity in HF, concomitant alterations in intracellular media composition and SR Ca2+ load may mask these effects at the Ca2+ spark level in intact cells. Nonetheless, in this scenario, the probability of arrhythmogenic Ca2+ waves is enhanced, and they play a potential role in the increase in arrhythmia events in HF patients. PMID

  10. Reconciling depressed Ca2+ sparks occurrence with enhanced RyR2 activity in failing mice cardiomyocytes.

    PubMed

    Ruiz-Hurtado, Gema; Li, Linwei; Fernández-Velasco, María; Rueda, Angélica; Lefebvre, Florence; Wang, Yueyi; Mateo, Philippe; Cassan, Cécile; Gellen, Barnabas; Benitah, Jean Pierre; Gómez, Ana María

    2015-10-01

    Abnormalities in cardiomyocyte Ca2+ handling contribute to impaired contractile function in heart failure (HF). Experiments on single ryanodine receptors (RyRs) incorporated into lipid bilayers have indicated that RyRs from failing hearts are more active than those from healthy hearts. Here, we analyzed spontaneous Ca2+ sparks (brief, localized increased in [Ca2+]i) to evaluate RyR cluster activity in situ in a mouse post-myocardial infarction (PMI) model of HF. The cardiac ejection fraction of PMI mice was reduced to ∼30% of that of sham-operated (sham) mice, and their cardiomyocytes were hypertrophied. The [Ca2+]i transient amplitude and sarcoplasmic reticulum (SR) Ca2+ load were decreased in intact PMI cardiomyocytes compared with those from sham mice, and spontaneous Ca2+ sparks were less frequent, whereas the fractional release and the frequency of Ca2+ waves were both increased, suggesting higher RyR activity. In permeabilized cardiomyocytes, in which the internal solution can be controlled, Ca2+ sparks were more frequent in PMI cells (under conditions of similar SR Ca2+ load), confirming the enhanced RyR activity. However, in intact cells from PMI mice, the Ca2+ sparks frequency normalized by the SR Ca2+ load in that cell were reduced compared with those in sham mice, indicating that the cytosolic environment in intact cells contributes to the decrease in Ca2+ spark frequency. Indeed, using an internal "failing solution" with less ATP (as found in HF), we observed a dramatic decrease in Ca2+ spark frequency in permeabilized PMI and sham myocytes. In conclusion, our data show that, even if isolated RyR channels show more activity in HF, concomitant alterations in intracellular media composition and SR Ca2+ load may mask these effects at the Ca2+ spark level in intact cells. Nonetheless, in this scenario, the probability of arrhythmogenic Ca2+ waves is enhanced, and they play a potential role in the increase in arrhythmia events in HF patients. PMID:26371209

  11. Suppression of Bim by microRNA-19a may protect cardiomyocytes against hypoxia-induced cell death via autophagy activation.

    PubMed

    Gao, Yan-Hua; Qian, Ju-Ying; Chen, Zhang-Wei; Fu, Ming-Qiang; Xu, Jian-Feng; Xia, Yan; Ding, Xue-Feng; Yang, Xiang-Dong; Cao, Yuan-Yuan; Zou, Yun-Zeng; Ren, Jun; Sun, Ai-Jun; Ge, Jun-Bo

    2016-08-22

    Microvascular obstruction (MO), one of unfavorable complications of percutaneous coronary intervention (PCI), is responsible for the lost benefit of reperfusion therapy. Determination of microRNA-19a, a member of the miR-17-92 cluster, using quantitative real-time polymerase chain reaction (PCR) revealed notably down-regulated microRNA-19a, in myocardium with MO. Nonetheless, the role of miR-19a in MO and the underlying mechanism remains to be elucidated. To this end, an in vitro microembolization model in cardiomyocytes was used. Our data revealed that hypoxic exposure prompted cardiomyocyte apoptosis in a time-dependent manner accompanied by reduced miR-19a. miR-19a overexpression clearly ameliorated hypoxia-induced cell death (necrosis and apoptosis), at least in part, through switching on autophagy. Further dual-luciferase reporter assay and immunoblotting studies demonstrated that miR-19a-induced cytoprotection might be achieved in part through modulation of the specific target Bcl-2 interacting mediator of cell death, Bim, an apoptotic activator. Bim sufficiently interfered with miR-19a-induced LC3 conversion and increased cardiomyocyte apoptosis under hypoxia. Moreover, cardiomyocytes pretreated with 3-methyladenine conferred resistance to the cytoprotective effect of miR-19a and displayed notably increased TUNEL staining and caspase-3 activity. In conclusion, miR-19a protected cardiomyocytes against hypoxia-induced lethality at least in part via Bim suppression and subsequently autophagy activation. PMID:27220268

  12. T-type Ca2+ signalling regulates aldosterone-induced CREB activation and cell death through PP2A activation in neonatal cardiomyocytes

    PubMed Central

    Ferron, Laurent; Ruchon, Yann; Renaud, Jean-François; Capuano, Véronique

    2011-01-01

    Aims We have investigated Ca2+ signalling generated by aldosterone-induced T-type current (ICaT), the effects of ICaT in neonatal cardiomyocytes, and a putative role for ICaT in cardiomyocytes during cardiac pathology induced by stenosis in an adult rat. Methods and results Neonatal rat cardiomyocytes treated with aldosterone showed an increase in ICaT density, principally due to the upregulation of the T-type channel Cav3.1 (by 80%). Aldosterone activated cAMP-response element-binding protein (CREB), and this activation was enhanced by blocking ICaT or by inhibiting protein phosphatase 2A (PP2A) activity. Aldosterone induced PP2A activity, an induction that was prevented upon ICaT blockade. ICaT exerted a negative feedback regulation on the transcription of the Cav3.1 gene, and the activation of PP2A by ICaT led to increased levels of the pro-apoptotic markers caspase 9 and Bcl-xS and decreased levels of the anti-apoptotic marker Bcl-2. These findings were corroborated by flow cytometry analysis for apoptosis and necrosis. Similarly, in a rat model of cardiac disease, ICaT re-emergence was associated with a decrease in CREB activation and was correlated with increases in caspase 9 and Bcl-xS and a decrease in Bcl-2 levels. Conclusion Our findings establish PP2A/CREB as targets of ICaT-generated Ca2+ signalling and identify an important role for ICaT in cardiomyocyte cell death. PMID:21123217

  13. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    SciTech Connect

    Takatani-Nakase, Tomoka Takahashi, Koichi

    2015-07-17

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  14. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes

    SciTech Connect

    Duan, Hongyan; Li, Yongqiang; Yan, Lijie; Yang, Haitao; Wu, Jintao; Qian, Peng; Li, Bing; Wang, Shanling

    2015-07-01

    Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H{sub 2}O{sub 2} production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling.

  15. Activation of β-Adrenoceptors by Dobutamine May Induce a Higher Expression of Peroxisome Proliferator-Activated Receptors δ (PPARδ) in Neonatal Rat Cardiomyocytes

    PubMed Central

    Chou, Ming-Ting; Lo, Shih-Hsiang; Cheng, Kai-Chun; Li, Yin-Xiao; Chen, Li-Jen; Cheng, Juei-Tang

    2012-01-01

    Recent evidence showed the role of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Cardiac contraction induced by various agents is critical in restoring the activity of peroxisome proliferator-activated receptors δ (PPARδ) in cardiac myopathy. Because dobutamine is an agent widely used to treat heart failure in emergency setting, this study is aimed to investigate the change of PPARδ in response to dobutamine. Neonatal rat cardiomyocytes were used to examine the effects of dobutamine on PPARδ expression levels and cardiac troponin I (cTnI) phosphorylation via Western blotting analysis. We show that treatment with dobutamine increased PPARδ expression and cTnI phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. These increases were blocked by the antagonist of β1-adrenoceptors. Also, the action of dobutamine was related to the increase of calcium ions and diminished by chelating intracellular calcium. Additionally, dobutamine-induced action was reduced by the inhibition of downstream messengers involved in this calcium-related pathway. Moreover, deletion of PPARδ using siRNA generated the reduction of cTnI phosphorylation in cardiomyocytes treated with dobutamine. Thus, we concluded that PPARδ is increased by dobutamine in cardiac cells. PMID:22666095

  16. Tanshinone IIA Prevents Leu27IGF-II-Induced Cardiomyocyte Hypertrophy Mediated by Estrogen Receptor and Subsequent Akt Activation.

    PubMed

    Weng, Yueh-Shan; Wang, Hsueh-Fang; Pai, Pei-Ying; Jong, Gwo-Ping; Lai, Chao-Hung; Chung, Li-Chin; Hsieh, Dennis Jine-Yuan; HsuanDay, Cecilia; Kuo, Wei-Wen; Huang, Chih-Yang

    2015-01-01

    IGF-IIR plays important roles as a key regulator in myocardial pathological hypertrophy and apoptosis, which subsequently lead to heart failure. Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese medicinal herb used to treat cardiovascular diseases. Tanshinone IIA is an active compound in Danshen and is structurally similar to 17[Formula: see text]-estradiol (E[Formula: see text]. However, whether tanshinone IIA improves cardiomyocyte survival in pathological hypertrophy through estrogen receptor (ER) regulation remains unclear. This study investigates the role of ER signaling in mediating the protective effects of tanshinone IIA on IGF-IIR-induced myocardial hypertrophy. Leu27IGF-II (IGF-II analog) was shown in this study to specifically activate IGF-IIR expression and ICI 182,780 (ICI), an ER antagonist used to investigate tanshinone IIA estrogenic activity. We demonstrated that tanshinone IIA significantly enhanced Akt phosphorylation through ER activation to inhibit Leu27IGF-II-induced calcineurin expression and subsequent NFATc3 nuclear translocation to suppress myocardial hypertrophy. Tanshinone IIA reduced the cell size and suppressed ANP and BNP, inhibiting antihypertrophic effects induced by Leu27IGF-II. The cardioprotective properties of tanshinone IIA that inhibit Leu27IGF-II-induced cell hypertrophy and promote cell survival were reversed by ICI. Furthermore, ICI significantly reduced phospho-Akt, Ly294002 (PI3K inhibitor), and PI3K siRNA significantly reduced the tanshinone IIA-induced protective effect. The above results suggest that tanshinone IIA inhibited cardiomyocyte hypertrophy, which was mediated through ER, by activating the PI3K/Akt pathway and inhibiting Leu27IGF-II-induced calcineurin and NFATC3. Tanshinone IIA exerted strong estrogenic activity and therefore represented a novel selective ER modulator that inhibits IGF-IIR signaling to block cardiac hypertrophy. PMID:26621443

  17. Lipoxin A4-Induced Heme Oxygenase-1 Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury via p38 MAPK Activation and Nrf2/ARE Complex

    PubMed Central

    Chen, Xiao-Qing; Wu, Sheng-Hua; Zhou, Yu; Tang, Yan-Rong

    2013-01-01

    Objective To investigate whether lipoxin A4 (LXA4) increases expression of heme oxygenase-1(HO-1) in cardiomyocytes, whether LXA4-induced HO-1 protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury, and what are the mechanisms involved in the LXA4-induced HO-1 induction. Methods Rat cardiomyocytes were exposed to H/R injury with or without preincubation with LXA4 or HO-1 inhibitor ZnPP-IX or various signal molecule inhibitors. Expressions of HO-1 protein and mRNA were analyzed by using Western blot and RT-PCR respectively. Activity of nuclear factor E2-related factor 2 (Nrf2) binding to the HO-1 E1 enhancer was assessed by chromatin immunoprecipitation. Nrf2 binding to the HO-1 antioxidant responsive element (ARE) were measured by using electrophoretic mobility shift assay. Results Pretreatment of the cells undergoing H/R lesion with LXA4 significantly reduced the lactate dehydrogenase and creatine kinase productions, increased the cell viability, and increased the expressions of HO-1 protein and mRNA and HO-1 promoter activity. HO-1 inhibition abolished the protective role of LXA4 on the cells undergoing H/R lesion. LXA4 increased p38 mitogen-activated protein kinase (p38 MAPK) activation, nuclear translocation of Nrf2, Nrf2 binding to the HO-1 ARE and E1 enhancer in cardiomyocytes with or without H/R exposure. Conclusion The protection role of LXA4 against H/R injury of cardiomyocytes is related to upregulation of HO-1, via activation of p38 MAPK pathway and nuclear translocation of Nrf2 and Nrf2 binding to the HO-1 ARE and E1 enhancer, but not via activation of phosphatidyinositol-3-kinase or extracellular signal-regulated kinase pathway. PMID:23826208

  18. Cardiomyocytes In Vitro Adhesion Is Actively Influenced by Biomimetic Synthetic Peptides for Cardiac Tissue Engineering

    PubMed Central

    Huerta-Cantillo, Rocio; Comisso, Marina; Danesin, Roberta; Ghezzo, Francesca; Naso, Filippo; Gastaldello, Alessandra; Schittullo, Eleonora; Buratto, Edward; Spina, Michele; Gerosa, Gino; Dettin, Monica

    2012-01-01

    Scaffolds for tissue engineering must be designed to direct desired events such as cell attachment, growth, and differentiation. The incorporation of extracellular matrix-derived peptides into biomaterials has been proposed to mimic biochemical signals. In this study, three synthetic fragments of fibronectin, vitronectin, and stromal-derived factor-1 were investigated for the first time as potential adhesive sequences for cardiomyocytes (CMs) compared to smooth muscle cells. CMs are responsive to all peptides to differing degrees, demonstrating the existence of diverse adhesion mechanisms. The pretreatment of nontissue culture well surfaces with the (Arginine-Glycine-Aspartic Acid) RGD sequence anticipated the appearance of CMs' contractility compared to the control (fibronectin-coated well) and doubled the length of cell viability. Future prospects are the inclusion of these sequences into biomaterial formulation with the improvement in cell adhesion that could play an important role in cell retention during dynamic cell seeding. PMID:22011064

  19. Zinc pyrithione salvages reperfusion injury by inhibiting NADPH oxidase activation in cardiomyocytes.

    PubMed

    Kasi, Viswanath; Bodiga, Sreedhar; Kommuguri, Upendra Nadh; Sankuru, Suneetha; Bodiga, Vijaya Lakshmi

    2011-07-01

    Zinc pyrithione (ZPT), has a strong anti-apoptotic effect when administered just before reperfusion. Because oxidative stress has been proposed to contribute to myocardial reperfusion injury, we tested whether ZPT can reduce the production of reactive oxygen species during reoxygenation in cultured neonatal rat cardiac myocytes and evaluated the role of NADPH oxidase in hypoxia/reoxygenation (H/R) injury. The cells were subjected to 8h of simulated ischemia, followed by either 30 min or 16 h of reoxygenation. ZPT when started just before reoxygenation significantly reduced superoxide generation, LDH release and improved cell survival compared to H/R. Attenuation of the ROS production by ZPT paralleled its capacity to prevent pyknotic nuclei formation. In addition, ZPT reversed the H/R-induced expression of NOX2 and p47(phox) phosphorylation indicating that ZPT directly protects cardiomyocytes from reperfusion injury by a mechanism that attenuates NADPH oxidase mediated intracellular oxidative stress. PMID:21651898

  20. Identification of novel regulatory NFAT and TFII-I binding elements in the calbindin-D28k promoter in response to serum deprivation.

    PubMed

    Hajibeigi, Asghar; Dioum, Elhadji M; Guo, Jianfei; Öz, Orhan K

    2015-09-25

    Calbindin-D28k, a key regulator of calcium homeostasis plays a cytoprotective role in various tissues. We used serum free (SFM) and charcoal stripped serum (csFBS) culture media as models of cellular stress to modulate calbindin D28k expression and identify regulatory cis-elements and trans-acting factors in kidney and beta cells. The murine calbindin-D28k promoter activity was significantly upregulated under SFM or csFBS condition. Promoter analysis revealed evolutionary conserved regulatory cis-elements and deletion of 23 nt from +117/+139 as critical for basal transcription. Bioinformatics analysis of the promoter revealed conserved NFAT and TFII regulators elements. Forced expression of NFAT stimulated promoter activity. Inhibition of NFAT transcriptional activity by FK506 attenuated calbindin-D28k expression. TFII-I was shown to be necessary for basal promoter activity and to act cooperatively with NFAT. Using chromatin immunoprecipitation (ChIP) assays, NFAT was shown to bind to both proximal and distal promoter regions. ChIP assays also revealed recruitment of TFII to the -36/+139 region. Knockdown of TFII-I decreased promoter activity. In summary, calbindin-D28k expression during serum deprivation is partly regulated by NFAT and TF-II. This regulation may be important in vivo during ischemia and growth factor withdrawal to regulate cellular function and maintenance. PMID:26260319

  1. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes.

    PubMed

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-09-01

    Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes

  2. MicroRNA-128 inhibition attenuates myocardial ischemia/reperfusion injury-induced cardiomyocyte apoptosis by the targeted activation of peroxisome proliferator-activated receptor gamma

    PubMed Central

    ZENG, XIAO CONG; LI, LANG; WEN, HONG; BI, QI

    2016-01-01

    The aim of the present study was to investigate the effects of microRNA (miR)-128 inhibition on the targeted activation of peroxisome proliferator-activated receptor gamma (PPARG) and on cardiomyocyte apoptosis induced by myocardial ischemia/reperfusion (I/R) injury. In vitro, the expression of PPARG was detected by reverse transcription-quantitative polymerase chain reaction and western blotting in neonatal rat ventricular myocytes (NRVMs) and HEK293 cells transfected with the mimics or inhibitors of miR-128 or control RNA. Luciferase reporter assays were used to identify whether PPARG is a direct target of miR-128. In vivo, miR-128 was knocked down via ear vein injection of antagomir-128 in a rabbit myocardial I/R injury model. Western blotting investigated the activation of Akt [phosphorylated (p)-Akt] and the expression of total-Akt, PPARG and myeloid leukemia cell differentiation protein-1 (Mcl-1) in the myocardium. Cardiomyocyte apoptosis was examined with transmission electron microscropy and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. PPARG mRNA and protein were downregulated in NRVMs transfected with miR-128 mimics, but upregulated by antagomir-128 compared with control. This indicates that PPARG is a direct miR-128 target. Activation of Akt (p-Akt), Mcl-1 and PPARG expression in the myocardium were increased by miR-128 inhibition. Furthermore, miR-128 antagomirs significantly reduced apoptosis in hearts subjected to I/R injury, which was blocked by the PPARG inhibitor GW9662. In conclusion, miR-128 inhibition attenuated I/R injury-induced cardiomyocyte apoptosis by the targeted activation of PPARG signaling. PMID:27150726

  3. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes.

    PubMed

    Markandeya, Yogananda S; Phelan, Laura J; Woon, Marites T; Keefe, Alexis M; Reynolds, Courtney R; August, Benjamin K; Hacker, Timothy A; Roth, David M; Patel, Hemal H; Balijepalli, Ravi C

    2015-09-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca(2+) cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca(2+) signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca(2+) current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  4. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes*

    PubMed Central

    Markandeya, Yogananda S.; Phelan, Laura J.; Woon, Marites T.; Keefe, Alexis M.; Reynolds, Courtney R.; August, Benjamin K.; Hacker, Timothy A.; Roth, David M.; Patel, Hemal H.; Balijepalli, Ravi C.

    2015-01-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca2+ cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca2+ signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca2+ current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  5. Elatoside C protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes through the reduction of endoplasmic reticulum stress partially depending on STAT3 activation.

    PubMed

    Wang, Min; Meng, Xiang-bao; Yu, Ying-li; Sun, Gui-bo; Xu, Xu-dong; Zhang, Xiao-po; Dong, Xi; Ye, Jing-xue; Xu, Hui-bo; Sun, Yi-fan; Sun, Xiao-bo

    2014-12-01

    Endoplasmic reticulum (ER) stress-induced apoptosis has been suggested to contribute to myocardial ischemia-reperfusion (I/R) injury. Elatoside C is one of the major triterpenoid compounds isolated from Aralia elata that is known to be cardioprotective. However, its effects on I/R injury to cardiac myocytes have not been clarified. This study aimed to investigate the possible protective effect of Elatoside C against hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocyte injury and its underlying mechanisms. H9c2 cardiomyocytes were subjected to H/R in the presence of Elatoside C. Our results showed that Elatoside C (25 μM) treatment provided significant protection against H/R-induced cell death, as evidenced by improved cell viability, maintained mitochondrial membrane potential, diminished mitochondrial ROS, and reduced apoptotic cardiomyocytes (P < 0.05). These changes were associated with the inhibition of ER stress-associated apoptosis markers (GRP78, CHOP, Caspase-12 and JNK), as well as the increased phosphorylation of STAT3 and an increased Bcl2/Bax ratio. Moreover, these effects of Elatoside C were prevented by the STAT3 inhibitor Stattic. Taken together, these results suggested that Elatoside C can alleviate H/R-induced cardiomyocyte apoptosis most likely by activating the STAT3 pathways and reducing ER stress-associated apoptosis. PMID:25326083

  6. Identification of lineariifolianoid A as a novel dual NFAT1 and MDM2 inhibitor for human cancer therapy

    PubMed Central

    Qin, Jiang-Jiang; Sarkar, Sushanta; Voruganti, Sukesh; Agarwal, Rajesh; Wang, Wei; Zhang, Ruiwen

    2016-01-01

    Abstract There is an increasing interest in development of novel anticancer agents that target oncogenes. We have recently discovered that nuclear factor of activated T cells 1 (NFAT1) is a novel regulator of the Mouse Double Minute 2 (MDM2) oncogene and the NFAT1-MDM2 pathway has been implicated in human cancer development and progression, justifying that targeting the NFAT1-MDM2 pathway could be a novel strategy for discovery and development of novel cancer therapeutics. The present study was designed to examine the anticancer activity and underlying mechanisms of action of lineariifolianoid A (LinA), a novel natural product inhibitor of the NFAT1-MDM2 pathway. The cytotoxicity of LinA was first tested in various human cancer cell lines in comparison with normal cell lines. The results showed that the breast cancer cells were highly sensitive to LinA treatment. We next demonstrated the effects of LinA on cell proliferation, colony formation, cell cycle progression, and apoptosis in breast cancer MCF7 and MDA-MB-231 cells, in dose-dependent and p53-independent manners. LinA also inhibited the migration and invasion of these cancer cells. Our mechanistic studies further indicated that its anticancer activities were attributed to its inhibitory effects on the NFAT1-MDM2 pathway and modulatory effects on the expression of key proteins involved in cell cycle progression, apoptosis, and DNA damage. In summary, LinA is a novel NFAT1-MDM2 inhibitor and may be developed as a preventive and therapeutic agent against human cancer. PMID:27533941

  7. Regulation of gene expression by NFAT transcription factors in hibernating ground squirrels is dependent on the cellular environment.

    PubMed

    Zhang, Yichi; Storey, Kenneth B

    2016-09-01

    Calcineurin is a calmodulin-stimulated phosphatase that regulates the nuclear translocation of nuclear factor of activated T cell (NFAT) c1-4 through dephosphorylation. We believe that this mechanism plays various roles in the remodeling and maintenance of Ictidomys tridecemlineatus skeletal muscle. During hibernation, bouts of torpor and arousal take place, and squirrels do not lose muscle mass despite being inactive. Protein expression of Ca(2+) signaling proteins were studied using immunoblotting. A DNA-protein interaction ELISA technique was created to test the binding of NFATs in the nucleus to DNA probes containing the NFAT response element under environmental conditions reflective of those during hibernation. Calcineurin protein levels increased by 3.08-fold during torpor (compared to euthermic control), whereas calpain1 levels also rose by 3.66-fold during torpor. Calmodulin levels were elevated upon entering torpor. NFATc4 binding to DNA showed a 1.4-fold increase during torpor, and we found that this binding was further enhanced when 600 nM of Ca(2+) was supplemented. We also found that decreasing the temperature of ELISAs resulted in progressive decreases in the binding of NFATs c1, c3, and c4 to DNA. In summary, calmodulin and calpain1 appear to activate calcineurin and NFATc4 during torpor. NFAT binding to target promoters is affected by intranuclear [Ca(2+)] and environmental temperatures. Therefore, Ca(2+) signaling and temperature changes play key roles in regulation of the NFAT-calcineurin pathway in skeletal muscle of hibernating 13-lined ground squirrels over the torpor-arousal cycle, and they may contribute to the avoidance of disuse-induced muscle atrophy that occurs naturally in these animals. PMID:27344571

  8. ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation

    PubMed Central

    Huang, C-Y; Kuo, W-W; Yeh, Y-L; Ho, T-J; Lin, J-Y; Lin, D-Y; Chu, C-H; Tsai, F-J; Tsai, C-H; Huang, C-Y

    2014-01-01

    Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure. Our previous studies found that the activation of insulin-like growth factor receptor II (IGF-IIR) signaling was critical for hypertensive angiotensin II (ANG II)-induced cardiomyocyte apoptosis. However, the detailed mechanism by which ANG II regulates IGF-IIR in heart cells remains elusive. In this study, we found that ANG II activated its downstream kinase JNK to increase IGF-IIR expression through the ANG II receptor angiotensin type 1 receptor. JNK activation subsequently led to sirtuin 1 (SIRT1) degradation via the proteasome, thus preventing SIRT1 from deacetylating heat-shock transcription factor 1 (HSF1). The resulting increase in the acetylation of HSF1 impaired its ability to bind to the IGF-IIR promoter region (nt −748 to −585). HSF1 protected cardiomyocytes by acting as a repressor of IGF-IIR gene expression, and ANG II diminished this HSF1-mediated repression through enhanced acetylation, thus activating the IGF-IIR apoptosis pathway. Taken together, these results suggest that HSF1 represses IGF-IIR gene expression to protect cardiomyocytes. ANG II activates JNK to degrade SIRT1, resulting in HSF1 acetylation, which induces IGF-IIR expression and eventually results in cardiac hypertrophy and apoptosis. HSF1 could be a valuable target for developing treatments for cardiac diseases in hypertensive patients. PMID:24786827

  9. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury

    PubMed Central

    Furman, Jennifer L.; Sompol, Pradoldej; Kraner, Susan D.; Pleiss, Melanie M.; Putman, Esther J.; Dunkerson, Jacob; Mohmmad Abdul, Hafiz; Roberts, Kelly N.; Scheff, Stephen W.

    2016-01-01

    Increasing evidence suggests that the calcineurin (CN)-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) mediates deleterious effects of astrocytes in progressive neurodegenerative conditions. However, the impact of astrocytic CN/NFAT signaling on neural function/recovery after acute injury has not been investigated extensively. Using a controlled cortical impact (CCI) procedure in rats, we show that traumatic brain injury is associated with an increase in the activities of NFATs 1 and 4 in the hippocampus at 7 d after injury. NFAT4, but not NFAT1, exhibited extensive labeling in astrocytes and was found throughout the axon/dendrite layers of CA1 and the dentate gyrus. Blockade of the astrocytic CN/NFAT pathway in rats using adeno-associated virus (AAV) vectors expressing the astrocyte-specific promoter Gfa2 and the NFAT-inhibitory peptide VIVIT prevented the injury-related loss of basal CA1 synaptic strength and key synaptic proteins and reduced the susceptibility to induction of long-term depression. In conjunction with these seemingly beneficial effects, VIVIT treatment elicited a marked increase in the expression of the prosynaptogenic factor SPARCL1 (hevin), especially in hippocampal tissue ipsilateral to the CCI injury. However, in contrast to previous work on Alzheimer's mouse models, AAV-Gfa2-VIVIT had no effects on the levels of GFAP and Iba1, suggesting that synaptic benefits of VIVIT were not attributable to a reduction in glial activation per se. Together, the results implicate the astrocytic CN/NFAT4 pathway as a key mechanism for disrupting synaptic remodeling and homeostasis in the hippocampus after acute injury. SIGNIFICANCE STATEMENT Similar to microglia, astrocytes become strongly “activated” with neural damage and exhibit numerous morphologic/biochemical changes, including an increase in the expression/activity of the protein phosphatase calcineurin. Using adeno-associated virus (AAV) to inhibit the calcineurin

  10. Inositol-1,4,5-trisphosphate-mediated spontaneous activity in mouse embryonic stem cell-derived cardiomyocytes.

    PubMed

    Kapur, Nidhi; Banach, Kathrin

    2007-06-15

    Embryonic stem cell-derived cardiomyocytes (ESdCs) have been proposed as a source for cardiac cell-replacement therapy. The aim of this study was to determine the Ca2+-handling mechanisms that determine the frequency and duration of spontaneous Ca2+ transients in single ESdCs. With laser scanning confocal microscopy using the Ca2+-sensitive dye Fluo-4/AM, we determined that spontaneous Ca2+ transients in ESdCs at the onset of beating (day 9) depend on Ca2+ entry across the plasma membrane (50%) whereas Ca2+-induced Ca2+ release is the major contributor to Ca2+ transients in ESdCs after 16 days (72%). Likewise, Ca2+ extrusion in 9-day-old ESdCs depends on Na+-Ca2+ exchange (50.0+/-8%) whereas Ca2+ reuptake by the sarco(endo)plasmic Ca2+ ATPase (72+/-5%) dominates in further differentiated cells. Spontaneous Ca2+ transients were suppressed by the inositol-1,4,5-trisphosphate (IP3) receptor (IP3R) blocker 2-aminoethoxydiphenyl borate (2-APB) and the phospholipase C blocker U73122 but continued in the presence of caffeine. Stimulation of IP3 production by phenylephrine or endothelin-1 had a positive chronotropic effect that could be reversed by U73122 and 2-APB. The presence of Ca2+-free solution and block of L-type Ca2+ channels by nifedipine also resulted in a cessation of spontaneous activity. Overall, IP3R-mediated Ca2+ release in ESdCs is translated into a depolarization of the plasma membrane and a whole-cell Ca2+ transient is subsequently induced by voltage-dependent Ca2+ influx. Although ryanodine receptor-mediated Ca2+ release amplifies the IP3R-induced trigger for the Ca2+ transients and modulates its frequencies, it is not a prerequisite for spontaneous activity. The results of this study offer important insight into the role of IP3R-mediated Ca2+ release for pacemaker activity in differentiating cardiomyocytes. PMID:17379641

  11. Redox regulation of cardiomyocyte cell cycling via an ERK1/2 and c-Myc-dependent activation of cyclin D2 transcription

    PubMed Central

    Murray, Thomas V.A.; Smyrnias, Ioannis; Schnelle, Moritz; Mistry, Rajesh K.; Zhang, Min; Beretta, Matteo; Martin, Daniel; Anilkumar, Narayana; de Silva, Shana M.; Shah, Ajay M.; Brewer, Alison C.

    2015-01-01

    Adult mammalian cardiomyocytes have a very limited capacity to proliferate, and consequently the loss of cells after cardiac stress promotes heart failure. Recent evidence suggests that administration of hydrogen peroxide (H2O2), can regulate redox-dependent signalling pathway(s) to promote cardiomyocyte proliferation in vitro, but the potential relevance of such a pathway in vivo has not been tested. We have generated a transgenic (Tg) mouse model in which the H2O2-generating enzyme, NADPH oxidase 4 (Nox4), is overexpressed within the postnatal cardiomyocytes, and observed that the hearts of 1–3 week old Tg mice pups are larger in comparison to wild type (Wt) littermate controls. We demonstrate that the cardiomyocytes of Tg mouse pups have increased cell cycling capacity in vivo as determined by incorporation of 5-bromo-2′-deoxyuridine. Further, microarray analyses of the transcriptome of these Tg mouse hearts suggested that the expression of cyclin D2 is significantly increased. We investigated the molecular mechanisms which underlie this more proliferative phenotype in isolated neonatal rat cardiomyocytes (NRCs) in vitro, and demonstrate that Nox4 overexpression mediates an H2O2-dependent activation of the ERK1/2 signalling pathway, which in turn phosphorylates and activates the transcription factor c-myc. This results in a significant increase in cyclin D2 expression, which we show to be mediated, at least in part, by cis-acting c-myc binding sites within the proximal cyclin D2 promoter. Overexpression of Nox4 in NRCs results in an increase in their proliferative capacity that is ablated by the silencing of cyclin D2. We further demonstrate activation of the ERK1/2 signalling pathway, increased phosphorylation of c-myc and significantly increased expression of cyclin D2 protein in the Nox4 Tg hearts. We suggest that this pathway acts to maintain the proliferative capacity of cardiomyocytes in Nox4 Tg pups in vivo and so delays their exit from the cell

  12. HIV-1 gp120 induces NFAT nuclear translocation in resting CD4+ T-cells

    SciTech Connect

    Cicala, Claudia . E-mail: ccicala@nih.gov; Arthos, James; Censoplano, Nina; Cruz, Catherine; Chung, Eva; Martinelli, Elena; Lempicki, Richard A.; Natarajan, Ven; VanRyk, Donald; Daucher, Marybeth; Fauci, Anthony S.

    2006-02-05

    The replication of human immunodeficiency virus (HIV) in CD4+ T-cells is strongly dependent upon the state of activation of infected cells. Infection of sub-optimally activated cells is believed to play a critical role in both the transmission of virus and the persistence of CD4+ T-cell reservoirs. There is accumulating evidence that HIV can modulate signal-transduction pathways in a manner that may facilitate replication in such cells. We previously demonstrated that HIV gp120 induces virus replication in resting CD4+ T cells isolated from HIV-infected individuals. Here, we show that in resting CD4+ T-cells, gp120 activates NFATs and induces their translocation into the nucleus. The HIV LTR encodes NFAT recognition sites, and NFATs may play a critical role in promoting viral replication in sub-optimally activated cells. These observations provide insight into a potential mechanism by which HIV is able to establish infection in resting cells, which may have implications for both transmission of HIV and the persistence of viral reservoirs.

  13. Foxd3 suppresses NFAT-mediated differentiation to maintain self-renewal of embryonic stem cells

    PubMed Central

    Zhu, Lili; Zhang, Shiyue; Jin, Ying

    2014-01-01

    Pluripotency-associated transcription factor Foxd3 is required for maintaining pluripotent cells. However, molecular mechanisms underlying its function are largely unknown. Here, we report that Foxd3 suppresses differentiation induced by calcineurin–NFAT signaling to maintain the ESC identity. Mechanistically, Foxd3 interacts with NFAT proteins and recruits co-repressor Tle4, a member of the Tle repressor family highly expressed in undifferentiated ESCs, to suppress NFATc3's transcriptional activities. Furthermore, global transcriptome analysis shows that Foxd3 and NFATc3 co-regulate a set of differentiation-associated genes in ESCs. Collectively, our study establishes a molecular and functional link between a pluripotency-associated factor and an important ESC differentiation-inducing pathway. Subject Categories Development & Differentiation; Stem Cells PMID:25378483

  14. A Bioengineered Hydrogel System Enables Targeted and Sustained Intramyocardial Delivery of Neuregulin, Activating the Cardiomyocyte Cell Cycle and Enhancing Ventricular Function in a Murine Model of Ischemic Cardiomyopathy

    PubMed Central

    Cohen, Jeffrey E.; Purcell, Brendan P.; MacArthur, John W.; Mu, Anbin; Shudo, Yasuhiro; Patel, Jay B.; Brusalis, Christopher M.; Trubelja, Alen; Fairman, Alexander S.; Edwards, Bryan B.; Davis, Mollie S.; Hung, George; Hiesinger, William; Atluri, Pavan; Margulies, Kenneth B.; Burdick, Jason A.; Woo, Y. Joseph

    2014-01-01

    Background Neuregulin (NRG) is a member of the epidermal growth factor family possessing a critical role in cardiomyocyte development and proliferation. Systemic administration of NRG demonstrated efficacy in cardiomyopathy animal models, leading to clinical trials employing daily NRG infusions. This approach is hindered by requiring daily infusions and off-target exposure. Therefore, this study aimed to encapsulate NRG in a hydrogel (HG) to be directly delivered to the myocardium, accomplishing sustained localized NRG delivery. Methods and Results NRG was encapsulated in HG and release over 14 days confirmed by ELISA in vitro. Sprague-Dawly rats were utilized for cardiomyocyte isolation. Cells were stimulated by PBS, NRG, HG, or NRG-HG and evaluated for proliferation. Cardiomyocytes demonstrated EdU and phosphorylated histone-H3 (PH3) positivity in the NRG-HG group only. For in vivo studies, 2 month old mice (n=60) underwent LAD ligation and were randomized to the 4 treatment groups mentioned. Only NRG-HG treated mice demonstrated PH3 and Ki67 positivity along with decreased caspase-3 activity compared to all controls. NRG was detected in myocardium 6 days following injection without evidence of off-target exposure in NRG-HG animals. At 2 weeks, the NRG-HG group exhibited enhanced LVEF, decreased LV area, and augmented borderzone thickness. Conclusions Targeted and sustained delivery of NRG directly to the myocardial borderzone augments cardiomyocyte mitotic activity, decreases apoptosis, and greatly enhances LV function in a model of ICM. This novel approach to NRG administration avoids off-target exposure and represents a clinically translatable strategy in myocardial regenerative therapeutics. PMID:24902740

  15. Interleukin-13-induced MUC5AC expression is regulated by a PI3K–NFAT3 pathway in mouse tracheal epithelial cells

    SciTech Connect

    Yan, Fugui; Li, Wen; Zhou, Hongbin; Wu, Yinfang; Ying, Songmin; Chen, Zhihua; Shen, Huahao

    2014-03-28

    Highlights: • IL-13 specifically induced NFAT3 activation in mouse tracheal epithelial cells. • CsA and LY294002 significantly blocked IL-13-induced MUC5AC production. • The PI3K–NFAT3 pathway is positively involved in IL-13-induced MUC5AC production. - Abstract: Interleukin-13 (IL-13) plays a critical role in asthma mucus overproduction, while the mechanisms underlying this process are not fully elucidated. Previous studies showed that nuclear factor of activated T cells (NFAT) is involved in the pathogenesis of asthma, but whether it can directly regulate IL-13-induced mucus (particularly MUC5AC) production is still not clear. Here we showed that IL-13 specifically induced NFAT3 activation through promoting its dephosphorylation in air–liquid interface (ALI) cultures of mouse tracheal epithelial cells (mTECs). Furthermore, both Cyclosporin A (CsA, a specific NFAT inhibitor) and LY294002 (a Phosphoinositide 3-kinase (PI3K) inhibitor) significantly blocked IL-13-induced MUC5AC mRNA and protein production through the inhibition of NFAT3 activity. We also confirmed that CsA could not influence the forkhead Box A2 (Foxa2) and mouse calcium dependent chloride channel 3 (mClca3) expression in IL-13-induced MUC5AC production, which both are known to be important in IL-13-stimulated mucus expression. Our study is the first to demonstrate that the PI3K–NFAT3 pathway is positively involved in IL-13-induced mucus production, and provided novel insights into the molecular mechanism of asthma mucus hypersecretion.

  16. In Vitro Inhibition of NFAT5-Mediated Induction of CCL2 in Hyperosmotic Conditions by Cyclosporine and Dexamethasone on Human HeLa-Modified Conjunctiva-Derived Cells

    PubMed Central

    Baudouin, Christophe; Gard, Carole; Brignole-Baudouin, Françoise

    2016-01-01

    Purpose To investigate the pro-inflammatory intracellular mechanisms induced by an in vitro model of dry eye disease (DED) on a Hela-modified conjunctiva-derived cells in hyperosmolarity (HO) stress conditions. This study focused on CCL2 induction and explored the implications of the nuclear factor of activated T-cells 5 (NFAT5) as well as mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NFĸB). This work was completed by an analysis of the effects of cyclosporine A (CsA), dexamethasone (Dex) and doxycycline (Dox) on HO-induced CCL2 and NFAT5 induction. Methods A human HeLa-modified conjunctiva-derived cell line was cultured in NaCl-hyperosmolar medium for various exposure times. Cellular viability, CCL2 secretion, NFAT5 and CCL2 gene expression, and intracytoplasmic NFAT5 were assessed using the Cell Titer Blue® assay, enzyme-linked immunosorbent assay (ELISA), RT-qPCR and immunostaining, respectively. In selected experiments, inhibitors of MAPKs or NFκB, therapeutic agents or NFAT5 siRNAs were added before the hyperosmolar stimulations. Results HO induced CCL2 secretion and expression as well as NFAT5 gene expression and translocation. Adding NFAT5-siRNA before hyperosmolar stimulation led to a complete inhibition of CCL2 induction and to a decrease in cellular viability. p38 MAPK (p38), c-Jun NH2-terminal kinase (JNK) and NFĸB inhibitors, CsA and Dex induced a partial inhibition of HO-induced CCL2, while Dox and extracellular signal-regulated kinase (ERK) inhibitor did not. Dex also induced a partial inhibition of HO-induced NFAT5 gene expression but not CsA or Dox. Conclusions These in vitro results suggest a potential role of CCL2 in DED and highlight the crucial role of NFAT5 in the pro-inflammatory effect of HO on HeLa-modified conjunctiva-derived cells, a rarely studied cellular type. This inflammatory pathway involving NFAT5 and CCL2 could offer a promising target for developing new therapies to treat DED, warranting further

  17. Activation of SIRT3 attenuates triptolide-induced toxicity through closing mitochondrial permeability transition pore in cardiomyocytes.

    PubMed

    Yang, Yanqin; Wang, Wenwen; Xiong, Zhewen; Kong, Jiamin; Qiu, Yuwen; Shen, Feihai; Huang, Zhiying

    2016-08-01

    Triptolide (TP), an active component of the traditional Chinese herb Tripterygium wilfordii Hook f. (TWHF), has multiple pharmacological effects. However, the severe toxicity of TP greatly restricts its clinical applications. Although TP exposure causes serious heart injury, the mechanism underlying TP-induced cardiotoxicity has rarely been investigated. In previous studies, we found that TP-induced oxidative stress was involved in the mitochondria-dependent apoptosis of cardiomyocytes. Opening of the mitochondrial permeability transition pore (mPTP) is the key to the mitochondrial dysfunction in cardiac toxicity. The aim of this study was to investigate the potential cardioprotective effects of sirtuin 3 (SIRT3) on the mPTP. In the present study, the cytotoxicity of TP was accompanied by the up-regulation of the SIRT3 protein level and its rapid aggregation in nuclei and mitochondria. The SIRT3-FOXO3 signaling pathway was activated simultaneously, resulting in increased transcription of manganese superoxide dismutase (MnSOD) and catalase (CAT) for the elimination of reactive oxygen species (ROS). In addition, augmentation of the SIRT3 level via the overexpression plasmid SIRT3-Flag provided resistance to TP-induced cellular damage, whereas knocking down the SIRT3 level via siRNA accelerated the damage. Because it is an activator of SIRT3, the protective effect of resveratrol was also evaluated in H9c2 cells. In conclusion, the current results suggest that activation of SIRT3 substantially ameliorates the detrimental effects of TP by closing the mPTP. PMID:27064125

  18. N-acetylcysteine reduces oxidative stress, nuclear factor-κB activity and cardiomyocyte apoptosis in heart failure

    PubMed Central

    WU, XIAO-YAN; LUO, AN-YU; ZHOU, YI-RONG; REN, JIANG-HUA

    2014-01-01

    The roles of oxidative stress on nuclear factor (NF)-κB activity and cardiomyocyte apoptosis during heart failure were examined using the antioxidant N-acetylcysteine (NAC). Heart failure was established in Japanese white rabbits with intravenous injections of doxorubicin, with ten rabbits serving as a control group. Of the rabbits with heart failure, 12 were not treated (HF group) and 13 received NAC (NAC group). Cardiac function was assessed using echocardiography and hemodynamic analysis. Myocardial cell apoptosis, apoptosis-related protein expression, NF-κBp65 expression and activity, total anti-oxidative capacity (tAOC), 8-iso-prostaglandin F2α (8-iso-PGF2α) expression and glutathione (GSH) expression levels were determined. In the HF group, reduced tAOC, GSH levels and Bcl-2/Bax ratios as well as increased 8-iso-PGF2α levels and apoptosis were observed (all P<0.05), which were effects that were attenuated by the treatment with NAC. NF-κBp65 and iNOS levels were significantly higher and the P-IκB-α levels were significantly lower in the HF group; expression of all three proteins returned to pre-HF levels following treatment with NAC. Myocardial cell apoptosis was positively correlated with left ventricular end-diastolic pressure (LVEDP), NF-κBp65 expression and 8-iso-PGF2α levels, but negatively correlated with the maximal and minimal rates of increase in left ventricular pressure (+dp/dtmax and −dp/dtmin, respectively) and the Bcl-2/Bax ratio (all P<0.001). The 8-iso-PGF2α levels were positively correlated with LVEDP and negatively correlated with +dp/dtmax and −dp/dtmin (all P<0.001). The present study demonstrated that NAC increased the antioxidant capacity, decreased the NF-κB activation and reduced myocardial cell apoptosis in an in vivo heart failure model. PMID:24889421

  19. Identifying panaxynol, a natural activator of nuclear factor erythroid-2 related factor 2 (Nrf2) from American ginseng as a suppressor of inflamed macrophage-induced cardiomyocyte hypertrophy

    PubMed Central

    Qu, Chen; Li, Bin; Lai, Yimu; Li, Hechu; Windust, Anthony; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash; Wang, Xing Li; Tang, Dongqi; Janicki, Joseph S.; Tian, Xingsong; Cui, Taixing

    2015-01-01

    Ethnopharmacological relevance American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. Results A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC–UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. Conclusions These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart. PMID

  20. microRNA 184 regulates expression of NFAT1 in umbilical cord blood CD4+ T cells

    PubMed Central

    Weitzel, R. Patrick; Lesniewski, Mathew L.; Haviernik, Peter; Kadereit, Suzanne; Leahy, Patrick; Greco, Nicholas J.

    2009-01-01

    The reduced expression of nuclear factor of activated T cells-1 (NFAT1) protein in umbilical cord blood (UCB)–derived CD4+ T cells and the corresponding reduction in inflammatory cytokine secretion after stimulation in part underlies their phenotypic differences from adult blood (AB) CD4+ T cells. This muted response may contribute to the lower incidence and severity of high-grade acute graft-versus-host disease (aGVHD) exhibited by UCB grafts. Here we provide evidence that a specific microRNA, miR-184, inhibits NFAT1 protein expression elicited by UCB CD4+ T cells. Endogenous expression of miR-184 in UCB is 58.4-fold higher compared with AB CD4+ T cells, and miR-184 blocks production of NFAT1 protein through its complementary target sequence on the NFATc2 mRNA without transcript degradation. Furthermore, its negative effects on NFAT1 protein and downstream interleukin-2 (IL-2) transcription are reversed through antisense blocking in UCB and can be replicated via exogenous transfection of precursor miR-184 into AB CD4+ T cells. Our findings reveal a previously uncharacterized role for miR-184 in UCB CD4+ T cells and a novel function for microRNA in the early adaptive immune response. PMID:19286996

  1. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor {alpha}/retinoid X receptor

    SciTech Connect

    Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.; Akita, Geoffrey Y.; Cheng, Seng H.; Gregory, Richard J.; Jiang Canwen

    2007-12-21

    In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferase I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.

  2. African Swine Fever Virus Protein A238L Interacts with the Cellular Phosphatase Calcineurin via a Binding Domain Similar to That of NFAT

    PubMed Central

    Miskin, James E.; Abrams, Charles C.; Dixon, Linda K.

    2000-01-01

    The African swine fever virus protein A238L inhibits activation of NFAT transcription factor by binding calcineurin and inhibiting its phosphatase activity. NFAT controls the expression of many immunomodulatory proteins. Here we describe a 14-amino-acid region of A238L that is needed and sufficient for binding to calcineurin. By introducing mutations within this region, we have identified a motif (PxIxITxC/S) required for A238L binding to calcineurin; a similar motif is found in NFAT proteins. Peptides corresponding to this domain of A238L bind calcineurin but do not inhibit its phosphatase activity. Binding of A238L to calcineurin stabilizes the A238L protein in cells. Although A238L-mediated suppression of NF-κB-dependent gene expression occurs by a different mechanism, the A238L-calcineurin interaction may be required to stabilize A238L. PMID:11000210

  3. Immunodeficiency and Autoimmune Enterocolopathy Linked to NFAT5 Haploinsufficiency

    PubMed Central

    Boland, Brigid S.; Widjaja, Christella E.; Banno, Asoka; Zhang, Bing; Kim, Stephanie H.; Stoven, Samantha; Peterson, Michael R.; Jones, Marilyn C.; Su, H. Irene; Crowe, Sheila E.; Bui, Jack D.; Ho, Samuel B.; Okugawa, Yoshinaga; Goel, Ajay; Marietta, Eric V.; Khosroheidari, Mahdieh; Jepsen, Kristen L.; Aramburu, Jose; Lopez-Rodriguez, Cristina; Sandborn, William J.; Murray, Joseph A.; Harismendy, Olivier; Chang, John T.

    2015-01-01

    The link between autoimmune diseases and primary immunodeficiency syndromes has been increasingly appreciated. Immunologic evaluation of a young man with autoimmune enterocolopathy and unexplained infections revealed evidence of immunodeficiency, including IgG subclass deficiency, impaired antigen-induced lymphocyte proliferation, reduced cytokine production by CD8+ T lymphocytes, and decreased numbers of natural killer (NK) cells. Genetic evaluation identified haploinsufficiency of NFAT5, a transcription factor regulating immune cell function and cellular adaptation to hyperosmotic stress, as a possible cause of this syndrome. Inhibition or deletion of NFAT5 in normal human and murine cells recapitulated several of the immune deficits identified in the patient. These results provide evidence of a primary immunodeficiency disorder associated with organ-specific autoimmunity linked to NFAT5 deficiency. PMID:25667416

  4. Toward label-free Raman-activated cell sorting of cardiomyocytes derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Pascut, Flavius C.; Goh, Huey T.; George, Vinoj; Denning, Chris; Notingher, Ioan

    2011-04-01

    Raman micro-spectroscopy (RMS) has been recently proposed for label-free phenotypic identification of human embryonic stem cells (hESC)-derived cardiomyocytes. However, the methods used for measuring the Raman spectra led to acquisition times of minutes per cell, which is prohibitive for rapid cell sorting applications. In this study we evaluated two measurement strategies that could reduce the measurement time by a factor of more than 100. We show that sampling individual cells with a laser beam focused to a line could eliminate the need of cell raster scanning and achieve high prediction accuracies (>95% specificity and >96% sensitivity) with acquisition times ~5 seconds per cell. However, the use of commercially-available higher power lasers could potentially lead to sorting speeds of ~10 cells per s. This would start to progress RMS to the field of cell sorting for applications such as enrichment and purification of hESC-derived cardiomyocytes.

  5. Regulation of the Cardiomyocyte Population in the Developing Heart

    PubMed Central

    Thornburg, Kent; Jonker, Sonnet; O’Tierney, Perrie; Chattergoon, Natasha; Louey, Samantha; Faber, Job; Giraud, George

    2011-01-01

    During fetal life the myocardium expands through replication of cardiomyocytes. In sheep, cardiomyocytes begin the process of becoming terminally differentiated at about 100 gestation days out of 145 days term. In this final step of development, cardiomyocytes become binucleated and stop dividing. The number of cells at birth is important in determining the number of cardiomyocytes for life. Therefore, the regulation of cardiomyocyte growth in the womb is critical to long term disease outcome. Growth factors that stimulate proliferation of fetal cardiomyocytes include angiotensin II, cortisol and insulin-like growth factor-1. Increased ventricular wall stress leads to short term increases in proliferation but longer term loss of cardiomyocyte generative capacity. Two normally circulating hormones have been identified that suppress proliferation: atrial natriuretic peptide (ANP) and tri-iodo-L-thyronine (T3). Atrial natriuretic peptide signals through the NPRA receptor that serves as a guanylate cyclase and signals through cGMP. ANP powerfully suppresses mitotic activity in cardiomyocytes in the presence of angiotensin II in culture. Addition of a cGMP analogue has the same effect as ANP. ANP suppresses both the extracellular receptor kinases and the phosphoinositol 3 kinase pathways. T3 also suppresses increased mitotic activity of stimulated cardiomyocytes but does so by increasing the cell cycle suppressant, p21, and decreasing the cell cycle activator, cyclin D1. PMID:21147149

  6. Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes.

