Science.gov

Sample records for cardiovascular ultrasound imaging

  1. Ultrasound strain imaging for quantification of tissue function: cardiovascular applications

    NASA Astrophysics Data System (ADS)

    de Korte, Chris L.; Lopata, Richard G. P.; Hansen, Hendrik H. G.

    2013-03-01

    With ultrasound imaging, the motion and deformation of tissue can be measured. Tissue can be deformed by applying a force on it and the resulting deformation is a function of its mechanical properties. Quantification of this resulting tissue deformation to assess the mechanical properties of tissue is called elastography. If the tissue under interrogation is actively deforming, the deformation is directly related to its function and quantification of this deformation is normally referred as `strain imaging'. Elastography can be used for atherosclerotic plaques characterization, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. We developed radio frequency (RF) based ultrasound methods to assess the deformation at higher resolution and with higher accuracy than commercial methods using conventional image data (Tissue Doppler Imaging and 2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so 1D. We further extended this method to multiple directions and further improved precision by using compounding of data acquired at multiple beam steered angles. In arteries, the presence of vulnerable plaques may lead to acute events like stroke and myocardial infarction. Consequently, timely detection of these plaques is of great diagnostic value. Non-invasive ultrasound strain compounding is currently being evaluated as a diagnostic tool to identify the vulnerability of plaques. In the heart, we determined the strain locally and at high resolution resulting in a local assessment in contrary to conventional global functional parameters like cardiac output or shortening fraction.

  2. Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging

    PubMed Central

    Klibanov, Alexander L

    2013-01-01

    Ultrasound imaging is widely used in cardiovascular diagnostics. Contrast agents expand the range of tasks that ultrasound can perform. In the clinic in US, endocardial border delineation and left ventricle opacification have been an approved indication for more than a decade. However, myocardial perfusion contrast ultrasound studies are still at the clinical trials stage. Blood pool contrast and perfusion in other tissues might be an easier indication to achieve: general blood pool ultrasound contrast is in wider use in Europe, Canada, Japan, and China. Targeted (molecular) contrast microbubbles will be the next generation of ultrasound imaging probes, capable of specific delineation of the areas of disease by adherence to molecular targets. The shell of targeted microbubbles (currently in the preclinical research and early stage clinical trials) is decorated with the ligands (antibodies, peptides or mimetics, hormones, carbohydrates) that ensure firm binding to the molecular markers of disease. PMID:23913363

  3. Advances in ultrasound methods for high-resolution imaging of the cardiovascular system.

    PubMed

    Wickline, S A

    1997-07-01

    Acoustic microscopy entails the use of high-frequency high-resolution ultrasound methods to produce images of sound waves reflected from or propagated through some tissue of interest. The image contrast depends on microscopic differences in the intrinsic material properties of the substance imaged, such as mass density or compressibility. Pathologic changes in cardiovascular tissues at the subcellular level can be observed with high-frequency acoustic imaging techniques, based on alterations in the structure, properties, and organization of cells and their surrounding matrix. Potential applications extend from delineation of cardiovascular development in experimental animals to clinical characterization of the composition of atherosclerotic lesions with intravascular ultrasound and estimation of the potential for plaque rupture and infarction. (Trends Cardiovasc Med 1997;7:168-174). © 1997, Elsevier Science Inc. PMID:21235881

  4. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2001-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  5. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  6. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  7. Transvaginal ultrasound (image)

    MedlinePlus

    Transvaginal ultrasound is a method of imaging the genital tract in females. A hand held probe is inserted directly ... vaginal cavity to scan the pelvic structures, while ultrasound pictures are viewed on a monitor. The test ...

  8. Medical ultrasound imaging.

    PubMed

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy are shown. Systems using both linear and non-linear propagation of ultrasound are described. The blood velocity can also be non-invasively visualized using ultrasound and the basic signal processing for doing this is introduced. Examples for spectral velocity estimation, color flow imaging and the new vector velocity images are presented. PMID:17092547

  9. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X- ... use high frequency sound waves to produce an image and do not expose the individual to radiation. ...

  10. Ultrasound skin imaging.

    PubMed

    Alfageme Roldán, F

    2014-12-01

    The interaction of high-frequency ultrasound waves with the skin provides the basis for noninvasive, fast, and accessible diagnostic imaging. This tool is increasingly used in skin cancer and inflammatory conditions as well as in cosmetic dermatology. This article reviews the basic principles of skin ultrasound and its applications in the different areas of dermatology. PMID:24838227

  11. Cardiac 4D Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    D'hooge, Jan

    Volumetric cardiac ultrasound imaging has steadily evolved over the last 20 years from an electrocardiography (ECC) gated imaging technique to a true real-time imaging modality. Although the clinical use of echocardiography is still to a large extent based on conventional 2D ultrasound imaging it can be anticipated that the further developments in image quality, data visualization and interaction and image quantification of three-dimensional cardiac ultrasound will gradually make volumetric ultrasound the modality of choice. In this chapter, an overview is given of the technological developments that allow for volumetric imaging of the beating heart by ultrasound.

  12. Reflections on ultrasound image analysis.

    PubMed

    Alison Noble, J

    2016-10-01

    Ultrasound (US) image analysis has advanced considerably in twenty years. Progress in ultrasound image analysis has always been fundamental to the advancement of image-guided interventions research due to the real-time acquisition capability of ultrasound and this has remained true over the two decades. But in quantitative ultrasound image analysis - which takes US images and turns them into more meaningful clinical information - thinking has perhaps more fundamentally changed. From roots as a poor cousin to Computed Tomography (CT) and Magnetic Resonance (MR) image analysis, both of which have richer anatomical definition and thus were better suited to the earlier eras of medical image analysis which were dominated by model-based methods, ultrasound image analysis has now entered an exciting new era, assisted by advances in machine learning and the growing clinical and commercial interest in employing low-cost portable ultrasound devices outside traditional hospital-based clinical settings. This short article provides a perspective on this change, and highlights some challenges ahead and potential opportunities in ultrasound image analysis which may both have high impact on healthcare delivery worldwide in the future but may also, perhaps, take the subject further away from CT and MR image analysis research with time. PMID:27503078

  13. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  14. Ultrasound focusing images in superlattices

    NASA Astrophysics Data System (ADS)

    Narita, Michiko; Tanaka, Yukihiro; Tamura, Shin-ichiro

    2002-03-01

    We study theoretically ultrasound focusing in periodic multilayered structures, or superlattices, by solving the wave equation with the Green function method and calculating the transmitted ultrasound amplitude images of both the longitudinal and transverse modes. The constituent layers assumed are elastically isotropic but the periodically stacked structure is anisotropic. Thus anisotropy of ultrasound propagation is predicted even at low frequencies and it is enhanced significantly at higher frequencies due to the zone-folding effect of acoustic dispersion relations. An additional effect studied is the interference of ultrasound (known as the internal diffraction), which can be recognized when the propagation distance is comparable to the ultrasound wavelength. Numerical examples are developed for millimetre-scale Al/polymer multilayers used recently for imaging experiment with surface acoustic waves.

  15. Ultrasound in pregnancy (image)

    MedlinePlus

    The ultrasound has become a standard procedure used during pregnancy. It can demonstrate fetal growth and can detect increasing ... abnormalities, hydrocephalus, anencephaly, club feet, and other ... does not produce ionizing radiation and is considered ...

  16. Ultrasound-based lectures on cardiovascular physiology and reflexes for medical students.

    PubMed

    Paganini, M; Rubini, A

    2016-06-01

    Ultrasound has become a widely used diagnostic technique. While its role in patient evaluation is well known, its utility during preclinical courses such as anatomy and physiology is becoming increasingly recognized. The aim of the present study was to assess the feasibility/utility of integrating ultrasound-based sessions into conventional undergraduate medical school programs of physiology of the cardiovascular system and cardiovascular reflexes and to evaluate student perceptions of an ultrasound-based didactic session. Second-year medical students enrolled in the University of Padova attended a didactic session during which basic concepts regarding ultrasound instrumentation, image production, and spatial orientation were presented. Five anatomic sectors (the heart, aorta, neck vessels, inferior vena cava, and femoral veins) were then examined on a volunteer. Student perceptions of the images that were projected, the usefulness of the presentation, and the reproducibility of the experience were assessed at the end of the lecture with an anonymous questionnaire consisting of positive and negative items that were rated using a 5-point Likert scale and with two questions. One hundred eleven students attended the lecture; 99% of them found it very interesting, and none considered it boring or a waste of time. More than 96% thought it helped them to gain a better comprehension of the subject and would recommend it to a colleague. In conclusion, as ultrasound has been found to be a valuable resource for the teaching of physiology of the cardiovascular system and cardiovascular reflexes, efforts should be made to integrate ultrasound sessions into the traditional human physiology curriculum. PMID:27161816

  17. An Open System for Intravascular Ultrasound Imaging

    PubMed Central

    Qiu, Weibao; Chen, Yan; Li, Xiang; Yu, Yanyan; Cheng, Wang Fai; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Dai, Jiyan; Sun, Lei

    2013-01-01

    Visualization of the blood vessels can provide valuable morphological information for diagnosis and therapy strategies for cardiovascular disease. Intravascular ultrasound (IVUS) is able to delineate internal structures of vessel wall with fine spatial resolution. However, the developed IVUS is insufficient to identify the fibrous cap thickness and tissue composition of atherosclerotic lesions. Novel imaging strategies have been proposed, such as increasing the center frequency of ultrasound or using a modulated excitation technique to improve the accuracy of diagnosis. Dual-mode tomography combining IVUS with optical tomography has also been developed to determine tissue morphology and characteristics. The implementation of these new imaging methods requires an open system that allows users to customize the system for various studies. This paper presents the development of an IVUS system that has open structures to support various imaging strategies. The system design is based on electronic components and printed circuit board, and provides reconfigurable hardware implementation, programmable image processing algorithms, flexible imaging control, and raw RF data acquisition. In addition, the proposed IVUS system utilized a miniaturized ultrasound transducer constructed using PMN-PT single crystal for better piezoelectric constant and electromechanical coupling coefficient than traditional lead zirconate titanate (PZT) ceramics. Testing results showed that the IVUS system could offer a minimum detectable signal of 25 μV, allowing a 51 dB dynamic range at 47 dB gain, with a frequency range from 20 to 80 MHz. Finally, phantom imaging, in vitro IVUS vessel imaging, and multimodality imaging with photoacoustics were conducted to demonstrate the performance of the open system. PMID:23143570

  18. Cardiovascular and pulmonary dynamics by quantitative imaging

    NASA Technical Reports Server (NTRS)

    Wood, E. H.

    1976-01-01

    The accuracy and range of studies on cardiovascular and pulmonary functions can be greatly facilitated if the motions of the underlying organ systems throughout individual cycles can be directly visualized and readily measured with minimum or preferably no effect on these motions. Achievement of this objective requires development of techniques for quantitative noninvasive or minimally invasive dynamic and stop-action imaging of the organ systems. A review of advances in dynamic quantitative imaging of moving organs reveals that the revolutionary value of cross-sectional and three-dimensional images produced by various types of radiant energy such as X-rays and gamma rays, positrons, electrons, protons, light, and ultrasound for clinical diagnostic and biomedical research applications is just beginning to be realized. The fabrication of a clinically useful cross-section reconstruction device with sensing capabilities for both anatomical structural composition and chemical composition may be possible and awaits future development.

  19. The development of a combined b-mode, ARFI, and spectral Doppler ultrasound imaging system for investigating cardiovascular stiffness and hemodynamics

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.

    2011-03-01

    The progression of atherosclerotic disease, caused by the formation of plaques within arteries, is a complex process believed to be a function of the localized mechanical properties and hemodynamic loading associated with the arterial wall. It is hypothesized that measurements of vascular stiffness and wall-shear rate (WSR) may provide important information regarding vascular remodeling, endothelial function, and the growth of soft-lipid filled plaques that could help a clinician better diagnose a patient's risk of clinical events such as stroke. To that end, the approach taken in this work was to combine conventional B-mode, Acoustic Radiation Force Impulse (ARFI), Shear Wave Elasticity Imaging (SWEI), and spectral Doppler techniques into a single imaging system capable of simultaneously measuring the tissue displacements and WSR throughout the cardiac cycle and over several heartbeats. Implemented on a conventional scanner, the carotid arteries of human subjects were scanned to demonstrate the initial in vivo feasibility of the method. Two non-invasive ultrasound based imaging methods, SAD-SWEI and SAD-Gated Imaging, were developed that measure ARF-induced on-axis tissue displacements, off-axis transverse wave velocities, and WSR throughout the cardiac cycle. Human carotid artery scans were performed in vivo on 5 healthy subjects. Statistical differences were observed in both on-axis proximal wall displacements and transverse wave velocities during diastole compared to systole.

  20. Molecular probes for cardiovascular imaging.

    PubMed

    Liang, Grace; Nguyen, Patricia K

    2016-08-01

    Molecular probes provide imaging signal and contrast for the visualization, characterization, and measurement of biological processes at the molecular level. These probes can be designed to target the cell or tissue of interest and must be retained at the imaging site until they can be detected by the appropriate imaging modality. In this article, we will discuss the basic design of molecular probes, differences among the various types of probes, and general strategies for their evaluation of cardiovascular disease. PMID:27189171

  1. Evaluation of Carotid Plaque Using Ultrasound Imaging

    PubMed Central

    2016-01-01

    Traditional risk factors for predicting of cardiovascular disease are not always effective predictors for development of cardiovascular events. This review summarizes several newly developed noninvasive imaging techniques for evaluating carotid plaques and their role in cardiovascular disease risk. PMID:27358696

  2. Hepatic lesions segmentation in ultrasound nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Kissi, Adelaide A.; Cormier, Stephane; Pourcelot, Leandre; Tranquart, Francois

    2005-04-01

    Doppler has been used for many years for cardiovascular exploration in order to visualize the vessels walls and anatomical or functional diseases. The use of ultrasound contrast agents makes it possible to improve ultrasonic information. Nonlinear ultrasound imaging highlights the detection of these agents within an organ and hence is a powerful technique to image perfusion of an organ in real-time. The visualization of flow and perfusion provides important information for the diagnosis of various diseases as well as for the detection of tumors. However, the images are buried in noise, the speckle, inherent in the image formation. Furthermore at portal phase, there is often an absence of clear contrast between lesions and surrounding tissues because the organ is filled with agents. In this context, we propose a new method of automatic liver lesions segmentation in nonlinear imaging sequences for the quantification of perfusion. Our method of segmentation is divided into two stages. Initially, we developed an anisotropic diffusion step which raised the structural characteristics to eliminate the speckle. Then, a fuzzy competitive clustering process allowed us to delineate liver lesions. This method has been used to detect focal hepatic lesions (metastasis, nodular hyperplasia, adenoma). Compared to medical expert"s report obtained on 15 varied lesions, the automatic segmentation allows us to identify and delineate focal liver lesions during the portal phase which high accuracy. Our results show that this method improves markedly the recognition of focal hepatic lesions and opens the way for future precise quantification of contrast enhancement.

  3. Micro-ultrasound for preclinical imaging

    PubMed Central

    Foster, F. Stuart; Hossack, John; Adamson, S. Lee

    2011-01-01

    Over the past decade, non-invasive preclinical imaging has emerged as an important tool to facilitate biomedical discovery. Not only have the markets for these tools accelerated, but the numbers of peer-reviewed papers in which imaging end points and biomarkers have been used have grown dramatically. High frequency ‘micro-ultrasound’ has steadily evolved in the post-genomic era as a rapid, comparatively inexpensive imaging tool for studying normal development and models of human disease in small animals. One of the fundamental barriers to this development was the technological hurdle associated with high-frequency array transducers. Recently, new approaches have enabled the upper limits of linear and phased arrays to be pushed from about 20 to over 50 MHz enabling a broad range of new applications. The innovations leading to the new transducer technology and scanner architecture are reviewed. Applications of preclinical micro-ultrasound are explored for developmental biology, cancer, and cardiovascular disease. With respect to the future, the latest developments in high-frequency ultrasound imaging are described. PMID:22866232

  4. Ultrasound Research Interface - Cancer Imaging Program

    Cancer.gov

    The ultrasound research interface permits extensive instrument parameter control of a commercially available scanner that allows access to, and export of, the beam-formed signal data while simultaneously displaying the ultrasound system-processed data as a clinical image.

  5. A New Approach to Teaching Human Cardiovascular Physiology Using Doppler Ultrasound.

    ERIC Educational Resources Information Center

    Looker, T.

    1985-01-01

    Explains the principles of the Doppler ultrasound technique and reviews its potential applications to the teaching of cardiovascular physiology. Identifies the instrumentation needed for this technique; provides examples and illustrations of the waveforms from the ultrasound blood velocimeter. (ML)

  6. Improved cardiovascular diagnostic accuracy by pocket size imaging device in non-cardiologic outpatients: the NaUSiCa (Naples Ultrasound Stethoscope in Cardiology) study

    PubMed Central

    2010-01-01

    Miniaturization has evolved in the creation of a pocket-size imaging device which can be utilized as an ultrasound stethoscope. This study assessed the additional diagnostic power of pocket size device by both experts operators and trainees in comparison with physical examination and its appropriateness of use in comparison with standard echo machine in a non-cardiologic population. Three hundred four consecutive non cardiologic outpatients underwent a sequential assessment including physical examination, pocket size imaging device and standard Doppler-echo exam. Pocket size device was used by both expert operators and trainees (who received specific training before the beginning of the study). All the operators were requested to give only visual, qualitative insights on specific issues. All standard Doppler-echo exams were performed by expert operators. One hundred two pocket size device exams were performed by experts and two hundred two by trainees. The time duration of the pocket size device exam was 304 ± 117 sec. Diagnosis of cardiac abnormalities was made in 38.2% of cases by physical examination and in 69.7% of cases by physical examination + pocket size device (additional diagnostic power = 31.5%, p < 0.0001). The overall K between pocket size device and standard Doppler-echo was 0.67 in the pooled population (0.84 by experts and 0.58 by trainees). K was suboptimal for trainees in the eyeball evaluation of ejection fraction, left atrial dilation and right ventricular dilation. Overall sensitivity was 91% and specificity 76%. Sensitivity and specificity were lower in trainees than in experts. In conclusion, pocket size device showed a relevant additional diagnostic value in comparison with physical examination. Sensitivity and specificity were good in experts and suboptimal in trainees. Specificity was particularly influenced by the level of experience. Training programs are needed for pocket size device users. PMID:21110840

  7. Radionuclide Imaging of Cardiovascular Infection.

    PubMed

    Ahmed, Fozia Zahir; James, Jackie; Memmott, Matthew J; Arumugam, Parthiban

    2016-02-01

    Owing to expanding clinical indications, cardiac implantable electronic devices (CIEDs) are being increasingly used. Despite improved surgical techniques and the use of prophylactic antimicrobial therapy, the rate of CIED-related infection is also increasing. Infection is a potentially serious complication, with clinical manifestations ranging from surgical site infection and local symptoms in the region of the generator pocket to fulminant endocarditis. The utility of radionuclide imaging as a stand-alone noninvasive diagnostic imaging test in patients with suspected endocarditis has been less frequently examined. This article summarizes the recent advances in radionuclide imaging for evaluation of patients with suspected cardiovascular infections. PMID:26590786

  8. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  9. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  10. Ultrasound imaging in research and clinical medicine.

    PubMed

    Schellpfeffer, Michael A

    2013-06-01

    The use of ultrasound imaging in clinical obstetrics continues to grow at an almost exponential rate. Ultrasound imaging in developmental biology has only begun to be used to enhance the traditional methodologies to study the developing embryo/fetus. The various modalities of ultrasound imaging are reviewed as they apply to current uses in clinical obstetrics and developmental biologic research. New modalities are also discussed in both clinical obstetrics and developmental biologic research as well as the current limitations of ultrasound imaging faced in both of these fields. PMID:23897593

  11. Despeckling of Medical Ultrasound Images

    PubMed Central

    Michailovich, Oleg V.; Tannenbaum, Allen

    2013-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters—wavelet denoising, total variation filtering, and anisotropic diffusion—and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments. PMID:16471433

  12. Despeckling of medical ultrasound images.

    PubMed

    Michailovich, Oleg V; Tannenbaum, Allen

    2006-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters--wavelet denoising, total variation filtering, and anisotropic diffusion--and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments. PMID:16471433

  13. High definition 3D ultrasound imaging.

    PubMed

    Morimoto, A K; Krumm, J C; Kozlowski, D M; Kuhlmann, J L; Wilson, C; Little, C; Dickey, F M; Kwok, K S; Rogers, B; Walsh, N

    1997-01-01

    We have demonstrated high definition and improved resolution using a novel scanning system integrated with a commercial ultrasound machine. The result is a volumetric 3D ultrasound data set that can be visualized using standard techniques. Unlike other 3D ultrasound images, image quality is improved from standard 2D data. Image definition and bandwidth is improved using patent pending techniques. The system can be used to image patients or wounded soldiers for general imaging of anatomy such as abdominal organs, extremities, and the neck. Although the risks associated with x-ray carcinogenesis are relatively low at diagnostic dose levels, concerns remain for individuals in high risk categories. In addition, cost and portability of CT and MRI machines can be prohibitive. In comparison, ultrasound can provide portable, low-cost, non-ionizing imaging. Previous clinical trials comparing ultrasound to CT were used to demonstrate qualitative and quantitative improvements of ultrasound using the Sandia technologies. Transverse leg images demonstrated much higher clarity and lower noise than is seen in traditional ultrasound images. An x-ray CT scan was provided of the same cross-section for comparison. The results of our most recent trials demonstrate the advantages of 3D ultrasound and motion compensation compared with 2D ultrasound. Metal objects can also be observed within the anatomy. PMID:10168958

  14. Neural network ultrasound image analysis

    NASA Astrophysics Data System (ADS)

    Schneider, Alexander C.; Brown, David G.; Pastel, Mary S.

    1993-09-01

    Neural network based analysis of ultrasound image data was carried out on liver scans of normal subjects and those diagnosed with diffuse liver disease. In a previous study, ultrasound images from a group of normal volunteers, Gaucher's disease patients, and hepatitis patients were obtained by Garra et al., who used classical statistical methods to distinguish from among these three classes. In the present work, neural network classifiers were employed with the same image features found useful in the previous study for this task. Both standard backpropagation neural networks and a recently developed biologically-inspired network called Dystal were used. Classification performance as measured by the area under a receiver operating characteristic curve was generally excellent for the back propagation networks and was roughly comparable to that of classical statistical discriminators tested on the same data set and documented in the earlier study. Performance of the Dystal network was significantly inferior; however, this may be due to the choice of network parameter. Potential methods for enhancing network performance was identified.

  15. Handheld ultrasound array imaging device

    NASA Astrophysics Data System (ADS)

    Hwang, Juin-Jet; Quistgaard, Jens

    1999-06-01

    A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.

  16. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  17. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  18. Musculoskeletal ultrasound image denoising using Daubechies wavelets

    NASA Astrophysics Data System (ADS)

    Gupta, Rishu; Elamvazuthi, I.; Vasant, P.

    2012-11-01

    Among various existing medical imaging modalities Ultrasound is providing promising future because of its ease availability and use of non-ionizing radiations. In this paper we have attempted to denoise ultrasound image using daubechies wavelet and analyze the results with peak signal to noise ratio and coefficient of correlation as performance measurement index. The different daubechies from 1 to 6 is used on four different ultrasound bone fracture images with three different levels from 1 to 3. The images for visual inspection and PSNR, Coefficient of correlation values are graphically shown for quantitaive analysis of resultant images.

  19. Thermal Field Imaging Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Andereck, D.; Rahal, S.; Fife, S.

    2000-01-01

    is then possible to find the average temperature at different locations along the chamber, thereby determining the temperature profile along the system. (In the future we will construct an array of transducers. This will give us the capability to determine the temperature profile much more rapidly than at present, an important consideration if time-dependent phenomena are to be studied.) To validate our procedure we introduced encapsulated liquid crystal particles into glycerol. The liquid crystal particles' color varies depending on the temperature of the fluid. A photograph of the fluid through transparent sidewalls therefore gives a picture of the temperature field of the convecting fluid, independent of our ultrasound imaging. A representative result is shown in the Figure 1, which reveals a very satisfying correspondence between the two techniques. Therefore we have a great deal of confidence that the ultrasound imaging approach is indeed measuring the actual temperature profile of the fluid. The technique has also been applied to convecting liquid metal flows, and representative data will be presented from those experiments as well.

  20. Image-guided endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Zang, Xiaonan; Cheirsilp, Ronnarit; Byrnes, Patrick; Kuhlengel, Trevor; Bascom, Rebecca; Toth, Jennifer

    2016-03-01

    Endobronchial ultrasound (EBUS) is now recommended as a standard procedure for in vivo verification of extraluminal diagnostic sites during cancer-staging bronchoscopy. Yet, physicians vary considerably in their skills at using EBUS effectively. Regarding existing bronchoscopy guidance systems, studies have shown their effectiveness in the lung-cancer management process. With such a system, a patient's X-ray computed tomography (CT) scan is used to plan a procedure to regions of interest (ROIs). This plan is then used during follow-on guided bronchoscopy. Recent clinical guidelines for lung cancer, however, also dictate using positron emission tomography (PET) imaging for identifying suspicious ROIs and aiding in the cancer-staging process. While researchers have attempted to use guided bronchoscopy systems in tandem with PET imaging and EBUS, no true EBUS-centric guidance system exists. We now propose a full multimodal image-based methodology for guiding EBUS. The complete methodology involves two components: 1) a procedure planning protocol that gives bronchoscope movements appropriate for live EBUS positioning; and 2) a guidance strategy and associated system graphical user interface (GUI) designed for image-guided EBUS. We present results demonstrating the operation of the system.

  1. Calibrated parametric medical ultrasound imaging.

    PubMed

    Valckx, F M; Thijsse, J M; van Geemen, A J; Rotteveel, J J; Mullaart, R

    2000-01-01

    The goal of this study was to develop a calibrated on-line technique to extract as much diagnostically-relevant information as possible from conventional video-format echograms. The final aim is to improve the diagnostic potentials of medical ultrasound. Video-output images were acquired by a frame grabber board incorporated in a multiprocessor workstation. Calibration images were obtained from a stable tissue-mimicking phantom with known acoustic characteristics. Using these images as reference, depth dependence of the gray level could fairly be corrected for the transducer performance characteristics, for the observer-dependent equipment settings and for attenuation in the examined tissues. Second-order statistical parameters still displayed some nonconsistent depth dependencies. The results obtained with two echoscanners for the same phantom were different; hence, an a posteriori normalization of clinical data with the phantom data is indicated. Prior to processing of clinical echograms,. the anatomical reflections and echoless voids were removed automatically. The final step in the preprocessing concerned the compensation of the overall attenuation in the tissue. A 'sliding window' processing was then applied to a region of interest (ROI) in the 'back-scan converted' images. A number of first and second order statistical texture parameters and acoustical parameters were estimated in each window and assigned to the central pixel. This procedure results in a set of new 'parametric' images of the ROI, which can be inserted in the original echogram (gray value, color) or presented as a color overlay. A clinical example is presented for illustrating the potentials of the developed technique. Depending on the choice of the parameters, four full resolution calibrated parametric images can be calculated and simultaneously displayed within 5 to 20 seconds. In conclusion, an on-line technique has been developed to estimate acoustic and texture parameters with a reduced

  2. Ultrasound-mediated drug delivery for cardiovascular disease

    PubMed Central

    Sutton, Jonathan T; Haworth, Kevin J; Pyne-Geithman, Gail; Holland, Christy K

    2014-01-01

    Introduction Ultrasound (US) has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. These effects can be mediated by mechanical oscillations of circulating microbubbles, or US contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi or direct drugs to optimal locations for delivery. Areas covered The present review summarizes investigations that have provided evidence for US-mediated drug delivery as a potent method to deliver therapeutics to diseased tissue for cardiovascular treatment. In particular, the focus will be on investigations of specific aspects relating to US-mediated drug delivery, such as delivery vehicles, drug transport routes, biochemical mechanisms and molecular targeting strategies. Expert opinion These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery and new US technologies. Successful implementation of US-mediated drug delivery has the potential to change the way many drugs are administered systemically, resulting in more effective and economical therapeutics, and less-invasive treatments. PMID:23448121

  3. Ultrasound

    MedlinePlus

    Ultrasound uses high-frequency sound waves to make images of organs and structures inside the body. ... An ultrasound machine makes images so that organs inside the body can be examined. The machine sends out high- ...

  4. Composite ultrasound imaging apparatus and method

    DOEpatents

    Morimoto, A.K.; Bow, W.J. Jr.; Strong, D.S.; Dickey, F.M.

    1998-09-15

    An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image. 37 figs.

  5. Composite ultrasound imaging apparatus and method

    DOEpatents

    Morimoto, Alan K.; Bow, Jr., Wallace J.; Strong, David Scott; Dickey, Fred M.

    1998-01-01

    An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image.

  6. Intravascular ultrasound imaging following balloon angioplasty.

    PubMed

    Tobis, J M; Mahon, D J; Moriuchi, M; Honye, J; McRae, M

    1991-01-01

    Despite its long history and reliability, contrast angiography has several inherent limitations. Because it is a two-dimensional projection image of the lumen contour, the wall thickness cannot be measured and the plaque itself is not visualized. This results in an underestimation of the amount of atherosclerotic disease by angiography. An assessment of atherosclerosis could be improved by an imaging modality: (1) that has an inherent larger magnification than angiography and (2) that directly visualizes the plaque. Intravascular ultrasound fulfils these criteria. This presentation will provide evidence that intravascular ultrasound may prove complimentary or even superior to angiography as an imaging modality. Intravascular ultrasound demonstrates excellent representations of lumen and plaque morphology of in vitro specimens compared with histology. There is very close intraobserver and interobserver variability of measurements made from intravascular ultrasound images. Phantom studies of stenoses in a tube model demonstrate that angiography can misrepresent the severity of stenosis when the lumen contour is irregular and not a typical ellipse, whereas intravascular ultrasound reproduces the cross-sectional morphology more accurately since it images the artery from within. In vitro studies of the atherosclerotic plaque tissue characteristics compare closely with the echo representation of fibrosis, calcification, and lipid material. In addition, in vitro studies of balloon angioplasty demonstrate that intravascular ultrasound accurately represents the changes in the structure of artery segments following balloon dilatation. PMID:1833473

  7. Passive cavitation imaging with ultrasound arrays

    PubMed Central

    Salgaonkar, Vasant A.; Datta, Saurabh; Holland, Christy K.; Mast, T. Douglas

    2009-01-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh–Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed. PMID:20000921

  8. Cardiovascular imaging: a glimpse into the future.

    PubMed

    Zoghbi, William A

    2014-01-01

    In a relatively short span, technological developments in cardiovascular imaging have infiltrated every aspect of practice, with noticeable improvements in diagnosis and impact on patient management. All imaging technologies have undergone continual improvements since their inception to a point that imaging has become essential in both clinical practice and research. This article provides a glimpse into the future of cardiovascular imaging and highlights areas of imaging that still need improvement, with a view towards improving the practice of health care, where efficiency and value are becoming ever more dominant criteria throughout the continuum of care. PMID:25574340

  9. Endobronchial ultrasound echoic image of pulmonary hamartoma.

    PubMed

    Kajikawa, Shigehisa; Imai, Naoyuki; Takashima, Kouji; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori

    2014-06-01

    A 62-year-old man with an indicated chest radiographic abnormality was referred to our hospital for more thorough examinations. Endobronchial ultrasound-guided transbronchial needle aspiration was performed because of a mass at the left hilum. Endobronchial ultrasound images showed scattered high-density spots in a low echoic and mosaic density. The pathological findings revealed pulmonary hamartoma. Subsequently, the mass was resected and comparison of ultrasound findings and pathological findings indicated that the scattered high echoic spots appeared to reflect cartilaginous tissues and bronchial epithelium inside the tumor. PMID:25473576

  10. Cerebral ultrasound images in prenatal cytomegalovirus infection.

    PubMed

    Tomà, P; Magnano, G M; Mezzano, P; Lazzini, F; Bonacci, W; Serra, G

    1989-01-01

    A male newborn with prenatal cytomegalovirus infection was referred for cranial ultrasound. The cranial ultrasound demonstrated areas of increased echogenicity in the thalamic and gray nuclei resembling "a branched candlestick". Doppler technique located the "branched candlestick" along the thalamostriate arteries. This image is particularly interesting because to our knowledge it has never before been described in congenital cytomegalovirus infection, but only in congenital rubella. PMID:2550848

  11. Ultrasound image guidance of cardiac interventions

    NASA Astrophysics Data System (ADS)

    Peters, Terry M.; Pace, Danielle F.; Lang, Pencilla; Guiraudon, Gérard M.; Jones, Douglas L.; Linte, Cristian A.

    2011-03-01

    Surgical procedures often have the unfortunate side-effect of causing the patient significant trauma while accessing the target site. Indeed, in some cases the trauma inflicted on the patient during access to the target greatly exceeds that caused by performing the therapy. Heart disease has traditionally been treated surgically using open chest techniques with the patient being placed "on pump" - i.e. their circulation being maintained by a cardio-pulmonary bypass or "heart-lung" machine. Recently, techniques have been developed for performing minimally invasive interventions on the heart, obviating the formerly invasive procedures. These new approaches rely on pre-operative images, combined with real-time images acquired during the procedure. Our approach is to register intra-operative images to the patient, and use a navigation system that combines intra-operative ultrasound with virtual models of instrumentation that has been introduced into the chamber through the heart wall. This paper illustrates the problems associated with traditional ultrasound guidance, and reviews the state of the art in real-time 3D cardiac ultrasound technology. In addition, it discusses the implementation of an image-guided intervention platform that integrates real-time ultrasound with a virtual reality environment, bringing together the pre-operative anatomy derived from MRI or CT, representations of tracked instrumentation inside the heart chamber, and the intra-operatively acquired ultrasound images.

  12. Ultrasound image-based respiratory motion tracking

    NASA Astrophysics Data System (ADS)

    Hwang, Youngkyoo; Kim, Jung-Bae; Kim, Yong Sun; Bang, Won-Chul; Kim, James D. K.; Kim, ChangYeong

    2012-03-01

    Respiratory motion tracking has been issues for MR/CT imaging and noninvasive surgery such as HIFU and radiotherapy treatment when we apply these imaging or therapy technologies to moving organs such as liver, kidney or pancreas. Currently, some bulky and burdensome devices are placed externally on skin to estimate respiratory motion of an organ. It estimates organ motion indirectly using skin motion, not directly using organ itself. In this paper, we propose a system that measures directly the motion of organ itself only using ultrasound image. Our system has automatically selected a window in image sequences, called feature window, which is able to measure respiratory motion robustly even to noisy ultrasound images. The organ's displacement on each ultrasound image has been directly calculated through the feature window. It is very convenient to use since it exploits a conventional ultrasound probe. In this paper, we show that our proposed method can robustly extract respiratory motion signal with regardless of reference frame. It is superior to other image based method such as Mutual Information (MI) or Correlation Coefficient (CC). They are sensitive to what the reference frame is selected. Furthermore, our proposed method gives us clear information of the phase of respiratory cycle such as during inspiration or expiration and so on since it calculate not similarity measurement like MI or CC but actual organ's displacement.

  13. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described

  14. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  15. Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging

    PubMed Central

    Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan

    2014-01-01

    Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070

  16. An image registration based ultrasound probe calibration

    NASA Astrophysics Data System (ADS)

    Li, Xin; Kumar, Dinesh; Sarkar, Saradwata; Narayanan, Ram

    2012-02-01

    Reconstructed 3D ultrasound of prostate gland finds application in several medical areas such as image guided biopsy, therapy planning and dose delivery. In our application, we use an end-fire probe rotated about its axis to acquire a sequence of rotational slices to reconstruct 3D TRUS (Transrectal Ultrasound) image. The image acquisition system consists of an ultrasound transducer situated on a cradle directly attached to a rotational sensor. However, due to system tolerances, axis of probe does not align exactly with the designed axis of rotation resulting in artifacts in the 3D reconstructed ultrasound volume. We present a rigid registration based automatic probe calibration approach. The method uses a sequence of phantom images, each pair acquired at angular separation of 180 degrees and registers corresponding image pairs to compute the deviation from designed axis. A modified shadow removal algorithm is applied for preprocessing. An attribute vector is constructed from image intensity and a speckle-insensitive information-theoretic feature. We compare registration between the presented method and expert-corrected images in 16 prostate phantom scans. Images were acquired at multiple resolutions, and different misalignment settings from two ultrasound machines. Screenshots from 3D reconstruction are shown before and after misalignment correction. Registration parameters from automatic and manual correction were found to be in good agreement. Average absolute differences of translation and rotation between automatic and manual methods were 0.27 mm and 0.65 degree, respectively. The registration parameters also showed lower variability for automatic registration (pooled standard deviation σtranslation = 0.50 mm, σrotation = 0.52 degree) compared to the manual approach (pooled standard deviation σtranslation = 0.62 mm, σrotation = 0.78 degree).

  17. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  18. Resolution enhancement in medical ultrasound imaging

    PubMed Central

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Abstract. Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve

  19. [Ultrasound imaging of Dupuytren's contracture].

    PubMed

    Créteur, V; Madani, A; Gosset, N

    2010-06-01

    Dupuytren's contracture is characterized by two underlying lesions, nodules and cords. These involve the palmar fascia at the distal palmar crease, especially at the level of the third and fourth rays with progressive disabling finger contracture. The superficial palmar aponeurosis appears as a thin echogenic lamellar structure overlying the flexor tendons. The demonstration of hypoechoic bands adhering to the marging of the flexor tendons and deep surface of the dermis appears to be pathognomonic of the disease. Compared to tendons, early nodules are hypoechoic and typically hypervascular whereas older nodules are iso- to hyperechoic, without hypervascular Doppler signal. Ultrasound can sometimes demonstrate arterial encasement by fibrous or scarring tissue. Ultrasound therefore is very useful for the differential diagnosis of pathologies involving the palmar surface of the hand, for the early detection of Dupuytren's contracture, and for the detection of complication, especially vascular. These data may have an impact on management. PMID:20808269

  20. Challenges and Opportunities for Extracting Cardiovascular Risk Biomarkers from Imaging Data

    NASA Astrophysics Data System (ADS)

    Kakadiaris, I. A.; Mendizabal-Ruiz, E. G.; Kurkure, U.; Naghavi, M.

    Complications attributed to cardiovascular diseases (CDV) are the leading cause of death worldwide. In the United States, sudden heart attack remains the number one cause of death and accounts for the majority of the 280 billion burden of cardiovascular diseases. In spite of the advancements in cardiovascular imaging techniques, the rate of deaths due to unpredicted heart attack remains high. Thus, novel computational tools are of critical need, in order to mine quantitative parameters from the imaging data for early detection of persons with a high likelihood of developing a heart attack in the near future (vulnerable patients). In this paper, we present our progress in the research of computational methods for the extraction of cardiovascular risk biomarkers from cardiovascular imaging data. In particular, we focus on the methods developed for the analysis of intravascular ultrasound (IVUS) data.

  1. Nanobubbles for enhanced ultrasound imaging of tumors.

    PubMed

    Yin, Tinghui; Wang, Ping; Zheng, Rongqin; Zheng, Bowen; Cheng, Du; Zhang, Xinling; Shuai, Xintao

    2012-01-01

    The fabrication and initial applications of nanobubbles (NBs) have shown promising results in recent years. A small particle size is a basic requirement for ultrasound contrast-enhanced agents that penetrate tumor blood vessel pores to allow for targeted imaging and therapy. However, the nanoscale size of the particles used has the disadvantage of weakening the imaging ability of clinical diagnostic ultrasound. In this work, we fabricated a lipid NBs contrast-enhanced ultrasound agent and evaluated its passive targeting ability in vivo. The results showed that the NBs were small (436.8 ± 5.7 nm), and in vitro ultrasound imaging suggested that the ultrasonic imaging ability is comparable to that of microbubbles (MBs). In vivo experiments confirmed the ability of NBs to passively target tumor tissues. The NBs remained in the tumor area for a longer period because they exhibited enhanced permeability and retention. Direct evidence was obtained by direct observation of red fluorescence-dyed NBs in tumor tissue using confocal laser scanning microscopy. We have demonstrated the ability to fabricate NBs that can be used for the in vivo contrast-enhanced imaging of tumor tissue and that have potential for drug/gene delivery. PMID:22393289

  2. Ultrasound elastography for imaging tendons and muscles

    PubMed Central

    2012-01-01

    Ultrasound elastography is a recently developed ultrasound-based method which allows the qualitative or quantitative evaluation of the mechanical properties of tissue. Strain (compression) ultrasound elastography is the commonest technique performed by applying mild compression with the hand-held transducer to create real-time strain distribution maps, which are color-coded and superimposed on the B-mode images. There is increasing evidence that ultrasound elastography can be used in the investigation of muscle, tendon and soft tissue disease in the clinical practice, as a supplementary tool to conventional ultrasound examination. Based on preliminary data, potential clinical applications include early diagnosis, staging, and guiding interventions musculotendinous and neuromuscular disease as well as monitoring disease during rehabilitation. Ultrasound elastography could also be used for research into the biomechanics and pathophysiology of musculotendinous disease. Despite the great interest in the technique, there is still limited evidence in the literature and there are several technical issues which limit the reproducibility of the method, including differences in quantification methods, artefacts, limitations and variation in the application of the technique by different users. This review presents the published evidence on musculoskeletal applications of strain elastography, discusses the technical issues and future perspectives of this method and emphasizes the need for standardization and further research. PMID:26673318

  3. Ultrasound imaging as an undergraduate physics laboratory exercise

    NASA Astrophysics Data System (ADS)

    Stiles, Timothy A.

    2014-05-01

    Ultrasound imaging provides an interesting and accessible example of the intersection between biology, medicine, and physics. This article provides a review of the physics and technology currently available and discusses two recent methods that have expanded the diagnostic capabilities of ultrasound imaging. We also describe two undergraduate physics laboratory exercises involving ultrasound imaging.

  4. High definition ultrasound imaging for battlefield medical applications

    SciTech Connect

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M.; Rogers, B; Walsh, N.

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  5. Compressive Deconvolution in Medical Ultrasound Imaging.

    PubMed

    Chen, Zhouye; Basarab, Adrian; Kouame, Denis

    2016-03-01

    The interest of compressive sampling in ultrasound imaging has been recently extensively evaluated by several research teams. Following the different application setups, it has been shown that the RF data may be reconstructed from a small number of measurements and/or using a reduced number of ultrasound pulse emissions. Nevertheless, RF image spatial resolution, contrast and signal to noise ratio are affected by the limited bandwidth of the imaging transducer and the physical phenomenon related to US wave propagation. To overcome these limitations, several deconvolution-based image processing techniques have been proposed to enhance the ultrasound images. In this paper, we propose a novel framework, named compressive deconvolution, that reconstructs enhanced RF images from compressed measurements. Exploiting an unified formulation of the direct acquisition model, combining random projections and 2D convolution with a spatially invariant point spread function, the benefit of our approach is the joint data volume reduction and image quality improvement. The proposed optimization method, based on the Alternating Direction Method of Multipliers, is evaluated on both simulated and in vivo data. PMID:26513780

  6. Tools for cardiovascular magnetic resonance imaging

    PubMed Central

    Krishnamurthy, Ramkumar; Cheong, Benjamin

    2014-01-01

    In less than fifteen years, as a non-invasive imaging option, cardiovascular MR has grown from a being a mere curiosity to becoming a widely used clinical tool for evaluating cardiovascular disease. Cardiovascular magnetic resonance imaging (CMRI) is now routinely used to study myocardial structure, cardiac function, macro vascular blood flow, myocardial perfusion, and myocardial viability. For someone entering the field of cardiac MR, this rapid pace of development in the field of CMRI might make it difficult to identify a cohesive starting point. In this brief review, we have attempted to summarize the key cardiovascular imaging techniques that have found widespread clinical acceptance. In particular, we describe the essential cardiac and respiratory gating techniques that form the backbone of all cardiovascular imaging methods. It is followed by four sections that discuss: (I) the gradient echo techniques that are used to assess ventricular function; (II) black-blood turbo spin echo (SE) methods used for morphologic assessment of the heart; (III) phase-contrast based techniques for the assessment of blood flow; and (IV) CMR methods for the assessment of myocardial ischemia and viability. In each section, we briefly summarize technical considerations relevant to the clinical use of these techniques, followed by practical information for its clinical implementation. In each of those four areas, CMRI is considered either as the benchmark imaging modality against which the diagnostic performance of other imaging modalities are compared against, or provides a complementary capability to existing imaging techniques. We have deliberately avoided including cutting-edge CMR imaging techniques practiced at few academic centers, and restricted our discussion to methods that are widely used and are likely to be available in a clinical setting. Our hope is that this review would propel an interested reader toward more comprehensive reviews in the literature. PMID:24834409

  7. Geometric reconstruction using tracked ultrasound strain imaging

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Simpson, Amber L.; Ondrake, Janet E.; Miga, Michael I.

    2013-03-01

    The accurate identification of tumor margins during neurosurgery is a primary concern for the surgeon in order to maximize resection of malignant tissue while preserving normal function. The use of preoperative imaging for guidance is standard of care, but tumor margins are not always clear even when contrast agents are used, and so margins are often determined intraoperatively by visual and tactile feedback. Ultrasound strain imaging creates a quantitative representation of tissue stiffness which can be used in real-time. The information offered by strain imaging can be placed within a conventional image-guidance workflow by tracking the ultrasound probe and calibrating the image plane, which facilitates interpretation of the data by placing it within a common coordinate space with preoperative imaging. Tumor geometry in strain imaging is then directly comparable to the geometry in preoperative imaging. This paper presents a tracked ultrasound strain imaging system capable of co-registering with preoperative tomograms and also of reconstructing a 3D surface using the border of the strain lesion. In a preliminary study using four phantoms with subsurface tumors, tracked strain imaging was registered to preoperative image volumes and then tumor surfaces were reconstructed using contours extracted from strain image slices. The volumes of the phantom tumors reconstructed from tracked strain imaging were approximately between 1.5 to 2.4 cm3, which was similar to the CT volumes of 1.0 to 2.3 cm3. Future work will be done to robustly characterize the reconstruction accuracy of the system.

  8. Ultra-high frequency ultrasound biomicroscopy and high throughput cardiovascular phenotyping in a large scale mouse mutagenesis screen

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqin; Francis, Richard; Tobita, Kimimasa; Kim, Andy; Leatherbury, Linda; Lo, Cecilia W.

    2013-02-01

    Ultrasound biomicroscopy (UBM) is ideally suited for phenotyping fetal mice for congenital heart disease (CHD), as imaging can be carried out noninvasively to provide both hemodynamic and structural information essential for CHD diagnosis. Using the UBM (Vevo 2100; 40Hz) in conjunction with the clinical ultrasound system (Acuson Sequioa C512; 15Hz), we developed a two-step screening protocol to scan thousands fetuses derived from ENU mutagenized pedigrees. A wide spectrum of CHD was detected by the UBM, which were subsequently confirmed with follow-up necropsy and histopathology examination with episcopic fluorescence image capture. CHD observed included outflow anomalies, left/right heart obstructive lesions, septal/valvular defects and cardiac situs anomalies. Meanwhile, various extracardiac defects were found, such as polydactyly, craniofacial defects, exencephaly, omphalocele-cleft palate, most of which were associated with cardiac defects. Our analyses showed the UBM was better at assessing cardiac structure and blood flow profiles, while conventional ultrasound allowed higher throughput low-resolution screening. Our study showed the integration of conventional clinical ultrasound imaging with the UBM for fetal mouse cardiovascular phenotyping can maximize the detection and recovery of CHD mutants.