    PubMed

    Zhao, Zhenghang; Gordan, Richard; Wen, Hairuo; Fefelova, Nadezhda; Zang, Wei-Jin; Xie, Lai-Hua

    2013-01-01

    Recent studies have suggested that mitochondria may play important roles in the Ca(2+) homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca(2+) flux can regulate the generation of Ca(2+) waves (CaWs) and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca(2+) (Cai (2+)) was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR) Ca(2+) release and CaWs were induced in the presence of high (4 mM) external Ca(2+) (Cao (2+)). The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) reversibly raised basal Cai (2+) levels even after depletion of SR Ca(2+) in the absence of Cao (2+) , suggesting Ca(2+) release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m ) and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m ) or Ru360 (a mitochondrial Ca(2+) uniporter inhibitor), but not by oligomycin (an ATP synthase inhibitor) or iodoacetic acid (a glycolytic inhibitor), excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca(2+) uniporter activator kaempferol. Our results suggest that mitochondrial Ca(2+) release and uptake exquisitely control the local Ca(2+) level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis. PMID:24348912

  7. Calcineurin/NFAT Signaling Represses Genes Vamp1 and Vamp2 via PMCA-Dependent Mechanism during Dopamine Secretion by Pheochromocytoma Cells

    PubMed Central

    Kosiorek, Michalina; Zylinska, Ludmila; Zablocki, Krzysztof; Pikula, Slawomir

    2014-01-01

    Background Plasma membrane Ca2+-ATPases (PMCA) extrude Ca2+ ions out of the cell and contribute to generation of calcium oscillations. Calcium signaling is crucial for transcriptional regulation of dopamine secretion by neuroendocrine PC12 cells. Low resting [Ca2+]c in PC12 cells is maintained mainly by two Ca2+-ATPases, PMCA2 and PMCA3. Recently, we found that Ca2+ dependent phosphatase calcineurin was excessively activated under conditions of experimental downregulation of PMCA2 or PMCA3. Thus, the aim of this study was to explain if, via modulation of the Ca2+/calcineurin-dependent nuclear factor of activated T cells (NFAT) pathway, PMCA2 and PMCA3 affect intracellular signaling in pheochromocytoma/neuronal cells/PC12 cells. Secondly, we tested whether this might influence dopamine secretion by PC12 cells. Results PMCA2- and PMCA3-deficient cells displayed profound decrease in dopamine secretion accompanied by a permanent increase in [Ca2+]c. Reduction in secretion might result from changes in NFAT signaling, following altered PMCA pattern. Consequently, activation of NFAT1 and NFAT3 transcription factors was observed in PMCA2- or PMCA3-deficient cells. Furthermore, chromatin immunoprecipitation assay indicated that NFATs could be involved in repression of Vamp genes encoding vesicle associated membrane proteins (VAMP). Conclusions PMCA2 and PMCA3 are crucial for dopamine secretion in PC12 cells. Reduction in PMCA2 or PMCA3 led to calcium-dependent activation of calcineurin/NFAT signaling and, in consequence, to repression of the Vamp gene and deterioration of the SNARE complex formation in PC12 cells. PMID:24667359

  8. High-salt intake induces cardiomyocyte hypertrophy in rats in response to local angiotensin II type 1 receptor activation.

    PubMed

    Katayama, Isis A; Pereira, Rafael C; Dopona, Ellen P B; Shimizu, Maria H M; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C

    2014-10-01

    Many studies have shown that risk factors that are independent of blood pressure (BP) can contribute to the development of cardiac hypertrophy (CH). Among these factors, high-salt (HS) intake was prominent. Although some studies have attempted to elucidate the role of salt in the development of this disease, the mechanisms by which salt acts are not yet fully understood. Thus, the aim of this study was to better understand the mechanisms of CH and interstitial fibrosis (IF) caused by HS intake. Male Wistar rats were divided into 5 groups according to diet [normal salt (NS; 1.27% NaCl) or HS (8% NaCl)] and treatment [losartan (LOS) (HS+LOS group), hydralazine (HZ) (HS+HZ group), or N-acetylcysteine (NAC) (HS+NAC group)], which was given in the drinking water. Tail-cuff BP, transverse diameter of the cardiomyocyte, IF, angiotensin II type 1 receptor (AT1) gene and protein expression, serum aldosterone, cardiac angiotensin II, cardiac thiobarbituric acid-reactive substances, and binding of conformation-specific anti-AT1 and anti-angiotensin II type 2 receptor (AT2) antibodies in the 2 ventricles were measured. Based on the left ventricle transverse diameter data, the primary finding was the occurrence of significant BP-independent CH in the HS+HZ group (96% of the HS group) and a partial or total prevention of such hypertrophy via treatment with NAC or LOS (81% and 67% of the HS group, respectively). The significant total or partial prevention of IF using all 3 treatments (HS+HZ, 27%; HS+LOS, 27%; and HS+NAC, 58% of the HS group, respectively), and an increase in the AT1 gene and protein expression and activity in groups that developed CH, confirmed that CH occurred via the AT1 in this experimental model. Thus, this study unveiled some relevant previously unknown mechanisms of CH induced by chronic HS intake in Wistar rats. The link of oxidative stress with CH in our experimental model is very interesting and stimulates further evaluation for its full comprehension

  9. Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence.

    PubMed

    Fernàndez-Castillo, N; Cabana-Domínguez, J; Soriano, J; Sànchez-Mora, C; Roncero, C; Grau-López, L; Ros-Cucurull, E; Daigre, C; van Donkelaar, M M J; Franke, B; Casas, M; Ribasés, M; Cormand, B

    2015-01-01

    Cocaine reward and reinforcing effects are mediated mainly by dopaminergic neurotransmission. In this study, we aimed at evaluating gene expression changes induced by acute cocaine exposure on SH-SY5Y-differentiated cells, which have been widely used as a dopaminergic neuronal model. Expression changes and a concomitant increase in neuronal activity were observed after a 5 μM cocaine exposure, whereas no changes in gene expression or in neuronal activity took place at 1 μM cocaine. Changes in gene expression were identified in a total of 756 genes, mainly related to regulation of transcription and gene expression, cell cycle, adhesion and cell projection, as well as mitogen-activeated protein kinase (MAPK), CREB, neurotrophin and neuregulin signaling pathways. Some genes displaying altered expression were subsequently targeted with predicted functional single-nucleotide polymorphisms (SNPs) in a case-control association study in a sample of 806 cocaine-dependent patients and 817 controls. This study highlighted associations between cocaine dependence and five SNPs predicted to alter microRNA binding at the 3'-untranslated region of the NFAT5 gene. The association of SNP rs1437134 with cocaine dependence survived the Bonferroni correction for multiple testing. A functional effect was confirmed for this variant by a luciferase reporter assay, with lower expression observed for the rs1437134G allele, which was more pronounced in the presence of hsa-miR-509. However, brain volumes in regions of relevance to addiction, as assessed with magnetic resonance imaging, did not correlate with NFAT5 variation. These results suggest that the NFAT5 gene, which is upregulated a few hours after cocaine exposure, may be involved in the genetic predisposition to cocaine dependence. PMID:26506053

  10. Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence

    PubMed Central

    Fernàndez-Castillo, N; Cabana-Domínguez, J; Soriano, J; Sànchez-Mora, C; Roncero, C; Grau-López, L; Ros-Cucurull, E; Daigre, C; van Donkelaar, M M J; Franke, B; Casas, M; Ribasés, M; Cormand, B

    2015-01-01

    Cocaine reward and reinforcing effects are mediated mainly by dopaminergic neurotransmission. In this study, we aimed at evaluating gene expression changes induced by acute cocaine exposure on SH-SY5Y-differentiated cells, which have been widely used as a dopaminergic neuronal model. Expression changes and a concomitant increase in neuronal activity were observed after a 5 μM cocaine exposure, whereas no changes in gene expression or in neuronal activity took place at 1 μM cocaine. Changes in gene expression were identified in a total of 756 genes, mainly related to regulation of transcription and gene expression, cell cycle, adhesion and cell projection, as well as mitogen-activeated protein kinase (MAPK), CREB, neurotrophin and neuregulin signaling pathways. Some genes displaying altered expression were subsequently targeted with predicted functional single-nucleotide polymorphisms (SNPs) in a case–control association study in a sample of 806 cocaine-dependent patients and 817 controls. This study highlighted associations between cocaine dependence and five SNPs predicted to alter microRNA binding at the 3′-untranslated region of the NFAT5 gene. The association of SNP rs1437134 with cocaine dependence survived the Bonferroni correction for multiple testing. A functional effect was confirmed for this variant by a luciferase reporter assay, with lower expression observed for the rs1437134G allele, which was more pronounced in the presence of hsa-miR-509. However, brain volumes in regions of relevance to addiction, as assessed with magnetic resonance imaging, did not correlate with NFAT5 variation. These results suggest that the NFAT5 gene, which is upregulated a few hours after cocaine exposure, may be involved in the genetic predisposition to cocaine dependence. PMID:26506053

  11. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo

    PubMed Central

    Yu, Haijie; Shi, Liye; Qi, Guoxian; Zhao, Shijie; Gao, Yuan; Li, Yuzhe

    2016-01-01

    Gypenoside (GP) is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia–reperfusion (I/R) injury by using in vitro oxygen-glucose deprivation–reoxygenation (OGD/R) H9c2 cell model and in vivo myocardial I/R rat model. We found that GP pre-treatment alleviated the impairments on the cardiac structure and function in I/R injured rats. Moreover, pre-treatment with GP significantly inhibited IκB-α phosphorylation and nuclear factor (NF)-κB p65 subunit translocation into nuclei. GP and the MAPK pathway inhibitors also reduced the phosphorylation of ERK, JNK, and p38 in vitro. Specific inhibition of ERK, JNK, and p38 increased the cell viability of OGD/R injured cells. Taken together, our data demonstrated that GP protects cardiomyocytes against I/R injury by inhibiting NF-κB p65 activation via the MAPK signaling pathway both in vitro and in vivo. These findings suggest that GP may be a promising agent for the prevention or treatment of myocardial I/R injury. PMID:27313532

  12. Tert-butylhydroquinone attenuates the ethanol-induced apoptosis of and activates the Nrf2 antioxidant defense pathway in H9c2 cardiomyocytes.

    PubMed

    Shi, Xiaojing; Li, Yang; Hu, Jun; Yu, Bo

    2016-07-01

    induced apoptosis of and activates the Nrf2 antioxidant pathway in H9c2 cardiomyocytes. PMID:27220726

  13. Tert-butylhydroquinone attenuates the ethanol-induced apoptosis of and activates the Nrf2 antioxidant defense pathway in H9c2 cardiomyocytes

    PubMed Central

    SHI, XIAOJING; LI, YANG; HU, JUN; YU, BO

    2016-01-01

    Tert-butylhydroquinone (tBHQ), an inducer of nuclear factor erythroid 2-related factor 2 (Nrf2), has been demonstrated to attenuate oxidative stress-induced injury and the apoptosis of human neural stem cells and other cell types. However, whether tBHQ is able to exert a protective effect against oxidative stress and the apoptosis of cardiomyocytes has not yet been determined. Thus, the objective of the present study was to determine whether tBHQ protects H9c2 cardiomyocytes against ethanol-induced apoptosis. For this purpose, four sets of experiments were performed under standard culture conditions as follows: i) untreated control cells; ii) cell treatment with 200 mM ethanol; iii) cell treatment with 5 µM tBHQ; and iv) cell pre-treatment with 5 µM tBHQ for 24 h, followed by medium change and co-culture with 200 mM ethanol containing 5 µM tBHQ for a further 24 h. The viability of the cardiomyocytes was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of intracellular reactive oxygen species (ROS) and apoptosis were assessed by flow cytometry. Protein expression was measured by western blot analysis, and Nrf2 nuclear localization was observed by immunofluorescence. Exposure to ethanol led to a decrease in the protein expression of Nrf2 and its downstream antioxidant enzymes, accompanied by an increase in ROS generation and in the apoptosis of H9c2 cells. Pre-treatment with tBHQ significantly prevented the H9c2 cells from undergoing ethanol-induced apoptosis. tBHQ also increased the expression of B-cell lymphoma-2 (Bcl-2), whereas Bcl-2-associated X protein (Bax) expression was decreased. tBHQ promoted Nrf2 nuclear localization and increased the expression of Nrf2, superoxide dismutase (SOD), catalase (CAT) and heme oxygenase-1 (HO-1), and simultaneously inhibited the ethanol-induced overproduction of intracellular ROS. Therefore, tBHQ confers protection against the ethanol-induced apoptosis of and activates the

  14. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy

    PubMed Central

    Ucar, Ahmet; Gupta, Shashi K.; Fiedler, Jan; Erikci, Erdem; Kardasinski, Michal; Batkai, Sandor; Dangwal, Seema; Kumarswamy, Regalla; Bang, Claudia; Holzmann, Angelika; Remke, Janet; Caprio, Massimiliano; Jentzsch, Claudia; Engelhardt, Stefan; Geisendorf, Sabine; Glas, Carolina; Hofmann, Thomas G.; Nessling, Michelle; Richter, Karsten; Schiffer, Mario; Carrier, Lucie; Napp, L. Christian; Bauersachs, Johann; Chowdhury, Kamal; Thum, Thomas

    2012-01-01

    Pathological growth of cardiomyocytes (hypertrophy) is a major determinant for the development of heart failure, one of the leading medical causes of mortality worldwide. Here we show that the microRNA (miRNA)-212/132 family regulates cardiac hypertrophy and autophagy in cardiomyocytes. Hypertrophic stimuli upregulate cardiomyocyte expression of miR-212 and miR-132, which are both necessary and sufficient to drive the hypertrophic growth of cardiomyocytes. MiR-212/132 null mice are protected from pressure-overload-induced heart failure, whereas cardiomyocyte-specific overexpression of the miR-212/132 family leads to pathological cardiac hypertrophy, heart failure and death in mice. Both miR-212 and miR-132 directly target the anti-hypertrophic and pro-autophagic FoxO3 transcription factor and overexpression of these miRNAs leads to hyperactivation of pro-hypertrophic calcineurin/NFAT signalling and an impaired autophagic response upon starvation. Pharmacological inhibition of miR-132 by antagomir injection rescues cardiac hypertrophy and heart failure in mice, offering a possible therapeutic approach for cardiac failure. PMID:23011132

  15. Systematic study of constitutive cyclooxygenase-2 expression: Role of NF-κB and NFAT transcriptional pathways

    PubMed Central

    Kirkby, Nicholas S.; Chan, Melissa V.; Zaiss, Anne K.; Garcia-Vaz, Eliana; Jiao, Jing; Berglund, Lisa M.; Verdu, Elena F.; Ahmetaj-Shala, Blerina; Wallace, John L.; Herschman, Harvey R.; Gomez, Maria F.; Mitchell, Jane A.

    2016-01-01

    Cyclooxygenase-2 (COX-2) is an inducible enzyme that drives inflammation and is the therapeutic target for widely used nonsteroidal antiinflammatory drugs (NSAIDs). However, COX-2 is also constitutively expressed, in the absence of overt inflammation, with a specific tissue distribution that includes the kidney, gastrointestinal tract, brain, and thymus. Constitutive COX-2 expression is therapeutically important because NSAIDs cause cardiovascular and renal side effects in otherwise healthy individuals. These side effects are now of major concern globally. However, the pathways driving constitutive COX-2 expression remain poorly understood. Here we show that in the kidney and other sites, constitutive COX-2 expression is a sterile response, independent of commensal microorganisms and not associated with activity of the inflammatory transcription factor NF-κB. Instead, COX-2 expression in the kidney but not other regions colocalized with nuclear factor of activated T cells (NFAT) transcription factor activity and was sensitive to inhibition of calcineurin-dependent NFAT activation. However, calcineurin/NFAT regulation did not contribute to constitutive expression elsewhere or to inflammatory COX-2 induction at any site. These data address the mechanisms driving constitutive COX-2 and suggest that by targeting transcription it may be possible to develop antiinflammatory therapies that spare the constitutive expression necessary for normal homeostatic functions, including those important to the cardiovascular-renal system. PMID:26712011

  16. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    SciTech Connect

    Guo, Xiaoxia; Zhou, Chunyan; Sun, Ningling

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  17. β-Adrenergic Receptor-Mediated Transactivation Of Epidermal Growth Factor Receptor Decreases Cardiomyocyte Apoptosis Through Differential Subcellular Activation of ERK1/2 and Akt

    PubMed Central

    Grisanti, Laurel A.; Talarico, Jennifer A.; Carter, Rhonda L.; Yu, Justine E.; Repas, Ashley A.; Radcliffe, Scott W.; Tang, Hoang-ai; Makarewich, Catherine A.; Houser, Steven R.; Tilley, Douglas G.

    2014-01-01

    Rationale β-adrenergic receptor (βAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to relay pro-survival effects via unknown mechanisms. Objective We hypothesized that acute βAR-mediated EGFR transactivation in the heart promotes differential subcellular activation of ERK1/2 and Akt, promoting cell survival through modulation of apoptosis. Methods and Results C57BL/6 mice underwent acute i.p. injection with isoproterenol (ISO) ± AG 1478 (EGFR antagonist) to assess the impact of βAR-mediated EGFR transactivation on phosphorylation of ERK1/2 (P-ERK1/2) and Akt (P-Akt) in distinct cardiac subcellular fractions. Increased P-ERK1/2 and P-Akt were observed in cytosolic, plasma membrane and nuclear fractions following ISO stimulation. Whereas the P-ERK1/2 response was EGFR-sensitive in all fractions, the P-Akt response was EGFR-sensitive only in the plasma membrane and nucleus, results confirmed in primary rat neonatal cardiomyocytes (RNCM). βAR-mediated EGFR-transactivation also decreased apoptosis in serum-depleted RNCM, as measured via TUNEL as well as caspase 3 activity/cleavage, which were sensitive to inhibition of either ERK1/2 (PD184352) or Akt (LY-294002) signaling. Caspase 3 activity/cleavage was also sensitive to inhibition of transcription, which, with an increase in nuclear P-ERK1/2 and P-Akt in response to ISO, suggested that βAR-mediated EGFR transactivation may regulate apoptotic gene transcription. An Apoptosis PCR Array identified tnfsf10 (TRAIL) to be altered by ISO in an EGFR-sensitive manner, results confirmed via RT-PCR and ELISA measurement of both membrane-bound and soluble cardiomyocyte TRAIL levels. Conclusions βAR-mediated EGFR transactivation induces differential subcellular activation of ERK1/2 and Akt leading to increased cell survival through the modulation of caspase 3 activity and apoptotic gene expression in cardiomyocytes. PMID:24566221

  18. MicroRNA-17-mediated down-regulation of apoptotic protease activating factor 1 attenuates apoptosome formation and subsequent apoptosis of cardiomyocytes.

    PubMed

    Song, Seungjun; Seo, Hyang-Hee; Lee, Se-Yeon; Lee, Chang Yeon; Lee, Jiyun; Yoo, Kyung-Jong; Yoon, Cheesoon; Choi, Eunhyun; Hwang, Ki-Chul; Lee, Seahyoung

    2015-09-18

    Heart diseases such as myocardial infarction (MI) can damage individual cardiomyocytes, leading to the activation of cell death programs. The most scrutinized type of cell death in the heart is apoptosis, and one of the key events during the propagation of apoptotic signaling is the formation of apoptosomes, which relay apoptotic signals by activating caspase-9. As one of the major components of apoptosomes, apoptotic protease activating factor 1 (Apaf-1) facilitates the formation of apoptosomes containing cytochrome c (Cyto-c) and deoxyadenosine triphosphate (dATP). Thus, it may be possible to suppress the activation of the apoptotic program by down-regulating the expression of Apaf-1 using miRNAs. To validate this hypothesis, we selected a number of candidate miRNAs that were expected to target Apaf-1 based on miRNA target prediction databases. Among these candidate miRNAs, we empirically identified miR-17 as a novel Apaf-1-targeting miRNA. The delivery of exogenous miR-17 suppressed Apaf-1 expression and consequently attenuated formation of the apoptosome complex containing caspase-9, as demonstrated by co-immunoprecipitation and immunocytochemistry. Furthermore, miR-17 suppressed the cleavage of procaspase-9 and the subsequent activation of caspase-3, which is downstream of activated caspase-9. Cell viability tests also indicated that miR-17 pretreatment significantly prevented the norepinephrine-induced apoptosis of cardiomyocytes, suggesting that down-regulation of apoptosome formation may be an effective strategy to prevent cellular apoptosis. These results demonstrate the potential of miR-17 as an effective anti-apoptotic agent. PMID:26265044

  19. The Correlation of PPARα Activity and Cardiomyocyte Metabolism and Structure in Idiopathic Dilated Cardiomyopathy during Heart Failure Progression

    PubMed Central

    Czarnowska, E.; Domal-Kwiatkowska, D.; Reichman-Warmusz, E.; Bierla, J. B.; Sowinska, A.; Ratajska, A.; Goral-Radziszewska, K.; Wojnicz, R.

    2016-01-01

    This study aimed to define relationship between PPARα expression and metabolic-structural characteristics during HF progression in hearts with DCM phenotype. Tissue endomyocardial biopsy samples divided into three groups according to LVEF ((I) 45–50%, n = 10; (II) 30–40%, n = 15; (III) <30%, n = 15; and control (donor hearts, >60%, n = 6)) were investigated. The PPARα mRNA expression in the failing hearts was low in Group (I), high in Group (II), and comparable to that of the control in Group (III). There were analogous changes in the expression of FAT/CD36 and CPT-1 mRNA in contrast to continuous overexpression of GLUT-4 mRNA and significant increase of PDK-4 mRNA in Group (II). In addition, significant structural changes of cardiomyocytes with glycogen accumulation were accompanied by increased expression of PPARα. For the entire study population with HF levels of FAT/CD36 mRNA showed a strong tendency of negative correlation with LVEF. In conclusion, PPARα elevated levels may be a direct cause of adverse remodeling, both metabolic and structural. Thus, there is limited time window for therapy modulating cardiac metabolism and protecting cardiomyocyte structure in failing heart. PMID:26981112

  20. Channel Activity of Cardiac Ryanodine Receptors (RyR2) Determines Potency and Efficacy of Flecainide and R-Propafenone against Arrhythmogenic Calcium Waves in Ventricular Cardiomyocytes

    PubMed Central

    Savio-Galimberti, Eleonora; Knollmann, Björn C.

    2015-01-01

    Flecainide blocks ryanodine receptor type 2 (RyR2) channels in the open state, suppresses arrhythmogenic Ca2+ waves and prevents catecholaminergic polymorphic ventricular tachycardia (CPVT) in mice and humans. We hypothesized that differences in RyR2 activity induced by CPVT mutations determines the potency of open-state RyR2 blockers like flecainide (FLEC) and R-propafenone (RPROP) against Ca2+ waves in cardiomyocytes. Using confocal microscopy, we studied Ca2+ sparks and waves in isolated saponin-permeabilized ventricular myocytes from two CPVT mouse models (Casq2-/-, RyR2-R4496C+/-), wild-type (c57bl/6, WT) mice, and WT rabbits (New Zealand white rabbits). Consistent with increased RyR2 activity, Ca2+ spark and wave frequencies were significantly higher in CPVT compared to WT mouse myocytes. We next obtained concentration-response curves of Ca2+ wave inhibition for FLEC, RPROP (another open-state RyR2 blocker), and tetracaine (TET) (a state-independent RyR2 blocker). Both FLEC and RPROP inhibited Ca2+ waves with significantly higher potency (lower IC50) and efficacy in CPVT compared to WT. In contrast, TET had similar potency in all groups studied. Increasing RyR2 activity of permeabilized WT myocytes by exposure to caffeine (150 µM) increased the potency of FLEC and RPROP but not of TET. RPROP and FLEC were also significantly more potent in rabbit ventricular myocytes that intrinsically exhibit higher Ca2+ spark rates than WT mouse ventricular myocytes. In conclusion, RyR2 activity determines the potency of open-state blockers FLEC and RPROP for suppressing arrhythmogenic Ca2+ waves in cardiomyocytes, a mechanism likely relevant to antiarrhythmic drug efficacy in CPVT. PMID:26121139

  1. Channel Activity of Cardiac Ryanodine Receptors (RyR2) Determines Potency and Efficacy of Flecainide and R-Propafenone against Arrhythmogenic Calcium Waves in Ventricular Cardiomyocytes.

    PubMed

    Savio-Galimberti, Eleonora; Knollmann, Björn C

    2015-01-01

    Flecainide blocks ryanodine receptor type 2 (RyR2) channels in the open state, suppresses arrhythmogenic Ca2+ waves and prevents catecholaminergic polymorphic ventricular tachycardia (CPVT) in mice and humans. We hypothesized that differences in RyR2 activity induced by CPVT mutations determines the potency of open-state RyR2 blockers like flecainide (FLEC) and R-propafenone (RPROP) against Ca2+ waves in cardiomyocytes. Using confocal microscopy, we studied Ca2+ sparks and waves in isolated saponin-permeabilized ventricular myocytes from two CPVT mouse models (Casq2-/-, RyR2-R4496C+/-), wild-type (c57bl/6, WT) mice, and WT rabbits (New Zealand white rabbits). Consistent with increased RyR2 activity, Ca2+ spark and wave frequencies were significantly higher in CPVT compared to WT mouse myocytes. We next obtained concentration-response curves of Ca2+ wave inhibition for FLEC, RPROP (another open-state RyR2 blocker), and tetracaine (TET) (a state-independent RyR2 blocker). Both FLEC and RPROP inhibited Ca2+ waves with significantly higher potency (lower IC50) and efficacy in CPVT compared to WT. In contrast, TET had similar potency in all groups studied. Increasing RyR2 activity of permeabilized WT myocytes by exposure to caffeine (150 µM) increased the potency of FLEC and RPROP but not of TET. RPROP and FLEC were also significantly more potent in rabbit ventricular myocytes that intrinsically exhibit higher Ca2+ spark rates than WT mouse ventricular myocytes. In conclusion, RyR2 activity determines the potency of open-state blockers FLEC and RPROP for suppressing arrhythmogenic Ca2+ waves in cardiomyocytes, a mechanism likely relevant to antiarrhythmic drug efficacy in CPVT. PMID:26121139

  2. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    SciTech Connect

    Zawawi, M.S.F.; Dharmapatni, A.A.S.S.K.; Cantley, M.D.; McHugh, K.P.; Haynes, D.R.; Crotti, T.N.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  3. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    PubMed Central

    Talaei-Khozani, Tahereh; Heidari, Fatemeh; Esmaeilpour, Tahereh; Vojdani, Zahra; Mostafavi-Pour, Zohrah; Rohani, Leili

    2014-01-01

    Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA) and 5-Aza-2-Deoxycytidine (5-aza-dC). The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function. PMID:24753644

  4. FasL expression in cardiomyocytes activates the ERK1/2 pathway, leading to dilated cardiomyopathy and advanced heart failure.

    PubMed

    Huby, Anne-Cecile; Turdi, Subat; James, Jeanne; Towbin, Jeffrey A; Purevjav, Enkhsaikhan

    2016-02-01

    Increase in the apoptotic molecule Fas ligand (FasL) in serum and cardiomyocytes has been shown to be associated with progressive dilated cardiomyopathy (DCM) and congestive heart failure (CHF) in humans. However, the underlying mechanism(s) of FasL-related deterioration of heart function remain obscure. The aim of the present study is to determine roles of myocardial FasL in the activation of alternative pathways such as extracellular-signal-regulated kinase 1/2 (ERK1/2), inflammation or fibrosis and to identify effective treatments of progressive DCM and advanced CHF. Transgenic mice with cardiomyocyte-specific overexpression of FasL were investigated and treated with an ERK1/2 inhibitor (U-0126), losartan (los), prednisolone (pred) or placebo. Morpho-histological and molecular studies were subsequently performed. FasL mice showed significantly higher mortality compared with wild-type (WT) littermates due to DCM and advanced CHF. Prominent perivascular and interstitial fibrosis, increased interleukin secretion and diffuse CD3-positive cell infiltration were evident in FasL hearts. Up-regulation of the short form of Fas-associated death domain (FADD)-like interleukin 1β-converting enzyme (FLICE) inhibitory protein (s-FLIP), RIP (receptor-interacting protein) and ERK1/2 and down-regulation of transforming growth factor beta 1 (TGFβ1) and nuclear factor-κB (NF-κB) was determined in the myocardium, whereas expression of ERK1/2, periostin (Postn) and osteopontin increased in cardiac fibroblasts. U-0126 and los increased CHF survival by 75% compared with pred and placebo groups. U-0126 had both anti-fibrotic and anti-apoptotic effects, whereas los reduced fibrosis only. Myocardial FasL expression in mice activates differential robust fibrotic, apoptotic and inflammatory responses via ERK1/2 in cardiomyocytes and cardiac fibroblasts inducing DCM and CHF. Blocking the ERK1/2 pathway prevented progression of FasL-induced DCM and CHF by reducing fibrosis, inflammation

  5. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease.

    PubMed

    Gilsbach, Ralf; Preissl, Sebastian; Grüning, Björn A; Schnick, Tilman; Burger, Lukas; Benes, Vladimir; Würch, Andreas; Bönisch, Ulrike; Günther, Stefan; Backofen, Rolf; Fleischmann, Bernd K; Schübeler, Dirk; Hein, Lutz

    2014-01-01

    The heart is a highly specialized organ with essential function for the organism throughout life. The significance of DNA methylation in shaping the phenotype of the heart remains only partially known. Here we generate and analyse DNA methylomes from highly purified cardiomyocytes of neonatal, adult healthy and adult failing hearts. We identify large genomic regions that are differentially methylated during cardiomyocyte development and maturation. Demethylation of cardiomyocyte gene bodies correlates strongly with increased gene expression. Silencing of demethylated genes is characterized by the polycomb mark H3K27me3 or by DNA methylation. De novo methylation by DNA methyltransferases 3A/B causes repression of fetal cardiac genes, including essential components of the cardiac sarcomere. Failing cardiomyocytes partially resemble neonatal methylation patterns. This study establishes DNA methylation as a highly dynamic process during postnatal growth of cardiomyocytes and their adaptation to pathological stress in a process tightly linked to gene regulation and activity. PMID:25335909

  6. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease

    PubMed Central

    Gilsbach, Ralf; Preissl, Sebastian; Grüning, Björn A.; Schnick, Tilman; Burger, Lukas; Benes, Vladimir; Würch, Andreas; Bönisch, Ulrike; Günther, Stefan; Backofen, Rolf; Fleischmann, Bernd K.; Schübeler, Dirk; Hein, Lutz

    2014-01-01

    The heart is a highly specialized organ with essential function for the organism throughout life. The significance of DNA methylation in shaping the phenotype of the heart remains only partially known. Here we generate and analyse DNA methylomes from highly purified cardiomyocytes of neonatal, adult healthy and adult failing hearts. We identify large genomic regions that are differentially methylated during cardiomyocyte development and maturation. Demethylation of cardiomyocyte gene bodies correlates strongly with increased gene expression. Silencing of demethylated genes is characterized by the polycomb mark H3K27me3 or by DNA methylation. De novo methylation by DNA methyltransferases 3A/B causes repression of fetal cardiac genes, including essential components of the cardiac sarcomere. Failing cardiomyocytes partially resemble neonatal methylation patterns. This study establishes DNA methylation as a highly dynamic process during postnatal growth of cardiomyocytes and their adaptation to pathological stress in a process tightly linked to gene regulation and activity. PMID:25335909

  7. Enhancement of Flow-Induced AP-1 Gene Expression by Cyclosporin A Requires NFAT-Independent Signaling in Bone Cells

    PubMed Central

    WORTON, LEAH E.; KWON, RONALD Y.; GARDINER, EDITH M.; GROSS, TED S.; SRINIVASAN, SUNDAR

    2014-01-01

    Growing evidence suggests that aging compromises the ability of the skeleton to respond to anabolic mechanical stimuli. Recently, we reported that treating senescent mice with Cyclosporin A (CsA) rescued aging-related deficits in loading-induced bone formation. Given that the actions of CsA are often attributed to inhibition of the calcineurin/NFAT axis, we hypothesized that CsA enhances gene expression in bone cells exposed to fluid flow, by inhibiting nuclear NFATc1 accumulation. When exposed to flow, MC3T3-E1 osteoblastic cells exhibited rapid nuclear accumulation of NFATc1 that was abolished by CsA treatment. Under differentiation conditions, intermittent CsA treatment enhanced gene expression of late osteoblastic differentiation markers and activator protein 1 (AP-1) family members. Superimposing flow upon CsA further enhanced expression of the AP-1 members Fra-1 and c-Jun. To delineate the contribution of NFAT in this response, cells were treated with VIVIT, a specific inhibitor of the calcineurin/NFAT interaction. Treatment with VIVIT blocked flow-induced nuclear NFATc1 accumulation but did not recapitulate the CsA-mediated enhancement of flow-induced AP-1 component gene expression. Taken together, our study is the first to demonstrate that CsA enhances mechanically-induced gene expression of AP-1 components in bone cells, and suggests that this response requires calcineurin-dependent mechanisms that are independent of inhibiting NFATc1 nuclear accumulation. PMID:25484988

  8. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis.

    PubMed

    Zhang, Lei; Cheng, Linfang; Wang, Qiqi; Zhou, Dongchen; Wu, Zhigang; Shen, Ling; Zhang, Li; Zhu, Jianhua

    2015-03-01

    Coronary artery disease (CAD) is a major health problem worldwide. The most severe form of CAD is acute coronary syndrome (ACS). Recent studies have demonstrated the beneficial role of atorvastatin in ACS; however, the mechanisms underlying this effect have not been fully clarified. Growing evidence indicates that activation of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays an important role in oxidative stress-induced cardiomyocyte apoptosis during ACS. In this study, we examined whether atorvastatin inhibits H2O2-induced LOX-1 expression and H9c2 cardiomyocyte apoptosis, and investigated the underlying signaling pathway. Treatment of H9c2 cardiomyocytes with H2O2 resulted in elevated expression of LOX-1 mRNA and protein, as well as increased caspase-3 and -9 protein expression and cell apoptosis. H2O2-induced LOX-1 expression, caspase protein expression, and cardiomyocyte apoptosis were attenuated by pretreatment with atorvastatin. Atorvastatin activated H2O2-inhibited phosphorylation of Akt in a concentration-dependent manner. The Akt inhibitor, LY294002, inhibited the effect of atorvastatin on inducing Akt phosphorylation and on suppressing H2O2-mediated caspase up-regulation and cell apoptosis. These findings indicate that atorvastatin protects cardiomyocyte from oxidative stress via inhibition of LOX-1 expression and apoptosis, and that activation of H2O2-inhibited phosphorylation of Akt may play an important role in the protective function of atorvastatin. PMID:25630653

  9. KMUP-1 Attenuates Endothelin-1-Induced Cardiomyocyte Hypertrophy through Activation of Heme Oxygenase-1 and Suppression of the Akt/GSK-3β, Calcineurin/NFATc4 and RhoA/ROCK Pathways.

    PubMed

    Liou, Shu-Fen; Hsu, Jong-Hau; Chen, You-Ting; Chen, Ing-Jun; Yeh, Jwu-Lai

    2015-01-01

    The signaling cascades of the mitogen activated protein kinase (MAPK) family, calcineurin/NFATc4, and PI3K/Akt/GSK3, are believed to participate in endothelin-1 (ET-1)-induced cardiac hypertrophy. The aim of this study was to investigate whether KMUP-1, a synthetic xanthine-based derivative, prevents cardiomyocyte hypertrophy induced by ET-1 and to elucidate the underlying mechanisms. We found that in H9c2 cardiomyocytes, stimulation with ET-1 (100 nM) for 4 days induced cell hypertrophy and enhanced expressions of hypertrophic markers, including atrial natriuretic peptide and brain natriuretic peptide, which were all inhibited by KMUP-1 in a dose-dependent manner. In addition, KMUP-1 prevented ET-1-induced intracellular reactive oxygen species generation determined by the DCFH-DA assay in cardiomyocytes. KMUP-1 also attenuated phosphorylation of ERK1/2 and Akt/GSK-3β, and activation of calcineurin/NFATc4 and RhoA/ROCK pathways induced by ET-1. Furthermore, we found that the expression of heme oxygenase-1 (HO-1), a stress-response enzyme implicated in cardio-protection, was up-regulated by KMUP-1. Finally, KMUP-1 attenuated ET-1-stimulated activator protein-1 DNA binding activity. In conclusion, KMUP-1 attenuates cardiomyocyte hypertrophy induced by ET-1 through inhibiting ERK1/2, calcineurin/NFATc4 and RhoA/ROCK pathways, with associated cardioprotective effects via HO-1 activation. Therefore, KMUP-1 may have a role in pharmacological therapy of cardiac hypertrophy. PMID:26056815

  10. EDF-1 downregulates the CaM/Cn/NFAT signaling pathway during adipogenesis

    SciTech Connect

    López-Victorio, Carlos J.; Velez-delValle, Cristina; Beltrán-Langarica, Alicia; Kuri-Harcuch, Walid

    2013-03-01

    Highlights: ► EDF-1 participates early adipogenesis in 3T3F442A cells induced with Staurosporine/Dexamethasone. ► EDF-1 associates with CaM and Cn, most likely inactivating Cn. ► EDF-1/CaM complex seems to prevent NFATc1 activation by Cn. ► EDF-1 regulates the Cn/CaM/NFATc1 pathway during adipogenesis. ► EDF-1 may regulate the activation of Cn through a complex formation with CaM. - Abstract: The endothelial differentiation factor-1 (EDF-1) is a calmodulin binding protein that regulates calmodulin-dependent enzymes. In endothelial cells, this factor can form a protein complex with calmodulin. We analyzed the relationship between this factor and the members of calmodulin/calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway during adipogenesis of 3T3-F442A cells. We found that the expression of edf1 is upregulated during early adipogenesis, whereas that of calcineurin gene is lowered, suggesting that this pathway should be downregulated to allow for adipogenesis to occur. We also found that EDF-1 associates with calmodulin and calcineurin, most likely inactivating calcineurin. Our results showed that EDF-1 inactivates the calmodulin/calcineurin/NFAT pathway via sequestration of calmodulin, during early adipogenesis, and we propose a mechanism that negatively regulates the activation of calcineurin through a complex formation between EDF-1 and calmodulin. This finding raises the possibility that modulating this pathway might offer some alternatives to regulate adipose biology.

  11. Investigating mitochondrial metabolism in contracting HL-1 cardiomyocytes following hypoxia and pharmacological HIF activation identifies HIF-dependent and independent mechanisms of regulation.

    PubMed

    Ambrose, Lucy J A; Abd-Jamil, Amira H; Gomes, Renata S M; Carter, Emma E; Carr, Carolyn A; Clarke, Kieran; Heather, Lisa C

    2014-11-01

    Hypoxia is a consequence of cardiac disease and downregulates mitochondrial metabolism, yet the molecular mechanisms through which this occurs in the heart are incompletely characterized. Therefore, we aimed to use a contracting HL-1 cardiomyocyte model to investigate the effects of hypoxia on mitochondrial metabolism. Cells were exposed to hypoxia (2% O2) for 6, 12, 24, and 48 hours to characterize the metabolic response. Cells were subsequently treated with the hypoxia inducible factor (HIF)-activating compound, dimethyloxalylglycine (DMOG), to determine whether hypoxia-induced mitochondrial changes were HIF dependent or independent, and to assess the suitability of this cultured cardiac cell line for cardiovascular pharmacological studies. Hypoxic cells had increased glycolysis after 24 hours, with glucose transporter 1 and lactate levels increased 5-fold and 15-fold, respectively. After 24 hours of hypoxia, mitochondrial networks were more fragmented but there was no change in citrate synthase activity, indicating that mitochondrial content was unchanged. Cellular oxygen consumption was 30% lower, accompanied by decreases in the enzymatic activities of electron transport chain (ETC) complexes I and IV, and aconitase by 81%, 96%, and 72%, relative to controls. Pharmacological HIF activation with DMOG decreased cellular oxygen consumption by 43%, coincident with decreases in the activities of aconitase and complex I by 26% and 30%, indicating that these adaptations were HIF mediated. In contrast, the hypoxia-mediated decrease in complex IV activity was not replicated by DMOG treatment, suggesting HIF-independent regulation of this complex. In conclusion, 24 hours of hypoxia increased anaerobic glycolysis and decreased mitochondrial respiration, which was associated with changes in ETC and tricarboxylic acid cycle enzyme activities in contracting HL-1 cells. Pharmacological HIF activation in this cardiac cell line allowed both HIF-dependent and independent

  12. Calcium-sensing receptor induces rat neonatal ventricular cardiomyocyte apoptosis

    SciTech Connect

    Sun Yihua; Liu Meina; Li Hong; Shi Sa; Zhao Yajun; Wang Rui; Xu Changqing . E-mail: syh200415@yahoo.com.cn

    2006-12-01

    The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, Physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (GdCl{sub 3}) in rat neonatal ventricular cardiomyocytes. Expression of the CaSR protein was observed by Western blot. The apoptotic ratio of rat neonatal ventricular cardiomyocytes was measured with flow cytometry and immunofluorescence techniques. A laser scan confocal microscope was used to detect the intracellular concentration of calcium ([Ca{sup 2+}]{sub i}) in rat neonatal ventricular cardiomyocytes using the acetoxymethyl ester of fluo-3 (fluo-3/(AM)) as a fluorescent dye. The results showed that GdCl{sub 3} increased the phosphorylation of extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal protein kinases (JNK), and p38. GdCl{sub 3} also activated caspase 9 and increased apoptosis in myocyte by increasing [Ca{sup 2+}]{sub i}. In conclusion, these results suggest that CaSR promotes cardiomyocyte apoptosis in rat neonatal ventricular cardiomyocytes through activation of mitogen-activated protein kinases and caspase 9 signaling pathways.

  13. Newborn Hypoxia/Anoxia Inhibits Cardiomyocyte Proliferation and Decreases Cardiomyocyte Endowment in the Developing Heart: Role of Endothelin-1

    PubMed Central

    Paradis, Alexandra N.; Gay, Maresha S.; Wilson, Christopher G.; Zhang, Lubo

    2015-01-01

    In the developing heart, cardiomyocytes undergo terminal differentiation during a critical window around birth. Hypoxia is a major stress to preterm infants, yet its effect on the development and maturation of the heart remains unknown. We tested the hypothesis in a rat model that newborn anoxia accelerates cardiomyocyte terminal differentiation and results in reduced cardiomyocyte endowment in the developing heart via an endothelin-1-dependent mechanism. Newborn rats were exposed to anoxia twice daily from postnatal day 1 to 3, and hearts were isolated and studied at postnatal day 4 (P4), 7 (P7), and 14 (P14). Anoxia significantly increased HIF-1α protein expression and pre-proET-1 mRNA abundance in P4 neonatal hearts. Cardiomyocyte proliferation was significantly decreased by anoxia in P4 and P7, resulting in a significant reduction of cardiomyocyte number per heart weight in the P14 neonates. Furthermore, the expression of cyclin D2 was significantly decreased due to anoxia, while p27 expression was increased. Anoxia has no significant effect on cardiomyocyte binucleation or myocyte size. Consistently, prenatal hypoxia significantly decreased cardiomyocyte proliferation but had no effect on binucleation in the fetal heart. Newborn administration of PD156707, an ETA-receptor antagonist, significantly increased cardiomyocyte proliferation at P4 and cell size at P7, resulting in an increase in the heart to body weight ratio in P7 neonates. In addition, PD156707 abrogated the anoxia-mediated effects. The results suggest that hypoxia and anoxia via activation of endothelin-1 at the critical window of heart development inhibits cardiomyocyte proliferation and decreases myocyte endowment in the developing heart, which may negatively impact cardiac function later in life. PMID:25692855

  14. Transcriptional Landscape of Cardiomyocyte Maturation

    PubMed Central

    Uosaki, Hideki; Cahan, Patrick; Lee, Dong I.; Wang, Songnan; Miyamoto, Matthew; Fernandez, Laviel; Kass, David A.; Kwon, Chulan

    2015-01-01

    SUMMARY Decades of progress in developmental cardiology has advanced our understanding of the early aspects of heart development, including cardiomyocyte (CM) differentiation. However, control of CM maturation which is subsequently required to generate adult myocytes, remains elusive. Here, we analyzed over 200 microarray datasets from early embryonic to adult hearts and identified a large number of genes whose expression shifts gradually and continuously during maturation. We generated an atlas of integrated gene expression, biological pathways, transcriptional regulators, and gene regulatory networks (GRNs), which show discrete sets of key transcriptional regulators and pathways activated or suppressed during CM maturation. We developed a GRN-based program named MatStatCM that indexes CM maturation status. MatStatCM reveals that pluripotent stem cell-derived CMs mature early in culture, but are arrested at the late embryonic stage with aberrant regulation of key transcription factors. Our study provides a foundation for understanding CM maturation. PMID:26586429

  15. Innate immunity and cardiomyocytes in ischemic heart disease

    PubMed Central

    Lin, Li; Knowlton, Anne A.

    2014-01-01

    Myocardial ischemia/reperfusion (I/R) is the most common cause of myocardial inflammation, which is primarily a manifestation of the innate immune responses. Innate immunity is activated when pattern recognition receptors (PRRs) responds to molecular patterns common to microbes and to danger signals expressed by injured or infected cells, so called pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The expression of various PRRs in cardiomyocytes and the release of DAMPs from cardiomyocytes subjected to I/R injury, through active mechanisms as well as passive processes, enable cardiomyocytes to generate innate immune responses. Studies in isolated heart and cardiomyocytes have confirmed the inflammatory and functional effects of cardiac PRRs especially toll-like receptors in response to I/R-derived DAMPs, such as heat shock proteins. This review addresses the active role of cardiomyocytes in mediating innate inflammatory responses to myocardial I/R. We propose that cardiomyocytes act as innate immune cells in myocardial I/R injury. PMID:24486305

  16. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death

    PubMed Central

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A.; Quest, Andrew F.G.; Lavandero, Sergio

    2014-01-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulatenumerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2+ overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2+ levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2+ influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2+ buffer capacity. These biochemical events increase cytosolic Ca2+ levels and trigger cardiomyocyte death via the activation of calpains. PMID:23602992

  17. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.

    PubMed

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio

    2013-08-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains. PMID:23602992

  18. Comparative Analysis of Telomerase Activity in CD117+CD34+ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes

    PubMed Central

    Li, Yuan-Yuan; Lu, Shan-Shan; Xu, Ting; Zhang, Hong-Qi; Li, Hua

    2015-01-01

    Background: This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Methods: Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117+CD34+ cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117+CD34+ cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Results: Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117+CD34+ cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117+CD34+ cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117+CD34+ cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Conclusions: Cardiac TCs represent a unique cell population and CD117+CD34+ cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis. PMID:26168836

  19. Mechanical stimulation of polycystin-1 induces human osteoblastic gene expression via potentiation of the calcineurin/NFAT signalling axis

    PubMed Central

    Georgopoulou, Urania; Adamopoulos, Christos; Basdra, Efthimia K.; Papavassiliou, Athanasios G.

    2016-01-01

    Mechanical forces trigger biological responses in bone cells that ultimately control osteoblastogenesis and bone remodelling. Although several mechanosensors have been postulated, the precise mechanotransduction pathway remains obscure as the initial mechanosensing event has not yet been identified. Studies in kidney cells have shown that polycystin-1 (PC1), via its extracellular N-terminal part, may function as an “antenna-like” protein providing a linkage between environmental cues and their conversion into biochemical responses that regulate various cellular processes via the calcineurin/ NFAT pathway. Here we explored the involvement of PC1 in mechanical load (stretching)-induced signalling cascades that control osteoblastogenesis/bone formation. FACS and TransAM Transcription Factor ELISA analyses employing extracts from primary human osteoblast-like, PC1 expressing cells subjected to mechanical stretching (0-6 h) revealed that unphosphorylated/DNA-binding competent NFATc1 increased at 0.5-1 h and returned to normal at 6 h. In accordance with the activation mechanism of NFATc1, stretching of cultured cells pre-treated with cyclosporin A (CsA, a specific inhibitor of the calcineurin/NFAT pathway) abrogated the observed decrease in the abundance of the cytoplasmic pNFATc1 (phosphorylated/inactive) species. Furthermore, stretching of osteoblastic cells pre-treated with an antibody against the mechanosensing N-terminal part of PC1 also abrogated the observed decrease in the cytoplasmic levels of the inactive pNFATc1 species. Importantly, under similar conditions (pre-incubation of stretched cells with the inhibitory anti-PC1 antibody), the expression of the key osteoblastic, NFATc1-target gene runx2 decreased compared to untreated cells. Therefore PC1 acts as chief mechanosensing molecule that modulates osteoblastic gene transcription and hence bone-cell differentiation through the calcineurin/NFAT signalling cascade. PMID:23014991

  20. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro

    NASA Astrophysics Data System (ADS)

    Radaszkiewicz, Katarzyna Anna; Sýkorová, Dominika; Karas, Pavel; Kudová, Jana; Kohút, Lukáš; Binó, Lucia; Večeřa, Josef; Víteček, Jan; Kubala, Lukáš; Pacherník, Jiří

    2016-02-01

    The analysis of digital video output enables the non-invasive screening of various active biological processes. For the monitoring and computing of the beating parameters of cardiomyocytes in vitro, CB Analyser (cardiomyocyte beating analyser) software was developed. This software is based on image analysis of the video recording of beating cardiomyocytes. CB Analyser was tested using cardiomyocytes derived from mouse embryonic stem cells at different stages of cardiomyogenesis. We observed that during differentiation (from day 18), the beat peak width decreased, which corresponded to the increased speed of an individual pulse. However, the beating frequency did not change. Further, the effects of epinephrine modulating mature cardiomyocyte functions were tested to validate the CB Analyser analysis. In conclusion, data show that CB Analyser is a useful tool for evaluating the functions of both developing and mature cardiomyocytes under various conditions in vitro.

  1. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes

    PubMed Central

    Qian, Li; Huang, Yu; Spencer, C. Ian; Foley, Amy; Vedantham, Vasanth; Liu, Lei; Conway, Simon J.; Fu, Ji-dong; Srivastava, Deepak

    2012-01-01

    SUMMARY The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here, we use genetic lineage-tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became bi-nucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast activating peptide, Thymosin β4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes. PMID:22522929

  2. Cardioprotective activity of urocortin by preventing caspase-independent, non-apoptotic death in cultured neonatal rat cardiomyocytes exposed to ischemia

    SciTech Connect

    Takatani-Nakase, Tomoka; Takahashi, Koichi

    2010-11-12

    Research highlights: {yields} Ischemia induces high level of iPLA{sub 2} resulting in caspase-independent myocyte death. {yields} Urocortin causes iPLA{sub 2} down-regulation leading to avoidance of non-apoptotic death. {yields} The survival-promoting effect of urocortin is abrogated by CRH receptor antagonist. -- Abstract: Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemia caused elevation of the phospholipase A{sub 2} (iPLA{sub 2}) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of {approx}10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA{sub 2}, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.

  3. The transcriptome responses of cardiomyocyte exposed to hypothermia.

    PubMed

    Zhang, Jian; Xue, Xiaodong; Xu, Yinli; Zhang, Yuji; Li, Zhi; Wang, Huishan

    2016-06-01

    Hypothermia has positive and negative consequences on the body. Hypothermia depresses myocardial contraction, conduction, and metabolic rate in the heart. However, little is known about the underlying molecular mechanisms. Herein, we compared the gene expression of human adult ventricular cardiomyocytes (AC16) under hypothermia to find differences between different temperatures, and elucidate the candidate genes that may play important roles in the response to hypothermia. A total of 2413 differentially expressed genes (DEGs) were identified by microarray hybridization, which provided abundant data for further analysis. Gene Ontology (GO) enrichment analysis revealed that genes related to transcription, and protein and lipid metabolism were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in TGF-β pathway and cytokine-cytokine receptor interaction, which may play important roles in changes affected by hypothermia. A set of transcription factors (TFs) (CPBP, Churchill, NF-AT1, GKLF, SRY, ZNF333, ING4, myogenin, DRI1 and CRX) was recognized to be the functional layer of key nodes, which mapped the signal of hypothermia to transcriptome. The identified DEGs, pathways and predicted TFs could facilitate further investigations of the detailed molecular mechanisms. PMID:27039159

  4. Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage.

    PubMed

    Lin, Shin-Shiou; Tzeng, Bing-Hsiean; Lee, Kuan-Rong; Smith, Richard J H; Campbell, Kevin P; Chen, Chien-Chang

    2014-05-13

    Intracellular Ca(2+) transient is crucial in initiating the differentiation of mesenchymal cells into chondrocytes, but whether voltage-gated Ca(2+) channels are involved remains uncertain. Here, we show that the T-type voltage-gated Ca(2+) channel Cav3.2 is essential for tracheal chondrogenesis. Mice lacking this channel (Cav3.2(-/-)) show congenital tracheal stenosis because of incomplete formation of cartilaginous tracheal support. Conversely, Cav3.2 overexpression in ATDC5 cells enhances chondrogenesis, which could be blunted by both blocking T-type Ca(2+) channels and inhibiting calcineurin and suggests that Cav3.2 is responsible for Ca(2+) influx during chondrogenesis. Finally, the expression of sex determination region of Y chromosome (SRY)-related high-mobility group-Box gene 9 (Sox9), one of the earliest markers of committed chondrogenic cells, is reduced in Cav3.2(-/-) tracheas. Mechanistically, Ca(2+) influx via Cav3.2 activates the calcineurin/nuclear factor of the activated T-cell (NFAT) signaling pathway, and a previously unidentified NFAT binding site is identified within the mouse Sox9 promoter using a luciferase reporter assay and gel shift and ChIP studies. Our findings define a previously unidentified mechanism that Ca(2+) influx via the Cav3.2 T-type Ca(2+) channel regulates Sox9 expression through the calcineurin/NFAT signaling pathway during tracheal chondrogenesis. PMID:24778262

  5. Functional expression of the hyperpolarization-activated, non-selective cation current If in immortalized HL-1 cardiomyocytes

    PubMed Central

    Sartiani, Laura; Bochet, Pascal; Cerbai, Elisabetta; Mugelli, Alessandro; Fischmeister, Rodolphe

    2002-01-01

    HL-1 cells are adult mouse atrial myocytes induced to proliferate indefinitely by SV40 large T antigen. These cells beat spontaneously when confluent and express several adult cardiac cell markers including the outward delayed rectifier K+ channel. Here, we examined the presence of a hyperpolarization-activated If current in HL-1 cells using the whole-cell patch-clamp technique on isolated cells enzymatically dissociated from the culture at confluence. Cell membrane capacitance (Cm) ranged from 5 to 53 pF. If was detected in about 30 % of the cells and its occurrence was independent of the stage of the culture. If maximal slope conductance was 89.7 ± 0.4 pS pF−1 (n = 10). If current in HL-1 cells showed typical characteristics of native cardiac If current: activation threshold between −50 and −60 mV, half-maximal activation potential of −83.1 ± 0.7 mV (n = 50), reversal potential at −20.8 ± 1.5 mV (n = 10), time-dependent activation by hyperpolarization and blockade by 4 mm Cs+. In half of the cells tested, activation of adenylyl cyclase by the forskolin analogue L858051 (20 μm) induced both a ≈6 mV positive shift of the half-activation potential and a ≈37 % increase in the fully activated If current. RT-PCR analysis of the hyperpolarization-activated, cyclic nucleotide-gated channels (HCN) expressed in HL-1 cells demonstrated major contributions of HCN1 and HCN2 channel isoforms to If current. Cytosolic Ca2+ oscillations in spontaneously beating HL-1 cells were measured in Fluo-3 AM-loaded cells using a fast-scanning confocal microscope. The oscillation frequency ranged from 1.3 to 5 Hz and the spontaneous activity was stopped in the presence of 4 mm Cs+. Action potentials from HL-1 cells had a triangular shape, with an overshoot at +15 mV and a maximal diastolic potential of −69 mV, i.e. more negative than the threshold potential for If activation. In conclusion, HL-1 cells display a hyperpolarization-activated If current which might

  6. Functional expression of the hyperpolarization-activated, non-selective cation current I(f) in immortalized HL-1 cardiomyocytes.

    PubMed

    Sartiani, Laura; Bochet, Pascal; Cerbai, Elisabetta; Mugelli, Alessandro; Fischmeister, Rodolphe

    2002-11-15

    HL-1 cells are adult mouse atrial myocytes induced to proliferate indefinitely by SV40 large T antigen. These cells beat spontaneously when confluent and express several adult cardiac cell markers including the outward delayed rectifier K(+) channel. Here, we examined the presence of a hyperpolarization-activated I(f) current in HL-1 cells using the whole-cell patch-clamp technique on isolated cells enzymatically dissociated from the culture at confluence. Cell membrane capacitance (C(m)) ranged from 5 to 53 pF. I(f) was detected in about 30% of the cells and its occurrence was independent of the stage of the culture. I(f) maximal slope conductance was 89.7 +/- 0.4 pS pF(-1) (n = 10). I(f) current in HL-1 cells showed typical characteristics of native cardiac I(f) current: activation threshold between -50 and -60 mV, half-maximal activation potential of -83.1 +/- 0.7 mV (n = 50), reversal potential at -20.8 +/- 1.5 mV (n = 10), time-dependent activation by hyperpolarization and blockade by 4 mM Cs(+). In half of the cells tested, activation of adenylyl cyclase by the forskolin analogue L858051 (20 microM) induced both an approximately 6 mV positive shift of the half-activation potential and an approximately 37 % increase in the fully activated I(f) current. RT-PCR analysis of the hyperpolarization-activated, cyclic nucleotide-gated channels (HCN) expressed in HL-1 cells demonstrated major contributions of HCN1 and HCN2 channel isoforms to I(f) current. Cytosolic Ca(2+) oscillations in spontaneously beating HL-1 cells were measured in Fluo-3 AM-loaded cells using a fast-scanning confocal microscope. The oscillation frequency ranged from 1.3 to 5 Hz and the spontaneous activity was stopped in the presence of 4 mM Cs(+). Action potentials from HL-1 cells had a triangular shape, with an overshoot at +15 mV and a maximal diastolic potential of -69 mV, i.e. more negative than the threshold potential for I(f) activation. In conclusion, HL-1 cells display a

  7. Pro-survival function of MEF2 in cardiomyocytes is enhanced by β-blockers

    PubMed Central

    Hashemi, S; Salma, J; Wales, S; McDermott, JC

    2015-01-01

    β1-Adrenergic receptor (β1-AR) stimulation increases apoptosis in cardiomyocytes through activation of cAMP/protein kinase A (PKA) signaling. The myocyte enhancer factor 2 (MEF2) proteins function as important regulators of myocardial gene expression. Previously, we reported that PKA signaling directly represses MEF2 activity. We determined whether (a) MEF2 has a pro-survival function in cardiomyocytes, and (b) whether β-adrenergic/PKA signaling modulates MEF2 function in cardiomyocytes. Initially, we observed that siRNA-mediated gene silencing of MEF2 induces cardiomyocyte apoptosis as indicated by flow cytometry. β1-AR activation by isoproterenol represses MEF2 activity and promotes apoptosis in cultured neonatal cardiomyocytes. Importantly, β1-AR mediated apoptosis was abrogated in cardiomyocytes expressing a PKA-resistant form of MEF2D (S121/190A). We also observed that a β1-blocker, Atenolol, antagonizes isoproterenol-induced apoptosis while concomitantly enhancing MEF2 transcriptional activity. β-AR stimulation modulated MEF2 cellular localization in cardiomyocytes and this effect was reversed by β-blocker treatment. Furthermore, Kruppel-like factor 6, a MEF2 target gene in the heart, functions as a downstream pro-survival factor in cardiomyocytes. Collectively, these data indicate that (a) MEF2 has an important pro-survival role in cardiomyocytes, and (b) β-adrenergic signaling antagonizes the pro-survival function of MEF2 in cardiomyocytes and β-blockers promote it. These observations have important clinical implications that may contribute to novel strategies for preventing cardiomyocyte apoptosis associated with heart pathology. PMID:27551452

  8. Effects of short-chain acyl-CoA dehydrogenase on cardiomyocyte apoptosis.

    PubMed

    Zeng, Zhenhua; Huang, Qiuju; Shu, Zhaohui; Liu, Peiqing; Chen, Shaorui; Pan, Xuediao; Zang, Linquan; Zhou, Sigui

    2016-07-01

    Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, plays an important role in cardiac hypertrophy. However, its effect on the cardiomyocyte apoptosis remains unknown. We aimed to determine the role of SCAD in tert-butyl hydroperoxide (tBHP)-induced cardiomyocyte apoptosis. The mRNA and protein expression of SCAD were significantly down-regulated in the cardiomyocyte apoptosis model. Inhibition of SCAD with siRNA-1186 significantly decreased SCAD expression, enzyme activity and ATP content, but obviously increased the content of free fatty acids. Meanwhile, SCAD siRNA treatment triggered the same apoptosis as cardiomyocytes treated with tBHP, such as the increase in cell apoptotic rate, the activation of caspase3 and the decrease in the Bcl-2/Bax ratio, which showed that SCAD may play an important role in primary cardiomyocyte apoptosis. The changes of phosphonate AMP-activated protein kinase α (p-AMPKα) and Peroxisome proliferator-activated receptor α (PPARα) in cardiomyocyte apoptosis were consistent with that of SCAD. Furthermore, PPARα activator fenofibrate and AMPKα activator AICAR treatment significantly increased the expression of SCAD and inhibited cardiomyocyte apoptosis. In conclusion, for the first time our findings directly demonstrated that SCAD may be as a new target to prevent cardiomyocyte apoptosis through the AMPK/PPARα/SCAD signal pathways. PMID:26989860

  9. Zinc-induced metallothionein overexpression prevents doxorubicin toxicity in cardiomyocytes by regulating the peroxiredoxins.

    PubMed

    Jing, Li; Li, Lizhong; Zhao, Jing; Zhao, Jun; Sun, Zhiwei; Peng, Shuangqing

    2016-08-01

    1. Cardiotoxicity is an important factor that limits the clinical use of doxorubicin (Dox). Metallothionein (MT) can antagonize the Dox-induced cardiotoxicity. Using a proteomics approach we have detected that major peroxiredoxins (Prxs) may be involved in this process. In the present study, we further investigate the mechanisms of the MT effects against Dox-induced cytotoxicity and the interactions between MT and Prxs. 2. We have established a primary cardiomyocyte culture system from MT-I/II null (MT(-/-)) and corresponding wild type (MT(+/+)) neonatal mice, and pretreated the MT(+/+) cardiomyocytes with ZnCl2 to establish the MT overexpression cardiomyocyte model. 3. Based on the results, in MT(+/+) cardiomyocytes, ZnCl2 pretreatment significantly increased the cardiomyocytes MT levels and inhibited the cardiotoxicity of Dox; it can resist LDH leakage, cardiomyocyte apoptosis, DNA damage, ROS accumulation and inhibit the decrease in activity of antioxidant enzymes induced by Dox. Moreover, ZnCl2 enhanced the expression of Prx-2, -3, -5 and -6, it can inhibit the expression of Prxs decrease in MT(+/+) cardiomyocytes induced by Dox, but had no effect in MT(-/-) cardiomyocytes. 4. Therefore, the present study suggests that ZnCl2 can protect the cardiomyocytes from the Dox-induced oxidative injury and can inhibit the changes in Prxs expression through induced MT overexpression. PMID:26599915

  10. Myricitrin Attenuates High Glucose-Induced Apoptosis through Activating Akt-Nrf2 Signaling in H9c2 Cardiomyocytes.

    PubMed

    Zhang, Bin; Chen, Yaping; Shen, Qiang; Liu, Guiyan; Ye, Jingxue; Sun, Guibo; Sun, Xiaobo

    2016-01-01

    Hyperglycemia, as well as diabetes mellitus, has been shown to trigger cardiac cell apoptosis. We have previously demonstrated that myricitrin prevents endothelial cell apoptosis. However, whether myricitrin can attenuate H9c2 cell apoptosis remains unknown. In this study, we established an experiment model in H9c2 cells exposed to high glucose. We tested the hypothesis that myricitrin may inhibit high glucose (HG)-induced cardiac cell apoptosis as determined by TUNEL staining. Furthermore, myricitrin promoted antioxidative enzyme production, suppressed high glucose-induced reactive oxygen species (ROS) production and decreased mitochondrial membrane potential (MMP) in H9c2 cells. This agent significantly inhibited apoptotic protein expression, activated Akt and facilitated the transcription of NF-E2-related factor 2 (Nrf2)-mediated protein (heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO-1) expression as determined by Western blotting. Significantly, an Akt inhibitor (LY294002) or HO-1 inhibitor (ZnPP) not only inhibited myricitrin-induced HO-1/NQO-1 upregulation but also alleviated its anti-apoptotic effects. In summary, these observations demonstrate that myricitrin activates Nrf2-mediated anti-oxidant signaling and attenuates H9c2 cell apoptosis induced by high glucose via activation of Akt signaling. PMID:27399653

  11. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes.

    PubMed

    Liu, Qiaozhen; Yang, Rui; Huang, Xiuzhen; Zhang, Hui; He, Lingjuan; Zhang, Libo; Tian, Xueying; Nie, Yu; Hu, Shengshou; Yan, Yan; Zhang, Li; Qiao, Zengyong; Wang, Qing-Dong; Lui, Kathy O; Zhou, Bin

    2016-01-01

    Cardiac cells marked by c-Kit or Kit, dubbed cardiac stem cells (CSCs), are in clinical trials to investigate their ability to stimulate cardiac regeneration and repair. These studies were initially motivated by the purported cardiogenic activity of these cells. Recent lineage tracing studies using Kit promoter to drive expression of the inducible Cre recombinase showed that these CSCs had highly limited cardiogenic activity, inadequate to support efficient cardiac repair. Here we reassess the lineage tracing data by investigating the identity of cells immediately after Cre labeling. Our instant lineage tracing approach identifies Kit-expressing cardiomyocytes, which are labeled immediately after tamoxifen induction. In combination with long-term lineage tracing experiments, these data reveal that the large majority of long-term labeled cardiomyocytes are pre-existing Kit-expressing cardiomyocytes rather than cardiomyocytes formed de novo from CSCs. This study presents a new interpretation for the contribution of Kit(+) cells to cardiomyocytes and shows that Kit genetic lineage tracing over-estimates the cardiogenic activity of Kit(+) CSCs. PMID:26634606

  12. Functional integrity of the t-tubular system in cardiomyocytes depends on p21-activated kinase 1

    PubMed Central

    DeSantiago, Jaime; Bare, Dan J; Ke, Yunbo; Sheehan, Katherine A.; Solaro, R. John; Banach, Kathrin

    2013-01-01

    p21-activated kinase (Pak1), a serine-threonine protein kinase, regulates cytoskeletal dynamics and cell motility. Recent experiments further demonstrate that loss of Pak1 results in exaggerated hypertrophic growth in response to pathophysiological stimuli. Calcium (Ca) signaling plays an important role in the regulation of transcription factors involved in hypertrophic remodeling. Here we aimed to determine the role of Pak1 in cardiac excitation-contraction coupling (ECC). Ca transients were recorded in isolated, ventricular myocytes (VMs) from WT and Pak1−/− mice. Pak1−/− Ca transients had a decreased amplitude, prolonged rise time and delayed recovery time. Di-8-ANNEPS staining revealed a decreased t-tubular density in Pak1−/− VMs that coincided with decreased cell capacitance and increased dis-synchrony of Ca induced Ca release (CICR) at individual release units. These changes were not observed in atrial myocytes of Pak1−/− mice where the t-tubular system is only sparsely developed. Experiments in cultured rabbit VMs supported a role of Pak1 in the maintenance of the t-tubular structure. T-tubular density in rabbit VMs significantly decreased within 24h of culture. This was accompanied by a decrease of the Ca transient amplitude and a prolongation of its rise time. However, overexpression of constitutively active Pak1 in VMs attenuated the structural remodeling as well as changes in ECC. The results provide significant support for a prominent role of Pak1 activity not only in the functional regulation of ECC but for the structural maintenance of the t-tubular system whose remodeling is an integral feature of hypertrophic remodeling. PMID:23612118

  13. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5).

    PubMed

    Halterman, Julia A; Kwon, H Moo; Wamhoff, Brian R

    2012-01-01

    Tonicity-responsive enhancer binding protein (TonEBP/nuclear factor of activated T-cells 5 [NFAT5]) is a Rel homology transcription factor classically known for its osmosensitive role in regulating cellular homeostasis during states of hypo- and hypertonic stress. A recently growing body of research indicates that TonEBP is not solely regulated by tonicity, but that it can be stimulated by various tonicity-independent mechanisms in both hypertonic and isotonic tissues. Physiological and pathophysiological stimuli such as cytokines, growth factors, receptor and integrin activation, contractile agonists, ions, and reactive oxygen species have been implicated in the positive regulation of TonEBP expression and activity in diverse cell types. These new data demonstrate that tonicity-independent stimulation of TonEBP is critical for tissue-specific functions like enhanced cell survival, migration, proliferation, vascular remodeling, carcinoma invasion, and angiogenesis. Continuing research will provide a better understanding as to how these and other alternative TonEBP stimuli regulate gene expression in both health and disease. PMID:21998140

  14. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes

    PubMed Central

    Stimers, Joseph R.; Song, Li; Rusch, Nancy J.; Rhee, Sung W.

    2015-01-01

    Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome. PMID:26091273

  15. How to make a cardiomyocyte.

    PubMed

    Später, Daniela; Hansson, Emil M; Zangi, Lior; Chien, Kenneth R

    2014-12-01

    During development, cardiogenesis is orchestrated by a family of heart progenitors that build distinct regions of the heart. Each region contains diverse cell types that assemble to form the complex structures of the individual cardiac compartments. Cardiomyocytes are the main cell type found in the heart and ensure contraction of the chambers and efficient blood flow throughout the body. Injury to the cardiac muscle often leads to heart failure due to the loss of a large number of cardiomyocytes and its limited intrinsic capacity to regenerate the damaged tissue, making it one of the leading causes of morbidity and mortality worldwide. In this Primer we discuss how insights into the molecular and cellular framework underlying cardiac development can be used to guide the in vitro specification of cardiomyocytes, whether by directed differentiation of pluripotent stem cells or via direct lineage conversion. Additional strategies to generate cardiomyocytes in situ, such as reactivation of endogenous cardiac progenitors and induction of cardiomyocyte proliferation, will also be discussed. PMID:25406392

  16. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    SciTech Connect

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  17. Glucocorticoid signaling in the heart: A cardiomyocyte perspective.

    PubMed

    Oakley, Robert H; Cidlowski, John A

    2015-09-01

    Heart failure is one of the leading causes of death in the Western world. Glucocorticoids are primary stress hormones that regulate a vast array of biological processes, and synthetic derivatives of these steroids have been mainstays in the clinic for the last half century. Abnormal levels of glucocorticoids are known to negatively impact the cardiovascular system; however, surprisingly little is known about the direct role of glucocorticoid signaling in the heart. The actions of glucocorticoids are mediated classically by the glucocorticoid receptor (GR). In certain cells, such as cardiomyocytes, glucocorticoid occupancy and activation of the mineralocorticoid receptor (MR) may also contribute to the observed response. Recently, there has been a surge of reports investigating the in vivo function of glucocorticoid signaling in the heart using transgenic mice that specifically target GR or MR in cardiomyocytes. Results from these studies suggest that GR signaling in cardiomyocytes is critical for the normal development and function of the heart. In contrast, MR signaling in cardiomyocytes participates in the development and progression of cardiac disease. In the following review, we discuss these genetic mouse models and the new insights they are providing into the direct role cardiomyocyte glucocorticoid signaling plays in heart physiology and pathophysiology. This article is part of a Special Issue entitled 'Steroid Perspectives'. PMID:25804222

  18. Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy

    PubMed Central

    Kooij, Viola; Viswanathan, Meera C.; Lee, Dong I.; Rainer, Peter P.; Schmidt, William; Kronert, William A.; Harding, Sian E.; Kass, David A.; Bernstein, Sanford I.; Van Eyk, Jennifer E.; Cammarato, Anthony

    2016-01-01

    Aims Heart failure is often preceded by cardiac hypertrophy, which is characterized by increased cell size, altered protein abundance, and actin cytoskeletal reorganization. Profilin is a well-conserved, ubiquitously expressed, multifunctional actin-binding protein, and its role in cardiomyocytes is largely unknown. Given its involvement in vascular hypertrophy, we aimed to test the hypothesis that profilin-1 is a key mediator of cardiomyocyte-specific hypertrophic remodelling. Methods and results Profilin-1 was elevated in multiple mouse models of hypertrophy, and a cardiomyocyte-specific increase of profilin in Drosophila resulted in significantly larger heart tube dimensions. Moreover, adenovirus-mediated overexpression of profilin-1 in neonatal rat ventricular myocytes (NRVMs) induced a hypertrophic response, measured by increased myocyte size and gene expression. Profilin-1 silencing suppressed the response in NRVMs stimulated with phenylephrine or endothelin-1. Mechanistically, we found that profilin-1 regulates hypertrophy, in part, through activation of the ERK1/2 signalling cascade. Confocal microscopy showed that profilin localized to the Z-line of Drosophila myofibrils under normal conditions and accumulated near the M-line when overexpressed. Elevated profilin levels resulted in elongated sarcomeres, myofibrillar disorganization, and sarcomeric disarray, which correlated with impaired muscle function. Conclusion Our results identify novel roles for profilin as an important mediator of cardiomyocyte hypertrophy. We show that overexpression of profilin is sufficient to induce cardiomyocyte hypertrophy and sarcomeric remodelling, and silencing of profilin attenuates the hypertrophic response. PMID:26956799

  19. Trimetazidine protects cardiomyocytes against hypoxia-induced injury through ameliorates calcium homeostasis.

    PubMed

    Wei, Jinhong; Xu, Hao; Shi, Liang; Tong, Jie; Zhang, Jianbao

    2015-07-01

    Intracellular calcium (Ca(2+)i) overload induced by chronic hypoxia alters Ca(2+)i homeostasis, which plays an important role on mediating myocardial injury. We tested the hypothesis that treatment with trimetazidine (TMZ) would improve Ca(2+)i handling in hypoxic myocardial injury. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to chronic hypoxia (1% O2, 5% CO2, 37 °C). Intracellular calcium concentration ([Ca(2+)]i) was measured with Fura-2/AM. Perfusion of cardiomyocytes with a high concentration of caffeine (10 mM) was carried out to verify the function of the cardiac Na(+)/Ca(2+) exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca(2+)-ATPase (SERCA2a). For TMZ-treated cardiomyocytes exposured in hypoxia, we observed a decrease in mRNA expression of proapoptotic Bax, caspase-3 activation and enhanced expression of anti-apoptotic Bcl-2. The cardiomyocyte hypertrophy were also alleviated in hypoxic cardiomyocyte treated with TMZ. Moreover, we found that TMZ treatment cardiomyocytes enhanced "metabolic shift" from lipid oxidation to glucose oxidation. Compared with hypoxic cardiomyocyte, the diastolic [Ca(2+)]i was decreased, the amplitude of Ca(2+)i oscillations and sarcoplasmic reticulum Ca(2+) load were recovered, the activities of ryanodine receptor 2 (RyR2), NCX and SERCA2a were increased in cardiomyocytes treated with TMZ. TMZ attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes. In addition, cholinergic signaling are involved in hypoxic stress and the cardioprotective effects of TMZ. These results suggest that TMZ ameliorates Ca(2+)i homeostasis through switch of lipid to glucose metabolism, thereby producing the cardioprotective effect and reduction in hypoxic cardiomyocytes damage. PMID:25937560

  20. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid

    PubMed Central

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA. PMID:27057269

  1. Cutting Edge: NFAT Transcription Factors Promote the Generation of Follicular Helper T Cells in Response to Acute Viral Infection.

    PubMed

    Martinez, Gustavo J; Hu, Joyce K; Pereira, Renata M; Crampton, Jordan S; Togher, Susan; Bild, Nicholas; Crotty, Shane; Rao, Anjana

    2016-03-01

    Follicular CD4(+) Th (Tfh) cells provide B cell help in germinal center reactions that support class switching, somatic hypermutation, and the generation of high-affinity Abs. In this article, we show that deficiency in NFAT1 and NFAT2 in CD4(+) T cells leads to impaired germinal center reactions upon viral infection because of reduced Tfh cell differentiation and defective expression of proteins involved in T/B interactions and B cell help, including ICOS, PD-1, and SLAM family receptors. Genome-wide chromatin immunoprecipitation data suggest that NFAT proteins likely directly participate in regulation of genes important for Tfh cell differentiation and function. NFAT proteins are important TCR and Ca(2+)-dependent regulators of T cell biology, and in this article we demonstrate a major positive role of NFAT family members in Tfh differentiation. PMID:26851216

  2. Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth.

    PubMed

    Tane, Shoji; Okayama, Hitomi; Ikenishi, Aiko; Amemiya, Yuki; Nakayama, Keiichi I; Takeuchi, Takashi

    2015-10-16

    Mammalian cardiomyocytes actively proliferate during embryonic stages, following which they exit their cell cycle after birth, and the exit is maintained. Previously, we showed that two inhibitory systems (the G1-phase inhibitory system: repression of cyclin D1 expression; the M-phase inhibitory system: inhibition of CDK1 activation) maintain the cell cycle exit of mouse adult cardiomyocytes. We also showed that two CDK inhibitors (CKIs), p21(Cip1) and p27(Kip1), regulate the cell cycle exit in a portion of postnatal cardiomyocytes. It remains unknown whether the two inhibitory systems are involved in the cell cycle exit of postnatal cardiomyocytes and whether p21(Cip1) and p27(Kip1) also inhibit entry to M-phase. Here, we showed that more than 40% of cardiomyocytes entered an additional cell cycle by induction of cyclin D1 expression at postnatal stages, but M-phase entry was inhibited in the majority of cardiomyocytes. Marked cell cycle progression and endoreplication were observed in cardiomyocytes of p21(Cip1) knockout mice at 4 weeks of age. In addition, tri- and tetranucleated cardiomyocytes increased significantly in p21(Cip1) knockout mice. These data showed that the G1-phase inhibitory system and two CKIs (p21(Cip1) and p27(Kip1)) inhibit entry to an additional cell cycle in postnatal cardiomyocytes, and that the M-phase inhibitory system and p21(Cip1) inhibit M-phase entry of cardiomyocytes which have entered the additional cell cycle. PMID:26363457

  3. Na+/H+ Exchanger Isoform 1-Induced Osteopontin Expression Facilitates Cardiomyocyte Hypertrophy

    PubMed Central

    Mohamed, Iman A.; Gadeau, Alain-Pierre; Fliegel, Larry; Lopaschuk, Gary; Mlih, Mohamed; Abdulrahman, Nabeel; Fillmore, Natasha; Mraiche, Fatima

    2015-01-01

    Enhanced expression and activity of the Na+/H+ exchanger isoform 1 (NHE1) has been implicated in cardiomyocyte hypertrophy in various experimental models. The upregulation of NHE1 was correlated with an increase in osteopontin (OPN) expression in models of cardiac hypertrophy (CH), and the mechanism for this remains to be delineated. To determine whether the expression of active NHE1-induces OPN and contributes to the hypertrophic response in vitro, cardiomyocytes were infected with the active form of the NHE1 adenovirus or transfected with OPN silencing RNA (siRNA-OPN) and characterized for cardiomyocyte hypertrophy. Expression of NHE1 in cardiomyocytes resulted in a significant increase in cardiomyocyte hypertrophy markers: cell surface area, protein content, ANP mRNA and expression of phosphorylated-GATA4. NHE1 activity was also significantly increased in cardiomyocytes expressing active NHE1. Interestingly, transfection of cardiomyocytes with siRNA-OPN significantly abolished the NHE1-induced cardiomyocyte hypertrophy. siRNA-OPN also significantly reduced the activity of NHE1 in cardiomyocytes expressing NHE1 (68.5±0.24%; P<0.05), confirming the role of OPN in the NHE1-induced hypertrophic response. The hypertrophic response facilitated by NHE1-induced OPN occurred independent of the extracellular-signal-regulated kinases and Akt, but required p90-ribosomal S6 kinase (RSK). The ability of OPN to facilitate the NHE1-induced hypertrophic response identifies OPN as a potential therapeutic target to reverse the hypertrophic effect induced by the expression of active NHE1. PMID:25884410

  4. Effects of extremely low frequency electromagnetic fields on intracellular calcium transients in cardiomyocytes.

    PubMed

    Wei, Jinhong; Sun, Junqing; Xu, Hao; Shi, Liang; Sun, Lijun; Zhang, Jianbao

    2015-03-01

    Calcium transients play an essential role in cardiomyocytes and electromagnetic fields (EMF) and affect intracellular calcium levels in many types of cells. Effects of EMF on intracellular calcium transients in cardiomyocytes are not well studied. The aim of this study was to assess whether extremely low frequency electromagnetic fields (ELF-EMF) could affect intracellular calcium transients in cardiomyocytes. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to rectangular-wave pulsed ELF-EMF at four different frequencies (15 Hz, 50 Hz, 75 Hz and 100 Hz) and at a flux density of 2 mT. Intracellular calcium concentration ([Ca(2+)]i) was measured using Fura-2/AM and spectrofluorometry. Perfusion of cardiomyocytes with a high concentration of caffeine (10 mM) was carried out to verify the function of the cardiac Na(+)/Ca(2+) exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca(2+)-ATPase (SERCA2a). The results showed that ELF-EMF enhanced the activities of NCX and SERCA2a, increased [Ca(2+)]i baseline level and frequency of calcium transients in cardiomyocytes and decreased the amplitude of calcium transients and calcium level in sarcoplasmic reticulum. These results indicated that ELF-EMF can regulate calcium-associated activities in cardiomyocytes. PMID:24499289

  5. Polydatin attenuates cardiac hypertrophy through modulation of cardiac Ca2+ handling and calcineurin-NFAT signaling pathway.

    PubMed

    Ding, Wenwen; Dong, Ming; Deng, Jianxin; Yan, Dewen; Liu, Yun; Xu, Teng; Liu, Jie

    2014-09-01

    Polydatin (PD), a resveratrol glucoside extracted from the perennial herbage Polygonum cuspidatum, has been suggested to have wide cardioprotective effects. This study aimed to explore the direct antihypertrophic role of PD in cultured neonatal rat ventricular myocytes (NRVMs) and its therapeutic effects against pressure overload (PO)-induced hypertrophic remodeling and heart failure. Furthermore, we investigated the mechanisms underlying the actions of PD. Treatment of NRVMs with phenylephrine for 72 h induced myocyte hypertrophy, where the cell surface area and protein levels of atrial natriuretic peptide and β-myosin heavy chain (β-MHC) were significantly increased. The amplitude of systolic Ca(2+) transient was increased, and sarcoplasmic reticulum Ca(2+) recycling was prolonged. Concomitantly, calcineurin activity was increased and NFAT protein was imported into the nucleus. PD treatment restored Ca(2+) handling and inhibited calcineurin-NFAT signaling, thus attenuating the hypertrophic remodeling in NRVMs. PO-induced cardiac hypertrophy was produced by transverse aortic constriction (TAC) in C57BL/6 mice, where the left ventricular posterior wall thickness and heart-to-body weight ratio were significantly increased. The cardiac function was increased at 5 wk of TAC, but significantly decreased at 13 wk of TAC. The amplitude of Ca(2+) transient and calcineurin activity were increased at 5 wk of TAC. PD treatment largely abolished TAC-induced hypertrophic remodeling by inhibiting the Ca(2+)-calcineurin pathway. Surprisingly, PD did not inhibit myocyte contractility despite that the amplitude of Ca(2+) transient was decreased. The cardiac function remained intact at 13 wk of TAC. In conclusion, PD is beneficial against PO-induced cardiac hypertrophy and heart failure largely through inhibiting the Ca(2+)-calcineurin pathway without compromising cardiac contractility. PMID:25015961

  6. IGF-2R-mediated signaling results in hypertrophy of cultured cardiomyocytes from fetal sheep.

    PubMed

    Wang, Kimberley C W; Brooks, Doug A; Botting, Kimberley J; Morrison, Janna L

    2012-06-01

    Activation of the insulin-like growth factor-1 receptor (IGF-1R) is known to play a role in cardiomyocyte hypertrophy. While IGF-2R is understood to be a clearance receptor for IGF-2, there is also evidence that it may play a role in the induction of pathological cardiomyocyte hypertrophy. It is not known whether IGF-2R activates cardiomyocyte hypertrophy during growth of the fetal heart. Fetal sheep hearts (125 ± 0.4 days gestation) were dissected, and the cardiomyocytes isolated from the left and right ventricles for culturing. Cultured cardiomyocytes were treated with either LONG R(3)IGF-1, an IGF-1R agonist; picropodophyllin, an IGF-1R autophosphorylation inhibitor; U0126, an inhibitor of extracellular signal-regulated protein kinase (ERK); Leu(27)IGF-2, an IGF-2R agonist; Gö6976, a protein kinase C inhibitor; KN-93, an inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII); or KN-92, an L-type calcium channel inhibitor and negative control for KN-93. The cross-sectional area of cultured cardiomyocytes was determined relative to control cardiomyocytes treated with serum-free culture medium. IGF-1R and IGF-2R activation each resulted in ERK signaling, but IGF-2R activation alone induced CaMKII signaling, resulting in hypertrophy of cardiomyocytes in the late gestation sheep fetus. These data suggest that changes in the intrauterine environment that result in increased cardiac IGF-2R may also lead to cardiomyocyte hypertrophy in the fetus and potentially an increased risk of cardiovascular disease in adult life. PMID:22441800

  7. Identification of genes directly regulated by the intrinsic circadian clock within the cardiomyocyte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian rhythms in cardiovascular physiology (e.g., heart rate, cardiac output) and pathophysiology (e.g., arrhythmias) are firmly established. These phenomena have been attributed primarily to circadian rhythms in neurohumoral influences (e.g., sympathetic activity). Nevertheless, cardiomyocytes ...

  8. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis.

    PubMed

    Han, Peidong; Bloomekatz, Joshua; Ren, Jie; Zhang, Ruilin; Grinstein, Jonathan D; Zhao, Long; Burns, C Geoffrey; Burns, Caroline E; Anderson, Ryan M; Chi, Neil C

    2016-06-30

    Many organs are composed of complex tissue walls that are structurally organized to optimize organ function. In particular, the ventricular myocardial wall of the heart comprises an outer compact layer that concentrically encircles the ridge-like inner trabecular layer. Although disruption in the morphogenesis of this myocardial wall can lead to various forms of congenital heart disease and non-compaction cardiomyopathies, it remains unclear how embryonic cardiomyocytes assemble to form ventricular wall layers of appropriate spatial dimensions and myocardial mass. Here we use advanced genetic and imaging tools in zebrafish to reveal an interplay between myocardial Notch and Erbb2 signalling that directs the spatial allocation of myocardial cells to their proper morphological positions in the ventricular wall. Although previous studies have shown that endocardial Notch signalling non-cell-autonomously promotes myocardial trabeculation through Erbb2 and bone morphogenetic protein (BMP) signalling, we discover that distinct ventricular cardiomyocyte clusters exhibit myocardial Notch activity that cell-autonomously inhibits Erbb2 signalling and prevents cardiomyocyte sprouting and trabeculation. Myocardial-specific Notch inactivation leads to ventricles of reduced size and increased wall thickness because of excessive trabeculae, whereas widespread myocardial Notch activity results in ventricles of increased size with a single-cell-thick wall but no trabeculae. Notably, this myocardial Notch signalling is activated non-cell-autonomously by neighbouring Erbb2-activated cardiomyocytes that sprout and form nascent trabeculae. Thus, these findings support an interactive cellular feedback process that guides the assembly of cardiomyocytes to morphologically create the ventricular myocardial wall and more broadly provide insight into the cellular dynamics of how diverse cell lineages organize to create form. PMID:27357797

  9. NFAT isoforms play distinct roles in TNFα-induced retinal leukostasis

    PubMed Central

    Bretz, Colin A.; Savage, Sara R.; Capozzi, Megan E.; Suarez, Sandra; Penn, John S.

    2015-01-01

    The objective of this study was to determine the role of individual NFAT isoforms in TNFα-induced retinal leukostasis. To this end, human retinal microvascular endothelial cells (HRMEC) transfected with siRNA targeting individual NFAT isoforms were treated with TNFα, and qRT-PCR was used to examine the contribution of each isoform to the TNFα-induced upregulation of leukocyte adhesion proteins. This showed that NFATc1 siRNA increased ICAM1 expression, NFATc2 siRNA reduced CX3CL1, VCAM1, SELE, and ICAM1 expression, NFATc3 siRNA increased CX3CL1 and SELE expression, and NFATc4 siRNA reduced SELE expression. Transfected HRMEC monolayers were also treated with TNFα and assayed using a parallel plate flow chamber, and both NFATc2 and NFATc4 knockdown reduced TNFα-induced cell adhesion. The effect of isoform-specific knockdown on TNFα-induced cytokine production was also measured using protein ELISAs and conditioned cell culture medium, and showed that NFATc4 siRNA reduced CXCL10, CXCL11, and MCP-1 protein levels. Lastly, the CN/NFAT-signaling inhibitor INCA-6 was shown to reduce TNFα-induced retinal leukostasis in vivo. Together, these studies show a clear role for NFAT-signaling in TNFα-induced retinal leukostasis, and identify NFATc2 and NFATc4 as potentially valuable therapeutic targets for treating retinopathies in which TNFα plays a pathogenic role. PMID:26527057

  10. A Modular Enhancer Is Differentially Regulated by GATA and NFAT Elements That Direct Different Tissue-Specific Patterns of Nucleosome Positioning and Inducible Chromatin Remodeling▿

    PubMed Central

    Bert, Andrew G.; Johnson, Brett V.; Baxter, Euan W.; Cockerill, Peter N.

    2007-01-01

    We investigated alternate mechanisms employed by enhancers to position and remodel nucleosomes and activate tissue-specific genes in divergent cell types. We demonstrated that the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene enhancer is modular and recruits different sets of transcription factors in T cells and myeloid cells. The enhancer recruited distinct inducible tissue-specific enhanceosome-like complexes and directed nucleosomes to different positions in these cell types. In undifferentiated T cells, the enhancer was activated by inducible binding of two NFAT/AP-1 complexes which disrupted two specifically positioned nucleosomes (N1 and N2). In myeloid cells, the enhancer was remodeled by GATA factors which constitutively displaced an upstream nucleosome (N0) and cooperated with inducible AP-1 elements to activate transcription. In mast cells, which express both GATA-2 and NFAT, these two pathways combined to activate the enhancer and generate high-level gene expression. At least 5 kb of the GM-CSF locus was organized as an array of nucleosomes with fixed positions, but the enhancer adopted different nucleosome positions in T cells and mast cells. Furthermore, nucleosomes located between the enhancer and promoter were mobilized upon activation in an enhancer-dependent manner. These studies reveal that distinct tissue-specific mechanisms can be used either alternately or in combination to activate the same enhancer. PMID:17283044

  11. Generation of Highly Purified Human Cardiomyocytes from Peripheral Blood Mononuclear Cell-Derived Induced Pluripotent Stem Cells

    PubMed Central

    Stark, Klaus; Jentsch, Nico; Klingenstein, Melanie; Drzymalski, Marzena; Wagner, Stefan; Maier, Lars S.; Hehr, Ute; Baessler, Andrea; Fischer, Marcus; Hengstenberg, Christian

    2015-01-01

    Induced pluripotent stem (iPS) cells have an enormous potential for physiological studies. A novel protocol was developed combining the derivation of iPS from peripheral blood with an optimized directed differentiation to cardiomyocytes and a subsequent metabolic selection. The human iPS cells were retrovirally dedifferentiated from activated T cells. The subsequent optimized directed differentiation protocol yielded 30-45% cardiomyocytes at day 16 of differentiation. The derived cardiomyocytes expressed appropriate structural markers like cardiac troponin T, α-actinin and myosin light chain 2 (MLC2V). In a subsequent metabolic selection with lactate, the cardiomyocytes content could be increased to more than 90%. Loss of cardiomyocytes during metabolic selection were less than 50%, whereas alternative surface antibody-based selection procedures resulted in loss of up to 80% of cardiomyocytes. Electrophysiological characterization confirmed the typical cardiac features and the presence of ventricular, atrial and nodal-like action potentials within the derived cardiomyocyte population. Our combined and optimized protocol is highly robust and applicable for scalable cardiac differentiation. It provides a simple and cost-efficient method without expensive equipment for generating large numbers of highly purified, functional cardiomyocytes. It will further enhance the applicability of iPS cell-derived cardiomyocytes for disease modeling, drug discovery, and regenerative medicine. PMID:25970162

  12. MEF2D deficiency in neonatal cardiomyocytes triggers cell cycle re-entry and programmed cell death in vitro.

    PubMed

    Estrella, Nelsa L; Clark, Amanda L; Desjardins, Cody A; Nocco, Sarah E; Naya, Francisco J

    2015-10-01

    The cardiomyocyte cell cycle is a poorly understood process. Mammalian cardiomyocytes permanently withdraw from the cell cycle shortly after birth but can re-enter the cell cycle and proliferate when subjected to injury within a brief temporal window in the neonatal period. Thus, investigating the mechanisms of cell cycle regulation in neonatal cardiomyocytes may provide critical insight into the molecular events that prevent adult myocytes from proliferating in response to injury or stress. MEF2D is a key transcriptional mediator of pathological remodeling in the adult heart downstream of various stress-promoting insults. However, the specific gene programs regulated by MEF2D in cardiomyocytes are unknown. By performing genome-wide transcriptome analysis using MEF2D-depleted neonatal cardiomyocytes, we found a significant impairment in the cell cycle, characterized by the up-regulation of numerous positive cell cycle regulators. Expression of Pten, the primary negative regulator of PI3K/Akt, was significantly reduced in MEF2D-deficient cardiomyocytes and found to be a direct target gene of MEF2D. Consistent with these findings mutant cardiomyocytes showed activation of the PI3K/Akt survival pathway. Paradoxically, prolonged deficiency of MEF2D in neonatal cardiomyocytes did not trigger proliferation but instead resulted in programmed cell death, which is likely mediated by the E2F transcription factor. These results demonstrate a critical role for MEF2D in cell cycle regulation of post-mitotic, neonatal cardiomyocytes in vitro. PMID:26294766

  13. Nuclear factor of activated T-cells 5 increases intestinal goblet cell differentiation through an mTOR/Notch signaling pathway

    PubMed Central

    Zhou, Yuning; Wang, Qingding; Weiss, Heidi L.; Evers, B. Mark

    2014-01-01

    The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis that is regulated by multiple signaling pathways. Previously, we have shown that the nuclear factor of activated T-cells 5 (NFAT5) is involved in the regulation of intestinal enterocyte differentiation. Here we show that treatment with sodium chloride (NaCl), which activates NFAT5 signaling, increased mTORC1 repressor regulated in development and DNA damage response 1 (REDD1) protein expression and inhibited mTOR signaling; these alterations were attenuated by knockdown of NFAT5. Knockdown of NFAT5 activated mammalian target of rapamycin (mTOR) signaling and significantly inhibited REDD1 mRNA expression and protein expression. Consistently, overexpression of NFAT5 increased REDD1 expression. In addition, knockdown of REDD1 activated mTOR and Notch signaling, whereas treatment with mTOR inhibitor rapamycin repressed Notch signaling and increased the expression of the goblet cell differentiation marker mucin 2 (MUC2). Moreover, knockdown of NFAT5 activated Notch signaling and decreased MUC2 expression, while overexpression of NFAT5 inhibited Notch signaling and increased MUC2 expression. Our results demonstrate a role for NFAT5 in the regulation of mTOR signaling in intestinal cells. Importantly, these data suggest that NFAT5 participates in the regulation of intestinal homeostasis via the suppression of mTORC1/Notch signaling pathway. PMID:25057011

  14. Aberrant activation of nuclear factor of activated T cell 2 in lamina propria mononuclear cells in ulcerative colitis

    PubMed Central

    Shih, Tsung-Chieh; Hsieh, Sen-Yung; Hsieh, Yi-Yueh; Chen, Tse-Chin; Yeh, Chien-Yu; Lin, Chun-Jung; Lin, Deng-Yn; Chiu, Cheng-Tang

    2008-01-01

    AIM: To investigate the role of nuclear factor of activated T cell 2 (NFAT2), the major NFAT protein in peripheral T cells, in sustained T cell activation and intractable inflammation in human ulcerative colitis (UC). METHODS: We used two-dimensional gel-electrophoresis, immunohistochemistry, double immunohistochemical staining, and confocal microscopy to inspect the expression of NFAT2 in 107, 15, 48 and 5 cases of UC, Crohn’s disease (CD), non-specific colitis, and 5 healthy individuals, respectively. RESULTS: Up-regulation with profound nucleo-translocation/activation of NFAT2 of lamina propria mononuclear cells (LPMC) of colonic mucosa was found specifically in the affected colonic mucosa from patients with UC, as compared to CD or NC (P < 0.001, Kruskal-Wallis test). Nucleo-translocation/activation of NFAT2 primarily occurred in CD8+T, but was less prominent in CD4+ T cells or CD20+B cells. It was strongly associated with the disease activity, including endoscopic stage (τ = 0.2145, P = 0.0281) and histologic grade (τ = 0.4167, P < 0.001). CONCLUSION: We disclose for the first time the nucleo-translocation/activatin of NFAT2 in lamina propria mononuclear cells in ulcerative colitis. Activation of NFAT2 was specific for ulcerative colitis and highly associated with disease activity. Since activation of NFAT2 is implicated in an auto-regulatory positive feedback loop of sustained T-cell activation and NFAT proteins play key roles in the calcium/calcineurin signaling pathways, our results not only provide new insights into the mechanism for sustained intractable inflammation, but also suggest the calcium-calcineurin/NFAT pathway as a new therapeutic target for ulcerative colitis. PMID:18350607

  15. NAF-1 antagonizes starvation-induced autophagy through AMPK signaling pathway in cardiomyocytes.

    PubMed

    Du, Xiaohong; Xiao, Renjie; Xiao, Fan; Chen, Yong; Hua, Fuzhou; Yu, Shuchun; Xu, Guohai

    2015-07-01

    NAF-1 (nutrient-deprivation autophagy factor-1), an autophagy-related gene-related (ATG) protein, has been implicated in the autophagic pro-survival response. However, its role in autophagy has not been examined in the cardiomyocytes. In this study, we found that nutritional stress (NS) induced by glucose deprivation strongly induced autophagy in cultured neonatal rat cardiomyocytes, which was associated with NAF-1 down-regulation in cardiomyocytes under NS conditions. Furthermore, we demonstrate that ectopic expression of NAF-1 was sufficient to inhibit autophagy in cardiomyocytes under glucose deprivation conditions. Moreover, results of the co-immunoprecipitation assay indicate that NAF-1 antagonized autophagy by promoting the interaction between Beclin1 and Bcl-2 in NS-induced cardiomyocytes. Importantly, our results indicate that overexpression of NAF-1 significantly inhibited AMPK activity and protected cardiomyocytes from NS-induced cell death. Taken together, these data show that ectopic expression of NAF-1 antagonizes the degree of autophagy in cardiomyocytes and enhances cell survival during starvation conditions. PMID:25689847

  16. Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep.

    PubMed

    Jonker, Sonnet S; Louey, Samantha; Giraud, George D; Thornburg, Kent L; Faber, J Job

    2015-10-01

    Studies in altricial rodents attribute dramatic changes in perinatal cardiomyocyte growth, maturation, and attrition to stimuli associated with birth. Our purpose was to determine whether birth is a critical trigger controlling perinatal cardiomyocyte growth, maturation and attrition in a precocial large mammal, sheep (Ovis aries). Hearts from 0-61 d postnatal lambs were dissected or enzymatically dissociated. Cardiomyocytes were measured by micromorphometry, cell cycle activity assessed by immunohistochemistry, and nuclear number counted after DNA staining. Integration of this new data with published fetal data from our laboratory demonstrate that a newly appreciated >30% decrease in myocyte number occurred in the last 10 d of gestation (P < 0.0005) concomitant with an increase in cleaved poly (ADP-ribose) polymerase 1 (P < 0.05), indicative of apoptosis. Bisegmental linear regressions show that most changes in myocyte growth kinetics occur before birth (median = 15.2 d; P < 0.05). Right ventricular but not left ventricular cell number increases in the neonate, by 68% between birth and 60 d postnatal (P = 0.028). We conclude that in sheep few developmental changes in cardiomyocytes result from birth, excepting the different postnatal degrees of free wall hypertrophy between the ventricles. Furthermore, myocyte number is reduced in both ventricles immediately before term, but proliferation increases myocyte number in the neonatal right ventricle. PMID:26139099

  17. Development of a fluorescent cardiomyocyte specific binding probe.

    PubMed

    Pes, Lara; Kim, Young; Tung, Ching-Hsuan

    2016-04-15

    Cardiomyocytes are the major component of the heart. Their dysfunction or damage could lead to serious cardiovascular diseases, which have claimed numerous lives around the world. A molecule able to recognize cardiomyocytes would have significant value in diagnosis and treatment. Recently a novel peptide termed myocyte targeting peptide (MTP), with three residues of a non-natural amino acid biphenylalanine (Bip), showed good affinity to cardiomyocytes. Its selectivity towards cardiac tissues was concluded to be due to the ability of Bip to bind cardiac troponin I. With the aim of optimizing the affinity and the specificity towards cardiac myocytes and to better understand structure-activity relationship, a library of MTP derivatives was designed. Exploiting a fluorescent tag, the selectivity of the MTP analogs to myocardium over skeletal and stomach muscle tissues was assayed by fluorescence imaging. Among the tested sequences, the peptide probe Bip2, H-Lys(FITC)-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Gly-Ser-Gly-Ser-Bip-Bip-NH2, displayed the best selectivity for cardiomyocytes. PMID:26964676

  18. Excitation model of pacemaker cardiomyocytes of cardiac conduction system

    NASA Astrophysics Data System (ADS)

    Grigoriev, M.; Babich, L.