  9. Prediction of cardiovascular outcomes by imaging coronary atherosclerosis

    PubMed Central

    Pathan, Faraz

    2016-01-01

    Over the last two decades, several invasive and non-invasive coronary atherosclerosis imaging modalities have emerged as predictors of cardiovascular outcomes in at-risk population. These modalities have demonstrated independent or incremental prognostic information over existing/standard risk stratification schemes, such as the Framingham risk score (FRS), by identifying characteristics of coronary artery diseases (CADs). In this review, we begin with discussing the importance of pre-test probability and quality of outcome measure, followed by specific findings of each modality in relation to prognosis. We focused on both short and long term prognostic aspects of coronary computed tomography (CT) (including coronary calcium score and coronary angiography) and magnetic resonance imaging as non-invasive tools, as well as invasive modalities including intravascular ultrasound (IVUS), optical coherence tomography (OCT), near infrared spectroscopy and Angioscopy. PMID:27500091

  10. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Owen, Neil (Inventor); Bailey, Michael R. (Inventor); Hossack, James (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  11. Simulation of ultrasound backscatter images from fish

    NASA Astrophysics Data System (ADS)

    Pham, An Hoai; Stage, Bjarne; Hemmsen, Martin Christian; Lundgren, Bo; Pedersen, Mads Møller; Pedersen, Tina Bock; Jensen, Jørgen Arendt

    2011-03-01

    The objective of this work is to investigate ultrasound (US) backscatter in the MHz range from fish to develop a realistic and reliable simulation model. The long term objective of the work is to develop the needed signal processing for fish species differentiation using US. In in-vitro experiments, a cod (Gadus morhua) was scanned with both a BK Medical ProFocus 2202 ultrasound scanner and a Toshiba Aquilion ONE computed tomography (CT) scanner. The US images of the fish were compared with US images created using the ultrasound simulation program Field II. The center frequency of the transducer is 10 MHz and the Full Width at Half Maximum (FWHM) at the focus point is 0.54 mm in the lateral direction. The transducer model in Field II was calibrated using a wire phantom to validate the simulated point spread function. The inputs to the simulation were the CT image data of the fish converted to simulated scatter maps. The positions of the point scatterers were assumed to be uniformly distributed. The scatter amplitudes were generated with a new method based on the segmented CT data in Hounsfield Units and backscatter data for the different types of tissues from the literature. The simulated US images reproduce most of the important characteristics of the measured US image.

  12. Molecular Ultrasound Imaging: Current Status and Future Directions

    PubMed Central

    Deshpande, Nirupama; Needles, Andrew; Willmann, Jürgen K.

    2011-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionizing irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of preclinical and clinical ultrasound systems , the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic. PMID:20541656

  13. Automatic assessment of ultrasound image usability

    NASA Astrophysics Data System (ADS)

    Valente, Luca; Funka-Lea, Gareth; Stoll, Jeffrey

    2011-03-01

    We present a novel and efficient approach for evaluating the quality of ultrasound images. Image acquisition is sensitive to skin contact and transducer orientation and requires both time and technical skill to be done properly. Images commonly suffer degradation due to acoustic shadows and signal attenuation, which present as regions of low signal intensity masking anatomical details and making the images partly or totally unusable. As ultrasound image acquisition and analysis becomes increasingly automated, it is beneficial to also automate the estimation of image quality. Towards this end, we present an algorithm that classifies regions of an image as usable or un-usable. Example applications of this algorithm include improved compounding of free-hand 3D ultrasound volumes by eliminating unusable data and improved automatic feature detection by limiting detection to only usable areas. The algorithm operates in two steps. First, it classifies the image into bright areas, likely to have image content, and dark areas, likely to have no content. Second, it classifies the dark areas into unusable (i.e. due to shadowing and/or signal loss) and usable (i.e. anatomically accurate dark regions, such as with a blood vessel) sub-areas. The classification considers several factors, including statistical information, gradient intensity and geometric properties such as shape and relative position. Relative weighting of factors was obtained through the training of a Support Vector Machine. Classification results for both human and phantom images are presented and compared to manual classifications. This method achieves 91% sensitivity and 91% specificity for usable regions of human scans.

  14. Small animal cardiovascular MR imaging and spectroscopy.

    PubMed

    Bakermans, Adrianus J; Abdurrachim, Desiree; Moonen, Rik P M; Motaal, Abdallah G; Prompers, Jeanine J; Strijkers, Gustav J; Vandoorne, Katrien; Nicolay, Klaas

    2015-08-01

    The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled. PMID:26282195

  15. A novel de-noising method for B ultrasound images

    NASA Astrophysics Data System (ADS)

    Tian, Da-Yong; Mo, Jia-qing; Yu, Yin-Feng; Lv, Xiao-Yi; Yu, Xiao; Jia, Zhen-Hong

    2015-12-01

    B ultrasound as a kind of ultrasonic imaging, which has become the indispensable diagnosis method in clinical medicine. However, the presence of speckle noise in ultrasound image greatly reduces the image quality and interferes with the accuracy of the diagnosis. Therefore, how to construct a method which can eliminate the speckle noise effectively, and at the same time keep the image details effectively is the research target of the current ultrasonic image de-noising. This paper is intended to remove the inherent speckle noise of B ultrasound image. The novel algorithm proposed is based on both wavelet transformation of B ultrasound images and data fusion of B ultrasound images, with a smaller mean squared error (MSE) and greater signal to noise ratio (SNR) compared with other algorithms. The results of this study can effectively remove speckle noise from B ultrasound images, and can well preserved the details and edge information which will produce better visual effects.

  16. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  17. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    SciTech Connect

    Morimoto, A.K.; Bow, W.J.; Strong, D.S.

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  18. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  19. An open access thyroid ultrasound image database

    NASA Astrophysics Data System (ADS)

    Pedraza, Lina; Vargas, Carlos; Narváez, Fabián.; Durán, Oscar; Muñoz, Emma; Romero, Eduardo

    2015-01-01

    Computer aided diagnosis systems (CAD) have been developed to assist radiologists in the detection and diagnosis of abnormalities and a large number of pattern recognition techniques have been proposed to obtain a second opinion. Most of these strategies have been evaluated using different datasets making their performance incomparable. In this work, an open access database of thyroid ultrasound images is presented. The dataset consists of a set of B-mode Ultrasound images, including a complete annotation and diagnostic description of suspicious thyroid lesions by expert radiologists. Several types of lesions as thyroiditis, cystic nodules, adenomas and thyroid cancers were included while an accurate lesion delineation is provided in XML format. The diagnostic description of malignant lesions was confirmed by biopsy. The proposed new database is expected to be a resource for the community to assess different CAD systems.

  20. Ultrasound imaging in teaching cardiac physiology.

    PubMed

    Johnson, Christopher D; Montgomery, Laura E A; Quinn, Joe G; Roe, Sean M; Stewart, Michael T; Tansey, Etain A

    2016-09-01

    This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such as stroke volume, ejection fraction, and cardiac output. By repeating the measurements from a subject after a brief exercise period, an increase in stroke volume and ejection fraction are easily demonstrable, potentially with or without an increase in left ventricular end-diastolic volume (which indicates preload). Thus, factors that affect cardiac performance can readily be discussed. This activity may be performed as a practical demonstration and visualized using an overhead projector or networked computers, concentrating on using the ultrasound images to teach basic physiological principles. This has proved to be highly popular with students, who reported a significant improvement in their understanding of Frank-Starling's law of the heart with ultrasound imaging. PMID:27445285

  1. Image reconstruction for robot assisted ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Aalamifar, Fereshteh; Zhang, Haichong K.; Rahmim, Arman; Boctor, Emad M.

    2016-04-01

    An investigation of several image reconstruction methods for robot-assisted ultrasound (US) tomography setup is presented. In the robot-assisted setup, an expert moves the US probe to the location of interest, and a robotic arm automatically aligns another US probe with it. The two aligned probes can then transmit and receive US signals which are subsequently used for tomographic reconstruction. This study focuses on reconstruction of the speed of sound. In various simulation evaluations as well as in an experiment with a millimeter-range inaccuracy, we demonstrate that the limited data provided by two probes can be used to reconstruct pixel-wise images differentiating between media with different speeds of sound. Combining the results of this investigation with the developed robot-assisted US tomography setup, we envision feasibility of this setup for tomographic imaging in applications beyond breast imaging, with potentially significant efficacy in cancer diagnosis.

  2. Live volumetric imaging (LVI) intracardiac ultrasound catheter.

    PubMed

    Dausch, David E; Castellucci, John B; Gilchrist, Kristin H; Carlson, James B; Hall, Stephen D; von Ramm, Olaf T

    2013-01-01

    The Live Volumetric Imaging (LVI) catheter is capable of real-time 3D intracardiac echo (ICE) imaging, uniquely providing full volume sectors with deep penetration depth and high volume frame rate. The key enabling technology in this catheter is an integrated piezoelectric micromachined ultrasound transducer (pMUT), a novel matrix phased array transducer fabricated using semiconductor microelectromechanical systems (MEMS) manufacturing techniques. This technology innovation may enable better image guidance to improve accuracy, reduce risk, and reduce procedure time for transcatheter intracardiac therapies which are currently done with limited direct visualization of the endocardial tissue. Envisioned applications for LVI include intraprocedural image guidance of cardiac ablation therapies as well as transcatheter mitral and aortic valve repair. PMID:23773496

  3. Extraction of edge feature in cardiovascular image

    NASA Astrophysics Data System (ADS)

    Lu, Jianrong; Chen, Dongqing; Yu, Daoyin; Liu, Xiaojun

    2001-09-01

    Extraction of edge feature and accurate measurement of vascular diameter in cardiovascular image are the bases for labeling the coronary hierarchy, 3D refined reconstruction of the coronary arterial tree and accurate fusion between the calculated 3D vascular trees and other views. In order to extract vessels from the image, the grayscale minimization of the circle template and differential edge detection are put forward. Edge pixels of the coronary artery are set according to maximization of the differential value. The edge lines are determined after the edge pixels are smoothed by B-Spline function. The assessment of feature extraction is demonstrated by the excellent performance in computer simulation and actual application.

  4. Twofold processing for denoising ultrasound medical images.

    PubMed

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India. PMID:26697285

  5. Multi-Frequency Intravascular Ultrasound (IVUS) Imaging

    PubMed Central

    Ma, Teng; Yu, Mingyue; Chen, Zeyu; Fei, Chunlong; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Acute coronary syndrome (ACS) is frequently associated with the sudden rupture of a vulnerable atherosclerotic plaque within the coronary artery. Several unique physiological features, including a thin fibrous cap accompanied by a necrotic lipid core, are the targeted indicators for identifying the vulnerable plaques. Intravascular ultrasound (IVUS), a catheter-based imaging technology, has been routinely performed in clinics for more than 20 years to describe the morphology of the coronary artery and guide percutaneous coronary interventions. However, conventional IVUS cannot facilitate the risk assessment of ACS because of its intrinsic limitations, such as insufficient resolution. Renovation of the IVUS technology is essentially needed to overcome the limitations and enhance the coronary artery characterization. In this paper, a multi-frequency intravascular ultrasound (IVUS) imaging system was developed by incorporating a higher frequency IVUS transducer (80 to 150 MHz) with the conventional IVUS (30–50 MHz) system. The newly developed system maintains the advantage of deeply penetrating imaging with the conventional IVUS, while offering an improved higher resolution image with IVUS at a higher frequency. The prototyped multi-frequency catheter has a clinically compatible size of 0.95 mm and a favorable capability of automated image co-registration. In vitro human coronary artery imaging has demonstrated the feasibility and superiority of the multi-frequency IVUS imaging system to deliver a more comprehensive visualization of the coronary artery. This ultrasonic-only intravascular imaging technique, based on a moderate refinement of the conventional IVUS system, is not only cost-effective from the perspective of manufacturing and clinical practice, but also holds the promise of future translation into clinical benefits. PMID:25585394

  6. Impact of Medical Therapy on Atheroma Volume Measured by Different Cardiovascular Imaging Modalities

    PubMed Central

    Sinno, Mohamad C. N.; Al-Mallah, Mouaz

    2010-01-01

    Atherosclerosis is a systemic disease that affects most vascular beds. The gold standard of atherosclerosis imaging has been invasive intravascular ultrasound (IVUS). Newer noninvasive imaging modalities like B-mode ultrasound, cardiac computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) have been used to assess these vascular territories with high accuracy and reproducibility. These imaging modalities have lately been used for the assessment of the atherosclerotic plaque and the response of its volume to several medical therapies used in the treatment of patients with cardiovascular disease. To study the impact of these medications on atheroma volume progression or regression, imaging modalities have been used on a serial basis providing a unique opportunity to monitor the effect these antiatherosclerotic strategies exert on plaque burden. As a result, studies incorporating serial IVUS imaging, quantitative coronary angiography (QCA), B-mode ultrasound, electron beam computed tomography (EBCT), and dynamic contrast-enhanced magnetic resonance imaging have all been used to evaluate the impact of therapeutic strategies that modify cholesterol and blood pressure on the progression/regression of atherosclerotic plaque. In this review, we intend to summarize the impact of different therapies aimed at halting the progression or even result in regression of atherosclerotic cardiovascular disease evaluated by different imaging modalities. PMID:20672024

  7. Cardiovascular Imaging and Image Processing: Theory and Practice - 1975

    NASA Technical Reports Server (NTRS)

    Harrison, Donald C. (Editor); Sandler, Harold (Editor); Miller, Harry A. (Editor); Hood, Manley J. (Editor); Purser, Paul E. (Editor); Schmidt, Gene (Editor)

    1975-01-01

    Ultrasonography was examined in regard to the developmental highlights and present applicatons of cardiac ultrasound. Doppler ultrasonic techniques and the technology of miniature acoustic element arrays were reported. X-ray angiography was discussed with special considerations on quantitative three dimensional dynamic imaging of structure and function of the cardiopulmonary and circulatory systems in all regions of the body. Nuclear cardiography and scintigraphy, three--dimensional imaging of the myocardium with isotopes, and the commercialization of the echocardioscope were studied.

  8. Ultrasound

    MedlinePlus

    ... please enable JavaScript. Ultrasound uses high-frequency sound waves to make images of organs and structures inside ... examined. The machine sends out high-frequency sound waves, which reflect off body structures. A computer receives ...

  9. Multi-target photoacoustic molecular imaging of cardiovascular inflammatory biomarkers using bioconjugated gold nanorods

    NASA Astrophysics Data System (ADS)

    Ha, S.; Tripathy, S.; Carson, A.; Lavery, L. L.; Zhang, H.; Agarwal, A.; Kotov, N.; Villanueva, F. S.; Kim, K.

    2011-03-01

    Multiple cardiovascular inflammatory biomarkers were simultaneously imaged in vivo using antibody conjugated gold nanorods (GNRs) injected into a mouse model of vascular injury stimulated by a photochemical reaction of Rose Bengal dye to green light. Mixed solutions of ICAM-1 antibody conjugated GNRs (715 nm) and E-selectin antibody conjugated GNRs (800 nm) were injected to bind to their respective inflammatory markers on the luminal surface of the inferior vena cava of a mouse. Photoacoustic intensity was measured by a commercial ultrasound probe synchronized to a pulsed laser (10-18 mJ/cm2) at 715 nm or 800 nm clearly identified the upregulation of targeted biomarkers. Histopathology on the harvested tissues confirmed inflammation. The feasibility of simultaneous photoacoustic molecular imaging of inflammation responses in cardiovascular system using a commercial ultrasound system has been demonstrated in vivo.

  10. Advanced Tracers in PET Imaging of Cardiovascular Disease

    PubMed Central

    Zhang, Wei; Wu, Hua; Liu, Gang

    2014-01-01

    Cardiovascular disease is the leading cause of death worldwide. Molecular imaging with targeted tracers by positron emission tomography (PET) allows for the noninvasive detection and characterization of biological changes at the molecular level, leading to earlier disease detection, objective monitoring of therapies, and better prognostication of cardiovascular diseases progression. Here we review, the current role of PET in cardiovascular disease, with emphasize on tracers developed for PET imaging of cardiovascular diseases. PMID:25389529

  11. Ultrasound imaging of the anal sphincter complex: a review

    PubMed Central

    Abdool, Z; Sultan, A H; Thakar, R

    2012-01-01

    Endoanal ultrasound is now regarded as the gold standard for evaluating anal sphincter pathology in the investigation of anal incontinence. The advent of three-dimensional ultrasound has further improved our understanding of the two-dimensional technique. Endoanal ultrasound requires specialised equipment and its relative invasiveness has prompted clinicians to explore alternative imaging techniques. Transvaginal and transperineal ultrasound have been recently evaluated as alternative imaging modalities. However, the need for technique standardisation, validation and reporting is of paramount importance. We conducted a MEDLINE search (1950 to February 2010) and critically reviewed studies using the three imaging techniques in evaluating anal sphincter integrity. PMID:22374273

  12. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging

    PubMed Central

    Greco, A.; Mancini, M.; Gargiulo, S.; Gramanzini, M.; Claudio, P. P.; Brunetti, A.; Salvatore, M.

    2012-01-01

    Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research. PMID:22163379

  13. Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging.

    PubMed

    Greco, A; Mancini, M; Gargiulo, S; Gramanzini, M; Claudio, P P; Brunetti, A; Salvatore, M

    2012-01-01

    Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research. PMID:22163379

  14. Extracting Cardiac Myofiber Orientations from High Frequency Ultrasound Images.

    PubMed

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B; Kishbom, Paul; Fei, Baowei

    2013-03-29

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (>20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts. PMID:24392208

  15. Extracting cardiac myofiber orientations from high frequency ultrasound images

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (<20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts.

  16. Quality assurance of ultrasound imaging instruments by monitoring the monitor.

    PubMed

    Walker, J B; Thorne, G C; Halliwell, M

    1993-11-01

    Ultrasound quality assurance (QA) is a means of assuring the constant performance of an ultrasound instrument. A novel 'ultrasound image analyser' has been developed to allow objective, accurate and repeatable measurement of the image displayed on the ultrasound screen, i.e. as seen by the operator. The analyser uses a television camera/framestore combination to digitize and analyse this image. A QA scheme is described along with the procedures necessary to obtain a repeatable measurement of the image so that comparisons with earlier good images can be made. These include repositioning the camera and resetting the video display characteristics. The advantages of using the analyser over other methods are discussed. It is concluded that the analyser has distinct advantages over subjective image assessment methods and will be a valuable addition to current ultrasound QA programmes. PMID:8272435

  17. Feasibility of Swept Synthetic Aperture Ultrasound Imaging.

    PubMed

    Bottenus, Nick; Long, Will; Zhang, Haichong K; Jakovljevic, Marko; Bradway, David P; Boctor, Emad M; Trahey, Gregg E

    2016-07-01

    Ultrasound image quality is often inherently limited by the physical dimensions of the imaging transducer. We hypothesize that, by collecting synthetic aperture data sets over a range of aperture positions while precisely tracking the position and orientation of the transducer, we can synthesize large effective apertures to produce images with improved resolution and target detectability. We analyze the two largest limiting factors for coherent signal summation: aberration and mechanical uncertainty. Using an excised canine abdominal wall as a model phase screen, we experimentally observed an effective arrival time error ranging from 18.3 ns to 58 ns (root-mean-square error) across the swept positions. Through this clutter-generating tissue, we observed a 72.9% improvement in resolution with only a 3.75 dB increase in side lobe amplitude compared to the control case. We present a simulation model to study the effect of calibration and mechanical jitter errors on the synthesized point spread function. The relative effects of these errors in each imaging dimension are explored, showing the importance of orientation relative to the point spread function. We present a prototype device for performing swept synthetic aperture imaging using a conventional 1-D array transducer and ultrasound research scanner. Point target reconstruction error for a 44.2 degree sweep shows a reconstruction precision of 82.8 μm and 17.8 μm in the lateral and axial dimensions respectively, within the acceptable performance bounds of the simulation model. Improvements in resolution, contrast and contrast-to-noise ratio are demonstrated in vivo and in a fetal phantom. PMID:26863653

  18. Interference-free ultrasound imaging during HIFU therapy, using software tools

    NASA Technical Reports Server (NTRS)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  19. Fetal magnetic resonance imaging and ultrasound.

    PubMed

    Wataganara, Tuangsit; Ebrashy, Alaa; Aliyu, Labaran Dayyabu; Moreira de Sa, Renato Augusto; Pooh, Ritsuko; Kurjak, Asim; Sen, Cihat; Adra, Abdallah; Stanojevic, Milan

    2016-07-01

    Magnetic resonance imaging (MRI) has been increasingly adopted in obstetrics practice in the past three decades. MRI aids prenatal ultrasound and improves diagnostic accuracy for selected maternal and fetal conditions. However, it should be considered only when high-quality ultrasound cannot provide certain information that affects the counseling, prenatal intervention, pregnancy course, and delivery plan. Major indications of fetal MRI include, but are not restricted to, morbidly adherent placenta, selected cases of fetal brain anomalies, thoracic lesions (especially in severe congenital diaphragmatic hernia), and soft tissue tumors at head and neck regions of the fetus. For fetal anatomy assessment, a 1.5-Tesla machine with a fast T2-weighted single-shot technique is recommended for image requisition of common fetal abnormalities. Individual judgment needs to be applied when considering usage of a 3-Tesla machine. Gadolinium MRI contrast is not recommended during pregnancy. MRI should be avoided in the first half of pregnancy due to small fetal structures and motion artifacts. Assessment of fetal cerebral cortex can be achieved with MRI in the third trimester. MRI is a viable research tool for noninvasive interrogation of the fetus and the placenta. PMID:27092644

  20. A Guide to Analysing Tongue Motion from Ultrasound Images

    ERIC Educational Resources Information Center

    Stone, Maureen

    2005-01-01

    This paper is meant to be an introduction to and general reference for ultrasound imaging for new and moderately experienced users of the instrument. The paper consists of eight sections. The first explains how ultrasound works, including beam properties, scan types and machine features. The second section discusses image quality, including the…

  1. Ultrasound Thermal Field Imaging of Opaque Fluids

    NASA Technical Reports Server (NTRS)

    Andereck, C. David

    1999-01-01

    We have initiated an experimental program to develop an ultrasound system for non-intrusively imaging the thermal field in opaque fluids under an externally imposed temperature gradient. Many industrial processes involve opaque fluids, such as molten metals, semiconductors, and polymers, often in situations in which thermal gradients are important. For example, one may wish to understand semiconductor crystal growth dynamics in a Bridgman apparatus. Destructive testing of the crystal after the process is completed gives only indirect information about the fluid dynamics of the formation process. Knowledge of the coupled thermal and velocity fields during the growth process is then essential. Most techniques for non-intrusive velocity and temperature measurement in fluids are optical in nature, and hence the fluids studied must be transparent. In some cases (for example, LDV (laser Doppler velocimetry) and PIV (particle imaging velocimetry)) the velocities of small neutrally buoyant seed particles suspended in the fluid, are measured. Without particle seeding one can use the variation of the index of refraction of the fluid with temperature to visualize, through interferometric, Schlieren or shadowgraph techniques, the thermal field. The thermal field in turn gives a picture of the pattern existing in the fluid. If the object of study is opaque, non-optical techniques must be used. In this project we focus on the use of ultrasound, which propagates easily through opaque liquids and solids. To date ultrasound measurements have almost exclusively relied on the detection of sound scattered from density discontinuities inside the opaque material of interest. In most cases it has been used to visualize structural properties, but more recently the ultrasound Doppler velocimeter has become available. As in the optical case, it relies on seed particles that scatter Doppler shifted sound back to the detector. Doppler ultrasound techniques are, however, not useful for

  2. Standards of ultrasound imaging of the adrenal glands

    PubMed Central

    Jakubowski, Wiesław S.; Dobruch-Sobczak, Katarzyna; Kasperlik-Załuska, Anna A.

    2015-01-01

    Adrenal glands are paired endocrine glands located over the upper renal poles. Adrenal pathologies have various clinical presentations. They can coexist with the hyperfunction of individual cortical zones or the medulla, insufficiency of the adrenal cortex or retained normal hormonal function. The most common adrenal masses are tumors incidentally detected in imaging examinations (ultrasound, tomography, magnetic resonance imaging), referred to as incidentalomas. They include a range of histopathological entities but cortical adenomas without hormonal hyperfunction are the most common. Each abdominal ultrasound scan of a child or adult should include the assessment of the suprarenal areas. If a previously non-reported, incidental solid focal lesion exceeding 1 cm (incidentaloma) is detected in the suprarenal area, computed tomography or magnetic resonance imaging should be conducted to confirm its presence and for differentiation and the tumor functional status should be determined. Ultrasound imaging is also used to monitor adrenal incidentaloma that is not eligible for a surgery. The paper presents recommendations concerning the performance and assessment of ultrasound examinations of the adrenal glands and their pathological lesions. The article includes new ultrasound techniques, such as tissue harmonic imaging, spatial compound imaging, three-dimensional ultrasound, elastography, contrast-enhanced ultrasound and parametric imaging. The guidelines presented above are consistent with the recommendations of the Polish Ultrasound Society. PMID:26807295

  3. Developments in cardiovascular ultrasound: Part 1: Signal processing and instrumentation.

    PubMed

    Fish, P J; Hoskins, P R; Moran, C; McDicken, W N

    1997-11-01

    One of the major contributions to the improvement of spectral Doppler and colour flow imaging instruments has been the development of advanced signal-processing techniques made possible by increasing computing power. Model-based or parametric spectral estimators, time-frequency transforms, station-arising algorithms and spectral width correction techniques have been investigated as possible improvements on the FFT-based estimators currently used for real-time spectral estimation of Doppler signals. In colour flow imaging some improvement on velocity estimation accuracy has been achieved by the use of new algorithms but at the expense of increased computational complexity compared with the conventional autocorrelation method. Polynomial filters have been demonstrated to have some advantages over IIR filters for stationary echo cancellation. Several methods of velocity vector estimation to overcome the problem of angle dependence have been studied, including 2D feature tracking, two and three beam approaches and the use of spectral width in addition to mean frequency. 3D data acquisition and display and Doppler power imaging have also been investigated. The use of harmonic imaging, using the second harmonic generated by encapsulated bubble contrast media, seems promising particularly for imaging slow flow. Parallel image data acquisition using non-sequential scanning or broad beam transmission, followed by simultaneous reception along a number of beams, has been studied to speed up 'real-time' imaging. PMID:9538529

  4. Tumor Functional and Molecular Imaging Utilizing Ultrasound and Ultrasound-Mediated Optical Techniques

    PubMed Central

    Yuan, Baohong; Rychak, Joshua

    2014-01-01

    Tumor functional and molecular imaging has significantly contributed to cancer preclinical research and clinical applications. Among typical imaging modalities, ultrasonic and optical techniques are two commonly used methods; both share several common features such as cost efficiency, absence of ionizing radiation, relatively inexpensive contrast agents, and comparable maximum-imaging depth. Ultrasonic and optical techniques are also complementary in imaging resolution, molecular sensitivity, and imaging space (vascular and extravascular). The marriage between ultrasonic and optical techniques takes advantages of both techniques. This review introduces tumor functional and molecular imaging using microbubble-based ultrasound and ultrasound-mediated optical imaging techniques. PMID:23219728

  5. Cardiac phase detection in intravascular ultrasound images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Lemos, Pedro Alves; Yoneyama, Takashi; Furuie, Sergio Shiguemi

    2008-03-01

    Image gating is related to image modalities that involve quasi-periodic moving organs. Therefore, during intravascular ultrasound (IVUS) examination, there is cardiac movement interference. In this paper, we aim to obtain IVUS gated images based on the images themselves. This would allow the reconstruction of 3D coronaries with temporal accuracy for any cardiac phase, which is an advantage over the ECG-gated acquisition that shows a single one. It is also important for retrospective studies, as in existing IVUS databases there are no additional reference signals (ECG). From the images, we calculated signals based on average intensity (AI), and, from consecutive frames, average intensity difference (AID), cross-correlation coefficient (CC) and mutual information (MI). The process includes a wavelet-based filter step and ascendant zero-cross detection in order to obtain the phase information. Firstly, we tested 90 simulated sequences with 1025 frames each. Our method was able to achieve more than 95.0% of true positives and less than 2.3% of false positives ratio, for all signals. Afterwards, we tested in a real examination, with 897 frames and ECG as gold-standard. We achieved 97.4% of true positives (CC and MI), and 2.5% of false positives. For future works, methodology should be tested in wider range of IVUS examinations.

  6. MACD: an imaging marker for cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Ganz, Melanie; de Bruijne, Marleen; Nielsen, Mads

    2010-03-01

    Despite general acceptance that a healthy lifestyle and the treatment of risk factors can prevent the development of cardiovascular diseases (CVD), CVD are the most common cause of death in Europe and the United States. It has been shown that abdominal aortic calcifications (AAC) correlate strongly with coronary artery calcifications. Hence an early detection of aortic calcified plaques helps to predict the risk of related coronary diseases. Also since two thirds of the adverse events have no prior symptoms, possibilities to screen for risk in low cost imaging are important. To this end the Morphological Atherosclerotic Calcification Distribution (MACD) index was developed. In the following several potential severity scores relating to the geometrical outline of the calcified deposits in the lumbar aortic region are introduced. Their individual as well as their combined predictive power is examined and a combined marker, MACD, is constructed. This is done using a Cox regression analysis, also known as survival analysis. Furthermore we show how a Cox regression yields MACD to be the most efficient marker. We also demonstrate that MACD has a larger individual predictive power than any of the other individual imaging markers described. Finally we present that the MACD index predicts cardiovascular death with a hazard ratio of approximately four.

  7. A comparison of ultrasound and magnetic resonance imaging to assess visceral fat in the metabolic syndrome.

    PubMed

    Gong, Weikun; Ren, Huilong; Tong, Hongzhang; Shen, Xiaoyin; Luo, Jianping; Chen, Shuting; Lai, Jingbo; Chen, Xinyi; Chen, Hongwei; Yu, Wanjun

    2007-01-01

    Visceral adipose tissue (VAT) plays a key role in the metabolic syndrome. Easy detection of VAT could be an important tool to increase understanding of the metabolic syndrome. To study the relationship between the area of the inferior part of the perirenal fat (AIPPF) and anthropometric, imaging and cardiovascular risk factors of metabolic syndrome, seventy two subjects with metabolic syndrome were recruited including 44 men and 28 women (age: 26-68 yr). Each subject underwent ultrasound detection of AIPPF, intraabdominal fat thickness and magnetic resonance imaging (MRI) to calculate abdominal VAT (MRI VAT). Anthropometric and cardiovascular risk factors were also evaluated. AIPPF measured by ultrasonography demonstrated excellent reproducibility. Receiver operating characteristic analysis revealed that AIPPF has the best sensitivity for women, specificity for men and accuracy of the various measures to predict visceral obesity (MRI VAT value > or = 110 cm2) for both genders. AIPPF was related to MRI VAT, ultrasound measured intraabdominal fat, waist circumference, the ratio of waist and hip circumferences (of men), body mass index and the main cardiovascular risk factors of metabolic syndrome. Multiple stepwise linear regression analysis suggested that MRI VAT affected AIPPF independent of other investigated obesity indices. This study showed that AIPPF could be applied as an easy and reliable imaging indicator of visceral obesity and cardiovascular risk factors in the metabolic syndrome. PMID:17392130

  8. A new architecture for fast ultrasound imaging

    SciTech Connect

    Cruza, J. F.; Camacho, J.; Moreno, J. M.; Medina, L.

    2014-02-18

    Some ultrasound imaging applications require high frame rate, for example 3D imaging and automated inspections of large components. Being the signal-processing throughput of the system the main bottleneck, parallel beamforming is required to achieve hundreds to thousands of images per second. Simultaneous A-scan line beamforming in all active channels is required to reach the intended high frame rate. To this purpose, a new parallel beamforming architecture that exploits the currently available processing resources available in state-of-the-art FPGAs is proposed. The work aims to get the optimal resource usage, high scalability and flexibility for different applications. To achieve these goals, the basic beamforming function is reformulated to be adapted to the DSP-cell architecture of state-of-the-art FPGAs. This allows performing simultaneous dynamic focusing on multiple A-scan lines. Some realistic examples are analyzed, evaluating resource requirements and maximum operating frequency. For example, a 128-channel system, with 128 scan lines and acquiring at 20 MSPS, can be built with 4 mid-range FPGAs, achieving up to 18000 frames per second, just limited by the maximum PRF. The gold standard Synthetic Transmit Aperture method (also called Total Focusing Method) can be carried out in real time at a processing rate of 140 high-resolution images per second (16 cm depth on steel)

  9. A new architecture for fast ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Cruza, J. F.; Camacho, J.; Moreno, J. M.; Medina, L.

    2014-02-01

    Some ultrasound imaging applications require high frame rate, for example 3D imaging and automated inspections of large components. Being the signal-processing throughput of the system the main bottleneck, parallel beamforming is required to achieve hundreds to thousands of images per second. Simultaneous A-scan line beamforming in all active channels is required to reach the intended high frame rate. To this purpose, a new parallel beamforming architecture that exploits the currently available processing resources available in state-of-the-art FPGAs is proposed. The work aims to get the optimal resource usage, high scalability and flexibility for different applications. To achieve these goals, the basic beamforming function is reformulated to be adapted to the DSP-cell architecture of state-of-the-art FPGAs. This allows performing simultaneous dynamic focusing on multiple A-scan lines. Some realistic examples are analyzed, evaluating resource requirements and maximum operating frequency. For example, a 128-channel system, with 128 scan lines and acquiring at 20 MSPS, can be built with 4 mid-range FPGAs, achieving up to 18000 frames per second, just limited by the maximum PRF. The gold standard Synthetic Transmit Aperture method (also called Total Focusing Method) can be carried out in real time at a processing rate of 140 high-resolution images per second (16 cm depth on steel).

  10. Fast and Automatic Ultrasound Simulation from CT Images

    PubMed Central

    Yang, Jian; Liu, Yue; Wang, Yongtian

    2013-01-01

    Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose. PMID:24348736

  11. Two-dimensional ultrasound image matching system for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zaim, Amjad; Keck, Rick W.; Selman, Steven H.; Jankun, Jerzy

    2001-05-01

    Two-dimensional (2D) ultrasound imaging is commonly used for diagnosis in a variety of medical fields. However, there are several drawbacks of conventional 2D-ultrasound imaging. These include prostate or transducer movement that produces sets of different images that are difficult to interpret. Also during patient's reexamination correspondence between sets of images before reexamination and after is difficult to establish. This can be described as a problem of correlation between two sets of images: the first created before distortion or examination, the second one after. We propose a method to register 2D ultrasound volumes based on external markers introduced in the prostate. The metal balls are inserted in the prostate at three distinct locations in the prostate. These appear as bright dots in the ultrasound field, serve as reference points, are then outlined through a user-interactive program from two sets of images. Then, the computer program rotates and translates till they match respectively, and displays the mapped points with their corresponding location. Based on this idea we developed an image-guided system for PDT that require high-precision placement of implants. In the planning stage, the system performs an automatic acquisition of 2D transrectal ultrasound images that will ultimately be used to construct the treatment plan. At the time of the therapy, new sets of ultrasound images are acquired and a match is established between the virtual world and the patient's real world with the aid of manually introduced markers and image matching algorithms.

  12. A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf A.; Shapiro, Linda G.

    2008-03-01

    Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.

  13. Imaging nonmelanoma skin cancers with combined ultrasound-photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Sunar, Ulas; Rohrbach, Daniel J.; Morgan, Janet; Zeitouni, Natalie

    2013-03-01

    PDT has become a treatment of choice especially for the cases with multiple sites and large areas. However, the efficacy of PDT is limited for thicker and deeper tumors. Depth and size information as well as vascularity can provide useful information to clinicians for planning and evaluating PDT. High-resolution ultrasound and photoacoustic imaging can provide information regarding skin structure and vascularity. We utilized combined ultrasound-photoacoustic microscopy for imaging a basal cell carcinoma (BCC) tumor pre-PDT and the results indicate that combined ultrasound-photoacoustic imaging can be useful tool for PDT planning by providing both structural and functional contrasts.

  14. Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery.

    PubMed

    Loizou, Christos P; Theofanous, Charoula; Pantziaris, Marios; Kasparis, Takis

    2014-04-01

    Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in medicine to assess the severity of atherosclerosis and monitor its progression through time. It is also used in border detection and texture characterization of the atherosclerotic carotid plaque in the CCA, the identification and measurement of the intima-media thickness (IMT) and the lumen diameter that all are very important in the assessment of cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multiplicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image segmentation of the IMT and the atherosclerotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we have developed in MATLAB(®) a unified toolbox that integrates image despeckle filtering (IDF), texture analysis and image quality evaluation techniques to automate the pre-processing and complement the disease evaluation in ultrasound CCA images. The proposed software, is based on a graphical user interface (GUI) and incorporates image normalization, 10 different despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 texture features, 15 quantitative image quality metrics and objective image quality evaluation. The software is publicly available in an executable form, which can be downloaded from http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by comparing its results with quantitative visual analysis performed by a medical expert. It was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality perception (based on the expert's assessment and the image texture and quality metrics). It is anticipated that the

  15. Wavelet-based ultrasound image denoising: performance analysis and comparison.

    PubMed

    Rizi, F Yousefi; Noubari, H Ahmadi; Setarehdan, S K

    2011-01-01

    Ultrasound images are generally affected by multiplicative speckle noise, which is mainly due to the coherent nature of the scattering phenomenon. Speckle noise filtering is thus a critical pre-processing step in medical ultrasound imaging provided that the diagnostic features of interest are not lost. A comparative study of the performance of alternative wavelet based ultrasound image denoising methods is presented in this article. In particular, the contourlet and curvelet techniques with dual tree complex and real and double density wavelet transform denoising methods were applied to real ultrasound images and results were quantitatively compared. The results show that curvelet-based method performs superior as compared to other methods and can effectively reduce most of the speckle noise content of a given image. PMID:22255196

  16. Nonlocal Total-Variation-Based Speckle Filtering for Ultrasound Images.

    PubMed

    Wen, Tiexiang; Gu, Jia; Li, Ling; Qin, Wenjian; Wang, Lei; Xie, Yaoqin

    2016-07-01

    Ultrasound is one of the most important medical imaging modalities for its real-time and portable imaging advantages. However, the contrast resolution and important details are degraded by the speckle in ultrasound images. Many speckle filtering methods have been developed, but they are suffered from several limitations, difficult to reach a balance between speckle reduction and edge preservation. In this paper, an adaptation of the nonlocal total variation (NLTV) filter is proposed for speckle reduction in ultrasound images. The speckle is modeled via a signal-dependent noise distribution for the log-compressed ultrasound images. Instead of the Euclidian distance, the statistical Pearson distance is introduced in this study for the similarity calculation between image patches via the Bayesian framework. And the Split-Bregman fast algorithm is used to solve the adapted NLTV despeckling functional. Experimental results on synthetic and clinical ultrasound images and comparisons with some classical and recent algorithms are used to demonstrate its improvements in both speckle noise reduction and tissue boundary preservation for ultrasound images. PMID:26316172

  17. Complex wavelet based speckle reduction using multiple ultrasound images

    NASA Astrophysics Data System (ADS)

    Uddin, Muhammad Shahin; Tahtali, Murat; Pickering, Mark R.

    2014-04-01

    Ultrasound imaging is a dominant tool for diagnosis and evaluation in medical imaging systems. However, as its major limitation is that the images it produces suffer from low quality due to the presence of speckle noise, to provide better clinical diagnoses, reducing this noise is essential. The key purpose of a speckle reduction algorithm is to obtain a speckle-free high-quality image whilst preserving important anatomical features, such as sharp edges. As this can be better achieved using multiple ultrasound images rather than a single image, we introduce a complex wavelet-based algorithm for the speckle reduction and sharp edge preservation of two-dimensional (2D) ultrasound images using multiple ultrasound images. The proposed algorithm does not rely on straightforward averaging of multiple images but, rather, in each scale, overlapped wavelet detail coefficients are weighted using dynamic threshold values and then reconstructed by averaging. Validation of the proposed algorithm is carried out using simulated and real images with synthetic speckle noise and phantom data consisting of multiple ultrasound images, with the experimental results demonstrating that speckle noise is significantly reduced whilst sharp edges without discernible distortions are preserved. The proposed approach performs better both qualitatively and quantitatively than previous existing approaches.

  18. Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation.

    PubMed

    Zhang, Haichong K; Cheng, Alexis; Bottenus, Nick; Guo, Xiaoyu; Trahey, Gregg E; Boctor, Emad M

    2016-04-01

    Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA-called synthetic tracked aperture ultrasound (STRATUS) imaging-by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality. PMID:27088108

  19. Three-dimensional ultrasound imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Fenster, Aaron; Downey, Donal B.

    1999-05-01

    Ultrasonography, a widely used imaging modality for the diagnosis and staging of many diseases, is an important cost- effective technique, however, technical improvements are necessary to realize its full potential. Two-dimensional viewing of 3D anatomy, using conventional ultrasonography, limits our ability to quantify and visualize most diseases, causing, in part, the reported variability in diagnosis and ultrasound guided therapy and surgery. This occurs because conventional ultrasound images are 2D, yet the anatomy is 3D; hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to operator variability and incorrect diagnoses. In addition, the 2D ultrasound image represents a single thin plane at some arbitrary angle in the body. It is difficult to localize and reproduce the image plane subsequently, making conventional ultrasonography unsatisfactory for follow-up studies and for monitoring therapy. Our efforts have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that can acquire B-mode, color Doppler and power Doppler images. An inexpensive desktop computer is used to reconstruct the information in 3D, and then is also used for interactive viewing of the 3D images. We have used 3D ultrasound images for the diagnosis of prostate cancer, carotid disease, breast cancer and liver disease and for applications in obstetrics and gynecology. In addition, we have also used 3D ultrasonography for image-guided minimally invasive therapeutic applications of the prostate such as cryotherapy and brachytherapy.

  20. Investigating ultrasound imaging in the frequency domain for tissue characterisation

    NASA Astrophysics Data System (ADS)

    Stromer, Jeremy; Ladani, Leila

    2016-07-01

    The potential of ultrasound imaging for use in distinguishing structures present in soft materials is investigated. In this study, images were reconstructed using non-standard parameters, which have been shown to vary according to different tissue structures. Due to the previously determined dependence on material microstructure, we investigate the possibility of these parameters as a basis for imaging soft materials. The feasibility of imaging methods was first tested on a large scale using 0.5-MHz ultrasound transducers. Imaging was then extended to a smaller scale using small-diameter 25-MHz transducers. The resulting images were compared to conventional C-scans with minimal data processing and were found to be of at least similar quality. These initial results show the possibility of using nonconventional ultrasound measurements as another means of imaging tissue and other soft materials for the presence of internal inclusions.

  1. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  2. Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback.

    PubMed

    Lin, Kao-Han; Young, Sun-Yi; Hsu, Ming-Chuan; Chan, Hsu; Chen, Yung-Yaw; Lin, Win-Li

    2008-01-01

    In this study, we developed a focused ultrasound (FUS) thermal therapy system with ultrasound image guidance and thermocouple temperature measurement feedback. Hydraulic position devices and computer-controlled servo motors were used to move the FUS transducer to the desired location with the measurement of actual movement by linear scale. The entire system integrated automatic position devices, FUS transducer, power amplifier, ultrasound image system, and thermocouple temperature measurement into a graphical user interface. For the treatment procedure, a thermocouple was implanted into a targeted treatment region in a tissue-mimicking phantom under ultrasound image guidance, and then the acoustic interference pattern formed by image ultrasound beam and low-power FUS beam was employed as image guidance to move the FUS transducer to have its focal zone coincident with the thermocouple tip. The thermocouple temperature rise was used to determine the sonication duration for a suitable thermal lesion as a high power was turned on and ultrasound image was used to capture the thermal lesion formation. For a multiple lesion formation, the FUS transducer was moved under the acoustic interference guidance to a new location and then it sonicated with the same power level and duration. This system was evaluated and the results showed that it could perform two-dimensional motion control to do a two-dimensional thermal therapy with a small localization error 0.5 mm. Through the user interface, the FUS transducer could be moved to heat the target region with the guidance of ultrasound image and acoustic interference pattern. The preliminary phantom experimental results demonstrated that the system could achieve the desired treatment plan satisfactorily. PMID:19163216

  3. The sonographic digital portfolio: a longitudinal ultrasound image tracking program

    PubMed Central

    2012-01-01

    Background Ultrasonography (US) at the medical student level is developing. As clinical skills and simulation centers expand, US equipment miniaturizes, and more students are exposed to ultrasound; a digital portfolio comprised of US images and videos may be useful in demonstrating experience and possibly competency. Methods Medical students participated in US curricula consisting of didactics and hands-on training. From 1 July 2006 to 30 June 2008, student images and videos were saved. Total images and videos were evaluated and catalogued. Results A total of 10,074 images and 1,227 videos were saved during the 2-year period. For the academic year 2006 to 2007, 159 medical students obtained 3,641 of the images (84.9%) and 270 of the videos (86.0%). First year students obtained 778 images and 20 videos; second year students, 1,174 images and 64 videos; third year students, 211 images and 20 videos; and fourth year students, 1,478 images and 166 videos. For the academic year 2007 to 2008, 222 medical students obtained 4,340 images (75%) and 619 videos (67.8%). First year students obtained 624 images and 109 videos; second year students, 555 images and 81 videos; third year students, 132 images and 14 videos; and fourth year students, 3,029 images and 415 videos. Conclusions The ultrasound digital portfolio allows medical students to collate and document their ultrasound experience. Currently, there is no requirement for ultrasound training, documentation of competency, or minimum numbers of US exams for medical education. The ultrasound digital portfolio may be a useful tool in documenting ultrasound proficiency. PMID:22871130

  4. Efficiency of ultrasound training simulators: method for assessing image realism.

    PubMed

    Bø, Lars Eirik; Gjerald, Sjur Urdson; Brekken, Reidar; Tangen, Geir Arne; Hernes, Toril A Nagelhus

    2010-04-01

    Although ultrasound has become an important imaging modality within several medical professions, the benefit of ultrasound depends to some degree on the skills of the person operating the probe and interpreting the image. For some applications, the possibility to educate operators in a clinical setting is limited, and the use of training simulators is considered an alternative approach for learning basic skills. To ensure the quality of simulator-based training, it is important to produce simulated ultrasound images that resemble true images to a sufficient degree. This article describes a method that allows corresponding true and simulated ultrasound images to be generated and displayed side by side in real time, thus facilitating an interactive evaluation of ultrasound simulators in terms of image resemblance, real-time characteristics and man-machine interaction. The proposed method could be used to study the realism of ultrasound simulators and how this realism affects the quality of training, as well as being a valuable tool in the development of simulation algorithms. PMID:20337541

  5. Ultrasound image velocimetry for rheological measurements

    NASA Astrophysics Data System (ADS)

    Gurung, A.; Haverkort, J. W.; Drost, S.; Norder, B.; Westerweel, J.; Poelma, C.

    2016-09-01

    Ultrasound image velocimetry (UIV) allows for the non-intrusive measurement of a wide range of flows without the need for optical transparency. In this study, we used UIV to measure the local velocity field of a model drilling fluid that exhibits yield stress flow behavior. The radial velocity profile was used to determine the yield stress and the Herschel–Bulkley model flow index n and the consistency index k. Reference data were obtained using the conventional offline Couette rheometry. A comparison showed reasonable agreement between the two methods. The discrepancy in model parameters could be attributed to inherent differences between the methods, which cannot be captured by the three-parameter model used. Overall, with a whole flow field measurement technique such as UIV, we were able to quantify the complex rheology of a model drilling fluid. These preliminary results show that UIV can be used as a non-intrusive diagnostic for in situ, real-time measurement of complex opaque flow rheology.

  6. Pre-participation cardiovascular screening: is community screening using hand-held cardiac ultrasound feasible?

    PubMed

    Mitchell, A R J; Hurry, R; Le Page, P; MacLachlan, H

    2015-06-01

    We evaluated the feasibility and costs of utilising hand-held cardiac ultrasound (HHCU) as part of a community-based pre-participation cardiovascular screening programme. Ninety-seven school children were screened using a personal history, a physical examination, a resting 12-lead electrocardiogram (ECG) and a HHCU. A consultant cardiologist independently reviewed and reported the data. Previously undiagnosed cardiovascular abnormalities were identified in nine participants (9%). An additional three participants (3%) were diagnosed with hypertension. The nine abnormalities were identified at a cost of £460 per finding, with a cost of £43 per participant screened. The marginal cost of adding a HHCU to the personal history, physical examination and ECG was £16 per participant. Pre-participation screening in the community using hand-held echocardiography is practical and inexpensive. The additional sensitivity and specificity provided by the ultrasound may enhance screening programmes, thereby reducing false positives and the need for expensive follow-up testing. PMID:26693333

  7. Pre-participation cardiovascular screening: is community screening using hand-held cardiac ultrasound feasible?

    PubMed Central

    Hurry, R; Le Page, P; MacLachlan, H

    2015-01-01

    We evaluated the feasibility and costs of utilising hand-held cardiac ultrasound (HHCU) as part of a community-based pre-participation cardiovascular screening programme. Ninety-seven school children were screened using a personal history, a physical examination, a resting 12-lead electrocardiogram (ECG) and a HHCU. A consultant cardiologist independently reviewed and reported the data. Previously undiagnosed cardiovascular abnormalities were identified in nine participants (9%). An additional three participants (3%) were diagnosed with hypertension. The nine abnormalities were identified at a cost of £460 per finding, with a cost of £43 per participant screened. The marginal cost of adding a HHCU to the personal history, physical examination and ECG was £16 per participant. Pre-participation screening in the community using hand-held echocardiography is practical and inexpensive. The additional sensitivity and specificity provided by the ultrasound may enhance screening programmes, thereby reducing false positives and the need for expensive follow-up testing. PMID:26693333

  8. Interlaced realtime channel-domain photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Zemp, Roger J.

    2011-03-01

    Photoacoustic imaging offers a new and complementary contrast mechanism to the traditional structural contrast of ultrasound. While the combination of these two modes has been demonstrated in the past with single-element transducers, array transducers offer clear advantages in both modes by eliminating mechanical scanning and allowing image formation from a single excitation. Given the abundance of commercially available ultrasound systems, it is desirable to use them as much as possible. However, these systems often only allow access to beamformed RF data. We discuss the applicability of ultrasound beamformers for photoacoustic imaging, and find that with only software-defined control over the speed of sound, walking aperture reconstruction is optimally performed using a speed correction factor of 1.414. When sector-scanning is used, a different strategy is required. We also demonstrate a new photoacoustic-ultrasound imaging system based on a Verasonics ultrasound array system. The system streams raw channel data to a 6-core PC at up to 1.4GB/s via PCI-Express, allowing interlaced ultrasound and photoacoustic data to be acquired and reconstructed at realtime rates. Using an L7-4 linear array transducer, we demonstrate the performance of this system and discuss potential applications. The system should provide new opportunities for clinical and pre-clinical imaging.

  9. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on

  10. Multispectral photoacoustic imaging of nerves with a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.

    2014-03-01

    Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.

  11. Filtering and detection of low contrast structures on ultrasound images

    NASA Astrophysics Data System (ADS)

    Vargas-Quintero, Lorena; Escalante-Ramírez, Boris; Arámbula, Fernando

    2012-06-01

    In this paper, we propose a detection method of low contrast structures in medical ultrasound images. Since noise speckle makes difficult the analysis of ultrasound images, two approaches based on the wavelet and Hermite-transforms for enhancement and noise reduction are compared. These techniques assume that speckle pattern is a random signal characterized by a Rayleigh distribution and affects the image as a multiplicative noise. For the wavelet-based approach, a Bayesian estimator at subband level for pixel classification is used. All the estimation parameters are calculated using an adjustment method derived from the first and second order statistical moments. The Hermite method computes a mask to find those pixels that are corrupted by speckle. In this work, we consider a statistical detection model that depends on the variable size and contrast of the image speckle. The algorithms have been evaluated using several real and synthetic ultrasound images. Combinations of the implemented methods can be helpful for automatic detection applications of tumors in mammographic ultrasound images. The employed filtering techniques are quantitatively and qualitatively compared with other previously published methods applied on ultrasound medical images.

  12. Imaging the hip joint in osteoarthritis: A place for ultrasound?

    PubMed

    Sudula, S N

    2016-05-01

    Osteoarthritis has traditionally been imaged with conventional radiographs; this has been regarded as the reference technique in osteoarthritis for a long time. However, in recent years, innovative imaging techniques such as ultrasonography have been used to obtain a better understanding of this disease. This is mainly due to tremendous technical advances and progressive developments of ultrasound equipment occurring over the past decade. Ultrasonography has been demonstrated to be a valuable imaging technique in the diagnosis and management of osteoarthritis of the hip joint. Application of this imaging methodology for osteoarthritis has improved the understanding of the disease process and may aid in the assessment of the efficacy of future therapies. The execution of ultrasound-guided procedures with safety and reliability has a relevant significance in patient management of osteoarthritis of the hip joint. This paper reviews the use of ultrasound as an imaging technique for the evaluation and treatment of osteoarthritis hip joint. PMID:27482280

  13. Ultrasound, normal placenta - Braxton Hicks (image)

    MedlinePlus

    ... performed at 17 weeks gestation. It shows the placenta during a normal (Braxton Hicks) contraction. Throughout the ... contracts to facilitate better blood flow through the placenta and the fetus. In this ultrasound, the placenta ...

  14. Ultrasound, normal fetus - abdomen measurements (image)

    MedlinePlus

    ... Many health care providers like to have fetal measurements to verify the size of the fetus and ... any abnormalities. This ultrasound is of an abdominal measurement. It shows a cross-section of the abdomen, ...

  15. Ultrasound, normal fetus - head measurements (image)

    MedlinePlus

    ... Many health care providers like to have fetal measurements to verify the size of the fetus and ... any abnormalities. This ultrasound is of a head measurement, indicated by the cross hairs and dotted lines.

  16. Ultrasound, color - normal umbilical cord (image)

    MedlinePlus

    ... is a normal color Doppler ultrasound of the umbilical cord performed at 30 weeks gestation. The cord ... the cord, two arteries and one vein. The umbilical cord is connected to the placenta, located in ...

  17. High-resolution imaging with a real-time synthetic aperture ultrasound system: a phantom study

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Labyed, Yassin; Simonetti, Francesco; Williamson, Michael; Rosenberg, Robert; Heintz, Philip; Sandoval, Daniel

    2011-03-01

    It is difficult for ultrasound to image small targets such as breast microcalcifications. Synthetic aperture ultrasound imaging has recently developed as a promising tool to improve the capabilities of medical ultrasound. We use two different tissueequivalent phantoms to study the imaging capabilities of a real-time synthetic aperture ultrasound system for imaging small targets. The InnerVision ultrasound system DAS009 is an investigational system for real-time synthetic aperture ultrasound imaging. We use the system to image the two phantoms, and compare the images with those obtained from clinical scanners Acuson Sequoia 512 and Siemens S2000. Our results show that synthetic aperture ultrasound imaging produces images with higher resolution and less image artifacts than Acuson Sequoia 512 and Siemens S2000. In addition, we study the effects of sound speed on synthetic aperture ultrasound imaging and demonstrate that an accurate sound speed is very important for imaging small targets.

  18. Ultrasound imaging techniques in density separation of polyolefin waste.

    PubMed

    Sanaee, Seyed Ali; Bakker, M C M

    2012-12-01

    Ultrasound imaging techniques are investigated using a multi-element sensor array for purposes of monitoring and measurement ofpolyolefin waste particles inside the black ferrous liquid ofa magnetic density separator (MDS). A medical ultrasound imaging system with real-time capability was adapted first to assess the potential of imaging technology inside the MDS. An image processing routine was developed to determine the depth distribution of the detected particles as they are carried by the flow in the MDS channel. This real-time information is vital for optimizing the splitter position, which directly influences quality and recovery of the MDS polyolefin products. Despite successes in the laboratory, the medical technology proved unsatisfactory for continuous high-quality image forming in the industrial set-up as it requires regular operator intervention. Therefore, research has been initiated into alternative imaging methods, which are also being investigated in other fields such as non-destructive testing and geophysics. The influence of different ultrasound datasets and related image-forming techniques were investigated, for which dedicated algorithms were implemented in Matlab. The main advantages and disadvantages of the different techniques are addressed. It is concluded that the alternative imaging methods may be more robust and deliver higher image quality compared to the commercial medical imager. In particular, sizing of polyolefin particles may improve significantly if the method takes into account the correct ultrasound velocities of both the ferrous liquid and the immersed polyolefin particles. PMID:23437658

  19. Assessing the Risks for Modern Diagnostic Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    William, Jr.

    1998-05-01

    Some 35 years after Paul-Jacques and Pierre Curie discovered piezoelectricity, ultrasonic imaging was developed by Paul Langevin. During this work, ultrasonic energy was observed to have a detrimental biological effect. These observations were confirmed a decade later by R. W. Wood and A. L. Loomis. It was not until the early 1950s that ultrasonic exposure conditions were controlled and specified so that studies could focus on the mechanisms by which ultrasound influenced biological materials. In the late 1940s, pioneering work was initiated to image the human body by ultrasonic techniques. These engineers and physicians were aware of the deleterious ultrasound effects at sufficiently high levels; this endeavored them to keep the exposure levels reasonably low. Over the past three decades, diagnostic ultrasound has become a sophisticated technology. Yet, our understanding of the potential risks has not changed appreciably. It is very encouraging that human injury has never been attributed to clinical practice of diagnostic ultrasound.

  20. Screening MR imaging versus screening ultrasound: pros and cons.

    PubMed

    Mahoney, Mary C; Newell, Mary S

    2013-08-01

    Data support greater sensitivity of MR imaging compared with mammography and ultrasound in high-risk populations, in particular BRCA 1 and BRCA 2 carriers. Screening ultrasound improves cancer yield versus mammography alone in high-risk patients and in patients with dense breasts and is less expensive. Drawbacks include low positive predictive value, operator dependence, and significant physician time expenditure. Advances, such as refinement of automated whole-breast ultrasound, new outcomes data from ultrasound-detected masses in BI-RADS 3 and 4a categories, and development of new MR imaging sequences that allow rapid screening, potentially without use of contrast, will likely reveal the most appropriate tool over time. PMID:23928240

  1. Versatile robotic probe calibration for position tracking in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Eirik Bø, Lars; Fagertun Hofstad, Erlend; Lindseth, Frank; Hernes, Toril A. N.

    2015-05-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  2. Current Role of Ultrasound in Small Bowel Imaging.

    PubMed

    Wale, Anita; Pilcher, James

    2016-08-01

    Bowel ultrasound is cheap, relatively quick, allows dynamic evaluation of the bowel, has no radiation burden, is well tolerated by patients, and allows repeat imaging. Bowel ultrasound requires a systematic assessment of the entire bowel using high-frequency probes. In addition, hydrosonography and contrast-enhanced ultrasound may be performed. We present the normal sonographic appearances of large and small bowel and the sonographic appearances of acute appendicitis, Crohn's disease, celiac disease, intussusception, infectious enteritis, intestinal tuberculosis, small bowel ileus and obstruction, small bowel ischemia, and malignant tumors. PMID:27342894

  3. In vivo thermal ablation monitoring using ultrasound echo decorrelation imaging.

    PubMed

    Subramanian, Swetha; Rudich, Steven M; Alqadah, Amel; Karunakaran, Chandra Priya; Rao, Marepalli B; Mast, T Douglas

    2014-01-01

    Previous work indicated that ultrasound echo decorrelation imaging can track and quantify changes in echo signals to predict thermal damage during in vitro radiofrequency ablation (RFA). In the in vivo studies reported here, the feasibility of using echo decorrelation imaging as a treatment monitoring tool was assessed. RFA was performed on normal swine liver (N = 5), and ultrasound ablation using image-ablate arrays was performed on rabbit liver implanted with VX2 tumors (N = 2). Echo decorrelation and integrated backscatter were computed from Hilbert transformed pulse-echo data acquired during RFA and ultrasound ablation treatments. Receiver operating characteristic (ROC) curves were employed to assess the ability of echo decorrelation imaging and integrated backscatter to predict ablation. Area under the ROC curves (AUROC) was determined for RFA and ultrasound ablation using echo decorrelation imaging. Ablation was predicted more accurately using echo decorrelation imaging (AUROC = 0.832 and 0.776 for RFA and ultrasound ablation, respectively) than using integrated backscatter (AUROC = 0.734 and 0.494). PMID:24239361

  4. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging.

  5. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging. PMID:26412926

  6. Imaging of cardiovascular risk in patients with Turner's syndrome

    PubMed Central

    Marin, A.; Weir-McCall, J.R.; Webb, D.J.; van Beek, E.J.R.; Mirsadraee, S.

    2015-01-01

    Turner's syndrome is a disorder defined by an absent or structurally abnormal second X chromosome and affects around 1 in 2000 newborn females. The standardised mortality ratio in Turner's syndrome is around three-times higher than in the general female population, mainly as a result of cardiovascular disorders. Most striking is the early age at which Turner's syndrome patients develop the life-threatening complications of cardiovascular disorders compared to the general population. The cardiovascular risk stratification in Turner's syndrome is challenging and imaging is not systematically used. The aim of this article is to review cardiovascular risks in this group of patients and discuss a systematic imaging approach for early identification of cardiovascular disorders in these patients. PMID:25917542

  7. Imaging of cardiovascular risk in patients with Turner's syndrome.

    PubMed

    Marin, A; Weir-McCall, J R; Webb, D J; van Beek, E J R; Mirsadraee, S

    2015-08-01

    Turner's syndrome is a disorder defined by an absent or structurally abnormal second X chromosome and affects around 1 in 2000 newborn females. The standardised mortality ratio in Turner's syndrome is around three-times higher than in the general female population, mainly as a result of cardiovascular disorders. Most striking is the early age at which Turner's syndrome patients develop the life-threatening complications of cardiovascular disorders compared to the general population. The cardiovascular risk stratification in Turner's syndrome is challenging and imaging is not systematically used. The aim of this article is to review cardiovascular risks in this group of patients and discuss a systematic imaging approach for early identification of cardiovascular disorders in these patients. PMID:25917542

  8. Multiphoton Imaging of Ultrasound Bioeffects in the Murine Brain

    NASA Astrophysics Data System (ADS)

    Raymond, Scott; Skoch, Jesse; Bacskai, Brian; Hynynen, Kullervo

    2006-05-01

    The purpose of this study was to demonstrate the feasibility of multiphoton imaging in the murine brain during exposure to ultrasound. Our experimental setup coupled ultrasound through the ventral surface of the mouse while allowing imaging through a cranial window from the dorsal surface. Field attenuation was estimated by scanning the field after insertion of a freshly sacrificed mouse; beam profile and peak position were preserved, suggesting adequate targeting for imaging experiments. C57 mice were imaged with a Biorad multiphoton microscope while being exposed to ultrasound (f = 1.029 MHz, peak pressure ˜ 200 kPa, average power ˜ 0.18 W) with IV injection of Optison. We observed strong vasoconstriction coincident with US and Optison, as well as permeabilization of the blood-brain barrier.

  9. High-resolution ultrasound imaging of cutaneous lesions

    PubMed Central

    Mandava, Anitha; Ravuri, Prabhakar Rao; Konathan, Rajyalaxmi

    2013-01-01

    High-resolution variable frequency ultrasound imaging is increasingly being used in the noninvasive evaluation of various cutaneous diseases. It plays a complimentary role to physical examination in the assessment of cutaneous lesions. It is the only imaging modality useful in the evaluation of superficial cutaneous lesions that are too small to be evaluated on computed tomography (CT) or magnetic resonance imaging (MRI) and is helpful in reducing invasive procedures like biopsies and fine needle aspirations. In this article, we seek to describe the relevance and basic principles of cutaneous ultrasound, imaging findings of normal skin, current applications of high-resolution ultrasound in the diagnosis and management of various dermatological conditions, along with the features of some commonly encountered lesions. PMID:24347861

  10. Ultrasound image enhancement using structure-based filtering.

    PubMed

    Ueng, Shyh-Kuang; Yen, Cho-Li; Chen, Guan-Zhi

    2014-01-01

    Ultrasound images are prone to speckle noises. Speckles blur features which are essential for diagnosis and assessment. Thus despeckling is a necessity in ultrasound image processing. Linear filters can suppress speckles, but they smooth out features. Median filter based despeckling algorithms produce better results. However, they may produce artifact patterns in the resulted images and oversmooth nonuniform regions. This paper presents an innovative despeckle procedure for ultrasound images. In the proposed method, the diffusion tensor of intensity is computed at each pixel at first. Then the eigensystem of the diffusion tensor is calculated and employed to detect and classify the underlying structure. Based on the classification result, a feasible filter is selected to suppress speckles and enhance features. Test results show that the proposed despeckle method reduces speckles in uniform areas and enhances tissue boundaries and spots. PMID:25110515

  11. Ultrasound Image Enhancement Using Structure-Based Filtering

    PubMed Central

    Yen, Cho-Li; Chen, Guan-Zhi

    2014-01-01

    Ultrasound images are prone to speckle noises. Speckles blur features which are essential for diagnosis and assessment. Thus despeckling is a necessity in ultrasound image processing. Linear filters can suppress speckles, but they smooth out features. Median filter based despeckling algorithms produce better results. However, they may produce artifact patterns in the resulted images and oversmooth nonuniform regions. This paper presents an innovative despeckle procedure for ultrasound images. In the proposed method, the diffusion tensor of intensity is computed at each pixel at first. Then the eigensystem of the diffusion tensor is calculated and employed to detect and classify the underlying structure. Based on the classification result, a feasible filter is selected to suppress speckles and enhance features. Test results show that the proposed despeckle method reduces speckles in uniform areas and enhances tissue boundaries and spots. PMID:25110515

  12. Opto-ultrasound imaging in vivo in deep tissue

    NASA Astrophysics Data System (ADS)

    Si, Ke; YanXu; Zheng, Yao; Zhu, Xinpei; Gong, Wei

    2016-02-01

    It is of keen importance of deep tissue imaging with high resolution in vivo. Here we present an opto-ultrasound imaging method which utilizes an ultrasound to confine the laser pulse in a very tiny spot as a guide star. The results show that the imaging depth is 2mm with a resolution of 10um. Meanwhile, the excitation power we used is less than 2mW, which indicates that our methods can be applied in vivo without optical toxicity and optical bleaching due to the excitation power.

  13. Real-time SPECT and 2D ultrasound image registration.

    PubMed

    Bucki, Marek; Chassat, Fabrice; Galdames, Francisco; Asahi, Takeshi; Pizarro, Daniel; Lobo, Gabriel

    2007-01-01

    In this paper we present a technique for fully automatic, real-time 3D SPECT (Single Photon Emitting Computed Tomography) and 2D ultrasound image registration. We use this technique in the context of kidney lesion diagnosis. Our registration algorithm allows a physician to perform an ultrasound exam after a SPECT image has been acquired and see in real time the registration of both modalities. An automatic segmentation algorithm has been implemented in order to display in 3D the positions of the acquired US images with respect to the organs. PMID:18044572

  14. Ultrasound stylet for non-image-guided ventricular catheterization.

    PubMed

    Coulson, Nathaniel K; Chiarelli, Peter A; Su, David K; Chang, Jason J; MacConaghy, Brian; Murthy, Revathi; Toms, Peter; Robb, Terrence L; Ellenbogen, Richard G; Browd, Samuel R; Mourad, Pierre D

    2015-10-01

    OBJECT Urgent ventriculostomy placement can be a lifesaving procedure in the setting of hydrocephalus or elevated intracranial pressure. While external ventricular drain (EVD) insertion is common, there remains a high rate of suboptimal drain placement. Here, the authors seek to demonstrate the feasibility of an ultrasound-based guidance system that can be inserted into an existing EVD catheter to provide a linear ultrasound trace that guides the user toward the ventricle. METHODS The ultrasound stylet was constructed as a thin metal tube, with dimensions equivalent to standard catheter stylets, bearing a single-element, ceramic ultrasound transducer at the tip. Ultrasound backscatter signals from the porcine ventricle were processed by custom electronics to offer real-time information about ventricular location relative to the catheter. Data collected from the prototype device were compared with reference measurements obtained using standard clinical ultrasound imaging. RESULTS A study of porcine ventricular catheterization using the experimental device yielded a high rate of successful catheter placement after a single pass (10 of 12 trials), despite the small size of pig ventricles and the lack of prior instruction on porcine ventricular architecture. A characteristic double-peak signal was identified, which originated from ultrasound reflections off of the near and far ventricular walls. Ventricular dimensions, as obtained from the width between peaks, were in agreement with standard ultrasound reference measurements (p < 0.05). Furthermore, linear ultrasound backscatter data permitted in situ measurement of the stylet distance to the ventricular wall (p < 0.05), which assisted in catheter guidance. CONCLUSIONS The authors have demonstrated the ability of the prototype ultrasound stylet to guide ventricular access in the porcine brain. The alternative design of the device makes it potentially easy to integrate into the standard workflow for bedside EVD

  15. Ultrasound Imaging Using Diffraction Tomography in a Cylindrical Geometry

    SciTech Connect

    Chambers, D H; Littrup, P

    2002-01-24

    Tomographic images of tissue phantoms and a sample of breast tissue have been produced from an acoustic synthetic array system for frequencies near 500 kHz. The images for sound speed and attenuation show millimeter resolution and demonstrate the feasibility of obtaining high-resolution tomographic images with frequencies that can deeply penetrate tissue. The image reconstruction method is based on the Born approximation to acoustic scattering and is a simplified version of a method previously used by Andre (Andre, et. al., Int. J. Imaging Systems and Technology, Vol 8, No. 1, 1997) for a circular acoustic array system. The images have comparable resolution to conventional ultrasound images at much higher frequencies (3-5 MHz) but with lower speckle noise. This shows the potential of low frequency, deeply penetrating, ultrasound for high-resolution quantitative imaging.

  16. Dynamic Ultrasound Imaging Applications to Quantify Musculoskeletal Function

    PubMed Central

    Sikdar, Siddhartha; Wei, Qi; Cortes, Nelson

    2014-01-01

    Advances in imaging methods have led to new capability to study muscle and tendon motion in vivo. Direct measurements of muscle and tendon kinematics using imaging may lead to improved understanding of musculoskeletal function. This review presents quantitative ultrasound methods for muscle dynamics that can be used to assess in vivo musculoskeletal function when integrated with other conventional biomechanical measurements. PMID:24949846

  17. Translation of infrared chemical imaging for cardiovascular evaluation

    NASA Astrophysics Data System (ADS)

    Tiwari, Saumya; Raman, Jai; Reddy, Vijaya; Dawson, Miranda; Bhargava, Rohit

    2016-03-01

    Infrared (IR) spectroscopic imaging has been applied to study histology of cardiovascular tissue, primarily using Fourier transform IR (FTIR) Imaging. Here we describe results for histologic imaging of cardiac biopsies using a fast, discrete frequency IR (DFIR) imaging system. Histologic classification of tissue is understood in terms of the constituent frequencies and speeded up by careful optimization of the data acquired. Results are compared to FTIR imaging in terms of the signal to noise ratio and information content.

  18. Guideline report. Medical ultrasound imaging: progress and opportunities.

    PubMed

    Burns, M

    1989-01-01

    Utilization of medical ultrasound has expanded rapidly during the past several years. In 1988, sales of ultrasound equipment will approach $600 million, which is higher than any other individual imaging modality, including the most capital intensive, such as magnetic resonance imaging (MRI), computed tomography (CT), and cath lab angiography. This growth would have been difficult to predict previously, since ultrasound appeared to be a relatively mature imaging modality not too long ago. There are several reasons for this growth. Technological developments have been quite rapid; ultrasound has become easier to use, image quality has improved dramatically, and diagnostic accuracy has been enhanced. There has been a proliferation of new equipment at all ends of the price spectrum, allowing the user a wide choice in instrument performance, multi-function capabilities, and automated features to increase patient throughput. The DRG environment and the prospect for more pre-admission tests have also been a stimulus. Hospital buying activity has expanded, and many more ultrasound exams are now being conducted on an outpatient basis. Sales to freestanding imaging centers and individual physicians have similarly increased. The hospital user is willing to pay a large premium for advanced technical performance and is prepared to retire or replace older technology in less than three years. This replacement cycle is much shorter than the four to five year period which existed prior to 1985. By comparison, some of the more traditional imaging areas, such as radiology, have replacement rates of eight to ten years. The reason for early replacement is obvious. Ultrasound exams in hospitals generate revenues at a rate that justifies the purchase of the most advanced equipment. It also improves the referral rate and positions the hospital as a high quality provider. Even with low utilization rates, an ultrasound instrument can normally pay for itself in less than one year of regular

  19. Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents

    PubMed Central

    Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. PMID:25580914

  20. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    SciTech Connect

    Demi, Libertario Sloun, Ruud J. G. van; Mischi, Massimo; Wijkstra, Hessel

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  1. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  2. A new shear wave imaging system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Xiao, Yang; Qian, Ming; Zheng, Hairong

    2015-08-01

    Ultrasound elastography is able to provide a non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) technique is a quantitative method for tissue stiffness assessment. However, traditional SWI implementations cannot acquire 2D quantitative images of tissue elasticity distribution. In this study, a new shear wave imaging system is proposed and evaluated. Detailed delineation of hardware and image processing algorithms are presented. Programmable devices are selected to support flexible control of the system and the image processing algorithms. Analytic signal based cross-correlation method and a Radon transform based shear wave speed determination method are proposed with parallel computation ability. Tissue mimicking phantom imaging, and in vitro imaging measurements are conducted to demonstrate the performance of the proposed system. The system has the ability to provide a new choice for quantitative mapping of the tissue elasticity, and has good potential to be implemented into commercial ultrasound scanner. PMID:26737133

  3. Ultrasound introscopic image quantitative characteristics for medical diagnostics and refinements of physical noise rise reasons

    NASA Astrophysics Data System (ADS)

    Novoselets, Mikhail K.; Radchenko, Sergiy P.; Tsubin, Vitaliy A.; Gridko, Alexander N.

    1994-05-01

    Ultrasound images obtained with a simple sector scan show a granular appearance, called `speckle'. The speckle is the useless property of the ultrasound introskopic images as it mask all small differences of the images. The possibility of the speckle noise reduction by special created filter is analyzed. The computer processing results of ultrasound introskopic thyroid gland images by such filter are presented.

  4. Atherosclerotic carotid lumen segmentation in combined B-mode and contrast enhanced ultrasound images

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Carvalho, Diego D. B.; Klein, Stefan; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2014-03-01

    Patients with carotid atherosclerotic plaques carry an increased risk of cardiovascular events such as stroke. Ultrasound has been employed as a standard for diagnosis of carotid atherosclerosis. To assess atherosclerosis, the intima contour of the carotid artery lumen should be accurately outlined. For this purpose, we use simultaneously acquired side-by-side longitudinal contrast enhanced ultrasound (CEUS) and B-mode ultrasound (BMUS) images and exploit the information in the two imaging modalities for accurate lumen segmentation. First, nonrigid motion compensation is performed on both BMUS and CEUS image sequences, followed by averaging over the 150 time frames to produce an image with improved signal-to-noise ratio (SNR). After that, we segment the lumen from these images using a novel method based on dynamic programming which uses the joint histogram of the CEUS and BMUS pair of images to distinguish between background, lumen, tissue and artifacts. Finally, the obtained lumen contour in the improved-SNR mean image is transformed back to each time frame of the original image sequence. Validation was done by comparing manual lumen segmentations of two independent observers with automated lumen segmentations in the improved-SNR images of 9 carotid arteries from 7 patients. The root mean square error between the two observers was 0.17+/-0.10mm and between automated and average of manual segmentation of two observers was 0.19+/-0.06mm. In conclusion, we present a robust and accurate carotid lumen segmentation method which overcomes the complexity of anatomical structures, noise in the lumen, artifacts and echolucent plaques by exploiting the information in this combined imaging modality.

  5. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  6. Comparison of texture models for efficient ultrasound image retrieval

    NASA Astrophysics Data System (ADS)

    Bansal, Maggi; Sharma, Vipul; Singh, Sukhwinder

    2013-02-01

    Due to availability of inexpensive and easily available image capturing devices, the size of digital image collection is increasing rapidly. Thus, there is need to create efficient access methods or retrieval tools to search, browse and retrieve images from large multimedia repositories. More specifically, researchers have been engaged on different ways of retrieving images based on their actual content. In particular, Content Based Image Retrieval (CBIR) systems have attracted considerable research and commercial interest in the recent years. In CBIR, visual features characterizing the image content are color, shape and texture. Currently, texture is used to quantify the image content of medical images as it is the most prominent feature that contains information about the spatial distribution of gray levels and variations in brightness. Various texture models like Haralick's Spatial Gray Level Co-occurence Matrix (SGLCM), Gray Level Difference Statistics (GLDS), First-order Statistics (FoS), Statistical Feature Matrix (SFM), Law's Texture Energy Measures (TEM), Fractal features and Fourier Power Spectrum (FPS) features exists in literature. Each of these models visualizes texture in a different way. Retrieval performance depends upon the choice of texture algorithm. Unfortunately, there is no texture model known to work best for encoding texture properties of liver ultrasound images or retrieving most similar images. An experimental comparison of different texture models for Content Based Medical Image Retrieval (CBMIR) is presented in this paper. For the experiments, liver ultrasound image database is used and the retrieval performance of the various texture models is analyzed in detail. The paper concludes with recommendations which texture model performs better for liver ultrasound images. Interestingly, FPS and SGLCM based Haralick's features perform well for liver ultrasound retrieval and thus can be recommended as a simple baseline for such images.

  7. Ultrasound-modulated optical tomography for thick tissue imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.; Zhao, Xuemei; Jacques, Steven L.

    1995-12-01

    Continuous-wave ultrasonic modulation of scattered laser light has been used to image objects in tissue-simulating turbid media for the first time. We hypothesize that the ultrasound wave focused into the turbid media modulates the laser light passing through the ultrasonic focal spot. The modulated laser light collected by a photomultiplier tube reflects the local mechanical and optical properties in the focal zone. Buried objects in 5-cm thick tissue phantoms are located with millimeter resolution by scanning and detecting alterations of the ultrasound-modulated optical signal. Ultrasound-modulated optical tomography separates the conflict between signal and resolution in purely optical imaging of tissue and does not rely on ballistic or quasi-ballistic photons but on the abundant diffuse photons. The imaging resolution is determined by the focused ultrasonic wave. This technique has the potential to provide a noninvasive, nonionizing, inexpensive diagnostic tool for diseases such as breast cancer.

  8. Robust contour tracking in ultrasound tongue image sequences.

    PubMed

    Xu, Kele; Yang, Yin; Stone, Maureen; Jaumard-Hakoun, Aurore; Leboullenger, Clémence; Dreyfus, Gérard; Roussel, Pierre; Denby, Bruce

    2016-01-01

    A new contour-tracking algorithm is presented for ultrasound tongue image sequences, which can follow the motion of tongue contours over long durations with good robustness. To cope with missing segments caused by noise, or by the tongue midsagittal surface being parallel to the direction of ultrasound wave propagation, active contours with a contour-similarity constraint are introduced, which can be used to provide 'prior' shape information. Also, in order to address accumulation of tracking errors over long sequences, we present an automatic re-initialization technique, based on the complex wavelet image similarity index. Experiments on synthetic data and on real 60 frame per second (fps) data from different subjects demonstrate that the proposed method gives good contour tracking for ultrasound image sequences even over durations of minutes, which can be useful in applications such as speech recognition where very long sequences must be analyzed in their entirety. PMID:26786063

  9. A High-Frequency High Frame Rate Duplex Ultrasound Linear Array Imaging System for Small Animal Imaging

    PubMed Central

    Zhang, Lequan; Xu, Xiaochen; Hu, Changhong; Sun, Lei; Yen, Jesse T.; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only real-time B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of a high frequency ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array. The system included a HF pulsed-wave Doppler module, a 32-channel HF B-mode imaging module, a PC with a 200 MS/s 14-bit A/D card, and real-time LabView software. A 50dB signal-to-noise ratio (SNR) and a depth of penetration of larger than 12 mm were achieved using a 35 MHz linear array with 50 μm pitch. The two-way beam widths were determined to be 165 μm to 260 μm and the clutter energy to total energy ratio (CTR) were 9.1 dB to 12 dB, when the array was electronically focused at different focal points at depths from 4.8 mm to 9.6 mm. The system is capable of acquiring real-time B-mode images at a rate greater than 400 frames per second (fps) for a 4.8 × 13 mm field of view, using a 30 MHz 64-element linear array with 100 μm pitch. Sample in vivo cardiac high frame rate images and duplex images of mouse hearts are shown to assess its current imaging capability and performance for small animals. PMID:20639149

  10. Assessment of ultrasound monitor image display performance.

    PubMed

    Moore, Sally C; Munnings, Craig R; Brettle, David S; Evans, J Anthony

    2011-06-01

    The display monitor on an ultrasound scanner is used to make primary diagnoses. In this study, 31 ultrasound systems were assessed against current American Association of Physicists in Medicine (AAPM) display standards. Measurements of peak levels (L(max) and L(min)) were generated. Ambient light, L(amb) (cd/m(2)) and room illuminance, L(x) (Lux) were measured. Luminance ratio was calculated (LR' = (L(max)+L(amb))/(L(min)+L(amb))). Initially, only 8/31 systems (26%) passed all the criteria. After adjustment, a further 7/31 (23%) passed making a total of 15/31 passes (48%). A total of 16/31 (52%) were considered overall fails: three due to poor room lighting, 14 due to poor monitor performance. Considering errors this could be as low as 6/31 (19%). Although further work is required to confirm the applicability of these results, it is of concern that three-quarters of ultrasound scanners could be suboptimally adjusted with 19%-55% unable to pass the AAPM criteria. The impact of this on clinical practice is unknown but there is clearly a need to review display quality assurance on ultrasound scanners. PMID:21601138

  11. Acoustic characterization of ultrasound contrast microbubbles and echogenic liposomes: Applications to imaging and drug-delivery

    NASA Astrophysics Data System (ADS)

    Paul, Shirshendu

    with the goal of demonstrating their potential as ultrasound agents with simultaneous imaging and drug/gene delivery applications --- 'dual-purpose' contrast agents. Both in vitro acoustic studies and ultrasound imaging (performed in NDSU by our collaborators) showed the echogenicity of the various formulations studied. We believe that this echogenicity results from the larger diameter liposomes present in the polydisperse suspension obtained after reconstitution of the lyophilized powders. Although, ultrasound excitation (< 5 MHz) alone was incapable of causing optimal release of contents, a dual-triggering strategy (with enzymes or redox) proved successful, resulting in a total release of up to 80-90%. Considering these experimental results, it can be concluded that these novel formulations hold the potential of providing powerful treatment strategies for many diseases, including cardiovascular ones and various cancers.

  12. The Advancing Clinical Impact of Molecular Imaging in Cardiovascular Disease

    PubMed Central

    Osborn, Eric A; Jaffer, Farouc A

    2013-01-01

    Molecular imaging seeks to unravel critical molecular and cellular events in living subjects by providing complementary biological information to current structural clinical imaging modalities. In recent years, molecular imaging efforts have marched forward into the clinical cardiovascular arena, and are now actively illuminating new biology in a broad range of conditions, including atherosclerosis, myocardial infarction, thrombosis, vasculitis, aneurysm, cardiomyopathy, and valvular disease. Development of novel molecular imaging reporters is occurring for many clinical cardiovascular imaging modalities (PET, SPECT, MRI), as well in translational platforms such as intravascular fluorescence imaging. The ability to image, track, and quantify molecular biomarkers in organs not routinely amenable to biopsy (e.g. the heart and vasculature) open new clinical opportunities to tailor therapeutics based on a cardiovascular disease molecular profile. In addition, molecular imaging is playing an increasing role in atherosclerosis drug development in Phase II clinical trials. Here we present state-of-the-art clinical cardiovascular molecular imaging strategies, and explore promising translational approaches positioned for clinical testing in the near term. PMID:24332285

  13. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    NASA Astrophysics Data System (ADS)

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.; Hall, Timothy J.

    2013-03-01

    The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth.

  14. Dual-Modality PET/Ultrasound imaging of the Prostate

    SciTech Connect

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  15. Breast ultrasound imaging phantom to mimic malign lesion characteristics

    NASA Astrophysics Data System (ADS)

    de Carvalho, I. M.; Basto, R. L. Q.; Infantosi, A. F. C.; von Krüger, M. A.; Pereira, W. C. A.

    2010-01-01

    Ultrasound (US) phantoms are used to simulate the main acoustic properties of human soft tissues and are usually applied in guided biopsy training and equipment calibration. In this work it is presented an ultrasound phantom that mimics breast lesions with irregular edge, which is a typical feature related to malignancy. The phantom matrix was made of a mixture of water, agar, glycerine and graphite and PVC powders and the lesions were of silicon and polyacrylamide. The mimicking properties were US attenuation, propagation speed and density. The images obtained were visually compatible to malignant and benign lesions and are meant to be used as references for evaluation of segmentation algorithms for image processing.

  16. Resolution and quantitative accuracy improvements in ultrasound transmission imaging

    NASA Astrophysics Data System (ADS)

    Chenevert, T. L.

    The type of ultrasound transmission imaging, referred to as ultrasonic computed tomography (UCT), reconstructs distributions of tissue speed of sound and sound attenuation properties from measurements of acoustic pulse time of flight (TCF) and energy received through tissue. Although clinical studies with experimental UCT scanners have demonstrated UCT is sensitive to certain tissue pathologies not easily detected with conventional ultrasound imaging, they have also shown UCT to suffer from artifacts due to physical differences between the acoustic beam and its ray model implicit in image reconstruction algorithms. Artifacts are expressed as large quantitative errors in attenuation images, and poor spatial resolution and size distortion (exaggerated size of high speed of sound regions) in speed of sound images. Methods are introduced and investigated which alleviate these problems in UCT imaging by providing improved measurements of pulse TCF and energy.

  17. Simultaneous three-dimensional laser-ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wurzinger, Gerhild; Nuster, Robert; Schmitner, Nicole; Gratt, Sibylle; Paltauf, Günther

    2013-06-01

    A purely optical setup for simultaneous photoacoustic (PA) and laser-ultrasound (US) tomography is presented. It is shown that combined imaging can be achieved by using the same laser pulse for photoacoustic generation and for launching a broadband ultrasound pulse from an optically absorbing target. Detection of the laser-generated plane waves that have been scattered at the imaging object and of the photoacoustic signals emitted from the sample is done interferometrically. This way data for PA and US imaging are acquired within one single measurement. Distinction between the signals is possible due to their different times of flight. After data separation, image reconstruction is done using standard back-projection algorithms. The resolution of the setup was estimated and images of a zebra fish are shown, demonstrating the complementary information of the two imaging modalities.

  18. Nonlocal means-based speckle filtering for ultrasound images

    PubMed Central

    Coupé, Pierrick; Hellier, Pierre; Kervrann, Charles; Barillot, Christian

    2009-01-01

    In image processing, restoration is expected to improve the qualitative inspection of the image and the performance of quantitative image analysis techniques. In this paper, an adaptation of the Non Local (NL-) means filter is proposed for speckle reduction in ultrasound (US) images. Originally developed for additive white Gaussian noise, we propose to use a Bayesian framework to derive a NL-means filter adapted to a relevant ultrasound noise model. Quantitative results on synthetic data show the performances of the proposed method compared to well-established and state-of-the-art methods. Results on real images demonstrate that the proposed method is able to preserve accurately edges and structural details of the image. PMID:19482578

  19. Validation of Doppler ultrasound measurements using particle, image velocimetry in a flow phantom

    NASA Astrophysics Data System (ADS)

    Cosgrove, John; Meagher, Siobhan; Hoskins, Peter; Greated, Clive; Black, Richard

    2001-05-01

    Cardiovascular disease is responsible for over 50% of all deaths in the world and there is a substantial amount of evidence which suggests that abnormal vessel wall shear stress is correlated with the development of atherosclerosis. Wall shear stress is calculated from wall shear rates, the measurement of which is a technically challenging problem for ultrasound. In this study a flow phantom consisting of a meshed-gear pump and corresponding control electronics is used to generate a range of flow waveforms in a straight tube. These flows are measured using Doppler ultrasound and compared to corresponding particle image velocimetry (PIV) measurements and to analytical solutions of the flow equations for a range of Wormersley parameters. Although previous studies have been undertaken calibrating Doppler ultrasound in straight tubes, they have not used PIV. This study serves as a prelude to investigations using PIV to assess the accuracy of Doppler ultrasound in phantoms with anatomically realistic geometries for which there are no analytical solutions to the flow. [Research funded by the Engineering and Physical Sciences Research Council UK.

  20. Multiresolution generalized N dimension PCA for ultrasound image denoising

    PubMed Central

    2014-01-01

    Background Ultrasound images are usually affected by speckle noise, which is a type of random multiplicative noise. Thus, reducing speckle and improving image visual quality are vital to obtaining better diagnosis. Method In this paper, a novel noise reduction method for medical ultrasound images, called multiresolution generalized N dimension PCA (MR-GND-PCA), is presented. In this method, the Gaussian pyramid and multiscale image stacks on each level are built first. GND-PCA as a multilinear subspace learning method is used for denoising. Each level is combined to achieve the final denoised image based on Laplacian pyramids. Results The proposed method is tested with synthetically speckled and real ultrasound images, and quality evaluation metrics, including MSE, SNR and PSNR, are used to evaluate its performance. Conclusion Experimental results show that the proposed method achieved the lowest noise interference and improved image quality by reducing noise and preserving the structure. Our method is also robust for the image with a much higher level of speckle noise. For clinical images, the results show that MR-GND-PCA can reduce speckle and preserve resolvable details. PMID:25096917

  1. Nanobubble-Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor.

    PubMed

    Yang, Hengli; Cai, Wenbin; Xu, Lei; Lv, Xiuhua; Qiao, Youbei; Li, Pan; Wu, Hong; Yang, Yilin; Zhang, Li; Duan, Yunyou

    2015-01-01

    Nanobubbles (NBs), as novel ultrasound contrast agents (UCAs), have attracted increasing attention in the field of molecular ultrasound imaging for tumors. However, the preparation of uniform-sized NBs is considered to be controversial, and poor tumor selectivity in in vivo imaging has been reported. In this study, we fabricated uniform nano-sized NBs (478.2 ± 29.7 nm with polydispersity index of 0.164 ± 0.044, n = 3) using a thin-film hydration method by controlling the thickness of phospholipid films; we then conjugated the NBs with Affibody molecules to produce nano-sized UCAs referred to as NB-Affibody with specific affinity to human epidermal growth factor receptor type 2 (HER2)-overexpressing tumors. NB-Affibody presented good ultrasound enhancement, demonstrating a peak intensity of 104.5 ± 2.1 dB under ultrasound contrast scanning. Ex vivo experiments further confirmed that the NB-Affibody conjugates were capable of targeting HER2-expressing tumor cells in vivo with high affinity. The newly prepared nano-sized NB-Affibody conjugates were observed to be novel targeted UCAs for efficient and safe specific molecular imaging and may have potential applications in early cancer quantitative diagnosis and targeted therapy in the future. PMID:25453958

  2. Imaging Performance of Quantitative Transmission Ultrasound

    PubMed Central

    Lenox, Mark W.; Wiskin, James; Lewis, Matthew A.; Darrouzet, Stephen; Borup, David; Hsieh, Scott

    2015-01-01

    Quantitative Transmission Ultrasound (QTUS) is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound. PMID:26604918

  3. Accuracy and robustness of a simple algorithm to measure vessel diameter from B-mode ultrasound images.

    PubMed

    Hunt, Brian E; Flavin, Daniel C; Bauschatz, Emily; Whitney, Heather M

    2016-06-01

    Measurement of changes in arterial vessel diameter can be used to assess the state of cardiovascular health, but the use of such measurements as biomarkers is contingent upon the accuracy and robustness of the measurement. This work presents a simple algorithm for measuring diameter from B-mode images derived from vascular ultrasound. The algorithm is based upon Gaussian curve fitting and a Viterbi search process. We assessed the accuracy of the algorithm by measuring the diameter of a digital reference object (DRO) and ultrasound-derived images of a carotid artery. We also assessed the robustness of the algorithm by manipulating the quality of the image. Across a broad range of signal-to-noise ratio and with varying image edge error, the algorithm measured vessel diameter within 0.7% of the creation dimensions of the DRO. This was a similar level of difference (0.8%) to when an ultrasound image was used. When SNR dropped to 18 dB, measurement error increased to 1.3%. When edge position was varied by as much as 10%, measurement error was well maintained between 0.68 and 0.75%. All these errors fall well within the margin of error established by the medical physics community for quantitative ultrasound measurements. We conclude that this simple algorithm provides consistent and accurate measurement of lumen diameter from B-mode images across a broad range of image quality. PMID:27055985

  4. Perfusion imaging with non-contrast ultrasound

    NASA Astrophysics Data System (ADS)

    Tierney, Jaime E.; Dumont, Douglas M.; Byram, Brett C.

    2016-04-01

    A Doppler ultrasound clutter filter that enables estimation of low velocity blood flow could considerably improve ultrasound as a tool for clinical diagnosis and monitoring, including for the evaluation of vascular diseases and tumor perfusion. Conventional Doppler ultrasound is currently used for visualizing and estimating blood flow. However, conventional Doppler is limited by frame rate and tissue clutter caused by involuntary movement of the patient or sonographer. Spectral broadening of the clutter due to tissue motion limits ultrasound's ability to detect blood flow less than about 5mm/s at an 8MHz center frequency. We propose a clutter filtering technique that may increase the sensitivity of Doppler measurements to at least as low as 0.41mm/s. The proposed filter uses an adaptive demodulation scheme that decreases the bandwidth of the clutter. To test the performance of the adaptive demodulation method at removing sonographer hand motion, six volunteer subjects acquired data from a basic quality assurance phantom. Additionally, to test initial in vivo feasibility, an arterial occlusion reactive hyperemia study was performed to assess the efficiency of the proposed filter at preserving signals from blood velocities 2mm/s or greater. The hand motion study resulted in initial average bandwidths of 577Hz (28.5mm/s), which were decreased to 7.28Hz (0.36mm/s) at -60 dB at 3cm using our approach. The in vivo power Doppler study resulted in 15.2dB and 0.15dB dynamic ranges between the lowest and highest blood flow time points for the proposed filter and conventional 50Hz high pass filter, respectively.