    2015-11-01

    Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.

  19. Reduced expression of MyHC slow isoform in rat soleus during unloading is accompanied by alterations of endogenous inhibitors of calcineurin/NFAT signaling pathway.

    PubMed

    Lomonosova, Yulia N; Turtikova, Olga V; Shenkman, Boris S

    2016-04-01

    Under muscle disuse conditions decrease of expression of MyHC of slow type, and sometimes of type IIa, as well as upregulation of expression of IIb and IId/x isoforms were observed. Through dephosphorylation and entry of NFAT molecules to the nucleus calcineurin/NFATc1 signaling pathway promotes upregulation of the slow MyHC expression. We supposed that downregulation of calcineurin pathway took place during unloading. The study was aimed to analyze the states of the myonuclear NFAT inhibitors calsarcin I (CSI) and calsarcin II (CSII) (also referred to as myozenin II and I) and GSK3β in rat soleus during hindlimb suspension (HS). Male Wistar rats were subjected to 3, 7 and 14 day of HS. We found that after 3 days of HS the content of CSII mRNA twofold increased in soleus as compared to the controls. This level was increased by more than fivefold (as compared to control) after 2 weeks of HS. The increase of CSII mRNA expression may be explained as the mechanism of stabilization of fast phenotype. We found that from the 3 day till 14 day of HS the content of MuRF-1 and MuRF-2 in the nuclear fraction fourfold to fivefold increased in HS soleus. We supposed that nuclear import of the MuRFs allows to promote CSII expression during unloading. We also observed the decline of the phosphorylated GSK3β content in the nuclear extract of the soleus tissue. Thus decline of slow MyHC expression characteristic for the unloading conditions is accompanied with the increased expression and activation of the factors known to prevent NFAT accumulation in the myonuclei. PMID:26589960

  20. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B

    SciTech Connect

    Omar, Bilal; Banke, Elin; Guirguis, Emilia; Aakesson, Lina; Manganiello, Vincent; Lyssenko, Valeriya; Groop, Leif; Gomez, Maria F.; Degerman, Eva

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. Black-Right-Pointing-Pointer GIP-induced osteopontin expression is NFAT-dependent. Black-Right-Pointing-Pointer Osteopontin expression is PDE3-dependent. Black-Right-Pointing-Pointer Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the {beta}3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  1. Regulation of nucleocytoplasmic trafficking of transcription factor OREBP/TonEBP/NFAT5.

    PubMed

    Tong, Edith H Y; Guo, Jin-Jun; Huang, Ai-Long; Liu, Han; Hu, Chang-Deng; Chung, Stephen S M; Ko, Ben C B

    2006-08-18

    The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, regulates the hypertonicity-induced expression of a battery of genes crucial for the adaptation of mammalian cells to extracellular hypertonic stress. The activity of OREBP/TonEBP is regulated at multiple levels, including nucleocytoplasmic trafficking. OREBP/TonEBP protein can be detected in both the cytoplasm and nucleus under isotonic conditions, although it accumulates exclusively in the nucleus or cytoplasm when subjected to hypertonic or hypotonic challenges, respectively. Using immunocytochemistry and green fluorescent protein fusions, the protein domains that determine its subcellular localization were identified and characterized. We found that OREBP/TonEBP nuclear import is regulated by a nuclear localization signal. However, under isotonic conditions, nuclear export of OREBP/TonEBP is mediated by a CRM1-dependent, leucine-rich canonical nuclear export sequence (NES) located in the N terminus. Disruption of NES by site-directed mutagenesis yielded a mutant OREBP/TonEBP protein that accumulated in the nucleus under isotonic conditions but remained a target for hypotonicity-induced nuclear export. More importantly, a putative auxiliary export domain distal to the NES was identified. Disruption of the auxiliary export domain alone is sufficient to abolish the nuclear export of OREBP/TonEBP induced by hypotonicity. By using bimolecular fluorescence complementation assay, we showed that CRM1 interacts with OREBP/TonEBP, but not with a mutant protein deficient in NES. Our findings provide insight into how nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by changes in extracellular tonicity. PMID:16782704

  2. Measuring fast calcium fluxes in cardiomyocytes.

    PubMed

    Golebiewska, Urszula; Scarlata, Suzanne

    2011-01-01

    Cardiomyocytes have multiple Ca(2+) fluxes of varying duration that work together to optimize function (1,2). Changes in Ca(2+) activity in response to extracellular agents is predominantly regulated by the phospholipase Cβ- Gα(q;) pathway localized on the plasma membrane which is stimulated by agents such as acetylcholine (3,4). We have recently found that plasma membrane protein domains called caveolae(5,6) can entrap activated Gα(q;)(7). This entrapment has the effect of stabilizing the activated state of Gα(q;) and resulting in prolonged Ca(2+) signals in cardiomyocytes and other cell types(8). We uncovered this surprising result by measuring dynamic calcium responses on a fast scale in living cardiomyocytes. Briefly, cells are loaded with a fluorescent Ca(2+) indicator. In our studies, we used Ca(2+) Green (Invitrogen, Inc.) which exhibits an increase in fluorescence emission intensity upon binding of calcium ions. The fluorescence intensity is then recorded for using a line-scan mode of a laser scanning confocal microscope. This method allows rapid acquisition of the time course of fluorescence intensity in pixels along a selected line, producing several hundreds of time traces on the microsecond time scale. These very fast traces are transferred into excel and then into Sigmaplot for analysis, and are compared to traces obtained for electronic noise, free dye, and other controls. To dissect Ca(2+) responses of different flux rates, we performed a histogram analysis that binned pixel intensities with time. Binning allows us to group over 500 traces of scans and visualize the compiled results spatially and temporally on a single plot. Thus, the slow Ca(2+) waves that are difficult to discern when the scans are overlaid due to different peak placement and noise, can be readily seen in the binned histograms. Very fast fluxes in the time scale of the measurement show a narrow distribution of intensities in the very short time bins whereas longer Ca(2+) waves

  3. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal.

    PubMed

    Kreipke, R E; Birren, S J

    2015-12-01

    Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size. PMID:26420487

  4. Ablation of Matrix Metalloproteinase-9 Prevents Cardiomyocytes Contractile Dysfunction in Diabetics

    PubMed Central

    Prathipati, Priyanka; Metreveli, Naira; Nandi, Shyam Sundar; Tyagi, Suresh C.; Mishra, Paras K.

    2016-01-01

    Elevated expression and activity of matrix metalloproteinase-9 (MMP9) and decreased contractility of cardiomyocytes are documented in diabetic hearts. However, it is unclear whether MMP is involved in the regulation of contractility of cardiomyocytes in diabetic hearts. In the present study, we tested the hypothesis that MMP9 regulates contractility of cardiomyocytes in diabetic hearts, and ablation of MMP9 prevents impaired contractility of cardiomyocytes in diabetic hearts. To determine the specific role of MMP9 in cardiomyocyte contractility, we used 12–14 week male WT (normoglycemic sibling of Akita), Akita, and Ins2+∕−/MMP9−∕− (DKO) mice. DKO mice were generated by cross-breeding male Ins2+∕− Akita (T1D) with female MMP9 knockout (MMP9−∕−) mice. We isolated cardiomyocytes from the heart of the above three groups of mice and measured their contractility and calcium transients. Moreover, we determined mRNA and protein levels of sarco-endoplasmic reticulum calcium ATPase-2a (SERCA-2a), which is involved in calcium handling during contractility of cardiomyocytes in WT, Akita, and DKO hearts using QPCR, Western blotting and immunoprecipitation, respectively. Our results revealed that in Akita hearts where increased expression and activity of MMP9 is reported, the rates of shortening and re-lengthening (±dL/dt) of cardiomyocytes were decreased, time to 90% peak height and baseline during contractility was increased, rate of calcium decay was increased, and calcium transient was decreased as compared to WT cardiomyocytes. However, these changes in Akita were blunted in DKO cardiomyocytes. The molecular analyses of SERCA-2a in the hearts showed that it was downregulated in Akita as compared to WT but was comparatively upregulated in DKO. These results suggest that abrogation of MMP9 gene prevents contractility of cardiomyocytes, possibly by increasing SERCA-2a and calcium transients. We conclude that MMP9 plays a crucial role in the regulation

  5. Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-κB activation

    PubMed Central

    Reddy, Venkatapuram Seenu; Prabhu, Sumanth D.; Mummidi, Srinivas; Valente, Anthony J.; Venkatesan, Balachandar; Shanmugam, Prakashsrinivasan; Delafontaine, Patrice

    2010-01-01

    IL-18 and the extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN) stimulate the expression of proinflammatory cytokines and MMPs and are elevated in myocardial hypertrophy, remodeling, and failure. Here, we report several novel findings in primary cardiomyocytes treated with IL-18. First, IL-18 activated multiple transcription factors, including NF-κB (p50 and p65), activator protein (AP)-1 (cFos, cJun, and JunD), GATA, CCAAT/enhancer-binding protein, myocyte-specific enhancer-binding factor, interferon regulatory factor-1, p53, and specific protein (Sp)-1. Second, IL-18 induced EMMPRIN expression via myeloid differentiation primary response gene 88/IL-1 receptor-associated kinase/TNF receptor-associated factor-6/JNK-dependent Sp1 activation. Third, IL-18 induced a number of MMP genes, particularly MMP-9, at a rapid rate as well as tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-3 at a slower rate. Finally, the IL-18 induction of MMP-9 was mediated in part via EMMPRIN and through JNK- and ERK-dependent AP-1 activation and p38 MAPK-dependent NF-κB activation. These results suggest that the elevated expression of IL-18 during myocardial injury and inflammation may favor EMMPRIN and MMP induction and extracellular matrix degradation. Therefore, targeting IL-18 or its signaling pathways may be of potential therapeutic benefit in adverse remodeling. PMID:20693392

  6. GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/b-catenin pathway

    PubMed Central

    Ying, Ying; Zhu, Huazhang; Liang, Zhen; Ma, Xiaosong; Li, Shiwei

    2015-01-01

    Activation of apoptosis in cardiomyocytes by saturated palmitic acids contributes to cardiac dysfunction in diabetic cardiomyopathy. Beta-catenin (b-catenin) is a transcriptional regulator of several genes involved in survival/anti-apoptosis. However, its role in palmitate-induced cardiomyocyte apoptosis remains unclear. Glucagon-like peptide 1 (GLP1) has been shown to exhibit potential cardioprotective properties. This study was designed to evaluate the role of b-catenin signalling in palmitate-induced cardiomyocyte apoptosis and the molecular mechanism underlying the protective effects of GLP1 on palmitate-stressed cardiomyocytes. Exposure of neonatal rat cardiomyocytes to palmitate increased the fatty acid transporter CD36-mediated intracellular lipid accumulation and cardiomyocyte apoptosis, decreased accumulation and nuclear translocation of active b-catenin, and reduced expression of b-catenin target protein survivin and BCL2. These detrimental effects of palmitate were significantly attenuated by GLP1 co-treatment. However, the anti-apoptotic effects of GLP1 were markedly abolished when b-catenin was silenced with a specific short hairpin RNA. Furthermore, analysis of the upstream molecules and mechanisms responsible for GLP1-associated cardiac protection revealed that GLP1 restored the decreased phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3b (GSK3b) in palmitate-stimulated cardiomyocytes. In contrast, inhibition of Akt with an Akt-specific inhibitor MK2206 or blockade of GLP1 receptor (GLP1R) with a competitive antagonist exendin-(9–39) significantly abrogated the GLP1-mediated activation of GSK3b/b-catenin signalling, leading to increased apoptosis in palmitate-stressed cardiomyocytes. Collectively, our results demonstrated for the first time that the attenuated b-catenin signalling may contribute to palmitate-induced cardiomyocyte apoptosis, while GLP1 can protect cardiomyocytes from palmitate-induced apoptosis through

  7. Effect of heat shock pretreatment on apoptosis and metallothionein expression in rat cardiomyocytes

    PubMed Central

    Zhang, Xian; Sha, Ming-Lei; Yao, Yu-Ting; Da, Jia; Ni, Xiu-Shi

    2015-01-01

    To investigate the effect of heat shock pretreatment on apoptosis and mitochondrial metallothionein (MT) expression in rat cardiomyocytes. In vitro cultured H9C2 cells were randomly divided into three groups: control, hydrogen peroxide (H2O2) injury, and H2O2 injury after heat shock pretreatment (n = 6 per group). Cardiomyocyte apoptosis and caspase-3 activity were assayed after treatment. Mitochondrial cytochrome (cyt) c and MT expression was assayed by Western blotting. Compared with the control group, the H2O2 injury group had a growing number of apoptotic cardiomyocytes (P < 0.01) and significantly elevated caspase-3 activity (P < 0.01) with markedly increased mitochondrial cyt c and MT expression (P < 0.01). After heat shock pretreatment, the numbers of apoptotic and necrotic cardiomyocytes (P < 0.01) and the caspase-3 activity significantly declined (P < 0.01), while mitochondrial cyt c and MT expression continued to increase (P < 0.01) compared with the H2O2 injury group. Heat shock pretreatment inhibits cardiomyocyte apoptosis, which may have a protective effect on cardiomyocytes by increasing the expression of myocardial protective MT and reducing the release of mitochondrial cyt c. PMID:26221315

  8. Evidence for Cardiomyocyte Renewal in Humans

    SciTech Connect

    Bergmann, O; Bhardwaj, R D; Bernard, S; Zdunek, S; Barnabe-Heider, F; Walsh, S; Zupicich, J; Alkass, K; Buchholz, B A; Druid, H; Jovinge, S; Frisen, J

    2008-10-14

    It has been difficult to establish whether we are limited to the heart muscle cells we are born with or if cardiomyocytes are generated also later in life. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, into DNA to establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a gradual decrease from 1% turning over annually at the age of 20 to 0.3% at the age of 75. Less than 50% of cardiomyocytes are exchanged during a normal lifespan. The capacity to generate cardiomyocytes in the adult human heart suggests that it may be rational to work towards the development of therapeutic strategies aiming to stimulate this process in cardiac pathologies.

  9. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction

    PubMed Central

    Kanda, Masato; Nagai, Toshio; Takahashi, Toshinao; Liu, Mei Lan; Kondou, Naomichi; Naito, Atsuhiko T.; Akazawa, Hiroshi; Sashida, Goro; Iwama, Atsushi; Komuro, Issei; Kobayashi, Yoshio

    2016-01-01

    Cardiac stem cells or precursor cells regenerate cardiomyocytes; however, the mechanism underlying this effect remains unclear. We generated CreLacZ mice in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal) staining immediately after tamoxifen injection. Three months after myocardial infarction (MI), the MI mice had more X-gal-negative (newly generated) cells than the control mice (3.04 ± 0.38/mm2, MI; 0.47 ± 0.16/mm2, sham; p < 0.05). The cardiac side population (CSP) cell fraction contained label-retaining cells, which differentiated into X-gal-negative cardiomyocytes after MI. We injected a leukemia inhibitory factor (LIF)-expression construct at the time of MI and identified a significant functional improvement in the LIF-treated group. At 1 month after MI, in the MI border and scar area, the LIF-injected mice had 31.41 ± 5.83 X-gal-negative cardiomyocytes/mm2, whereas the control mice had 12.34 ± 2.56 X-gal-negative cardiomyocytes/mm2 (p < 0.05). Using 5-ethynyl-2'-deoxyurinide (EdU) administration after MI, the percentages of EdU-positive CSP cells in the LIF-treated and control mice were 29.4 ± 2.7% and 10.6 ± 3.7%, respectively, which suggests that LIF influenced CSP proliferation. Moreover, LIF activated the Janus kinase (JAK)signal transducer and activator of transcription (STAT), mitogen-activated protein kinase/extracellular signal-regulated (MEK)extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)–AKT pathways in CSPs in vivo and in vitro. The enhanced green fluorescent protein (EGFP)-bone marrow-chimeric CreLacZ mouse results indicated that LIF did not stimulate cardiogenesis via circulating bone marrow-derived cells during the 4 weeks following MI. Thus, LIF stimulates, in part, stem cell-derived cardiomyocyte regeneration by activating cardiac stem or precursor cells. This approach may represent a novel therapeutic

  10. PGC-1α and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function.

    PubMed

    Birket, Matthew J; Casini, Simona; Kosmidis, Georgios; Elliott, David A; Gerencser, Akos A; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G; Elefanty, Andrew G; Stanley, Ed G; Mummery, Christine L

    2013-01-01

    Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease. PMID:24371810

  11. PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

    PubMed Central

    Birket, Matthew J.; Casini, Simona; Kosmidis, Georgios; Elliott, David A.; Gerencser, Akos A.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G.; Elefanty, Andrew G.; Stanley, Ed G.; Mummery, Christine L.

    2013-01-01

    Summary Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease. PMID:24371810

  12. Zinc pyrithione inhibits caspase-3 activity, promotes ErbB1-ErbB2 heterodimerization and suppresses ErbB2 downregulation in cardiomyocytes subjected to ischemia/reperfusion.

    PubMed

    Bodiga, Vijaya Lakshmi; Thokala, Sandhya; Vemuri, Praveen Kumar; Bodiga, Sreedhar

    2015-12-01

    Heart tissue becomes zinc-depleted and the capacity to mobilize labile zinc is diminished, indicating zinc dyshomeostasis during ischemia/reperfusion (I/R). Apparently, zinc pyrithione restores the basal zinc levels during I/R and prevents apoptosis by activating phosphatidyl inositol-3-kinase/Akt and targeting mitochondrial permeability transition. Receptor tyrosine kinases of the ErbB family (ErbB1 to ErbB4) are cell surface proteins that can regulate cell growth, proliferation and survival. Previous studies have shown that zinc pyrithione-induced activation of PI3kinase/Akt requires ErbB2 expression. On the other hand, while I/R decreases ErbB2 levels causing cardiomyocyte dysfunction and cell death, zinc pyrithione restores ErbB2 levels and maintains cardiomyocyte function. H9c2 cells expressed all the four ErbBs, although the expression of ErbB1 and ErbB2 were higher compared to ErbB3 and ErbB4. Hypoxia/Reoxygenation (H/R) had opposing effects on the mRNA expression of ErbB1 and ErbB2. ErbB2 mRNA levels were enhanced, but corresponding ErbB2 protein levels decreased after reoxygenation. H/R induced the degradation of ErbB2 in caspase-3 dependent manner, with the formation of a 25kDa fragment. This fragment could be detected after H/R only upon treatment of the cells with a proteasomal inhibitor, ALLN, suggesting that caspase-mediated cleavage of 185kDa ErbB2 results in C-terminal cleavage and formation of 25kDa fragment, which is further degraded by proteasome. Heterodimerization and phosphorylation of ErbB2/ErbB1 which decreased upon reoxygenation, was promoted by zinc pyrithione. Zinc pyrithione effectively suppressed the caspase activation, decreased the proteolytic cleavage of ErbB2, enhanced the phosphorylation and activation of ErbB1-ErbB2 complexes and improved the cell survival after hypoxia/reoxygenation. PMID:26436560

  13. Pyrroloquinoline quinone inhibits oxygen/glucose deprivation-induced apoptosis by activating the PI3K/AKT pathway in cardiomyocytes.

    PubMed

    Xu, Feng; Yu, Haixia; Liu, Jinyao; Cheng, Lu

    2014-01-01

    The purposes of this study were to examine the protective effect of pyrroloquinoline quinone (PQQ) on oxygen/glucose deprivation (OGD)-induced injury to H9C2 rat cardiomyocytes and to investigate the mechanism. Using H9C2 cells cultured in vitro, we examined changes in cell viability with an MTT assay at 12, 24, and 48 h after injury induced by OGD. Various concentrations of PQQ (1, 10, and 100 μM) were added, and the effect of PQQ on cell viability after OGD was assessed using the MTT assay. Thus, the optimal concentration of PQQ for the protection of cardiomyocytes against oxygen and glucose deprivation injury was determined. We also used flow cytometry analysis to examine the effect of PQQ on H9C2 cells with OGD-induced injury. The molecular probe 2',7'-dichlorofluorescin diacetate was used to label the H9C2 cells, and flow cytometry was used to detect the effect of PQQ on reactive oxygen species (ROS) content. After labeling the H9C2 cells using a mitochondrial green fluorescent probe (Mito-Tracker Green), we measured the change in the mitochondrial content of PQQ-treated H9C2 cells. Western blotting was used to examine the effect of PQQ on the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the H9C2 cells. The results of the MTT assay showed that 48 h of OGD significantly injured the H9C2 cells (p < 0.01) and that treatment with 100 μM PQQ effectively decreased the level of OGD-induced injury (p < 0.01). The results of the flow cytometry analysis showed that PQQ significantly reduced apoptosis in H9C2 cells subjected to OGD (p < 0.05). In addition, OGD significantly increased the ROS level in H9C2 cells (p < 0.01), and PQQ significantly inhibited this increase (p < 0.05). The results of the Mito-Tracker Green staining suggested that PQQ effectively inhibited the decrease in mitochondrial content caused by OGD (p < 0.05). Western blot analysis showed that PQQ partially reversed the decrease in Akt phosphorylation that was caused by OGD (p

  14. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling

    PubMed Central

    Medzikovic, Lejla; Schumacher, Cees A.; Verkerk, Arie O.; van Deel, Elza D.; Wolswinkel, Rianne; van der Made, Ingeborg; Bleeker, Natascha; Cakici, Daniella; van den Hoogenhof, Maarten M. G.; Meggouh, Farid; Creemers, Esther E.; Ann Remme, Carol; Baartscheer, Antonius; de Winter, Robbert J.; de Vries, Carlie J. M.; Arkenbout, E. Karin; de Waard, Vivian

    2015-01-01

    Distinct stressors may induce heart failure. As compensation, β-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca2+ ([Ca2+]i). However, chronic β-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by β-adrenergic stimulation, but its role in cardiac remodelling is still unclear. We show high and rapid Nur77 upregulation in cardiomyocytes stimulated with β-adrenergic agonist isoproterenol. Nur77 knockdown in culture resulted in hypertrophic cardiomyocytes. Ventricular cardiomyocytes from Nur77-deficient (Nur77-KO) mice exhibited elevated diastolic and systolic [Ca2+]i and prolonged action potentials compared to wild type (WT). In vivo, these differences resulted in larger cardiomyocytes, increased expression of hypertrophic genes, and more cardiac fibrosis in Nur77-KO mice upon chronic isoproterenol stimulation. In line with the observed elevated [Ca2+]i, Ca2+-activated phosphatase calcineurin was more active in Nur77-KO mice compared to WT. In contrast, after cardiac pressure overload by aortic constriction, Nur77-KO mice exhibited attenuated remodelling compared to WT. Concluding, Nur77-deficiency results in significantly altered cardiac Ca2+ homeostasis and distinct remodelling outcome depending on the type of insult. Detailed knowledge on the role of Nur77 in maintaining cardiomyocyte Ca2+ homeostasis and the dual role Nur77 plays in cardiac remodelling will aid in developing personalized therapies against heart failure. PMID:26486271

  15. CDK9 and its repressor LARP7 modulate cardiomyocyte proliferation and response to injury in the zebrafish heart

    PubMed Central

    Matrone, Gianfranco; Wilson, Kathryn S.; Maqsood, Sana; Mullins, John J.; Tucker, Carl S.; Denvir, Martin A.

    2015-01-01

    ABSTRACT Cyclin dependent kinase (Cdk)9 acts through the positive transcription elongation factor-b (P-TEFb) complex to activate and expand transcription through RNA polymerase II. It has also been shown to regulate cardiomyocyte hypertrophy, with recent evidence linking it to cardiomyocyte proliferation. We hypothesised that modification of CDK9 activity could both impair and enhance the cardiac response to injury by modifying cardiomyocyte proliferation. Cdk9 expression and activity were inhibited in the zebrafish (Danio rerio) embryo. We show that dephosphorylation of residue Ser2 on the C-terminal domain of RNA polymerase II is associated with impaired cardiac structure and function, and cardiomyocyte proliferation and also results in impaired functional recovery following cardiac laser injury. In contrast, de-repression of Cdk9 activity, through knockdown of La-related protein (Larp7) increases phosphorylation of Ser2 in RNA polymerase II and increases cardiomyocyte proliferation. Larp7 knockdown rescued the structural and functional phenotype associated with knockdown of Cdk9. The balance of Cdk9 and Larp7 plays a key role in cardiomyocyte proliferation and response to injury. Larp7 represents a potentially novel therapeutic target to promote cardiomyocyte proliferation and recovery from injury. PMID:26542022

  16. [Preliminary investigation into the mechanism of cardiomyocyte hypertrophy induced by visfatin].

    PubMed

    Li, Junli; Liao, Yanbiao; Lu, Lihui; Lu, Lihui; Feng, Jun; Wu, Wenchao; Liu, Xiaojing

    2014-04-01

    The aim of the current study is to investigate the effect of visfatin on cardiomyocyte hypertrophy. Cultured H9c2 cardiomyocytes were exposed to visfatin at different concentrations for different periods of time, and the markers of cardiomyocyte hypertrophy were detected. Moreover, pravastatin, the inhibitor of endoplasmic reticulum stress (ERS) or thapsigargin, an ERS agonist was used respectively to pre-treat the cells before visfatin stimulation. F-actin staining was performed to measure the cell surface change. The mRNA expressions of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and ERS markers including glucose-regulated protein 78(GRP78), C/EPB homologous protein (CHOP) and activating transcription factor 6 (ATF6) were assessed by real time RT-PCR. The change of protein level of GRP78 and CHOP was detected by Western blot. The experimental data demonstrated that exposure to 100 or 150 ng/mL concentrations of visfatin for 24 h, or 100 ng/mL of visfatin for 24 or 48 h, significantly increased the expression of markers for cardiomyocyte hypertrophy. Visfatin stimulation provoked ERS in H9c2 cells. Furthermore, pre-treatment with pravastatin partially inhibited the visfatin-induced mRNA expression of ANP and BNP in H9c2 cells, whereas thapsigargin promoted the visfatin-induced expression of cardiomyocyte hypertrophy markers. The results suggest that visfatin might induce cardiomyocyte hypertrophy via ERS -dependent pathways. PMID:25039146

  17. Protein Quality Control and Degradation in Cardiomyocytes

    PubMed Central

    Wang, Xuejun; Su, Huabo; Ranek, Mark J.

    2008-01-01

    The heart is constantly under stress and cardiomyocytes face enormous challenges to correctly fold nascent polypeptides and keep mature proteins from denaturing. To meet the challenge, cardiomyocytes have developed multi-layered protein quality control (PQC) mechanisms which are carried out primarily by chaperones and ubiquitin-proteasome system mediated proteolysis. Autophagy may also participate in PQC in cardiomyocytes, especially under pathological conditions. Cardiac PQC often becomes inadequate in heart disease, which may play an important role in the development of congestive heart failure. PMID:18495153

  18. Effect of biophysical cues on reprogramming to cardiomyocytes.

    PubMed

    Sia, Junren; Yu, Pengzhi; Srivastava, Deepak; Li, Song

    2016-10-01

    Reprogramming of fibroblasts to cardiomyocytes offers exciting potential in cell therapy and regenerative medicine, but has low efficiency. We hypothesize that physical cues may positively affect the reprogramming process, and studied the effects of periodic mechanical stretch, substrate stiffness and microgrooved substrate on reprogramming yield. Subjecting reprogramming fibroblasts to periodic mechanical stretch and different substrate stiffness did not improve reprogramming yield. On the other hand, culturing the cells on microgrooved substrate enhanced the expression of cardiomyocyte genes by day 2 and improved the yield of partially reprogrammed cells at day 10. By combining microgrooved substrate with an existing optimized culture protocol, yield of reprogrammed cardiomyocytes with striated cardiac troponin T staining and spontaneous contractile activity was increased. We identified the regulation of Mkl1 activity as a new mechanism by which microgroove can affect reprogramming. Biochemical approach could only partially recapitulate the effect of microgroove. Microgroove demonstrated an additional effect of enhancing organization of sarcomeric structure, which could not be recapitulated by biochemical approach. This study provides insights into new mechanisms by which topographical cues can affect cellular reprogramming. PMID:27376554

  19. Cytoprotective and Cytotoxic Effects of Rice Bran Extracts in Rat H9c2(2-1) Cardiomyocytes

    PubMed Central

    Tan, Xian Wen; Bhave, Mrinal; Fong, Alan Yean Yip; Matsuura, Eiji; Kobayashi, Kazuko; Shen, Lian Hua; Hwang, Siaw San

    2016-01-01

    This study was aimed at preliminarily assessing the cytoprotective and antioxidative effects of rice bran extracts (RBEs) from a Sarawak local rice variety (local name: “BJLN”) and a commercial rice variety, “MR219,” on oxidative stress in rat H9c2(2-1) cardiomyocytes. The cardiomyocytes were incubated with different concentrations of RBE and hydrogen peroxide (H2O2), respectively, to identify their respective IC50 values and safe dose ranges. Two nonlethal and close-to-IC50 doses of RBE were selected to evaluate their respective effects on H2O2 induced oxidative stress in cardiomyocytes. Both RBEs showed dose-dependent cytotoxicity effects on cardiomyocytes. H2O2 induction of cardiomyocytes pretreated with RBE further revealed the dose-dependent cytoprotective and antioxidative effects of RBE via an increase in IC50 values of H2O2. Preliminary analyses of induction effects of RBE and H2O2 on cellular antioxidant enzyme, catalase (CAT), also revealed their potential in regulating these activities and expression profile of related gene on oxidative stress in cardiomyocytes. Pretreated cardiomyocytes significantly upregulated the enzymatic activity and expression level of CAT under the exposure of H2O2 induced oxidative stress. This preliminary study has demonstrated the potential antioxidant effects of RBE in alleviating H2O2-mediated oxidative injuries via upregulation in enzymatic activities and expression levels of CAT. PMID:27239253

  20. Cytoprotective and Cytotoxic Effects of Rice Bran Extracts in Rat H9c2(2-1) Cardiomyocytes.

    PubMed

    Tan, Xian Wen; Bhave, Mrinal; Fong, Alan Yean Yip; Matsuura, Eiji; Kobayashi, Kazuko; Shen, Lian Hua; Hwang, Siaw San

    2016-01-01

    This study was aimed at preliminarily assessing the cytoprotective and antioxidative effects of rice bran extracts (RBEs) from a Sarawak local rice variety (local name: "BJLN") and a commercial rice variety, "MR219," on oxidative stress in rat H9c2(2-1) cardiomyocytes. The cardiomyocytes were incubated with different concentrations of RBE and hydrogen peroxide (H2O2), respectively, to identify their respective IC50 values and safe dose ranges. Two nonlethal and close-to-IC50 doses of RBE were selected to evaluate their respective effects on H2O2 induced oxidative stress in cardiomyocytes. Both RBEs showed dose-dependent cytotoxicity effects on cardiomyocytes. H2O2 induction of cardiomyocytes pretreated with RBE further revealed the dose-dependent cytoprotective and antioxidative effects of RBE via an increase in IC50 values of H2O2. Preliminary analyses of induction effects of RBE and H2O2 on cellular antioxidant enzyme, catalase (CAT), also revealed their potential in regulating these activities and expression profile of related gene on oxidative stress in cardiomyocytes. Pretreated cardiomyocytes significantly upregulated the enzymatic activity and expression level of CAT under the exposure of H2O2 induced oxidative stress. This preliminary study has demonstrated the potential antioxidant effects of RBE in alleviating H2O2-mediated oxidative injuries via upregulation in enzymatic activities and expression levels of CAT. PMID:27239253

  1. Isolation and Physiological Analysis of Mouse Cardiomyocytes

    PubMed Central

    Roth, Gretchen M.; Bader, David M.; Pfaltzgraff, Elise R.

    2014-01-01

    Cardiomyocytes, the workhorse cell of the heart, contain exquisitely organized cytoskeletal and contractile elements that generate the contractile force used to pump blood. Individual cardiomyocytes were first isolated over 40 years ago in order to better study the physiology and structure of heart muscle. Techniques have rapidly improved to include enzymatic digestion via coronary perfusion. More recently, analyzing the contractility and calcium flux of isolated myocytes has provided a vital tool in the cellular and sub-cellular analysis of heart failure. Echocardiography and EKGs provide information about the heart at an organ level only. Cardiomyocyte cell culture systems exist, but cells lack physiologically essential structures such as organized sarcomeres and t-tubules required for myocyte function within the heart. In the protocol presented here, cardiomyocytes are isolated via Langendorff perfusion. The heart is removed from the mouse, mounted via the aorta to a cannula, perfused with digestion enzymes, and cells are introduced to increasing calcium concentrations. Edge and sarcomere detection software is used to analyze contractility, and a calcium binding fluorescent dye is used to visualize calcium transients of electrically paced cardiomyocytes; increasing understanding of the role cellular changes play in heart dysfunction. Traditionally used to test drug effects on cardiomyocytes, we employ this system to compare myocytes from WT mice and mice with a mutation that causes dilated cardiomyopathy. This protocol is unique in its comparison of live cells from mice with known heart function and known genetics. Many experimental conditions are reliably compared, including genetic or environmental manipulation, infection, drug treatment, and more. Beyond physiologic data, isolated cardiomyocytes are easily fixed and stained for cytoskeletal elements. Isolating cardiomyocytes via perfusion is an extremely versatile method, useful in studying cellular changes

  2. Cation dyshomeostasis and cardiomyocyte necrosis: the Fleckenstein hypothesis revisited

    PubMed Central

    Borkowski, Brian J.; Cheema, Yaser; Shahbaz, Atta U.; Bhattacharya, Syamal K.; Weber, Karl T.

    2011-01-01

    An ongoing loss of cardiomyocytes to apoptotic and necrotic cell death pathways contributes to the progressive nature of heart failure. The pathophysiological origins of necrotic cell loss relate to the neurohormonal activation that accompanies acute and chronic stressor states and which includes effector hormones of the adrenergic nervous system. Fifty years ago, Albrecht Fleckenstein and coworkers hypothesized the hyperadrenergic state, which accompanies such stressors, causes cardiomyocyte necrosis based on catecholamine-initiated excessive intracellular Ca2+ accumulation (EICA), and mitochondrial Ca2+ overloading in particular, in which the ensuing dysfunction and structural degeneration of these organelles leads to necrosis. In recent years, two downstream factors have been identified which, together with EICA, constitute a signal–transducer–effector pathway: (i) mitochondria-based induction of oxidative stress, in which the rate of reactive oxygen metabolite generation exceeds their rate of detoxification by endogenous antioxidant defences; and (ii) the opening of the mitochondrial inner membrane permeability transition pore (mPTP) followed by organellar swelling and degeneration. The pathogenesis of stress-related cardiomyopathy syndromes is likely related to this pathway. Other factors which can account for cytotoxicity in stressor states include: hypokalaemia; ionized hypocalcaemia and hypomagnesaemia with resultant elevations in parathyroid hormone serving as a potent mediator of EICA; and hypozincaemia with hyposelenaemia, which compromise antioxidant defences. Herein, we revisit the Fleckenstein hypothesis of EICA in leading to cardiomyocyte necrosis and the central role played by mitochondria. PMID:21398641

  3. Mechanosensitive Kinases Regulate Stiffness-Induced Cardiomyocyte Maturation

    PubMed Central

    Young, Jennifer L.; Kretchmer, Kyle; Ondeck, Matthew G.; Zambon, Alexander C.; Engler, Adam J.

    2014-01-01

    Cells secrete and assemble extracellular matrix throughout development, giving rise to time-dependent, tissue-specific stiffness. Mimicking myocardial matrix stiffening, i.e. ~10-fold increase over 1 week, with a hydrogel system enhances myofibrillar organization of embryonic cardiomyocytes compared to static hydrogels, and thus we sought to identify specific mechanosensitive proteins involved. Expression and/or phosphorylation state of 309 unique protein kinases were examined in embryonic cardiomyocytes plated on either dynamically stiffening or static mature myocardial stiffness hydrogels. Gene ontology analysis of these kinases identified cardiogenic pathways that exhibited time-dependent up-regulation on dynamic versus static matrices, including PI3K/AKT and p38 MAPK, while GSK3β, a known antagonist of cardiomyocyte maturation, was down-regulated. Additionally, inhibiting GSK3β on static matrices improved spontaneous contraction and myofibril organization, while inhibiting agonist AKT on dynamic matrices reduced myofibril organization and spontaneous contraction, confirming its role in mechanically-driven maturation. Together, these data indicate that mechanically-driven maturation is at least partially achieved via active mechanosensing at focal adhesions, affecting expression and phosphorylation of a variety of protein kinases important to cardiomyogenesis. PMID:25236849

  4. Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy

    PubMed Central

    Li, Lei; Fang, Chao; Xu, Di; Xu, Yidan; Fu, Heling; Li, Jianmin

    2016-01-01

    Cardiac hypertrophy is a common pathological alteration in heart disease, which has been reported to be connected with serine/threonine protein phosphatases that control the dephosphorylation of a variety of cardiac proteins. Herein, we generated protein phosphatase type 2A knockout expressing a tamoxifen-inducible Cre recombinase protein fused to two mutant estrogen-receptor ligand-binding domains (MerCreMer) under the control of the a-myosin heavy chain promoter. Cardiac function of mice was determined by echocardiography. Decrease in PP2A activity leads to increased cardiomyocyte hypertrophy and fibrosis. Loss of PP2ACα leads to the heart failure, including the changes of EF, FS, LV, ANP and BNP. On the molecular level, knockout mice shows increased expression of B55a and B56e at 60 days after tamoxifen injection. Additionally, the regulation of the Akt/GSK3β/β-catenin pathway is severely disturbed in knockout mice. In conclusion, cardiomyocyte specific deletion of PP2A gene causes the cardiac hypertrophy. We will use the knockout mice to generate a type of cardiomyocyte hypertrophy mouse model with myocardial fibrosis. PMID:27186301

  5. CaMKII in addition to MLCK contributes to phosphorylation of regulatory light chain in cardiomyocytes.

    PubMed

    Eikemo, Hilde; Moltzau, Lise Román; Hussain, Rizwan I; Nguyen, Cam H T; Qvigstad, Eirik; Levy, Finn Olav; Skomedal, Tor; Osnes, Jan-Bjørn

    2016-02-26

    The aim was to identify kinase activities involved in the phosphorylation of regulatory light chain (RLC) in situ in cardiomyocytes. In electrically stimulated rat cardiomyocytes, phosphatase inhibition by calyculin A unmasked kinase activities evoking an increase of phosphorylated RLC (P-RLC) from about 16% to about 80% after 80 min. The phosphorylation rate in cardiomyocytes was reduced by about 40% by the myosin light chain kinase (MLCK) inhibitor, ML-7. In rat ventricular muscle strips, calyculin A induced a positive inotropic effect that correlated with P-RLC levels. The inotropic effect and P-RLC elevation were abolished by ML-7 treatment. The kinase activities phosphorylating RLC in cardiomyocytes were reduced by about 60% by the non-selective kinase inhibitor staurosporine and by about 50% by the calmodulin antagonist W7. W7 eliminated the inhibitory effect of ML-7, suggesting that the cardiac MLCK is Ca(2+)/calmodulin (CaM)-dependent. The CaM-dependent kinase II (CaMKII) inhibitor KN-93 attenuated the calyculin A-induced RLC phosphorylation by about 40%, indicating a contribution from CaMKII. The residual phosphorylation in the presence of W7 indicated that also CaM-independent kinase activities might contribute. RLC phosphorylation was insensitive to protein kinase C inhibition. In conclusion, in addition to MLCK, CaMKII phosphorylates RLC in cardiomyocytes. Involvement of other kinases cannot be excluded. PMID:26809094

  6. IGF-1 induces IP3 -dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation.

    PubMed

    Valdés, Juan A; Flores, Sylvia; Fuentes, Eduardo N; Osorio-Fuentealba, Cesar; Jaimovich, Enrique; Molina, Alfredo

    2013-07-01

    Skeletal muscle differentiation is a complex and highly regulated process characterized by cell cycle arrest, which is associated with morphological changes including myoblast alignment, elongation, and fusion into multinucleated myotubes. This is a balanced process dynamically coordinated by positive and negative signals such as the insulin-like growth factor I (IGF-1) and myostatin (MSTN), respectively. In this study, we report that the stimulation of skeletal myoblasts during differentiation with IGF-1 induces a rapid and transient calcium increase from intracellular stores, which are principally mediated through the phospholipase C gamma (PLC γ)/inositol 1,4,5-triphosphate (IP3 )-dependent signaling pathways. This response was completely blocked when myoblasts were incubated with LY294002 or transfected with the dominant-negative p110 gamma, suggesting a fundamental role of phosphatidylinositol 3-kinase (PI3K) in PLCγ activation. Additionally, we show that calcium released via IP3 and induced by IGF-1 stimulates NFAT-dependent gene transcription and nuclear translocation of the GFP-labeled NFATc3 isoform. This activation was independent of extracellular calcium influx and calcium release mediated by ryanodine receptor (RyR). Finally, we examined mstn mRNA levels and mstn promoter activity in myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents and in reporter activity, which was inhibited by cyclosporin A, 11R-VIVIT, and by inhibitors of the PI3Kγ, PLCγ, and IP3 receptor. Our results strongly suggest that IGF-1 regulates myostatin transcription through the activation of the NFAT transcription factor in an IP3 /calcium-dependent manner. This is the first study to demonstrate a role of calcium-dependent signaling pathways in the mRNA expression of myostatin. PMID:23255067

  7. Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract.

    PubMed

    Vojdani, Zahra; Tavakolinejad, Sima; Talaei-Khozani, Tahereh; Esmaeilpour, Tahereh; Rasooli, Manuchehr

    2011-03-01

    Cell transplantation shows potential for the treatment of cardiac diseases. Embryonic stem cells, cord blood and mesenchymal stem cells have been suggested as sources for transplantation therapy. Because of some technical limitations with the use of stem cells, transdifferentiation of fully differentiated cells is a potentially useful alternative. We investigated whether human peripheral blood cells could transdifferentiate into cardiomyocyte. Transdifferentiation was induced in a human B lymphocyte cell line (Raji). Cardiomyocyte extract was prepared from adult mouse cardiomyocytes. The cells were treated with 5-aza-2-deoxycytidine and trichostatin A, permeabilized with streptolysin O, and exposed to the mouse cardiomyocyte extract. They were cultured for 10 days, 3 weeks and 4 weeks. Cardiomyocyte markers were detected with immunohistochemistry and flow cytometry. Immunocytochemistry revealed that some cells expressed myosin heavy chain, α-actinin and cardiac troponin T after 3 and 4 weeks. Flow cytometry confirmed these data. In cells exposed to trichostatin A and 5-aza-2-deoxycytidine and permeabilized in the presence of the cardiomyocyte extract, troponin T expression was seen in 3.53% of the cells and 3.11% of them expressed α-actinin. After exposure to the cardiomyocyte extract, some permeabilized cells adhered to the plate loosely; however, the morphology did not change significantly, and they continued to show a rounded shape after 4 weeks. Our treated lymphocytes expressed cardiomyocyte markers. Our results suggest that lymphocytes may be useful in future research as a source of cells for reprogramming procedures. PMID:21547694

  8. Curcumin Protects Neonatal Rat Cardiomyocytes against High Glucose-Induced Apoptosis via PI3K/Akt Signalling Pathway

    PubMed Central

    Yu, Wei; Zha, Wenliang; Ke, Zhiqiang; Min, Qing; Li, Cairong; Sun, Huirong; Liu, Chao

    2016-01-01

    The function of curcumin on NADPH oxidase-related ROS production and cardiac apoptosis, together with the modulation of protein signalling pathways, was investigated in cardiomyocytes. Primary cultures of neonatal rat cardiomyocytes were exposed to 30 mmol/L high glucose with or without curcumin. Cell viability, apoptosis, superoxide formation, the expression of NADPH oxidase subunits, and potential regulatory molecules, Akt and GSK-3β, were assessed in cardiomyocytes. Cardiomyocytes exposure to high glucose led to an increase in both cell apoptosis and intracellular ROS levels, which were strongly prevented by curcumin treatment (10 μM). In addition, treatment with curcumin remarkably suppressed the increased activity of Rac1, as well as the enhanced expression of gp91phox and p47phox induced by high glucose. Lipid peroxidation and SOD were reversed in the presence of curcumin. Furthermore, curcumin treatment markedly inhibited the reduced Bcl-2/Bax ratio elicited by high glucose exposure. Moreover, curcumin significantly increased Akt and GSK-3β phosphorylation in cardiomyocytes treated with high glucose. In addition, LY294002 blocked the effects of curcumin on cardiomyocytes exposure to high glucose. In conclusion, these results demonstrated that curcumin attenuated high glucose-induced cardiomyocyte apoptosis by inhibiting NADPH-mediated oxidative stress and this protective effect is most likely mediated by PI3K/Akt-related signalling pathway. PMID:26989696

  9. Murine Gammaherpesvirus M2 Protein Induction of IRF4 via the NFAT Pathway Leads to IL-10 Expression in B Cells

    PubMed Central

    Rangaswamy, Udaya S.; Speck, Samuel H.

    2014-01-01

    Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner – leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4). Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA) resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4 – a key player in plasma cell differentiation – which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation. PMID:24391506

  10. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window.

    PubMed

    Polizzotti, Brian D; Ganapathy, Balakrishnan; Walsh, Stuart; Choudhury, Sangita; Ammanamanchi, Niyatie; Bennett, David G; dos Remedios, Cristobal G; Haubner, Bernhard J; Penninger, Josef M; Kühn, Bernhard

    2015-04-01

    Therapies developed for adult patients with heart failure have been shown to be ineffective in pediatric clinical trials, leading to the recognition that new pediatric-specific therapies for heart failure must be developed. Administration of the recombinant growth factor neuregulin-1 (rNRG1) stimulates regeneration of heart muscle cells (cardiomyocytes) in adult mice. Because proliferation-competent cardiomyocytes are more abundant in growing mammals, we hypothesized that administration of rNRG1 during the neonatal period might be more effective than in adulthood. If so, neonatal rNRG1 delivery could be a new therapeutic strategy for treating heart failure in pediatric patients. To evaluate the effectiveness of rNRG1 administration in cardiac regeneration, newborn mice were subjected to cryoinjury, which induced myocardial dysfunction and scar formation and decreased cardiomyocyte cell cycle activity. Early administration of rNRG1 to mice from birth to 34 days of age improved myocardial function and reduced the prevalence of transmural scars. In contrast, administration of rNRG1 from 4 to 34 days of age only transiently improved myocardial function. The mechanisms of early administration involved cardiomyocyte protection (38%) and proliferation (62%). We also assessed the ability of rNRG1 to stimulate cardiomyocyte proliferation in intact cultured myocardium from pediatric patients. rNRG1 induced cardiomyocyte proliferation in myocardium from infants with heart disease who were less than 6 months of age. Our results identify an effective time period within which to execute rNRG1 clinical trials in pediatric patients for the stimulation of cardiomyocyte regeneration. PMID:25834111

  11. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization.

    PubMed

    Soares, Sandra Sofia; Henao, Fernando; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2008-03-01

    Besides the well-known inotropic effects of vanadium in cardiac muscle, previous studies have shown that vanadate can stimulate cell growth or induce cell death. In this work, we studied the toxicity to neonatal rat ventricular myocytes (cardiomyocytes) of two vanadate solutions containing different oligovanadates distribution, decavanadate (containing decameric vanadate, V 10) and metavanadate (containing monomeric vanadate and also di-, tetra-, and pentavanadate). Incubation for 24 h with decavanadate or metavanadate induced necrotic cell death of cardiomyocytes, without significant caspase-3 activation. Only 10 microM total vanadium of either decavanadate (1 microM V 10) or metavanadate (10 microM total vanadium) was needed to produce 50% loss of cell viability after 24 h (assessed with MTT and propidium iodide assays). Atomic absorption spectroscopy showed that vanadium accumulation in cardiomyocytes after 24 h was the same when incubation was done with decavanadate or metavanadate. A decrease of 75% of the rate of mitochondrial superoxide anion generation, monitored with dihydroethidium, and a sustained rise of cytosolic calcium (monitored with Fura-2-loaded cardiomyocytes) was observed after 24 h of incubation of cardiomyocytes with decavanadate or metavanadate concentrations close to those inducing 50% loss of cell viability produced. In addition, mitochondrial membrane depolarization within cardiomyocytes, monitored with tetramethylrhodamine ethyl esther or with 3,3',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, were observed after only 6 h of incubation with decavanadate or metavanadate. The concentration needed for 50% mitochondrial depolarization was 6.5 +/- 1 microM total vanadium for both decavanadate (0.65 microM V 10) and metavanadate. In conclusion, mitochondrial membrane depolarization was an early event in decavanadate- and monovanadate-induced necrotic cell death of cardiomyocytes. PMID:18251508

  12. Bone marrow stromal cells as an inducer for cardiomyocyte differentiation from mouse embryonic stem cells.

    PubMed

    Yue, Fengming; Johkura, Kohei; Tomotsune, Daihachiro; Shirasawa, Sakiko; Yokoyama, Tadayuki; Nagai, Mika; Sasaki, Katsunori

    2010-09-20

    Bone marrow stromal cells (BMSCs) secrete soluble factors and display varied cell-biological functions. To confirm the ability and efficiency of BMSCs to induce embryonic stem cells (ESCs) into cardiomyocytes, mouse embryoid bodies (EBs) were co-cultured with rat BMSCs. After about 10 days, areas of rhythmically contracting cells in more solid aggregates became evident with bundle-like structures formed along borders between EB outgrowth and BMSC layer. ESC-derived cardiomyocytes exhibited sarcomeric striations when stained with troponin I (Trop I), organized in separated bundles. Besides, the staining for connexin 43 was detected in cell-cell junctions, which demonstrated that ESC-derived cardiomyocytes were coupled by gap junction in culture. The related genes of cardiomyocytes were found in these beating and no-beating EBs co-cultured with BMSCs. In addition, an improved efficiency of cardiomyocyte differentiation from ESC-BMSC co-culture was found in the serum-free medium: 5-fold up-regulation in the number of beating area compared with the serum medium. Effective cardiac differentiation was also recognized in transfer filter assay and in condition medium obtained from BMSC culture. A clear increase in the expression of cardiac genes and TropI protein confirmed further cardiac differentiation by BMP4 and Retinoic Acid (RA) treatment. These results demonstrate that BMSCs can induce cardiomyocyte differentiation from ESCs through soluble factors and enhance it with BMP4 or RA treatment. Serum-free ESC-BMSC co-culture represents a defined in vitro model for identifying the cardiomyocyte-inducing activity from BMSCs and, in addition, a straightforward experimental system for assessing clinical applications. PMID:20801009

  13. Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size.

    PubMed

    Zhou, Yang; Jiang, Youchun; Kang, Y James

    2008-07-01

    Previous studies have shown that dietary copper supplementation reversed heart hypertrophy induced by pressure overload in a mouse model. The present study was undertaken to understand the cellular basis of copper-induced regression of cardiac hypertrophy. Primary cultures of neonatal rat cardiomyocytes were treated with phenylephrine (PE) at a final concentration of 100 microM in cultures for 48 h to induce cellular hypertrophy. The hypertrophied cardiomyocytes were exposed to copper sulfate at a final concentration of 5 microM in cultures for additional 24 h. This copper treatment reduced the size of the hypertrophied cardiomyocytes, as measured by flow cytometry, protein content in cells, cell volume and cardiomyocyte hypertrophy markers including beta-myosin heavy chain protein, skeletal alpha-actin, and atrial natriuretic peptide. Cell cycle analysis and cell sorting of p-histone-3 labeled cardiomyocytes indicated that cell division was not involved in the copper-induced regression of cardiomyocyte hypertrophy. Copper also inhibited PE-induced apoptosis, determined by a TUNEL assay. Because copper stimulates vascular endothelial growth factor (VEGF) production through activation of hypoxia-inducible transcription factor, an anti-VEGF antibody at a final concentration of 2 ng/ml in cultures was used and shown to blunt copper-induced regression of cell hypertrophy. Conversely, VEGF alone at a final concentration of 0.2 microg/ml reversed cell hypertrophy as the same as copper did. This study demonstrates that both copper and VEGF reduce the size of hypertrophied cardiomyocytes, and copper regression of cardiac hypertrophy is VEGF-dependent. PMID:18495151

  14. Costimulation by B7-1 and LFA-3 targets distinct nuclear factors that bind to the interleukin-2 promoter: B7-1 negatively regulates LFA-3-induced NF-AT DNA binding.

    PubMed Central

    Parra, E; Varga, M; Hedlund, G; Kalland, T; Dohlsten, M

    1997-01-01

    We have characterized the regulation of nuclear factors involved in transcriptional control of the interleukin-2 (IL-2) promoter-enhancer activity in Jurkat T cells stimulated with superantigen presented on HLA-DR transfectants combined with the ligands LFA-3 (CD58) and B7-1 (CD80). Gel shift analyses showed that NF-AT was strongly induced in LFA-3-costimulated Jurkat T cells, suggesting that NF-AT is a key target nuclear factor for the CD2-LFA-3 pathway. Studies using HLA-DR-B7-1-LFA-3 triple transfectants showed that the LFA-3-induced NF-AT DNA binding activity was negatively regulated by B7-1 costimulation. In contrast, induction of a CD28 response complex containing only c-Rel proteins was seen after B7-1 costimulation. Both LFA-3 costimulation and B7-1 costimulation induced the AP-1 and NF-kappaB nuclear factors. Distinct compositions of the NF-AT complexes were seen in B7-1- and LFA-3-costimulated cells. LFA-3 induced primarily Jun-D, Fra-1, and Fra-2, while B7-1 induced June-D-Fos complexes. In contrast, AP-1 and NF-kappaB complexes induced in B7-1- and LFA-3-costimulated T cells showed similar contents. Transient transfection of Jurkat T cells with a construct encoding the IL-2 enhancer-promoter region (position -500 to +60) linked to a luciferase reporter gene revealed that B7-1 costimulation was required to induce strong transcriptional activity. Combined B7-1-LFA-3 costimulation resulted in a synergistic increase in IL-2 transcriptional activity. Multimers of the AP-1, NF-AT, NF-kappaB, and CD28 response elements showed distinct kinetics and activity after LFA-3 and B7-1 costimulation and revealed that B7-1 and LFA-3 converge to superinduce transcriptional activity of the AP-1, NF-AT, and CD28 response elements. Transcriptional studies with an IL-2 enhancer-promoter carrying a mutation in the CD28 response element site revealed that the activity was reduced by 80% after B7-1 and B7-1-LFA-3 costimulation whereas the transcriptional activity induced by LFA

  15. Disease relevance of T11TS-induced T-cell signal transduction through the CD2-mediated calcineurin-NFAT pathway: Perspectives in glioma immunotherapy.

    PubMed

    Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Singh, Manoj Kumar; Moitra, Saibal; Ronsard, Larance; Ghosh, Tushar Kanti; Chaudhuri, Swapna

    2015-10-01

    Malignant glioma is the most lethal of a wide array of CNS neoplasms. Its onset and progression are markedly associated with profound immunosupression and paralysis of T-cell survival and proliferation. Myriad immunotherapeutic strategies are presently used to target such T-cell anomalies in glioma. Our recent work has highlighted use of the novel glycopeptide, the CD2 ligand, T11 target structure (T11TS) as an immunotherapeutic agent against experimentally induced glioma in rats. We have shown that T11TS causes multi-target modulation of key components of the T-cell - antigen presenting cell (APC) immunological synapse. This consequently triggers T-cell activation so as to reverse glioma-induced changes to physiological levels. T11TS administration also causes CD2 upregulation. Earlier we also found T11TS to cause enhanced proliferation of both CD4+ and CD8+ T-cells in glioma conditions. These findings led us to believe that downstream CD2-stimulated "alternative pathway" of calcineurin-NFAT could be a possible target for modulation by T11TS. In the present paper we thus show that immunotherapy with T11TS induces a multi-targeted approach towards activation of this "alternative pathway" of T-cell signaling providing an immunotherapeutic advantage against glioma. We show here that T11TS immunotherapy causes positive modulations of the CD2 pathway-associated proteins, viz., p59fyn, protein kinase C-θ (PKC-θ), calcineurin and nuclear factor for activation of T-cells (NFAT) and hint that this may accord greater survival and proliferation advantage to T-cells of the glioma-bearing animals for augmented defence against glioma. These findings help open a molecular immunotherapeutic door - one which is directed towards clinical studies for glioma-immunotherapy using T11TS. PMID:26105805

  16. NFAT5/STAT3 interaction mediates synergism of high salt with IL-17 towards induction of VEGF-A expression in breast cancer cells

    PubMed Central

    Amara, Suneetha; Alotaibi, Dalal; Tiriveedhi, Venkataswarup

    2016-01-01

    Chronic inflammation has been considered an important player in cancer proliferation and progression. High salt (sodium chloride) levels have been considered a potent inducer of chronic inflammation. In the present study, the synergistic role of high salt with interleukin (IL)-17 towards induction of the inflammatory and angiogenic stress factor vascular endothelial growth factor (VEGF)-A was investigated. Stimulation of MCF-7 breast cancer cells with high salt (0.2 M NaCl) and sub-minimal IL-17 (1 ng/ml) enhanced the expression of VEGF-A (2.9 and 2.6-fold, respectively, P<0.05) compared with untreated cells. Furthermore, co-treatment with both high salt and sub-minimal IL-17 led to a 5.9-fold increase in VEGF-A expression (P<0.01), thus suggesting a synergistic role of these factors. VEGF-A promoter analysis and specific small interfering RNA knock-down of transcription factors revealed that high salt induced VEGF-A expression through nuclear factor of activated T-cells (NFAT)5, while IL-17 induced VEGF-A expression via signal transducer and activator of transcription (STAT)3 signaling mechanisms. Treatment of normal human aortic endothelial cells with the supernatant of activated MCF-7 cells enhanced cell migration and induced expression of migration-specific factors, including vascular cell adhesion protein, β1 integrin and cluster of differentiation 31. These data suggest that high salt levels synergize with pro-inflammatory IL-17 to potentially induce cancer progression and metastasis through VEGF-A expression. Therefore, low-salt diet, anti-NFAT5 and anti-STAT3 therapies may provide novel avenues for enhanced efficiency of the current cancer therapy. PMID:27446373

  17. Cardiomyocytes in Young Infants With Congenital Heart Disease: a Three-Month Window of Proliferation.

    PubMed

    Ye, Lincai; Qiu, Lisheng; Zhang, Haibo; Chen, Huiwen; Jiang, Chuan; Hong, Haifa; Liu, Jinfen

    2016-01-01

    Perinatal reduction in cardiomyocyte cell cycle activity is well established in animal models and humans. However, cardiomyocyte cell cycle activity in infants with congenital heart disease (CHD) is unknown, and may provide important information to improve treatment. Human right atrial specimens were obtained from infants during routine surgery to repair ventricular septal defects. The specimens were divided into three groups: group A (age 1-3 months); group B (age, 4-6 months); and group C (age 7-12 months). A dramatic fall in the number of Ki67 -positive CHD cardiac myocytes occurred after three months. When cultured in vitro, young CHD myocytes (≤3 months) showed more abundant Ki67-positive cardiomyocytes and greater incorporation of EdU, indicating enhanced proliferation. YAP1 and NICD-important transcript factors in cardiomyocyte development and proliferation-decreased with age and β-catenin increased with age. Compared with those of older infants, cardiomyocytes of young CHD infants (≤3 months) have a higher proliferating capacity in vivo and in vitro. From the perspective of cardiac muscle regeneration, CHD treatment at a younger age (≤3 months) may be more optimal. PMID:26976548

  18. Cardiomyocytes in Young Infants With Congenital Heart Disease: a Three-Month Window of Proliferation

    PubMed Central

    Ye, Lincai; Qiu, Lisheng; Zhang, Haibo; Chen, Huiwen; Jiang, Chuan; Hong, Haifa; Liu, Jinfen

    2016-01-01

    Perinatal reduction in cardiomyocyte cell cycle activity is well established in animal models and humans. However, cardiomyocyte cell cycle activity in infants with congenital heart disease (CHD) is unknown, and may provide important information to improve treatment. Human right atrial specimens were obtained from infants during routine surgery to repair ventricular septal defects. The specimens were divided into three groups: group A (age 1–3 months); group B (age, 4–6 months); and group C (age 7–12 months). A dramatic fall in the number of Ki67 -positive CHD cardiac myocytes occurred after three months. When cultured in vitro, young CHD myocytes (≤3 months) showed more abundant Ki67-positive cardiomyocytes and greater incorporation of EdU, indicating enhanced proliferation. YAP1 and NICD—important transcript factors in cardiomyocyte development and proliferation—decreased with age and β-catenin increased with age. Compared with those of older infants, cardiomyocytes of young CHD infants (≤3 months) have a higher proliferating capacity in vivo and in vitro. From the perspective of cardiac muscle regeneration, CHD treatment at a younger age (≤3 months) may be more optimal. PMID:26976548

  19. Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α

    PubMed Central

    Rog-Zielinska, E A; Craig, M-A; Manning, J R; Richardson, R V; Gowans, G J; Dunbar, D R; Gharbi, K; Kenyon, C J; Holmes, M C; Hardie, D G; Smith, G L; Chapman, K E

    2015-01-01

    Glucocorticoid levels rise dramatically in late gestation to mature foetal organs in readiness for postnatal life. Immature heart function may compromise survival. Cardiomyocyte glucocorticoid receptor (GR) is required for the structural and functional maturation of the foetal heart in vivo, yet the molecular mechanisms are largely unknown. Here we asked if GR activation in foetal cardiomyocytes in vitro elicits similar maturational changes. We show that physiologically relevant glucocorticoid levels improve contractility of primary-mouse-foetal cardiomyocytes, promote Z-disc assembly and the appearance of mature myofibrils, and increase mitochondrial activity. Genes induced in vitro mimic those induced in vivo and include PGC-1α, a critical regulator of cardiac mitochondrial capacity. SiRNA-mediated abrogation of the glucocorticoid induction of PGC-1α in vitro abolished the effect of glucocorticoid on myofibril structure and mitochondrial oxygen consumption. Using RNA sequencing we identified a number of transcriptional regulators, including PGC-1α, induced as primary targets of GR in foetal cardiomyocytes. These data demonstrate that PGC-1α is a key mediator of glucocorticoid-induced maturation of foetal cardiomyocyte structure and identify other candidate transcriptional regulators that may play critical roles in the transition of the foetal to neonatal heart. PMID:25361084

  20. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration.

    PubMed

    Condorelli, G; Borello, U; De Angelis, L; Latronico, M; Sirabella, D; Coletta, M; Galli, R; Balconi, G; Follenzi, A; Frati, G; Cusella De Angelis, M G; Gioglio, L; Amuchastegui, S; Adorini, L; Naldini, L; Vescovi, A; Dejana, E; Cossu, G

    2001-09-11

    The concept of tissue-restricted differentiation of postnatal stem cells has been challenged by recent evidence showing pluripotency for hematopoietic, mesenchymal, and neural stem cells. Furthermore, rare but well documented examples exist of already differentiated cells in developing mammals that change fate and trans-differentiate into another cell type. Here, we report that endothelial cells, either freshly isolated from embryonic vessels or established as homogeneous cells in culture, differentiate into beating cardiomyocytes and express cardiac markers when cocultured with neonatal rat cardiomyocytes or when injected into postischemic adult mouse heart. Human umbilical vein endothelial cells also differentiate into cardiomyocytes under similar experimental conditions and transiently coexpress von Willebrand factor and sarcomeric myosin. In contrast, neural stem cells, which efficiently differentiate into skeletal muscle, differentiate into cardiomyocytes at a low rate. Fibroblast growth factor 2 and bone morphogenetic protein 4, which activate cardiac differentiation in embryonic cells, do not activate cardiogenesis in endothelial cells or stimulate trans-differentiation in coculture, suggesting that different signaling molecules are responsible for cardiac induction during embryogenesis and in successive periods of development. The fact that endothelial cells can generate cardiomyocytes sheds additional light on the plasticity of endothelial cells during development and opens perspectives for cell autologous replacement therapies. PMID:11535818

  1. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration

    PubMed Central

    Condorelli, G.; Borello, U.; De Angelis, L.; Latronico, M.; Sirabella, D.; Coletta, M.; Galli, R.; Balconi, G.; Follenzi, A.; Frati, G.; Cusella De Angelis, M. G.; Gioglio, L.; Amuchastegui, S.; Adorini, L.; Naldini, L.; Vescovi, A.; Dejana, E.; Cossu, G.

    2001-01-01

    The concept of tissue-restricted differentiation of postnatal stem cells has been challenged by recent evidence showing pluripotency for hematopoietic, mesenchymal, and neural stem cells. Furthermore, rare but well documented examples exist of already differentiated cells in developing mammals that change fate and trans-differentiate into another cell type. Here, we report that endothelial cells, either freshly isolated from embryonic vessels or established as homogenous cells in culture, differentiate into beating cardiomyocytes and express cardiac markers when cocultured with neonatal rat cardiomyocytes or when injected into postischemic adult mouse heart. Human umbilical vein endothelial cells also differentiate into cardiomyocytes under similar experimental conditions and transiently coexpress von Willebrand factor and sarcomeric myosin. In contrast, neural stem cells, which efficiently differentiate into skeletal muscle, differentiate into cardiomyocytes at a low rate. Fibroblast growth factor 2 and bone morphogenetic protein 4, which activate cardiac differentiation in embryonic cells, do not activate cardiogenesis in endothelial cells or stimulate trans-differentiation in coculture, suggesting that different signaling molecules are responsible for cardiac induction during embryogenesis and in successive periods of development. The fact that endothelial cells can generate cardiomyocytes sheds additional light on the plasticity of endothelial cells during development and opens perspectives for cell autologous replacement therapies. PMID:11535818

  2. The electrophysiological development of cardiomyocytes.

    PubMed

    Liu, Jie; Laksman, Zachary; Backx, Peter H

    2016-01-15

    The generation of human cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs) has become an important resource for modeling human cardiac disease and for drug screening, and also holds significant potential for cardiac regeneration. Many challenges remain to be overcome however, before innovation in this field can translate into a change in the morbidity and mortality associated with heart disease. Of particular importance for the future application of this technology is an improved understanding of the electrophysiologic characteristics of CMs, so that better protocols can be developed and optimized for generating hPSC-CMs. Many different cell culture protocols are currently utilized to generate CMs from hPSCs and all appear to yield relatively “developmentally” immature CMs with highly heterogeneous electrical properties. These hPSC-CMs are characterized by spontaneous beating at highly variable rates with a broad range of depolarization-repolarization patterns, suggestive of mixed populations containing atrial, ventricular and nodal cells. Many recent studies have attempted to introduce approaches to promote maturation and to create cells with specific functional properties. In this review, we summarize the studies in which the electrical properties of CMs derived from stem cells have been examined. In order to place this information in a useful context, we also review the electrical properties of CMs as they transition from the developing embryo to the adult human heart. The signal pathways involved in the regulation of ion channel expression during development are also briefly considered. PMID:26788696

  3. Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover.

    PubMed

    Richardson, Gavin D

    2016-01-01

    Although it is accepted that the heart has a limited potential to regenerate cardiomyocytes following injury and that low levels of cardiomyocyte turnover occur during normal ageing, quantification of these events remains challenging. This is in part due to the rarity of the process and the fact that multiple cellular sources contribute to myocardial maintenance. Furthermore, DNA duplication within cardiomyocytes often leads to a polyploid cardiomyocyte and only rarely leads to new cardiomyocytes by cellular division. In order to accurately quantify cardiomyocyte turnover discrimination between these processes is essential. The protocol described here employs long term nucleoside labeling in order to label all nuclei which have arisen as a result of DNA replication and cardiomyocyte nuclei identified by utilizing nuclei isolation and subsequent PCM1 immunolabeling. Together this allows the accurate and sensitive identification of the nucleoside labeling of the cardiomyocyte nuclei population. Furthermore, 4',6-diamidino-2-phenylindole labeling and analysis of nuclei ploidy, enables the discrimination of neo-cardiomyocyte nuclei from nuclei which have incorporated nucleoside during polyploidization. Although this method cannot control for cardiomyocyte binucleation, it allows a rapid and robust quantification of neo-cardiomyocyte nuclei while accounting for polyploidization. This method has a number of downstream applications including assessing the potential therapeutics to enhance cardiomyocyte regeneration or investigating the effects of cardiac disease on cardiomyocyte turnover and ploidy. This technique is also compatible with additional downstream immunohistological techniques, allowing quantification of nucleoside incorporation in all cardiac cell types. PMID:27285379

  4. Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover

    PubMed Central

    Richardson, Gavin D.

    2016-01-01

    Although it is accepted that the heart has a limited potential to regenerate cardiomyocytes following injury and that low levels of cardiomyocyte turnover occur during normal ageing, quantification of these events remains challenging. This is in part due to the rarity of the process and the fact that multiple cellular sources contribute to myocardial maintenance. Furthermore, DNA duplication within cardiomyocytes often leads to a polyploid cardiomyocyte and only rarely leads to new cardiomyocytes by cellular division. In order to accurately quantify cardiomyocyte turnover discrimination between these processes is essential. The protocol described here employs long term nucleoside labeling in order to label all nuclei which have arisen as a result of DNA replication and cardiomyocyte nuclei identified by utilizing nuclei isolation and subsequent PCM1 immunolabeling. Together this allows the accurate and sensitive identification of the nucleoside labeling of the cardiomyocyte nuclei population. Furthermore, 4′,6-diamidino-2-phenylindole labeling and analysis of nuclei ploidy, enables the discrimination of neo-cardiomyocyte nuclei from nuclei which have incorporated nucleoside during polyploidization. Although this method cannot control for cardiomyocyte binucleation, it allows a rapid and robust quantification of neo-cardiomyocyte nuclei while accounting for polyploidization. This method has a number of downstream applications including assessing the potential therapeutics to enhance cardiomyocyte regeneration or investigating the effects of cardiac disease on cardiomyocyte turnover and ploidy. This technique is also compatible with additional downstream immunohistological techniques, allowing quantification of nucleoside incorporation in all cardiac cell types. PMID:27285379

  5. Endothelial-Cardiomyocyte Interactions in Cardiac Development and Repair

    PubMed Central

    Hsieh, Patrick C.H.; Davis, Michael E.; Lisowski, Laura K.; Lee, Richard T.

    2009-01-01

    Communication between endothelial cells and cardiomyocytes regulates not only early cardiac development but also adult cardiomyocyte function, including the contractile state. In the normal mammalian myocardium, each cardiomyocyte is surrounded by an intricate network of capillaries and is next to endothelial cells. Cardiomyocytes depend on endothelial cells not only for oxygenated blood supply but also for local protective signals that promote cardiomyocyte organization and survival. While endothelial cells direct cardiomyocytes, cardiomyocytes reciprocally secrete factors that impact endothelial cell function. Understanding how endothelial cells communicate with cardiomyocytes will be critical for cardiac regeneration, in which the ultimate goal is not simply to improve systolic function transiently but to establish new myocardium that is both structurally and functionally normal in the long term. PMID:16460266

  6. Role of cardiomyocyte circadian clock in myocardial metabolic adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marked circadian rhythmicities in cardiovascular physiology and pathophysiology exist. The cardiomyocyte circadian clock has recently been linked to circadian rhythms in myocardial gene expression, metabolism, and contractile function. For instance, the cardiomyocyte circadian clock is essential f...

  7. Essential role of STIM1 in the development of cardiomyocyte hypertrophy

    SciTech Connect

    Ohba, Takayoshi; Watanabe, Hiroyuki; Murakami, Manabu; Sato, Takako; Ono, Kyoichi; Ito, Hiroshi

    2009-11-06

    Store-operated Ca{sup 2+} entry (SOCE) through transient receptor potential (TRP) channels is important in the development of cardiac hypertrophy. Recently, stromal interaction molecule 1 (STIM1) was identified as a key regulator of SOCE. In this study, we examined whether STIM1 is involved in the development of cardiomyocyte hypertrophy. RT-PCR showed that cultured rat cardiomyocytes constitutively expressed STIM1. Endothelin-1 (ET-1) treatment for 48 h enhanced TRPC1 expression, SOCE, and nuclear factor of activated T cells activation without upregulating STIM1. However, the knockdown of STIM1 suppressed these effects, thereby preventing a hypertrophic response. These results suggest that STIM1 plays an essential role in the development of cardiomyocyte hypertrophy.

  8. Targeting Pin1 Protects Mouse Cardiomyocytes from High-Dose Alcohol-Induced Apoptosis

    PubMed Central

    Wang, Yuehong; Li, Zizhuo; Zhang, Yu; Yang, Wei; Sun, Jiantao; Shan, Lina; Li, Weimin

    2016-01-01

    Long-term heavy alcohol consumption is considered to be one of the main causes of left ventricular dysfunction in alcoholic cardiomyopathy (ACM). As previously suggested, high-dose alcohol induces oxidation stress and apoptosis of cardiomyocytes. However, the underlying mechanisms are yet to be elucidated. In this study, we found that high-dose alcohol treatment stimulated expression and activity of Pin1 in mouse primary cardiomyocytes. While siRNA-mediated knockdown of Pin1 suppressed alcohol-induced mouse cardiomyocyte apoptosis, overexpression of Pin1 further upregulated the numbers of apoptotic mouse cardiomyocytes. We further demonstrated that Pin1 promotes mitochondria oxidative stress and loss of mitochondrial membrane potential but suppresses endothelial nitric oxide synthase (eNOS) expression in the presence of alcohol. Taken together, our results revealed a pivotal role of Pin1 in regulation of alcohol-induced mouse cardiomyocytes apoptosis by promoting reactive oxygen species (ROS) accumulation and repressing eNOS expression, which could be potential therapeutic targets for ACM. PMID:26697133

  9. Caffeine induces cardiomyocyte hypertrophy via p300 and CaMKII pathways.

    PubMed

    Shi, Liang; Xu, Hao; Wei, Jinhong; Ma, Xingfeng; Zhang, Jianbao

    2014-09-25

    Caffeine is commonly utilized to trigger intracellular calcium in cardiomyocyte. It is well accepted that caffeine could induce cardiac arrhythmia, but it is not clear with regard of its impacts on the cardiac function. This article presents a recent study concerning the effects of caffeine on the cardiomyocyte hypertrophy and the associated signal pathway. The experimental results showed that the total protein contents, the surface area of cardiomyocyte and β-myosin heavy chain (β-MHC) expression increased in ventricular myocytes of neonatal Sprague-Dawley (SD) rats after 24h caffeine incubation. It is also observed that the basal intracellular calcium (Ca(2+)) level has increased, while the amplitude of Ca(2+) oscillation and Ca(2+) content have decreased in sarcoplasmic reticulum (SR). The caffeine-induced myocyte enhancer factor-2 (MEF2) expression and hypertrophy can be completely abolished by the inhibition of cardiac ryanodine receptor (RyR2), as well as KN93 and curcumin treatments. Meanwhile, the amplitude of Ca(2+) oscillation and the Ca(2+) content of SR in the completely-inhibited group have reached the physiological level. These results suggest that the caffeine-induced cardiomyocyte hypertrophy established the connection between Ca(2+) release from SR and cytosol that activates CaMKII and p300, which in turn enhances the expression of MEF2 that promotes cardiomyocyte hypertrophy. PMID:25093688

  10. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway

    PubMed Central

    Pennanen, Christian; Parra, Valentina; López-Crisosto, Camila; Morales, Pablo E.; del Campo, Andrea; Gutierrez, Tomás; Rivera-Mejías, Pablo; Kuzmicic, Jovan; Chiong, Mario; Zorzano, Antonio; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    ABSTRACT Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca2+, activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling. PMID:24777478

  11. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway.

    PubMed

    Pennanen, Christian; Parra, Valentina; López-Crisosto, Camila; Morales, Pablo E; Del Campo, Andrea; Gutierrez, Tomás; Rivera-Mejías, Pablo; Kuzmicic, Jovan; Chiong, Mario; Zorzano, Antonio; Rothermel, Beverly A; Lavandero, Sergio

    2014-06-15

    Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca(2+), activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling. PMID:24777478

  12. CUEDC2 modulates cardiomyocyte oxidative capacity by regulating GPX1 stability.

    PubMed

    Jian, Zhao; Liang, Bing; Pan, Xin; Xu, Guang; Guo, Sai-Sai; Li, Ting; Zhou, Tao; Xiao, Ying-Bin; Li, Ai-Ling

    2016-01-01

    The irreversible loss of cardiomyocytes due to oxidative stress is the main cause of heart dysfunction following ischemia/reperfusion (I/R) injury and ageing-induced cardiomyopathy. Here, we report that CUEDC2, a CUE domain-containing protein, plays a critical role in oxidative stress-induced cardiac injury. Cuedc2(-/-) cardiomyocytes exhibited a greater resistance to oxidative stress-induced cell death. Loss of CUEDC2 enhanced the antioxidant capacity of cardiomyocytes, promoted reactive oxygen species (ROS) scavenging, and subsequently inhibited the redox-dependent activation of signaling pathways. Notably, CUEDC2 promoted E3 ubiquitin ligases tripartite motif-containing 33 (TRIM33)-mediated the antioxidant enzyme, glutathione peroxidase 1 (GPX1) ubiquitination, and proteasome-dependent degradation. Ablation of CUEDC2 upregulated the protein level of GPX1 in the heart significantly. Strikingly, in vivo, the infarct size of Cuedc2(-/-) heart was significantly decreased after I/R injury, and aged Cuedc2(-/-) mice preserved better heart function as the overall ROS levels in their hearts were significantly lower. Our results demonstrated a novel role of CUEDC2 in cardiomyocyte death regulation. Manipulating CUEDC2 level might be an attractive therapeutic strategy for promoting cardiomyocyte survival following oxidative stress-induced cardiac injury. PMID:27286733

  13. Ah receptor expression in cardiomyocytes protects adult female mice from heart dysfunction induced by TCDD exposure.

    PubMed

    Kurita, Hisaka; Carreira, Vinicius S; Fan, Yunxia; Jiang, Min; Naticchioni, Mindi; Koch, Sheryl; Rubinstein, Jack; Puga, Alvaro

    2016-04-29

    Epidemiological studies in humans and experimental work in rodents suggest that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental toxicant, is associated with incidence of heart disease. Although TCDD toxicity depends by and large on the aryl hydrocarbon receptor (AHR), the role of the cardiac AHR in TCDD induced cardiovascular disease is not well defined. To determine whether the Ahr gene mediates disruption of heart function by TCDD, we generated a cardiomyocyte-specific Ahr knockout mouse by crossing Ahr(fx/fx) mice with βMhc:cre/+ mice, in which expression of Cre recombinase is driven by the promoter of the βMhc (myosin heavy chain-beta) gene. Starting at three months of age, mice with cardiomyocyte-specific Ahr ablation were exposed to 1μg/kg/week of TCDD or control vehicle by oral gavage for an additional three months. Relative to unexposed controls, TCDD-exposure induced cardiomyocyte Ahr-independent changes in males but not females, including a significant increase in body weight, blood pressure, and cardiac hypertrophy and a decrease in cardiac ejection fraction. TCDD exposure also induced cardiomyocyte Ahr-dependent changes in fibrosis and calcium signaling gene expression in both males and females. TCDD exposure appears to cause sexually dimorphic effects on heart function and induce fibrosis and changes in calcium signaling in both males and females through activation of the cardiomyocyte-specific Ahr. PMID:27163630

  14. Cardiomyocytes undergo apoptosis in human immunodeficiency virus cardiomyopathy through mitochondrion- and death receptor-controlled pathways

    PubMed Central

    Twu, Cheryl; Liu, Nancy Q.; Popik, Waldemar; Bukrinsky, Michael; Sayre, James; Roberts, Jaclyn; Rania, Shammas; Bramhandam, Vishnu; Roos, Kenneth P.; MacLellan, W. Robb; Fiala, Milan

    2002-01-01

    We investigated 18 AIDS hearts (5 with and 13 without cardiomyopathy) by using immunocytochemistry and computerized image analysis regarding the roles of HIV-1 proteins and tumor necrosis factor ligands in HIV cardiomyopathy (HIVCM). HIVCM and cardiomyocyte apoptosis were significantly related to each other and to the expression by inflammatory cells of gp120 and tumor necrosis factor-α. In HIVCM heart, active caspase 9, a component of the mitochondrion-controlled apoptotic pathway, and the elements of the death receptor-mediated pathway, tumor necrosis factor-α and Fas ligand, were expressed strongly on macrophages and weakly on cardiomyocytes. HIVCM showed significantly greater macrophage infiltration and cardiomyocyte apoptosis rate compared with non-HIVCM. HIV-1 entered cultured neonatal rat ventricular myocytes by macropinocytosis but did not replicate. HIV-1- or gp120-induced apoptosis of rat myocytes through a mitochondrion-controlled pathway, which was inhibited by heparin, AOP-RANTES, or pertussis toxin, suggesting that cardiomyocyte apoptosis is induced by signaling through chemokine receptors. In conclusion, in patients with HIVCM, cardiomyocytes die through both mitochondrion- and death receptor-controlled apoptotic pathways. PMID:12379743

  15. Dexamethasone Increases αvβ3 Integrin Expression and Affinity through a Calcineurin/NFAT Pathway

    PubMed Central

    Faralli, Jennifer A.; Gagen, Debjani; Filla, Mark S.; Crotti, Tania N.; Peters, Donna M.

    2013-01-01

    The purpose of this study was to determine how dexamethasone (DEX) regulates the expression and activity of αvβ3 integrin. FACS analysis showed that DEX treatment induced expression of an activated αvβ3 integrin. Its expression remained high as long as DEX was present and continued following DEX removal. FACS analysis showed that the upregulation of αvβ3 integrin was the result of an increase in the expression of the β3 integrin subunit. By real time qPCR, DEX treatment induced a 6.2-fold increase (p<0.04) in β3 integrin mRNA by day 2 compared to control and remained elevated for 6 days of treatment and then an additional 10 days once the DEX was removed. The increase in β3 integrin mRNA levels required only 1 day of DEX treatment to increase levels for 4 days in the absence of DEX. In contrast, DEX did not alter β1 integrin mRNA or protein levels. The DEX-induced upregulation of β3 integrin mRNA was partly due to an increase in its half-life to 60.7 h from 22.5 h in control cultures (p<0.05) and could be inhibited by RU486 and cycloheximide, suggesting that DEX-induced de novo protein synthesis of an activation factor was needed. The calcineurin inhibitors cyclosporin A (CsA) and FK506 inhibited the DEX induced increase in β3 integrin mRNA. In summary, the DEX-induced increase in β3 integrin is a secondary glucocorticoid response that results in prolonged expression of αvβ3 integrin and the upregulation of the β3 integrin subunit through the calcineurin/NFAT pathway. PMID:24100160

  16. SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells.

    PubMed

    Bobe, Regis; Hadri, Lahouaria; Lopez, Jose J; Sassi, Yassine; Atassi, Fabrice; Karakikes, Ioannis; Liang, Lifan; Limon, Isabelle; Lompré, Anne-Marie; Hatem, Stephane N; Hajjar, Roger J; Lipskaia, Larissa

    2011-04-01

    In blood vessels, tone is maintained by agonist-induced cytosolic Ca(2+) oscillations of quiescent/contractile vascular smooth muscle cells (VSMCs). However, in synthetic/proliferative VSMCs, Gq/phosphoinositide receptor-coupled agonists trigger a steady-state increase in cytosolic Ca(2+) followed by a Store Operated Calcium Entry (SOCE) which translates into activation of the proliferation-associated transcription factor NFAT. Here, we report that in human coronary artery smooth muscle cells (hCASMCs), the sarco/endoplasmic reticulum calcium ATPase type 2a (SERCA2a) expressed in the contractile form of the hCASMCs, controls the nature of the agonist-induced Ca(2+) transient and the resulting down-stream signaling pathway. Indeed, restoring SERCA2a expression by gene transfer in synthetic hCASMCs 1) increased Ca(2+) storage capacity; 2) modified agonist-induced IP(3)R Ca(2+) release from steady-state to oscillatory mode (the frequency of agonist-induced IP(3)R Ca(2+) signal was 11.66 ± 1.40/100 s in SERCA2a-expressing cells (n=39) vs 1.37 ± 0.20/100 s in control cells (n=45), p<0.01); 3) suppressed SOCE by preventing interactions between SR calcium sensor STIM1 and pore forming unit ORAI1; 4) inhibited calcium regulated transcription factor NFAT and its down-stream physiological function such as proliferation and migration. This study provides evidence for the first time that oscillatory and steady-state patterns of Ca(2+) transients have different effects on calcium-dependent physiological functions in smooth muscle cells. PMID:21195084

  17. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry.

    PubMed

    Traister, Alexandra; Lu, Mingliang; Coles, John G; Maynes, Jason T

    2016-06-01

    Using hearts from mice overexpressing integrin linked kinase (ILK) behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: PXD001053). The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes. PMID:27408918

  18. FAK Forms a Complex with MEF2 to Couple Biomechanical Signaling to Transcription in Cardiomyocytes.

    PubMed

    Cardoso, Alisson Campos; Pereira, Ana Helena Macedo; Ambrosio, Andre Luis Berteli; Consonni, Silvio Roberto; Rocha de Oliveira, Renata; Bajgelman, Marcio Chain; Dias, Sandra Martha Gomes; Franchini, Kleber Gomes

    2016-08-01

    Focal adhesion kinase (FAK) has emerged as a mediator of mechanotransduction in cardiomyocytes, regulating gene expression during hypertrophic remodeling. However, how FAK signaling is relayed onward to the nucleus is unclear. Here, we show that FAK interacts with and regulates myocyte enhancer factor 2 (MEF2), a master cardiac transcriptional regulator. In cardiomyocytes exposed to biomechanical stimulation, FAK accumulates in the nucleus, binds to and upregulates the transcriptional activity of MEF2 through an interaction with the FAK focal adhesion targeting (FAT) domain. In the crystal structure (2.9 Å resolution), FAT binds to a stably folded groove in the MEF2 dimer, known to interact with regulatory cofactors. FAK cooperates with MEF2 to enhance the expression of Jun in cardiomyocytes, an important component of hypertrophic response to mechanical stress. These findings underscore a connection between the mechanotransduction involving FAK and transcriptional regulation by MEF2, with potential relevance to the pathogenesis of cardiac disease. PMID:27427476

  19. Activation of transient receptor potential canonical 3 (TRPC3)-mediated Ca2+ entry by A1 adenosine receptor in cardiomyocytes disturbs atrioventricular conduction.

    PubMed

    Sabourin, Jessica; Antigny, Fabrice; Robin, Elodie; Frieden, Maud; Raddatz, Eric

    2012-08-01

    Although the activation of the A(1)-subtype of the adenosine receptors (A(1)AR) is arrhythmogenic in the developing heart, little is known about the underlying downstream mechanisms. The aim of this study was to determine to what extent the transient receptor potential canonical (TRPC) channel 3, functioning as receptor-operated channel (ROC), contributes to the A(1)AR-induced conduction disturbances. Using embryonic atrial and ventricular myocytes obtained from 4-day-old chick embryos, we found that the specific activation of A(1)AR by CCPA induced sarcolemmal Ca(2+) entry. However, A(1)AR stimulation did not induce Ca(2+) release from the sarcoplasmic reticulum. Specific blockade of TRPC3 activity by Pyr3, by a dominant negative of TRPC3 construct, or inhibition of phospholipase Cs and PKCs strongly inhibited the A(1)AR-enhanced Ca(2+) entry. Ca(2+) entry through TRPC3 was activated by the 1,2-diacylglycerol (DAG) analog OAG via PKC-independent and -dependent mechanisms in atrial and ventricular myocytes, respectively. In parallel, inhibition of the atypical PKCζ by myristoylated PKCζ pseudosubstrate inhibitor significantly decreased the A(1)AR-enhanced Ca(2+) entry in both types of myocytes. Additionally, electrocardiography showed that inhibition of TRPC3 channel suppressed transient A(1)AR-induced conduction disturbances in the embryonic heart. Our data showing that A(1)AR activation subtly mediates a proarrhythmic Ca(2+) entry through TRPC3-encoded ROC by stimulating the phospholipase C/DAG/PKC cascade provide evidence for a novel pathway whereby Ca(2+) entry and cardiac function are altered. Thus, the A(1)AR-TRPC3 axis may represent a potential therapeutic target. PMID:22692208

  20. Cholesterol Depletion Alters Cardiomyocyte Subcellular Signaling and Increases Contractility

    PubMed Central

    McIntosh, Victoria J.; Abou Samra, Abdul B.; Mohammad, Ramzi M.; Lasley, Robert D.

    2016-01-01

    Membrane cholesterol levels play an important factor in regulating cell function. Sarcolemmal cholesterol is concentrated in lipid rafts and caveolae, which are flask-shaped invaginations of the plasma membrane. The scaffolding protein caveolin permits the enrichment of cholesterol in caveolae, and caveolin interactions with numerous proteins regulate their function. The purpose of this study was to determine whether acute reductions in cardiomyocyte cholesterol levels alter subcellular protein kinase activation, intracellular Ca2+ and contractility. Methods: Ventricular myocytes, isolated from adult Sprague Dawley rats, were treated with the cholesterol reducing agent methyl-β-cyclodextrin (MβCD, 5 mM, 1 hr, room temperature). Total cellular cholesterol levels, caveolin-3 localization, subcellular, ERK and p38 mitogen activated protein kinase (MAPK) signaling, contractility, and [Ca2+]i were assessed. Results: Treatment with MβCD reduced cholesterol levels by ~45 and shifted caveolin-3 from cytoskeleton and triton-insoluble fractions to the triton-soluble fraction, and increased ERK isoform phosphorylation in cytoskeletal, cytosolic, triton-soluble and triton-insoluble membrane fractions without altering their subcellular distributions. In contrast the primary effect of MβCD was on p38 subcellular distribution of p38α with little effect on p38 phosphorylation. Cholesterol depletion increased cardiomyocyte twitch amplitude and the rates of shortening and relaxation in conjunction with increased diastolic and systolic [Ca2+]i. Conclusions: These results indicate that acute reductions in membrane cholesterol levels differentially modulate basal cardiomyocyte subcellular MAPK signaling, as well as increasing [Ca2+]i and contractility. PMID:27441649

  1. Kaempferol protects cardiomyocytes against anoxia/reoxygenation injury via mitochondrial pathway mediated by SIRT1.

    PubMed

    Guo, Zhen; Liao, Zhangping; Huang, Liqing; Liu, Dan; Yin, Dong; He, Ming

    2015-08-15

    Mitochondria-mediated apoptosis is a critical mechanism of anoxia/ reoxygenation (A/R)-induced injury in cardiomyocytes. Kaempferol (Kae) is a natural polyphenol and a type of flavonoid, which has been demonstrated to protect myocardium against ischemia/reperfusion (I/R) injury. However, the mechanism is still not fully elucidated. We hypothesize that Kae may improve the mitochondrial function during I/R injury via a potential signal pathway. In this study, an in vitro I/R model was replicated on neonatal rat primary cardiomyocytes by A/R treatment. Cell viability was monitored by the 3-(4,5-dimethylthiazol- 2-yl)-5-(3- carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay. The levels of intracellular reactive oxygen species, mitochondrial membrane potential (Δψm) and apoptosis were determined by flow cytometry. Protein expression was detected by Western Blotting. mPTP opening and the activity of caspase-3 were measured by colorimetric method. The results showed that Kae effectively enhanced the cell viability and decreased the LDH release in cardiomyocytes subjected to A/R injury. Kae reduced the A/R-induced reactive oxygen species generation, the loss of Δψm, and the release of cytochrome c from mitochondria into cytosol. Kae inhibited the A/R-stimulated mPTP opening and activation of caspase-3, and ultimate decrease in cardiomyocytes apoptosis. Furthermore, we found Kae up-regulated Human Silent Information Regulator Type 1 (SIRT1) expression, indicating SIRT1 signal pathway likely involved the cardioprotection of Kae. Sirtinol, a SIRT1 inhibitor, abolished the protective effect of Kae in cardiomyocytes subjected to A/R. Additionally, Kae significantly increased the expression of Bcl-2. Thus, we firstly demonstrate that Kae protects cardiomyocytes against A/R injury through mitochondrial pathway mediated by SIRT1. PMID:26086862

  2. Unexpected maturation of PI3K and MAPK-ERK signaling in fetal ovine cardiomyocytes.

    PubMed

    Chattergoon, N N; Louey, S; Stork, P J; Giraud, G D; Thornburg, K L

    2014-10-15

    In the first two-thirds of gestation, ovine fetal cardiomyocytes undergo mitosis to increase cardiac mass and accommodate fetal growth. Thereafter, some myocytes continue to proliferate while others mature and terminally differentiate into binucleated cells. At term (145 days gestational age; dGA) about 60% of cardiomyocytes become binucleated and exit the cell cycle under hormonal control. Rising thyroid hormone (T3) levels near term (135 dGA) inhibit proliferation and stimulate maturation. However, the degree to which intracellular signaling patterns change with age in response to T3 is unknown. We hypothesized that in vitro activation of ERK, Akt, and p70(S6K) by two regulators of cardiomyocyte cell cycle activity, T3 and insulin like growth factor-1 (IGF-1), would be similar in cardiomyocytes at gestational ages 100 and 135 dGA. IGF-1 and T3 each independently stimulated phosphorylation of ERK, Akt, and p70(S6K) in cells at both ages. In the younger mononucleated myocytes, the phosphorylation of ERK and Akt was reduced in the presence of IGF-1 and T3. However, the same hormone combination led to a dramatic twofold increase in the phosphorylation of these signaling proteins in the 135 dGA cardiomyocytes-even in cells that were not proliferating. In the older cells, both mono- and binucleated cells were affected. In conclusion, fetal ovine cardiomyocytes undergo profound maturation-related changes in signaling in response to T3 and IGF-1, but not to either factor alone. Differences in age-related response are likely to be related to milestones in fetal cardiac development as the myocardium prepares for ex utero life. PMID:25128174

  3. Effects of cerivastatin on adrenergic pathways, hypertrophic growth and TGFbeta expression in adult ventricular cardiomyocytes.

    PubMed

    Maxeiner, Hagen; Abdallah, Yaser; Kuhlmann, Christoph Rüdiger Wolfram; Schlüter, Klaus-Dieter; Wenzel, Sibylle

    2012-05-01

    The effects of statin treatment in the setting of heart failure have already been shown. Nevertheless, there is little knowledge about its influence on adrenergic pathways in cardiomyocytes. Therefore, this study investigated the impact of cerivastatin on adrenoceptor-mediated signalling pathways in isolated adult ventricular cardiomyocytes. It focused on two endpoints: hypertrophic growth and TGFbeta expression. Cultured cardiomyocytes were used to study rac activation (analysed by its translocation into the membrane fraction), ROS formation (H(2)DCF fluorescence) and hypertrophic growth ((14)C-phenylalanine incorporation). Alpha- and beta-adrenoceptor stimulation showed significant differences regarding rac activation, ROS formation, and p38 MAP kinase activation. Both alpha- and beta-adrenoceptor stimulation induced TGFbeta expression. Upon activation of alpha-adrenergic signalling - although ROS formation was not influenced by cerivastatin - TGFbeta expression decreased. Following beta stimulation, TGFbeta expression as well as rac and p38 MAP kinase activation were reduced after pre-treatment with cerivastatin. Statin treatment did not show any influence on hypertrophic growth. In summary, this study clearly demonstrates the ability of adrenoceptor stimulation to increase TGFbeta expression. One component of the beneficial effects of statin therapy on heart failure might therefore be due to a dominant reduction and inhibition of TGFbeta, which is involved in many pathophysiological processes in cardiomyocytes. PMID:22365145

  4. Cardiomyocyte-Specific Human Bcl2-Associated Anthanogene 3 P209L Expression Induces Mitochondrial Fragmentation, Bcl2-Associated Anthanogene 3 Haploinsufficiency, and Activates p38 Signaling.

    PubMed

    Quintana, Megan T; Parry, Traci L; He, Jun; Yates, Cecelia C; Sidorova, Tatiana N; Murray, Katherine T; Bain, James R; Newgard, Christopher B; Muehlbauer, Michael J; Eaton, Samuel C; Hishiya, Akinori; Takayama, Shin; Willis, Monte S

    2016-08-01

    The Bcl2-associated anthanogene (BAG) 3 protein is a member of the BAG family of cochaperones, which supports multiple critical cellular processes, including critical structural roles supporting desmin and interactions with heat shock proteins and ubiquitin ligases intimately involved in protein quality control. The missense mutation P209L in exon 3 results in a primarily cardiac phenotype leading to skeletal muscle and cardiac complications. At least 10 other Bag3 mutations have been reported, nine resulting in a dilated cardiomyopathy for which no specific therapy is available. We generated αMHC-human Bag3 P209L transgenic mice and characterized the progressive cardiac phenotype in vivo to investigate its utility in modeling human disease, understand the underlying molecular mechanisms, and identify potential therapeutic targets. We identified a progressive heart failure by echocardiography and Doppler analysis and the presence of pre-amyloid oligomers at 1 year. Paralleling the pathogenesis of neurodegenerative diseases (eg, Parkinson disease), pre-amyloid oligomers-associated alterations in cardiac mitochondrial dynamics, haploinsufficiency of wild-type BAG3, and activation of p38 signaling were identified. Unexpectedly, increased numbers of activated cardiac fibroblasts were identified in Bag3 P209L Tg+ hearts without increased fibrosis. Together, these findings point to a previously undescribed therapeutic target that may have application to mutation-induced myofibrillar myopathies as well as other common causes of heart failure that commonly harbor misfolded proteins. PMID:27321750

  5. A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation.

    PubMed

    Broughton, K M; Li, J; Sarmah, E; Warren, C M; Lin, Y-H; Henze, M P; Sanchez-Freire, V; Solaro, R J; Russell, B

    2016-07-01

    We have investigated cardiac myocytes derived from human-induced pluripotent stem cells (iPSC-CMs) from two normal control and two family members expressing a mutant cardiac troponin T (cTnT-R173W) linked to dilated cardiomyopathy (DCM). cTnT is a regulatory protein of the sarcomeric thin filament. The loss of this basic charge, which is strategically located to control tension, has consequences leading to progressive DCM. iPSC-CMs serve as a valuable platform for understanding clinically relevant mutations in sarcomeric proteins; however, there are important questions to be addressed with regard to myocyte adaptation that we model here by plating iPSC-CMs on softer substrates (100 kPa) to create a more physiologic environment during recovery and maturation of iPSC-CMs after thawing from cryopreservation. During the first week of culture of the iPSC-CMs, we have determined structural and functional characteristics as well as actin assembly dynamics. Shortening, actin content, and actin assembly dynamics were depressed in CMs from the severely affected mutant at 1 wk of culture, but by 2 wk differences were less apparent. Sarcomeric troponin and myosin isoform composition were fetal/neonatal. Furthermore, the troponin complex, reconstituted with wild-type cTnT or recombinant cTnT-R173W, depressed the entry of cross-bridges into the force-generating state, which can be reversed by the myosin activator omecamtiv mecarbil. Therapeutic doses of this drug increased both contractility and the content of F-actin in the mutant iPSC-CMs. Collectively, our data suggest the use of a myosin activation reagent to restore function within patient-specific iPSC-CMs may aid in understanding and treating this familial DCM. PMID:27199119

  6. An integrated mechanism of cardiomyocyte nuclear Ca2+ signaling

    PubMed Central

    Ibarra, Cristián; Vicencio, Jose Miguel; Varas-Godoy, Manuel; Jaimovich, Enrique; Rothermel, Beverly A.; Uhlén, Per; Hill, Joseph A.; Lavandero, Sergio

    2015-01-01

    In cardiomyocytes, Ca2+ plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca2+ within subcellular microdomains: transcription is regulated by Ca2+ release within nuclear microdomains, and excitation–contraction coupling is regulated by cytosolic Ca2+. Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca2+ signals. However, signaling pathways coupling surface receptor activation to nuclear Ca2+ release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca2+ signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at the nuclear envelope. There, they mediate Ca2+ release from perinuclear Ca2+ stores upon binding of inositol trisphosphate generated in the cytosol, which diffuses into the nucleus. More recently, identification of such receptors at nuclear membranes or perinuclear sarcolemmal invaginations has uncovered novel mechanisms whereby agonists control nuclear Ca2+ release. In this review, we discuss mechanisms for the selective control of nuclear Ca2+ signals with special focus on emerging models of agonist receptor activation. PMID:24997440

  7. An integrated mechanism of cardiomyocyte nuclear Ca(2+) signaling.

    PubMed

    Ibarra, Cristián; Vicencio, Jose Miguel; Varas-Godoy, Manuel; Jaimovich, Enrique; Rothermel, Beverly A; Uhlén, Per; Hill, Joseph A; Lavandero, Sergio

    2014-10-01

    In cardiomyocytes, Ca(2+) plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca(2+) within subcellular microdomains: transcription is regulated by Ca(2+) release within nuclear microdomains, and excitation-contraction coupling is regulated by cytosolic Ca(2+). Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca(2+) signals. However, signaling pathways coupling surface receptor activation to nuclear Ca(2+) release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca(2+) signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at the nuclear envelope. There, they mediate Ca(2+) release from perinuclear Ca(2+) stores upon binding of inositol trisphosphate generated in the cytosol, which diffuses into the nucleus. More recently, identification of such receptors at nuclear membranes or perinuclear sarcolemmal invaginations has uncovered novel mechanisms whereby agonists control nuclear Ca(2+) release. In this review, we discuss mechanisms for the selective control of nuclear Ca(2+) signals with special focus on emerging models of agonist receptor activation. PMID:24997440

  8. INTRINSIC CIRCADIAN RHYTHMS IN THE CARDIOMYOCYTE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cardiomyocyte possesses a fully functional circadian clock. Circadian clocks are a set of proteins that generate self-sustained transcriptional positive and negative feedback loops with a free-running period of 24 hours. These intracellular molecular mechanisms confer the selective advantage of ...