  5. Characteristics of the audio sound generated by ultrasound imaging systems

    NASA Astrophysics Data System (ADS)

    Fatemi, Mostafa; Alizad, Azra; Greenleaf, James F.

    2005-03-01

    Medical ultrasound scanners use high-energy pulses to probe the human body. The radiation force resulting from the impact of such pulses on an object can vibrate the object, producing a localized high-intensity sound in the audible range. Here, a theoretical model for the audio sound generated by ultrasound scanners is presented. This model describes the temporal and spectral characteristics of the sound. It has been shown that the sound has rich frequency components at the pulse repetition frequency and its harmonics. Experiments have been conducted in a water tank to measure the sound generated by a clinical ultrasound scanner in various operational modes. Results are in general agreement with the theory. It is shown that a typical ultrasound scanner with a typical spatial-peak pulse-average intensity value at 2 MHz may generate a localized sound-pressure level close to 100 dB relative to 20 μPa in the audible (<20 kHz) range under laboratory conditions. These findings suggest that fetuses may become exposed to a high-intensity audio sound during maternal ultrasound examinations. Therefore, contrary to common beliefs, ultrasound may not be considered a passive tool in fetal imaging..

  6. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  7. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    NASA Astrophysics Data System (ADS)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  8. Ultrasound

    MedlinePlus Videos and Cool Tools

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to ... no known risks for ultrasound at present, it is highly recommended that pregnant women consult their physician ...

  9. Cardiovascular imaging: what have we learned from animal models?

    PubMed Central

    Santos, Arnoldo; Fernández-Friera, Leticia; Villalba, María; López-Melgar, Beatriz; España, Samuel; Mateo, Jesús; Mota, Ruben A.; Jiménez-Borreguero, Jesús; Ruiz-Cabello, Jesús

    2015-01-01

    Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a non-destructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function, and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models. PMID:26539113

  10. A 1D wavelet filtering for ultrasound images despeckling

    NASA Astrophysics Data System (ADS)

    Dahdouh, Sonia; Dubois, Mathieu; Frenoux, Emmanuelle; Osorio, Angel

    2010-03-01

    Ultrasound images appearance is characterized by speckle, shadows, signal dropout and low contrast which make them really difficult to process and leads to a very poor signal to noise ratio. Therefore, for main imaging applications, a denoising step is necessary to apply successfully medical imaging algorithms on such images. However, due to speckle statistics, denoising and enhancing edges on these images without inducing additional blurring is a real challenging problem on which usual filters often fail. To deal with such problems, a large number of papers are working on B-mode images considering that the noise is purely multiplicative. Making such an assertion could be misleading, because of internal pre-processing such as log compression which are done in the ultrasound device. To address those questions, we designed a novel filtering method based on 1D Radiofrequency signal. Indeed, since B-mode images are initially composed of 1D signals and since the log compression made by ultrasound devices modifies noise statistics, we decided to filter directly the 1D Radiofrequency signal envelope before log compression and image reconstitution, in order to conserve as much information as possible. A bi-orthogonal wavelet transform is applied to the log transform of each signal and an adaptive 1D split and merge like algorithm is used to denoise wavelet coefficients. Experiments were carried out on synthetic data sets simulated with Field II simulator and results show that our filter outperforms classical speckle filtering methods like Lee, non-linear means or SRAD filters.

  11. The feasibility of non-contact ultrasound for medical imaging

    NASA Astrophysics Data System (ADS)

    Clement, G. T.; Nomura, H.; Adachi, H.; Kamakura, T.

    2013-09-01

    High intensity focused ultrasound in air may provide a means for medical and biological imaging without direct coupling of an ultrasound probe. In this study, an approach based on highly focused ultrasound in air is described and the feasibility of the technique is assessed. The overall method is based on the observations that (1) ultrasound in air has superior focusing ability and stronger nonlinear harmonic generation as compared to tissue propagation and (2) a tightly focused field directed into tissue causes point-like spreading that may be regarded as a source for generalized diffraction tomography. Simulations of a spherically-curved transducer are performed, where the transducer's radiation pattern is directed from air into tissue. It is predicted that a focal pressure of 162 dB (2.5 kPa) is sufficient to direct ultrasound through the body, and provide a small but measurable signal (∼1 mPa) upon exit. Based on the simulations, a 20 cm diameter array consisting of 298 transducers is constructed. For this feasibility study, a 40 kHz resonance frequency is selected based on the commercial availability of such transducers. The array is used to focus through water and acrylic phantoms, and the time history of the exiting signal is evaluated. Sufficient data are acquired to demonstrate a low-resolution tomographic reconstruction. Finally, to demonstrate the feasibility to record a signal in vivo, a 75 mm × 55 mm section of a human hand is imaged in a C-mode configuration.

  12. ECG-gated, mechanical and electromechanical wave imaging of cardiovascular tissues in vivo.

    PubMed

    Pernot, Mathieu; Fujikura, Kana; Fung-Kee-Fung, Simon D; Konofagou, Elisa E

    2007-07-01

    In simplistic terms, the motion of the heart can be summarized as an active contraction and passive relaxation of the myocardium. However, the local motion of cardiovascular tissues over the course of an entire cardiac cycle results from various transient events such as the valves closing/opening, sudden changes in blood pressure and electrical conduction of the myocardium. The transient motion generated by most of these events occurs within a very short time (on the order of 1 ms) and cannot be imaged correctly with conventional imaging systems, due to their limited temporal resolution. In this paper, we propose a method for imaging this rapid transient motion of tissues in cardiovascular applications. Our method is based on imaging tissues with ultrasound at high frame rates (up to 8000 fps) by synchronizing the two-dimensional (2D) image acquisition on the electrocardiogram (ECG) signals. In vivo feasibility is demonstrated in anesthetized mice. The propagation of several transient mechanical waves was imaged in different regions of the myocardium and the wave phase velocities were found to be between 0.44 m/s and 5 m/s. These waves may be generated by either a purely mechanical effects or through electromechanical coupling in the myocardium depending on the phase of the cardiac cycle, in which they occur. The abdominal aorta was also imaged using the same technique and the propagation of a mechanical pulse wave was imaged. The pulse wave velocity was measured and the Young's modulus of the vessel wall was derived based on the Moens-Korteweg equation. This method could potentially be used for mapping the stiffness of the myocardium and the artery walls and may lead to the early diagnosis of cardiovascular diseases. PMID:17507146

  13. Techniques for Field Application of Lingual Ultrasound Imaging

    ERIC Educational Resources Information Center

    Gick, Bryan; Bird, Sonya; Wilson, Ian

    2005-01-01

    Techniques are discussed for using ultrasound for lingual imaging in field-related applications. The greatest challenges we have faced distinguishing the field setting from the laboratory setting are the lack of controlled head/transducer movement, and the related issue of tissue compression. Two experiments are reported. First, a pilot study…

  14. Imaging of the pancreatic duct by linear endoscopic ultrasound

    PubMed Central

    Sharma, Malay; Rai, Praveer; Rameshbabu, Chittapuram Srinivasan; Arya, Shalini

    2015-01-01

    The current gold standard investigation for anatomic exploration of the pancreatic duct (PD) is endoscopic retrograde cholangiopancreatography. Magnetic resonance cholangiopancreatography is a noninvasive method for exploration of the PD. A comprehensive evaluation of the course of PD and its branches has not been described by endoscopic ultrasound (EUS). In this article, we describe the techniques of imaging of PD using linear EUS. PMID:26374577

  15. Perceptually lossless coding of digital monochrome ultrasound images

    NASA Astrophysics Data System (ADS)

    Wu, David; Tan, Damian M.; Griffiths, Tania; Wu, Hong Ren

    2005-07-01

    A preliminary investigation of encoding monochrome ultrasound images with a novel perceptually lossless coder is presented. Based on the JPEG 2000 coding framework, the proposed coder employs a vision model to identify and remove visually insignificant/irrelevant information. Current simulation results have shown coding performance gains over the JPEG compliant LOCO lossless and JPEG 2000 lossless coders without any perceivable distortion.

  16. 5.4 Magnetic Resonance Imaging, Diagnostic Ultrasound

    NASA Astrophysics Data System (ADS)

    Bernhardt, J. H.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '5.4 Magnetic Resonance Imaging, Diagnostic Ultrasound' of the Chapter '5 Medical Radiological Protection' with the contents:

  17. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  18. Ultrasound contrast agent fabricated from microbubbles containing instant adhesives, and its ultrasound imaging ability

    NASA Astrophysics Data System (ADS)

    Makuta, T.; Tamakawa, Y.

    2012-04-01

    Non-invasive surgery techniques and drug delivery system with acoustic characteristics of ultrasound contrast agent have been studied intensively in recent years. Ultrasound contrast agent collapses easily under the blood circulating and the ultrasound irradiating because it is just a stabilized bubble without solid-shell by surface adsorption of surfactant or lipid. For improving the imaging stability, we proposed the fabrication method of the hollow microcapsule with polymer shell, which can be fabricated just blowing vapor of commonly-used instant adhesive (Cyanoacrylate monomer) into water as microbubbles. Therefore, the cyanoacrylate vapor contained inside microbubble initiates polymerization on the gasliquid interface soon after microbubbles are generated in water. Consequently, hollow microspheres coated by cyanoacrylate thin film are generated. In this report, we revealed that diameter distributions of microbubbles and microcapsules were approximately same and most of them were less than 10 μm, that is, smaller than blood capillary. In addition, we also revealed that hollow microcapsules enhanced the acoustic signal especially in the harmonic contrast imaging and were broken or agglomerated under the ultrasound field. As for the yield of hollow microcapsules, we revealed that sodium dodecyl sulfate addition to water phase instead of deoxycolic acid made the fabrication yield increased.

  19. High resolution ultrasound and photoacoustic imaging of single cells

    PubMed Central

    Strohm, Eric M.; Moore, Michael J.; Kolios, Michael C.

    2016-01-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level. PMID:27114911

  20. Development of Ultrasound Tomography for Breast Imaging: Technical Assessment

    SciTech Connect

    Duric, N; Littrup, P; Babkin, A; Chambers, D; Azevedo, S; Arkady, K; Pevzner, R; Tokarev, M; Holsapple, E

    2004-09-30

    Ultrasound imaging is widely used in medicine because of its benign characteristics and real-time capabilities. Physics theory suggests that the application of tomographic techniques may allow ultrasound imaging to reach its full potential as a diagnostic tool allowing it to compete with other tomographic modalities such as X-ray CT and MRI. This paper describes the construction and use of a prototype tomographic scanner and reports on the feasibility of implementing tomographic theory in practice and the potential of US tomography in diagnostic imaging. Data were collected with the prototype by scanning two types of phantoms and a cadaveric breast. A specialized suite of algorithms was developed and utilized to construct images of reflectivity and sound speed from the phantom data. The basic results can be summarized as follows: (1) A fast, clinically relevant US tomography scanner can be built using existing technology. (2) The spatial resolution, deduced from images of reflectivity, is 0.4 mm. The demonstrated 10 cm depth-of-field is superior to that of conventional ultrasound and the image contrast is improved through the reduction of speckle noise and overall lowering of the noise floor. (3) Images of acoustic properties such as sound speed suggest that it is possible to measure variations in the sound speed of 5 m/s. An apparent correlation with X-ray attenuation suggests that the sound speed can be used to discriminate between various types of soft tissue. (4) Ultrasound tomography has the potential to improve diagnostic imaging in relation to breast cancer detection.

  1. Imaging of common bile duct by linear endoscopic ultrasound

    PubMed Central

    Sharma, Malay; Pathak, Amit; Shoukat, Abid; Rameshbabu, Chittapuram Srinivasan; Ajmera, Akash; Wani, Zeeshn Ahamad; Rai, Praveer

    2015-01-01

    Imaging of common bile duct (CBD) can be done by many techniques. Endoscopic retrograde cholangiopancreaticography is considered the gold standard for imaging of CBD. A standard technique of imaging of CBD by endoscopic ultrasound (EUS) has not been specifically described. The available descriptions mention different stations of imaging from the stomach and duodenum. The CBD lies closest to duodenum and choice of imaging may be restricted to duodenum for many operators. Generally most operators prefer multi station imaging during EUS and the choice of selecting the initial station varies from operator to operator. Detailed evaluation of CBD is frequently the main focus of imaging during EUS and in such situations multi station imaging with a high-resolution ultrasound scanner may provide useful information. Examination of the CBD is one of the primary indications for doing an EUS and it can be done from five stations: (1) the fundus of stomach; (2) body of stomach; (3) duodenal bulb; (4) descending duodenum; and (5) antrum. Following down the upper 1/3rd of CBD can do imaging of entire CBD from the liver window and following up the lower 1/3rd of CBD can do imaging of entire CBD from the pancreatic window. This article aims at simplifying the techniques of imaging of CBD by linear EUS. PMID:26504506

  2. Role of contrast enhanced ultrasound in hepatic imaging.

    PubMed

    Dhamija, Ekta; Paul, Shashi B

    2014-01-01

    Grey scale ultrasound (US) is the first line imaging modality used for the evaluation of liver by the radiologists and clinicians worldwide. It is a simple, inexpensive, safe and an easily available technique. US has the ability to delineate the hepatic parenchyma and differentiate the cystic from solid hepatic lesions. However, it has limited accuracy in the detection and characterization of focal liver lesions (FLL). CEUS is a major breakthrough in ultrasound imaging which evolved with the aim of overcoming these limitations of US. With the use of ultrasound contrast agents (UCAs), CEUS has the ability to detect the intranodular hemodynamics and thereby provide information of the enhancement pattern of the lesion resulting in reliable characterization of the FLL. This capability brings it at par with the cross sectional contrast enhanced imaging techniques of computed tomography and magnetic resonance imaging. UCAs are safe, non-nephrotoxic and thus can be used to evaluate patients with renal failure as well. The technique of CEUS is simple, requires few minutes to perform, portable, lacks ionising radiation and above all is a cost-effective modality. These advantages have made CEUS an established modality for hepatic imaging. Besides detection and characterization of FLL, it also plays a vital role in the management and repeated follow up of treated patients of FLL. Newer clinical applications of CEUS with promising results are also being unravelled . This review highlights the multifaceted role of CEUS in hepatic imaging and its upcoming clinical applications. PMID:26012317

  3. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography.

    PubMed

    Demi, Libertario; van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. PMID:26459771

  4. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  5. Integrated ultrasound and gamma imaging probe for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; De Vincentis, G.

    2016-03-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures.

  6. 3D segmentation of prostate ultrasound images using wavelet transform

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Yang, Xiaofeng; Halig, Luma V.; Fei, Baowei

    2011-03-01

    The current definitive diagnosis of prostate cancer is transrectal ultrasound (TRUS) guided biopsy. However, the current procedure is limited by using 2D biopsy tools to target 3D biopsy locations. This paper presents a new method for automatic segmentation of the prostate in three-dimensional transrectal ultrasound images, by extracting texture features and by statistically matching geometrical shape of the prostate. A set of Wavelet-based support vector machines (WSVMs) are located and trained at different regions of the prostate surface. The WSVMs capture texture priors of ultrasound images for classification of the prostate and non-prostate tissues in different zones around the prostate boundary. In the segmentation procedure, these W-SVMs are trained in three sagittal, coronal, and transverse planes. The pre-trained W-SVMs are employed to tentatively label each voxel around the surface of the model as a prostate or non-prostate voxel by the texture matching. The labeled voxels in three planes after post-processing is overlaid on a prostate probability model. The probability prostate model is created using 10 segmented prostate data. Consequently, each voxel has four labels: sagittal, coronal, and transverse planes and one probability label. By defining a weight function for each labeling in each region, each voxel is labeled as a prostate or non-prostate voxel. Experimental results by using real patient data show the good performance of the proposed model in segmenting the prostate from ultrasound images.

  7. Design considerations for ultrasound detectors in photoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Piras, Daniele; Singh, Mithun K. A.; van Hespen, Johan C. G.; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton G.; Steenbergen, Wiendelft; Manohar, Srirang

    2013-03-01

    The ultrasound detector is the heart of a photoacoustic imaging system. In photoacoustic imaging of the breast there is a requirement to detect tumors located a few centimeters deep in tissue, where the light is heavily attenuated. Thus a sensitive ultrasound transducer is of crucial importance. As the frequency content of photoacoustic waves are inversely proportional to the dimensions of the absorbing structures, and in tissue can range from hundreds of kHz to tens of MHz, a broadband ultrasound transducer is required centered on an optimum frequency. A single element piezoelectric transducer structurally consists of the active piezoelectric material, front- and back-matching layers and a backing layer. To have both high sensitivity and broad bandwidth, the materials, their acoustic characteristics and their dimensions should be carefully chosen. In this paper, we present design considerations of an ultrasound transducer for imaging the breast such as the detector sensitivity and frequency response, which guides the selection of active material, matching layers and their geometries. We iterate between simulation of detector performance and experimental characterization of functional models to arrive at an optimized implementation. For computer simulation, we use 1D KLM and 3D finite-element based models. The optimized detector has a large-aperture possessing a center frequency of 1 MHz with fractional bandwidth of more than 80%. The measured minimum detectable pressure is 0.5 Pa, which is two orders of magnitude lower than the detector used in the Twente photoacoustic mammoscope.

  8. Modelling human musculoskeletal functional movements using ultrasound imaging

    PubMed Central

    2010-01-01

    Background A widespread and fundamental assumption in the health sciences is that muscle functions are related to a wide variety of conditions, for example pain, ischemic and neurological disorder, exercise and injury. It is therefore highly desirable to study musculoskeletal contributions in clinical applications such as the treatment of muscle injuries, post-surgery evaluations, monitoring of progressive degeneration in neuromuscular disorders, and so on. The spatial image resolution in ultrasound systems has improved tremendously in the last few years and nowadays provides detailed information about tissue characteristics. It is now possible to study skeletal muscles in real-time during activity. Methods The ultrasound images are transformed to be congruent and are effectively compressed and stacked in order to be analysed with multivariate techniques. The method is applied to a relevant clinical orthopaedic research field, namely to describe the dynamics in the Achilles tendon and the calf during real-time movements. Results This study introduces a novel method to medical applications that can be used to examine ultrasound image sequences and to detect, visualise and quantify skeletal muscle dynamics and functions. Conclusions This new objective method is a powerful tool to use when visualising tissue activity and dynamics of musculoskeletal ultrasound registrations. PMID:20492648

  9. Quantitative ultrasound images generated by a PE-CMOS sensor array: scatter modeling and image restoration

    NASA Astrophysics Data System (ADS)

    Liu, Chu-Chuan; Lo, Shih-Chung Ben; Freedman, Matthew T.; Lasser, Marvin E.; Lasser, Bob; Kula, John; Wang, Yue Joseph

    2007-03-01

    In the projection geometry, the detected ultrasound energy through a soft-tissue is mainly attributed to the attenuated primary intensity and the scatter intensity. In order to extract ultrasound image of attenuated primary beam out of the detected raw data, the scatter component must be carefully quantified for restoring the original image. In this study, we have designed a set of apparatus to modeling the ultrasound scattering in soft-tissue. The employed ultrasound imaging device was a C-Scan (projection) prototype using a 4th generation PE-CMOS sensor array (model I400, by Imperium Inc., Silver Spring, MD) as the detector. Right after the plane wave ultrasound transmitting through a soft-tissue mimicking material (Zerdine, by CIRS Inc., Norfolk, VA), a ring aperture is used to collimate the signal before reaching the acoustic lens and the PE-CMOS sensor. Three sets of collimated ring images were acquired and analyzed to obtain the scattering components as a function of the off-center distance. Several pathological specimens and breast phantoms consisting of simulated breast tissue with masses, cysts and microcalcifications were imaged by the same C-Scan imaging prototype. The restoration of these ultrasound images were performed by using a standard deconvolution computation. Our study indicated that the resultant images show shaper edges and detailed features as compared to their unprocessed counterparts.

  10. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system.

    PubMed

    Baumann, Michael; Mozer, Pierre; Daanen, Vincent; Troccaz, Jocelyne

    2007-01-01

    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space and thus renders optimization efficient. The method was tested on 237 prostate volumes acquired from 14 different patients for 3D to 3D and 3D to orthogonal 2D slices registration. The 3D-3D version of the algorithm converged correctly in 96.7% of all cases in 6.5s with an accuracy of 1.41mm (r.m.s.) and 3.84mm (max). The 3D to slices method yielded a success rate of 88.9% in 2.3s with an accuracy of 1.37mm (r.m.s.) and 4.3mm (max). PMID:18044549

  11. [Digital scanning converter for medical endoscopic ultrasound imaging].

    PubMed

    Chen, Xiaodong; Zhang, Hongxu; Zhou, Peifan; Wen, Shijie; Yu, Daoyin

    2009-02-01

    This paper mainly introduces the design of digital scanning converter (DSC) for medical endoscopic ultrasound imaging. Fast modified vector totational CORDIC (FMVR-CORDIC) arithmetic complete coordinate conversion is used to increase the speed of ultrasonic scanning imaging. FPGA is used as the kernel module to control data transferring, related circuits and relevant chips' working, and to accomplish data preprocessing. With the advantages of simple structure, nice flexibility and convenience, it satisfies the demand for real-time displaying in this system. Finally, the original polar coordinate image is transformed to rectangular coordinate grey image through coordinate transformation. The system performances have been validated by the experimental result. PMID:19334546

  12. Estimation of fetal gestational age from ultrasound images

    NASA Astrophysics Data System (ADS)

    Salari, Valiollah

    1992-06-01

    Estimation of fetal gestational age, weight, and determination of fetal growth from the measurements of certain parameters of fetal head, abdomen, and femur have been well established in prenatal sonography. The measurements are made from the two dimensional, B- mode, ultrasound images of the fetus. The most common parameters measured are, biparietal diameter, occipital frontal diameter, head circumference, femur diaphysis length, and abdominal circumference. Since the fetal head has an elliptical shape and the femur has a linear shape, fitting the ellipse on the image of the fetal head, a line on the image of the femur are the tasks of image processing which are discussed in this paper.

  13. 3D ultrasound image segmentation using wavelet support vector machines

    PubMed Central

    Akbari, Hamed; Fei, Baowei

    2012-01-01

    Purpose: Transrectal ultrasound (TRUS) imaging is clinically used in prostate biopsy and therapy. Segmentation of the prostate on TRUS images has many applications. In this study, a three-dimensional (3D) segmentation method for TRUS images of the prostate is presented for 3D ultrasound-guided biopsy. Methods: This segmentation method utilizes a statistical shape, texture information, and intensity profiles. A set of wavelet support vector machines (W-SVMs) is applied to the images at various subregions of the prostate. The W-SVMs are trained to adaptively capture the features of the ultrasound images in order to differentiate the prostate and nonprostate tissue. This method consists of a set of wavelet transforms for extraction of prostate texture features and a kernel-based support vector machine to classify the textures. The voxels around the surface of the prostate are labeled in sagittal, coronal, and transverse planes. The weight functions are defined for each labeled voxel on each plane and on the model at each region. In the 3D segmentation procedure, the intensity profiles around the boundary between the tentatively labeled prostate and nonprostate tissue are compared to the prostate model. Consequently, the surfaces are modified based on the model intensity profiles. The segmented prostate is updated and compared to the shape model. These two steps are repeated until they converge. Manual segmentation of the prostate serves as the gold standard and a variety of methods are used to evaluate the performance of the segmentation method. Results: The results from 40 TRUS image volumes of 20 patients show that the Dice overlap ratio is 90.3% ± 2.3% and that the sensitivity is 87.7% ± 4.9%. Conclusions: The proposed method provides a useful tool in our 3D ultrasound image-guided prostate biopsy and can also be applied to other applications in the prostate. PMID:22755682

  14. A 20-MHz ultrasound system for imaging the intestinal wall.

    PubMed

    Martin, R W; Silverstein, F E; Kimmey, M B

    1989-01-01

    An ultrasound system has been developed which uses high-frequency (20 MHz) ultrasound to provide high-resolution images of tissue. The system provides 0.21-mm range and 0.65-mm lateral resolution. The transducer aperture size is 1.8 mm maximum. Miniature probes have been developed which can image via the biopsy channels of standard fiberoptic endoscopes as well as probes for imaging in vitro. A commercially available video "frame grabber" is used in conjunction with a standard microcomputer for image acquisition. This allows images to be displayed and recorded on standard television equipment and be stored and manipulated digitally. The features of the system allow in vivo imaging, in vitro imaging after resection, and histological images of the same tissue region to be acquired and compared. This method is particularly useful in learning how to correctly interpret ultrasonic images of the intestinal wall. The use of 20 MHz is advantageous in achieving excellent resolution and small size probes. The system provides a unique approach to imaging the intestinal wall. PMID:2662554

  15. Bio-Imaging and Subclinical Cardiovascular Disease in Low- and Middle-Income Countries

    PubMed Central

    Vedanthan, Rajesh; Choi, Brian G.; Baber, Usman; Narula, Jagat; Fuster, Valentin

    2014-01-01

    Cardiovascular disease (CVD) is the leading cause of mortality worldwide and also exerts a significant economic burden, especially in low- and middle-income countries (LMICs). Detection of subclinical CVD, before an individual experiences a major event, may therefore offer the potential to prevent or delay morbidity and mortality, if combined with an appropriate care response. In this review, we discuss imaging technologies that can be used to detect subclinical atherosclerotic CVD (carotid ultrasound, coronary artery calcification) and non-atherosclerotic CVD (echocardiography). We review these imaging modalities, including aspects such as rationale, relevance, feasibility, utilization, and access in LMICs. The potential gains in detecting subclinical CVD may be substantial in LMICs, if earlier detection leads to earlier engagement with the health care system to prevent or delay cardiac events, morbidity, and premature mortality. Thus, dedicated studies examining the feasibility, utility, and cost-effectiveness of detecting subclinical CVD in LMICs are warranted. PMID:25245465

  16. Mirizzi Syndrome with Endoscopic Ultrasound Image

    PubMed Central

    Rayapudi, K.; Gholami, P.; Olyaee, M.

    2013-01-01

    We describe a 66-year-old Caucasian man with type 1 Mirizzi syndrome diagnosed on endoscopic ultrasound. He presented with acute onset of jaundice, malaise, dark urine over 3–4 days, and was found to have obstructive jaundice on lab testing. CT scan of the abdomen showed intrahepatic biliary ductal dilation, a 1.5 cm common bile duct (CBD) above the pancreas, and possible stones in the CBD, but no masses. Endoscopic retrograde cholangiopancreatography (ERCP) by a community gastroenterologist failed to cannulate the CBD. At the University Center, type 1 Mirizzi syndrome was noted on endoscopic ultrasound with narrowing of the CBD with extrinsic compression from cystic duct stone. During repeat ERCP, the CBD could be cannulated over the pancreatic duct wire. A mid CBD narrowing, distal CBD stones, proximal CBD and extrahepatic duct dilation were noted, and biliary sphincterotomy was performed. A small stone in the distal CBD was removed with an extraction balloon. The cystic duct stone was moved with the biliary balloon into the CBD, mechanical basket lithotripsy was performed and stone fragments were delivered out with an extraction balloon. The patient was seen 7 weeks later in the clinic. Skin and scleral icterus had cleared up and he is scheduled for an elective cholecystectomy. Mirizzi syndrome refers to biliary obstruction resulting from impacted stone in the cystic duct or neck of the gallbladder and commonly presents with obstructive jaundice. Type 1 does not have cholecystocholedochal fistulas, but they present in types 2, 3 and 4. Surgery is the mainstay of therapy. Endoscopic treatment is effective and can also be used as a temporizing measure or definitive treatment in poor surgical risk candidates. PMID:23741207

  17. Liver ultrasound image classification by using fractal dimension of edge

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Bibicu, Dorin; Moraru, Luminita

    2012-08-01

    Medical ultrasound image edge detection is an important component in increasing the number of application of segmentation, and hence it has been subject of many studies in the literature. In this study, we have classified the liver ultrasound images (US) combining Canny and Sobel edge detectors with fractal analysis in order to provide an indicator about of the US images roughness. We intend to provide a classification rule of the focal liver lesions as: cirrhotic liver, liver hemangioma and healthy liver. For edges detection the Canny and Sobel operators were used. Fractal analyses have been applied for texture analysis and classification of focal liver lesions according to fractal dimension (FD) determined by using the Box Counting method. To assess the performance and accuracy rate of the proposed method the contrast-to-noise (CNR) is analyzed.

  18. Cardiovascular Imaging in the Electrophysiology Laboratory.

    PubMed

    Sanchis, Laura; Prat, Susanna; Sitges, Marta

    2016-06-01

    In recent years, rapid technological advances have allowed the development of new electrophysiological procedures that would not have been possible without the parallel development of imaging techniques used to plan and guide these procedures and monitor their outcomes. Ablation of atrial fibrillation is among the interventions with the greatest need for imaging support. Echocardiography allows the appropriate selection of patients and the detection of thrombi that would contraindicate the intervention; cardiac magnetic resonance imaging and computed tomography are also essential in planning this procedure, by allowing a detailed anatomical study of the pulmonary veins. In addition, in cardiac resynchronization therapy, echocardiography plays a central role in both patient selection and, later, in device adjustment and in assessing the effectiveness of the technique. More recently, ablation of ventricular tachycardias has been established as a treatment option; this would not be possible without planning using an imaging study such as cardiac magnetic resonance imaging of myocardial scarring. PMID:27107802

  19. Acoustic Reciprocity of Spatial Coherence in Ultrasound Imaging

    PubMed Central

    Bottenus, Nick; Üstüner, Kutay F.

    2015-01-01

    A conventional ultrasound image is formed by transmitting a focused wave into tissue, time-shifting the backscattered echoes received on an array transducer and summing the resulting signals. The van Cittert-Zernike theorem predicts a particular similarity, or coherence, of these focused signals across the receiving array. Many groups have used an estimate of the coherence to augment or replace the B-mode image in an effort to suppress noise and stationary clutter echo signals, but this measurement requires access to individual receive channel data. Most clinical systems have efficient pipelines for producing focused and summed RF data without any direct way to individually address the receive channels. We describe a method for performing coherence measurements that is more accessible for a wide range of coherence-based imaging. The reciprocity of the transmit and receive apertures in the context of coherence is derived and equivalence of the coherence function is validated experimentally using a research scanner. The proposed method is implemented on a Siemens ACUSON SC2000™ultrasound system and in vivo short-lag spatial coherence imaging is demonstrated using only summed RF data. The components beyond the acquisition hardware and beamformer necessary to produce a real-time ultrasound coherence imaging system are discussed. PMID:25965679

  20. Wideband Optical Detector of Ultrasound for Medical Imaging Applications

    PubMed Central

    Rosenthal, Amir; Kellnberger, Stephan; Omar, Murad; Razansky, Daniel; Ntziachristos, Vasilis

    2014-01-01

    Optical sensors of ultrasound are a promising alternative to piezoelectric techniques, as has been recently demonstrated in the field of optoacoustic imaging. In medical applications, one of the major limitations of optical sensing technology is its susceptibility to environmental conditions, e.g. changes in pressure and temperature, which may saturate the detection. Additionally, the clinical environment often imposes stringent limits on the size and robustness of the sensor. In this work, the combination of pulse interferometry and fiber-based optical sensing is demonstrated for ultrasound detection. Pulse interferometry enables robust performance of the readout system in the presence of rapid variations in the environmental conditions, whereas the use of all-fiber technology leads to a mechanically flexible sensing element compatible with highly demanding medical applications such as intravascular imaging. In order to achieve a short sensor length, a pi-phase-shifted fiber Bragg grating is used, which acts as a resonator trapping light over an effective length of 350 µm. To enable high bandwidth, the sensor is used for sideway detection of ultrasound, which is highly beneficial in circumferential imaging geometries such as intravascular imaging. An optoacoustic imaging setup is used to determine the response of the sensor for acoustic point sources at different positions. PMID:24895083

  1. Ultrasound elastography: enabling technology for image guided laparoscopic prostatectomy

    NASA Astrophysics Data System (ADS)

    Fleming, Ioana N.; Rivaz, Hassan; Macura, Katarzyna; Su, Li-Ming; Hamper, Ulrike; Lagoda, Gwen A.; Burnett, Arthur L., II; Lotan, Tamara; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2009-02-01

    Radical prostatectomy using the laparoscopic and robot-assisted approach lacks tactile feedback. Without palpation, the surgeon needs an affordable imaging technology which can be easily incorporated into the laparoscopic surgical procedure, allowing for precise real time intraoperative tumor localization that will guide the extent of surgical resection. Ultrasound elastography (USE) is a novel ultrasound imaging technology that can detect differences in tissue density or stiffness based on tissue deformation. USE was evaluated here as an enabling technology for image guided laparoscopic prostatectomy. USE using a 2D Dynamic Programming (DP) algorithm was applied on data from ex vivo human prostate specimens. It proved consistent in identification of lesions; hard and soft, malignant and benign, located in the prostate's central gland or in the peripheral zone. We noticed the 2D DP method was able to generate low-noise elastograms using two frames belonging to the same compression or relaxation part of the palpation excitation, even at compression rates up to 10%. Good preliminary results were validated by pathology findings, and also by in vivo and ex vivo MR imaging. We also evaluated the use of ultrasound elastography for imaging cavernous nerves; here we present data from animal model experiments.

  2. Evaluation of various speckle reduction filters on medical ultrasound images.

    PubMed

    Wu, Shibin; Zhu, Qingsong; Xie, Yaoqin

    2013-01-01

    At present, ultrasound is one of the essential tools for noninvasive medical diagnosis. However, speckle noise is inherent in medical ultrasound images and it is the cause for decreased resolution and contrast-to-noise ratio. Low image quality is an obstacle for effective feature extraction, recognition, analysis, and edge detection; it also affects image interpretation by doctor and the accuracy of computer-assisted diagnostic techniques. Thus, speckle reduction is significant and critical step in pre-processing of ultrasound images. Many speckle reduction techniques have been studied by researchers, but to date there is no comprehensive method that takes all the constraints into consideration. In this paper we discuss seven filters, namely Lee, Frost, Median, Speckle Reduction Anisotropic Diffusion (SRAD), Perona-Malik's Anisotropic Diffusion (PMAD) filter, Speckle Reduction Bilateral Filter (SRBF) and Speckle Reduction filter based on soft thresholding in the Wavelet transform. A comparative study of these filters has been made in terms of preserving the features and edges as well as effectiveness of de-noising.We computed five established evaluation metrics in order to determine which despeckling algorithm is most effective and optimal for real-time implementation. In addition, the experimental results have been demonstrated by filtered images and statistical data table. PMID:24109896

  3. Designing multistatic ultrasound imaging systems using software analysis

    NASA Astrophysics Data System (ADS)

    Lee, Michael; Singh, Rahul S.; Culjat, Martin O.; Stubbs, Scott; Natarajan, Shyam; Brown, Elliott R.; Grundfest, Warren S.; Lee, Hua

    2010-03-01

    This paper describes the method of using the finite-element analysis software, PZFlex, to direct the design of a novel ultrasound imaging system which uses conformal transducer arrays. Current challenges in ultrasound array technology, including 2D array processing, have motivated exploration into new data acquisition and reconstruction techniques. Ultimately, these efforts encourage a broader examination of the processes used to effectively validate new array configurations and image formation procedures. Commercial software available today is capable of efficiently and accurately modeling detailed operational aspects of customized arrays. Combining quality simulated data with prototyped reconstruction techniques presents a valuable tool for testing novel schemes before committing more costly resources. To investigate this practice, we modeled three 1D ultrasound arrays operating multistatically instead of by the conventional phased-array approach. They are: a simple linear array, a half-circle array with 180-degree coverage, and a full circular array for inward imaging. We present the process used to create unique array models in PZFlex, simulate operation and obtain data, and subsequently generate images by inputting data into a reconstruction algorithm in MATLAB. Further discussion describes the tested reconstruction algorithm and includes resulting images.

  4. Calibration of three-dimensional ultrasound images for image-guided radiation therapy.

    PubMed

    Bouchet, L G; Meeks, S L; Goodchild, G; Bova, F J; Buatti, J M; Friedman, W A

    2001-02-01

    A new technique of patient positioning for radiotherapy/radiosurgery of extracranial tumours using three-dimensional (3D) ultrasound images has been developed. The ultrasound probe position is tracked within the treatment room via infrared light emitting diodes (IRLEDs) attached to the probe. In order to retrieve the corresponding room position of the ultrasound image, we developed an initial ultrasound probe calibration technique for both 2D and 3D ultrasound systems. This technique is based on knowledge of points in both room and image coordinates. We first tested the performance of three algorithms in retrieving geometrical transformations using synthetic data with different noise levels. Closed form solution algorithms (singular value decomposition and Horn's quaternion algorithms) were shown to outperform the Hooke and Jeeves iterative algorithm in both speed and accuracy. Furthermore, these simulations show that for a random noise level of 2.5, 5, 7.5 and 10 mm, the number of points required for a transformation accuracy better than 1 mm is 25, 100, 200 and 500 points respectively. Finally, we verified the tracking accuracy of this system using a specially designed ultrasound phantom. Since ultrasound images have a high noise level, we designed an ultrasound phantom that provides a large number of points for the calibration. This tissue equivalent phantom is made of nylon wires, and its room position is optically tracked using IRLEDs. By obtaining multiple images through the nylon wires, the calibration technique uses an average of 300 points for 3D ultrasound volumes and 200 for 2D ultrasound images, and its stability is very good for both rotation (standard deviation: 0.4 degrees) and translation (standard deviation: 0.3 mm) transformations. After this initial calibration procedure, the position of any voxel in the ultrasound image volume can be determined in world space, thereby allowing real-time image guidance of therapeutic procedures. Finally, the

  5. Dual-modality imaging system combined fast photoacoustic imaging and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Yuan, Yi

    2009-08-01

    In this paper, we have developed a fast dual-modality imaging system for reconstruction photoacoustic and ultrasound imaging based on a novel digital phased array. The scanning mode and image reconstruction algorithms were modified from our previous work to improve the image quality. A 128-element linear transducer array is connected to a multichannel signal acquisition and digital beam-formation system providing techniques of dynamic receiving focus and dynamic receiving apodization to process the signal. We use the linear transducer array with combined scanning mode to detect signals at multiple locations on a circle around the sample. It makes our dual-modality imaging own the ability of imaging complicated structures of objects. An improved limited-field filtered back projection algorithm with directivity factors was applied in photoacoustic imaging to further improve the lateral resolution. Phase-controlled imaging algorithm was applied to reconstruct acoustical impedance difference in the pure ultrasound imaging. The experiments on phantoms and in vivo early breast cancer detection in a mouse model were performed. The images are clearly, accurately provided.

  6. Novel trends in transrectal ultrasound imaging of prostate gland carcinoma

    PubMed Central

    Nowicki, Andrzej; Záťura, František; Gołąbek, Tomasz; Chłosta, Piotr

    2014-01-01

    Carcinoma of the prostate gland is the most common neoplasm in men. Its treatment depends on multiple factors among which local staging plays a significant role. The basic method is transrectal ultrasound imaging. This examination enables imaging of the prostate gland and its abnormalities, but it also allows ultrasound-guided biopsies to be conducted. A conventional gray-scale ultrasound examination enables assessment of the size, echostructure and outlines of the anatomic capsule, but in many cases, neoplastic lesions cannot be observed. For this reason, new sonographic techniques are implemented in order to facilitate detectability of cancer. The usage of contrast agents during transrectal ultrasound examination must be emphasized since, in combination with color Doppler, it facilitates detection of cancerous lesions by visualizing flow which is not observable without contrast enhancement. Elastography, in turn, is a different solution. It uses the differences in tissue elasticity between a neoplastic region and normal prostatic parenchyma that surrounds it. This technique facilitates detection of lesions irrespective of their echogenicity and thereby supplements conventional transrectal examinations. However, the size of the prostate gland and its relatively far location from the transducer may constitute limitations to the effectiveness of elastography. Moreover, the manner of conducting such an examination depends on the examiner and his or her subjective assessment. Another method, which falls within the novel, popular trend of combining imaging methods, is fusion of magnetic resonance imaging and transrectal sonography. The application of multidimensional magnetic resonance imaging, which is currently believed to be the best method for prostate cancer staging, in combination with the availability of a TRUS examination and the possibility of monitoring biopsies in real-time sonography is a promising alternative, but it is associated with higher costs and

  7. Parametric perfusion imaging based on low-cost ultrasound platform.

    PubMed

    Gu, Xiaolin; Zhong, Hui; Wan, Mingxi; Hu, Xiaowen; Lv, Dan; Shen, Liang; Zhang, Xiaomei

    2010-01-01

    In this study, we attempted to implement parametric perfusion imaging to quantify blood perfusion based on modified low-cost ultrasound platform. A novel ultrasound contrast-specific imaging method called pulse-inversion harmonic sum-squared-differences (PIHSSD) was proposed for improving the sensitivity for detecting contrast agents and the accuracy of parametric perfusion imaging, which combined pulse-inversion harmonic (PIH) with pulse-inversion sum-squared-differences (PISSD) threshold-based decision. PIHSSD method just involved simple operations including addition and multiplication and was easy to realize. The sequences of contrast images without logarithmic compression were used to acquire time intensity curves (TICs) from numerous equal-sized regions-of-interest (ROI) covering the entire image plane. Parametric perfusion images were obtained based on the parameters extracted from the TICs, including peak value (PV), area under curve (AUC), mean transit time (MTT), peak value time (PVT), peak width (PW) and climbing rate (CR). Flow phantom was used for validation and the results suggested that PIHSSD method provided 9.6 to 20.3 dB higher contrast-to-tissue ratio (CTR) than PIH method. The results of the experiments of rabbit kidney also showed that the CTR of PIHSSD images was higher than that of PIH images, and the parametric perfusion images based on PIHSSD method provided more accurate quantification of blood perfusion compared with those based on PIH and PISSD methods. It demonstrated that the parametric perfusion imaging achieved good performance though implemented on low-cost ultrasound platform. (E-mail: mxwan@mail.xjtu.edu.cn). PMID:19931972

  8. Temperature rise and safety considerations for radiation force ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Herman, Bruce A.; Harris, Gerald R.

    2002-11-01

    Current models for estimating temperature increase during ultrasound exposure calculate the steady-state rise, using time-averaged acoustic output, as the worst case for safety consideration. While valid for the typically very short (microsecond) pulses used by conventional diagnostic techniques, this analysis does not necessarily correspond to a worst case scenario for the longer pulses or pulse bursts used by a new method, radiation force imaging. Radiation force imaging, employing ultrasound pulse durations up to hundreds of milliseconds, produces and detects motion in solid tissue or acoustic streaming in fluids via a high intensity beam. Models that calculate the transient temperature rise from these pulses are developed for both the bone at focus and soft tissue cases. Based on accepted time-temperature dose criteria, it is shown that for pulse lengths and intensities utilized by this technique, temperature may increase to levels that raise safety concerns for bone at the focus of the ultrasound beam. Also, the impact on this modality of the current U.S. Food and Drug Administration output limits for diagnostic ultrasound devices is discussed.

  9. In vivo real-time volumetric synthetic aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Rasmussen, Morten F.; Brandt, Andreas H.; Stuart, Matthias B.; Nikolov, Svetoslav; Jensen, Jørgen A.

    2015-03-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological. This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° × 90° field-of-view was achieved. data were obtained using a 3.5 MHz 32 × 32 elements 2-D phased array transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak-temporal-average intensity for parallel beam-forming (PB) are 0.83 and 377.5mW/cm2, and for SA are 0.48 and 329.5mW/cm2. A human kidney was volumetrically imaged with SA and PB techniques simultaneously. Two radiologists for evaluation of the volumetric SA were consulted by means of a questionnaire on the level of details perceivable in the beam-formed images. The comparison was against PB based on the in vivo data. The feedback from the domain experts indicates that volumetric SA images internal body structures with a better contrast resolution compared to PB at all positions in the entire imaged volume. Furthermore, the autocovariance of a homogeneous area in the in vivo SA data, had 23.5% smaller width at the half of its maximum value compared to PB.

  10. Ultrasound in Radiology: from Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy

    PubMed Central

    Klibanov, Alexander L.; Hossack, John A.

    2015-01-01

    During the past decade, ultrasound has expanded medical imaging well beyond the “traditional” radiology setting - a combination of portability, low cost and ease of use makes ultrasound imaging an indispensable tool for radiologists as well as for other medical professionals who need to obtain imaging diagnosis or guide a therapeutic intervention quickly and efficiently. Ultrasound combines excellent ability for deep penetration into soft tissues with very good spatial resolution, with only a few exceptions (i.e. those involving overlying bone or gas). Real-time imaging (up to hundreds and thousands frames per second) enables guidance of therapeutic procedures and biopsies; characterization of the mechanical properties of the tissues greatly aids with the accuracy of the procedures. The ability of ultrasound to deposit energy locally brings about the potential for localized intervention encompassing: tissue ablation, enhancing penetration through the natural barriers to drug delivery in the body and triggering drug release from carrier micro- and nanoparticles. The use of microbubble contrast agents brings the ability to monitor and quantify tissue perfusion, and microbubble targeting with ligand-decorated microbubbles brings the ability to obtain molecular biomarker information, i.e., ultrasound molecular imaging. Overall, ultrasound has become the most widely used imaging modality in modern medicine; it will continue to grow and expand. PMID:26200224

  11. Attenuation mapping for monitoring thermal therapy using ultrasound transmission imaging.

    PubMed

    Parmar, N; Kolios, M C

    2004-01-01

    The use of an ultrasound (US) transmission imaging system to monitor attenuation changes during tissue heating was investigated. This work presents preliminary results of images obtained from an acoustic camera before, during and after heating tissue phantoms using a heated needle. Two types of tissue-mimicking phantoms were used, agar and polyacrylamide-based. Regions of interests were chosen in images obtained from the real-time imaging system, and the pixel intensity values before, during and after heating were compared. In both phantoms, a decrease in image intensities was observed during heating, indicating an increase in tissue attenuation. Additionally, an irreversible change in image intensity was observed in regions close to the heat source. The reversibility of the intensity change was shown to be a function of the distance from the heating needle to the selected region. Initial results indicate that US transmission imaging can be used to monitor thermal therapy. PMID:17271937

  12. Ultrasound modulated imaging of luminescence generated within a scattering medium

    NASA Astrophysics Data System (ADS)

    Huynh, Nam T.; Hayes-Gill, Barrie R.; Zhang, Fan; Morgan, Stephen P.

    2013-02-01

    Ultrasound modulated optical tomography modulates scattered light within tissue by deterministically altering the optical properties of the sample with the ultrasonic pressure. This allows the light to be "tagged" and the degradation in spatial resolution associated with light scattering to be reduced. To our knowledge, this is the first demonstration of ultrasound modulated imaging of light generated within a scattering medium without an external light source. The technique has the potential to improve the spatial resolution of chemi- or bioluminescence imaging of tissue. Experimental results show that ultrasound modulated luminescence imaging can resolve two chemiluminescent objects separated by 5 mm at a 7 mm depth within a tissue phantom with a scattering coefficient of 30 cm-1. The lateral resolution is estimated to be 3 mm. Monte Carlo simulations indicate that, with the current system signal to noise ratio, it is feasible to apply the approach to bioluminescence imaging when the concentration of bacteria in the animal organ is above 3.4×105/μL.