  9. Isolation and Cryopreservation of Neonatal Rat Cardiomyocytes

    PubMed Central

    Vandergriff, Adam C.; Hensley, Michael Taylor; Cheng, Ke

    2016-01-01

    Cell culture has become increasingly important in cardiac research, but due to the limited proliferation of cardiomyocytes, culturing cardiomyocytes is difficult and time consuming. The most commonly used cells are neonatal rat cardiomyocytes (NRCMs), which require isolation every time cells are needed. The birth of the rats can be unpredictable. Cryopreservation is proposed to allow for cells to be stored until needed, yet freezing/thawing methods for primary cardiomyocytes are challenging due to the sensitivity of the cells. Using the proper cryoprotectant, dimethyl sulfoxide (DMSO), cryopreservation was achieved. By slowly extracting the DMSO while thawing the cells, cultures were obtained with viable NRCMs. NRCM phenotype was verified using immunocytochemistry staining for α-sarcomeric actinin. In addition, cells also showed spontaneous contraction after several days in culture. Cell viability after thawing was acceptable at 40–60%. In spite of this, the methods outlined allow one to easily cryopreserve and thaw NRCMs. This gives researchers a greater amount of flexibility in planning experiments as well as reducing the use of animals. PMID:25938862

  10. Mesenchymal stem cells suppress CaN/NFAT expression in the pulmonary arteries of rats with pulmonary hypertension

    PubMed Central

    LIU, JUNFENG; HAN, ZHIBO; HAN, ZHONGCHAO; HE, ZHIXU

    2015-01-01

    Inflammation and hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) is considered the primary pathological feature of pulmonary hypertension (PH). The present study determined that mesenchymal stem cells (MSCs) suppress the expression of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT) in the pulmonary arteries of rats, and this may exert a therapeutic effect on PH. The potential therapeutic effects of MSCs on PH were assessed via the transplantation of human umbilical cord-derived MSCs, which were cultured in serum-free medium, into a monocrotaline (MCT)-induced PH rat model. Subsequently, the expression levels of tumor necrosis factor (TNF)-α in lung tissue and plasma, and of CaN and NFATc2 in pulmonary arteries were assessed. In the rat model of MCT-induced PH, investigated in the present study, TNF-α expression levels were detected in the lung tissue, and the levels of TNF-α in the plasma were increased. Furthermore, in addition to hemodynamic changes and the evident medial hypertrophy of the pulmonary muscular arterioles, CaN and NFATc2 expression levels were significantly upregulated in the pulmonary arteries. In the present study, the transplantation of MSCs, cultured in serum-free medium, decreased the levels of TNF-α in the lung tissue and plasma of rats, and downregulated CaN and NFATc2 expression in the pulmonary arteries. Furthermore, hemodynamic abnormalities and medial hypertrophy of the pulmonary muscular arterioles were notably improved. Therefore, the results of the present study may suggest that the administration of MSCs in PH may suppress the production of TNF-α, and downregulate the expression of CaN and NFATc2 in pulmonary arteries, which may provide an effective treatment for PH by suppressing the pathological proliferation of PASMCs. PMID:26640533

  11. MAP kinase mediates epidermal growth factor- and phorbol ester-induced prostacyclin formation in cardiomyocytes.

    PubMed

    Braconi Quintaje, S; Rebsamen, M; Church, D J; Vallotton, M B; Lang, U

    1998-05-01

    We studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in epidermal growth factor (EGF)-induced prostacyclin (PGI2) production in cultured, spontaneously-beating neonatal ventricular rat cardiomyocytes. To this purpose, the effect of EGF on cardiomyocyte MAPK phosphorylation, MAPK activity and PGI2-production were investigated, and compared to those induced by the PKC activator 4 beta phorbol 12-myristate 13-acetate (PMA). Both EGF (0.1 microM) and PMA (0.1 microM) induced the rapid and reversible phosphorylation of 42 KDa-MAPK in ventricular cardiomyocytes, responses that were accompanied by transient increases in MAPK activity (190-230% of control values within 5 min), and two- to three-fold increases in PGI2 formation. The tyrosine kinase inhibitors lavendustin (1 microM) and genistein (10 microM) strongly inhibited EGF-induced MAPK activation and PGI2-formation, but had no effect on PMA-stimulated responses. Experiments with the PKC inhibitor CGP 41251 (1 microM) or with PKC-downregulated cells demonstrated that in contrast to the PMA-stimulated responses, EGF-induced MAPK activation and PGI2-production were PKC-independent processes. Investigating the role of MAPK in EGF- and in PMA-promoted PGI2-formation, we found that the MAPK-inhibitor 6-thioguanine (500 microM), as well as the MAPK-kinase-inhibitor PD98059 (50 microM) abolished both EGF- and PMA-stimulated PGI2-production in cardiomyocytes. Our results indicate that MAPK-activation is at the basis of both growth factor receptor and PKC-dependent eicosanoid-formation in ventricular cardiomyocytes, where EGF-induced prostaglandin-production takes place via a PKC-independent pathway. PMID:9618234

  12. The molecular and functional identities of atrial cardiomyocytes in health and disease.

    PubMed

    Brandenburg, Sören; Arakel, Eric C; Schwappach, Blanche; Lehnart, Stephan E

    2016-07-01

    Atrial cardiomyocytes are essential for fluid homeostasis, ventricular filling, and survival, yet their cell biology and physiology are incompletely understood. It has become clear that the cell fate of atrial cardiomyocytes depends significantly on transcription programs that might control thousands of differentially expressed genes. Atrial muscle membranes propagate action potentials and activate myofilament force generation, producing overall faster contractions than ventricular muscles. While atria-specific excitation and contractility depend critically on intracellular Ca(2+) signalling, voltage-dependent L-type Ca(2+) channels and ryanodine receptor Ca(2+) release channels are each expressed at high levels similar to ventricles. However, intracellular Ca(2+) transients in atrial cardiomyocytes are markedly heterogeneous and fundamentally different from ventricular cardiomyocytes. In addition, differential atria-specific K(+) channel expression and trafficking confer unique electrophysiological and metabolic properties. Because diseased atria have the propensity to perpetuate fast arrhythmias, we discuss our understanding about the cell-specific mechanisms that lead to metabolic and/or mitochondrial dysfunction in atrial fibrillation. Interestingly, recent work identified potential atria-specific mechanisms that lead to early contractile dysfunction and metabolic remodelling, suggesting highly interdependent metabolic, electrical, and contractile pathomechanisms. Hence, the objective of this review is to provide an integrated model of atrial cardiomyocytes, from tissue-specific cell properties, intracellular metabolism, and excitation-contraction (EC) coupling to early pathological changes, in particular metabolic dysfunction and tissue remodelling due to atrial fibrillation and aging. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes

  13. Increased expression of estrogen-related receptor β during adaptation of adult cardiomyocytes to sustained hypoxia

    PubMed Central

    Cunningham, Kathryn F; Beeson, Gyda C; Beeson, Craig C; McDermott, Paul J

    2016-01-01

    Estrogen-related Receptors (ERR) are members of the steroid hormone receptor superfamily of transcription factors that regulate expression of genes required for energy metabolism including mitochondrial biogenesis, fatty acid oxidation and oxidative phosphorylation. While ERRα and EPPγ isoforms are known to share a wide array of target genes in the adult myocardium, the function of ERRβ has not been characterized in cardiomyocytes. The purpose of this study was to determine the role of ERRβ in regulating energy metabolism in adult cardiomyocytes in primary culture. Adult feline cardiomyocytes were electrically stimulated to contract in either hypoxia (0.5% O2) or normoxia (21% O2). As compared to baseline values measured in normoxia, ERRβ mRNA levels increased significantly after 8 hours of hypoxia and remained elevated over 24 h. Conversely, ERRβ mRNA decreased to normoxic levels after 4 hours of reoxygenation. Hypoxia increased expression of the α and β isoforms of Peroxisome Proliferator-Activated Receptor γ Coactivator-1 (PGC-1) mRNA by 6-fold and 3-fold, respectively. Knockdown of ERRβ expression via adenoviral-mediated delivery of ERRβ shRNA blocked hypoxia-induced increases in PGC-1β mRNA, but not PGC-1α mRNA. Loss of ERRβ had no effect on mtDNA content as measured after 24 h of hypoxia. To determine whether loss of ERRβ affected mitochondrial function, oxygen consumption rates (OCR) were measured in contracting versus quiescent cardiomyocytes in normoxia. OCR was significantly lower in contracting cardiomyocytes expressing ERRβ shRNA than scrambled shRNA controls. Maximal OCR also was reduced by ERRβ knockdown. In conclusion: 1) hypoxia increases in ERRβ mRNA expression in contracting cardiomyocytes; 2) ERRβ is required for induction of the PGC-1β isoform in response to hypoxia; 3) ERRβ expression is required to sustain OCR in normoxic conditions. PMID:27335690

  14. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter.

    PubMed

    Pan, Lei; Huang, Bi-Jun; Ma, Xiu-E; Wang, Shi-Yi; Feng, Jing; Lv, Fei; Liu, Yuan; Liu, Yi; Li, Chang-Ming; Liang, Dan-Dan; Li, Jun; Xu, Liang; Chen, Yi-Han

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs, whose expression levels vary in different cell types and tissues. Emerging evidence indicates that tissue-specific and -enriched miRNAs are closely associated with cellular development and stress responses in their tissues. MiR-25 has been documented to be abundant in cardiomyocytes, but its function in the heart remains unknown. Here, we report that miR-25 can protect cardiomyocytes against oxidative damage by down-regulating mitochondrial calcium uniporter (MCU). MiR-25 was markedly elevated in response to oxidative stimulation in cardiomyocytes. Further overexpression of miR-25 protected cardiomyocytes against oxidative damage by inactivating the mitochondrial apoptosis pathway. MCU was identified as a potential target of miR-25 by bioinformatical analysis. MCU mRNA level was reversely correlated with miR-25 under the exposure of H2O2, and MCU protein level was largely decreased by miR-25 overexpression. The luciferase reporter assay confirmed that miR-25 bound directly to the 3' untranslated region (UTR) of MCU mRNA. MiR-25 significantly decreased H2O2-induced elevation of mitochondrial Ca2+ concentration, which is likely to be the result of decreased activity of MCU. We conclude that miR-25 targets MCU to protect cardiomyocytes against oxidative damages. This finding provides novel insights into the involvement of miRNAs in oxidative stress in cardiomyocytes. PMID:25764156

  15. Cardiomyocyte-specific expression of CYP2J2 prevents development of cardiac remodelling induced by angiotensin II

    PubMed Central

    He, Zuowen; Zhang, Xu; Chen, Chen; Wen, Zheng; Hoopes, Samantha L.; Zeldin, Darryl C.; Wang, Dao Wen

    2015-01-01

    Aims Cardiac remodelling is one of the key pathological changes that occur with cardiovascular disease. Previous studies have demonstrated the beneficial effects of CYP2J2 expression on cardiac injury. In the present study, we investigated the effects of cardiomyocyte-specific CYP2J2 expression and EET treatment on angiotensin II-induced cardiac remodelling and sought to determine the underlying molecular mechanisms involved in this process. Methods and results Eight-week-old mice with cardiomyocyte-specific CYP2J2 expression (αMHC-CYP2J2-Tr) and wild-type (WT) control mice were treated with Ang-II. Ang-II treatment of WT mice induced changes in heart morphology, cardiac hypertrophy and dysfunction, as well as collagen accumulation; however, cardiomyocyte-specific expression of CYP2J2 attenuated these effects. The cardioprotective effects observed in α-MHC-CYP2J2-Tr mice were associated with peroxisome proliferator-activated receptor (PPAR)-γ activation, reduced oxidative stress, reduced NF-κB p65 nuclear translocation, and inhibition of TGF-β1/smad pathway. The effects seen with cardiomyocyte-specific expression of CYP2J2 were partially blocked by treatment with PPAR-γ antagonist GW9662. In in vitro studies, 11,12-EET(1 μmol/L) treatment attenuated cardiomyocyte hypertrophy and remodelling-related protein (collagen I, TGF-β1, TIMP1) expression by inhibiting the oxidative stress-mediated NF-κB pathway via PPAR-γ activation. Furthermore, conditioned media from neonatal cardiomyocytes treated with 11,12-EET inhibited activation of cardiac fibroblasts and TGF-β1/smad pathway. Conclusion Cardiomyocyte-specific expression of CYP2J2 or treatment with EETs protects against cardiac remodelling by attenuating oxidative stress-mediated NF-κBp65 nuclear translocation via PPAR-γ activation. PMID:25618409

  16. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    SciTech Connect

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; Foster, Carmen M.; Kennel, Stephen J.; Wall, Jonathan S.

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.

  17. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    DOE PAGESBeta

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; et al

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  18. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    PubMed Central

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; Foster, Carmen M.; Kennel, Stephen J.; Wall, Jonathan S.

    2015-01-01

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils. PMID:26393799

  19. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation.

    PubMed

    Kang, P M; Haunstetter, A; Aoki, H; Usheva, A; Izumo, S

    2000-07-21

    Apoptosis has been implicated in ischemic heart disease, but its mechanism in cardiomyocytes has not been elucidated. In this study, we investigate the effects of hypoxia and reoxygenation in adult cardiomyocytes and the molecular mechanism involved in cardiomyocyte apoptosis. Morphologically, reoxygenation induced rounding up of the cells, appearance of membrane blebs that were filled with marginated mitochondria, and ultrastructural findings characteristic of apoptosis. Reoxygenation (18 hours of reoxygenation after 6 hours of hypoxia) and prolonged hypoxia (24 hours of hypoxia) resulted in a 59% and 51% decrease in cellular viability, respectively. During reoxygenation, cell death occurred predominantly via apoptosis associated with appearance of cytosolic cytochrome c and activation of caspase-3 and -9. However, nonapoptotic cell death predominated during prolonged hypoxia. Both caspase inhibition and Bcl-2 overexpression during reoxygenation significantly improved cellular viability through inhibition of apoptosis but had minimal effect on hypoxia-induced cell death. Bcl-2 overexpression blocked reoxygenation-induced cytochrome c release and activation of caspase -3 and -9, but caspase inhibition alone did not block cytochrome c release. These results suggest that apoptosis predominates in cardiomyocytes after reoxygenation through a mitochondrion-dependent apoptotic pathway, and Bcl-2 prevents reoxygenation-induced apoptosis by inhibiting cytochrome c release from the mitochondria and prevents activation of caspase-3 and -9. PMID:10903995

  20. Analysis of cardiomyocyte movement in the developing murine heart

    SciTech Connect

    Hashimoto, Hisayuki; Yuasa, Shinsuke; Tabata, Hidenori; Tohyama, Shugo; Seki, Tomohisa; Egashira, Toru; Hayashiji, Nozomi; Hattori, Fumiyuki; Kusumoto, Dai; Kunitomi, Akira; Takei, Makoto; Kashimura, Shin; Yozu, Gakuto; Shimojima, Masaya; Motoda, Chikaaki; Muraoka, Naoto; Nakajima, Kazunori; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Fukuda, Keiichi

    2015-09-04

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.

  1. Klotho inhibits angiotensin II-induced cardiomyocyte hypertrophy through suppression of the AT1R/beta catenin pathway.

    PubMed

    Yu, Liangzhu; Meng, Wei; Ding, Jieqiong; Cheng, Menglin

    2016-04-29

    Myocardial hypertrophy is an independent risk factor for cardiac morbidity and mortality. The antiaging protein klotho reportedly possesses a protective role in cardiac diseases. However, the precise mechanisms underlying the cardioprotective effects of klotho remain unknown. This study was aimed to determine the effects of klotho on angiotensin II (Ang II)-induced hypertrophy in neonatal rat cardiomyocytes and the possible mechanism of actions. We found that klotho significantly inhibited Ang II-induced hypertrophic growth of neonatal cardiomyocytes, as evidenced by decreased [(3)H]-Leucine incorporation, cardiomyocyte surface area and β-myosin heavy chain (β-MHC) mRNA expression. Meanwhile, klotho inhibited Ang II-stimulated activation of the Wnt/β-catenin pathway in cardiomyocytes, as evidenced by decreased protein expression of active β-catenin, downregulated protein and mRNA expression of the β-catenin target genes c-myc and cyclin D1, and increased β-catenin phosphorylation. Inhibition of the Wnt/β-catenin pathway by the specific inhibitor XAV939 markedly attenuated Ang II-induced cardiomyocyte hypertrophy. The further study revealed that klotho treatment significantly downregulated protein expression of Ang II receptor type I (AT1R) but not type II (AT2R). The AT1R antagonist losartan inhibited Ang II-stimulated activation of the Wnt/β-catenin pathway and cardiomyocyte hypertrophy. Our findings suggest that klotho inhibits Ang II-induced cardiomyocyte hypertrophy through suppression of the AT1R/β-catenin signaling pathway, which may provide new insights into the mechanism underlying the protective effects of klotho in heart diseases, and raise the possibility that klotho may act as an endogenous antihypertrophic factor by inhibiting the Ang II signaling pathway. PMID:26970306

  2. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy

    PubMed Central

    Zhang, Ji; Qiao, Congzhen; Chang, Lin; Guo, Yanhong; Fan, Yanbo; Villacorta, Luis; Chen, Y. Eugene; Zhang, Jifeng

    2016-01-01

    Fatty acid binding protein 4 (FABP4) is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG) mice using α myosin-heavy chain (α-MHC) promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC) procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway. PMID:27294862

  3. Protein kinase Cα inhibits myocardin-induced cardiomyocyte hypertrophy through the promotion of myocardin phosphorylation.

    PubMed

    Li, Weizong; Wang, Nan; Li, Man; Gong, Huiqin; Liao, Xinghua; Yang, Xiaolong; Zhang, Tongcun

    2015-09-01

    Myocardin plays a key role in the development of cardiac hypertrophy. However, the upstream signals that control the stability and transactivity of myocardin remain to be fully understood. The expression of protein kinase Cα (PKCα) also induces cardiac hypertrophy. An essential downstream molecule of PKCα, extracellular signal-regulated kinase 1/2, was reported to negatively regulate the activities of myocardin. But, the effect of cooperation between PKCα and myocardin and the potential molecular mechanism by which PKCα regulates myocardin-mediated cardiac hypertrophy are unclear. In this study, a luciferase assay was performed using H9C2 cells transfected with expression plasmids for PKCα and myocardin. Surprisingly, the results showed that PKCα inhibited the transcriptional activity of myocardin. PKCα inhibited myocardin-induced cardiomyocyte hypertrophy, demonstrated by the decrease in cell surface area and fetal gene expression, in cardiomyocyte cells overexpressing PKCα and myocardin. The potential mechanism underlying the inhibition effect of PKCα on the function of myocardin is further explored. PKCα directly promoted the basal phosphorylation of endogenous myocardin at serine and threonine residues. In myocardin-overexpressing cardiomyocyte cells, PKCα induced the excessive phosphorylation of myocardin, resulting in the degradation of myocardin and a transcriptional suppression of hypertrophic genes. These results demonstrated that PKCα inhibits myocardin-induced cardiomyocyte hypertrophy through the promotion of myocardin phosphorylation. PMID:26206583

  4. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    PubMed

    Zhang, Ji; Qiao, Congzhen; Chang, Lin; Guo, Yanhong; Fan, Yanbo; Villacorta, Luis; Chen, Y Eugene; Zhang, Jifeng

    2016-01-01

    Fatty acid binding protein 4 (FABP4) is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG) mice using α myosin-heavy chain (α-MHC) promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC) procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway. PMID:27294862

  5. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy

    PubMed Central

    Greco, Carolina M.; Kunderfranco, Paolo; Rubino, Marcello; Larcher, Veronica; Carullo, Pierluigi; Anselmo, Achille; Kurz, Kerstin; Carell, Thomas; Angius, Andrea; Latronico, Michael V. G.; Papait, Roberto; Condorelli, Gianluigi

    2016-01-01

    Methylation at 5-cytosine (5-mC) is a fundamental epigenetic DNA modification associated recently with cardiac disease. In contrast, the role of 5-hydroxymethylcytosine (5-hmC)—5-mC's oxidation product—in cardiac biology and disease is unknown. Here we assess the hydroxymethylome in embryonic, neonatal, adult and hypertrophic mouse cardiomyocytes, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks during heart development and failure. DNA hydroxymethylation marks the body of highly expressed genes as well as distal regulatory regions with enhanced activity. Moreover, pathological hypertrophy is characterized by a shift towards a neonatal 5-hmC distribution pattern. We also show that the ten-eleven translocation 2 (TET2) enzyme regulates the expression of key cardiac genes, such as Myh7, through 5-hmC deposition on the gene body and at enhancers. Thus, we provide a genome-wide analysis of 5-hmC in the cardiomyocyte and suggest a role for this epigenetic modification in heart development and disease. PMID:27489048

  6. Negative elongation factor controls energy homeostasis in cardiomyocytes.

    PubMed

    Pan, Haihui; Qin, Kunhua; Guo, Zhanyong; Ma, Yonggang; April, Craig; Gao, Xiaoli; Andrews, Thomas G; Bokov, Alex; Zhang, Jianhua; Chen, Yidong; Weintraub, Susan T; Fan, Jian-Bing; Wang, Degeng; Hu, Yanfen; Aune, Gregory J; Lindsey, Merry L; Li, Rong

    2014-04-10

    Negative elongation factor (NELF) is known to enforce promoter-proximal pausing of RNA polymerase II (Pol II), a pervasive phenomenon observed across multicellular genomes. However, the physiological impact of NELF on tissue homeostasis remains unclear. Here, we show that whole-body conditional deletion of the B subunit of NELF (NELF-B) in adult mice results in cardiomyopathy and impaired response to cardiac stress. Tissue-specific knockout of NELF-B confirms its cell-autonomous function in cardiomyocytes. NELF directly supports transcription of those genes encoding rate-limiting enzymes in fatty acid oxidation (FAO) and the tricarboxylic acid (TCA) cycle. NELF also shares extensively transcriptional target genes with peroxisome proliferator-activated receptor α (PPARα), a master regulator of energy metabolism in the myocardium. Mechanistically, NELF helps stabilize the transcription initiation complex at the metabolism-related genes. Our findings strongly indicate that NELF is part of the PPARα-mediated transcription regulatory network that maintains metabolic homeostasis in cardiomyocytes. PMID:24656816

  7. Mechanism of cardiomyocyte PGC-1α gene regulation by ERRα.

    PubMed

    Ramjiawan, Angela; Bagchi, Rushita A; Albak, Laura; Czubryt, Michael P

    2013-06-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) regulates critical genes involved in cardiac mitochondrial biogenesis and fatty acid oxidation, and its loss is associated with impaired metabolism and various cardiac pathologies. Estrogen-related receptor α (ERRα) targets many of the same genes as PGC-1α, and extensive cross talk exists between these 2 regulators. Here we report the identification of an evolutionarily conserved ERRα binding site within the PGC-1α promoter. Using luciferase reporter assays and overexpression, inhibition, or knockdown of ERRα, we show that PGC-1α expression is critically dependent upon ERRα in primary cardiomyocytes. We demonstrate that short-term hypoxia results in reduced ERRα mRNA expression, which precedes a similar loss of PGC-1α mRNA. However, chromatin immunoprecipitation reveals that despite a key role for ERRα in regulating PGC-1α in normoxic cardiomyocytes, ERRα loss is not responsible for PGC-1α loss in hypoxia. Histone deacetylase 5 (HDAC5) has previously been demonstrated to strongly inhibit expression of PGC-1α, and we show that overexpression of ERRα is sufficient to overcome this repressive effect. Our data elucidates the mechanism by which ERRα regulates cardiac PGC-1α gene expression, and suggests that ERRα may provide a means to normalize PGC-1α expression that could be useful in the development of strategies aimed at improving cardiac metabolism in disease. PMID:23668787

  8. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy.

    PubMed

    Greco, Carolina M; Kunderfranco, Paolo; Rubino, Marcello; Larcher, Veronica; Carullo, Pierluigi; Anselmo, Achille; Kurz, Kerstin; Carell, Thomas; Angius, Andrea; Latronico, Michael V G; Papait, Roberto; Condorelli, Gianluigi

    2016-01-01

    Methylation at 5-cytosine (5-mC) is a fundamental epigenetic DNA modification associated recently with cardiac disease. In contrast, the role of 5-hydroxymethylcytosine (5-hmC)-5-mC's oxidation product-in cardiac biology and disease is unknown. Here we assess the hydroxymethylome in embryonic, neonatal, adult and hypertrophic mouse cardiomyocytes, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks during heart development and failure. DNA hydroxymethylation marks the body of highly expressed genes as well as distal regulatory regions with enhanced activity. Moreover, pathological hypertrophy is characterized by a shift towards a neonatal 5-hmC distribution pattern. We also show that the ten-eleven translocation 2 (TET2) enzyme regulates the expression of key cardiac genes, such as Myh7, through 5-hmC deposition on the gene body and at enhancers. Thus, we provide a genome-wide analysis of 5-hmC in the cardiomyocyte and suggest a role for this epigenetic modification in heart development and disease. PMID:27489048

  9. Increased efflux of glutathione conjugate in acutely diabetic cardiomyocytes.

    PubMed

    Ghosh, Sanjoy; Ting, Simon; Lau, Howard; Pulinilkunnil, Thomas; An, Ding; Qi, Dake; Abrahani, Mohammed A; Rodrigues, Brian

    2004-10-01

    In diabetes, cell death and resultant cardiomyopathy have been linked to oxidative stress and depletion of antioxidants like glutathione (GSH). Although the de novo synthesis and recycling of GSH have been extensively studied in the chronically diabetic heart, their contribution in modulating cardiac oxidative stress in acute diabetes has been largely ignored. Additionally, the possible contribution of cellular efflux in regulating GSH levels during diabetes is unknown. We used streptozotocin to make Wistar rats acutely diabetic and after 4 days examined the different processes that regulate cardiac GSH. Reduction in myocyte GSH in diabetic rats was accompanied by increased oxidative stress, excessive reactive oxygen species, and an elevated apoptotic cell death. The effect on GSH was not associated with any change in either synthesis or recycling, as both gamma-glutamylcysteine synthetase gene expression (responsible for bio syn thesis) and glutathione reductase activity (involved with GSH recycling) remained unchanged. However, gene expression of multidrug resistance protein 1, a transporter implicated in effluxing GSH during oxidative stress, was elevated. GSH conjugate efflux mediated by multidrug resistance protein 1 also increased in diabetic cardiomyocytes, an effect that was blocked using MK-571, a specific inhibitor of this transporter. As MK-571 also decreased oxidative stress in diabetic cardiomyocytes, an important role can be proposed for this transporter in GSH and reactive oxygen species homeostasis in the acutely diabetic heart. PMID:15573148

  10. Tyrosine phosphorylation of RACK1 triggers cardiomyocyte hypertrophy by regulating the interaction between p300 and GATA4.

    PubMed

    Suzuki, Hidetoshi; Katanasaka, Yasufumi; Sunagawa, Yoichi; Miyazaki, Yusuke; Funamoto, Masafumi; Wada, Hiromichi; Hasegawa, Koji; Morimoto, Tatsuya

    2016-09-01

    The zinc finger protein GATA4 is a transcription factor involved in cardiomyocyte hypertrophy. It forms a functional complex with the intrinsic histone acetyltransferase (HAT) p300. The HAT activity of p300 is required for the acetylation and transcriptional activity of GATA4, as well as for cardiomyocyte hypertrophy and the development of heart failure. In the present study, we have identified Receptor for Activated Protein Kinase C1 (RACK1) as a novel GATA4-binding protein using tandem affinity purification and mass spectrometry analyses. We found that exogenous RACK1 repressed phenylephrine (PE)-induced hypertrophic responses, such as myofibrillar organization, increased cell size, and hypertrophy-associated gene transcription, in cultured cardiomyocytes. RACK1 physically interacted with GATA4 and the overexpression of RACK1 reduced PE-induced formation of the p300/GATA4 complex and the acetylation and DNA binding activity of GATA4. In response to hypertrophic stimulation in cultured cardiomyocytes and in the hearts of hypertensive heart disease model rats, the tyrosine phosphorylation of RACK1 was increased, and the binding between GATA4 and RACK1 was reduced. In addition, the tyrosine phosphorylation of RACK1 was required for the disruption of the RACK1/GATA4 complex and for the formation of the p300/GATA4 complex. These findings demonstrate that RACK1 is involved in p300/GATA4-dependent hypertrophic responses in cardiomyocytes and is a promising therapeutic target for heart failure. PMID:27208796

  11. Elastic interactions synchronize beating in cardiomyocytes.

    PubMed

    Cohen, Ohad; Safran, Samuel A

    2016-07-13

    Motivated by recent experimental results, we study theoretically the synchronization of the beating phase and frequency of two nearby cardiomyocyte cells. Each cell is represented as an oscillating force dipole in an infinite, viscoelastic medium and the propagation of the elastic signal within the medium is predicted. We examine the steady-state beating of two nearby cells, and show that elastic interactions result in forces that synchronize the phase and frequency of beating in a manner that depends on their mutual orientation. The theory predicts both in-phase and anti-phase steady-state beating depending on the relative cell orientations, as well as how synchronized beating varies with substrate elasticity and the inter-cell distance. These results suggest how mechanics plays a role in cardiac efficiency, and may be relevant for the design of cardiomyocyte based micro devices and other biomedical applications. PMID:27352146

  12. Characterizing functional stem cell–cardiomyocyte interactions

    PubMed Central

    Bursac, Nenad; Kirkton, Robert D; McSpadden, Luke C; Liau, Brian

    2010-01-01

    Despite the progress in traditional pharmacological and organ transplantation therapies, heart failure still afflicts 5.3 million Americans. Since June 2000, stem cell-based approaches for the prevention and treatment of heart failure have been pursued in clinics with great excitement; however, the exact mechanisms of how transplanted cells improve heart function remain elusive. One of the main difficulties in answering these questions is the limited ability to directly access and study interactions between implanted cells and host cardiomyocytes in situ. With the growing number of candidate cell types for potential clinical use, it is becoming increasingly more important to establish standardized, well-controlled in vitro and in situ assays to compare the efficacy and safety of different stem cells in cardiac repair. This article describes recent innovative methodologies to characterize direct functional interactions between stem cells and cardiomyocytes, aimed to facilitate the rational design of future cell-based therapies for heart disease. PMID:20017697

  13. Data on the gene expression of cardiomyocyte exposed to hypothermia.

    PubMed

    Zhang, Jian; Xue, Xiaodong; Xu, Yinli; Zhang, Yuji; Li, Zhi; Wang, Huishan

    2016-09-01

    Hypothermia is widely used in neurosurgery and cardiac surgeries. However, little is known about the underlying molecular mechanisms. We previously reported that the transcriptome responses of cardiomyocyte exposed to hypothermia, "The transcriptome responses of cardiomyocyte exposed to hypothermia" [4]. Herein, we provide the hypothermia inhibited proliferation of cardiomyocyte cells in vitro and the details of transcription factors in regulation of differentially expressed genes. PMID:27274530

  14. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis.

    PubMed

    Galvez, Anita S; Diwan, Abhinav; Odley, Amy M; Hahn, Harvey S; Osinska, Hanna; Melendez, Jaime G; Robbins, Jeffrey; Lynch, Roy A; Marreez, Yehia; Dorn, Gerald W

    2007-04-13

    Regulating the balance between synthesis and proteasomal degradation of cellular proteins is essential for tissue growth and maintenance, but the critical pathways regulating protein ubiquitination and degradation are incompletely defined. Although participation of calpain calcium-activated proteases in post-necrotic myocardial autolysis is well characterized, their importance in homeostatic turnover of normal cardiac tissue is controversial. Hence, we evaluated the consequences of physiologic calpain (calcium-activated protease) activity in cultured cardiomyocytes and unstressed mouse hearts. Comparison of in vitro proteolytic activities of cardiac-expressed calpains 1 and 2 revealed calpain 1, but not calpain 2, activity at physiological calcium concentrations. Physiological calpain 1 activation was evident in adenoviral transfected cultured cardiomyocytes as proteolysis of specific substrates, generally increased protein ubiquitination, and accelerated protein turnover, that were each inhibited by coexpression of the inhibitor protein calpastatin. Conditional forced expression of calpain 1, but not calpain 2, in mouse hearts demonstrated substrate-specific proteolytic activity under basal conditions, with hyperubiquitination of cardiac proteins and increased 26S proteasome activity. Loss of myocardial calpain activity by forced expression of calpastatin diminished ubiquitination of 1 or more specific myocardial proteins, without affecting overall ubiquitination or proteasome activity, and resulted in a progressive dilated cardiomyopathy characterized by accumulation of intracellular protein aggregates, formation of autophagosomes, and degeneration of sarcomeres. Thus, calpain 1 is upstream of, and necessary for, ubiquitination and proteasomal degradation of a subset of myocardial proteins whose abnormal accumulation produces autophagosomes and degeneration of cardiomyocytes with functional decompensation. PMID:17332428

  15. Cardiomyocyte death in doxorubicin-induced cardiotoxicity

    PubMed Central

    Zhang, Yi-Wei; Shi, Jianjian; Li, Yuan-Jian; Wei, Lei

    2009-01-01

    SUMMARY Doxorubicin (DOX) is one of the most widely used and successful antitumor drugs, but its cumulative and dose-dependent cardiac toxicity has been the major concern of oncologists in cancer therapeutic practice for decades. With the increasing population of cancer survivals, there is a growing need to develop preventive strategies and effective therapies against DOX-induced cardiotoxicity, in particular, the late onset cardiomyopathy. Although intensive investigations on the DOX-induced cardiotoxicity have been continued for decades, the underlying mechanisms responsible for DOX-induced cardiotoxicity have not been completely elucidated. A rapidly expanding body of evidence supports that cardiomyocyte death by apoptosis and necrosis is a primary mechanism of DOX-induced cardiomyopathy and other types of cell death, such as autophagy and senescence/aging, may participate in this process. In this review, we will focus on the current understanding of molecular mechanisms underlying DOX-induced cardiomyocyte death, including the major primary mechanism of excess production of reactive oxygen species (ROS) and other recently discovered ROS-independent mechanisms. Different sensitivity to DOX-induced cell death signals between adult and young cardiomyocytes will also be discussed. PMID:19866340

  16. Direct Cardiomyocyte Reprogramming: A New Direction for Cardiovascular Regenerative Medicine

    PubMed Central

    Yi, B. Alexander; Mummery, Christine L.; Chien, Kenneth R.

    2013-01-01

    The past few years have seen unexpected new developments in direct cardiomyocyte reprogramming. Direct cardiomyocyte reprogramming potentially offers an entirely novel approach to cardiovascular regenerative medicine by converting cardiac fibroblasts into functional cardiomyocytes in situ. There is much to be learned, however, about the mechanisms of direct reprogramming in order that the process can be made more efficient. Early efforts have suggested that this new technology can be technically challenging. Moreover, new methods of inducing heart reprogramming will need to be developed before this approach can be translated to the bedside. Despite this, direct cardiomyocyte reprogramming may lead to new therapeutic options for sufferers of heart disease. PMID:24003244

  17. Hydrogen sulfide improves cardiomyocytes electrical remodeling post ischemia/reperfusion injury in rats.

    PubMed

    Sun, Ying-Gang; Wang, Xin-Yan; Chen, Xiu; Shen, Cheng-Xing; Li, Yi-Gang

    2015-01-01

    Hydrogen sulfide (H2S), produced by cystanthionine-γ-lysase (CSE) in the cardiovascular system, is an endogenous gaseous mediator exerting pronounced physiological effects as the third gasotransmitter in addition to nitric oxide (NO) and carbon monoxide (CO). Accumulating evidence indicated that H2S could mediate the cardioprotective effects in myocardial ischemia model. Ventricular arrhythmia is the most important risk factor for cardiac mortality and sudden death after acute myocardial infarction (AMI). The potential impact of H2S on cardiomyocytes electrical remodeling post ischemic insult is not fully explored now. Present study investigated the role of H2S on cardiomyocytes electrical remodeling in rats with ischemia/reperfusion injury. H2S concentration was reduced and arrhythmia score was increased in this model. CSE mRNA level was also upregulated in the ischemic myocardium. Exposure to exogenous NaHS reduced the action potential duration (APD), inhibited L-type Ca(2+) channels and activated K(ATP) channels in cardiomyocytes isolated from ischemic myocardium Exogenous H2S application improves electrical remodeling in cardiomyocytes isolated from ischemic myocardium. These results indicated that reduced H2S level might be linked to ischemia/reperfusion induced arrhythmias. PMID:25755736

  18. Paeoniflorin inhibits doxorubicin-induced cardiomyocyte apoptosis by downregulating microRNA-1 expression

    PubMed Central

    LI, JIAN-ZHE; TANG, XIU-NENG; LI, TING-TING; LIU, LI-JUAN; YU, SHU-YI; ZHOU, GUANG-YU; SHAO, QING-RUI; SUN, HUI-PING; WU, CHENG; YANG, YANG

    2016-01-01

    Doxorubicin (DOX) is an effective anthracycline anti-tumor antibiotic. Because of its cardiotoxicity, the clinical application of DOX is limited. Paeoniflorin (PEF), a monoterpene glucoside extracted from the dry root of Paeonia, is reported to exert multiple beneficial effects on the cardiovascular system. The present study was designed to explore the protective effect of PEF against DOX-induced cardiomyocyte apoptosis and the underlying mechanism. In cultured H9c2 cells, PEF (100 µmol/l) was added for 2 h prior to exposure to DOX (5 µmol/l) for 24 h. Cell viability, creatine kinase activity, cardiomyocyte apoptosis, intracellular reactive oxygen species (ROS) levels, and the expression of microRNA-1 (miR-1) and B-cell lymphoma 2 (Bcl-2) were measured following treatment with PEF and/or DOX. The results showed that treatment with DOX notably induced cardiomyocyte apoptosis, concomitantly with enhanced ROS generation, upregulated miR-1 expression and downregulated Bcl-2 expression. These effects of DOX were significantly inhibited by pretreatment of the cells with PEF. These results suggest that the inhibitory effect of PEF on DOX-induced cardiomyocyte apoptosis may be associated with downregulation of miR-1 expression via a reduction in ROS generation. PMID:27284328

  19. Mitochondria Play a Central Role in Nonischemic Cardiomyocyte Necrosis: Common to Acute and Chronic Stressor States

    PubMed Central

    Khan, M. Usman; Cheema, Yaser; Shahbaz, Atta U.; Ahokas, Robert A.; Sun, Yao; Gerling, Ivan C.; Bhattacharya, Syamal K.; Weber, Karl T.

    2012-01-01

    The survival of cardiomyocytes must be ensured as the myocardium adjusts to a myriad of competing physiologic and pathophysiologic demands. A significant loss of these contractile cells, together with their replacement by stiff fibrillar collagen in the form of fibrous tissue accounts for a transition from a usually efficient muscular pump into one that is failing. Cellular and subcellular mechanisms involved in the pathogenic origins of cardiomyocyte cell death have long been of interest. This includes programmed molecular pathways to either necrosis or apoptosis which are initiated from ischemic or nonischemic origins. Herein we focus on the central role played by a mitochondriocentric signal-transducer-effector pathway to nonischemic cardiomyocyte necrosis which is common to acute and chronic stressor states. We begin by building upon the hypothesis advanced by Albrecht Fleckenstein and coworkers some 40 years ago based on the importance of calcitropic hormone- mediated intracellular Ca2+ overloading which predominantly involves subsarcolemmal mitochondria and is the signal to pathway activation. Other pathway components, which came to be recognized in subsequent years, include the induction of oxidative stress and opening of the mitochondrial inner membrane permeability transition pore. The ensuing loss of cardiomyocytes and consequent replacement fibrosis, or scarring, represents a disease of adaptation and a classic example of when homeostasis begets dyshomeostasis. PMID:22328074

  20. Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states.

    PubMed

    Khan, M Usman; Cheema, Yaser; Shahbaz, Atta U; Ahokas, Robert A; Sun, Yao; Gerling, Ivan C; Bhattacharya, Syamal K; Weber, Karl T

    2012-07-01

    The survival of cardiomyocytes must be ensured as the myocardium adjusts to a myriad of competing physiological and pathophysiological demands. A significant loss of these contractile cells, together with their replacement by stiff fibrillar collagen in the form of fibrous tissue accounts for a transition from a usually efficient muscular pump into one that is failing. Cellular and subcellular mechanisms involved in the pathogenic origins of cardiomyocyte cell death have long been of interest. This includes programmed molecular pathways to either necrosis or apoptosis, which are initiated from ischemic or nonischemic origins. Herein, we focus on the central role played by a mitochondriocentric signal-transducer-effector pathway to nonischemic cardiomyocyte necrosis, which is common to acute and chronic stressor states. We begin by building upon the hypothesis advanced by Albrecht Fleckenstein and coworkers some 40 years ago based on the importance of calcitropic hormone-mediated intracellular Ca(2+) overloading, which predominantly involves subsarcolemmal mitochondria and is the signal to pathway activation. Other pathway components, which came to be recognized in subsequent years, include the induction of oxidative stress and opening of the mitochondrial inner membrane permeability transition pore. The ensuing loss of cardiomyocytes and consequent replacement fibrosis, or scarring, represents a disease of adaptation and a classic example of when homeostasis begets dyshomeostasis. PMID:22328074

  1. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating.

    PubMed

    Hsiao, Chun-Wen; Bai, Meng-Yi; Chang, Yen; Chung, Min-Fan; Lee, Ting-Yin; Wu, Cheng-Tse; Maiti, Barnali; Liao, Zi-Xian; Li, Ren-Ke; Sung, Hsing-Wen

    2013-01-01

    Myocardial infarction is often associated with abnormalities in electrical function due to a massive loss of functioning cardiomyocytes. This work develops a mesh, consisting of aligned composite nanofibers of polyaniline (PANI) and poly(lactic-co-glycolic acid) (PLGA), as an electrically active scaffold for coordinating the beatings of the cultured cardiomyocytes synchronously. Following doping by HCl, the electrospun fibers could be transformed into a conductive form carrying positive charges, which could then attract negatively charged adhesive proteins (i.e. fibronectin and laminin) and enhance cell adhesion. During incubation, the adhered cardiomyocytes became associated with each other and formed isolated cell clusters; the cells within each cluster elongated and aligned their morphology along the major axis of the fibrous mesh. After culture, expression of the gap-junction protein connexin 43 was clearly observed intercellularly in isolated clusters. All of the cardiomyocytes within each cluster beat synchronously, implying that the coupling between the cells was fully developed. Additionally, the beating rates among these isolated cell clusters could be synchronized via an electrical stimulation designed to imitate that generated in a native heart. Importantly, improving the impaired heart function depends on electrical coupling between the engrafted cells and the host myocardium to ensure their synchronized beating. PMID:23164424

  2. Unexpected maturation of PI3K and MAPK-ERK signaling in fetal ovine cardiomyocytes

    PubMed Central

    Louey, S.; Stork, P. J.; Giraud, G. D.; Thornburg, K. L.

    2014-01-01

    In the first two-thirds of gestation, ovine fetal cardiomyocytes undergo mitosis to increase cardiac mass and accommodate fetal growth. Thereafter, some myocytes continue to proliferate while others mature and terminally differentiate into binucleated cells. At term (145 days gestational age; dGA) about 60% of cardiomyocytes become binucleated and exit the cell cycle under hormonal control. Rising thyroid hormone (T3) levels near term (135 dGA) inhibit proliferation and stimulate maturation. However, the degree to which intracellular signaling patterns change with age in response to T3 is unknown. We hypothesized that in vitro activation of ERK, Akt, and p70S6K by two regulators of cardiomyocyte cell cycle activity, T3 and insulin like growth factor-1 (IGF-1), would be similar in cardiomyocytes at gestational ages 100 and 135 dGA. IGF-1 and T3 each independently stimulated phosphorylation of ERK, Akt, and p70S6K in cells at both ages. In the younger mononucleated myocytes, the phosphorylation of ERK and Akt was reduced in the presence of IGF-1 and T3. However, the same hormone combination led to a dramatic twofold increase in the phosphorylation of these signaling proteins in the 135 dGA cardiomyocytes—even in cells that were not proliferating. In the older cells, both mono- and binucleated cells were affected. In conclusion, fetal ovine cardiomyocytes undergo profound maturation-related changes in signaling in response to T3 and IGF-1, but not to either factor alone. Differences in age-related response are likely to be related to milestones in fetal cardiac development as the myocardium prepares for ex utero life. PMID:25128174

  3. Met signaling in cardiomyocytes is required for normal cardiac function in adult mice.

    PubMed

    Arechederra, María; Carmona, Rita; González-Nuñez, María; Gutiérrez-Uzquiza, Alvaro; Bragado, Paloma; Cruz-González, Ignacio; Cano, Elena; Guerrero, Carmen; Sánchez, Aránzazu; López-Novoa, José Miguel; Schneider, Michael D; Maina, Flavio; Muñoz-Chápuli, Ramón; Porras, Almudena

    2013-12-01

    Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control. PMID:23994610

  4. Atrial Natriuretic Peptide Regulates Ca2+ Channel in Early Developmental Cardiomyocytes

    PubMed Central

    Miao, Lin; Wang, Min; Yin, Wen-Xuan; Yuan, Qi; Chen, Ying-Xiao; Fleischmann, Bernd; Hescheler, Jürgen; Ji, Guangju

    2010-01-01

    Background Cardiomyocytes derived from murine embryonic stem (ES) cells possess various membrane currents and signaling cascades link to that of embryonic hearts. The role of atrial natriuretic peptide (ANP) in regulation of membrane potentials and Ca2+ currents has not been investigated in developmental cardiomyocytes. Methodology/Principal Findings We investigated the role of ANP in regulating L-type Ca2+ channel current (ICaL) in different developmental stages of cardiomyocytes derived from ES cells. ANP decreased the frequency of action potentials (APs) in early developmental stage (EDS) cardiomyocytes, embryonic bodies (EB) as well as whole embryo hearts. ANP exerted an inhibitory effect on basal ICaL in about 70% EDS cardiomyocytes tested but only in about 30% late developmental stage (LDS) cells. However, after stimulation of ICaL by isoproterenol (ISO) in LDS cells, ANP inhibited the response in about 70% cells. The depression of ICaL induced by ANP was not affected by either Nω, Nitro-L-Arginine methyl ester (L-NAME), a nitric oxide synthetase (NOS) inhibitor, or KT5823, a cGMP-dependent protein kinase (PKG) selective inhibitor, in either EDS and LDS cells; whereas depression of ICaL by ANP was entirely abolished by erythro-9-(2-Hydroxy-3-nonyl) adenine (EHNA), a selective inhibitor of type 2 phosphodiesterase(PDE2) in most cells tested. Conclusion/Significances Taken together, these results indicate that ANP induced depression of action potentials and ICaL is due to activation of particulate guanylyl cyclase (GC), cGMP production and cGMP-activation of PDE2 mediated depression of adenosine 3′, 5′–cyclic monophophate (cAMP)–cAMP-dependent protein kinase (PKA) in early cardiomyogenesis. PMID:20107504

  5. Calnexin silencing in mouse neonatal cardiomyocytes induces Ca2+ cycling defects, ER stress, and apoptosis.

    PubMed

    Bousette, Nicolas; Abbasi, Cynthia; Chis, Roxana; Gramolini, Anthony O

    2014-03-01

    Calnexin (CNX) is an endoplasmic reticulum (ER) quality control chaperone that has been implicated in ER stress. ER stress is a prominent pathological feature of various pathologic conditions, including cardiovascular diseases. However, the role of CNX and ER stress has not been studied in the heart. In the present study, we aimed to characterize the role of CNX in cardiomyocyte physiology with respect to ER stress, apoptosis, and cardiomyocyte Ca(2+) cycling. We demonstrated significantly decreased CNX mRNA and protein levels by LentiVector mediated transduction of targeting shRNAs. CNX silenced cardiomyocytes exhibited ER stress as evidenced by increased GRP78 and ATF6 protein levels, increased levels of spliced XBP1 mRNA, ASK-1, ERO1a, and CHOP mRNA levels. CNX silencing also led to significant activation of caspases-3 and -9. This activation of caspases was associated with hallmark morphological features of apoptosis including loss of sarcomeric organization and nuclear integrity. Ca(2+) imaging in live cells showed that CNX silencing resulted in Ca(2+) transients with significantly larger amplitudes but decreased frequency and Ca(2+) uptake rates in the basal state. Interestingly, 5 mM caffeine stimulated Ca(2+) transients were similar between control and CNX silenced cardiomyocytes. Finally, we demonstrated that CNX silencing induced the expression of the L-type voltage dependent calcium channel (CAV1.2) but reduced the expression of the sarcoplasmic reticulum ATPase (SERCA2a). In conclusion, this is the first study to demonstrate CNX has a specific role in cardiomyocyte viability and Ca(2+) cycling through its effects on ER stress, apoptosis and Ca(2+) channel expression. PMID:24037923

  6. The impact of caffeine on connexin expression in the embryonic chick cardiomyocyte micromass culture system.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2016-07-01

    Cardiomyocytes are electrically coupled by gap junctions, defined as clusters of low-resistance multisubunit transmembrane channels composed of connexins (Cxs). The expression of Cx40, Cx43 and Cx45, which are present in cardiomyocytes, is known to be developmentally regulated. This study investigates the premise that alterations in gap junction proteins are one of the mechanisms by which teratogens may act. Specifically, those molecules known to be teratogenic in humans could cause their effects via disruption of cell-to-cell communication pathways, resulting in an inability to co-ordinate tissue development. Caffeine significantly inhibited contractile activity at concentrations above and including 1500 μm (P < 0.05), while not affecting cell viability and total protein, in the embryonic chick cardiomyocyte micromass culture system. The effects of caffeine on key cardiac gap junction protein (Cx40, Cx43 and Cx45) expression were analysed using immunocytochemistry and in-cell Western blotting. The results indicated that caffeine altered the expression pattern of Cx40, Cx43 and Cx45 at non-cytotoxic concentrations (≥2000 μm), i.e., at concentrations that did not affect total cell protein and cell viability. In addition the effects of caffeine on cardiomyocyte formation and function (contractile activity score) were correlated with modulation of Cxs (Cx40, Cx43 and Cx45) expression, at above and including 2000 μm caffeine concentrations (P < 0.05). These experiments provide evidence that embryonic chick cardiomyocyte micromass culture may be a useful in vitro method for mechanistic studies of perturbation of embryonic heart development. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26304238

  7. Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy.

    PubMed

    Yue, T L; Gu, J L; Wang, C; Reith, A D; Lee, J C; Mirabile, R C; Kreutz, R; Wang, Y; Maleeff, B; Parsons, A A; Ohlstein, E H

    2000-12-01

    The extracellular signal-regulated kinase (ERK) pathway is activated by hypertrophic stimuli in cardiomyocytes. However, whether ERK plays an essential role or is implicated in all major components of cardiac hypertrophy remains controversial. Using a selective MEK inhibitor, U0126, and a selective Raf inhibitor, SB-386023, to block the ERK signaling pathway at two different levels and adenovirus-mediated transfection of dominant-negative Raf, we studied the role of ERK signaling in response of cultured rat cardiomyocytes to hypertrophic agonists, endothelin-1 (ET-1), and phenylephrine (PE). U0126 and SB-386023 blocked ET-1 and PE-induced ERK but not p38 and JNK activation in cardiomyocytes. Both compounds inhibited ET-1 and PE-induced protein synthesis and increased cell size, sarcomeric reorganization, and expression of beta-myosin heavy chain in myocytes with IC(50) values of 1-2 microm. Furthermore, both inhibitors significantly reduced ET-1- and PE-induced expression of atrial natriuretic factor. In cardiomyocytes transfected with a dominant-negative Raf, ET-1- and PE-induced increase in cell size, sarcomeric reorganization, and atrial natriuretic factor production were remarkably attenuated compared with the cells infected with an adenovirus-expressing green fluorescence protein. Taken together, our data strongly support the notion that the ERK signal pathway plays an essential role in ET-1- and PE-induced cardiomyocyte hypertrophy. PMID:10984495

  8. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure.