  13. Oil-based gel phantom for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Aggarwal, Lucimara P.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo. Z.

    2015-06-01

    Water-based materials are commonly used in phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. Styrene-Ethylene/Butylene-Styrene (SEBS) copolymer in mineral oil samples were made varying the SEBS concentration between 5-15%, and low-density polyethylene (LDPE) between 0-9%. Acoustic properties such as speed of sound and attenuation coefficient were obtained by the substitution technique with frequencies ranging from 2.25-10 MHz, and were consistent to that of soft tissue. These properties were controlled varying SEBS and LDPE concentration; speed of sound from 1445-1480 m/s, and attenuation from 0.86-11.31 dB/cm were observed. SEBS gels with 0% of LDPE were optically transparent, presenting low optical absorption and scattering coefficients in the visible region of the spectrum. In order to fully characterize the optical properties of the samples, the reflectances of the surfaces were measured, along with the absorption. Scattering and absorption coefficients ranging from 400 nm to 1200 nm were calculated for each compound. The results showed that the presence of LDPE increased absorption and scattering of the phantoms. The results suggest the copolymer gels are promising for ultrasound and optical imaging, what make them also potentially useful for photoacoustic imaging.

  14. Tracking of deformable target in 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Royer, Lucas; Marchal, Maud; Le Bras, Anthony; Dardenne, Guillaume; Krupa, Alexandre

    2015-03-01

    In this paper, we propose a novel approach for automatically tracking deformable target within 2D ultrasound images. Our approach uses only dense information combined with a physically-based model and has therefore the advantage of not using any fiducial marker nor a priori knowledge on the anatomical environment. The physical model is represented by a mass-spring damper system driven by different types of forces where the external forces are obtained by maximizing image similarity metric between a reference target and a deformed target across the time. This deformation is represented by a parametric warping model where the optimal parameters are estimated from the intensity variation. This warping function is well-suited to represent localized deformations in the ultrasound images because it directly links the forces applied on each mass with the motion of all the pixels in its vicinity. The internal forces constrain the deformation to physically plausible motions, and reduce the sensitivity to the speckle noise. The approach was validated on simulated and real data, both for rigid and free-form motions of soft tissues. The results are very promising since the deformable target could be tracked with a good accuracy for both types of motion. Our approach opens novel possibilities for computer-assisted interventions where deformable organs are involved and could be used as a new tool for interactive tracking of soft tissues in ultrasound images.

  15. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  16. Cardiovascular PET-CT imaging: a new frontier?

    PubMed

    Adamson, P D; Williams, M C; Newby, D E

    2016-07-01

    Cardiovascular positron-emission tomography combined with computed tomography (PET-CT) has recently emerged as an imaging technology with the potential to simultaneously describe both anatomical structures and physiological processes in vivo. The scope for clinical application of this technique is vast, but to date this promise has not been realised. Nonetheless, significant research activity is underway to explore these possibilities and it is likely that the knowledge gained will have important diagnostic and therapeutic implications in due course. This review provides a brief overview of the current state of cardiovascular PET-CT and the likely direction of future developments. PMID:26951964

  17. Detecting breast microcalcifications using super-resolution ultrasound imaging: a clinical study

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Labyed, Yassin; Hanson, Kenneth; Sandoval, Daniel; Pohl, Jennifer; Williamson, Michael

    2013-03-01

    Imaging breast microcalcifications is crucial for early detection and diagnosis of breast cancer. It is challenging for current clinical ultrasound to image breast microcalcifications. However, new imaging techniques using data acquired with a synthetic-aperture ultrasound system have the potential to significantly improve ultrasound imaging. We recently developed a super-resolution ultrasound imaging method termed the phase-coherent multiple-signal classification (PC-MUSIC). This signal subspace method accounts for the phase response of transducer elements to improve image resolution. In this paper, we investigate the clinical feasibility of our super-resolution ultrasound imaging method for detecting breast microcalcifications. We use our custom-built, real-time synthetic-aperture ultrasound system to acquire breast ultrasound data for 40 patients whose mammograms show the presence of breast microcalcifications. We apply our super-resolution ultrasound imaging method to the patient data, and produce clear images of breast calcifications. Our super-resolution ultrasound PC-MUSIC imaging with synthetic-aperture ultrasound data can provide a new imaging modality for detecting breast microcalcifications in clinic without using ionizing radiation.

  18. Ultrasound imaging of the mouse pancreatic duct using lipid microbubbles

    NASA Astrophysics Data System (ADS)

    Banerjee, B.; McKeown, K. R.; Skovan, B.; Ogram, E.; Ingram, P.; Ignatenko, N.; Paine-Murrieta, G.; Witte, R.; Matsunaga, T. O.

    2012-03-01

    Research requiring the murine pancreatic duct to be imaged is often challenging due to the difficulty in selectively cannulating the pancreatic duct. We have successfully catheterized the pancreatic duct through the common bile duct in severe combined immune deficient (SCID) mice and imaged the pancreatic duct with gas filled lipid microbubbles that increase ultrasound imaging sensitivity due to exquisite scattering at the gas/liquid interface. A SCID mouse was euthanized by CO2, a midline abdominal incision made, the common bile duct cut at its midpoint, a 2 cm, 32 gauge tip catheter was inserted about 1 mm into the duct and tied with suture. The duodenum and pancreas were excised, removed in toto, embedded in agar and an infusion pump was used to instill normal saline or lipid-coated microbubbles (10 million / ml) into the duct. B-mode images before and after infusion of the duct with microbubbles imaged the entire pancreatic duct (~ 1 cm) with high contrast. The microbubbles were cavitated by high mechanical index (HMI) ultrasound for imaging to be repeated. Our technique of catheterization and using lipid microbubbles as a contrast agent may provide an effective, affordable technique of imaging the murine pancreatic duct; cavitation with HMI ultrasound would enable repeated imaging to be performed and clustering of targeted microbubbles to receptors on ductal cells would allow pathology to be localized accurately. This research was supported by the Experimental Mouse Shared Service of the AZ Cancer Center (Grant Number P30CA023074, NIH/NCI and the GI SPORE (NIH/NCI P50 CA95060).

  19. New developments in paediatric cardiac functional ultrasound imaging.

    PubMed

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed. PMID:27277901

  20. Optical Micromachined Ultrasound Transducers (OMUT)-- A New Approach for High Frequency Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Tadayon, Mohammad Amin

    Piezoelectric technology is the backbone of most medical ultrasound imaging arrays, however, in scaling the technology to sizes required for high frequency operation (> 20 MHz), it encounters substantial difficulties in fabrication and signal transduction efficiency. These limitations particularly affect the design of intravascular ultrasound (IVUS) imaging probes whose operating frequency can approach 60 MHz. Optical technology has been proposed and investigated for several decades as an alternative approach for high frequency ultrasound transducers. However, to apply this promising technology in guiding clinical operations such as in interventional cardiology, brain surgery, and laparoscopic surgery further raise in the sensitivity is required. Here, in order to achieve the required sensitivity for an intravascular ultrasound imaging probe, we introduce design changes making use of alternative receiver mechanisms. First, we present an air cavity detector that makes use of a polymer membrane for increased mechanical deflection. We have also significantly raised the thin film detector sensitivity by improving its optical characteristics. This can be achieved by inducing a refractive index feature inside the Fabry-Perot resonator that simply creates a waveguide between the two mirrors. This approach eliminates the loss in energy due to diffraction in the cavity, and therefore the Q-factor is only limited by mirror loss and absorption. To demonstrate this optical improvements, a waveguide Fabry-Perot resonator has been fabricated consisting of two dielectric Bragg reflectors with a layer of photosensitive polymer between them. The measured finesse of the fabricated resonator was 692, and the Q-factor was 55000. The fabrication process of this device has been modified to fabricate an ultrasonically testable waveguide Fabry-Perot resonator. By applying this method, we have achieved a noise equivalent pressure of 178 Pa over a bandwidth of 28 MHz or 0.03 Pa/Hz1/2 which

  1. Dynamic tracking of tendon elongation in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Karimpoor, Mahta; Screen, Hazel; Morrissey, Dylan

    2010-02-01

    The aim of this study was to evaluate the elongation of the Achilles tendon by looking at the changing position of Myo-Tendenious Junction (MTJ) using ultrasound during isometric contraction on an Isometric dynamometer. A sequence of ultrasound images in the form of movie, obtained from a unit operating at a frequency of 12MHz during isometric contraction, was analyzed offline using MATLAB to track the MTJ. This investigation has implemented important techniques for in vivo feature extraction of Achilles tendon. Prior to feature extraction, the images were filtered by anisotropic diffusion method and morphological enhancements. The cross correlation search algorithm with an adaptive mask was utilized to track MTJ by comparing adjacent segmented frames. The present method was studied on seventeen subjects, where it was able to measure the related movement accurately.

  2. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue.

    PubMed

    Rangraz, Parisa; Behnam, Hamid; Tavakkoli, Jahan

    2014-01-01

    High-intensity focused ultrasound induces focalized tissue coagulation by increasing the tissue temperature in a tight focal region. Several methods have been proposed to monitor high-intensity focused ultrasound-induced thermal lesions. Currently, ultrasound imaging techniques that are clinically used for monitoring high-intensity focused ultrasound treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation, and elastography-based methods. On the contrary, the efficacy of two-dimensional Nakagami parametric imaging based on the distribution of the ultrasound backscattered signals to quantify properties of soft tissue has recently been evaluated. In this study, ultrasound radio frequency echo signals from ex vivo tissue samples were acquired before and after high-intensity focused ultrasound exposures and then their Nakagami parameter and scaling parameter of Nakagami distribution were estimated. These parameters were used to detect high-intensity focused ultrasound-induced thermal lesions. Also, the effects of changing the acoustic power of the high-intensity focused ultrasound transducer on the Nakagami parameters were studied. The results obtained suggest that the Nakagami distribution's scaling and Nakagami parameters can effectively be used to detect high-intensity focused ultrasound-induced thermal lesions in tissue ex vivo. These parameters can also be used to understand the degree of change in tissue caused by high-intensity focused ultrasound exposures, which could be interpreted as a measure of degree of variability in scatterer concentration in various parts of the high-intensity focused ultrasound lesion. PMID:24264647

  3. NON-RIGID IMAGE REGISTRATION BASED STRAIN ESTIMATOR FOR INTRAVASCULAR ULTRASOUND ELASTOGRAPHY

    PubMed Central

    Richards, Michael S.; Doyley, Marvin M.

    2013-01-01

    Intravascular ultrasound elastography (IVUSe) could improve the diagnosis of cardiovascular disease by revealing vulnerable plaques through their mechanical tissue properties. To improve the performance of IVUSe, we developed and implemented a non-rigid image-registration method to visualize the radial and circumferential component of strain within vascular tissues. We evaluated the algorithm’s performance with four initialization schemes using simulated and experimentally acquired ultrasound images. Applying the registration method to radio-frequency (RF) echo frames improved the accuracy of displacements compared to when B-mode images were employed. However, strain elastograms measured from RF echo frames produce erroneous results when both the zero-initialization method and the mesh-refinement scheme were employed. For most strain levels, the cross-correlation-initialization method produced the best performance. The simulation study predicted that elastograms obtained from vessels with average strains in the range of 3%–5% should have high elastographic signal-to-noise ratio (SNRe)–on the order of 4.5 and 7.5 for the radial and circumferential components of strain, respectively. The preliminary in vivo validation study (phantom and an atherosclerotic rabbit) demonstrated that the non-rigid registration method could produce useful radial and circumferential strain elastograms under realistic physiologic conditions. The results of this investigation were sufficiently encouraging to warrant a more comprehensive in vivo validation. PMID:23245827

  4. The feasibility of non-contact ultrasound for medical imaging.

    PubMed

    Clement, G T; Nomura, H; Adachi, H; Kamakura, T

    2013-09-21

    High intensity focused ultrasound in air may provide a means for medical and biological imaging without direct coupling of an ultrasound probe. In this study, an approach based on highly focused ultrasound in air is described and the feasibility of the technique is assessed. The overall method is based on the observations that (1) ultrasound in air has superior focusing ability and stronger nonlinear harmonic generation as compared to tissue propagation and (2) a tightly focused field directed into tissue causes point-like spreading that may be regarded as a source for generalized diffraction tomography. Simulations of a spherically-curved transducer are performed, where the transducer's radiation pattern is directed from air into tissue. It is predicted that a focal pressure of 162 dB (2.5 kPa) is sufficient to direct ultrasound through the body, and provide a small but measurable signal (∼1 mPa) upon exit. Based on the simulations, a 20 cm diameter array consisting of 298 transducers is constructed. For this feasibility study, a 40 kHz resonance frequency is selected based on the commercial availability of such transducers. The array is used to focus through water and acrylic phantoms, and the time history of the exiting signal is evaluated. Sufficient data are acquired to demonstrate a low-resolution tomographic reconstruction. Finally, to demonstrate the feasibility to record a signal in vivo, a 75 mm × 55 mm section of a human hand is imaged in a C-mode configuration. PMID:23965825

  5. Cardiovascular complications of radiation therapy for thoracic malignancies: the role for non-invasive imaging for detection of cardiovascular disease

    PubMed Central

    Groarke, John D.; Nguyen, Paul L.; Nohria, Anju; Ferrari, Roberto; Cheng, Susan; Moslehi, Javid

    2014-01-01

    Radiation exposure to the thorax is associated with substantial risk for the subsequent development of cardiovascular disease. Thus, the increasing role of radiation therapy in the contemporary treatment of cancer, combined with improving survival rates of patients undergoing this therapy, contributes to a growing population at risk of cardiovascular morbidity and mortality. Associated cardiovascular injuries include pericardial disease, coronary artery disease, valvular disease, conduction disease, cardiomyopathy, and medium and large vessel vasculopathy—any of which can occur at varying intervals following irradiation. Higher radiation doses, younger age at the time of irradiation, longer intervals from the time of radiation, and coexisting cardiovascular risk factors all predispose to these injuries. The true incidence of radiation-related cardiovascular disease remains uncertain due to lack of large multicentre studies with a sufficient duration of cardiovascular follow-up. There are currently no consensus guidelines available to inform the optimal approach to cardiovascular surveillance of recipients of thoracic radiation. Therefore, we review the cardiovascular consequences of radiation therapy and focus on the potential role of non-invasive cardiovascular imaging in the assessment and management of radiation-related cardiovascular disease. In doing so, we highlight characteristics that can be used to identify individuals at risk for developing post-radiation cardiovascular disease and propose an imaging-based algorithm for their clinical surveillance. PMID:23666251

  6. A 4-DOF Robot for Positioning Ultrasound Imaging Catheters

    PubMed Central

    Loschak, Paul M.; Degirmenci, Alperen; Tenzer, Yaroslav; Howe, Robert D.

    2015-01-01

    In this paper we present the design, fabrication, and testing of a robot for automatically positioning ultrasound imaging catheters. Our system will point ultrasound (US) catheters to provide real-time imaging of anatomical structures and working instruments during minimally invasive surgeries. Manually navigating US catheters is difficult and requires extensive training in order to aim the US imager at desired targets. Therefore, a four DOF robotic system was developed to automatically navigate US imaging catheters for enhanced imaging. A rotational transmission enables three DOF for pitch, yaw, and roll of the imager. This transmission is translated by the fourth DOF. An accuracy analysis was conducted to calculate the maximum allowable joint motion error. Rotational joints must be accurate to within 1.5° and the translational joint must be accurate within 1.4 mm. Motion tests were then conducted to validate the accuracy of the robot. The average resulting errors in positioning of the rotational joints were measured to be 0.28°-0.38° with average measured backlash error 0.44°. Average translational positioning and backlash errors were measured to be significantly lower than the reported accuracy of the position sensor. The resulting joint motion errors were well within the required specifications for accurate robot motion. Such effective navigation of US imaging catheters will enable better visualization in various procedures ranging from cardiac arrhythmia treatment to tumor removal in urological cases. PMID:26925468

  7. Development of a Hybrid Magnetic Resonance and Ultrasound Imaging System

    PubMed Central

    Sherwood, Victoria; Rivens, Ian; Collins, David J.; Leach, Martin O.; ter Haar, Gail R.

    2014-01-01

    A system which allows magnetic resonance (MR) and ultrasound (US) image data to be acquired simultaneously has been developed. B-mode and Doppler US were performed inside the bore of a clinical 1.5 T MRI scanner using a clinical 1–4 MHz US transducer with an 8-metre cable. Susceptibility artefacts and RF noise were introduced into MR images by the US imaging system. RF noise was minimised by using aluminium foil to shield the transducer. A study of MR and B-mode US image signal-to-noise ratio (SNR) as a function of transducer-phantom separation was performed using a gel phantom. This revealed that a 4 cm separation between the phantom surface and the transducer was sufficient to minimise the effect of the susceptibility artefact in MR images. MR-US imaging was demonstrated in vivo with the aid of a 2 mm VeroWhite 3D-printed spherical target placed over the thigh muscle of a rat. The target allowed single-point registration of MR and US images in the axial plane to be performed. The system was subsequently demonstrated as a tool for the targeting and visualisation of high intensity focused ultrasound exposure in the rat thigh muscle. PMID:25177702

  8. Development of a hybrid magnetic resonance and ultrasound imaging system.

    PubMed

    Sherwood, Victoria; Civale, John; Rivens, Ian; Collins, David J; Leach, Martin O; ter Haar, Gail R

    2014-01-01

    A system which allows magnetic resonance (MR) and ultrasound (US) image data to be acquired simultaneously has been developed. B-mode and Doppler US were performed inside the bore of a clinical 1.5 T MRI scanner using a clinical 1-4 MHz US transducer with an 8-metre cable. Susceptibility artefacts and RF noise were introduced into MR images by the US imaging system. RF noise was minimised by using aluminium foil to shield the transducer. A study of MR and B-mode US image signal-to-noise ratio (SNR) as a function of transducer-phantom separation was performed using a gel phantom. This revealed that a 4 cm separation between the phantom surface and the transducer was sufficient to minimise the effect of the susceptibility artefact in MR images. MR-US imaging was demonstrated in vivo with the aid of a 2 mm VeroWhite 3D-printed spherical target placed over the thigh muscle of a rat. The target allowed single-point registration of MR and US images in the axial plane to be performed. The system was subsequently demonstrated as a tool for the targeting and visualisation of high intensity focused ultrasound exposure in the rat thigh muscle. PMID:25177702

  9. EEG and functional ultrasound imaging in mobile rats

    PubMed Central

    Sieu, Lim-Anna; Bergel, Antoine; Tiran, Elodie; Deffieux, Thomas; Pernot, Mathieu; Gennisson, Jean-Luc; Tanter, Mickaël; Cohen, Ivan

    2015-01-01

    We developed an integrated experimental framework which extends the brain exploration capabilities of functional ultrasound imaging to awake/mobile animals. In addition to hemodynamic data, this method further allows parallel access to EEG recordings of neuronal activity. This approach is illustrated with two proofs of concept: first, a behavioral study, concerning theta rhythm activation in a maze running task and, second, a disease-related study concerning spontaneous epileptic seizures. PMID:26237228

  10. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.

    PubMed

    Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F Stuart; Jiang, Xiaoning; Dayton, Paul A

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  11. Second harmonic inversion for ultrasound contrast harmonic imaging

    NASA Astrophysics Data System (ADS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; van Neer, Paul L. M. J.; Cachard, Christian; van der Steen, Antonius F. W.; Basset, Olivier; de Jong, Nico

    2011-06-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f0 and the same amplitude P0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  12. Beef quality parameters estimation using ultrasound and color images

    PubMed Central

    2015-01-01

    Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. Proposal An algorithm based on curve evolution is implemented to calculate the rib eye area. The backfat thickness is estimated from the profile of distances between two curves that limit the steak and the rib eye, previously detected. A model base in Support Vector Regression (SVR) is trained to estimate the intramuscular fat percentage. A series of features extracted on a region of interest, previously detected in both ultrasound and color images, were proposed. In all cases, a complete evaluation was performed with different databases including: color and ultrasound images acquired by a beef industry expert, intramuscular fat estimation obtained by an expert using a commercial software, and chemical analysis. Conclusions The proposed algorithms show good results to calculate the rib eye area and the backfat thickness measure and profile. They are also promising in predicting the percentage of intramuscular fat. PMID:25734452

  13. Non-Contact Ultrasound Imaging Applied to Cortical Bone Phantoms

    NASA Astrophysics Data System (ADS)

    Halcrow, Peter; Ganezer, Kenneth

    2011-11-01

    The purpose of this project was to take the initial steps towards applying Non-Contact Ultrasound (NCU) to the in-vivo monitoring of osteoporosis and to quantitative ultrasound imaging (QUS) of the skeleton using cortical bone. This project was also undertaken to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. With an NCU imaging system, a pair of specially designed broadband 1.5 MHz non-contact transducers and cortical bone phantoms we determined bone mineral density, speed of sound (SOS), integrated acoustical response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were used to collect data from phantoms of known mass density and bone mineral density (BMD). Significant correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 14 phantoms. At least thirty to forty repeated measurements were collected over a period of 1.5 years of the SOS, thickness, and IR for our phantom set, extending through most of the in-vivo range of BMD found in cortical bone. The collected data showed a small variation in the range of measurements of plus or minus 1-2 %. These NCU results were shown to be in agreement with similar results from contact ultrasound to within 1-2%. This study suggests that NCU might find additional applications in a clinical setting in the near future in medical imaging.

  14. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    PubMed Central

    Martin, K. Heath; Lindsey, Brooks D.; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F. Stuart; Jiang, Xiaoning; Dayton, Paul A.

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  15. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    PubMed Central

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Background Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. Methods We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. Results In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. Conclusion In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary. PMID:18215290

  16. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  17. Relationship between changes in coronary atherosclerotic plaque burden measured by intravascular ultrasound and cardiovascular disease outcomes: a systematic literature review.

    PubMed

    Forbes, Carol; Quek, Ruben G W; Deshpande, Sohan; Worthy, Gill; Ross, Janine; Kleijnen, Jos; Gandra, Shravanthi R; Kassahun, Helina; Wong, Nathan D; Nicholls, Stephen J

    2016-06-01

    Objective Evidence from coronary imaging studies suggests an association between increased atherosclerotic plaque burden and cardiovascular disease (CVD) outcomes. A systematic review was performed to evaluate the relationship between coronary atherosclerotic plaque burden changes measured by intravascular ultrasound (IVUS) and CVD outcomes. Research design and methods Rigorous systematic review methodology was used to identify prospective studies of any design assessing the relationship between atherosclerotic plaque volume (percentage or total atheroma volume [PAV or TAV]) changes and CVD outcomes, using multivariable analyses. Main outcome measures CVD outcomes including major adverse cardiac events (MACEs) and major adverse cardiac and cerebrovascular events (MACCEs). Results Literature searches from inception to February 2015 retrieved 6958 records after de-duplication. From these four studies (14 papers) were included. One study reported a significantly lower rate of CVD outcomes associated with a greater reduction in PAV (hazard ratio [HR] 0.26, 95% confidence interval [CI] 0.07-0.83). One study reported that large plaque volume was significantly associated with a greater risk of major adverse cardiac events (MACEs) (HR 1.73, 95% CI: 1.02-2.96). Similarly, a third study reported a significant increase in MACE with an increase in baseline PAV (HR 1.51, 95% CI: 1.06-2.51). Only one potentially inadequately powered Japanese study did not find a statistically significant relationship between PAV changes and MACE. Conclusions The current evidence suggests an independent and statistically significant association between increases in coronary atherosclerotic plaque burden measured by IVUS and greater long-term risk of future CVD outcomes. However, this evidence comes from a limited number of studies which mainly focus on Japanese populations and populations after PCI. Further large prospective studies are required to confirm these findings. PMID:26949994

  18. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  19. Barker-coded excitation in ophthalmological ultrasound imaging

    PubMed Central

    Zhou, Sheng; Wang, Xiao-Chun; Yang, Jun; Ji, Jian-Jun; Wang, Yan-Qun

    2014-01-01

    High-frequency ultrasound is an attractive means to obtain fine-resolution images of biological tissues for ophthalmologic imaging. To solve the tradeoff between axial resolution and detection depth, existing in the conventional single-pulse excitation, this study develops a new method which uses 13-bit Barker-coded excitation and a mismatched filter for high-frequency ophthalmologic imaging. A novel imaging platform has been designed after trying out various encoding methods. The simulation and experiment result show that the mismatched filter can achieve a much higher out signal main to side lobe which is 9.7 times of the matched one. The coded excitation method has significant advantages over the single-pulse excitation system in terms of a lower MI, a higher resolution, and a deeper detection depth, which improve the quality of ophthalmic tissue imaging. Therefore, this method has great values in scientific application and medical market. PMID:25356093

  20. Integrated transrectal probe for translational ultrasound-photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bell, Kevan L.; Harrison, Tyler; Usmani, Nawaid; Zemp, Roger J.

    2016-03-01

    A compact photoacoustic transrectal probe is constructed for improved imaging in brachytherapy treatment. A 192 element 5 MHz linear transducer array is mounted inside a small 3D printed casing along with an array of optical fibers. The device is fed by a pump laser and tunable NIR-optical parametric oscillator with data collected by a Verasonics ultrasound platform. This assembly demonstrates improved imaging of brachytherapy seeds in phantoms with depths up to 5 cm. The tuneable excitation in combination with standard US integration provides adjustable contrast between the brachytherapy seeds, blood filled tubes and background tissue.

  1. Double difference tomography for breast ultrasound sound speed imaging

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Duric, Neb; Rama, Olsi; Burger, Angelika; Polin, Lisa; Nechiporchik, Nicole

    2011-03-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. Double difference (DD) tomography utilizes more accurate differential time-of-flight (ToF) data to reconstruct the sound speed structure of the breast. It can produce more precise and better resolution sound speed images than standard tomography that uses absolute ToF data. We apply DD tomography to phantom data and excised mouse mammary glands data. DD tomograms demonstrate sharper sound speed contrast than the standard tomograms.

  2. Expectation-Driven Text Extraction from Medical Ultrasound Images.

    PubMed

    Reul, Christian; Köberle, Philipp; Üçeyler, Nurcan; Puppe, Frank

    2016-01-01

    In this study an expectation-driven approach is proposed to extract data stored as pixel structures in medical ultrasound images. Prior knowledge about certain properties like the position of the text and its background and foreground grayscale values is utilized. Several open source Java libraries are used to pre-process the image and extract the textual information. The results are presented in an Excel table together with the outcome of several consistency checks. After manually correcting potential errors, the outcome is automatically stored in the main database. The proposed system yielded excellent results, reaching an accuracy of 99.94% and reducing the necessary human effort to a minimum. PMID:27577478

  3. Analysis of left ventricular impedance in comparison with ultrasound images.

    PubMed

    Choi, Seong Wook; Park, Sung Min

    2012-05-01

    Cardiac monitoring of ventricular assist devices (VADs) is important for detecting heart failure risks, such as critical arrhythmia and ventricular fibrillation, and for supplying data that are useful for hemodynamic control. Specifically, impedance cardiograms (ICGs) are especially beneficial because they have no effect on the tissue or organs and can monitor various parameters simultaneously, including the heart rate and heart contractions. In this article, we measured impedance changes in porcine left ventricles using electrodes placed around the inlet and outlet cannulae of the VAD. The measured left ventricular impedance (LVI) waveform changes are caused by heart movements, such as cardiac muscle contraction and changes in blood volume as a result of heart filling and emptying. In contrast to other impedance measurements, LVI is less affected by the movement of other organs. Using a porcine model, LVIs were measured and compared with blood flow data measured with an ultrasound blood flowmeter. The ICG showed the same frequency as the animal's heart rate, and their amplitudes were closely related to cardiac output (CO). However, the waveform differed from other vital signs, such as CO, electrocardiogram, and blood pressure. Ultrasound images were used to explain the impedance waveform. In the ultrasound images, we obtained the shape and size of the animal's heart and calculated the predicted impedance data. We then compared these to the actual measured data. These results show that the impedance signal contains detailed information on heart rate and CO; these results were unaffected by the cannulae or VAD perfusion. PMID:22188560

  4. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    PubMed Central

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  5. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075

  6. Automatic processing of ultrasound images for nondestructive testing

    NASA Astrophysics Data System (ADS)

    Goodfriend, Leon

    1993-12-01

    Ultrasonic non-destructive testing of carbon fiber composite (CFC) aircraft panels has, in the past, been a time-consuming and laborious process. Data acquisition (using C-scan techniques) takes of order 1 hour per m2, and the decision as to whether the panel meets the testing standard (technically known as sentencing) is an unexciting and repetitive visual task for a human operator. This paper introduces a new system for automated sentencing of CFC panels of solid or matrix (honeycomb) construction. It begins with a brief description of a new parallel-scanning ultrasound rig which greatly reduces the time required for data acquisition. A detailed description is then given of the design and implementation of a computer vision system which processes the resulting ultrasound images.

  7. Sequential liver imaging in the hypereosinophilic syndrome: discordant images with scintigraphy, ultrasound, and computed tomography.

    PubMed

    White, W L; Wahner, H W; Brown, M L; James, E M

    1981-02-01

    Sequential liver scintigrams in a patient with hypereosinophilic syndrome were used to demonstrate liver involvement initially and then to show progression of hepatic disease followed by gradual normalization on treatment. Computed tomography and ultrasound images of the liver were normal; thus, tissue density differences and sonar interfaces were apparently not sufficiently large for detection of tissue infiltrates, whereas abnormalities in Kupffer cell function resulted in abnormal scintigram images. A pattern of changing and vanishing filling defects on the scintigram while computed tomography and ultrasound images were normal was observed in the hypereosinophilic syndrome. PMID:7460446

  8. Beating heart mitral valve repair with integrated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Moore, John T.; Peters, Terry M.

    2015-03-01

    Beating heart valve therapies rely extensively on image guidance to treat patients who would be considered inoperable with conventional surgery. Mitral valve repair techniques including the MitrClip, NeoChord, and emerging transcatheter mitral valve replacement techniques rely on transesophageal echocardiography for guidance. These images are often difficult to interpret as the tool will cause shadowing artifacts that occlude tissue near the target site. Here, we integrate ultrasound imaging directly into the NeoChord device. This provides an unobstructed imaging plane that can visualize the valve lea ets as they are engaged by the device and can aid in achieving both a proper bite and spacing between the neochordae implants. A proof of concept user study in a phantom environment is performed to provide a proof of concept for this device.

  9. Automated quality assessment in three-dimensional breast ultrasound images.

    PubMed

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects. PMID:27158633

  10. Multi-modal Ultrasound Imaging for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Medina-Valdés, L.; Pérez-Liva, M.; Camacho, J.; Udías, J. M.; Herraiz, J. L.; González-Salido, N.

    This work describes preliminary results of a two-modality imaging system aimed at the early detection of breast cancer. The first technique is based on compounding conventional echographic images taken at regular angular intervals around the imaged breast. The other modality obtains tomographic images of propagation velocity using the same circular geometry. For this study, a low-cost prototype has been built. It is based on a pair of opposed 128-element, 3.2 MHz array transducers that are mechanically moved around tissue mimicking phantoms. Compounded images around 360° provide improved resolution, clutter reduction, artifact suppression and reinforce the visualization of internal structures. However, refraction at the skin interface must be corrected for an accurate image compounding process. This is achieved by estimation of the interface geometry followed by computing the internal ray paths. On the other hand, sound velocity tomographic images from time of flight projections have been also obtained. Two reconstruction methods, Filtered Back Projection (FBP) and 2D Ordered Subset Expectation Maximization (2D OSEM), were used as a first attempt towards tomographic reconstruction. These methods yield useable images in short computational times that can be considered as initial estimates in subsequent more complex methods of ultrasound image reconstruction. These images may be effective to differentiate malignant and benign masses and are very promising for breast cancer screening.

  11. High frame rate photoacoustic imaging using clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Kathyayini; Pramanik, Manojit

    2016-03-01

    Photoacoustic tomography (PAT) is a potential hybrid imaging modality which is gaining attention in the field of medical imaging. Typically a Q-switched Nd:YAG laser is used to excite the tissue and generate photoacoustic signals. But, they are not suitable for clinical applications owing to their high cost, large size. Also, their low pulse repetition rate (PRR) of few tens of hertz prevents them from being used in real-time PAT. So, there is a growing need for an imaging system capable of real-time imaging for various clinical applications. In this work, we are using a nanosecond pulsed laser diode as an excitation source and a clinical ultrasound imaging system to obtain the photoacoustic imaging. The excitation laser is ~803 nm in wavelength with energy of ~1.4 mJ per pulse. So far, the reported frame rate for photoacoustic imaging is only a few hundred Hertz. We have demonstrated up to 7000 frames per second framerate in photoacoustic imaging (B-mode) and measured the flow rate of fast moving obje ct. Phantom experiments were performed to test the fast imaging capability and measure the flow rate of ink solution inside a tube. This fast photoacoustic imaging can be used for various clinical applications including cardiac related problems, where the blood flow rate is quite high, or other dynamic studies.

  12. The iterative adaptive approach in medical ultrasound imaging.

    PubMed

    Jensen, Are Charles; Austeng, Andreas

    2014-10-01

    Many medical ultrasound imaging systems are based on sweeping the image plane with a set of narrow beams. Usually, the returning echo from each of these beams is used to form one or a few azimuthal image samples. We model, for each radial distance, jointly the full azimuthal scanline. The model consists of the amplitudes of a set of densely placed potential reflectors (or scatterers), cf. sparse signal representation. To fit the model, we apply the iterative adaptive approach (IAA) on data formed by a sequenced time delay and phase shift. The performance of the IAA in combination with our time-delayed and phase-shifted data are studied on both simulated data of scenes consisting of point targets and hollow cyst-like structures, and recorded ultrasound phantom data from a specially adapted commercially available scanner. The results show that the proposed IAA is more capable of resolving point targets and gives better defined and more geometrically correct cyst-like structures in speckle images compared with the conventional delay-and-sum (DAS) approach. Compared with a Capon beamformer, the IAA showed an improved rendering of cyst-like structures and a similar point-target resolvability. Unlike the Capon beamformer, the IAA has no user parameters and seems unaffected by signal cancellation. The disadvantage of the IAA is a high computational load. PMID:25265177

  13. Contrast-Enhanced Ultrasound Imaging for the Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening

    PubMed Central

    Fan, Ching-Hsiang; Lin, Wun-Hao; Ting, Chien-Yu; Chai, Wen-Yen; Yen, Tzu-Chen; Liu, Hao-Li; Yeh, Chih-Kuang

    2014-01-01

    The blood-brain barrier (BBB) can be transiently and locally opened by focused ultrasound (FUS) in the presence of microbubbles (MBs). Various imaging modalities and contrast agents have been used to monitor this process. Unfortunately, direct ultrasound imaging of BBB opening with MBs as contrast agent is not feasible, due to the inability of MBs to penetrate brain parenchyma. However, FUS-induced BBB opening is accompanied by changes in blood flow and perfusion, suggesting the possibility of perfusion-based ultrasound imaging. Here we evaluated the use of MB destruction-replenishment, which was originally developed for analysis of ultrasound perfusion kinetics, for verifying and quantifying FUS-induced BBB opening. MBs were intravenously injected and the BBB was disrupted by 2 MHz FUS with burst-tone exposure at 0.5-0.7 MPa. A perfusion kinetic map was estimated by MB destruction-replenishment time-intensity curve analysis. Our results showed that the scale and distribution of FUS-induced BBB opening could be determined at high resolution by ultrasound perfusion kinetic analysis. The accuracy and sensitivity of this approach was validated by dynamic contrast-enhanced MRI. Our successful demonstration of ultrasound imaging to monitor FUS-induced BBB opening provides a new approach to assess FUS-dependent brain drug delivery, with the benefit of high temporal resolution and convenient integration with the FUS device. PMID:25161701

  14. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117

  15. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.

    PubMed

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Seshadri, Suresh

    2014-02-01

    A pilot study was carried out to investigate the performance of ultrasound stiffness imaging methods namely Ultrasound Elastography Imaging (UEI) and Acoustic Radiation Force Impulse (ARFI) Imaging. Specifically their potential for characterizing different classes of solid mass lesions was analyzed using agar based tissue mimicking phantoms. Composite tissue mimicking phantom was prepared with embedded inclusions of varying stiffness from 50 kPa to 450 kPa to represent different stages of cancer. Acoustic properties such as sound speed, attenuation coefficient and acoustic impedance were characterized by pulse echo ultrasound test at 5 MHz frequency and they are ranged from (1564 ± 88 to 1671 ± 124 m/s), (0.6915 ± 0.123 to 0.8268 ± 0.755 db cm(-1)MHz(-1)) and (1.61 × 10(6) ± 0.127 to 1.76 × 10(6) ± 0.045 kg m(-2)s(-1)) respectively. The elastic property Young's Modulus of the prepared samples was measured by conducting quasi static uni axial compression test under a strain rate of 0.5mm/min upto 10 % strain, and the values are from 50 kPa to 450 kPa for a variation of agar concentration from 1.7% to 6.6% by weight. The composite phantoms were imaged by Siemens Acuson S2000 (Siemens, Erlangen, Germany) machine using linear array transducer 9L4 at 8 MHz frequency; strain and displacement images were collected by UEI and ARFI. Shear wave velocity 4.43 ± 0.35 m/s was also measured for high modulus contrast (18 dB) inclusion and X.XX m/s was found for all other inclusions. The images were pre processed and parameters such as Contrast Transfer Efficiency and lateral image profile were computed and reported. The results indicate that both ARFI and UEI represent the abnormalities better than conventional US B mode imaging whereas UEI enhances the underlying modulus contrast into improved strain contrast. The results are corroborated with literature and also with clinical patient images. PMID:24083832

  16. Automated detection of cardiac phase from intracoronary ultrasound image sequences.

    PubMed

    Sun, Zheng; Dong, Yi; Li, Mengchan

    2015-01-01

    Intracoronary ultrasound (ICUS) is a widely used interventional imaging modality in clinical diagnosis and treatment of cardiac vessel diseases. Due to cyclic cardiac motion and pulsatile blood flow within the lumen, there exist changes of coronary arterial dimensions and relative motion between the imaging catheter and the lumen during continuous pullback of the catheter. The action subsequently causes cyclic changes to the image intensity of the acquired image sequence. Information on cardiac phases is implied in a non-gated ICUS image sequence. A 1-D phase signal reflecting cardiac cycles was extracted according to cyclical changes in local gray-levels in ICUS images. The local extrema of the signal were then detected to retrieve cardiac phases and to retrospectively gate the image sequence. Results of clinically acquired in vivo image data showed that the average inter-frame dissimilarity of lower than 0.1 was achievable with our technique. In terms of computational efficiency and complexity, the proposed method was shown to be competitive when compared with the current methods. The average frame processing time was lower than 30 ms. We effectively reduced the effect of image noises, useless textures, and non-vessel region on the phase signal detection by discarding signal components caused by non-cardiac factors. PMID:26406038

  17. A method for three-dimensional prostate imaging using transrectal ultrasound.

    PubMed

    Richard, W D; Grimmell, C K; Bedigian, K; Frank, K J

    1993-01-01

    This paper describes a method for forming three-dimensional images of the prostate using transrectal ultrasound. This method extracts three-dimensional images of the prostate from sets of two-dimensional ultrasound images obtained via a special-purpose transrectal ultrasound probe. Each two-dimensional image is segmented and the results used to form a three-dimensional image of the prostate. A method for segmenting two-dimensional images of the prostate based on the Laplacian-of-Gaussian edge operator is described. The three-dimensional imaging method described provides a new, noninvasive method for monitoring gland pathology during radiation therapy. PMID:8518996

  18. Thermal Imaging of Convecting Opaque Fluids using Ultrasound

    NASA Technical Reports Server (NTRS)

    Xu, Hongzhou; Fife, Sean; Andereck, C. David

    2002-01-01

    An ultrasound technique has been developed to non-intrusively image temperature fields in small-scale systems of opaque fluids undergoing convection. Fluids such as molten metals, semiconductors, and polymers are central to many industrial processes, and are often found in situations where natural convection occurs, or where thermal gradients are otherwise important. However, typical thermal and velocimetric diagnostic techniques rely upon transparency of the fluid and container, or require the addition of seed particles, or require mounting probes inside the fluid, all of which either fail altogether in opaque fluids, or necessitate significant invasion of the flow and/or modification of the walls of the container to allow access to the fluid. The idea behind our work is to use the temperature dependence of sound velocity, and the ease of propagation of ultrasound through fluids and solids, to probe the thermal fields of convecting opaque fluids non-intrusively and without the use of seed particles. The technique involves the timing of the return echoes from ultrasound pulses, a variation on an approach used previously in large-scale systems.

  19. The Feasibility of Thermal Imaging as a Future Portal Imaging Device for Therapeutic Ultrasound.

    PubMed

    Miloro, Piero; Civale, John; Rivens, Ian; Shaw, Adam

    2016-08-01

    This technical note describes a prototype thermally based portal imaging device that allows mapping of energy deposition on the surface of a tissue mimicking material in a focused ultrasound surgery (FUS) beam by using an infrared camera to measure the temperature change on that surface. The aim of the work is to explore the feasibility of designing and building a system suitable for rapid quality assurance (QA) for use with both ultrasound- and magnetic resonance (MR) imaging-guided clinical therapy ultrasound systems. The prototype was tested using an MR-guided Sonalleve FUS system (with the treatment couch outside the magnet bore). The system's effective thermal noise was 0.02°C, and temperature changes as low as 0.1°C were easily quantifiable. The advantages and drawbacks of thermal imaging for QA are presented through analysis of the results of an experimental session. PMID:27174419

  20. Potential role of ultrasound imaging in interstitial image based cervical cancer brachytherapy

    PubMed Central

    2014-01-01

    In 2012, more than 500,000 cases of cervical cancer were diagnosed worldwide. Over three quarters of these cases occur in less developed countries [1]. Advancements in image-guided brachytherapy are resulting in improved outcomes and reduced morbidity for women with this disease, but its worldwide adoption is hampered by lack of accessibility to advanced imaging techniques. Ultrasound is emerging as a potential option for tumor visualization, brachytherapy catheter placement, and treatment planning. While additional work is needed, ultrasound can potentially serve as the sole imaging modality for catheter insertion and planning. This paper will review our current knowledge on the use of ultrasound in interstitial brachytherapy treatment for cervical cancer. PMID:25097565

  1. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    NASA Astrophysics Data System (ADS)

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth P.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-10-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml-1 Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.

  2. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    PubMed Central

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth C.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-01-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg/ml Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of 3-dimensional imaging of a 185 μL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi. PMID:24077004

  3. Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology

    PubMed Central

    Golestani, Reza; Jung, Jae-Joon; Sadeghi, Mehran M.

    2016-01-01

    Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation. PMID:27275836

  4. High-resolution vascular tissue characterization in mice using 55 MHz ultrasound hybrid imaging

    PubMed Central

    Mahmoud, Ahmed M.; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B.; Martin, Karen H.; Mustafa, S. Jamal; Mukdadi, Osama M.

    2012-01-01

    Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (TIB), time variance (Tvar), time entropy (TE), frequency integrated backscatter (FIB), wavelet root mean square value (Wrms), and wavelet integrated backscatter (WIB). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A1 adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency = 55 MHz) and commercial array (center frequency = 40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of −10.11 ± 1.92 dB, −12.13 ± 2.13 dB, −7.54 ± 1.45 dB, −5.10 ± 1.06 dB, −5.25 ± 0.94 dB, and −10.23 ± 2.12 dB in TIB, Tvar, TE, FIB, Wrms, WIB hybrid images (n = 10, p < 0.05), respectively. Control segments of normal vascular tissue showed the lowest values of −20.20 ± 2.71 dB, −22.54 ± 4.54 dB, −14.94 ± 2.05 dB, −9.64 ± 1.34 dB, −10.20 ± 1.27 dB, and −19.36 ± 3.24 dB in same hybrid images (n = 6, p < 0.05). Results from both histology and optical images showed good agreement with

  5. Multiple LREK active contours for knee meniscus ultrasound image segmentation.

    PubMed

    Faisal, Amir; Ng, Siew-Cheok; Goh, Siew-Li; George, John; Supriyanto, Eko; Lai, Khin W

    2015-10-01

    Quantification of knee meniscus degeneration and displacement in an ultrasound image requires simultaneous segmentation of femoral condyle, meniscus, and tibial plateau in order to determine the area and the position of the meniscus. In this paper, we present an active contour for image segmentation that uses scalable local regional information on expandable kernel (LREK). It includes using a strategy to adapt the size of a local window in order to avoid being confined locally in a homogeneous region during the segmentation process. We also provide a multiple active contours framework called multiple LREK (MLREK) to deal with multiple object segmentation without merging and overlapping between the neighboring contours in the shared boundaries of separate regions. We compare its performance to other existing active contour models and show an improvement offered by our model. We then investigate the choice of various parameters in the proposed framework in response to the segmentation outcome. Dice coefficient and Hausdorff distance measures over a set of real knee meniscus ultrasound images indicate a potential application of MLREK for assessment of knee meniscus degeneration and displacement. PMID:25910057

  6. A reduced multiplier beamformer architecture for ultrasound imaging systems.

    PubMed

    Magee, David P; Ali, Murtaza

    2009-01-01

    This paper presents a new ultrasound beamforming architecture that greatly reduces the number of multiplications in a DAS (Delay And Sum) implementation as MLAs (Multiple Line Acquisitions) and data channels increase in the system. A mathematical derivation is provided for the new DAS-DPC (Data Path Combined) beamformer architecture along with multiplier analysis that compares the new architecture to a standard DAS implementation. Simulation results using a kidney image from a well-known simulation tool called Field II are given to demonstrate the effectiveness of the new beamforming architecture as compared to a standard DAS architecture. PMID:19965160

  7. Medical ultrasound imager based on time delay spectrometry.

    PubMed

    Heyser, R C; Hestenes, J D; Rooney, J A; Gammell, P M; Le Croissette, D H

    1989-01-01

    A reflection mode proof-of-concept medical ultrasound imager based on time delay spectrometry has been developed and tested. The system uses a broad band swept-frequency signal operating up to 10 MHz. Signal processing using a fast Fourier transform (FFT) permits extraction of range information. The imager has a higher signal-to-noise ratio than pulse-echo systems which allows high resolution at greater depths. The time delay spectrometry (TDS) spread spectrum operates at lower peak intensities than pulse-echo and permits more control of the spectral content and amplitude of the signal. At present, the system is non-real time which degrades in vivo imaging because of averaging over several cardiac cycles and tissue movement. PMID:2643838

  8. Breast imaging with ultrasound tomography: a comparative study with MRI

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan; Littrup, Peter; Duric, Neb; Li, Cuiping; Schmidt, Steven; Lupinacci, Jessica; Myc, Lukasz; Szczepanski, Amy; Rama, Olsi; Bey-Knight, Lisa

    2010-03-01

    The purpose of this study was to investigate the performance of an ultrasound tomography (UST) prototype relative to magnetic resonance (MR) for imaging overall breast anatomy and accentuating tumors relative to background tissue. The study was HIPAA compliant, approved by the Institutional Review Board, and performed after obtaining the requisite informed consent. Twenty-three patients were imaged with MR and the UST prototype. T1 weighted images with fat saturation, with and without gadolinium enhancement, were used to examine anatomical structures and tumors, while T2 weighted images were used to identify cysts. The UST scans generated sound speed, attenuation, and reflection images. A qualitative visual comparison of the MRI and UST images was then used to identify anatomical similarities. A more focused approach that involved a comparison of reported masses, lesion volumes, and breast density was used to quantify the findings from the visual assessment. Our acoustic tomography prototype imaged distributions of fibrous stroma, parenchyma, fatty tissues, and lesions in patterns similar to those seen in the MR images. The range of thresholds required to establish tumor volume equivalency between MRI and UST suggested that a universal threshold for isolating masses relative to background tissue is feasible with UST. UST has demonstrated the ability to visualize and characterize breast tissues in a manner comparable to MRI. Thresholding techniques accentuate masses relative to background anatomy, which may prove clinically useful for early cancer detection.