    PubMed

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C; van Meer, Berend; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G J; Mummery, Christine L; Casini, Simona

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. PMID:26456652

  9. Mitochondrial Remodeling in Mice with Cardiomyocyte-Specific Lipid Overload

    PubMed Central

    Elezaby, Aly; Sverdlov, Aaron L.; Tu, Vivian H.; Soni, Kanupriya; Luptak, Ivan; Qin, Fuzhong; Liesa, Marc; Shirihai, Orian S.; Rimer, Jamie; Schaffer, Jean E.; Colucci, Wilson S.; Miller, Edward J.

    2014-01-01

    Background Obesity leads to metabolic heart disease (MHD) that is associated with a pathologic increase in myocardial fatty acid (FA) uptake and impairment of mitochondrial function. The mechanism of mitochondrial dysfunction in MHD, which results in oxidant production and decreased energetics, is poorly understood but may be related to excess FAs. Determining the effects of cardiac FA excess on mitochondria can be hindered by the systemic sequelae of obesity. Mice with cardiomyocyte-specific overexpression of the fatty acid transport protein FATP1 have increased cardiomyocyte FA uptake and develop MHD in the absence of systemic lipotoxicity, obesity or diabetes. We utilized this model to assess 1) the effect of cardiomyocyte lipid accumulation on mitochondrial structure and energetic function and 2) the role of lipid-driven transcriptional regulation, signaling, toxic metabolite accumulation, and mitochondrial oxidative stress in lipid-induced MHD. Methods Cardiac lipid species, lipid-dependent signaling, and mitochondrial structure / function were examined from FATP1 mice. Cardiac structure and function were assessed in mice overexpressing both FATP1 and mitochondrial-targeted catalase. Results FATP1 hearts exhibited a net increase (+12%) in diacylglycerol, with increases in several very long-chain diacylglycerol species (+160-212%, p<0.001) and no change in ceramide, sphingomyelin, or acylcarnitine content. This was associated with an increase in phosphorylation of PKCα and PKCδ, and a decrease in phosphorylation of AKT and expression of CREB, PGC1α, PPARα and the mitochondrial fusion genes MFN1, MFN2 and OPA1. FATP1 overexpression also led to marked decreases in mitochondrial size (-49%, p<0.01), complex II-driven respiration (-28.6%, p<0.05), activity of isolated complex II (-62%, p=0.05), and expression of complex II subunit B (SDHB) (-60% and -31%, p<0.01) in the absence of change in ATP synthesis. Hydrogen peroxide production was not increased in FATP1

  10. Pim-1 Kinase Protects Mitochondrial Integrity in Cardiomyocytes

    PubMed Central

    Borillo, Gwynngelle A.; Mason, Matt; Quijada, Pearl; Völkers, Mirko; Cottage, Christopher; McGregor, Michael; Din, Shabana; Fischer, Kimberlee; Gude, Natalie; Avitable, Daniele; Barlow, Steven; Gustafsson, Asa B.; Glembotski, Christopher; Gottlieb, Roberta A.; Brown, Joan Heller; Sussman, Mark A.

    2010-01-01

    Rationale Cardioprotective signaling mediates anti-apoptotic actions through multiple mechanisms including maintenance of mitochondrial integrity. Pim-1 kinase is an essential downstream effector of AKT-mediated cardioprotection but the mechanistic basis for maintenance of mitochondrial integrity by Pim-1 remains unexplored. This study details anti-apoptotic actions responsible for enhanced cell survival in cardiomyocytes with elevated Pim-1 activity. Objective The purpose of this study is to demonstrate that the cardioprotective kinase Pim-1 acts to inhibit cell death by preserving mitochondrial integrity in cardiomyocytes. Methods and Results A combination of biochemical, molecular, and microscopic analyses demonstrate beneficial effects of Pim-1 upon mitochondrial integrity. Pim-1 protein level increases in the mitochondrial fraction with a corresponding decrease in the cytosolic fraction of myocardial lysates from hearts subjected to 30 minutes of ischemia followed by 30 minutes of reperfusion. Cardiac-specific overexpression of Pim-1 results in higher levels of anti-apoptotic Bcl-XL and Bcl-2 compared to samples from normal hearts. In response to oxidative stress challenge Pim-1 preserves the inner mitochondrial membrane potential (ΔΨm). Ultrastructure of the mitochondria is maintained by Pim-1 activity, which prevents swelling induced by calcium overload. Finally, mitochondria isolated from hearts created with cardiac-specific overexpression of Pim-1 show inhibition of cytochrome c release triggered by a truncated form of pro-apoptotic Bid. Conclusion Cardioprotective action of Pim-1 kinase includes preservation of mitochondrial integrity during cardiomyopathic challenge conditions, thereby raising the potential for Pim-1 kinase activation as a therapeutic interventional approach to inhibit cell death by antagonizing pro-apoptotic Bcl-2 family members that regulate the intrinsic apoptotic pathway. PMID:20203306

  11. The Cardiomyocyte Molecular Clock Regulates the Circadian Expression of Kcnh2 and Contributes to Ventricular Repolarization

    PubMed Central

    Schroder, Elizabeth A.; Burgess, Don E.; Zhang, Xiping; Lefta, Mellani; Smith, Jennifer L.; Patwardhan, Abhijit; Bartos, Daniel C.; Elayi, Claude S.; Esser, Karyn A.; Delisle, Brian P.

    2015-01-01

    Background Sudden Cardiac Death (SCD) follows a diurnal variation. Data suggest the timing of SCD is influenced by circadian (~24 hour) changes in neurohumoral and cardiomyocyte-specific regulation of the heart’s electrical properties. Objective The basic helix-loop-helix transcription factors BMAL1 and CLOCK coordinate the circadian expression of select genes. We tested whether Bmal1 expression in cardiomyocytes contributes to K+ channel expression and diurnal changes in ventricular repolarization. Methods We utilized transgenic mice that allow for the inducible cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1−/−). We used quantitative PCR, voltage-clamping, promoter-reporter bioluminescence assays, and electrocardiographic (ECG) telemetry. Results Although several K+ channel gene transcripts were downregulated in iCSΔBmal1−/− mouse hearts, only Kcnh2 exhibited a robust circadian pattern of expression that was disrupted in iCSΔBmal1−/− hearts. Kcnh2 underlies the rapidly activating delayed-rectifier K+ current (IKr), and IKr recorded from iCSΔBmal1−/− ventricular cardiomyocytes was ~50% compared to control myocytes. Promoter-reporter assays demonstrated that the human Kcnh2 promoter is transactivated by the co-expression of BMAL1 and CLOCK. ECG analysis showed iCSΔBmal1−/− mice developed a prolongation in the heart rate corrected QT (QTc) interval during the light (resting)-phase. This was secondary to an augmented circadian rhythm in the uncorrected QT interval without a corresponding change in the RR interval. Conclusion The molecular clock in the heart regulates the circadian expression of Kcnh2, modifies K+ channel gene expression and is important for normal ventricular repolarization. Disruption of the cardiomyocyte circadian clock mechanism likely unmasks diurnal changes in ventricular repolarization that could contribute to an increased risk of cardiac arrhythmias/SCD. PMID:25701773

  12. Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium.

    PubMed

    Touchberry, Chad D; Elmore, Chris J; Nguyen, Tien M; Andresen, Jon J; Zhao, Xiaoli; Orange, Matthew; Weisleder, Noah; Brotto, Marco; Claycomb, William C; Wacker, Michael J

    2011-12-01

    Store-operated Ca(2+) entry (SOCE) has recently been shown to be of physiological and pathological importance in the heart, particularly during cardiac hypertrophy. However, measuring changes in intracellular Ca(2+) during SOCE is very difficult to study in adult primary cardiomyocytes. As a result there is a need for a stable and reliable in vitro model of SOCE which can be used to test cardiac drugs and investigate the role of SOCE in cardiac pathology. HL-1 cells are the only immortal cardiomyocyte cell line available that continuously divides and spontaneously contracts while maintaining phenotypic characteristics of the adult cardiomyocyte. To date the role of SOCE has not yet been investigated in the HL-1 cardiac cell line. We report for the first time that these cells expressed stromal interaction molecule 1 (STIM1) and the Ca(2+) release-activated Ca(2+) (CRAC) channel Orai1, which are essential components of the SOCE machinery. In addition, SOCE was tightly coupled to sarcoplasmic reticulum (SR)-Ca(2+) release in HL-1 cells, and such response was not impaired in the presence of voltage dependent Ca(2+) channels (L-type and T-type channels) or reverse mode Na(+)/Ca(2+) exchanger (NCX) inhibitors. We were able to abolish the SOCE response with known SOCE inhibitors (BTP-2 and SKF-96365) and by targeted knockdown of Orai1 with RNAi. In addition, knockdown of Orai1 resulted in lower baseline Ca(2+) and an attenuated response to thapsigargin (TG) and caffeine, indicating that SOCE may play a role in Ca(2+) homeostasis during unstressed conditions in cardiomyocytes. Currently, there is little knowledge about SOCE in cardiomyocytes, and the present results suggest that HL-1 cells will be of great utility in investigating the role of SOCE in the heart. PMID:22079292

  13. Exposure to Phthalates Affects Calcium Handling and Intercellular Connectivity of Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Posnack, Nikki Gillum; Idrees, Rabia; Ding, Hao; Jaimes III, Rafael; Stybayeva, Gulnaz; Karabekian, Zaruhi; Laflamme, Michael A.; Sarvazyan, Narine

    2015-01-01

    Background The pervasive nature of plastics has raised concerns about the impact of continuous exposure to plastic additives on human health. Of particular concern is the use of phthalates in the production of flexible polyvinyl chloride (PVC) products. Di-2-ethylhexyl-phthalate (DEHP) is a commonly used phthalate ester plasticizer that imparts flexibility and elasticity to PVC products. Recent epidemiological studies have reported correlations between urinary phthalate concentrations and cardiovascular disease, including an increased risk of high blood pressure and coronary risk. Yet, there is little direct evidence linking phthalate exposure to adverse effects in human cells, including cardiomyocytes. Methods and Results The effect of DEHP on calcium handling was examined using monolayers of gCAMP3 human embryonic stem cell-derived cardiomyocytes, which contain an endogenous calcium sensor. Cardiomyocytes were exposed to DEHP (5 – 50 μg/mL), and calcium transients were recorded using a Zeiss confocal imaging system. DEHP exposure (24 – 72 hr) had a negative chronotropic and inotropic effect on cardiomyocytes, increased the minimum threshold voltage required for external pacing, and modified connexin-43 expression. Application of Wy-14,643 (100 μM), an agonist for the peroxisome proliferator-activated receptor alpha, did not replicate DEHP’s effects on calcium transient morphology or spontaneous beating rate. Conclusions Phthalates can affect the normal physiology of human cardiomyocytes, including DEHP elicited perturbations in cardiac calcium handling and intercellular connectivity. Our findings call for additional studies to clarify the extent by which phthalate exposure can alter cardiac function, particularly in vulnerable patient populations who are at risk for high phthalate exposure. PMID:25799571

  14. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice.

    PubMed

    Alkass, Kanar; Panula, Joni; Westman, Mattias; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Bergmann, Olaf

    2015-11-01

    The magnitude of cardiomyocyte generation in the adult heart has been heavily debated. A recent report suggests that during mouse preadolescence, cardiomyocyte proliferation leads to a 40% increase in the number of cardiomyocytes. Such an expansion would change our understanding of heart growth and have far-reaching implications for cardiac regeneration. Here, using design-based stereology, we found that cardiomyocyte proliferation accounted for 30% of postnatal DNA synthesis; however, we were unable to detect any changes in cardiomyocyte number after postnatal day 11. (15)N-thymidine and BrdU analyses provided no evidence for a proliferative peak in preadolescent mice. By contrast, cardiomyocyte multinucleation comprises 57% of postnatal DNA synthesis, followed by cardiomyocyte nuclear polyploidisation, contributing with 13% to DNA synthesis within the second and third postnatal weeks. We conclude that the majority of cardiomyocytes is set within the first postnatal week and that this event is followed by two waves of non-replicative DNA synthesis. This Matters Arising paper is in response to Naqvi et al. (2014), published in Cell. See also the associated Correspondence by Soonpaa et al. (2015), and the response by Naqvi et al. (2015), published in this issue. PMID:26544945

  15. Micropost arrays for measuring stem cell-derived cardiomyocyte contractility.

    PubMed

    Beussman, Kevin M; Rodriguez, Marita L; Leonard, Andrea; Taparia, Nikita; Thompson, Curtis R; Sniadecki, Nathan J

    2016-02-01

    Stem cell-derived cardiomyocytes have the potential to be used to study heart disease and maturation, screen drug treatments, and restore heart function. Here, we discuss the procedures involved in using micropost arrays to measure the contractile forces generated by stem cell-derived cardiomyocytes. Cardiomyocyte contractility is needed for the heart to pump blood, so measuring the contractile forces of cardiomyocytes is a straightforward way to assess their function. Microfabrication and soft lithography techniques are utilized to create identical arrays of flexible, silicone microposts from a common master. Micropost arrays are functionalized with extracellular matrix protein to allow cardiomyocytes to adhere to the tips of the microposts. Live imaging is used to capture videos of the deflection of microposts caused by the contraction of the cardiomyocytes. Image analysis code provides an accurate means to quantify these deflections. The contractile forces produced by a beating cardiomyocyte are calculated by modeling the microposts as cantilever beams. We have used this assay to assess techniques for improving the maturation and contractile function of stem cell-derived cardiomyocytes. PMID:26344757

  16. Restoration of cardiomyocyte function in streptozotocin-induced diabetic rats after treatment with vanadate in a tea decoction.

    PubMed

    Clark, Tod A; Maddaford, Thane G; Tappia, Paramjit S; Heyliger, Clayton E; Ganguly, Pallab K; Pierce, Grant N

    2010-12-01

    Diabetes mellitus is associated with abnormal cardiomyocyte Ca(2+) transients and contractile performance. We investigated the possibility that an alteration in inositol trisphosphate/phospholipase C (IP₃/PLC) signalling may be involved in this dysfunction. Phosphatidic acid stimulates cardiomyocyte contraction through an IP₃/PLC signaling cascade. We also tested a novel therapeutic intervention to assess its efficacy in reversing any potential defects. Diabetes was induced in Sprague-Dawley rats by streptozotocin treatment and maintained for an 8 week experimental period. Active cell shortening was significantly depressed in cardiomyocytes obtained from diabetic and insulin-treated diabetic rats in comparison to normal control animals. Perfusion of the cells with phosphatidic acid induced an increase in contraction of control rat cardiomyocytes whereas its effect was inhibitory in cells from streptozotocin-induced diabetic rats. Diabetic rats were also treated orally with vanadate administered in a black tea extract (T/V) for the 8 week period. T/V treatment resulted in a contractile response that was not different from cells of control animals. Furthermore, cardiomyocytes from T/V-treated animals exhibited significantly improved Ca(2+) transients in comparison to diabetic animals and exhibited a normalized response to phosphatidic acid perfusion. It is concluded that a T/V glycemic therapy is capable of preventing the defect in IP₃/PLC signaling that occurs in diabetes and can restore normal cardiac contractile function. PMID:20874687

  17. GRP78 Interacting Partner Bag5 Responds to ER Stress and Protects Cardiomyocytes From ER Stress-Induced Apoptosis.

    PubMed

    Gupta, Manish K; Tahrir, Farzaneh G; Knezevic, Tijana; White, Martyn K; Gordon, Jennifer; Cheung, Joseph Y; Khalili, Kamel; Feldman, Arthur M

    2016-08-01

    Bag5 is a member of the BAG family of molecular chaperone regulators and is unusual in that it consists of five BAG domains, which function as modulators of chaperone activity. Bag family proteins play a key role in cellular as well as in cardiac function and their differential expression is reported in heart failure. In this study, we examined the importance of a Bag family member protein, Bag5, in cardiomyocytes during endoplasmic reticulum (ER) stress. We found that expression of Bag5 in cardiomyocytes is significantly increased with the induction of ER stress in a time dependent manner. We have taken gain-in and loss-of functional approaches to characterize Bag5 protein function in cardiomyocytes. Adenoviral mediated expression of Bag5 significantly decreased cell death as well as improved cellular viability in ER stress. Along with this, ER stress-induced CHOP protein expression is significantly decreased in cells that overexpress Bag5. Conversely, we found that siRNA-mediated knockdown of Bag5 caused cell death, increased cytotoxicity, and decreased cellular viability in cardiomyocytes. Mechanistically, we found that Bag5 protein expression is significantly increased in the ER during ER stress and that this in turn modulates GRP78 protein stability and reduces ER stress. This study suggests that Bag5 is an important regulator of ER function and so could be exploited as a tool to improve cardiomyocyte function under stress conditions. J. Cell. Biochem. 117: 1813-1821, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729625

  18. A novel endoplasmic reticulum stress‑induced apoptosis model using tunicamycin in primary cultured neonatal rat cardiomyocytes.

    PubMed

    Shen, Mingzhi; Wang, Lin; Guo, Xiaowang; Xue, Qiao; Huo, Cong; Li, Xing; Fan, Li; Wang, Xiaoming

    2015-10-01

    Endoplasmic reticulum (ER) stress is key in the development of cardiovascular diseases. However, there is a lack of a systemic ER stress‑induced cardiomyocyte apoptosis model. In the present study, primary cultured neonatal rat cardiomyocytes were exposed to tunicamycin. Cell viability was determined by an MTT assay, and cell damage was detected by a lactose dehydrogenase assay. Flow cytometry was used and the activity of caspase‑3 was analyzed in order to measure apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to examine the expression of glucose‑regulated protein 78‑kDa (GRP78) and C/EBP homologous protein (CHOP). As a result, tunicamycin significantly increased cardiomyocyte injury, which occurred in a time- and concentration‑dependent manner. In addition, tunicamycin treatment resulted in apoptosis of cardiomyocytes. Molecularly, tunicamycin (100 ng/ml) increased the levels of GRP78 and CHOP 6 h after administration. In addition, GRP78 and CHOP reached maximum mRNA and protein levels 24 h after administration. In conclusion, the results implicate that the tunicamycin‑induced ER stress‑induced apoptotic model was successfully constructed in cultured neonatal rat cardiomyocytes. A 100 ng/ml concentration of tunicamycin was selected, and MTT, LDH release and flow cytometry assay was at 72 h. In addition, GRP78 and GRP94 were detected 24 h following administration. The results of the present study indicate a novel experimental basis for the investigation of ERS-induced cardiac apoptosis. PMID:26151415

  19. Ca(2+) influx through L-type Ca(2+) channels and transient receptor potential channels activates pathological hypertrophy signaling.

    PubMed

    Gao, Hui; Wang, Fang; Wang, Wei; Makarewich, Catherine A; Zhang, Hongyu; Kubo, Hajime; Berretta, Remus M; Barr, Larry A; Molkentin, Jeffery D; Houser, Steven R

    2012-11-01

    Common cardiovascular diseases such as hypertension and myocardial infarction require that myocytes develop greater than normal force to maintain cardiac pump function. This requires increases in [Ca(2+)]. These diseases induce cardiac hypertrophy and increases in [Ca(2+)] are known to be an essential proximal signal for activation of hypertrophic genes. However, the source of "hypertrophic" [Ca(2+)] is not known and is the topic of this study. The role of Ca(2+) influx through L-type Ca(2+) channels (LTCC), T-type Ca(2+) channels (TTCC) and transient receptor potential (TRP) channels on the activation of calcineurin (Cn)-nuclear factor of activated T cells (NFAT) signaling and myocyte hypertrophy was studied. Neonatal rat ventricular myocytes (NRVMs) and adult feline ventricular myocytes (AFVMs) were infected with an adenovirus containing NFAT-GFP, to determine factors that could induce NFAT nuclear translocation. Four millimolar Ca(2+) or pacing induced NFAT nuclear translocation. This effect was blocked by Cn inhibitors. In NRVMs Nifedipine (Nif, LTCC antagonist) blocked high Ca(2+)-induced NFAT nuclear translocation while SKF-96365 (TRP channel antagonist) and Nickel (Ni, TTCC antagonist) were less effective. The relative potency of these antagonists against Ca(2+) induced NFAT nuclear translocation (Nif>SKF-96365>Ni) was similar to their effects on Ca(2+) transients and the LTCC current. Infection of NRVM with viruses containing TRP channels also activated NFAT-GFP nuclear translocation and caused myocyte hypertrophy. TRP effects were reduced by SKF-96365, but were more effectively antagonized by Nif. These experiments suggest that Ca(2+) influx through LTCCs is the primary source of Ca(2+) to activate Cn-NFAT signaling in NRVMs and AFVMs. While TRP channels cause hypertrophy, they appear to do so through a mechanism involving Ca(2+) entry via LTCCs. PMID:22921230

  20. Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights

    PubMed Central

    Williams, John C.; Entcheva, Emilia

    2015-01-01

    Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current—a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation

  1. Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights.

    PubMed

    Williams, John C; Entcheva, Emilia

    2015-04-21

    Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current-a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation is

  2. Hydrogen sulfide mitigates homocysteine mediated pathological remodeling by inducing miR-133a in cardiomyocytes

    PubMed Central

    Kesherwani, Varun; Nandi, Shyam S.; Sharawat, Surender K.; Shahshahan, Hamid R.; Mishra, Paras K.

    2015-01-01

    An elevated level of homocysteine called hyperhomocysteinemia (HHcy) is associated with pathological cardiac remodeling. Hydrogen sulfide (H2S) acts as a cardioprotective gas, however the mechanism by which H2S mitigates homocysteine mediated pathological remodeling in cardiomyocytes is unclear. We hypothesized that H2S ameliorates HHcy mediated hypertrophy by inducing cardioprotective miR-133a in cardiomyocytes. To test the hypothesis, HL1 cardiomyocytes were treated with: 1) plain medium (control, CT), 2) 100μM of homocysteine (Hcy), 3) Hcy with 30μM of H2S (Hcy+H2S), and 4) H2S for 24 hour. The levels of hypertrophy markers: c-fos, atrial natriuretic peptide (ANP), and beta-myosin heavy chain (β-MHC), miR-133a and its transcriptional inducer myosin enhancer factor- 2c (MEF2C) were determined by Western blotting, RT-qPCR, and immunofluorescence. The activity of MEF2C was assessed by co-immunoprecipitation of MEF2C with histone deacetylase -1(HDAC1). Our results show that H2S ameliorates homocysteine mediated up regulation of c-fos, ANP and β-MHC, and down regulation of MEF2C and miR-133a. HHcy induces the binding of MEF2C with HDAC1, whereas H2S releases MEF2C from MEF2C-HDAC1 complex causing activation of MEF2C. These findings elicit that HHcy induces cardiac hypertrophy by promoting MEF2C-HDAC1 complex formation that inactivates MEF2C causing suppression of anti-hypertrophy miR-133a in cardiomyocytes. H2S mitigates hypertrophy by inducing miR-133a through activation of MEF2C in HHcy cardiomyocytes. To our knowledge this is a novel mechanism of H2S mediated activation of MEF2C and induction of miR-133a and inhibition of hypertrophy in HHcy cardiomyocytes. PMID:25763715

  3. ATROPHIC CARDIOMYOCYTE SIGNALING IN HYPERTENSIVE HEART DISEASE

    PubMed Central

    Kamalov, German; Zhao, Wenyuan; Zhao, Tieqiang; Sun, Yao; Ahokas, Robert A.; Marion, Tony N.; Darazi, Fahed Al; Gerling, Ivan C.; Bhattacharya, Syamal K.; Weber, Karl T.

    2013-01-01

    Cardinal pathologic features of hypertensive heart disease (HHD) include not only hypertrophied cardiomyocytes and foci of scattered microscopic scarring, a footprint of prior necrosis, but also small myocytes ensnared by fibrillar collagen where disuse atrophy with protein degradation would be predicted. Whether atrophic signaling is concordant with the appearance of HHD and involves oxidative and endoplasmic reticulum (ER) stress remains unexplored. Herein, we examine these possibilities focusing on the left ventricle (LV) and cardiomyocytes harvested from hypertensive rats receiving 4 wks aldosterone/salt treatment (ALDOST) alone or together with ZnSO4, a nonvasoactive antioxidant, with the potential to attenuate atrophy and optimize hypertrophy. Compared to untreated age-/sex-/strain-matched controls, ALDOST was accompanied by: a) LV hypertrophy with preserved systolic function; b) concordant cardiomyocyte atrophy (<1000 μm2) found at sites bordering on fibrosis where they were re-expressing β-myosin heavy chain; and c) upregulation of ubiquitin ligases, MuRF1 and atrogin-1, and elevated 8-isoprostane and unfolded protein ER response with mRNA upregulation of stress markers. ZnSO4 cotreatment reduced lipid peroxidation, fibrosis and the number of atrophic myocytes, together with a further increase in cell area and width of atrophied and hypertrophied myocytes, and improved systolic function, but did not attenuate elevated blood pressure. We conclude that atrophic signaling, concordant with hypertrophy, occurs in the presence of a reparative fibrosis and induction of oxidative and ER stress at sites of scarring where myocytes are atrophied. ZnSO4 cotreatment in HHD with ALDOST attenuates the number of atrophic myocytes, optimizes size of atrophied and hypertrophied myocytes, and improves systolic function. PMID:24084216

  4. Atrophic cardiomyocyte signaling in hypertensive heart disease.

    PubMed

    Kamalov, German; Zhao, Wenyuan; Zhao, Tieqiang; Sun, Yao; Ahokas, Robert A; Marion, Tony N; Al Darazi, Fahed; Gerling, Ivan C; Bhattacharya, Syamal K; Weber, Karl T

    2013-12-01

    Cardinal pathological features of hypertensive heart disease (HHD) include not only hypertrophied cardiomyocytes and foci of scattered microscopic scarring, a footprint of prior necrosis, but also small myocytes ensnared by fibrillar collagen where disuse atrophy with protein degradation would be predicted. Whether atrophic signaling is concordant with the appearance of HHD and involves oxidative and endoplasmic reticulum (ER) stress remains unexplored. Herein, we examine these possibilities focusing on the left ventricle and cardiomyocytes harvested from hypertensive rats receiving 4 weeks aldosterone/salt treatment (ALDOST) alone or together with ZnSO₄, a nonvasoactive antioxidant, with the potential to attenuate atrophy and optimize hypertrophy. Compared with untreated age-/sex-/strain-matched controls, ALDOST was accompanied by (1) left ventricle hypertrophy with preserved systolic function; (2) concordant cardiomyocyte atrophy (<1000 μm²) found at sites bordering on fibrosis where they were reexpressing β-myosin heavy chain; and (3) upregulation of ubiquitin ligases, muscle RING-finger protein-1 and atrogin-1, and elevated 8-isoprostane and unfolded protein ER response with messenger RNA upregulation of stress markers. ZnSO₄ cotreatment reduced lipid peroxidation, fibrosis, and the number of atrophic myocytes, together with a further increase in cell area and width of atrophied and hypertrophied myocytes, and improved systolic function but did not attenuate elevated blood pressure. We conclude that atrophic signaling, concordant with hypertrophy, occurs in the presence of a reparative fibrosis and induction of oxidative and ER stress at sites of scarring where myocytes are atrophied. ZnSO₄ cotreatment in HHD with ALDOST attenuates the number of atrophic myocytes, optimizes size of atrophied and hypertrophied myocytes, and improves systolic function. PMID:24084216

  5. Acoustical sensing of cardiomyocyte cluster beating

    SciTech Connect

    Tymchenko, Nina; Kunze, Angelika; Dahlenborg, Kerstin; Svedhem, Sofia; Steel, Daniella

    2013-06-14

    Highlights: •An example of the application of QCM-D to live cell studies. •Detection of human pluripotent stem cell-derived cardiomyocyte cluster beating. •Clusters were studied in a thin liquid film and in a large liquid volume. •The QCM-D beating profile provides an individual fingerprint of the hPS-CMCs. -- Abstract: Spontaneously beating human pluripotent stem cell-derived cardiomyocytes clusters (CMCs) represent an excellent in vitro tool for studies of human cardiomyocyte function and for pharmacological cardiac safety assessment. Such testing typically requires highly trained operators, precision plating, or large cell quantities, and there is a demand for real-time, label-free monitoring of small cell quantities, especially rare cells and tissue-like structures. Array formats based on sensing of electrical or optical properties of cells are being developed and in use by the pharmaceutical industry. A potential alternative to these techniques is represented by the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, which is an acoustic surface sensitive technique that measures changes in mass and viscoelastic properties close to the sensor surface (from nm to μm). There is an increasing number of studies where QCM-D has successfully been applied to monitor properties of cells and cellular processes. In the present study, we show that spontaneous beating of CMCs on QCM-D sensors can be clearly detected, both in the frequency and the dissipation signals. Beating rates in the range of 66–168 bpm for CMCs were detected and confirmed by simultaneous light microscopy. The QCM-D beating profile was found to provide individual fingerprints of the hPS-CMCs. The presented results point towards acoustical assays for evaluation cardiotoxicity.

  6. Latrunculin B modulates electrophysiological characteristics and arrhythmogenesis in pulmonary vein cardiomyocytes.

    PubMed

    Lu, Yen-Yu; Lin, Yung-Kuo; Wen, Zhi-Hong; Chen, Yao-Chang; Chen, Shih-Ann; Chen, Yi-Jen

    2016-05-01

    AF (atrial fibrillation) is the most common sustained arrhythmia, and the PVs (pulmonary veins) play a critical role in triggering AF. Stretch causes structural remodelling, including cytoskeleton rearrangement, which may play a role in the genesis of AF. Lat-B (latrunculin B), an inhibitor of actin polymerization, is involved in Ca(2+) regulation. However, it is unclear whether Lat-B directly modulates the electrophysiological characteristics and Ca(2+) homoeostasis of the PVs. Conventional microelectrodes, whole-cell patch-clamp, and the fluo-3 fluorimetric ratio technique were used to record ionic currents and intracellular Ca(2+) within isolated rabbit PV preparations, or within isolated single PV cardiomyocytes, before and after administration of Lat-B (100 nM). Langendorff-perfused rabbit hearts were exposed to acute and continuous atrial stretch, and we studied PV electrical activity. Lat-B (100 nM) decreased the spontaneous electrical activity by 16±4% in PV preparations. Lat-B (100 nM) decreased the late Na(+) current, L-type Ca(2+) current, Na(+)/Ca(2+) exchanger current, and stretch-activated BKCa current, but did not affect the Na(+) current in PV cardiomyocytes. Lat-B reduced the transient outward K(+) current and ultra-rapid delayed rectifier K(+) current, but increased the delayed rectifier K(+) current in isolated PV cardiomyocytes. In addition, Lat-B (100 nM) decreased intracellular Ca(2+) transient and sarcoplasmic reticulum Ca(2+) content in PV cardiomyocytes. Moreover, Lat-B attenuated stretch-induced increased spontaneous electrical activity and trigger activity. The effects of Lat-B on the PV spontaneous electrical activity were attenuated in the presence of Y-27632 [10 μM, a ROCK (Rho-associated kinase) inhibitor] and cytochalasin D (10 μM, an actin polymerization inhibitor). In conclusion, Lat-B regulates PV electrophysiological characteristics and attenuates stretch-induced arrhythmogenesis. PMID:26839418

  7. Fibroblast Growth Factor Receptor 1 Signaling in Adult Cardiomyocytes Increases Contractility and Results in a Hypertrophic Cardiomyopathy

    PubMed Central

    Cilvik, Sarah N.; Wang, Joy I.; Lavine, Kory J.; Uchida, Keita; Castro, Angela; Gierasch, Carolyn M.; Weinheimer, Carla J.; House, Stacey L.; Kovacs, Attila; Nichols, Colin G.; Ornitz, David M.

    2013-01-01

    Fibroblast growth factors (FGFs) and their receptors are highly conserved signaling molecules that have been implicated in postnatal cardiac remodeling. However, it is not known whether cardiomyocyte-expressed FGF receptors are necessary or sufficient for ventricular remodeling in the adult heart. To determine whether cardiomyocytes were competent to respond to an activated FGF receptor, and to determine if this signal would result in the development of hypertrophy, we engineered a doxycycline (DOX)-inducible, cardiomyocyte-specific, constitutively active FGF receptor mouse model (αMHC-rtTA, TRE-caFgfr1-myc). Echocardiographic and hemodynamic analysis indicated that acute expression of caFGFR1 rapidly and directly increased cardiac contractility, while chronic expression resulted in significant hypertrophy with preservation of systolic function. Subsequent histologic analysis showed increased cardiomyocyte cross-sectional area and regions of myocyte disarray and fibrosis, classic features of hypertrophic cardiomyopathy (HCM). Analysis of downstream pathways revealed a lack of clear activation of classical FGF-mediated signaling pathways, but did demonstrate a reduction in Serca2 expression and troponin I phosphorylation. Isolated ventricular myocytes showed enhanced contractility and reduced relaxation, an effect that was partially reversed by inhibition of actin-myosin interactions. We conclude that adult cardiomyocytes are competent to transduce FGF signaling and that FGF signaling is sufficient to promote increased cardiomyocyte contractility in vitro and in vivo through enhanced intrinsic actin-myosin interactions. Long-term, FGFR overexpression results in HCM with a dynamic outflow tract obstruction, and may serve as a unique model of HCM. PMID:24349409

  8. Glyceraldehyde-3-Phosphate Dehydrogenase Interacts with Proapoptotic Kinase Mst1 to Promote Cardiomyocyte Apoptosis

    PubMed Central

    You, Bei; Huang, Shengdong; Qin, Qing; Yi, Bing; Yuan, Yang; Xu, Zhiyun; Sun, Jianxin

    2013-01-01

    Mammalian sterile 20-like kinase 1 (Mst1) is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in the heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart remains unknown. In a yeast two-hybrid screen of a human heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as an Mst1-interacting protein. The interaction of GAPDH with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and mouse heart homogenates, in which GAPDH interacted with the kinase domain of Mst1, whereas the C-terminal catalytic domain of GAPDH mediated its interaction with Mst1. Moreover, interaction of Mst1 with GAPDH caused a robust phosphorylation of GAPDH and markedly increased the Mst1 activity in cells. Chelerythrine, a potent inducer of apoptosis, substantially increased the nuclear translocation and interaction of GAPDH and Mst1 in cardiomyocytes. Overexpression of GAPDH significantly augmented the Mst1 mediated apoptosis, whereas knockdown of GAPDH markedly attenuated the Mst1 activation and cardiomyocyte apoptosis in response to either chelerythrine or hypoxia/reoxygenation. These findings reveal a novel function of GAPDH in Mst1 activation and cardiomyocyte apoptosis and suggest that disruption of GAPDH interaction with Mst1 may prevent apoptosis related heart diseases such as heart failure and ischemic heart disease. PMID:23527007

  9. Assessment of the cellular and electrophysiological response of cardiomyocytes to radiation

    NASA Astrophysics Data System (ADS)

    Helm, Alexander; Ritter, Sylvia; Durante, Marco; Friess, Johannes; Thielemann, Christiane; Mr; Frank, Simon

    gap junction protein, was studied. An elevated expression of Cx 43 was observed in rabbit hearts following radiation exposure concomitant with an altered conductivity. However, data obtained so far for Cor.At cardiomyocytes show no apparent change in the expression of Cx 43 in X-ray irradiated samples in comparison to the control consistent with the electrophysiological measurements. In contrast, X-irradiation resulted in a dose-dependent increase in the number of apoptotic cells starting 24h after exposure. Cardiomyocytes, although differentiated, show a low mitotic activity both in vivo and in vitro, leading to binucleated cells which are a hallmark of maturation. Taking advantage of this specific feature, we determined both the fraction of binucleated cells and the number of cells containing micronulei (as a DNA damage marker) in irradiated and control samples. Binucleation was apparently not affected following X-irradiation, while the number of cardiomyocytes with micronuclei rose steadily with dose and sampling time. Taken together our results show that the electrophysiological activity of cardiomyocytes surviving the exposure to X-rays is hardly affected, although the cells display radiation damage on cellular level. If persistent radiation damage results in adverse long-term effects remains to be elucidated. The aforementioned aspects are currently investigated for high LET particles. The research leading to these results has received funding from the Euratom Seventh Framework Programm under grant agreement n° 295823 (PROCARDIO) and was supported by BMBF grant 02NUK025A and HGS-HIRe.

  10. Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy

    PubMed Central

    Pedrozo, Zully; Torrealba, Natalia; Fernández, Carolina; Gatica, Damian; Toro, Barbra; Quiroga, Clara; Rodriguez, Andrea E.; Sanchez, Gina; Gillette, Thomas G.; Hill, Joseph A.; Donoso, Paulina; Lavandero, Sergio

    2013-01-01

    Time for primary review: 15 days Aims Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins bearing the sequence KFERQ. These proteins are targeted by chaperones and delivered to lysosomes where they are translocated into the lysosomal lumen and degraded via the lysosome-associated membrane protein type 2A (LAMP-2A). Mutations in LAMP2 that inhibit autophagy result in Danon disease characterized by hypertrophic cardiomyopathy. The ryanodine receptor type 2 (RyR2) plays a key role in cardiomyocyte excitation–contraction and its dysfunction can lead to cardiac failure. Whether RyR2 is degraded by CMA is unknown. Methods and results To induce CMA, cultured neonatal rat cardiomyocytes were treated with geldanamycin (GA) to promote protein degradation through this pathway. GA increased LAMP-2A levels together with its redistribution and colocalization with Hsc70 in the perinuclear region, changes indicative of CMA activation. The inhibition of lysosomes but not proteasomes prevented the loss of RyR2. The recovery of RyR2 content after incubation with GA by siRNA targeting LAMP-2A suggests that RyR2 is degraded via CMA. In silico analysis also revealed that the RyR2 sequence harbours six KFERQ motifs which are required for the recognition Hsc70 and its degradation via CMA. Our data suggest that presenilins are involved in RyR2 degradation by CMA. Conclusion These findings are consistent with a model in which oxidative damage of the RyR2 targets it for turnover by presenilins and CMA, which could lead to removal of damaged or leaky RyR2 channels. PMID:23404999

  11. From pluripotency to distinct cardiomyocyte subtypes.

    PubMed

    David, Robert; Franz, Wolfgang-Michael

    2012-06-01

    Differentiated adult cardiomyocytes (CMs) lack significant regenerative potential, which is one reason why degenerative heart diseases are the leading cause of death in the western world. For future cardiac repair, stem cell-based therapeutic strategies may become alternatives to donor heart transplantation. The principle of reprogramming adult terminally differentiated cells (iPSC) had a major impact on stem cell biology. One can now generate autologous pluripotent cells that highly resemble embryonic stem cells (ESC) and that are ethically inoffensive as opposed to human ESC. Yet, due to genetic and epigenetic aberrations arising during the full reprogramming process, it is questionable whether iPSC will enter the clinic in the near future. Therefore, the recent achievement of directly reprogramming fibroblasts into cardiomyocytes via a milder approach, thereby avoiding an initial pluripotent state, may become of great importance. In addition, various clinical scenarios will depend on the availability of specific cardiac cellular subtypes, for which a first step was achieved via our own programming approach to achieve cardiovascular cell subtypes. In this review, we discuss recent progress in the cardiovascular stem cell field addressing the above mentioned aspects. PMID:22689787

  12. Acoustical sensing of cardiomyocyte cluster beating.

    PubMed

    Tymchenko, Nina; Kunze, Angelika; Dahlenborg, Kerstin; Svedhem, Sofia; Steel, Daniella

    2013-06-14

    Spontaneously beating human pluripotent stem cell-derived cardiomyocytes clusters (CMCs) represent an excellent in vitro tool for studies of human cardiomyocyte function and for pharmacological cardiac safety assessment. Such testing typically requires highly trained operators, precision plating, or large cell quantities, and there is a demand for real-time, label-free monitoring of small cell quantities, especially rare cells and tissue-like structures. Array formats based on sensing of electrical or optical properties of cells are being developed and in use by the pharmaceutical industry. A potential alternative to these techniques is represented by the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, which is an acoustic surface sensitive technique that measures changes in mass and viscoelastic properties close to the sensor surface (from nm to μm). There is an increasing number of studies where QCM-D has successfully been applied to monitor properties of cells and cellular processes. In the present study, we show that spontaneous beating of CMCs on QCM-D sensors can be clearly detected, both in the frequency and the dissipation signals. Beating rates in the range of 66-168 bpm for CMCs were detected and confirmed by simultaneous light microscopy. The QCM-D beating profile was found to provide individual fingerprints of the hPS-CMCs. The presented results point towards acoustical assays for evaluation cardiotoxicity. PMID:23643814

  13. Controllable Expansion of Primary Cardiomyocytes by Reversible Immortalization

    PubMed Central

    Zhang, Yue; Nuglozeh, Edem; Touré, Fatouma; Schmidt, Ann Marie

    2009-01-01

    Abstract Cardiac tissue engineering will remain only a prospect unless large numbers of therapeutic cells can be provided, either from small samples of cardiac cells or from stem cell sources. In contrast to most adult cells, cardiomyocytes are terminally differentiated and cannot be expanded in culture. We explored the feasibility of enabling the in vitro expansion of primary neonatal rat cardiomyocytes by lentivector-mediated cell immortalization, and then reverting the phenotype of the expanded cells back to the cardiomyocyte state. Primary rat cardiomyocytes were transduced with simian virus 40 large T antigen (TAg), or with Bmi-1 followed by the human telomerase reverse transcriptase (hTERT) gene; the cells were expanded; and the transduced genes were removed by adenoviral vector expressing Cre recombinase. The TAg gene was more efficient in cell transduction than the Bmi-1/hTERT gene, based on the rate of cell proliferation. Immortalized cells exhibited the morphological features of dedifferentiation (increased vimentin expression, and reduced expression of troponin I and Nkx2.5) along with the continued expression of cardiac markers (α-actin, connexin-43, and calcium transients). After the immortalization was reversed, cells returned to their differentiated state. This strategy for controlled expansion of primary cardiomyocytes by gene transfer has potential for providing large amounts of a patient's own cardiomyocytes for cell therapy, and the cardiomyocytes derived by this method could be a useful cellular model by which to study cardiogenesis. PMID:19708763

  14. Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients

    SciTech Connect

    Oyama, Kotaro; Mizuno, Akari; Shintani, Seine A.; Itoh, Hideki; Serizawa, Takahiro; Fukuda, Norio; Suzuki, Madoka

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Infra-red laser beam generates microscopic heat pulses. Black-Right-Pointing-Pointer Heat pulses induce contraction of cardiomyocytes. Black-Right-Pointing-Pointer Ca{sup 2+} transients during the contraction were not detected. Black-Right-Pointing-Pointer Skinned cardiomyocytes in free Ca{sup 2+} solution also contracted. Black-Right-Pointing-Pointer Heat pulses regulated the contractions without Ca{sup 2+} dynamics. -- Abstract: It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by which heat pulses, produced by infra-red laser light under an optical microscope, induce contractions of cardiomyocytes. Here we show that microscopic heat pulses induce contraction of rat adult cardiomyocytes. The temperature increase, {Delta}T, required for inducing contraction of cardiomyocytes was dependent upon the ambient temperature; that is, {Delta}T at physiological temperature was lower than that at room temperature. Ca{sup 2+} transients, which are usually coupled to contraction, were not detected. We confirmed that the contractions of skinned cardiomyocytes were induced by the heat pulses even in free Ca{sup 2+} solution. This heat pulse-induced Ca{sup 2+}-decoupled contraction technique has the potential to stimulate heart and skeletal muscles in a manner different from the conventional electrical stimulations.

  15. Spatial Distribution of Maxi-Anion Channel on Cardiomyocytes Detected by Smart-Patch Technique☆

    PubMed Central

    Dutta, Amal K.; Korchev, Yuri E.; Shevchuk, Andrew I.; Hayashi, Seiji; Okada, Yasunobu; Sabirov, Ravshan Z.

    2008-01-01

    Spatial distribution of maxi-anion channels in rat cardiomyocytes were studied by applying the recently developed patch clamp technique under scanning ion conductance microscopy, called the “smart-patch” technique. In primary-cultured neonatal cells, the channel was found to be unevenly distributed over the cell surface with significantly lower channel activity in cellular extensions compared with the other parts. Local ATP release, detected using a PC12 cell-based biosensor technique, also exhibited a similar pattern. The maxi-anion channel activity could not be detected in freshly isolated adult cardiomyocytes by the conventional patch-clamp with 2-MΩ pipettes. However, when fine-tipped 15–20 MΩ pipettes were targeted to only Z-line areas, we observed, for the first time, the maxi-anion events. Smart-patching different regions of the cell surface, we found that the channel activity was maximal at the openings of T-tubules and along Z-lines, but was significantly decreased in the scallop crest area. Thus, it is concluded that maxi-anion channels are concentrated at the openings of T-tubules and along Z-lines in adult cardiomyocytes. This study showed that the smart-patch technique provides a powerful method to detect a unitary event of channels that are localized at some specific site in the narrow region. PMID:18024498

  16. Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis.

    PubMed

    Valenzuela, Nicolas; Fan, Qiying; Fa'ak, Faisal; Soibam, Benjamin; Nagandla, Harika; Liu, Yu; Schwartz, Robert J; McConnell, Bradley K; Stewart, M David

    2016-03-01

    HIRA is the histone chaperone responsible for replication-independent incorporation of histone variant H3.3 within gene bodies and regulatory regions of actively transcribed genes, and within the bivalent promoter regions of developmentally regulated genes. The HIRA gene lies within the 22q11.2 deletion syndrome critical region; individuals with this syndrome have multiple congenital heart defects. Because terminally differentiated cardiomyocytes have exited the cell cycle, histone variants should be utilized for the bulk of chromatin remodeling. Thus, HIRA is likely to play an important role in epigenetically defining the cardiac gene expression program. In this study, we determined the consequence of HIRA deficiency in cardiomyocytes in vivo by studying the phenotype of cardiomyocyte-specific Hira conditional-knockout mice. Loss of HIRA did not perturb heart development, but instead resulted in cardiomyocyte hypertrophy and susceptibility to sarcolemmal damage. Cardiomyocyte degeneration gave way to focal replacement fibrosis and impaired cardiac function. Gene expression was widely altered in Hira conditional-knockout hearts. Significantly affected pathways included responses to cellular stress, DNA repair and transcription. Consistent with heart failure, fetal cardiac genes were re-expressed in the Hira conditional knockout. Our results suggest that transcriptional regulation by HIRA is crucial for cardiomyocyte homeostasis. PMID:26935106

  17. Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis

    PubMed Central

    Valenzuela, Nicolas; Fan, Qiying; Fa'ak, Faisal; Soibam, Benjamin; Nagandla, Harika; Liu, Yu; Schwartz, Robert J.; McConnell, Bradley K.; Stewart, M. David

    2016-01-01

    ABSTRACT HIRA is the histone chaperone responsible for replication-independent incorporation of histone variant H3.3 within gene bodies and regulatory regions of actively transcribed genes, and within the bivalent promoter regions of developmentally regulated genes. The HIRA gene lies within the 22q11.2 deletion syndrome critical region; individuals with this syndrome have multiple congenital heart defects. Because terminally differentiated cardiomyocytes have exited the cell cycle, histone variants should be utilized for the bulk of chromatin remodeling. Thus, HIRA is likely to play an important role in epigenetically defining the cardiac gene expression program. In this study, we determined the consequence of HIRA deficiency in cardiomyocytes in vivo by studying the phenotype of cardiomyocyte-specific Hira conditional-knockout mice. Loss of HIRA did not perturb heart development, but instead resulted in cardiomyocyte hypertrophy and susceptibility to sarcolemmal damage. Cardiomyocyte degeneration gave way to focal replacement fibrosis and impaired cardiac function. Gene expression was widely altered in Hira conditional-knockout hearts. Significantly affected pathways included responses to cellular stress, DNA repair and transcription. Consistent with heart failure, fetal cardiac genes were re-expressed in the Hira conditional knockout. Our results suggest that transcriptional regulation by HIRA is crucial for cardiomyocyte homeostasis. PMID:26935106

  18. Subthreshold nitric oxide synthase inhibition improves synergistic effects of subthreshold MMP-2/MLCK-mediated cardiomyocyte protection from hypoxic injury.

    PubMed

    Bil-Lula, Iwona; Lin, Han-Bin; Biały, Dariusz; Wawrzyńska, Magdalena; Diebel, Lucas; Sawicka, Jolanta; Woźniak, Mieczyslaw; Sawicki, Grzegorz

    2016-06-01

    Injury of myocardium during ischaemia/reperfusion (I/R) is a complex and multifactorial process involving uncontrolled protein phosphorylation, nitration/nitrosylation by increased production of nitric oxide and accelerated contractile protein degradation by matrix metalloproteinase-2 (MMP-2). It has been shown that simultaneous inhibition of MMP-2 with doxycycline (Doxy) and myosin light chain kinase (MLCK) with ML-7 at subthreshold concentrations protects the heart from contractile dysfunction triggered by I/R in a synergistic manner. In this study, we showed that additional co-administration of nitric oxide synthase (NOS) inhibitor (1400W or L-NAME) in subthreshold concentrations improves this synergistic protection in the model of hypoxia-reoxygenation (H-R)-induced contractile dysfunction of cardiomyocytes. Isolated cardiomyocytes were subjected to 3 min. of hypoxia and 20 min. of reoxygenation in the presence or absence of the inhibitor cocktails. Contractility of cardiomyocytes was expressed as myocyte peak shortening. Inhibition of MMP-2 by Doxy (25-100 μM), MLCK by ML-7 (0.5-5 μM) and NOS by L-NAME (25-100 μM) or 1400W (25-100 μM) protected myocyte contractility after H-R in a concentration-dependent manner. Inhibition of these activities resulted in full recovery of cardiomyocyte contractility after H-R at the level of highest single-drug concentration. The combination of subthreshold concentrations of NOS, MMP-2 and MLCK inhibitors fully protected cardiomyocyte contractility and MLC1 from degradation by MMP-2. The observed protection with addition of L-NAME or 1400W was better than previously reported combination of ML-7 and Doxy. The results of this study suggest that addition of NOS inhibitor to the mixture of inhibitors is better strategy for protecting cardiomyocyte contractility. PMID:26992120

  19. Electrical stimulation of primary neonatal rat ventricular cardiomyocytes using pacemakers.

    PubMed

    Martherus, Ruben S R M; Zeijlemaker, Volkert A; Ayoubi, Torik A Y

    2010-01-01

    The study of gene regulation in cardiac myocytes requires a reliable in vitro model. However, monolayer cultures used for this purpose are typically not exposed to electrical stimulation, though this has been shown to strongly affect cardiomyocyte gene expression. Based on pacemakers for clinical use, we developed an easy-to-use portable system that allows the user to perform electro-stimulation of cardiomyocyte cultures in standard tissue incubators without the need for bulky equipment. In addition, we present a refined protocol for culturing high-purity cardiomyocyte cultures with excellent contractile properties for a wide variety of applications. PMID:20078430

  20. Monitoring of troponin release from cardiomyocytes during exposure to toxic substances using surface plasmon resonance biosensing.