  9. Ultrasound Strain Imaging Towards Verification and Guidance of Prostate Thermal Therapy with Catheter-Based Ultrasound Applicators

    NASA Astrophysics Data System (ADS)

    Sridhar-Keralapura, Mallika; Chubb, Nicole; Scott, Serena; Phipps, Natalie; Burdette, Clif; Diederich, Chris

    2010-03-01

    Ultrasound based transurethral and interstitial catheters have been developed and tested in vivo to thermally ablate prostate cancers. Treatment validation and accurate control of therapy is currently done using MR thermal imaging (±1° C, update: 5-15 s). MRTI is effective for real-time monitoring and guidance, but, cost, setup time, and accessibility can be limiting. Ultrasound imaging methods could be a practicable approach to monitoring. We investigated Ultrasound Strain Imaging (USI) as a tool towards verifying and controlling prostate treatments by developing a novel methodology for tissue compression using ultrasound phantoms and ex vivo tissue models. We estimate strain using quasi real-time estimation algorithms and added automatic segmentation features. The methodology involved inserting an ultrasound applicator into ex vivo liver or porcine muscle tissue, ablating it for 10 min at 15 W to create a well defined thermal lesion. After treatment, the tissue was compressed either externally (3-5%) using the probe or by deflating/inflating the applicator's coupling balloon internally. Ultrasound RF data was recorded during the compression and USI was computed within 20 seconds and compared with photographs of corresponding excised tissue sections. USI estimated post ablation using balloon and external methods yielded significant contrast that correlated well with measurements of excised tissue sections. From these preliminary studies, USI can become an effective feasible tool for verification and guidance of ablation regions with these devices. Balloon compressions could potentially allow computation USI in clinical treatments for confirmation and boundary control.

  10. Stolt's f-k migration for plane wave ultrasound imaging.

    PubMed

    Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy

    2013-09-01

    Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wave-fronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. To perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to outline the advantages of PWI with Stolt's f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt's f-k migration was also compared with the Fourier-based method developed by J.-Y. Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a stateof- the-art dynamic focusing mode. This remained true even with a very small number of steering angles, thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu's and DAS migration schemes. Matlab codes for the Stolt's f-k migration for PWI are provided. PMID:24626107

  11. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    PubMed

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. PMID:27153374

  12. Image guidance of intracardiac ultrasound with fusion of pre-operative images.

    PubMed

    Sun, Yiyong; Kadoury, Samuel; Li, Yong; John, Matthias; Resnick, Jeff; Plambeck, Gerry; Liao, Rui; Sauer, Frank; Xu, Chenyang

    2007-01-01

    This paper presents a method for registering 3D intracardiac echo (ICE) to pre-operative images. A magnetic tracking sensor is integrated on the ICE catheter tip to provide the 3D location and orientation. The user guides the catheter into the patient heart to acquire a series of ultrasound images covering the anatomy of the heart chambers. An automatic intensity-based registration algorithm is applied to align these ultrasound images with pre-operative images. One of the important applications is to help electrophysiology doctors to treat complicated atrial fibrillation cases. After registration, the doctor can see the position and orientation of the ICE catheter and other tracked catheters inside the heart anatomy in real time. The image guidance provided by this technique may increase the ablation accuracy and reduce the amount of time for the electrophysiology procedures. We show successful image registration results from animal experiments. PMID:18051044

  13. [Ultrasound imaging of normal fetal central nervous system at 8 to 12 weeks of gestation].

    PubMed

    Vojtech, J; Krofta, L; Urbánková, I; Dlouhá, K; Haaková, L; Feyereisl, J

    2011-12-01

    With ongoing evolution of advanced ultrasound diagnostic in prenatal care the trend is to detect potential fetal anomalies in the first trimester if possible. Complex knowledge of normal fetal anatomy, embryology and ultrasound anatomy is important to be able to identify subtle abnormalities. In this review we demonstrate the possibilities of ultrasound imaging of fetal brain at late first trimester and describe normal central nervous system development week by week. Original images are presented. PMID:22312839

  14. High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes

    PubMed Central

    Weed, Scott A.

    2015-01-01

    High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease. PMID:26274059

  15. Intraoperative ultrasound to stereocamera registration using interventional photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Su, Steven; Kim, Robert; Kuo, Nathanael; Taylor, Russell H.; Kang, Jin U.; Boctor, Emad M.

    2012-02-01

    There are approximately 6000 hospitals in the United States, of which approximately 5400 employ minimally invasive surgical robots for a variety of procedures. Furthermore, 95% of these robots require extensive registration before they can be fitted into the operating room. These "registrations" are performed by surgical navigation systems, which allow the surgical tools, the robot and the surgeon to be synchronized together-hence operating in concert. The most common surgical navigation modalities include: electromagnetic (EM) tracking and optical tracking. Currently, these navigation systems are large, intrusive, come with a steep learning curve, require sacrifices on the part of the attending medical staff, and are quite expensive (since they require several components). Recently, photoacoustic (PA) imaging has become a practical and promising new medical imaging technology. PA imaging only requires the minimal equipment standard with most modern ultrasound (US) imaging systems as well as a common laser source. In this paper, we demonstrate that given a PA imaging system, as well as a stereocamera (SC), the registration between the US image of a particular anatomy and the SC image of the same anatomy can be obtained with reliable accuracy. In our experiments, we collected data for N = 80 trials of sample 3D US and SC coordinates. We then computed the registration between the SC and the US coordinates. Upon validation, the mean error and standard deviation between the predicted sample coordinates and the corresponding ground truth coordinates were found to be 3.33 mm and 2.20 mm respectively.

  16. Photoacoustic and ultrasound dual-modality imaging for inflammatory arthritis

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Chamberland, David; Girish, Gandikota; Wang, Xueding

    2014-03-01

    Arthritis is a leading cause of disability, affecting 46 million of the population in the U.S. Rendering new optical contrast in articular tissues at high spatial and temporal resolution, emerging photoacoustic imaging (PAI) combined with more established ultrasound (US) imaging technologies provides unique opportunities for diagnosis and treatment monitoring of inflammatory arthritis. In addition to capturing peripheral bone and soft tissue images, PAI has the capability to quantify hemodynamic properties including regional blood oxygenation and blood volume, both abnormal in synovial tissues affected by arthritis. Therefore, PAI, especially when performed together with US, should be of considerable help for further understanding the pathophysiology of arthritis as well as assisting in therapeutic decisions, including assessing the efficacy of new pharmacological therapies. In this paper, we will review our recent work on the development of PAI for application to the diagnostic imaging and therapeutic monitoring of inflammatory arthritis. We will present the imaging results from a home-built imaging system and another one based on a commercial US. The performance of PAI in evaluating pharmacological therapy on animal model of arthritis will be shown. Moreover, our resent work on PAI and US dual-modality imaging of human peripheral joints in vivo will also be presented.

  17. High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes.

    PubMed

    Walk, Elyse L; McLaughlin, Sarah L; Weed, Scott A

    2015-01-01

    High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease. PMID:26274059

  18. Prostate Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  19. Hip Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  20. Ultrasound -- Vascular

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  1. Musculoskeletal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  2. Ultrasound - Scrotum

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  3. I Vivo Quantitative Ultrasound Imaging and Scatter Assessments.

    NASA Astrophysics Data System (ADS)

    Lu, Zheng Feng

    There is evidence that "instrument independent" measurements of ultrasonic scattering properties would provide useful diagnostic information that is not available with conventional ultrasound imaging. This dissertation is a continuing effort to test the above hypothesis and to incorporate quantitative ultrasound methods into clinical examinations for early detection of diffuse liver disease. A well-established reference phantom method was employed to construct quantitative ultrasound images of tissue in vivo. The method was verified by extensive phantom tests. A new method was developed to measure the effective attenuation coefficient of the body wall. The method relates the slope of the difference between the echo signal power spectrum from a uniform region distal to the body wall and the echo signal power spectrum from a reference phantom to the body wall attenuation. The accuracy obtained from phantom tests suggests further studies with animal experiments. Clinically, thirty-five healthy subjects and sixteen patients with diffuse liver disease were studied by these quantitative ultrasound methods. The average attenuation coefficient in normals agreed with previous investigators' results; in vivo backscatter coefficients agreed with the results from normals measured by O'Donnell. Strong discriminating power (p < 0.001) was found for both attenuation and backscatter coefficients between fatty livers and normals; a significant difference (p < 0.01) was observed in the backscatter coefficient but not in the attenuation coefficient between cirrhotic livers and normals. An in vivo animal model of steroid hepatopathy was used to investigate the system sensitivity in detecting early changes in canine liver resulting from corticosteroid administration. The average attenuation coefficient slope increased from 0.7 dB/cm/MHz in controls to 0.82 dB/cm/MHz (at 6 MHz) in treated animals on day 14 into the treatment, and the backscatter coefficient was 26times 10^{ -4}cm^{-1}sr

  4. Volumetric breast density evaluation from ultrasound tomography images

    SciTech Connect

    Glide-Hurst, Carri K.; Duric, Neb; Littrup, Peter

    2008-09-15

    Previous ultrasound tomography work conducted by our group showed a direct correlation between measured sound speed and physical density in vitro, and increased in vivo sound speed with increasing mammographic density, a known risk factor for breast cancer. Building on these empirical results, the purpose of this work was to explore a metric to quantify breast density using our ultrasound tomography sound speed images in a manner analogous to computer-assisted mammogram segmentation for breast density analysis. Therefore, volumetric ultrasound percent density (USPD) is determined by segmenting high sound speed areas from each tomogram using a k-means clustering routine, integrating these results over the entire volume of the breast, and dividing by whole-breast volume. First, a breast phantom comprised of fat inclusions embedded in fibroglandular tissue was scanned four times with both our ultrasound tomography clinical prototype (with 4 mm spatial resolution) and CT. The coronal transmission tomograms and CT images were analyzed using semiautomatic segmentation routines, and the integrated areas of the phantom's fat inclusions were compared between the four repeated scans. The average variability for inclusion segmentation was {approx}7% and {approx}2%, respectively, and a close correlation was observed in the integrated areas between the two modalities. Next, a cohort of 93 patients was imaged, yielding volumetric coverage of the breast (45-75 sound speed tomograms/patient). The association of USPD with mammographic percent density (MPD) was evaluated using two measures: (1) qualitative, as determined by a radiologist's visual assessment using BI-RADS Criteria and (2) quantitative, via digitization and semiautomatic segmentation of craniocaudal and mediolateral oblique mammograms. A strong positive association between BI-RADS category and USPD was demonstrated [Spearman {rho}=0.69 (p<0.001)], with significant differences between all BI-RADS categories as assessed

  5. A comparison of the imaging performance of high resolution ultrasound scanners for preclinical imaging.

    PubMed

    Moran, Carmel M; Pye, Stephen D; Ellis, William; Janeczko, Anna; Morris, Keith D; McNeilly, Alan S; Fraser, Hamish M

    2011-03-01

    Nine ultrasound transducers from six ultrasound scanners were assessed for their utility for preclinical ultrasound imaging. The transducers were: L8-16, L10-22 (Diasus; Dynamic Imaging Ltd., Livingston, UK); L17-5, L15-7io (iU22; Philips, Seattle, WA, USA), HFL38/13-6 (MicroMaxx; Sonosite Inc., Bothell, WA, USA); il3Lv (Vivid 5; GE, Fairfield, CT, USA), RMV 704 (Vevo 770; Visualsonics Inc., Toronto, Canada) and MS550S, MS550D (Vevo 2100; Visualsonics Inc.). A quantitative analysis of the ultrasound images from all nine transducers employed measurements of the resolution integral as an indication of the versatility and technology of the ultrasound scanners. Two other parameters derived from the resolution integral, the characteristic resolution and depth of field, were used to characterise imaging performance. Six of these transducers were also assessed qualitatively by ultrasonically scanning 59 female common marmosets (Callithrix jacchus) yielding a total of 215 scans. The quantitative measurements for each of the transducers were consistent with the results obtained in the qualitative in vivo assessment. Over a 0-10 mm imaging depth, the values of the resolution integral, characteristic resolution and depth of field, measured using the Edinburgh Pipe Phantom, ranged in magnitude from 7-72, 93-930 μm and 3.3-9.2 mm respectively. The largest resolution integrals were obtained using the Vevo 770 and Vevo 2100 scanners. The Edinburgh Pipe Phantom provides a quantitative method of characterising the imaging performance of preclinical imaging scanners. PMID:21256667

  6. A comparative study in ultrasound breast imaging classification

    NASA Astrophysics Data System (ADS)

    Yap, Moi Hoon; Edirisinghe, Eran A.; Bez, Helmut E.

    2009-02-01

    American College of Radiology introduces a standard in classification, the breast imaging reporting and data system (BIRADS), standardize the reporting of ultrasound findings, clarify its interpretation, and facilitate communication between clinicians. The effective use of new technologies to support healthcare initiatives is important and current research is moving towards implementing computer tools in the diagnostics process. Initially a detailed study was carried out to evaluate the performance of two commonly used appearance based classification algorithms, based on the use of Principal Component Analysis (PCA), and two dimensional linear discriminant analysis (2D-LDA). The study showed that these two appearance based classification approaches are not capable of handling the classification of ultrasound breast image lesions. Therefore further investigations in the use of a popular feature based classifier - Support Vector Machine (SVM) was conducted. A pre-processing step before feature based classification is feature extraction, which involve shape, texture and edge descriptors for the Region of Interest (ROI). The input dataset to SVM classification is from a fully automated ROI detection. We achieve the success rate of 0.550 in PCA, 0.500 in LDA, and 0.931 in SVM. The best combination of features in SVM classification is to combine the shape, texture and edge descriptors, with sensitivity 0.840 and specificity 0.968. This paper briefly reviews the background to the project and then details the ongoing research. In conclusion, we discuss the contributions, limitations, and future plans of our work.

  7. [Diagnosis. Radiological study. Ultrasound, computed tomography and magnetic resonance imaging].

    PubMed

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Because of its low cost, availability in primary care and ease of interpretation, simple X-ray should be the first-line imaging technique used by family physicians for the diagnosis and/or follow-up of patients with osteoarthritis. Nevertheless, this technique should only be used if there are sound indications and if the results will influence decision-making. Despite the increase of indications in patients with rheumatological disease, the role of ultrasound in patients with osteoarthritis continues to be limited. Computed tomography (CT) is of some -although limited- use in osteoarthritis, especially in the study of complex joints (such as the sacroiliac joint and facet joints). Magnetic resonance imaging (MRI) has represented a major advance in the evaluation of joint cartilage and subchondral bone in patients with osteoarthritis but, because of its high cost and diagnostic-prognostic yield, this technique should only be used in highly selected patients. The indications for ultrasound, CT and MRI in patients with osteoarthritis continue to be limited in primary care and often coincide with situations in which the patient may require hospital referral. Patient safety should be bourne in mind. Patients should be protected from excessive ionizing radiation due to unnecessary repeat X-rays or inadequate views or to requests for tests such as CT, when not indicated. PMID:24467957

  8. Characterization of various tissue mimicking materials for medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Thouvenot, Audrey; Poepping, Tamie; Peters, Terry M.; Chen, Elvis C. S.

    2016-04-01

    Tissue mimicking materials are physical constructs exhibiting certain desired properties, which are used in machine calibration, medical imaging research, surgical planning, training, and simulation. For medical ultrasound, those specific properties include acoustic propagation speed and attenuation coefficient over the diagnostic frequency range. We investigated the acoustic characteristics of polyvinyl chloride (PVC) plastisol, polydimethylsiloxane (PDMS), and isopropanol using a time-of-light technique, where a pulse was passed through a sample of known thickness contained in a water bath. The propagation speed in PVC is approximately 1400ms-1 depending on the exact chemical composition, with the attenuation coefficient ranging from 0:35 dB cm-1 at 1MHz to 10:57 dB cm-1 at 9 MHz. The propagation speed in PDMS is in the range of 1100ms-1, with an attenuation coefficient of 1:28 dB cm-1 at 1MHz to 21:22 dB cm-1 at 9 MHz. At room temperature (22 °C), a mixture of water-isopropanol (7:25% isopropanol by volume) exhibits a propagation speed of 1540ms-1, making it an excellent and inexpensive tissue-mimicking liquid for medical ultrasound imaging.

  9. High field magnetic resonance imaging of rodents in cardiovascular research.

    PubMed

    Vanhoutte, Laetitia; Gerber, Bernhard L; Gallez, Bernard; Po, Chrystelle; Magat, Julie; Jean-Luc, Balligand; Feron, Olivier; Moniotte, Stéphane

    2016-07-01

    Transgenic and gene knockout rodent models are primordial to study pathophysiological processes in cardiovascular research. Over time, cardiac MRI has become a gold standard for in vivo evaluation of such models. Technical advances have led to the development of magnets with increasingly high field strength, allowing specific investigation of cardiac anatomy, global and regional function, viability, perfusion or vascular parameters. The aim of this report is to provide a review of the various sequences and techniques available to image mice on 7-11.7 T magnets and relevant to the clinical setting in humans. Specific technical aspects due to the rise of the magnetic field are also discussed. PMID:27287250

  10. Cardiovascular Metabolic Imaging: Physiologic and Biochemical Dynamics In Vivo

    PubMed Central

    Bassingthwaighte, James B.; McMillin-Wood, Jeanie B.; Brown, Truman R.; Budinger, Thomas F.; Ingwall, Joanne S.; Rovetto, Michael J.; Schelbert, Heinrich R.; McCallum, Zena

    2010-01-01

    Fifty-eight investigators from the fields of biochemistry, physiology, cardiology, nuclear medicine, and physics met to discuss the development of metabolic imaging techniques for application to cardiovascular and pulmonary studies in health and disease. The workshop was sponsored by the Division of Heart and Vascular Diseases, National Heart, Lung, and Blood Institute and was held on September 16 to 18 in Bethesda, Maryland, in facilities provided by the American College of Cardiology. This report summarizes the presentations and discussions and presents recommendations for future studies. PMID:3876891

  11. Cardiovascular Metabolic Imaging: Physiologic and Biochemical Dynamics In Vivo

    PubMed Central

    McMillin-Wood, Jeanie B.; Bassingthwaighte, James B.

    2010-01-01

    Fifty-eight investigators from the fields of biochemistry, physiology, cardiology, nuclear medicine, and physics met to discuss the development of metabolic imaging techniques for application to cardiovascular and pulmonary studies in health and disease. The workshop was sponsored by the Division of Heart and Vascular Diseases, National Heart, Lung, and Blood Institute and was held on September 16 to 18 in Bethesda, Maryland, in facilities provided by the American College of Cardiology. This report summarizes the presentations and discussions and presents recommendations for future studies. PMID:3902281

  12. [Clinical trial requests of indigenous diagnostic imaging ultrasound devices in first-time registration application].

    PubMed

    Guo, Zhaojun; Cao, Guofang; Tao, Kan

    2012-11-01

    This article introduces the clinical requests of indigenous diagnostic imaging ultrasound devices in first-time registration application and the clinical trial requests in Technical Review Guidance of Ultrasound Imaging Diagnostic Devices (category III) Registration and puts forward some questions of the guidance's implementation. It is hoped to help concerned people. PMID:23461122

  13. Watermarking of ultrasound medical images in teleradiology using compressed watermark.

    PubMed

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq

    2016-01-01

    The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel's least significant bits (LSBs). The watermark lossless compression and embedding at pixel's LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes. PMID:26839914

  14. Robust real-time instrument tracking in ultrasound images

    NASA Astrophysics Data System (ADS)

    Ortmaier, Tobias; Vitrani, Marie-Aude; Morel, Guillaume; Pinault, Samuel

    2005-04-01

    Minimally invasive surgery in combination with ultrasound (US) imaging imposes high demands on the surgeon's hand-eye-coordination capabilities. A possible solution to reduce these requirements is minimally invasive robotic surgery in which the instrument is guided by visual servoing towards the goal defined by the surgeon in the US image. This approach requires robust tracking of the instrument in the US image sequences which is known to be difficult due to poor image quality. This paper presents algorithms and results of first tracking experiments. Adaptive thresholding based on Otsu's method allows to cope with large intensity variations of the instrument echo. Median filtering of the binary image and subsequently applied morphological operations suppress noise and echo artefacts. A fast run length code based labelling algorithm allows for real-time labelling of the regions. A heuristic exploiting region size and region velocity helps to overcome ambiguities. The overall computation time is less than 20 ms per frame on a standard PC. The tracking algorithm requires no information about texture and shape which are known to be very unreliable in US image sequences. Experimental results for two different instrument materials (polyvinyl chloride and polyurethane) are given, showing the performance of the proposed approach. Choosing the appropriate material, trajectories are smooth and only few outliers occur.

  15. Multifunctional Catheters Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Nikoozadeh, Amin; Oralkan, Omer; Khuri-Yakub, Pierre T.; Sahn, David J.

    2015-01-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters’ ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools. PMID:18986948

  16. Cardiovascular Imaging for Assessing Cardiovascular Risk in Asymptomatic Men Versus Women

    PubMed Central

    Jain, Aditya; McClelland, Robyn L.; Polak, Joseph F.; Shea, Steven; Burke, Gregory L.; Bild, Diane E.; Watson, Karol E.; Budoff, Matthew J.; Liu, Kiang; Post, Wendy S.; Folsom, Aaron R.; Lima, João A.C.; Bluemke, David A.

    2011-01-01

    Background Coronary artery calcium (CAC), carotid intima-media thickness, and left ventricular (LV) mass and geometry offer the potential to characterize incident cardiovascular disease (CVD) risk in clinically asymptomatic individuals. The objective of the study was to compare these cardiovascular imaging measures for their overall and sex-specific ability to predict CVD. Methods and Results The study sample consisted of 4965 Multi-Ethnic Study of Atherosclerosis participants (48% men; mean age, 62±10 years). They were free of CVD at baseline and were followed for a median of 5.8 years. There were 297 CVD events, including 187 coronary heart disease (CHD) events, 65 strokes, and 91 heart failure (HF) events. CAC was most strongly associated with CHD (hazard ratio [HR], 2.3 per 1 SD; 95% CI, 1.9 to 2.8) and all CVD events (HR, 1.7; 95% CI, 1.5 to 1.9). Most strongly associated with stroke were LV mass (HR, 1.3; 95% CI, 1.1 to 1.7) and LV mass/volume ratio (HR, 1.3; 95% CI, 1.1 to 1.6). LV mass showed the strongest association with HF (HR, 1.8; 95% CI, 1.6 to 2.1). There were no significant interactions for imaging measures with sex and ethnicity for any CVD outcome. Compared with traditional risk factors alone, overall risk prediction (C statistic) for future CHD, HF, and all CVD was significantly improved by adding CAC, LV mass, and CAC, respectively (all P<0.05). Conclusions There was no evidence that imaging measures differed in association with incident CVD by sex. CAC was most strongly associated with CHD and CVD; LV mass and LV concentric remodeling best predicted stroke; and LV mass best predicted HF. PMID:21068189

  17. Automatic finger joint synovitis localization in ultrasound images

    NASA Astrophysics Data System (ADS)

    Nurzynska, Karolina; Smolka, Bogdan

    2016-04-01

    A long-lasting inflammation of joints results between others in many arthritis diseases. When not cured, it may influence other organs and general patients' health. Therefore, early detection and running proper medical treatment are of big value. The patients' organs are scanned with high frequency acoustic waves, which enable visualization of interior body structures through an ultrasound sonography (USG) image. However, the procedure is standardized, different projections result in a variety of possible data, which should be analyzed in short period of time by a physician, who is using medical atlases as a guidance. This work introduces an efficient framework based on statistical approach to the finger joint USG image, which enables automatic localization of skin and bone regions, which are then used for localization of the finger joint synovitis area. The processing pipeline realizes the task in real-time and proves high accuracy when compared to annotation prepared by the expert.

  18. High frequency ultrasound imaging in pupillary block glaucoma.

    PubMed Central

    Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J

    1995-01-01

    BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ultrasonographic findings consistent with pupillary block: iris bombé, a formed posterior chamber, and a lack of anterior rotation of the ciliary processes. CONCLUSION--High frequency ultrasound imaging appears to be a valuable adjunct in making or corroborating the diagnosis of pupillary block glaucoma. Images PMID:8534666

  19. Improved digital breast tomosynthesis images using automated ultrasound

    PubMed Central

    Zhang, Xing; Yuan, Jie; Du, Sidan; Kripfgans, Oliver D.; Wang, Xueding; Carson, Paul L.; Liu, Xiaojun

    2014-01-01

    Purpose: Digital breast tomosynthesis (DBT) offers poor image quality along the depth direction. This paper presents a new method that improves the image quality of DBT considerably through the a priori information from automated ultrasound (AUS) images. Methods: DBT and AUS images of a complex breast-mimicking phantom are acquired by a DBT/AUS dual-modality system. The AUS images are taken in the same geometry as the DBT images and the gradient information of the in-slice AUS images is adopted into the new loss functional during the DBT reconstruction process. The additional data allow for new iterative equations through solving the optimization problem utilizing the gradient descent method. Both visual comparison and quantitative analysis are employed to evaluate the improvement on DBT images. Normalized line profiles of lesions are obtained to compare the edges of the DBT and AUS-corrected DBT images. Additionally, image quality metrics such as signal difference to noise ratio (SDNR) and artifact spread function (ASF) are calculated to quantify the effectiveness of the proposed method. Results: In traditional DBT image reconstructions, serious artifacts can be found along the depth direction (Z direction), resulting in the blurring of lesion edges in the off-focus planes parallel to the detector. However, by applying the proposed method, the quality of the reconstructed DBT images is greatly improved. Visually, the AUS-corrected DBT images have much clearer borders in both in-focus and off-focus planes, fewer Z direction artifacts and reduced overlapping effect compared to the conventional DBT images. Quantitatively, the corrected DBT images have better ASF, indicating a great reduction in Z direction artifacts as well as better Z resolution. The sharper line profiles along the Y direction show enhancement on the edges. Besides, noise is also reduced, evidenced by the obviously improved SDNR values. Conclusions: The proposed method provides great improvement on

  20. 3D prostate segmentation of ultrasound images combining longitudinal image registration and machine learning

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Fei, Baowei

    2012-02-01

    We developed a three-dimensional (3D) segmentation method for transrectal ultrasound (TRUS) images, which is based on longitudinal image registration and machine learning. Using longitudinal images of each individual patient, we register previously acquired images to the new images of the same subject. Three orthogonal Gabor filter banks were used to extract texture features from each registered image. Patient-specific Gabor features from the registered images are used to train kernel support vector machines (KSVMs) and then to segment the newly acquired prostate image. The segmentation method was tested in TRUS data from five patients. The average surface distance between our and manual segmentation is 1.18 +/- 0.31 mm, indicating that our automatic segmentation method based on longitudinal image registration is feasible for segmenting the prostate in TRUS images.

  1. Investigating the Effectiveness of Wavelet Approximations in Resizing Images for Ultrasound Image Classification.

    PubMed

    Manzoor, Umar; Nefti, Samia; Ferdinando, Milella

    2016-10-01

    Images are difficult to classify and annotate but the availability of digital image databases creates a constant demand for tools that automatically analyze image content and describe it with either a category or a set of variables. Ultrasound Imaging is very popular and is widely used to see the internal organ(s) condition of the patient. The main target of this research is to develop a robust image processing techniques for a better and more accurate medical image retrieval and categorization. This paper looks at an alternative to feature extraction for image classification such as image resizing technique. A new mean for image resizing using wavelet transform is proposed. Results, using real medical images, have shown the effectiveness of the proposed technique for classification task comparing to bi-cubic interpolation and feature extraction. PMID:27586590

  2. Comprehensive quality assurance phantom for cardiovascular imaging systems

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Jan P.

    1998-07-01

    With the advent of high heat loading capacity x-ray tubes, high frequency inverter type generators, and the use of spectral shaping filters, the automatic brightness/exposure control (ABC) circuit logic employed in the new generation of angiographic imaging equipment has been significantly reprogrammed. These new angiographic imaging systems are designed to take advantage of the power train capabilities to yield higher contrast images while maintaining, or lower, the patient exposure. Since the emphasis of the imaging system design has been significantly altered, the system performance parameters one is interested and the phantoms employed for the quality assurance must also change in order to properly evaluate the imaging capability of the cardiovascular imaging systems. A quality assurance (QA) phantom has been under development in this institution and was submitted to various interested organizations such as American Association of Physicists in Medicine (AAPM), Society for Cardiac Angiography & Interventions (SCA&I), and National Electrical Manufacturers Association (NEMA) for their review and input. At the same time, in an effort to establish a unified standard phantom design for the cardiac catheterization laboratories (CCL), SCA&I and NEMA have formed a joint work group in early 1997 to develop a suitable phantom. The initial QA phantom design has since been accepted to serve as the base phantom by the SCA&I- NEMA Joint Work Group (JWG) from which a comprehensive QA Phantom is being developed.

  3. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    PubMed Central

    Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.

    2014-01-01

    Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002

  4. The emerging clinical role of cardiovascular magnetic resonance imaging

    PubMed Central

    Kumar, Andreas; Patton, David J; Friedrich, Matthias G

    2010-01-01

    Starting as a research method little more than a decade ago, cardiovascular magnetic resonance (CMR) imaging has rapidly evolved to become a powerful diagnostic tool used in routine clinical cardiology. The contrast in CMR images is generated from protons in different chemical environments and, therefore, enables high-resolution imaging and specific tissue characterization in vivo, without the use of potentially harmful ionizing radiation. CMR imaging is used for the assessment of regional and global ventricular function, and to answer questions regarding anatomy. State-of-the-art CMR sequences allow for a wide range of tissue characterization approaches, including the identification and quantification of nonviable, edematous, inflamed, infiltrated or hypoperfused myocardium. These tissue changes are not only used to help identify the etiology of cardiomyopathies, but also allow for a better understanding of tissue pathology in vivo. CMR tissue characterization may also be used to stage a disease process; for example, elevated T2 signal is consistent with edema and helps differentiate acute from chronic myocardial injury, and the extent of myocardial fibrosis as imaged by contrast-enhanced CMR correlates with adverse patient outcome in ischemic and nonischemic cardiomyopathies. The current role of CMR imaging in clinical cardiology is reviewed, including coronary artery disease, congenital heart disease, nonischemic cardiomyopathies and valvular disease. PMID:20548977

  5. SYMPOSIUM ON MULTIMODALITY CARDIOVASCULAR MOLECULAR IMAGING IMAGING TECHNOLOGY - PART 2

    PubMed Central

    de Kemp, Robert A.; Epstein, Frederick H.; Catana, Ciprian; Tsui, Benjamin M.W.; Ritman, Erik L.

    2013-01-01

    Rationale The ability to trace or identify specific molecules within a specific anatomic location provides insight into metabolic pathways, tissue components and tracing of solute transport mechanisms. With the increasing use of small animals for research such imaging must have sufficiently high spatial resolution to allow anatomic localization as well as sufficient specificity and sensitivity to provide an accurate description of the molecular distribution and concentration. Methods Imaging methods based on electromagnetic radiation, such as PET, SPECT, MRI and CT, are increasingly applicable due to recent advances in novel scanner hardware, image reconstruction software and availability of novel molecules which have enhanced sensitivity in these methodologies. Results Micro-PET has been advanced by development of detector arrays that provide higher resolution and positron emitting elements that allow new molecular tracers to be labeled. Micro-MRI has been improved in terms of spatial resolution and sensitivity by increased magnet field strength and development of special purpose coils and associated scan protocols. Of particular interest is the associated ability to image local mechanical function and solute transport processes which can be directly related to the molecular information. This is further strengthened by the synergistic integration of the PET with MRI. Micro-SPECT has been improved by use of coded aperture imaging approaches as well as image reconstruction algorithms which can better deal with the photon limited scan data. The limited spatial resolution can be partially overcome by integrating the SPECT with CT. Micro-CT by itself provides exquisite spatial resolution of anatomy, but recent developments of high spatial resolution photon counting and spectrally-sensitive imaging arrays, combined with x-ray optical devices, have promise for actual molecular identification by virtue of the chemical bond lengths of molecules, especially of bio

  6. Surveillance of hemodialysis vascular access with ultrasound vector flow imaging

    NASA Astrophysics Data System (ADS)

    Brandt, Andreas H.; Olesen, Jacob B.; Hansen, Kristoffer L.; Rix, Marianne; Jensen, Jørgen A.; Nielsen, Michael B.

    2015-03-01

    The aim of this study was prospectively to monitor the volume flow in patients with arteriovenous fistula (AVF) with the angle independent ultrasound technique Vector Flow Imaging (VFI). Volume flow values were compared with Ultrasound dilution technique (UDT). Hemodialysis patients need a well-functioning vascular access with as few complications as possible and preferred vascular access is an AVF. Dysfunction due to stenosis is a common complication, and regular monitoring of volume flow is recommended to preserve AVF patency. UDT is considered the gold standard for volume flow surveillance, but VFI has proven to be more precise, when performing single repeated instantaneous measurements. Three patients with AVF were monitored with UDT and VFI monthly for five months. A commercial ultrasound scanner with a 9 MHz linear array transducer with integrated VFI was used to obtain data. UDT values were obtained with Transonic HD03 Flow-QC Hemodialysis Monitor. Three independent measurements at each scan session were obtained with UDT and VFI each month. Average deviation of volume flow between UDT and VFI was 25.7 % (Cl: 16.7% to 34.7%) (p= 0.73). The standard deviation for all patients, calculated from the mean variance of each individual scan sessions, was 199.8 ml/min for UDT and 47.6 ml/min for VFI (p = 0.002). VFI volume flow values were not significantly different from the corresponding estimates obtained using UDT, and VFI measurements were more precise than UDT. The study indicates that VFI can be used for surveillance of volume flow.

  7. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Martin, K Heath; Jiang, Xiaoning; Dayton, Paul A

    2016-08-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200μm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. PMID:27161022

  8. Ultrasound breast imaging using frequency domain reverse time migration

    NASA Astrophysics Data System (ADS)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  9. Strain imaging with intravascular ultrasound: An in vivo study

    NASA Astrophysics Data System (ADS)

    Perrey, Christian; Ermert, Helmut; Bojara, Waldemar; Holt, Stephan; Lindstaedt, Michael

    2001-05-01

    The evaluation of mechanical properties of coronary plaques is of high interest for the assessment of coronary diseases. Intravascular ultrasound (IVUS) can be used to visualize strain in coronary tissue. In this study, strain imaging is performed using an IVUS system with a 40-MHz rotating single-element transducer. Radio frequency (rf) data are acquired during in vivo examinations and sampled at 100 MHz. Image frames are stored consecutively during 3 s at a frame rate of 30/s. Data are recorded at different levels of tissue compression. The required pressure difference is caused by natural pulsatile blood flow. The strain imaging algorithm estimates radial strain from rf data based on frame-to-frame correlation. Rotating transducers often show nonuniform rotational distortion (NURD), which leads to misaligned echo lines in consecutive frames. This results in lateral motion artifacts and causes decorrelation. This effect is reduced by lateral motion correction based on block-matching algorithms. Results show that strain imaging can successfully be performed in vivo with data acquired predominantly in diastole. Different coronary tissue regions can be identified by local strain variations. If NURD is present, strain image quality is degraded. In some cases NURD is reduced by repositioning the transducer.

  10. Spatio-temporally smoothed coherence factor for ultrasound imaging.

    PubMed

    Xu, Mengling; Yang, Xin; Ding, Mingyue; Yuchi, Ming

    2014-01-01

    Coherence-factor-like beamforming methods, such as the coherence factor (CF), the phase coherence factor (PCF), or the sign coherence factor (SCF), have been applied to suppress side and/or grating lobes and clutter in ultrasound imaging. These adaptive weighting factors can be implemented effectively with low computational complexity to improve image contrast properties. However, because of low SNR, the resulting images may suffer from deficiencies, including reduced overall image brightness, increased speckle variance, black-region artifacts surrounding hyperechoic objects, and underestimated magnitudes of point targets. To overcome these artifacts, a new spatio-temporal smoothing procedure is introduced to the CF method. It results in a smoothed coherence factor which measures the signal coherence among the beamsums of the divided subarrays over the duration of a transmit pulse. In addition, the procedure is extended to the SCF using the sign bits of the received signals. Simulated and real experimental data sets demonstrate that the proposed methods can improve the robustness of the CF and SCF with reduced speckle variance and significant removal of black-region artifacts, while preserving the ability to suppress clutter. Consequently, image contrast can be enhanced, especially for anechoic cysts. PMID:24402905

  11. Dual-element needle transducer for intravascular ultrasound imaging

    PubMed Central

    Yoon, Sangpil; Kim, Min Gon; Williams, Jay A.; Yoon, Changhan; Kang, Bong Jin; Cabrera-Munoz, Nestor; Shung, K. Kirk; Kim, Hyung Ham

    2015-01-01

    Abstract. A dual-element needle transducer for intravascular ultrasound imaging has been developed. A low-frequency element and a high-frequency element were integrated into one device to obtain images which conveyed both low- and high-frequency information from a single scan. The low-frequency element with a center frequency of 48 MHz was fabricated from the single crystal form of lead magnesium niobate-lead titanate solid solution with two matching layers (MLs) and the high frequency element with a center frequency of 152 MHz was fabricated from lithium niobate with one ML. The measured axial and lateral resolutions were 27 and 122  μm, respectively, for the low-frequency element, and 14 and 40  μm, respectively, for the high-frequency element. The performance of the dual-element needle transducer was validated by imaging a tissue-mimicking phantom with lesion-mimicking area, and ex vivo rabbit aortas in water and rabbit whole blood. The results suggest that a low-frequency element effectively provides depth resolved images of the whole vessel and its adjacent tissue, and a high-frequency element visualizes detailed structure near the surface of the lumen wall in the presence of blood within the lumen. The advantages of a dual-element approach for intravascular imaging are also discussed. PMID:26158118

  12. Automatic needle segmentation in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Ding, Mingyue; Cardinal, H. Neale; Guan, Weiguang; Fenster, Aaron

    2002-05-01

    In this paper, we propose to use 2D image projections to automatically segment a needle in a 3D ultrasound image. This approach is motivated by the twin observations that the needle is more conspicuous in a projected image, and its projected area is a minimum when the rays are cast parallel to the needle direction. To avoid the computational burden of an exhaustive 2D search for the needle direction, a faster 1D search procedure is proposed. First, a plane which contains the needle direction is determined by the initial projection direction and the (estimated) direction of the needle in the corresponding projection image. Subsequently, an adaptive 1D search technique is used to adjust the projection direction iteratively until the projected needle area is minimized. In order to remove noise and complex background structure from the projection images, a priori information about the needle position and orientation is used to crop the 3D volume, and the cropped volume is rendered with Gaussian transfer functions. We have evaluated this approach experimentally using agar and turkey breast phantoms. The results show that it can find the 3D needle orientation within 1 degree, in about 1 to 3 seconds on a 500 MHz computer.

  13. Photoacoustic and ultrasound imaging of cancellous bone tissue

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Tan, Joel W. Y.; Mandelis, Andreas

    2015-07-01

    We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ˜1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.

  14. The Ultrasound Brain Helmet: Simultaneous Multi-transducer 3D Transcranial Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Lindsey, Brooks D.

    In this work, I examine the problem of rapid imaging of stroke and present ultrasound-based approaches for addressing it. Specifically, this dissertation discusses aberration and attenuation due to the skull as sources of image degradation and presents a prototype system for simultaneous 3D bilateral imaging via both temporal acoustic windows. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging via both temporal acoustic windows, allowing for registration and fusion of multiple real-time 3D scans of cerebral vasculature. I examine hardware considerations for new matrix arrays—transducer design and interconnects—in this application. Specifically, it is proposed that signal-to-noise ratio (SNR) may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented depicting cerebral arteries with and without the use of microbubble contrast agent that have been registered and fused using a search algorithm which maximizes normalized cross-correlation. The scanning geometry of a brain helmet-type system is also utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e. several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing or

  15. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system.

    PubMed

    Monfaredi, Reza; Wilson, Emmanuel; Azizi Koutenaei, Bamshad; Labrecque, Brendan; Leroy, Kristen; Goldie, James; Louis, Eric; Swerdlow, Daniel; Cleary, Kevin

    2015-02-01

    Ultrasound imaging is frequently used in medicine. The quality of ultrasound images is often dependent on the skill of the sonographer. Several researchers have proposed robotic systems to aid in ultrasound image acquisition. In this paper we first provide a short overview of robot-assisted ultrasound imaging (US). We categorize robot-assisted US imaging systems into three approaches: autonomous US imaging, teleoperated US imaging, and human-robot cooperation. For each approach several systems are introduced and briefly discussed. We then describe a compact six degree of freedom parallel mechanism telerobotic system for ultrasound imaging developed by our research team. The long-term goal of this work is to enable remote ultrasound scanning through teleoperation. This parallel mechanism allows for both translation and rotation of an ultrasound probe mounted on the top plate along with force control. Our experimental results confirmed good mechanical system performance with a positioning error of < 1 mm. Phantom experiments by a radiologist showed promising results with good image quality. PMID:25540071

  16. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields. PMID:26285181

  17. Synergistic image reconstruction for hybrid ultrasound and photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas P.; Wang, Kun; Wang, Lihong V.; Anastasio, Mark A.

    2015-03-01

    Conventional photoacoustic computed tomography (PACT) image reconstruction methods assume that the object and surrounding medium are described by a constant speed-of-sound (SOS) value. In order to accurately recover fine structures, SOS heterogeneities should be quantified and compensated for during PACT reconstruction. To address this problem, several groups have proposed hybrid systems that combine PACT with ultrasound computed tomography (USCT). In such systems, a SOS map is reconstructed first via USCT. Consequently, this SOS map is employed to inform the PACT reconstruction method. Additionally, the SOS map can provide structural information regarding tissue, which is complementary to the functional information from the PACT image. We propose a paradigm shift in the way that images are reconstructed in hybrid PACT-USCT imaging. Inspired by our observation that information about the SOS distribution is encoded in PACT measurements, we propose to jointly reconstruct the absorbed optical energy density and SOS distributions from a combined set of USCT and PACT measurements, thereby reducing the two reconstruction problems into one. This innovative approach has several advantages over conventional approaches in which PACT and USCT images are reconstructed independently: (1) Variations in the SOS will automatically be accounted for, optimizing PACT image quality; (2) The reconstructed PACT and USCT images will possess minimal systematic artifacts because errors in the imaging models will be optimally balanced during the joint reconstruction; (3) Due to the exploitation of information regarding the SOS distribution in the full-view PACT data, our approach will permit high-resolution reconstruction of the SOS distribution from sparse array data.

  18. Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: cardiovascular magnetic resonance and nuclear cardiology.

    PubMed

    Pepe, Alessia; Pizzino, Fausto; Gargiulo, Paola; Perrone-Filardi, Pasquale; Cadeddu, Christian; Mele, Donato; Monte, Ines; Novo, Giuseppina; Zito, Concetta; Di Bella, Gianluca

    2016-05-01

    Chemotherapy-induced cardiotoxicity (CTX) is a determining factor for the quality of life and mortality of patients administered potentially cardiotoxic drugs and in long-term cancer survivors. Therefore, prevention and early detection of CTX are highly desirable, as is the exploration of alternative therapeutic strategies and/or the proposal of potentially cardioprotective treatments. In recent years, cardiovascular imaging has acquired a pivotal role in this setting. Although echocardiography remains the diagnostic method most used to monitor cancer patients, the need for more reliable, reproducible and accurate detection of early chemotherapy-induced CTX has encouraged the introduction of second-line advanced imaging modalities, such as cardiac magnetic resonance (CMR) and nuclear techniques, into the clinical setting. This review of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology aims to afford an overview of the most important findings from the literature about the role of CMR and nuclear techniques in the management of chemotherapy-treated patients, describe conventional and new parameters for detecting CTX from both diagnostic and prognostic perspectives and provide integrated insight into the role of CMR and nuclear techniques compared with other imaging tools and versus the positions of the most important international societies. PMID:27183525

  19. Imaging of spaces of neck and mediastinum by endoscopic ultrasound

    PubMed Central

    Sharma, Malay; Pathak, Amit; Shoukat, Abid; Somani, Piyush

    2016-01-01

    Endoscopic ultrasound (EUS) of the mediastinum was pioneered by gastroenterologists, and it was taken up by pulmonologists when the smaller-diameter endobronchial ultrasound (EBUS) scope was designed after a few years. The pulmonologists’ approach remained largely confined to entry from the trachea, but they soon realized that the esophagus was an alternative route of entry by the EBUS scope. The new generations of interventionists are facing the challenge of learning two techniques (EUS and EBUS) from two routes (esophagus and trachea). The International Association for the Study of Lung Cancer (IASLC) proposed a classification of mediastinal lymph nodes at different stations that lie within the boundaries of specific spaces. These interventionists need clear definitions of landmarks and clear techniques to identify the spaces. There are enough descriptions of spaces of the neck and the mediastinum in the literature, yet the topic mentioned above has never been discussed separately. The anatomical structures, landmarks, and boundaries of spaces will be important to interventionists in the near future during performances of endosonography. This article combines the baseline anatomy of the spaces with the actual imaging during EUS. PMID:27185994

  20. Virtual angioscopic visualization and analysis of coronary aneurysms using intravascular ultrasound images

    NASA Astrophysics Data System (ADS)

    Ayeni, Tina A.; Holmes, David R., III; Robb, Richard A.