    PubMed

    Andersson, Henrik; Kågedal, Bertil; Mandenius, Carl-Fredrik

    2010-10-01

    Troponin T (TnT) is a useful biomarker for studying drug-induced toxicity effects on cardiac cells. We describe how a surface plasmon resonance (SPR) biosensor was applied to monitor the release of TnT from active HL-1 cardiomyocytes in vitro when exposed to cardiotoxic substances. Two monoclonal human TnT antibodies were compared in the SPR immunosensor to analyse the TnT release. The detection limit of TnT was determined to be 30 ng/ml in a direct assay set-up and to be 10 ng/ml in a sandwich assay format. Exposure of the cardiomyocytes to doxorubicin, troglitazone, quinidine and cobalt chloride for periods of 6 and 24 h gave significant SPR responses, whereas substances with low toxicity showed insignificant effects (ascorbic acid, methotrexate). The SPR results were verified with a validated immunochemiluminescence method which showed a correlation of r (2) = 0.790. PMID:20694813

  1. Possible Molecular Mechanisms Underlying Age-Related Cardiomyocyte Apoptosis in the F344XBN Rat Heart

    PubMed Central

    Kakarla, Sunil K.; Rice, Kevin M.; Katta, Anjaiah; Paturi, Satyanarayana; Wu, Miaozong; Kolli, Madhukar; Keshavarzian, Saba; Manzoor, Kamran; Wehner, Paulette S.

    2010-01-01

    Despite advances in treatment, age-related cardiac dysfunction still remains a leading cause of cardiovascular death. Recent data have suggested that increases in cardiomyocyte apoptosis may be involved in the pathological remodeling of heart. Here, we examine the effects of aging on cardiomyocyte apoptosis in 6-, 30-, and 36-month-old Fischer344xBrown Norway F1 hybrid rats (F344XBN). Compared with 6-month hearts, aged hearts exhibited increased TdT-mediated dUTP nick end labeling–positive nuclei, caspase-3 activation, caspase-dependent cleavage of α-fodrin and diminished phosphorylation of protein kinase B/Akt (Thr 308). These age-dependent increases in cardiomyocyte apoptosis were associated with alterations in the composition of the cardiac dystrophin glycoprotein complex and elevated cytoplasmic IgG and albumin immunoreactivity. Immunohistochemical analysis confirmed these data and demonstrated qualitative differences in localization of dystrophin–glycoprotein complex (DGC) molecules with aging. Taken together, these data suggest that aging-related increases in cardiac apoptotic activity model may be due, at least in part, to age-associated changes in DGC structure. PMID:20056683

  2. Heme-induced contractile dysfunction in human cardiomyocytes caused by oxidant damage to thick filament proteins.

    PubMed

    Alvarado, Gerardo; Jeney, Viktória; Tóth, Attila; Csősz, Éva; Kalló, Gergő; Huynh, An T; Hajnal, Csaba; Kalász, Judit; Pásztor, Enikő T; Édes, István; Gram, Magnus; Akerström, Bo; Smith, Ann; Eaton, John W; Balla, György; Papp, Zoltán; Balla, József

    2015-12-01

    Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (F passive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in F passive started at 3 µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140 kDa after treatment with dithiothreitol, but not in other proteins, such as filamin C, myosin heavy chain, cardiac myosin binding protein C, and α-actinin. Importantly, binding of heme to hemopexin or alpha-1-microglobulin prevented its effects on cardiomyocyte contractility, suggesting an allosteric effect. In line with this, free heme directly bound to myosin light chain 1 in human cardiomyocytes. Our observations suggest that free heme modifies cardiac contractile proteins via posttranslational protein modifications and via binding to myosin light chain 1, leading to severe contractile dysfunction. This may contribute to systolic and diastolic cardiac dysfunctions in hemolytic diseases, heart failure, and myocardial ischemia-reperfusion injury. PMID:26409224

  3. Cardiomyocyte glucagon receptor signaling modulates outcomes in mice with experimental myocardial infarction

    PubMed Central

    Ali, Safina; Ussher, John R.; Baggio, Laurie L.; Kabir, M. Golam; Charron, Maureen J.; Ilkayeva, Olga; Newgard, Christopher B.; Drucker, Daniel J.

    2014-01-01

    Objective Glucagon is a hormone with metabolic actions that maintains normoglycemia during the fasting state. Strategies enabling either inhibition or activation of glucagon receptor (Gcgr) signaling are being explored for the treatment of diabetes or obesity. However, the cardiovascular consequences of manipulating glucagon action are poorly understood. Methods We assessed infarct size and the following outcomes following left anterior descending (LAD) coronary artery ligation; cardiac gene and protein expression, acylcarnitine profiles, and cardiomyocyte survival in normoglycemic non-obese wildtype mice, and in newly generated mice with selective inactivation of the cardiomyocyte Gcgr. Complementary experiments analyzed Gcgr signaling and cell survival in cardiomyocyte cultures and cell lines, in the presence or absence of exogenous glucagon. Results Exogenous glucagon administration directly impaired recovery of ventricular pressure in ischemic mouse hearts ex vivo, and increased mortality from myocardial infarction after LAD coronary artery ligation in mice in a p38 MAPK-dependent manner. In contrast, cardiomyocyte-specific reduction of glucagon action in adult GcgrCM−/− mice significantly improved survival, and reduced hypertrophy and infarct size following myocardial infarction. Metabolic profiling of hearts from GcgrCM−/− mice revealed a marked reduction in long chain acylcarnitines in both aerobic and ischemic hearts, and following high fat feeding, consistent with an essential role for Gcgr signaling in the control of cardiac fatty acid utilization. Conclusions Activation or reduction of cardiac Gcgr signaling in the ischemic heart produces substantial cardiac phenotypes, findings with implications for therapeutic strategies designed to augment or inhibit Gcgr signaling for the treatment of metabolic disorders. PMID:25685700

  4. Optogenetic Control of Cardiomyocytes via Viral Delivery

    PubMed Central

    Ambrosi, Christina M.; Entcheva, Emilia

    2014-01-01

    Optogenetics is an emerging technology for the manipulation and control of excitable tissues, such as the brain and heart. As this technique requires the genetic modification of cells in order to inscribe light sensitivity, for cardiac applications, here we describe the process through which neonatal rat ventricular myocytes are virally infected in vitro with channelrhodopsin-2 (ChR2). We also describe in detail the procedure for quantitatively determining the optimal viral dosage, including instructions for patterning gene expression in multicellular cardiomyocyte preparations (cardiac syncytia) to simulate potential in vivo transgene distributions. Finally, we address optical actuation of ChR2-transduced cells and means to measure their functional response to light. PMID:25070340

  5. Mechanical Stretch Inhibits MicroRNA499 via p53 to Regulate Calcineurin-A Expression in Rat Cardiomyocytes

    PubMed Central

    Chua, Su-Kiat; Wang, Bao-Wei; Lien, Li-Ming; Lo, Huey-Ming; Chiu, Chiung-Zuan; Shyu, Kou-Gi

    2016-01-01

    Background MicroRNAs play an important role in cardiac remodeling. MicroRNA 499 (miR499) is highly enriched in cardiomyocytes and targets the gene for Calcineurin A (CnA), which is associated with mitochondrial fission and apoptosis. The mechanism regulating miR499 in stretched cardiomyocytes and in volume overloaded heart is unclear. We sought to investigate the mechanism regulating miR499 and CnA in stretched cardiomyocytes and in volume overload-induced heart failure. Methods & Results Rat cardiomyocytes grown on a flexible membrane base were stretched via vacuum to 20% of maximum elongation at 60 cycles/min. An in vivo model of volume overload with aorta-caval shunt in adult rats was used to study miR499 expression. Mechanical stretch downregulated miR499 expression, and enhanced the expression of CnA protein and mRNA after 12 hours of stretch. Expression of CnA and calcineurin activity was suppressed with miR499 overexpression; whereas, expression of dephosphorylated dynamin-related protein 1 (Drp1) was suppressed with miR499 overexpression and CnA siRNA. Adding p53 siRNA reversed the downregulation of miR499 when stretched. A gel shift assay and promoter-activity assay demonstrated that stretch increased p53 DNA binding activity but decreased miR499 promoter activity. When the miR499 promoter p53-binding site was mutated, the inhibition of miR499 promoter activity with stretch was reversed. The in vivo aorta-caval shunt also showed downregulated myocardial miR499 and overexpression of miR499 suppressed CnA and cellular apoptosis. Conclusion The miR499-controlled apoptotic pathway involving CnA and Drp1 in stretched cardiomyocytes may be regulated by p53 through the transcriptional regulation of miR499. PMID:26859150

  6. Conversion of human fibroblasts into functional cardiomyocytes by small molecules.

    PubMed

    Cao, Nan; Huang, Yu; Zheng, Jiashun; Spencer, C Ian; Zhang, Yu; Fu, Ji-Dong; Nie, Baoming; Xie, Min; Zhang, Mingliang; Wang, Haixia; Ma, Tianhua; Xu, Tao; Shi, Guilai; Srivastava, Deepak; Ding, Sheng

    2016-06-01

    Reprogramming somatic fibroblasts into alternative lineages would provide a promising source of cells for regenerative therapy. However, transdifferentiating human cells into specific homogeneous, functional cell types is challenging. Here we show that cardiomyocyte-like cells can be generated by treating human fibroblasts with a combination of nine compounds that we term 9C. The chemically induced cardiomyocyte-like cells uniformly contracted and resembled human cardiomyocytes in their transcriptome, epigenetic, and electrophysiological properties. 9C treatment of human fibroblasts resulted in a more open-chromatin conformation at key heart developmental genes, enabling their promoters and enhancers to bind effectors of major cardiogenic signals. When transplanted into infarcted mouse hearts, 9C-treated fibroblasts were efficiently converted to chemically induced cardiomyocyte-like cells. This pharmacological approach to lineage-specific reprogramming may have many important therapeutic implications after further optimization to generate mature cardiac cells. PMID:27127239

  7. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment.

    PubMed

    Jonker, S S; Louey, S

    2016-01-01

    Immature contractile cardiomyocytes proliferate to rapidly increase cell number, establishing cardiomyocyte endowment in the perinatal period. Developmental changes in cellular maturation, size and attrition further contribute to cardiac anatomy. These physiological processes occur concomitant with a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. There are complex interactions between endocrine, hemodynamic and nutritional regulators of cardiac development. Birth has been long assumed to be the trigger for major differences between the fetal and postnatal cardiomyocyte growth patterns, but investigations in normally growing sheep and rodents suggest this may not be entirely true; in sheep, these differences are initiated before birth, while in rodents they occur after birth. The aim of this review is to draw together our understanding of the temporal regulation of these signals and cardiomyocyte responses relative to birth. Further, we consider how these dynamics are altered in stressed and suboptimal intrauterine environments. PMID:26432905

  8. Building and re-building the heart by cardiomyocyte proliferation.

    PubMed

    Foglia, Matthew J; Poss, Kenneth D

    2016-03-01

    The adult human heart does not regenerate significant amounts of lost tissue after injury. Rather than making new, functional muscle, human hearts are prone to scarring and hypertrophy, which can often lead to fatal arrhythmias and heart failure. The most-cited basis of this ineffective cardiac regeneration in mammals is the low proliferative capacity of adult cardiomyocytes. However, mammalian cardiomyocytes can avidly proliferate during fetal and neonatal development, and both adult zebrafish and neonatal mice can regenerate cardiac muscle after injury, suggesting that latent regenerative potential exists. Dissecting the cellular and molecular mechanisms that promote cardiomyocyte proliferation throughout life, deciphering why proliferative capacity normally dissipates in adult mammals, and deriving means to boost this capacity are primary goals in cardiovascular research. Here, we review our current understanding of how cardiomyocyte proliferation is regulated during heart development and regeneration. PMID:26932668

  9. MHC class II transactivator represses human IL-4 gene transcription by interruption of promoter binding with CBP/p300, STAT6 and NFAT1 via histone hypoacetylation

    PubMed Central

    Zhou, Xiaorong; Jiang, Yang; Lu, Liming; Ding, Qing; Jiao, Zhijun; Zhou, Yun; Xin, Lijun; Chou, Kuang-Yen

    2007-01-01

    In addition to its property of enhancing major histocompatibility complex (MHC) class II expression, the class II transactivator (CIITA) was recently demonstrated to be involved in T helper type 1/type 2 (Th1/Th2) differentiation by regulating interleukin-4 (IL-4) gene transcription. There was however, controversy regarding whether CIITA promotes or suppresses IL-4 expression in the experiments with transgenic mice. To clarify the discrepancy by using simpler experimental systems, human Jurkat T cells that express IL-4 but not interferon-γ, even if stimulated with phorbol 12-myristate 13-acetate plus ionomycin, were used for CIITA transfection. Significant suppression of IL-4 gene expression was demonstrated. Simultaneously, histones H3 and H4 in the IL-4 promoter were hypoacetylated. The suppression could be totally reversed by the histone deacetylatase inhibitor trichostatin A. Furthermore, the IL-4 expression was determined in primarily established human Th1/Th2 cells to which CIITA small interference RNA (siRNA) had been introduced. A substantially increased level of IL-4 was recorded in the CIITA siRNA-transfected Th1 cells, which was in parallel with significantly enhanced acetylation in histone H3 of the IL-4 promoter. Chromatin immunoprecipitation analysis indicated that CIITA abrogated the binding of coactivator CBP/p300 and transcription factors STAT6/NFAT1 to IL-4 promoter in the CIITA-transfected cells. In conclusion, CIITA was active in the repression of transcription activation of human IL-4 gene in both the T-cell line and the primary human CD4 T cells by preventing transcription factors from binding to IL-4 promoter through histone hypoacetylation. Our data confirm a potential significant role of CIITA in controlling Th1/Th2 differentiation via modulation of IL-4 gene activation. PMID:17645498

  10. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays

    PubMed Central

    Titmarsh, Drew M.; Glass, Nick R.; Mills, Richard J.; Hidalgo, Alejandro; Wolvetang, Ernst J.; Porrello, Enzo R.; Hudson, James E.; Cooper-White, Justin J.

    2016-01-01

    Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways, however, it remains unclear as to what extent these pathways can be exploited, either individually or in combination, in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro, but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways, we developed a high-density microbioreactor array (HDMA) – a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt, Hedgehog, IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation, inducing cell cycle activity marked by Ki67, and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration. PMID:27097795

  11. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays.

    PubMed

    Titmarsh, Drew M; Glass, Nick R; Mills, Richard J; Hidalgo, Alejandro; Wolvetang, Ernst J; Porrello, Enzo R; Hudson, James E; Cooper-White, Justin J

    2016-01-01

    Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways, however, it remains unclear as to what extent these pathways can be exploited, either individually or in combination, in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro, but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways, we developed a high-density microbioreactor array (HDMA) - a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt, Hedgehog, IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation, inducing cell cycle activity marked by Ki67, and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration. PMID:27097795

  12. An evaluation of a novel chick cardiomyocyte micromass culture assay with two teratogens/embryotoxins associated with heart defects.

    PubMed

    Hurst, Helena S; Clothier, Richard H; Pratten, Margaret

    2007-10-01

    This study was aimed at determining whether the chick cardiomyocyte micromass (MM) system could be employed to predict the teratogenicity/embryotoxicity of exogenous chemicals. Two documented teratogens/embryotoxins, sodium valproate (the sodium salt of valproic acid; VPA) and all-trans retinoic acid (tRA), were used in the initial phase of the study. White Leghorn 5-day-old embryo hearts were dissociated to produce a cardiomyocyte suspension in Dulbecco's Modified Eagle's Medium. Cultures were incubated at 37 degrees C in 5% CO(2) in air, and observations were made every 24 hours over 5 days, for the detection of beating. Culture viability was assessed by using the resazurin reduction assay for determining culture activity and the kenacid blue assay for determining cell number. It was found that tRA significantly reduced cell activity and beating, whilst not affecting total cell number. VPA up to 500 microM induced no cytotoxicity in the MM cardiomyocyte cultures, whilst all the VPA concentrations tested reduced beating. The results demonstrate the potential of the chick cardiomyocyte MM culture assay to identify teratogens/embryotoxins that alter functionality, which may result in a teratogenic outcome, whilst not causing cytotoxicity (direct embryotoxicity). This could form part of a screen for developmental toxicity related to cardiac function, whilst limb cultures and brain cultures based on the same system could be relevant to teratogenic effects on those tissues. PMID:18001172

  13. Mechanochemotransduction During Cardiomyocyte Contraction Is Mediated by Localized Nitric Oxide Signaling

    PubMed Central

    Jian, Zhong; Han, Huilan; Zhang, Tieqiao; Puglisi, Jose; Izu, Leighton T.; Shaw, John A.; Onofiok, Ekama; Erickson, Jeffery R.; Chen, Yi-Je; Horvath, Balazs; Shimkunas, Rafael; Xiao, Wenwu; Li, Yuanpei; Pan, Tingrui; Chan, James; Banyasz, Tamas; Tardiff, Jil C.; Chiamvimonvat, Nipavan; Bers, Donald M.; Lam, Kit S.; Chen-Izu, Ye

    2014-01-01

    Cardiomyocytes contract against a mechanical load during each heartbeat, and excessive mechanical stress leads to heart diseases. Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, we found that nitric oxide synthase (NOS) was involved in transducing mechanical load to alter Ca2+ dynamics. In mouse ventricular myocytes, afterload increased the systolic Ca2+ transient, which enhanced contractility to counter mechanical load, but also caused spontaneous Ca2+ sparks during diastole that could be arrhythmogenic. The increases in the Ca2+ transient and sparks were attributable to increased ryanodine receptor (RyR) sensitivity because the amount of Ca2+ in the sarcoplasmic reticulum load was unchanged. Either pharmacological inhibition or genetic deletion of nNOS (or NOS1), but not of eNOS (or NOS3), prevented afterload-induced Ca2+ sparks. This differential effect may arise from localized NO signaling, arising from the proximity of nNOS to RyR, as determined by super-resolution imaging. Ca2+-calmodulin–dependent protein kinase II (CaMKII) and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) also contributed to afterload-induced Ca2+ sparks. Cardiomyocytes from a mouse model of familial hypertrophic cardiomyopathy exhibited enhanced mechanotransduction and frequent arrhythmogenic Ca2+ sparks. Inhibiting nNOS and CaMKII, but not NOX2, in cardiomyocytes from this model eliminated the Ca2+ sparks, suggesting mechanotransduction activated nNOS and CaMKII independently from NOX2. Thus, our data identify nNOS, CaMKII, and NOX2 as key mediators in mechanochemotransduction during cardiac contraction, which provides new therapeutic targets for treating mechanical stress–induced Ca2+ dysregulation, arrhythmias, and cardiomyopathy. PMID:24643800

  14. Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism.

    PubMed

    Gabrielová, Eva; Jabůrek, Martin; Gažák, Radek; Vostálová, Jitka; Ježek, Jan; Křen, Vladimír; Modrianský, Martin

    2010-12-01

    Reactive oxygen species (ROS) originating from mitochondria are perceived as a factor contributing to cell aging and means have been sought to attenuate ROS formation with the aim of extending the cell lifespan. Silybin and dehydrosilybin, two polyphenolic compounds, display a plethora of biological effects generally ascribed to their known antioxidant capacity. When investigating the cytoprotective effects of these two compounds in the primary cell cultures of neonatal rat cardiomyocytes, we noted the ability of dehydrosilybin to de-energize the cells by monitoring JC-1 fluorescence. Experiments evaluating oxygen consumption and membrane potential revealed that dehydrosilybin uncouples the respiration of isolated rat heart mitochondria albeit with a much lower potency than synthetic uncouplers. Furthermore, dehydrosilybin revealed a very high potency in suppressing ROS formation in isolated rat heart mitochondria with IC(50) = 0.15 μM. It is far more effective than its effect in a purely chemical system generating superoxide or in cells capable of oxidative burst, where the IC(50) for dehydrosilybin exceeds 50 μM. Dehydrosilybin also attenuated ROS formation caused by rotenone in the primary cultures of neonatal rat cardiomyocytes. We infer that the apparent uncoupler-like activity of dehydrosilybin is the basis of its ROS modulation effect in neonatal rat cardiomyocytes and leads us to propose a hypothesis on natural ischemia preconditioning by dietary polyphenols. PMID:21153691

  15. Methods for Assessing the Electromechanical Integration of Human Pluripotent Stem Cell-Derived Cardiomyocyte Grafts

    PubMed Central

    Zhu, Wei-Zhong; Filice, Dominic; Palpant, Nathan J.; Laflamme, Michael A.

    2014-01-01

    Cardiomyocytes derived from human pluripotent stem cells show tremendous promise for the replacement of myocardium and contractile function lost to infarction. However, until recently, no methods were available to directly determine whether these stem cell-derived grafts actually couple with host myocardium and fire synchronously following transplantation in either intact or injured hearts. To resolve this uncertainty, our group has developed techniques for the intravital imaging of hearts engrafted with stem cell-derived cardiomyocytes that have been modified to express the genetically encoded protein calcium sensor, GCaMP. When combined with the simultaneously recorded electrocardiogram, this protocol allows one to make quantitative assessments as to the presence and extent of host–graft electrical coupling as well as the timing and pattern of graft activation. As described here, this system has been employed to investigate the electromechanical integration of human embryonic stem cell-derived cardiomyocytes in a guinea pig model of cardiac injury, but analogous approaches should be applicable to other human graft cell types and animal models. PMID:25070341

  16. Coordinate Nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment

    PubMed Central

    Cai, Wenqing; Albini, Sonia; Wei, Ke; Willems, Erik; Guzzo, Rosa M.; Tsuda, Masanao; Giordani, Lorenzo; Spiering, Sean; Kurian, Leo; Yeo, Gene W.; Puri, Pier Lorenzo; Mercola, Mark

    2013-01-01

    A critical but molecularly uncharacterized step in heart formation and regeneration is the process that commits progenitor cells to differentiate into cardiomyocytes. Here, we show that the endoderm-derived dual Nodal/bone morphogenetic protein (BMP) antagonist Cerberus-1 (Cer1) in embryonic stem cell cultures orchestrates two signaling pathways that direct the SWI/SNF chromatin remodeling complex to cardiomyogenic loci in multipotent (KDR/Flk1+) progenitors, activating lineage-specific transcription. Transient inhibition of Nodal by Cer1 induces Brahma-associated factor 60c (Baf60c), one of three Baf60 variants (a, b, and c) that are mutually exclusively assembled into SWI/SNF. Blocking Nodal and BMP also induces lineage-specific transcription factors Gata4 and Tbx5, which interact with Baf60c. siRNA to Cer1, Baf60c, or the catalytic SWI/SNF subunit Brg1 prevented the developmental opening of chromatin surrounding the Nkx2.5 early cardiac enhancer and cardiomyocyte differentiation. Overexpression of Baf60c fully rescued these deficits, positioning Baf60c and SWI/SNF function downstream from Cer1. Thus, antagonism of Nodal and BMP coordinates induction of the myogenic Baf60c variant and interacting transcription factors to program the developmental opening of cardiomyocyte-specific loci in chromatin. This is the first demonstration that cues from the progenitor cell environment direct the subunit variant composition of SWI/SNF to remodel the transcriptional landscape for lineage-specific differentiation. PMID:24186978

  17. High Throughput Screening Identifies a Novel Compound Protecting Cardiomyocytes from Doxorubicin-Induced Damage

    PubMed Central

    Gergely, Szabolcs; Hegedűs, Csaba; Lakatos, Petra; Kovács, Katalin; Gáspár, Renáta; Csont, Tamás; Virág, László

    2015-01-01

    Antracyclines are effective antitumor agents. One of the most commonly used antracyclines is doxorubicin, which can be successfully used to treat a diverse spectrum of tumors. Application of these drugs is limited by their cardiotoxic effect, which is determined by a lifetime cumulative dose. We set out to identify by high throughput screening cardioprotective compounds protecting cardiomyocytes from doxorubicin-induced injury. Ten thousand compounds of ChemBridge's DIVERSet compound library were screened to identify compounds that can protect H9C2 rat cardiomyocytes against doxorubicin-induced cell death. The most effective compound proved protective in doxorubicin-treated primary rat cardiomyocytes and was further characterized to demonstrate that it significantly decreased doxorubicin-induced apoptotic and necrotic cell death and inhibited doxorubicin-induced activation of JNK MAP kinase without having considerable radical scavenging effect or interfering with the antitumor effect of doxorubicin. In fact the compound identified as 3-[2-(4-ethylphenyl)-2-oxoethyl]-1,2-dimethyl-1H-3,1-benzimidazol-3-ium bromide was toxic to all tumor cell lines tested even without doxorubicine treatment. This benzimidazole compound may lead, through further optimalization, to the development of a drug candidate protecting the heart from doxorubicin-induced injury. PMID:26137186

  18. Analysis of cardiomyocyte movement in the developing murine heart.

    PubMed

    Hashimoto, Hisayuki; Yuasa, Shinsuke; Tabata, Hidenori; Tohyama, Shugo; Seki, Tomohisa; Egashira, Toru; Hayashiji, Nozomi; Hattori, Fumiyuki; Kusumoto, Dai; Kunitomi, Akira; Takei, Makoto; Kashimura, Shin; Yozu, Gakuto; Shimojima, Masaya; Motoda, Chikaaki; Muraoka, Naoto; Nakajima, Kazunori; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Fukuda, Keiichi

    2015-09-01

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. PMID:26168730

  19. Cardiomyocyte Regeneration in the mdx Mouse Model of Nonischemic Cardiomyopathy

    PubMed Central

    Laval, Steven; Owens, William Andrew

    2015-01-01

    Endogenous regeneration has been demonstrated in the mammalian heart after ischemic injury. However, approximately one-third of cases of heart failure are secondary to nonischemic heart disease and cardiac regeneration in these cases remains relatively unexplored. We, therefore, aimed at quantifying the rate of new cardiomyocyte formation at different stages of nonischemic cardiomyopathy. Six-, 12-, 29-, and 44-week-old mdx mice received a 7 day pulse of BrdU. Quantification of isolated cardiomyocyte nuclei was undertaken using cytometric analysis to exclude nondiploid nuclei. Between 6–7 and 12–13 weeks, there was a statistically significant increase in the number of BrdU-labeled nuclei in the mdx hearts compared with wild-type controls. This difference was lost by the 29–30 week time point, and a significant decrease in cardiomyocyte generation was observed in both the control and mdx hearts by 44–45 weeks. Immunohistochemical analysis demonstrated BrdU-labeled nuclei exclusively in mononucleated cardiomyocytes. This study demonstrates cardiomyocyte regeneration in a nonischemic model of mammalian cardiomyopathy, controlling for changes in nuclear ploidy, which is lost with age, and confirms a decrease in baseline rates of cardiomyocyte regeneration with aging. While not attempting to address the cellular source of regeneration, it confirms the potential utility of innate regeneration as a therapeutic target. PMID:25749191

  20. Biomechanical Characterization of Cardiomyocyte Using PDMS Pillar with Microgrooves.

    PubMed

    Oyunbaatar, Nomin-Erdene; Lee, Deok-Hyu; Patil, Swati J; Kim, Eung-Sam; Lee, Dong-Weon

    2016-01-01

    This paper describes the surface-patterned polydimethylsiloxane (PDMS) pillar arrays for enhancing cell alignment and contraction force in cardiomyocytes. The PDMS micropillar (μpillar) arrays with microgrooves (μgrooves) were fabricated using a unique micro-mold made using SU-8 double layer processes. The spring constant of the μpillar arrays was experimentally confirmed using atomic force microscopy (AFM). After culturing cardiac cells on the two different types of μpillar arrays, with and without grooves on the top of μpillar, the characteristics of the cardiomyocytes were analyzed using a custom-made image analysis system. The alignment of the cardiomyocytes on the μgrooves of the μpillars was clearly observed using a DAPI staining process. The mechanical force generated by the contraction force of the cardiomyocytes was derived from the displacement of the μpillar arrays. The contraction force of the cardiomyocytes aligned on the μgrooves was 20% higher than that of the μpillar arrays without μgrooves. The experimental results prove that applied geometrical stimulus is an effective method for aligning and improving the contraction force of cardiomyocytes. PMID:27517924

  1. Mapping neural circuits with activity-dependent nuclear import of a transcription factor.

    PubMed

    Masuyama, Kaoru; Zhang, Yi; Rao, Yi; Wang, Jing W

    2012-03-01

    Abstract: Nuclear factor of activated T cells (NFAT) is a calcium-responsive transcription factor. We describe here an NFAT-based neural tracing method-CaLexA (calcium-dependent nuclear import of LexA)-for labeling active neurons in behaving animals. In this system, sustained neural activity induces nuclear import of the chimeric transcription factor LexA-VP16-NFAT, which in turn drives green fluorescent protein (GFP) reporter expression only in active neurons. We tested this system in Drosophila and found that volatile sex pheromones excite specific neurons in the olfactory circuit. Furthermore, complex courtship behavior associated with multi-modal sensory inputs activated neurons in the ventral nerve cord. This method harnessing the mechanism of activity-dependent nuclear import of a transcription factor can be used to identify active neurons in specific neuronal population in behaving animals. PMID:22236090

  2. MicroRNA-29a-3p attenuates ET-1-induced hypertrophic responses in H9c2 cardiomyocytes.

    PubMed

    Li, Man; Wang, Nan; Zhang, Jian; He, Hong-Peng; Gong, Hui-Qin; Zhang, Rui; Song, Tie-Feng; Zhang, Li-Nan; Guo, Zhi-Xia; Cao, Dong-Sun; Zhang, Tong-Cun

    2016-07-01

    Transcription factor nuclear factor of activated T cells c4 (NFATc4) is the best-characterized target for the development of cardiac hypertrophy. Aberrant microRNA-29 (miR-29) expression is involved in the development of cardiac fibrosis and congestive heart failure. However, whether miR-29 regulates hypertrophic processes is still not clear. In this study, we investigated the potential functions of miR-29a-3p in endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. We showed that miR-29a-3p was down-regulated in ET-1-treated H9c2 cardiomyocytes. Overexpression of miR-29a-3p significantly reduced ET-1-induced hypertrophic responses in H9c2 cardiomyocytes, which was accompanied by a decrease in NFATc4 expression. miR-29a-3p targeted directly to the 3'-UTR of NFATc4 mRNA and silenced NFATc4 expression. Our results indicate that miR-29a-3p inhibits ET-1-induced cardiomyocyte hypertrophy via inhibiting NFATc4 expression. PMID:26992639

  3. Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats: cardioprotective role of lycopene.

    PubMed

    Yue, Rongchuan; Xia, Xuewei; Jiang, Jiahui; Yang, Dezhong; Han, Yu; Chen, Xiongwen; Cai, Yue; Li, Liangpeng; Wang, Wei Eric; Zeng, Chunyu

    2015-09-01

    Mitochondrial (mt) dysfunction and oxidative stress are involved in the pathogenesis of ischemia/reperfusion (I/R)-injury. Lycopene, a lipophilic antioxidant found mainly in tomatoes and in other vegetables and fruits, can protect mtDNA against oxidative damage. However, the role of mtDNA in myocardial I/R-injury is unclear. In the present study, we aimed to determine if and how lycopene protects cardiomyocytes from I/R-injury. In both in vitro and in vivo studies, I/R-injury increased mt 8-hydroxyguanine (8-OHdG) content, decreased mtDNA content and mtDNA transcription levels, and caused mitochondrial dysfunction in cardiomyocytes. These effects of I/R injury on cardiomycoytes were blocked by pre-treatment with lycopene. MtDNA depletion alone was sufficient to induce cardiomyocyte death. I/R-injury decreased the protein level of a key activator of mt transcription, mitochondrial transcription factor A (Tfam), which was blocked by lycopene. The protective effect of lycopene on mtDNA was associated with a reduction in mitochondrial ROS production and stabilization of Tfam. In conclusion, lycopene protects cardiomyocytes from the oxidative damage of mtDNA induced by I/R-injury. PMID:25656550

  4. Substance P Receptor Signaling Mediates Doxorubicin-Induced Cardiomyocyte Apoptosis and Triple-Negative Breast Cancer Chemoresistance

    PubMed Central

    Robinson, Prema; Kasembeli, Moses; Bharadwaj, Uddalak; Engineer, Nikita; Eckols, Kris T.; Tweardy, David J.

    2016-01-01

    Doxorubicin (DOX), an anthracycline, is broadly considered the most active single agent available for treating breast cancer but has been known to induce cardiotoxicity. Although DOX is highly effective in treating triple-negative breast cancer (TNBC), DOX can have poor outcomes owing to induction of chemoresistance. There is an urgent need to develop new therapies for TNBC aimed at improving DOX outcome and DOX-induced cardiotoxicity. Substance P (SP), a neuropeptide involved in pain transmission is known to stimulate production of reactive oxygen species (ROS). Elevated cardiac ROS is linked with heart injury and failure. We investigated the role of SP in chemotherapy-associated death of cardiomyocytes and chemoresistance. We showed that pretreating a cardiomyocyte cell line (H9C2) and a TNBC cell line (MDA-MB 231) with aprepitant, a SP receptor antagonist that is routinely used to treat chemotherapy-associated associated nausea, decreased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in cardiomyocytes and increased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in TNBC cells compared with cells treated with DOX alone. Our findings demonstrate the ability of aprepitant to decrease DOX-induced killing of cardiomyocytes and to increase cancer cell sensitivity to DOX, which has tremendous clinical significance. PMID:26981525

  5. Downregulation of RACK1 is associated with cardiomyocyte apoptosis after myocardial ischemia/reperfusion injury in adult rats.

    PubMed

    Qian, Long; Shi, Jiahai; Zhang, Chi; Lu, Jiawei; Lu, Xiaoning; Wu, Kunpeng; Yang, Chen; Yan, Daliang; Zhang, Chao; You, Qingsheng; Liu, Xiaojuan

    2016-03-01

    The receptor for activated C kinase 1 (RACK1) is a multifaceted scaffolding protein that mediates the shuttling of activated protein kinase C (PKC) to cellular membranes. In addition, RACK1 could decrease cell apoptosis in a variety of disease models. However, the function of RACK1 in cardiomyocyte apoptosis after myocardial ischemia/reperfusion (I/R) is unknown. In this study, male Sprague-Dawley rats were anesthetized and subjected to myocardial I/R insult consisting of 30 min left anterior descending coronary artery (LAD) occlusion followed by reperfusion for 1, 2, 4, 6, 8, 12, and 24 h. The expression of RACK1 was decreased after myocardial I/R and was associated with cardiomyocyte apoptosis. To further verify the relationship between RACK1 and cardiomyocyte apoptosis, H9c2 cardiomyocytes were cultured under hypoxia for 6 h, then maintained in the regular incubator to reoxygenation. After H9c2 cells were transfected with Flag-RACK1 to overexpress RACK1, RACK1 expression was upregulated in hypoxia/reoxygenation (H/R) 4 h group accompanied with the decrease of cleaved caspase-3 and the increase of Bcl-2 expression. Terminal transferase-mediated biotin dUTP nick end labeling (TUNEL) assay showed that RACK1 overexpression inhibited H9c2 cell apoptosis induced by H/R treatment. Our data suggested that RACK1 might suppress cardiomyocyte apoptosis after I/R, providing a novel molecular target for the therapy of ischemia heart disease. PMID:26659395

  6. Oxidized Low-Density Lipoprotein Induces Apoptosis in Cultured Neonatal Rat Cardiomyocytes by Modulating the TLR4/NF-κB Pathway

    PubMed Central

    Wang, Xiantao; Sun, Yuhan; Yang, Huafeng; Lu, Yuanxi; Li, Lang

    2016-01-01

    This study was designed to investigate the apoptosis induced by oxidized low-density lipoprotein (ox-LDL) in cultured neonatal rat cardiomyocytes and explore the possible mechanisms. We evaluated whether ox-LDL-induced apoptosis depended in part on the activation of toll-like receptor-4(TLR4)/Nuclear factor κB (NF-κB) signaling pathway. Cells were cultivated with and without ox-LDL. Cell apoptosis was evaluated by flow cytometry. Immunofluorescence, western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were conducted to assess protein or mRNA expressions. Resatorvid (TAK-242), an exogenous synthetic antagonist for TLR4, was used to inhibit TLR4 signal transduction. Dose- and time-dependent apoptotic index of cardiomyocytes occurred after ox-LDL treatment. Incubation of cardiomyocytes with ox-LDL (50 μg/mL) for 24 hours increased TLR4 and NF-κB expressions significantly. Decrease of Bcl-2/Bax protein ratio, activation of caspase-3 and 9 were also detected. Ox-LDL-induced cardiomyocyte apoptosis, TLR4 and NF-κB expressions were attenuated by pretreatment with TAK-242. In conclusion, our findings indicate that the apoptosis induced by ox-LDL in cultured neonatal rat cardiomyocytes at least in part by modulating the TLR4/NF-κB signaling pathway. PMID:27279424

  7. [Disruption of chemomechanical coupling in cardiomyocyte myofibrils in L-tyroxine toxicosis and athyreosis].

    PubMed

    Karsanov, N V; Tatulashvili, D R; Sukoian, G V; Kuchava, L T

    1993-01-01

    Skin assay of dog myocardial fibers showed alterations in free energy of ATP hydrolysis correlated distinctly with the rate of activity generated by the fiber (r = 0.87; P < 0.01). Impairment of chemomechanical coupling occurred in the system of myocardial contractile proteins under conditions of athyreosis and L-thyroxin-induced toxicosis, which is responsible for qualitative and quantitative deteriorations of energy transformation in cardiomyocyte myofibrils. The sites of energy generation and liberation appear to be spatially disconnected in the active actomyosin complex and their coupling and uncoupling is related to properties of actin. PMID:8303873

  8. Cavβ2 transcription start site variants modulate calcium handling in newborn rat cardiomyocytes.

    PubMed

    Moreno, Cristian; Hermosilla, Tamara; Morales, Danna; Encina, Matías; Torres-Díaz, Leandro; Díaz, Pablo; Sarmiento, Daniela; Simon, Felipe; Varela, Diego

    2015-12-01

    In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVβ2. To date, five distinct CaVβ2 transcriptional start site (TSS) variants (CaVβ2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca(2+) handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVβ2 TSS variants on endogenous L-type current and Ca(2+) handling was explored by adenoviral-mediated overexpression of each CaVβ2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVβ2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVβ2a and smaller in CaVβ2d. Interestingly, the contribution of Ca(2+) influx and Ca(2+) release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVβ2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVβ2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy. PMID:26265381

  9. Disruption of the circadian clock within the cardiomyocyte influences mycardial contractile function, metabolism, and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variatio...

  10. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and contractile function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that the circadian clock within the cardiomyocyte plays a role in regulating myo...

  11. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes.

    PubMed

    Eng, George; Lee, Benjamin W; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S; Keller, Gordon; Robinson, Richard B; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  12. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes

    PubMed Central

    Eng, George; Lee, Benjamin W.; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S.; Keller, Gordon; Robinson, Richard B.; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  13. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and contractile function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that circadian clock within the cardiomyocyte plays a role in regulating myocardia...

  14. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes.

    PubMed

    Zebrowski, David C; Vergarajauregui, Silvia; Wu, Chi-Chung; Piatkowski, Tanja; Becker, Robert; Leone, Marina; Hirth, Sofia; Ricciardi, Filomena; Falk, Nathalie; Giessl, Andreas; Just, Steffen; Braun, Thomas; Weidinger, Gilbert; Engel, Felix B

    2015-01-01

    Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. PMID:26247711

  15. mTOR, cardiomyocytes and inflammation in cardiac hypertrophy.

    PubMed

    Xu, Lifen; Brink, Marijke

    2016-07-01

    Mammalian target of rapamycin (mTOR) is an evolutionary conserved kinase that senses the nutrient and energy status of cells, the availability of growth factors, stress stimuli and other cellular and environmental cues. It responds by regulating a range of cellular processes related to metabolism and growth in accordance with the available resources and intracellular needs. mTOR has distinct functions depending on its assembly in the structurally distinct multiprotein complexes mTORC1 or mTORC2. Active mTORC1 enhances processes including glycolysis, protein, lipid and nucleotide biosynthesis, and it inhibits autophagy. Reported functions for mTORC2 after growth factor stimulation are very diverse, are tissue and cell-type specific, and include insulin-stimulated glucose transport and enhanced glycogen synthesis. In accordance with its cellular functions, mTOR has been demonstrated to regulate cardiac growth in response to pressure overload and is also known to regulate cells of the immune system. The present manuscript presents recently obtained insights into mechanisms whereby mTOR may change anabolic, catabolic and stress response pathways in cardiomocytes and discusses how mTOR may affect inflammatory cells in the heart during hemodynamic stress. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26775585

  16. Cardiomyocyte-endothelial cell control of lipoprotein lipase.

    PubMed

    Chiu, Amy Pei-Ling; Wan, Andrea; Rodrigues, Brian

    2016-10-01

    In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26995461

  17. Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy.

    PubMed

    Wu, Hsiang-En; Baumgardt, Shelley L; Fang, Juan; Paterson, Mark; Liu, Yanan; Du, Jianhai; Shi, Yang; Qiao, Shigang; Bosnjak, Zeljko J; Warltier, David C; Kersten, Judy R; Ge, Zhi-Dong

    2016-01-01

    Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca(2+) handling proteins, intracellular [Ca(2+)]i, and sarcoplasmic reticulum Ca(2+) content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy. PMID:27295516

  18. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors.

    PubMed

    Gaspar, John Antonydas; Doss, Michael Xavier; Hengstler, Jan Georg; Cadenas, Cristina; Hescheler, Jürgen; Sachinidis, Agapios

    2014-04-11

    Recently, growing attention has been directed toward stem cell metabolism, with the key observation that the plasticity of stem cells also reflects the plasticity of their energy substrate metabolism. There seems to be a clear link between the self-renewal state of stem cells, in which cells proliferate without differentiation, and the activity of specific metabolic pathways. Differentiation is accompanied by a shift from anaerobic glycolysis to mitochondrial respiration. This metabolic switch of differentiating stem cells is required to cover the energy demands of the different organ-specific cell types. Among other metabolic signatures, amino acid and carbohydrate metabolism is most prominent in undifferentiated embryonic stem cells, whereas the fatty acid metabolic signature is unique in cardiomyocytes derived from embryonic stem cells. Identifying the specific metabolic pathways involved in pluripotency and differentiation is critical for further progress in the field of developmental biology and regenerative medicine. The recently generated knowledge on metabolic key processes may help to generate mature stem cell-derived somatic cells for therapeutic applications without the requirement of genetic manipulation. In the present review, the literature about metabolic features of stem cells and their cardiovascular cell derivatives as well as the specific metabolic gene signatures differentiating between stem and differentiated cells are summarized and discussed. PMID:24723659

  19. Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy

    PubMed Central

    Wu, Hsiang-En; Baumgardt, Shelley L.; Fang, Juan; Paterson, Mark; Liu, Yanan; Du, Jianhai; Shi, Yang; Qiao, Shigang; Bosnjak, Zeljko J.; Warltier, David C.; Kersten, Judy R.; Ge, Zhi-Dong

    2016-01-01

    Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca2+ handling proteins, intracellular [Ca2+]i, and sarcoplasmic reticulum Ca2+ content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy. PMID:27295516

  20. Echinochrome A Protects Mitochondrial Function in Cardiomyocytes against Cardiotoxic Drugs

    PubMed Central

    Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In-Sung; Lee, Seon Joong; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoryev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (Ech A) is a naphthoquinoid pigment from sea urchins that possesses antioxidant, antimicrobial, anti-inflammatory and chelating abilities. Although Ech A is the active substance in the ophthalmic and cardiac drug Histochrome®, its underlying cardioprotective mechanisms are not well understood. In this study, we investigated the protective role of Ech A against toxic agents that induce death of rat cardiac myoblast H9c2 cells and isolated rat cardiomyocytes. We found that the cardiotoxic agents tert-Butyl hydroperoxide (tBHP, organic reactive oxygen species (ROS) inducer), sodium nitroprusside (SNP; anti-hypertension drug), and doxorubicin (anti-cancer drug) caused mitochondrial dysfunction such as increased ROS level and decreased mitochondrial membrane potential. Co-treatment with Ech A, however, prevented this decrease in membrane potential and increase in ROS level. Co-treatment of Ech A also reduced the effects of these cardiotoxic agents on mitochondrial oxidative phosphorylation and adenosine triphosphate level. These findings indicate the therapeutic potential of Ech A for reducing cardiotoxic agent-induced damage. PMID:24828295

  1. CDK inhibitors, p21{sup Cip1} and p27{sup Kip1}, participate in cell cycle exit of mammalian cardiomyocytes

    SciTech Connect

    Tane, Shoji; Ikenishi, Aiko; Okayama, Hitomi; Iwamoto, Noriko; Nakayama, Keiichi I.; Takeuchi, Takashi

    2014-01-17

    Highlights: •Expression of p21 and p27 in the hearts showed a peak during postnatal stages. •p21 and p27 bound to cyclin E, cyclin A and CDK2 in the hearts at postnatal stages. •Cardiomyocytes in both KO mice showed failure in the cell cycle exit at G1-phase. •These data show the first apparent phenotypes in the hearts of Cip/Kip KO mice. -- Abstract: Mammalian cardiomyocytes actively proliferate during embryonic stages, following which cardiomyocytes exit their cell cycle after birth. The irreversible cell cycle exit inhibits cardiac regeneration by the proliferation of pre-existing cardiomyocytes. Exactly how the cell cycle exit occurs remains largely unknown. Previously, we showed that cyclin E- and cyclin A-CDK activities are inhibited before the CDKs levels decrease in postnatal stages. This result suggests that factors such as CDK inhibitors (CKIs) inhibit CDK activities, and contribute to the cell cycle exit. In the present study, we focused on a Cip/Kip family, which can inhibit cyclin E- and cyclin A-CDK activities. Expression of p21{sup Cip1} and p27{sup Kip1} but not p57{sup Kip2} showed a peak around postnatal day 5, when cyclin E- and cyclin A-CDK activities start to decrease. p21{sup Cip1} and p27{sup Kip1} bound to cyclin E, cyclin A and CDK2 at postnatal stages. Cell cycle distribution patterns of postnatal cardiomyocytes in p21{sup Cip1} and p27{sup Kip1} knockout mice showed failure in the cell cycle exit at G1-phase, and endoreplication. These results indicate that p21{sup Cip1} and p27{sup Kip} play important roles in the cell cycle exit of postnatal cardiomyocytes.

  2. 15-deoxy-Δ12,14-PGJ2 promotes inflammation and apoptosis in cardiomyocytes via the DP2/MAPK/TNFα axis

    PubMed Central

    Koyani, Chintan N.; Windischhofer, Werner; Rossmann, Christine; Jin, Ge; Kickmaier, Sandra; Heinzel, Frank R.; Groschner, Klaus; Alavian-Ghavanini, Ali; Sattler, Wolfgang; Malle, Ernst

    2014-01-01

    Background Prostaglandins (PGs), lipid autacoids derived from arachidonic acid, play a pivotal role during inflammation. PGD2 synthase is abundantly expressed in heart tissue and PGD2 has recently been found to induce cardiomyocyte apoptosis. PGD2 is an unstable prostanoid metabolite; therefore the objective of the present study was to elucidate whether its final dehydration product, 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, present at high levels in ischemic myocardium) might cause cardiomyocyte damage. Methods and results Using specific (ant)agonists we show that 15d-PGJ2 induced formation of intracellular reactive oxygen species (ROS) and phosphorylation of p38 and p42/44 MAPKs via the PGD2 receptor DP2 (but not DP1 or PPARγ) in the murine atrial cardiomyocyte HL-1 cell line. Activation of the DP2-ROS-MAPK axis by 15d-PGJ2 enhanced transcription and translation of TNFα and induced apoptosis in HL-1 cardiomyocytes. Silencing of TNFα significantly attenuated the extrinsic (caspase-8) and intrinsic apoptotic pathways (bax and caspase-9), caspase-3 activation and downstream PARP cleavage and γH2AX activation. The apoptotic machinery was unaffected by intracellular calcium, transcription factor NF-κB and its downstream target p53. Of note, 9,10-dihydro-15d-PGJ2 (lacking the electrophilic carbon atom in the cyclopentenone ring) did not activate cellular responses. Selected experiments performed in primary murine cardiomyocytes confirmed data obtained in HL-1 cells namely that the intrinsic and extrinsic apoptotic cascades are activated via DP2/MAPK/TNFα signaling. Conclusions We conclude that the reactive α,β-unsaturated carbonyl group of 15d-PGJ2 is responsible for the pronounced upregulation of TNFα promoting cardiomyocyte apoptosis. We propose that inhibition of DP2 receptors could provide a possibility to modulate 15d-PGJ2-induced myocardial injury. PMID:24698234

  3. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells.

    PubMed

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; MacLellan, W Robb; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  4. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  5. Increasing tetrahydrobiopterin in cardiomyocytes adversely affects cardiac redox state and mitochondrial function independently of changes in NO production.

    PubMed

    Sethumadhavan, Savitha; Whitsett, Jennifer; Bennett, Brian; Ionova, Irina A; Pieper, Galen M; Vasquez-Vivar, Jeannette

    2016-04-01

    Tetrahydrobiopterin (BH4) represents a potential strategy for the treatment of cardiac remodeling, fibrosis and/or diastolic dysfunction. The effects of oral treatment with BH4 (Sapropterin™ or Kuvan™) are however dose-limiting with high dose negating functional improvements. Cardiomyocyte-specific overexpression of GTP cyclohydrolase I (mGCH) increases BH4 several-fold in the heart. Using this model, we aimed to establish the cardiomyocyte-specific responses to high levels of BH4. Quantification of BH4 and BH2 in mGCH transgenic hearts showed age-based variations in BH4:BH2 ratios. Hearts of mice (<6 months) have lower BH4:BH2 ratios than hearts of older mice while both GTPCH activity and tissue ascorbate levels were higher in hearts of young than older mice. No evident changes in nitric oxide (NO) production assessed by nitrite and endogenous iron-nitrosyl complexes were detected in any of the age groups. Increased BH4 production in cardiomyocytes resulted in a significant loss of mitochondrial function. Diminished oxygen consumption and reserve capacity was verified in mitochondria isolated from hearts of 12-month old compared to 3-month old mice, even though at 12 months an improved BH4:BH2 ratio is established. Accumulation of 4-hydroxynonenal (4-HNE) and decreased glutathione levels were found in the mGCH hearts and isolated mitochondria. Taken together, our results indicate that the ratio of BH4:BH2 does not predict changes in neither NO levels nor cellular redox state in the heart. The BH4 oxidation essentially limits the capacity of cardiomyocytes to reduce oxidant stress. Cardiomyocyte with chronically high levels of BH4 show a significant decline in redox state and mitochondrial function. PMID:26826575

  6. Cardiac Stem Cell Secretome Protects Cardiomyocytes from Hypoxic Injury Partly via Monocyte Chemotactic Protein-1-Dependent Mechanism.

    PubMed

    Park, Chi-Yeon; Choi, Seung-Cheol; Kim, Jong-Ho; Choi, Ji-Hyun; Joo, Hyung Joon; Hong, Soon Jun; Lim, Do-Sun

    2016-01-01

    Cardiac stem cells (CSCs) were known to secrete diverse paracrine factors leading to functional improvement and beneficial left ventricular remodeling via activation of the endogenous pro-survival signaling pathway. However, little is known about the paracrine fact