    2001-05-01

    Kawasaki Disease is an inflammatory illness of young children that can seriously affect the cardiovascular system. The disease may cause coronary artery aneurysms, a thinning and dilation of the arterial wall when the wall is weakened by disease. Such aneurysms significantly increase the risk of rupture of the arterial wall, an event from which few patients survive. Due to the largely asymptotic nature of coronary aneurysms, diagnosis must be timely and accurate in order for treatment to be effective. Currently, aneurysms are detected primarily using X-ray angiography, MRI, and CT images. Increased insight into the disease and its effects on the arterial wall can be gained by multi-dimensional computerized visualization and quantitative analysis of diagnostic images made possible by the techniques of intravascular imaging and virtual endoscopy. Intravascular ultrasound images (IVUS) of a coronary artery exhibiting aneurysms were acquired from a patient with Kawasaki Disease. The disease is characterized by low luminescent in the IVUS images. Image segmentation of the abnormal, prominent anechoic regions branching from the lumen and originating within other layers of the arterial wall was performed and each region defined as a separate object. An object segmentation map was generated and used in perspective rendering of the original image volume set at successive locations along the length of the arterial segment, producing a 'fly-through' of the interior of the artery. The diseased region (aneurysm) of the wall was well defined by the differences in luminal size and by differences in appearance of the arterial wall shape observed during virtual angioscopic fly-throughs. Erosions of the endovascular surface caused pronounced horizontal and vertical ballooning of the lumen. Minute cracks within the unaffected luminal areas revealed possible early development of an aneurysm on the contralateral wall, originating in the medial section of the artery and spreading

  1. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael

    2015-11-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz-1 cm-1). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep

  2. Real-Time Ellipsometry-Based Transmission Ultrasound Imaging

    SciTech Connect

    Kallman, J S; Poco, J F; Ashby, A E

    2007-02-14

    Ultrasonic imaging is a valuable tool for non-destructive evaluation and medical diagnosis. Reflection mode is exclusively used for medical imaging, and is most frequently used for nondestructive evaluation (NDE) because of the relative speed of acquisition. Reflection mode imaging is qualitative, yielding little information about material properties, and usually only about material interfaces. Transmission imaging can be used in 3D reconstructions to yield quantitative information: sound speed and attenuation. Unfortunately, traditional scanning methods of acquiring transmission data are very slow, requiring on the order of 20 minutes per image. The sensing of acoustic pressure fields as optical images can significantly speed data acquisition. An entire 2D acoustic pressure field can be acquired in under a second. The speed of data acquisition for a 2D view makes it feasible to obtain multiple views of an object. With multiple views, 3D reconstruction becomes possible. A fast, compact (no big magnets or accelerators), inexpensive, 3D imaging technology that uses no ionizing radiation could be a boon to the NDE and medical communities. 2D transmission images could be examined in real time to give the ultrasonic equivalent of a fluoroscope, or accumulated in such a way as to acquire phase and amplitude data over multiple views for 3D reconstruction (for breast cancer imaging, for example). Composite panels produced for the aircraft and automobile industries could be inspected in near real time, and inspection of attenuating materials such as ceramics and high explosives would be possible. There are currently three optical-readout imaging transmission ultrasound technologies available. One is based on frustrated total internal reflection (FTIR) [1,2], one on Fabry-Perot interferometry [3], and another on critical angle modulation [4]. Each of these techniques has its problems. The FTIR based system cannot currently be scaled to large aperture sizes, the Fabry

  3. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance.

    PubMed

    Western, Craig; Hristov, Dimitre; Schlosser, Jeffrey

    2015-06-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included. PMID:26180704

  4. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance

    PubMed Central

    Western, Craig; Hristov, Dimitre

    2015-01-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included. PMID:26180704

  5. Quantitative analysis of ultrasound images for computer-aided diagnosis.

    PubMed

    Wu, Jie Ying; Tuomi, Adam; Beland, Michael D; Konrad, Joseph; Glidden, David; Grand, David; Merck, Derek

    2016-01-01

    We propose an adaptable framework for analyzing ultrasound (US) images quantitatively to provide computer-aided diagnosis using machine learning. Our preliminary clinical targets are hepatic steatosis, adenomyosis, and craniosynostosis. For steatosis and adenomyosis, we collected US studies from 288 and 88 patients, respectively, as well as their biopsy or magnetic resonanceconfirmed diagnosis. Radiologists identified a region of interest (ROI) on each image. We filtered the US images for various texture responses and use the pixel intensity distribution within each ROI as feature parameterizations. Our craniosynostosis dataset consisted of 22 CT-confirmed cases and 22 age-matched controls. One physician manually measured the vectors from the center of the skull to the outer cortex at every 10 deg for each image and we used the principal directions as shape features for parameterization. These parameters and the known diagnosis were used to train classifiers. Testing with cross-validation, we obtained 72.74% accuracy and 0.71 area under receiver operating characteristics curve for steatosis ([Formula: see text]), 77.27% and 0.77 for adenomyosis ([Formula: see text]), and 88.63% and 0.89 for craniosynostosis ([Formula: see text]). Our framework is able to detect a variety of diseases with high accuracy. We hope to include it as a routinely available support system in the clinic. PMID:26835502

  6. Application of ultrasound processed images in space: assessing diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  7. Breast ultrasound image classification based on multiple-instance learning.

    PubMed

    Ding, Jianrui; Cheng, H D; Huang, Jianhua; Liu, Jiafeng; Zhang, Yingtao

    2012-10-01

    Breast ultrasound (BUS) image segmentation is a very difficult task due to poor image quality and speckle noise. In this paper, local features extracted from roughly segmented regions of interest (ROIs) are used to describe breast tumors. The roughly segmented ROI is viewed as a bag. And subregions of the ROI are considered as the instances of the bag. Multiple-instance learning (MIL) method is more suitable for classifying breast tumors using BUS images. However, due to the complexity of BUS images, traditional MIL method is not applicable. In this paper, a novel MIL method is proposed for solving such task. First, a self-organizing map is used to map the instance space to the concept space. Then, we use the distribution of the instances of each bag in the concept space to construct the bag feature vector. Finally, a support vector machine is employed for classifying the tumors. The experimental results show that the proposed method can achieve better performance: the accuracy is 0.9107 and the area under receiver operator characteristic curve is 0.96 (p < 0.005). PMID:22733258

  8. Boundary delineation in transrectal ultrasound image for prostate cancer.

    PubMed

    Zhang, Ying; Sankar, Ravi; Qian, Wei

    2007-11-01

    This paper presents a new advanced automatic edge delineation model for the detection and diagnosis of prostate cancer on transrectal ultrasound (TRUS) images. The proposed model is to improve prostate boundary detection system by modifying a set of preprocessing algorithms including tree-structured nonlinear filter (TSF), directional wavelet transforms (DWT) and tree-structured wavelet transform (TSWT). The model consists of a preprocessing module and a segmentation module. The preprocessing module is implemented for noise suppression, image smoothing and boundary enhancement. The active contours model is used in the segmentation module for prostate boundary detection in two-dimensional (2D) TRUS images. Experimental results show that the addition of the preprocessing module improves the accuracy and sensitivity of the segmentation module, compared to the implementation of the segmentation module alone. It is believed that the proposed automatic boundary detection module for the TRUS images is a promising approach, which provides an efficient and robust detection and diagnosis strategy and acts as "second opinion" for the physician's interpretation of prostate cancer. PMID:17466966

  9. Methodical study on plaque characterization using integrated vascular ultrasound, strain and spectroscopic photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Graf, Iulia M.; Su, Jimmy; Yeager, Doug; Amirian, James; Smalling, Richard; Emelianov, Stanislav

    2011-03-01

    Carotid atherosclerosis has been identified as a potential risk factor for cerebrovascular events, but information about its direct effect on the risk of recurrent stroke is limited due to incomplete diagnosis. The combination of vascular ultrasound, strain rate and spectroscopic photoacoustics could improve the timely diagnosis of plaque status and risk of rupturing. Current ultrasound techniques can noninvasively image the anatomy of carotid arteries. The spatio-temporal variation in displacement of different regions within the arterial wall can be derived from ultrasound radio frequency data; therefore an ultrasound based strain rate imaging modality can be used to reveal changes in arterial mechanical properties. Additionally, spectroscopic photoacoustic imaging can provide information on the optical absorption properties of arterial tissue and it can be used to identify the location of specific tissue components, such as lipid pools. An imaging technique combining ultrasound, strain rate and spectroscopic photoacoustics was tested on an excised atherosclerotic rabbit aorta. The ultrasound image illustrates inhomogeneities in arterial wall thickness, the strain rate indicates the arterial segment with reduced elasticity and the spectroscopic photoacoustic image illustrates the accumulation of lipids. The results demonstrated that ultrasound, strain rate and spectroscopic photoacoustic imaging are complementary. Thus the integration of the three imaging modalities advances the characterization of atherosclerotic plaques.

  10. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  11. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters

    PubMed Central

    Mehrmohammadi, M; Yoon, KY; Qu, M; Johnston, KP; Emelianov, SY

    2011-01-01

    Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR. PMID:21157009

  12. An inverse approach to determining spatially varying arterial compliance using ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Mcgarry, Matthew; Li, Ronny; Apostolakis, Iason; Nauleau, Pierre; Konofagou, Elisa E.

    2016-08-01

    The mechanical properties of arteries are implicated in a wide variety of cardiovascular diseases, many of which are expected to involve a strong spatial variation in properties that can be depicted by diagnostic imaging. A pulse wave inverse problem (PWIP) is presented, which can produce spatially resolved estimates of vessel compliance from ultrasound measurements of the vessel wall displacements. The 1D equations governing pulse wave propagation in a flexible tube are parameterized by the spatially varying properties, discrete cosine transform components of the inlet pressure boundary conditions, viscous loss constant and a resistance outlet boundary condition. Gradient descent optimization is used to fit displacements from the model to the measured data by updating the model parameters. Inversion of simulated data showed that the PWIP can accurately recover the correct compliance distribution and inlet pressure under realistic conditions, even under high simulated measurement noise conditions. Silicone phantoms with known compliance contrast were imaged with a clinical ultrasound system. The PWIP produced spatially and quantitatively accurate maps of the phantom compliance compared to independent static property estimates, and the known locations of stiff inclusions (which were as small as 7 mm). The PWIP is necessary for these phantom experiments as the spatiotemporal resolution, measurement noise and compliance contrast does not allow accurate tracking of the pulse wave velocity using traditional approaches (e.g. 50% upstroke markers). Results from simulations indicate reflections generated from material interfaces may negatively affect wave velocity estimates, whereas these reflections are accounted for in the PWIP and do not cause problems.

  13. An inverse approach to determining spatially varying arterial compliance using ultrasound imaging.

    PubMed

    Mcgarry, Matthew; Li, Ronny; Apostolakis, Iason; Nauleau, Pierre; Konofagou, Elisa E

    2016-08-01

    The mechanical properties of arteries are implicated in a wide variety of cardiovascular diseases, many of which are expected to involve a strong spatial variation in properties that can be depicted by diagnostic imaging. A pulse wave inverse problem (PWIP) is presented, which can produce spatially resolved estimates of vessel compliance from ultrasound measurements of the vessel wall displacements. The 1D equations governing pulse wave propagation in a flexible tube are parameterized by the spatially varying properties, discrete cosine transform components of the inlet pressure boundary conditions, viscous loss constant and a resistance outlet boundary condition. Gradient descent optimization is used to fit displacements from the model to the measured data by updating the model parameters. Inversion of simulated data showed that the PWIP can accurately recover the correct compliance distribution and inlet pressure under realistic conditions, even under high simulated measurement noise conditions. Silicone phantoms with known compliance contrast were imaged with a clinical ultrasound system. The PWIP produced spatially and quantitatively accurate maps of the phantom compliance compared to independent static property estimates, and the known locations of stiff inclusions (which were as small as 7 mm). The PWIP is necessary for these phantom experiments as the spatiotemporal resolution, measurement noise and compliance contrast does not allow accurate tracking of the pulse wave velocity using traditional approaches (e.g. 50% upstroke markers). Results from simulations indicate reflections generated from material interfaces may negatively affect wave velocity estimates, whereas these reflections are accounted for in the PWIP and do not cause problems. PMID:27384105

  14. Incremental volume reconstruction and rendering for 3-D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Ryutarou; Chen, David; Fuchs, Henry

    1992-09-01

    In this paper, we present approaches toward an interactive visualization of a real time input, applied to 3-D visualizations of 2-D ultrasound echography data. The first, 3 degrees-of- freedom (DOF) incremental system visualizes a 3-D volume acquired as a stream of 2-D slices with location and orientation with 3 DOF. As each slice arrives, the system reconstructs a regular 3-D volume and renders it. Rendering is done by an incremental image-order ray- casting algorithm which stores and reuses the results of expensive resampling along the rays for speed. The second is our first experiment toward real-time 6 DOF acquisition and visualization. Two-dimensional slices with 6 DOF are reconstructed off-line, and visualized at an interactive rate using a parallel volume rendering code running on the graphics multicomputer Pixel-Planes 5.

  15. A Comparative Study of Three Speckle Reducing Methods for Intima-Media Thickness Ultrasound Images

    PubMed Central

    Rafati, Mehravar; Arabfard, Masoud; Rafati Rahimzadeh, Mehrdad; Voshtani, Hasan; Moladoust, Hassan

    2015-01-01

    Background: Ultrasonic evaluation of intima-media thickness (IMT) is an early marker of assessing the development of atherosclerosis and determining cardiovascular risk. To attain the best possible diagnosis, it is essential that medical images be clear, sharp and without noise and artifacts. Objectives: Comparison of speckle reducing anisotropic diffusion (SRAD), discrete (DTD) and continuum topological derivative (CTD) on B-mode ultrasound images of common carotid and brachial arteries throughout the cardiac cycle. Patients and Methods: In a cross-sectional design, an examination was performed on forty-two human subjects with a mean age of 44 ± 6 years from April 2013 to June 2013. This study was approved by the ethics committees of Kashan University of Medical Sciences and Beheshti Hospital. An ultrasonic examination of common carotid and brachial arteries of forty-two human subjects was performed. The program was designed in MATLAB software to extract consecutive B-mode images and apply region of interest (ROI) on the IMT of the common carotid and brachial arteries. Then, three different noise reduction filters with the Canny edge detection were used in ROI separately. Finally, the program measured the image quality metrics. Results: According to values of eleven different image quality metrics (mentioned in the main text), there was a significant difference between CTD, DTD and SRAD filters with the Canny edge detection status in the common carotid and brachial arteries throughout the cardiac cycle (all P values < 0.001). For example, peak signal to noise ratios (PSNR) using CTD, DTD and SRAD filters were 95.43 ± 0.64, 88.86 ± 0.82 and 73.02 ± 0.20 in common carotid and 96.39 ± 1.25, 92.58 ± 0.11 and 88.27 ± 0.63 in brachial arteries, respectively (both P values < 0.001). Conclusions: By measuring image quality metrics, this study showed that DTD and CTD filters with the Canny edge detection respectively, are better than SRAD filter with the Canny

  16. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  17. Projection-reflection ultrasound images using PE-CMOS sensor: a preliminary bone fracture study

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Liu, Chu-Chuan; Freedman, Matthew T.; Mun, Seong-Ki; Kula, John; Lasser, Marvin E.; Lasser, Bob; Wang, Yue Joseph

    2008-03-01

    In this study, we investigated the characteristics of the ultrasound reflective image obtained by a CMOS sensor array coated with piezoelectric material (PE-CMOS). The laboratory projection-reflection ultrasound prototype consists of five major components: an unfocused ultrasound transducer, an acoustic beam splitter, an acoustic compound lens, a PE-CMOS ultrasound sensing array (Model I400, Imperium Inc. Silver Spring, MD), and a readout circuit system. The prototype can image strong reflective materials such as bone and metal. We found this projection-reflection ultrasound prototype is able to reveal hairline bone fractures with and without intact skin and tissue. When compared, the image generated from a conventional B-scan ultrasound on the same bone fracture is less observable. When it is observable with the B-scan system, the fracture or crack on the surface only show one single spot of echo due to its scan geometry. The corresponding image produced from the projection-reflection ultrasound system shows a bright blooming strip on the image clearly indicating the fracture on the surface of the solid material. Speckles of the bone structure are also observed in the new ultrasound prototype. A theoretical analysis is provided to link the signals as well as speckles detected in both systems.

  18. Study of Beamforming Techniques for Ultrasound Imaging in Nondestructive Testing.

    NASA Astrophysics Data System (ADS)

    Ghorayeb, Sleiman Riad

    Many of the innovations in modern materials testing technology make use of ultrasound. Therefore, the theory and application of ultrasound have become of extreme importance in nondestructive inspection of complete engineered systems. However, despite the fact that most of these ultrasound inspection techniques are based on well-established phenomena, two key problems pertaining to their application still remain unresolved. These problems can be identified as (1) the material being tested is assumed to be isotropic and homogeneous by nature, and (2) the scanning/data collection process, prior to the reconstruction scheme, is very time consuming. As a result, techniques for fast, accurate testing of anisotropic and nonhomogeneous media have been the focus of attention in modern non-destructive testing research. This dissertation first describes the development and implementation of a time domain synthetic aperture focusing technique (SAFT) to reconstruct flaws imbedded within Plexiglass^{rm TM/ } and Graphite/Epoxy samples. A modification to the present SAFT algorithm is then proposed in order to improve the quality of the images produced by SAFT when applied to composites. In addition, since the finite element method (FEM) can be used to solve hyperbolic partial differential equations, which govern wave propagation, FEM solutions are used to mimic a SAFT measurement. That is, the FEM is used to simulate the action of a transducer array. This is done to study the sensitivity of parameters involved in the SAFT algorithm. Using the same FEM model as a test bed, the data independent beamformer, in its basic form, is studied to determine its performance in reducing data acquisition time. It is seen that this technique is capable of adjusting the weights of the interpolating filter (beamformer) to predict an incoming signal from a desired direction while discriminating against other signals from different directions. SAFT results indicate that the FEM model can be used as

  19. Precise reconstruction of fast moving cardiac valve in high frame rate synthetic transmit aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Suzuki, Mayumi; Ikeda, Teiichiro; Ishihara, Chizue; Takano, Shinta; Masuzawa, Hiroshi

    2016-04-01

    To diagnose heart valve incompetence, i.e., one of the most serious cardiac dysfunctions, it is essential to obtain images of fast-moving valves at high spatial and temporal resolution. Ultrasound synthetic transmit aperture (STA) imaging has the potential to achieve high spatial resolution by synthesizing multiple pre-beamformed images obtained with corresponding multiple transmissions. However, applying STA to fast-moving targets is difficult due to serious target deformation. We propose a high-frame-rate STA (fast STA) imaging method that uses a reduced number of transmission events needed for each image. Fast STA is expected to suppress deformation of moving targets; however, it may result in deteriorated spatial resolution. In this study, we conducted a simulation study to evaluate fast STA. We quantitatively evaluated the reduction in deformation and deterioration of spatial resolution with a model involving a radially moving valve at the maximum speed of 0.5 m/s. The simulated raw channel data of the valve phantom was processed with offline beamforming programs. We compared B-mode images obtained through single received-line in a transmission (SRT) method, STA, and fast STA. The results show that fast STA with four-times-reduced events is superior in reconstructing the original shape of the moving valve to other methods. The accuracy of valve location is 97 and 100% better than those with SRT and STA, respectively. The resolution deterioration was found to be below the annoyance threshold considering the improved performance of the shape reconstruction. The obtained results are promising for providing more precise diagnostic information on cardiovascular diseases.

  20. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Jin, Birui; Lin, Min; You, Minli; Zong, Yujin; Wan, Mingxi; Xu, Feng; Duan, Zhenfeng; Lu, Tianjian

    2015-08-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy.

  1. Multi-color magnetic particle imaging for cardiovascular interventions

    NASA Astrophysics Data System (ADS)

    Haegele, Julian; Vaalma, Sarah; Panagiotopoulos, Nikolaos; Barkhausen, Jörg; Vogt, Florian M.; Borgert, Jörn; Rahmer, Jürgen

    2016-08-01

    Magnetic particle imaging (MPI) uses magnetic fields to visualize the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). Guidance of cardiovascular interventions is seen as one possible application of MPI. To safely guide interventions, the vessel lumen as well as all required interventional devices have to be visualized and be discernible from each other. Until now, different tracer concentrations were used for discerning devices from blood in MPI, because only one type of SPIO could be imaged at a time. Recently, it was shown for 3D MPI that it is possible to separate different signal sources in one volume of interest, i.e. to visualize and discern different SPIOs or different binding states of the same SPIO. The approach was termed multi-color MPI. In this work, the use of multi-color MPI for differentiation of a SPIO coated guide wire (Terumo Radifocus 0.035″) from the lumen of a vessel phantom filled with diluted Resovist is demonstrated. This is achieved by recording dedicated system functions of the coating material containing solid Resovist and of liquid Resovist, which allows separation of their respective signal in the image reconstruction process. Assigning a color to the different signal sources results in a differentiation of guide wire and vessel phantom lumen into colored images.

  2. Multi-color magnetic particle imaging for cardiovascular interventions.

    PubMed

    Haegele, Julian; Vaalma, Sarah; Panagiotopoulos, Nikolaos; Barkhausen, Jörg; Vogt, Florian M; Borgert, Jörn; Rahmer, Jürgen

    2016-08-21

    Magnetic particle imaging (MPI) uses magnetic fields to visualize the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). Guidance of cardiovascular interventions is seen as one possible application of MPI. To safely guide interventions, the vessel lumen as well as all required interventional devices have to be visualized and be discernible from each other. Until now, different tracer concentrations were used for discerning devices from blood in MPI, because only one type of SPIO could be imaged at a time. Recently, it was shown for 3D MPI that it is possible to separate different signal sources in one volume of interest, i.e. to visualize and discern different SPIOs or different binding states of the same SPIO. The approach was termed multi-color MPI. In this work, the use of multi-color MPI for differentiation of a SPIO coated guide wire (Terumo Radifocus 0.035″) from the lumen of a vessel phantom filled with diluted Resovist is demonstrated. This is achieved by recording dedicated system functions of the coating material containing solid Resovist and of liquid Resovist, which allows separation of their respective signal in the image reconstruction process. Assigning a color to the different signal sources results in a differentiation of guide wire and vessel phantom lumen into colored images. PMID:27476675

  3. Diaphragm breathing movement measurement using ultrasound and radiographic imaging: a concurrent validity.

    PubMed

    Noh, Dong K; Lee, Jae J; You, Joshua H

    2014-01-01

    Recent ultrasound imaging evidence asserts that the diaphragm is an important multifunctional muscle to control breathing as well as stabilize the core and posture in humans. However, the validity and accuracy of ultrasound for the measurement of dynamic diaphragm movements during breathing and functional core activities have not been determined. The specific aim of this study was to validate the accuracy of ultrasound imaging measurements of diaphragm movements by concurrently comparing these measurements to the gold standard of radiographic imaging measurements. A total of 14 asymptomatic adults (9 males, 5 females; mean age =28.4 ± 3.0 years) were recruited to participate in the study. Ultrasound and radiographic images were used concurrently to determine diaphragm movement (inspiration, expiration, and excursion) during tidal breathing. Pearson correlation analysis showed strong correlations, ranging from r=0.78 to r=0.83, between ultrasound and radiographic imaging measurements of the diaphragm during inhalation, exhalation, and excursion. These findings suggest that ultrasound imaging measurement is useful to accurately evaluate diaphragm movements during tidal breathing. Clinically, ultrasound imaging measurements can be used to diagnose and treat diaphragm movement impairments in individuals with neuromuscular disorders including spinal cord injuries, stroke, and multiple sclerosis. PMID:24211983

  4. Fast microcalcification detection in ultrasound images using image enhancement and threshold adjacency statistics

    NASA Astrophysics Data System (ADS)

    Cho, Baek Hwan; Chang, Chuho; Lee, Jong-Ha; Ko, Eun Young; Seong, Yeong Kyeong; Woo, Kyoung-Gu

    2013-02-01

    The existence of microcalcifications (MCs) is an important marker of malignancy in breast cancer. In spite of the benefits in mass detection for dense breasts, ultrasonography is believed that it might not reliably detect MCs. For computer aided diagnosis systems, however, accurate detection of MCs has the possibility of improving the performance in both Breast Imaging-Reporting and Data System (BI-RADS) lexicon description for calcifications and malignancy classification. We propose a new efficient and effective method for MC detection using image enhancement and threshold adjacency statistics (TAS). The main idea of TAS is to threshold an image and to count the number of white pixels with a given number of adjacent white pixels. Our contribution is to adopt TAS features and apply image enhancement to facilitate MC detection in ultrasound images. We employed fuzzy logic, tophat filter, and texture filter to enhance images for MCs. Using a total of 591 images, the classification accuracy of the proposed method in MC detection showed 82.75%, which is comparable to that of Haralick texture features (81.38%). When combined, the performance was as high as 85.11%. In addition, our method also showed the ability in mass classification when combined with existing features. In conclusion, the proposed method exploiting image enhancement and TAS features has the potential to deal with MC detection in ultrasound images efficiently and extend to the real-time localization and visualization of MCs.

  5. Ultrasound-mediated Optical Imaging and Focusing in Scattering Media

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuta

    Because of its non-ionizing and molecular sensing nature, light has been an attractive tool in biomedicine. Scanning an optical focus allows not only high-resolution imaging but also manipulation and therapy. However, due to multiple photon scattering events, conventional optical focusing using an ordinary lens is limited to shallow depths of one transport mean free path (lt'), which corresponds to approximately 1 mm in human tissue. To overcome this limitation, ultrasonic modulation (or encoding ) of diffuse light inside scattering media has enabled us to develop both deep-tissue optical imaging and focusing techniques, namely, ultrasound-modulated optical tomography (UOT) and time-reversed ultrasonically encoded (TRUE) optical focusing. While UOT measures the power of the encoded light to obtain an image, TRUE focusing generates a time-reversed (or phase-conjugated) copy of the encoded light, using a phase-conjugate mirror to focus light inside scattering media beyond 1 lt'. However, despite extensive progress in both UOT and TRUE focusing, the low signal-to-noise ratio in encoded-light detection remains a challenge to meeting both the speed and depth requirements for in vivo applications. This dissertation describes technological advancements of both UOT and TRUE focusing, in terms of their signal detection sensitivities, operational depths, and operational speeds. The first part of this dissertation describes sensitivity improvements of encoded-light detection in UOT, achieved by using a large area (˜5 cm x 5 cm) photorefractive polymer. The photorefractive polymer allowed us to improve the detection etendue by more than 10 times that of previous detection schemes. It has enabled us to resolve absorbing objects embedded inside diffused media thicker than 80 lt', using moderate light power and short ultrasound pulses. The second part of this dissertation describes energy enhancement and fluorescent excitation using TRUE focusing in turbid media, using

  6. Medical ultrasound: imaging of soft tissue strain and elasticity

    PubMed Central

    Wells, Peter N. T.; Liang, Hai-Dong

    2011-01-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques—low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)—are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool. PMID:21680780

  7. Automatic segmentation of heart cavities in multidimensional ultrasound images

    NASA Astrophysics Data System (ADS)

    Wolf, Ivo; Glombitza, Gerald; De Simone, Rosalyn; Meinzer, Hans-Peter

    2000-06-01

    We propose a segmentation method different from active contours, which can cope with incomplete edges. The algorithm has been developed to segment heart cavities, but may be extended to more complex object shapes. Due to the almost convex geometry of heart cavities we are using a polar coordinate system with its origin near the cavity's center. The image is scanned from the origin for potential edge points. In order to assess the likelihood of an edge point to belong to the myocardial wall, region based information, such as visibility and local wall thickness, is included. The local information (edge points) progressively is expanded by first grouping the edge points to line segments and then selecting a subgroup of segments to obtain the final closed contour. This is done by means of minimizing a cost function. The plausibility of the result is checked and, if needed, the contour is corrected and/or refined by searching for additional potential edge points. For multidimensional images the algorithm is applied slice-by-slice without the need of further user interaction. The new segmentation method has been applied to clinical ultrasound images, the result being that the myocardial wall correctly was detected in the vast majority of cases.

  8. Advances in ultrasound imaging for congenital malformations during early gestation

    PubMed Central

    Rayburn, William F.; Jolley, Jennifer A.; Simpson, Lynn L.

    2015-01-01

    With refinement in ultrasound technology, detection of fetal structural abnormalities has improved and there have been detailed reports of the natural history and expected outcomes for many anomalies. The ability to either reassure a high-risk woman with normal intrauterine images or offer comprehensive counseling and offer options in cases of strongly suspected lethal or major malformations has shifted prenatal diagnoses to the earliest possible gestational age. When indicated, scans in early gestation are valuable in accurate gestational dating. Stricter sonographic criteria for early nonviability guard against unnecessary intervention. Most birth defects are without known risk factors, and detection of certain malformations is possible in the late first trimester. The best time for a standard complete fetal and placental scan is 18–20 weeks. In addition, certain soft anatomic markers provide clues to chromosomal aneuploidy risk. Maternal obesity and multifetal pregnancies are now more common and further limit early gestation visibility. Other advanced imaging techniques during early gestation in select cases of suspected malformations include fetal echocardiography and magnetic resonance imaging. PMID:25820190

  9. Mechanical properties and imaging characteristics of remanufactured intravascular ultrasound catheters.

    PubMed

    Hoffmann, R; Haager, P; Mintz, G; Klues, H

    2000-02-01

    Intravascular ultrasound (IVUS) as a routine device in interventional cardiology is handicapped by its high price. 19 factory-made, 'remanufactured' IVUS catheters which consist of sterilized, used phased-array IVUS transducers inserted into a new catheter shaft were compared with 23 new IVUS catheters. 3 mechanical and 4 imaging characteristics were assessed on a 5 point scale (1 = unacceptable, 5 = excellent). Mechanical as well as imaging properties of 'remanufactured' IVUS catheter were comparable to new catheters with excellent ratings for each of the evaluated characteristics in 38 to 94% of 'remanufactured' catheters and 50 to 96% of new catheters. The initial failure rate for 'remanufactured' IVUS catheters was 31.6% vs. 4.3% for new catheters (P < 0.05). Overall failure rate was 47.3% for "remanufactured" catheters vs. 8.7% for new catheters (P < 0.05). The failure was due to an electronic connecting problem occurring during mechanical stress to the IVUS catheter. In conclusion, 'remanufactured' IVUS catheters offer mechanical and imaging characteristics which are comparable to new catheters. Improvements in the 'remanufacturing' process to resolve the high rate of electronic connecting problems may make this a promising approach to substantially lower the price of IVUS catheters. PMID:10832621

  10. Enhancing regional lymph nodes from endoscopic ultrasound images

    NASA Astrophysics Data System (ADS)

    Nwogu, Ifeoma; Chaudhary, Vipin

    2008-03-01

    Esophageal ultrasound (EUS) is particularly useful for isolating lymph nodes in the N-staging of esophageal cancer, a disease with very poor overall prognosis. Although EUS is relatively low-cost and real time, and it provides valuable information to the clinician, its usefulness to less trained "users" including opportunities for computer-aided diagnosis is still limited due to the strong presence of spatially correlated interference noise called speckles. To this end, in this paper, we present a technique for enhancing lymph nodes in EUS images by first reducing the spatial correlation of the specular noise and then using a modified structured tensor-based anisotropic filter to complete the speckle reduction process. We report on a measure of the enhancement and also on the extent of automatic processing possible, after the speckle reduction process has taken place. Also, we show the limitations of the enhancement process by extracting relevant lymph node features from the despeckled images. When tested on five representative classes of esophageal lymph nodes, we found the despeckling process to greatly reduce the specularity of the original EUS images, therefore proving very useful for visualization purposes. But it still requires additional work for the complete automation of the lymph node characterizing process.

  11. Psychomotor skills in medical ultrasound imaging: an analysis of the core skill set.

    PubMed

    Nicholls, Delwyn; Sweet, Linda; Hyett, Jon

    2014-08-01

    Sonographers use psychomotor skills to perform medical ultrasound examinations. Psychomotor skills describe voluntary movements of the limb, joints, and muscles in response to sensory stimuli and are regulated by the motor neural cortex in the brain. We define a psychomotor skill in relation to medical ultrasound imaging as "the unique mental and motor activities required to execute a manual task safely and efficiently for each clinical situation." Skills in clinical ultrasound practice may be open or closed; most skills used in medical ultrasound imaging are open. Open skills are both complex and multidimensional. Visuomotor and visuospatial psychomotor skills are central components of medical ultrasound imaging. Both types of skills rely on learners having a visual exemplar or standard of performance with which to reference their skill performance and evaluate anatomic structures. These are imperative instructional design principles when teaching psychomotor skills. PMID:25063399

  12. Co-registration of ultrasound and frequency-domain photoacoustic radar images and image improvement for tumor detection

    NASA Astrophysics Data System (ADS)

    Dovlo, Edem; Lashkari, Bahman; Choi, Sung soo Sean; Mandelis, Andreas

    2015-03-01

    This paper demonstrates the co-registration of ultrasound (US) and frequency domain photoacoustic radar (FD-PAR) images with significant image improvement from applying image normalization, filtering and amplification techniques. Achieving PA imaging functionality on a commercial Ultrasound instrument could accelerate clinical acceptance and use. Experimental results presented demonstrate live animal testing and show enhancements in signal-to-noise ratio (SNR), contrast and spatial resolution. The co-registered image produced from the US and phase PA images, provides more information than both images independently.

  13. Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery.

    PubMed

    Nguyen, An T; Wrenn, Steven P

    2014-01-01

    Ultrasound is well known as a safe, reliable imaging modality. A historical limitation of ultrasound, however, was its inability to resolve structures at length scales less than nominally 20 µm, which meant that classical ultrasound could not be used in applications such as echocardiography and angiogenesis where one requires the ability to image small blood vessels. The advent of ultrasound contrast agents, or microbubbles, removed this limitation and ushered in a new wave of enhanced ultrasound applications. In recent years, the microbubbles have been designed to achieve yet another application, namely ultrasound-triggered drug delivery. Ultrasound contrast agents are thus tantamount to 'theranostic' vehicles, meaning they can do both therapy (drug delivery) and imaging (diagnostics). The use of ultrasound contrast agents as drug delivery vehicles, however, is perhaps less than ideal when compared to traditional drug delivery vehicles (e.g., polymeric microcapsules and liposomes) which have greater drug carrying capacities. The drawback of the traditional drug delivery vehicles is that they are not naturally acoustically active and cannot be used for imaging. The notion of a theranostic vehicle is sufficiently intriguing that many attempts have been made in recent years to achieve a vehicle that combines the echogenicity of microbubbles with the drug carrying capacity of liposomes. The attempts can be classified into three categories, namely entrapping, tethering, and nesting. Of these, nesting is the newest-and perhaps the most promising. PMID:24459007

  14. Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging

    PubMed Central

    Hannah, Alexander S.; Luke, Geoffrey P.; Emelianov, Stanislav Y.

    2016-01-01

    Microbubbles are widely used as contrast agents to improve the diagnostic capability of conventional, highly speckled, low-contrast ultrasound imaging. However, while microbubbles can be used for molecular imaging, these agents are limited to the vascular space due to their large size (> 1 μm). Smaller microbubbles are desired but their ultrasound visualization is limited due to lower echogenicity or higher resonant frequencies. Here we present nanometer scale, phase changing, blinking nanocapsules (BLInCs), which can be repeatedly optically triggered to provide transient contrast and enable background-free ultrasound imaging. In response to irradiation by near-infrared laser pulses, the BLInCs undergo cycles of rapid vaporization followed by recondensation into their native liquid state at body temperature. High frame rate ultrasound imaging measures the dynamic echogenicity changes associated with these controllable, periodic phase transitions. Using a newly developed image processing algorithm, the blinking particles are distinguished from tissue, providing a background-free image of the BLInCs while the underlying B-mode ultrasound image is used as an anatomical reference of the tissue. We demonstrate the function of BLInCs and the associated imaging technique in a tissue-mimicking phantom and in vivo for the identification of the sentinel lymph node. Our studies indicate that BLInCs may become a powerful tool to identify biological targets using a conventional ultrasound imaging system. PMID:27570556

  15. Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging.

    PubMed

    Hannah, Alexander S; Luke, Geoffrey P; Emelianov, Stanislav Y

    2016-01-01

    Microbubbles are widely used as contrast agents to improve the diagnostic capability of conventional, highly speckled, low-contrast ultrasound imaging. However, while microbubbles can be used for molecular imaging, these agents are limited to the vascular space due to their large size (> 1 μm). Smaller microbubbles are desired but their ultrasound visualization is limited due to lower echogenicity or higher resonant frequencies. Here we present nanometer scale, phase changing, blinking nanocapsules (BLInCs), which can be repeatedly optically triggered to provide transient contrast and enable background-free ultrasound imaging. In response to irradiation by near-infrared laser pulses, the BLInCs undergo cycles of rapid vaporization followed by recondensation into their native liquid state at body temperature. High frame rate ultrasound imaging measures the dynamic echogenicity changes associated with these controllable, periodic phase transitions. Using a newly developed image processing algorithm, the blinking particles are distinguished from tissue, providing a background-free image of the BLInCs while the underlying B-mode ultrasound image is used as an anatomical reference of the tissue. We demonstrate the function of BLInCs and the associated imaging technique in a tissue-mimicking phantom and in vivo for the identification of the sentinel lymph node. Our studies indicate that BLInCs may become a powerful tool to identify biological targets using a conventional ultrasound imaging system. PMID:27570556

  16. Four-dimensional ultrasound current source density imaging of a dipole field

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Olafsson, R.; Ingram, P.; Li, Q.; Qin, Y.; Witte, R. S.

    2011-09-01

    Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was scanned near the source and sink, while the AE signal was detected on remote recording electrodes, resulting in time-lapsed volume movies of the alternating current distribution.

  17. A miniature real-time volumetric ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Nikoozadeh, Amin; Oralkan, Omer; Ergun, Arif S.; Karaman, Mustafa; Khuri-Yakub, Butrus T.

    2005-04-01

    Progress made in the development of a miniature real-time volumetric ultrasound imaging system is presented. This system is targeted for use in a 5-mm endoscopic channel and will provide real-time, 30-mm deep, volumetric images. It is being developed as a clinically useful device, to demonstrate a means of integrating the front-end electronics with the transducer array, and to demonstrate the advantages of the capacitive micromachined ultrasonic transducer (CMUT) technology for medical imaging. Presented here is the progress made towards the initial implementation of this system, which is based on a two-dimensional, 16x16 CMUT array. Each CMUT element is 250 um by 250 um and has a 5 MHz center frequency. The elements are connected to bond pads on the back side of the array with 400-um long through-wafer interconnects. The transducer array is flip-chip bonded to a custom-designed integrated circuit that comprises the front-end electronics. The result is that each transducer element is connected to a dedicated pulser and low-noise preamplifier. The pulser generates 25-V, 100-ns wide, unipolar pulses. The preamplifier has an approximate transimpedance gain of 500 kOhm and 3-dB bandwidth of 10 MHz. In the first implementation of the system, one element at a time can be selected for transmit and receive and thus synthetic aperture images can be generated. In future implementations, 16 channels will be active at a given time. These channels will connect to an FPGA-based data acquisition system for real-time image reconstruction.

  18. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis

    PubMed Central

    Tsui, Po-Hsiang; Ho, Ming-Chih; Tai, Dar-In; Lin, Ying-Hsiu; Wang, Chiao-Yin; Ma, Hsiang-Yang

    2016-01-01

    Acoustic structure quantification (ASQ) is a recently developed technique widely used for detecting liver fibrosis. Ultrasound Nakagami parametric imaging based on the Nakagami distribution has been widely used to model echo amplitude distribution for tissue characterization. We explored the feasibility of using ultrasound Nakagami imaging as a model-based ASQ technique for assessing liver fibrosis. Standard ultrasound examinations were performed on 19 healthy volunteers and 91 patients with chronic hepatitis B and C (n = 110). Liver biopsy and ultrasound Nakagami imaging analysis were conducted to compare the METAVIR score and Nakagami parameter. The diagnostic value of ultrasound Nakagami imaging was evaluated using receiver operating characteristic (ROC) curves. The Nakagami parameter obtained through ultrasound Nakagami imaging decreased with an increase in the METAVIR score (p < 0.0001), representing an increase in the extent of pre-Rayleigh statistics for echo amplitude distribution. The area under the ROC curve (AUROC) was 0.88 for the diagnosis of any degree of fibrosis (≥F1), whereas it was 0.84, 0.69, and 0.67 for ≥F2, ≥F3, and ≥F4, respectively. Ultrasound Nakagami imaging is a model-based ASQ technique that can be beneficial for the clinical diagnosis of early liver fibrosis. PMID:27605260

  19. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis.

    PubMed

    Tsui, Po-Hsiang; Ho, Ming-Chih; Tai, Dar-In; Lin, Ying-Hsiu; Wang, Chiao-Yin; Ma, Hsiang-Yang

    2016-01-01

    Acoustic structure quantification (ASQ) is a recently developed technique widely used for detecting liver fibrosis. Ultrasound Nakagami parametric imaging based on the Nakagami distribution has been widely used to model echo amplitude distribution for tissue characterization. We explored the feasibility of using ultrasound Nakagami imaging as a model-based ASQ technique for assessing liver fibrosis. Standard ultrasound examinations were performed on 19 healthy volunteers and 91 patients with chronic hepatitis B and C (n = 110). Liver biopsy and ultrasound Nakagami imaging analysis were conducted to compare the METAVIR score and Nakagami parameter. The diagnostic value of ultrasound Nakagami imaging was evaluated using receiver operating characteristic (ROC) curves. The Nakagami parameter obtained through ultrasound Nakagami imaging decreased with an increase in the METAVIR score (p < 0.0001), representing an increase in the extent of pre-Rayleigh statistics for echo amplitude distribution. The area under the ROC curve (AUROC) was 0.88 for the diagnosis of any degree of fibrosis (≥F1), whereas it was 0.84, 0.69, and 0.67 for ≥F2, ≥F3, and ≥F4, respectively. Ultrasound Nakagami imaging is a model-based ASQ technique that can be beneficial for the clinical diagnosis of early liver fibrosis. PMID:27605260

  20. A preliminary evaluation of self-made nanobubble in contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Wu, Kaizhi; Li, Jing; Liu, Haijuan; Zhou, Qibing; Ding, Mingyue

    2014-03-01

    Nanoscale bubbles (nanobubbles) have been reported to improve contrast in tumor-targeted ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, a self-made nanobubble ultrasound contrast agent was preliminarily characterized and evaluated in-vitro and in-vivo. Fundamental properties such as morphology appearance, size distribution, zeta potential, bubble concentration (bubble numbers per milliliter contrast agent suspension) and the stability of nanobubbles were assessed by light microscope and particle sizing analysis. Then the concentration intensity curve and time intensity curves (TICs) were acquired by ultrasound imaging experiment in-vitro. Finally, the contrast-enhanced ultrasonography was performed on rat to investigate the procedure of liver perfusion. The results showed that the nanobubbles had good shape and uniform distribution with the average diameter of 507.9 nm, polydispersity index (PDI) of 0.527, and zeta potential of -19.17 mV. Significant contrast enhancement was observed in in-vitro ultrasound imaging, demonstrating that the self-made nanobubbles can enhance the contrast effect of ultrasound imaging efficiently in-vitro. Slightly contrast enhancement was observed in in-vivo ultrasound imaging, indicating that the nanobubbles are not stable enough in-vivo. Future work will be focused on improving the ultrasonic imaging performance, stability, and antibody binding of the nanoscale ultrasound contrast agent.

  1. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.

    PubMed

    Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun

    2015-01-01

    Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application. PMID:26405924

  2. Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets.

    PubMed

    Luke, Geoffrey P; Hannah, Alexander S; Emelianov, Stanislav Y

    2016-04-13

    We have developed a method for super-resolution ultrasound imaging, which relies on a new class of blinking nanometer-size contrast agents: laser-activated nanodroplets (LANDs). The LANDs can be repeatedly optically triggered to undergo vaporization; the resulting spatially stationary, temporally transient microbubbles provide high ultrasound contrast for several to hundreds of milliseconds before recondensing to their native liquid nanodroplet state. By capturing high frame rate ultrasound images of blinking LANDs, we demonstrate the ability to detect individual recondensation events. Then we apply a newly developed super-resolution image processing algorithm to localize the LAND positions in vivo almost an order of magnitude better than conventional ultrasound imaging. These results pave the way for high resolution molecular imaging deep in tissue. PMID:27035761

  3. Ultrasound image despeckling based on MMSE estimation in nonsubsampled contourlet domain

    NASA Astrophysics Data System (ADS)

    Yan, Sheng; Yuan, Jianping; Hou, Chaohuan

    2012-04-01

    To suppress speckle noise and preserve edges information in ultrasound images, the nonsubsampled contourlet transform (NSCT) is applied to decompose the ultrasound image into NSCT subbands. The multiplicative speckle noises in NSCT high frequency subbands can be expressed in additive forms. A thresholding method is applied to extract and preserve strong edge coefficients in each NSCT subband. Then a Bayesian minimum mean square error (MMSE) criterion based equation is achieved to despeckle other NSCT coefficients. Last the despeckled image is reconstructed by the inverse NSCT transformation. The experimental results of synthetic speckle and clinical ultrasound images show that the proposed method outperforms several ultrasound image despeckling methods in terms of speckle reduction and edge preservation indices.

  4. Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging.

    PubMed

    Hannah, Alexander; Luke, Geoffrey; Wilson, Katheryne; Homan, Kimberly; Emelianov, Stanislav

    2014-01-28

    Recently, perfluorocarbon (PFC) nanodroplets were introduced as contrast agents for imaging and image-guided therapy. For example, in sonography, high-intensity ultrasound pulses were used to phase-transition liquid perfluorocarbon to produce gas microbubbles. More recently, perfluorocarbon nanodroplets with encapsulated gold nanorods were used as dual ultrasound/photoacoustic contrast agents. To expedite clinical translation, we synthesized and characterized ICG-loaded perfluorocarbon nanodroplets, i.e., constructs comprising biocompatible, nontoxic and biologically safe materials. We then demonstrated enhanced photoacoustic contrast through optically triggered phase transition of PFC nanodroplets and ultrasound contrast from the resulting PFC bubbles. We assessed the quality enhancement of photoacoustic and ultrasound images through analysis of contrast and contrast-to-noise ratio. We further investigated the changes in image contrast due to increased ambient temperature. Our studies suggest that ICG-loaded perfluorocarbon nanodroplets may become a valuable tool for various imaging modalities, and have promising therapeutic applications. PMID:24303934

  5. Pediatric computed tomographic angiography: imaging the cardiovascular system gently.

    PubMed

    Hellinger, Jeffrey C; Pena, Andres; Poon, Michael; Chan, Frandics P; Epelman, Monica

    2010-03-01

    Whether congenital or acquired, timely recognition and management of disease is imperative, as hemodynamic alterations in blood flow, tissue perfusion, and cellular oxygenation can have profound effects on organ function, growth and development, and quality of life for the pediatric patient. Ensuring safe computed tomographic angiography (CTA) practice and "gentle" pediatric imaging requires the cardiovascular imager to have sound understanding of CTA advantages, limitations, and appropriate indications as well as strong working knowledge of acquisition principles and image post processing. From this vantage point, CTA can be used as a useful adjunct along with the other modalities. This article presents a summary of dose reduction CTA methodologies along with techniques the authors have employed in clinical practice to achieve low-dose and ultralow-dose exposure in pediatric CTA. CTA technical principles are discussed with an emphasis on the low-dose methodologies and safe contrast medium delivery strategies. Recommended parameters for currently available multidetector-row computed tomography scanners are summarized alongside recommended radiation and contrast medium parameters. In the second part of the article an overview of pediatric CTA clinical applications is presented, illustrating low-dose and ultra-low dose techniques, with an emphasis on the specific protocols. PMID:20609882

  6. Ultrasound elasticity imaging of human posterior tibial tendon

    NASA Astrophysics Data System (ADS)

    Gao, Liang

    Posterior tibial tendon dysfunction (PTTD) is a common degenerative condition leading to a severe impairment of gait. There is currently no effective method to determine whether a patient with advanced PTTD would benefit from several months of bracing and physical therapy or ultimately require surgery. Tendon degeneration is closely associated with irreversible degradation of its collagen structure, leading to changes to its mechanical properties. If these properties could be monitored in vivo, it could be used to quantify the severity of tendonosis and help determine the appropriate treatment. Ultrasound elasticity imaging (UEI) is a real-time, noninvasive technique to objectively measure mechanical properties in soft tissue. It consists of acquiring a sequence of ultrasound frames and applying speckle tracking to estimate displacement and strain at each pixel. The goals of my dissertation were to 1) use acoustic simulations to investigate the performance of UEI during tendon deformation with different geometries; 2) develop and validate UEI as a potentially noninvasive technique for quantifying tendon mechanical properties in human cadaver experiments; 3) design a platform for UEI to measure mechanical properties of the PTT in vivo and determine whether there are detectable and quantifiable differences between healthy and diseased tendons. First, ultrasound simulations of tendon deformation were performed using an acoustic modeling program. The effects of different tendon geometries (cylinder and curved cylinder) on the performance of UEI were investigated. Modeling results indicated that UEI accurately estimated the strain in the cylinder geometry, but underestimated in the curved cylinder. The simulation also predicted that the out-of-the-plane motion of the PTT would cause a non-uniform strain pattern within incompressible homogeneous isotropic material. However, to average within a small region of interest determined by principal component analysis (PCA

  7. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    PubMed Central

    Paefgen, Vera; Doleschel, Dennis; Kiessling, Fabian

    2015-01-01

    Ultrasound (US) is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents (CAs). There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular CAs enable functional analyses, e.g., to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by US pulses to locally release the entrapped agent. Recent studies show that US CAs are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of US CAs and introduces the current clinical applications of contrast-enhanced US. Additionally, an overview of the recent developments in US probe design for functional and molecular diagnosis as well as for drug delivery is given. PMID:26441654

  8. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery.

    PubMed

    Paefgen, Vera; Doleschel, Dennis; Kiessling, Fabian

    2015-01-01

    Ultrasound (US) is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents (CAs). There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular CAs enable functional analyses, e.g., to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles' shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by US pulses to locally release the entrapped agent. Recent studies show that US CAs are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of US CAs and introduces the current clinical applications of contrast-enhanced US. Additionally, an overview of the recent developments in US probe design for functional and molecular diagnosis as well as for drug delivery is given. PMID:26441654

  9. Use of ultrasound, color Doppler imaging and radiography to monitor periapical healing after endodontic surgery.

    PubMed

    Tikku, Aseem P; Kumar, Sunil; Loomba, Kapil; Chandra, Anil; Verma, Promila; Aggarwal, Renu

    2010-09-01

    This study evaluated the effectiveness of ultrasound, color Doppler imaging and conventional radiography in monitoring the post-surgical healing of periapical lesions of endodontic origin. Fifteen patients who underwent periapical surgery for endodontic pathology were randomly selected. In all patients, periapical lesions were evaluated preoperatively using ultrasound, color Doppler imaging and conventional radiography, to analyze characteristics such as size, shape and dimensions. On radiographic evaluation, dimensions were measured in the superoinferior and mesiodistal direction using image-analysis software. Ultrasound evaluation was used to measure the changes in shape and dimensions on the anteroposterior, superoinferior, and mesiodistal planes. Color Doppler imaging was used to detect the blood-flow velocity. Postoperative healing was monitored in all patients at 1 week and 6 months by using ultrasound and color Doppler imaging, together with conventional radiography. The findings were then analyzed to evaluate the effectiveness of the 3 imaging techniques. At 6 months, ultrasound and color Doppler imaging were significantly better than conventional radiography in detecting changes in the healing of hard tissue at the surgical site (P < 0.004). This study demonstrates that ultrasound and color Doppler imaging have the potential to supplement conventional radiography in monitoring the post-surgical healing of periapical lesions of endodontic origin. PMID:20881334

  10. EACVI appropriateness criteria for the use of cardiovascular imaging in heart failure derived from European National Imaging Societies voting.

    PubMed

    Garbi, Madalina; Edvardsen, Thor; Bax, Jeroen; Petersen, Steffen E; McDonagh, Theresa; Filippatos, Gerasimos; Lancellotti, Patrizio

    2016-07-01

    This paper presents the first European appropriateness criteria for the use of cardiovascular imaging in heart failure, derived from voting of the European National Imaging Societies representatives. The paper describes the development process and discusses the results. PMID:27129538

  11. Comparison of portable and conventional ultrasound imaging in spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Yan, Christina; Tabanfar, Reza; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks, but bones have reduced visibility in ultrasound imaging and high quality ultrasound machines are often expensive and not portable. In this work, we investigate the image quality and measurement accuracy of a low cost and portable ultrasound machine in comparison to a standard ultrasound machine in scoliosis monitoring. METHODS: Two different kinds of ultrasound machines were tested on three human subjects, using the same position tracker and software. Spinal curves were measured in the same reference coordinate system using both ultrasound machines. Lines were defined by connecting two symmetric landmarks identified on the left and right transverse process of the same vertebrae, and spinal curvature was defined as the transverse process angle between two such lines, projected on the coronal plane. RESULTS: Three healthy volunteers were scanned by both ultrasound configurations. Three experienced observers localized transverse processes as skeletal landmarks and obtained transverse process angles in images obtained from both ultrasounds. The mean difference per transverse process angle measured was 3.00 +/-2.1°. 94% of transverse processes visualized in the Sonix Touch were also visible in the Telemed. Inter-observer error in the Telemed was 4.5° and 4.3° in the Sonix Touch. CONCLUSION: Price, convenience and accessibility suggest the Telemed to be a viable alternative in scoliosis monitoring, however further improvements in measurement protocol and image noise reduction must be completed before implementing the Telemed in the clinical setting.

  12. WE-D-18C-01: Art of Imaging: Diagnostic Ultrasound Image Artifacts

    SciTech Connect

    Zagzebski, J; Lu, Z

    2014-06-15

    Assumptions followed during construction of B-mode and color flow images are that the pulse-echo transit time can be converted to reflector depth through uniform tissue models, echoes originate only from locations along the transmit-receive axes of pulse propagation, and first order correction schemes adequately account for acoustic wave attenuation and absorption. The latter allows the display brightness to encode tissue echogenicity. This course will challenge participants to identify imaging artifacts whose origins stem from the more complex and realistic propagating and scattering conditions common in clinical ultrasound. Speckle, a very common artifact but a clinically employed feature, originates from simultaneous echoes from diffuse scatterers and is a result of coherent detection of signals. One of the most bothersome artifacts are those due to reverberations especially that originating from superficial tissue interfaces. Methods to overcome these will be discussed. This presentation also will describe and illustrate speed of sound, refraction, enhancement, shadowing, mirroring, beam width, beam-forming, and slice thickness artifacts. All are useful examples of limitations introduced by acoustic waves propagating through complex tissue paths. New formats for physician board certification exams are demanding the inclusion of image-based examples of ultrasound physics. Instructors' knowledge of, and access to examples of ultrasound artifacts are important in this effort. The presentation will incorporate an audience response system to challenge participants in correct identification of some of these artifacts. Learning Objectives: Review basic mechanisms for producing ultrasound images. Identify the etiology of speckle, reverberation noise, beam width and slice thickness artifacts, and artifacts associated with pulse propagation. Discuss methods that reduce the impact of artifacts OR employ artifacts effectively to facilitate clinical diagnosis.

  13. ROC analysis of lesion descriptors in breast ultrasound images

    NASA Astrophysics Data System (ADS)

    Andre, Michael P.; Galperin, Michael; Phan, Peter; Chiu, Peter

    2003-05-01

    Breast biopsy serves as the key diagnostic tool in the evaluation of breast masses for malignancy, yet the procedure affects patients physically and emotionally and may obscure results of future mammograms. Studies show that high quality ultrasound can distinguish a benign from malignant lesions with accuracy, however, it has proven difficult to teach and clinical results are highly variable. The purpose of this study is to develop a means to optimize an automated Computer Aided Imaging System (CAIS) to assess Level of Suspicion (LOS) of a breast mass. We examine the contribution of 15 object features to lesion classification by calculating the Wilcoxon area under the ROC curve, AW, for all combinations in a set of 146 masses with known findings. For each interval A, the frequency of appearance of each feature and its combinations with others was computed as a means to find an "optimum" feature vector. The original set of 15 was reduced to 6 (area, perimeter, diameter ferret Y, relief, homogeneity, average energy) with an improvement from Aw=0.82-/+0.04 for the original 15 to Aw=0.93-/+0.02 for the subset of 6, p=0.03. For comparison, two sub-specialty mammography radiologists also scored the images for LOS resulting in Az of 0.90 and 0.87. The CAIS performed significantly higher, p=0.02.

  14. A novel fusion imaging system for endoscopic ultrasound

    PubMed Central

    Gruionu, Lucian Gheorghe; Săftoiu, Adrian; Gruionu, Gabriel

    2016-01-01

    Background and Objective: Navigation of a flexible endoscopic ultrasound (EUS) probe inside the gastrointestinal (GI) tract is problematic due to the small window size and complex anatomy. The goal of the present study was to test the feasibility of a novel fusion imaging (FI) system which uses electromagnetic (EM) sensors to co-register the live EUS images with the pre-procedure computed tomography (CT) data with a novel navigation algorithm and catheter. Methods: An experienced gastroenterologist and a novice EUS operator tested the FI system on a GI tract bench top model. Also, the experienced gastroenterologist performed a case series of 20 patients during routine EUS examinations. Results: On the bench top model, the experienced and novice doctors reached the targets in 67 ± 18 s and 150 ± 24 s with a registration error of 6 ± 3 mm and 11 ± 4 mm, respectively. In the case series, the total procedure time was 24.6 ± 6.6 min, while the time to reach the clinical target was 8.7 ± 4.2 min. Conclusions: The FI system is feasible for clinical use, and can reduce the learning curve for EUS procedures and improve navigation and targeting in difficult anatomic locations. PMID:26879165

  15. Correlation of diagnostic ultrasound and radionuclide imaging in scrotal disease

    SciTech Connect

    Chen, D.C.P.; Holder, L.E.; Kaplan, G.N.

    1984-01-01

    A retrospective study was performed to evaluate the usefulness of scrotal ultrasound imaging (SU) and radionuclide scrotal imaging (RSI) in 43 patients (pts), age: 16-75. Twenty-two of them complained of scrotal pain; 18 had a scrotal mass; and 4 had a history of trauma. The final diagnoses were conformed by surgery (n = 21) and long-term follow-up (n = 22) and included 4 late phase and 1 early testicular torsion (TT), 11 acute epididymitis (AE), 4 subacute epididymitis (SE), 5 malignant tumors, 3 testicular atrophy, 2 intratesticular hematomas, 10 hydroceles or other cystic lesions, and miscellaneous. In pts with scrotal pain, 3/4 with late phase TT were correctly diagnosed, while one pt with early TT and 11/15 with AE or SE were not diagnosed by SU. All of them were correctly diagnosed with RSI except one with scrotal cyst. SU was able to separate cystic masses (n = 10) from solid masses (n = 6), but cannot separate malignant from benign lesions. SU was excellent in detecting 19 hydroceles and 2 intratesticular hematomas, while 3 lesions < 1 cm. were not seen in RSI. The authors concluded that SU is useful in pts with scrotal mass to separate solid from cystic lesions. However, SU is unable to differentiate the acute epididymitis from early testicular torsion. In pts with acute scrotal pain, SU is not helpful and RSI should still be the first study performed.

  16. Diagnosis of Knee Osteochondral Lesions With Ultrasound Imaging

    PubMed Central

    Penttilä, Pekko; Liukkonen, Jukka; Joukainen, Antti; Virén, Tuomas; Jurvelin, Jukka S.; Töyräs, Juha; Kröger, Heikki

    2015-01-01

    Evaluation of articular cartilage and subchondral bone is essential in the diagnosis of joint diseases and injuries. Interobserver and intraobserver reproducibilities of arthroscopic grading are only poor to moderate. Thus, for quantitative and objective evaluation of cartilage and subchondral bone, ultrasound arthroscopy (UA) has been introduced to clarify this dilemma. Assessment of the clinical feasibility of high-frequency ultrasonography (US) during 6 knee arthroscopies was conducted, and the surgical technique is presented. US imaging was conducted with a flexible 9-MHz US catheter inserted into the joint through conventional portals. US and arthroscopy videos were synchronously recorded, and US parameters for cartilage and subchondral bone characteristics were measured. Arthroscopy and US imaging were combined to perform cartilage grading. UA produced quantitative data on lesion size, as well as cartilage quality, and showed subchondral bone changes. Visualization of an osteochondritis dissecans lesion not detected by conventional arthroscopy and US-guided retrograde drilling were possible with UA. To conclude, UA proved to be clinically feasible and aided in the diagnosis when assessing knee osteochondral lesions. PMID:26697300

  17. All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering.

    PubMed

    Hsieh, Bao-Yu; Chen, Sung-Liang; Ling, Tao; Guo, L Jay; Li, Pai-Chi

    2014-03-01

    Ultrasound (US) and photoacoustic (PA) multimodality imaging has the advantage of combining good acoustic resolution with high optical contrast. The use of an all-optical scanhead for both imaging modalities can simplify integration of the two systems and miniaturize the imaging scanhead. Herein we propose and demonstrate an all-optical US/PA scanhead using a thin plate for optoacoustic generation in US imaging, a polymer microring resonator for acoustic detection, and a dichroic filter to switch between the two imaging modes by changing the laser wavelength. A synthetic-aperture focusing technique is used to improve the resolution and contrast. Phantom images demonstrate the feasibility of this design, and show that axial and lateral resolutions of 125 μm and 2.52°, respectively, are possible. PMID:25302154

  18. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    PubMed

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands. PMID:26771992

  19. A novel two-axis micromechanical scanning transducer for handheld 3D ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Hsien; Zou, Jun

    2016-03-01

    This paper reports the development of a new two-axis micromechanical scanning transducer for handheld 3D ultrasound imaging. It consists of a miniaturized single-element ultrasound transducer driven by a unique 2-axis liquid-immersible electromagnetic microactuator. With a mechanical scanning frequency of 19.532 Hz and an ultrasound pulse repetition rate of 5 kHz, the scanning transducer was scanned along 60 concentric paths with 256 detection points on each to simulate a physical 2D ultrasound transducer array of 60 × 256 elements. Using the scanning transducer, 3D pulse-echo ultrasound imaging of two silicon discs immersed in water as the imaging target was successfully conducted. The lateral resolution of the 3D ultrasound image was further improved with the synthetic aperture focusing technique (SAFT). The new two-axis micromechanical scanning transducer doesn't require complex and expensive multi-channel data acquisition (DAQ) electronics. Therefore, it could provide a new approach to achieve compact and low-cost 3D ultrasound and photoacoustic imaging systems, especially for handheld operations.

  20. In vivo photoacoustic imaging of nude mice vasculature using a photoacoustic imaging system based on a commercial ultrasound scanner

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav; Shahzad, Khalid; Wang, Yao; Burcher, Michael; Scholle, Frank-Detlef; Hauff, Peter; Mofina, Sabine; Skobe, Mihaela

    2008-02-01

    In-vivo photoacoustic/ultrasound (PA/US) imaging of nude mice was investigated using a photoacoustic imaging system based on a commercial ultrasound scanner HDI-5000. Raw per-channel data was captured and beamformed to generate each individual photoacoustic image with a single laser shot. An ultra-broadband CL15-7 linear array with a center frequency of 8 MHz, combined with a Schott Glass fiber bundle, was used as a compact high resolution imaging probe, with lateral and axial PA resolutions of about 300µm and 200µm, respectively. The imaging system worked in a dual PA-US mode, with the ultrasound outlining the tissue structure and the photoacoustic image showing the blood vessels. PA signals were generated by exposing mice to ultra-short optical pulses from a Nd:YAG-pumped OPO laser operating in a wavelength range of 700-950nm. The corresponding ultrasound images were generated in the regular B-mode with standard delay-and-sum beamforming algorithm. The system resolution was sufficiently high to identify and clearly distinguish the dorsal artery and the two lateral veins in the mouse tail. Both the saphena artery and the ischiatic vein on the cross-section of the mouse leg were clearly outlined in the PA images and correctly overlaid on the ultrasound image of the tissue structure. Similarly, cross-section PA images of the mouse abdomen revealed mesenteric vasculatures located below the abdominal wall. Finally, a successful PA imaging of the mouse thoracic cavity unveiled the ascending and descending aorta. These initial results demonstrate a great potential for a dual photoacoustic/ultrasound imaging modality implemented on a commercial ultrasound imaging scanner.

  1. Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging

    PubMed Central

    Colchester, Richard J.; Zhang, Edward Z.; Mosse, Charles A.; Beard, Paul C.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2015-01-01

    An all-optical ultrasound probe for vascular tissue imaging was developed. Ultrasound was generated by pulsed laser illumination of a functionalized carbon nanotube composite coating on the end face of an optical fiber. Ultrasound was detected with a Fabry-Pérot (FP) cavity on the end face of an adjacent optical fiber. The probe diameter was < 0.84 mm and had an ultrasound bandwidth of ~20 MHz. The probe was translated across the tissue sample to create a virtual linear array of ultrasound transmit/receive elements. At a depth of 3.5 mm, the axial resolution was 64 µm and the lateral resolution was 88 µm, as measured with a carbon fiber target. Vascular tissues from swine were imaged ex vivo and good correspondence to histology was observed. PMID:25909031

  2. Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging.

    PubMed

    Colchester, Richard J; Zhang, Edward Z; Mosse, Charles A; Beard, Paul C; Papakonstantinou, Ioannis; Desjardins, Adrien E

    2015-04-01

    An all-optical ultrasound probe for vascular tissue imaging was developed. Ultrasound was generated by pulsed laser illumination of a functionalized carbon nanotube composite coating on the end face of an optical fiber. Ultrasound was detected with a Fabry-Pérot (FP) cavity on the end face of an adjacent optical fiber. The probe diameter was < 0.84 mm and had an ultrasound bandwidth of ~20 MHz. The probe was translated across the tissue sample to create a virtual linear array of ultrasound transmit/receive elements. At a depth of 3.5 mm, the axial resolution was 64 µm and the lateral resolution was 88 µm, as measured with a carbon fiber target. Vascular tissues from swine were imaged ex vivo and good correspondence to histology was observed. PMID:25909031

  3. A molecular image-directed, 3D ultrasound-guided biopsy system for the prostate

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Schuster, David M.; Master, Viraj; Akbari, Hamed; Fenster, Aaron; Nieh, Peter

    2012-02-01

    Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this biopsy approach uses two-dimensional (2D) ultrasound images to guide biopsy and can miss up to 30% of prostate cancers. We are developing a molecular image-directed, three-dimensional (3D) ultrasound imageguided biopsy system for improved detection of prostate cancer. The system consists of a 3D mechanical localization system and software workstation for image segmentation, registration, and biopsy planning. In order to plan biopsy in a 3D prostate, we developed an automatic segmentation method based wavelet transform. In order to incorporate PET/CT images into ultrasound-guided biopsy, we developed image registration methods to fuse TRUS and PET/CT images. The segmentation method was tested in ten patients with a DICE overlap ratio of 92.4% +/- 1.1 %. The registration method has been tested in phantoms. The biopsy system was tested in prostate phantoms and 3D ultrasound images were acquired from two human patients. We are integrating the system for PET/CT directed, 3D ultrasound-guided, targeted biopsy in human patients.

  4. Compensated Row-Column Ultrasound Imaging System Using Fisher Tippett Multilayered Conditional Random Field Model

    PubMed Central

    Ben Daya, Ibrahim; Chen, Albert I. H.; Shafiee, Mohammad Javad; Wong, Alexander; Yeow, John T. W.

    2015-01-01

    3-D ultrasound imaging offers unique opportunities in the field of non destructive testing that cannot be easily found in A-mode and B-mode images. To acquire a 3-D ultrasound image without a mechanically moving transducer, a 2-D array can be used. The row column technique is preferred over a fully addressed 2-D array as it requires a significantly lower number of interconnections. Recent advances in 3-D row-column ultrasound imaging systems were largely focused on sensor design. However, these imaging systems face three intrinsic challenges that cannot be addressed by improving sensor design alone: speckle noise, sparsity of data in the imaged volume, and the spatially dependent point spread function of the imaging system. In this paper, we propose a compensated row-column ultrasound image reconstruction system using Fisher-Tippett multilayered conditional random field model. Tests carried out on both simulated and real row-column ultrasound images show the effectiveness of our proposed system as opposed to other published systems. Visual assessment of the results show our proposed system’s potential at preserving detail and reducing speckle. Quantitative analysis shows that our proposed system outperforms previously published systems when evaluated with metrics such as Peak Signal to Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging. PMID:26658577

  5. Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review.

    PubMed

    Sudarshan, Vidya K; Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chandran, Vinod; Molinari, Filippo; Fujita, Hamido; Ng, Kwan Hoong

    2016-02-01

    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images. PMID:26761591

  6. In vivo breast sound-speed imaging with ultrasound tomography

    SciTech Connect

    Huang, Lianjie; Li, Cuiping; Duric, Neb; Littrup, Peter

    2009-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1-4. For all four breast types from fatty to dense, the improvements for average sharpness (in the unit of (m{center_dot} s) {sup -1}) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4 fold compared to the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 {+-} 9 mls (mean{+-} SD) and1487 {+-} 21 mls, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548{+-}17 mls) was higher, on average, than that of benign ones (1513{+-}27 mls) (one-sided p

  7. Low complex subspace minimum variance beamformer for medical ultrasound imaging.

    PubMed

    Deylami, Ali Mohades; Asl, Babak Mohammadzadeh

    2016-03-01

    Minimum variance (MV) beamformer enhances the resolution and contrast in the medical ultrasound imaging at the expense of higher computational complexity with respect to the non-adaptive delay-and-sum beamformer. The major complexity arises from the estimation of the L×L array covariance matrix using spatial averaging, which is required to more accurate estimation of the covariance matrix of correlated signals, and inversion of it, which is required for calculating the MV weight vector which are as high as O(L(2)) and O(L(3)), respectively. Reducing the number of array elements decreases the computational complexity but degrades the imaging resolution. In this paper, we propose a subspace MV beamformer which preserves the advantages of the MV beamformer with lower complexity. The subspace MV neglects some rows of the array covariance matrix instead of reducing the array size. If we keep η rows of the array covariance matrix which leads to a thin non-square matrix, the weight vector of the subspace beamformer can be achieved in the same way as the MV obtains its weight vector with lower complexity as high as O(η(2)L). More calculations would be saved because an η×L covariance matrix must be estimated instead of a L×L. We simulated a wire targets phantom and a cyst phantom to evaluate the performance of the proposed beamformer. The results indicate that we can keep about 16 from 43 rows of the array covariance matrix which reduces the order of complexity to 14% while the image resolution is still comparable to that of the standard MV beamformer. We also applied the proposed method to an experimental RF data and showed that the subspace MV beamformer performs like the standard MV with lower computational complexity. PMID:26678788

  8. IN VIVO BREAST SOUND-SPEED IMAGING WITH ULTRASOUND TOMOGRAPHY

    PubMed Central

    Li, Cuiping; Duric, Nebojsa; Littrup, Peter; Huang, Lianjie

    2014-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1 through 4. Our analysis showed that the improvements for average sharpness (in the unit of (m · s)−1) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4-fold compared with the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422±9 m/s (mean±SD) and 1487±21 m/s, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions 1548±17 m/s was higher, on average, than that of benign ones (1513±27 m/s) (one-sided p < 0.001). These results suggest that, clinically, sound-speed tomograms can be used to assess breast density (and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor the clinical response of breast cancer patients to neo-adjuvant chemotherapy. PMID:19647920

  9. Mirror Image Artifact Mimicking Heterotopic Pregnancy on Transvaginal Ultrasound: Case Series

    PubMed Central

    Malhotra, Radhika; Bramante, Robert M.; Radomski, Marek; Nelson, Mathew

    2014-01-01

    Vaginal bleeding in early pregnancy is a common emergency department complaint. Point-of-care ultrasound is a useful tool to evaluate for intrauterine ectopic pregnancy. Emergency physicians performing these studies need to be cognizant of artifacts produced by ultrasound technology, as they can lead to misdiagnosis. We present two cases where mirror-image artifacts initially led to a concern for heterotopic pregnancies but were excluded on further imaging. PMID:25247050

  10. Real-Time Imaging of the Process of Stone Crushing by Ultrasound

    NASA Astrophysics Data System (ADS)

    Ito, Akira; Yoshizawa, Shin; Kaneko, Yukio; Kume, Haruki; Kitamura, Tadaichi; Matsumoto, Yoichiro

    2007-05-01

    A new method of lithotripsy combining high and low frequency ultrasound has been investigated. This method controls generation of cavitation only on the stone surface and utilizes collapse pressure of the bubbles. In order to apply this method for clinical practice, it is important to monitor the process of stone crushing and behavior of cavitation from outside the body. In this study, ultrasound imaging was coupled with a therapeutic ultrasound system for real-time monitoring and targeting of stones. Stone crushing tests have been conducted in vitro and in vivo experiments. In vitro experiment, crushing process of a model stone in a polyacrylamide gel was observed with both ultrasound imaging and a digital video camera. It was observed with ultrasound imaging that the stone was crushed with ultrasound. In vivo experiment, a stone crushing experiment has been conducted in a pig bladder. And a mark of crushing was found on the surface of the stone taken out from the bladder after the irradiation, as well as in vitro experiment. The process of stone crushing in a pig bladder could be monitored with bi-plane ultrasound imaging from outside the body.

  11. Computerized Ultrasound Risk Evaluation (CURE) System: Development of Combined Transmission and Reflection Ultrasound with New Reconstruction Algorithms for Breast Imaging

    SciTech Connect

    Littrup, P J; Duric, N; Azevedo, S; Chambers, D; Candy, J V; Johnson, S; Auner, G; Rather, J; Holsapple, E T

    2001-09-07

    Our Computerized Ultrasound Risk Evaluation (CURE) system has been developed to the engineering prototype stage and generated unique data sets of both transmission and reflection ultrasound (US). This paper will help define the clinical underpinnings of the developmental process and interpret the imaging results from a similar perspective. The CURE project was designed to incorporate numerous diagnostic parameters to improve upon two major areas of early breast cancer detection. CURE may provide improved tissue characterization of breast masses and reliable detection of abnormal microcalcifications found in some breast cancers and ductal carcinoma in situ (DCIS). Current breast US is limited to mass evaluation, whereas mammography also detects and guides biopsy of malignant calcifications. Screening with CURE remains a distant goal, but improved follow-up of mammographic abnormalities may represent a feasible breakthrough. Improved tissue characterization could result in reduction of the estimated one million benign biopsies each year in the United States, costing up to several billion dollars. Most breast calcifications are benign and comprise-80% of stereotactic biopsies guided by mammography. Ultrasound has the capability of finding some groups of calcifications, but further improvements in resolution should also address tissue characterization to define the soft tissue filling of ducts by DCIS. In this manner, CURE may be able to more accurately identify the malignant calcifications associated with progression of DCIS or early cancers. Currently, high-resolution US images of the breast are performed in the reflection mode at higher frequencies, which also limits depth of penetration. Reconstruction of reflection ultrasound images relies upon acoustic impedance differences in the tissue and includes only direct backscatter of the ultrasound signal. Resolution and tissue contrast of current US continues to improve with denser transducer arrays and image

  12. Ultrasound Imaging of the Hepatobiliary System and Pancreas.

    PubMed

    Larson, Martha Moon

    2016-05-01

    Ultrasound is an extremely valuable diagnostic modality for the diagnosis of hepatobiliary and pancreatic disease. Normal appearance and normal variations are important to understand to avoid misinterpretation. Although ultrasound can identify a lesion, cytology and histopathology are usually needed for a final diagnosis. PMID:26851975

  13. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-02-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy.

  14. Clinical breast imaging using sound-speed reconstructions of ultrasound tomography data

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Duric, Neb; Huang, Lianjie

    2008-03-01

    To improve clinical breast imaging, a new ultrasound tomography imaging device (CURE) has been built at the Karmanos Cancer Institute. The ring array of the CURE device records ultrasound transmitted and reflected ultrasound signals simultaneously. We develop a bent-ray tomography algorithm for reconstructing the sound-speed distribution of the breast using time-of-flights of transmitted signals. We study the capability of the algorithm using a breast phantom dataset and over 190 patients' data. Examples are presented to demonstrate the sound-speed reconstructions for different breast types from fatty to dense on the BI-RADS categories 1-4. Our reconstructions show that the mean sound-speed value increases from fatty to dense breasts: 1440.8 m/ s (fatty), 1451.9 m/ s (scattered), 1473.2 m/ s(heterogeneous), and 1505.25 m/ s (dense). This is an important clinical implication of our reconstruction. The mean sound speed can be used for breast density analysis. In addition, the sound-speed reconstruction, in combination with attenuation and reflectivity images, has the potential to improve breast-cancer diagnostic imaging. The breast is not compressed and does not move during the ultrasound scan using the CURE device, stacking 2D slices of ultrasound sound-speed tomography images forms a 3D volumetric view of the whole breast. The 3D image can also be projected into a 2-D "ultrasound mammogram" to visually mimic X-ray mammogram without breast compression and ionizing radiation.

  15. Non-local total variation method for despeckling of ultrasound images

    NASA Astrophysics Data System (ADS)

    Feng, Jianbin; Ding, Mingyue; Zhang, Xuming

    2014-03-01

    Despeckling of ultrasound images, as a very active topic research in medical image processing, plays an important or even indispensable role in subsequent ultrasound image processing. The non-local total variation (NLTV) method has been widely applied to denoising images corrupted by Gaussian noise, but it cannot provide satisfactory restoration results for ultrasound images corrupted by speckle noise. To address this problem, a novel non-local total variation despeckling method is proposed for speckle reduction. In the proposed method, the non-local gradient is computed on the images restored by the optimized Bayesian non-local means (OBNLM) method and it is introduced into the total variation method to suppress speckle in ultrasound images. Comparisons of the restoration performance are made among the proposed method and such state-of-the-art despeckling methods as the squeeze box filter (SBF), the non-local means (NLM) method and the OBNLM method. The quantitative comparisons based on synthetic speckled images show that the proposed method can provide higher Peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) than compared despeckling methods. The subjective visual comparisons based on synthetic and real ultrasound images demonstrate that the proposed method outperforms other compared algorithms in that it can achieve better performance of noise reduction, artifact avoidance, edge and texture preservation.

  16. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    NASA Astrophysics Data System (ADS)

    Saarakkala, Simo; Laasanen, Mikko S.; Jurvelin, Jukka S.; Töyräs, Juha

    2006-10-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair.

  17. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone.

    PubMed

    Saarakkala, Simo; Laasanen, Mikko S; Jurvelin, Jukka S; Töyräs, Juha

    2006-10-21

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p<0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p<0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair. PMID:17019042

  18. A user friendly system for ultrasound carotid intima-media thickness image interpretation

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangjun; Kendall, Christopher B.; Hurst, R. Todd; Liang, Jianming

    2011-03-01

    Assessment of Carotid Intima-Media Thickness (CIMT) by B-mode ultrasound is a technically mature and reproducible technology. Given the high morbidity, mortality and the large societal burden associated with CV diseases, as a safe yet inexpensive tool, CIMT is increasingly utilized for cardiovascular (CV) risk stratification. However, CIMT requires a precise measure of the thickness of the intima and media layers of the carotid artery that can be tedious, time consuming, and demand specialized expertise and experience. To this end, we have developed a highly user-friendly system for semiautomatic CIMT image interpretation. Our contribution is the application of active contour models (snake models) with hard constraints, leading to an accurate, adaptive and user-friendly border detection algorithm. A comparison study with the CIMT measurement software in Siemens Syngo® Arterial Health Package shows that our system gives a small bias in mean (0.049 +/-0.051mm) and maximum (0.010 +/- 0.083 mm) CIMT measures and offers a higher reproducibility (average correlation coefficients were 0.948 and 0.844 in mean and maximum CIMT respectively (P <0.001)). This superior performance is attributed to our novel interface design for hard constraints in the snake models.

  19. Image analysis for beef quality prediction from serial scan ultrasound images

    NASA Astrophysics Data System (ADS)

    Zhang, Hui L.; Wilson, Doyle E.; Rouse, Gene H.; Izquierdo, Mercedes M.

    1995-01-01

    The prediction of intramuscular fat (or marbling) of live beef animals using serially scanned ultrasound images was studied in this paper. Image analysis, both in gray scale intensity domain and in frequency spectrum domain, were used to extract image features of tissue characters to get useful parameters for prediction models. One, 2 and 3 order multi-variable prediction models were developed from randomly selected data sets and tested using the remained data sets. The comparisons of prediction results between using serially scanned images and only final scanned ones showed good improvement of prediction accuracy. The correlation of predicted percent fat and actual percent fat increase from .68 to .80 and from .72 to .76 separately for two groups of data, the R squares increase from .65 to .68 and from .68 to .72, and the root of mean square errors decrease from 1.70 to 1.52 and from 1.22 to 1.12 separately. This study indicates that serially obtained ultrasound images from live beef animals have good potential for improving the prediction accuracy of percent fat.

  20. A comparison of material classification techniques for ultrasound inverse imaging.

    PubMed

    Zhang, Xiaodong; Broschat, Shira L; Flynn, Patrick J

    2002-01-01

    The conjugate gradient method with edge preserving regularization (CGEP) is applied to the ultrasound inverse scattering problem for the early detection of breast tumors. To accelerate image reconstruction, several different pattern classification schemes are introduced into the CGEP algorithm. These classification techniques are compared for a full-sized, two-dimensional breast model. One of these techniques uses two parameters, the sound speed and attenuation, simultaneously to perform classification based on a Bayesian classifier and is called bivariate material classification (BMC). The other two techniques, presented in earlier work, are univariate material classification (UMC) and neural network (NN) classification. BMC is an extension of UMC, the latter using attenuation alone to perform classification, and NN classification uses a neural network. Both noiseless and noisy cases are considered. For the noiseless case, numerical simulations show that the CGEP-BMC method requires 40% fewer iterations than the CGEP method, and the CGEP-NN method requires 55% fewer. The CGEP-BMC and CGEP-NN methods yield more accurate reconstructions than the CGEP method. A quantitative comparison of the CGEP-BMC, CGEP-NN, and GN-UMC methods shows that the CGEP-BMC and CGEP-NN methods are more robust to noise than the GN-UMC method, while all three are similar in computational complexity. PMID:11831821

  1. A comparison of material classification techniques for ultrasound inverse imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Broschat, Shira L.; Flynn, Patrick J.

    2002-01-01

    The conjugate gradient method with edge preserving regularization (CGEP) is applied to the ultrasound inverse scattering problem for the early detection of breast tumors. To accelerate image reconstruction, several different pattern classification schemes are introduced into the CGEP algorithm. These classification techniques are compared for a full-sized, two-dimensional breast model. One of these techniques uses two parameters, the sound speed and attenuation, simultaneously to perform classification based on a Bayesian classifier and is called bivariate material classification (BMC). The other two techniques, presented in earlier work, are univariate material classification (UMC) and neural network (NN) classification. BMC is an extension of UMC, the latter using attenuation alone to perform classification, and NN classification uses a neural network. Both noiseless and noisy cases are considered. For the noiseless case, numerical simulations show that the CGEP-BMC method requires 40% fewer iterations than the CGEP method, and the CGEP-NN method requires 55% fewer. The CGEP-BMC and CGEP-NN methods yield more accurate reconstructions than the CGEP method. A quantitative comparison of the CGEP-BMC, CGEP-NN, and GN-UMC methods shows that the CGEP-BMC and CGEP-NN methods are more robust to noise than the GN-UMC method, while all three are similar in computational complexity.

  2. Elimination of therapeutic ultrasound noise from pre-beamformed RF data in ultrasound imaging for ultrasound-guided high-intensity focused ultrasound treatment

    NASA Astrophysics Data System (ADS)

    Takagi, Ryo; Goto, Kota; Jimbo, Hayato; Matsuura, Keiko; Iwasaki, Ryosuke; Umemura, Shin-ichiro; Yoshizawa, Shin

    2015-07-01

    In conventional ultrasonic monitoring of high-intensity focused ultrasound (HIFU) treatment, a significant interval between consecutive HIFU shots is set for monitoring target tissue to avoid the interference of HIFU noise with RF echo signals. Thus, it is difficult to detect changes in tissue on the order of milliseconds, which are required to dynamically control the HIFU exposure. In this study, a new filtering method to eliminate the HIFU noise in the RF signals before beamforming is proposed. The CW response was estimated from RF signals with no pulse response to the imaging exposure, and the estimated CW response was subtracted from the entire RF signal to selectively eliminate the HIFU noise for each channel of the array probe before dynamic focusing was applied. The HIFU noise was selectively eliminated by this method when it existed. The results imply that the proposed filtering method is useful for true real-time detection of changes in tissue due to thermal coagulation during HIFU exposure.

  3. Photoacoustic imaging system for peripheral small-vessel imaging based on clinical ultrasound technology

    NASA Astrophysics Data System (ADS)

    Irisawa, Kaku; Hirota, Kazuhiro; Hashimoto, Atsushi; Murakoshi, Dai; Ishii, Hiroyasu; Tada, Takuji; Wada, Takatsugu; Hayakawa, Toshiro; Azuma, Ryuichi; Otani, Naoki; Itoh, Kenji; Ishihara, Miya

    2016-03-01

    One of the features of photoacoustic (PA) imaging is small-vessel visualization realized without injection of a contrast agent or exposure to X-rays. For carrying out clinical studies in this field, a prototype PA imaging system has been developed. The PA imaging system utilizes a technological platform of FUJIFILM's clinical ultrasound (US) imaging system mounting many-core MPU for enhancing the image quality of US B-mode and US Doppler mode, which can be superposed onto PA images. By evaluating the PA and US Doppler images of the prototyped system, the applicability of the prototype system to small-vessel visualization has been discussed. The light source for PA imaging was on a compact cart of a US unit and emitted 750 nm wavelength laser pulses. The laser light was transferred to illumination optics in a handheld US transducer, which was connected to the US unit. Obtained PA rf data is reconstructed into PA images in the US unit. 3D images were obtained by scanning a mechanical stage, which the transducer is attached to. Several peripheral parts such as fingers, palms and wrists were observed by PA and US Doppler imaging. As for small arteries, US Doppler images were able to visualize the bow-shaped artery in the tip of the finger. Though PA images cannot distinguish arteries and veins, it could visualize smaller vessels and showed good resolution and vascular connectivity, resulting in a complementary image for the US Doppler images. Therefore, superposed images of the PA, US B-mode and US Doppler can visualize from large to small vessels without a contrast agent, which should be a differentiating feature of US/PA combined technology from other clinical vascular imaging modalities.

  4. FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj

    2005-02-01

    Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.

  5. A New Scheme for Curved Needle Segmentation in Three-Dimensional Ultrasound Images

    PubMed Central

    Aboofazeli, Mohammad; Abolmaesumi, Purang; Mousavi, Parvin; Fichtinger, Gabor

    2010-01-01

    Ultrasound image guided needle insertion is the method of choice for a wide variety of medical diagnostic and therapeutic procedures. When flexible needles are inserted in soft tissue, these needles generally follow a curved path. Segmenting the trajectory of the needles in ultrasound images will facilitate guiding them within the tissue. In this paper, a novel algorithm for curved needle segmentation in three-dimensional (3D) ultrasound images is presented. The algorithm is based on the projection of a filtered 3D image onto a two-dimensional (2D) image. Detection of the needle in the resulting 2D image determines a surface on which the needle is located. The needle is then segmented on the surface. The proposed technique is able to detect needles without any previous assumption about the needle shape, or any a priori knowledge about the needle insertion axis line. PMID:20563242

  6. Quantitative medical imaging: Initial studies of noncontact ultrasound applied to cortical bone phantoms

    NASA Astrophysics Data System (ADS)

    Halcrow, Peter William

    The purpose of this study was to take the initial steps towards applying Noncontact Ultrasound (NCU) to the in vivo monitoring of osteoporosis and to skeletal quantitative ultrasound imaging (QUS) using cortical bone phantoms. This project sought additional applications of NCU beyond its past limited usage in assessing third-degree burns. With this noncontact ultrasound imaging system, noncontact transducers and cortical bone phantoms with known bone mineral density (BMD) were used to determine speed of sound (SOS), integrated acoustical response (IR), and ultrasonic transmittance. Air gaps greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were used to collect data. Significant correlations between BMD and measured SOS, IR, and transmittance were obtained. These NCU results were shown to be in agreement with results from contact ultrasound within 1-2%, which suggests that NCU might find additional applications in a clinical setting in the future in medical imaging.

  7. Contrast imaging ultrasound detects abnormalities in the marmoset ovary.

    PubMed

    Hastings, J M; Morris, K D; Allan, D; Wilson, H; Millar, R P; Fraser, H M; Moran, C M

    2012-12-01

    The development of a functional vascular tree within the primate ovary is critical for reproductive health. To determine the efficacy of contrast agents to image the microvascular environment within the primate ovary, contrast ultrasonography was performed in six reproductive-aged female common marmosets (Callithrix jacchus) during the late luteal phase of the cycle, following injection of Sonovue™. Regions of interest (ROIs), representing the corpus luteum (CL) and noncorpus luteum ovarian tissue (NCLOT), were selected during gray-scale B-mode ultrasound imaging. The magnitude of backscatter intensity of CL and NCLOT ROIs were calculated in XnView, post hoc: subsequent gamma-variate modeling was implemented in Matlab to determine perfusion parameters. Histological analysis of these ovaries revealed a total of 11 CL, nine of which were identified during contrast ultrasonography. The median enhancement ratio was significantly increased in the CL (5.54AU; 95% CI -2.21-68.71) compared to the NCLOT (2.82AU; 95% CI 2.73-15.06; P < 0.05). There was no difference in time parameters between the CL and NCLOT. An additional avascular ROI was identified in the ovary of Animal 5, both histologically and by ultrasonography. This cystic ROI displayed a markedly lower enhancement ratio (0.79AU) and higher time parameters than mean CL and NCLOT, including time to peak and time to wash out. These data demonstrate, for the first time, the ability of commercially available contrast agents, to differentiate structures within the nonhuman primate ovary. Contrast-enhanced ultrasonography has a promising future in reproductive medicine. PMID:22890799

  8. Integration of Medical Imaging Including Ultrasound into a New Clinical Anatomy Curriculum

    ERIC Educational Resources Information Center

    Moscova, Michelle; Bryce, Deborah A.; Sindhusake, Doungkamol; Young, Noel

    2015-01-01

    In 2008 a new clinical anatomy curriculum with integrated medical imaging component was introduced into the University of Sydney Medical Program. Medical imaging used for teaching the new curriculum included normal radiography, MRI, CT scans, and ultrasound imaging. These techniques were incorporated into teaching over the first two years of the…

  9. Ultrasound

    MedlinePlus Videos and Cool Tools

    ... inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's uterus. ... in the body and are transformed into an image on a monitor screen. Solid structures, such as ...

  10. The role of tissue harmonic imaging ultrasound combined with power Doppler ultrasound in the diagnosis of childhood febrile urinary tract infections

    PubMed Central

    İlarslan, Nisa Eda Çullas; Fitöz, Ömer Suat; Öztuna, Derya Gökmen; Küçük, Nuriye Özlem; Yalçınkaya, Fatma Fatoş

    2015-01-01

    Aim: This study assessed the ability of tissue harmonic imaging ultrasound combined with power Doppler ultrasound in the detection of childhood febrile urinary tract infections in comparison with the gold standard reference method: Tc-99m dimercaptosuccinicacid renal cortical scintigraphy. Material and Methods: This prospective study included 60 patients who were hospitalized with a first episode of febrile urinary tract infections. All children were examined with dimercaptosuccinicacid scan and tissue harmonic imaging ultrasound combined with power Doppler ultrasound within the first 3 days of admission. Results: Signs indicative of acute infection were observed in 29 patients according to the results of tissue harmonic imaging ultrasound combined with power Doppler ultrasound while dimercaptosuccinicacid scan revealed abnormal findings in 33 patients. The sensitivity, specificity, positive predictive value and negative predictive value of tissue harmonic imaging combined with power Doppler ultrasound using dimercaptosuccinicacid scintigraphy as the reference method in patients diagnosed with first episode febrile urinary tract infections were calculated as 57.58% (95% confidence interval: 40.81%–72.76%); 62.96% (95% confidence interval: 44.23%–78.47%); 65.52% (95% confidence interval: 52.04%–77%); 54.84% (95% confidence interval: 41.54%–67.52%); respectively. Conclusions: Although current results exhibit inadequate success of power Doppler ultrasound, this practical and radiation-free method may soon be comprise a part of the routine ultrasonographic evaluation of febrile urinary tract infections of childhood if patients are evaluated early and under appropriate sedation. PMID:26265892

  11. Intravascular ultrasound imaging of the coronary arteries: an in vitro evaluation of measurement of area of the lumen and atheroma characterisation

    PubMed Central

    Anderson, Mark H; Simpson, Iain A; Katritsis, Demosthenes; Davies, Michael J; Ward, David E

    1992-01-01

    Objective—To assess the accuracy of measurement of area of the lumen, and sensitivity, and specificity of detection of atheroma in coronary arteries in vitro with a commercially available 20 MHz intravascular ultrasound system. Setting—A teaching hospital department of cardiology with the support of the department of cardiovascular pathology. Procedure—10 segments of coronary artery were removed from cadaver hearts. Intravascular ultrasound imaging was performed at fixed levels and the vessels were then sectioned and photographed before histological preparation. An independent blinded observer measured luminal area and assessed the presence of atheroma on the intravascular ultrasound images of 76 vessel sections (304 quadrants). The sensitivity and specificity of detection of atheroma was assessed in comparison with the histologically prepared sections. Luminal areas from intravascular ultrasound, photographs of cross sections of the vessels and histological sections were compared with the technique of limits of agreement. Results—Overall 36% of the 304 quadrants studied histologically had identifiable atheroma. Intravascular ultrasound sensitivity for atheroma was 0·593 and the specificity was 0·839. The positive predictive value was 0·674, and the relative risk 3·139. Values for area of the vessel lumen were on average 9·4 mm2 (confidence interval (CI) 8·6–10·2 mm2) larger than those measured from photographs and 10·7 (CI 9·8–11·6 mm2) larger than those measured from the histological sections. Conclusions—The intravascular ultrasound system assessed in this study significantly overestimated coronary vessel luminal area and had low sensitivity and specificity for detection of atheroma. Improvements in image resolution are required before this system can provide useful information on coronary artery size and morphology. PMID:1389758

  12. System and method for improving ultrasound image acquisition and replication for repeatable measurements of vascular structures

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H. (Inventor); Hodis, Howard N. (Inventor)

    2006-01-01

    High resolution B-mode ultrasound images of the common carotid artery are obtained with an ultrasound transducer using a standardized methodology. Subjects are supine with the head counter-rotated 45 degrees using a head pillow. The jugular vein and carotid artery are located and positioned in a vertical stacked orientation. The transducer is rotated 90 degrees around the centerline of the transverse image of the stacked structure to obtain a longitudinal image while maintaining the vessels in a stacked position. A computerized methodology assists operators to accurately replicate images obtained over several spaced-apart examinations. The methodology utilizes a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time live ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, measurement of vascular dimensions such as carotid arterial IMT and diameter, the coefficient of variation is substantially reduced to values approximating from about 1.0% to about 1.25%. All images contain anatomical landmarks for reproducing probe angulation, including visualization of the carotid bulb, stacking of the jugular vein above the carotid artery, and initial instrumentation settings, used at a baseline measurement are maintained during all follow-up examinations.

  13. Automatic 3D segmentation of ultrasound images using atlas registration and statistical texture prior

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Schuster, David; Master, Viraj; Nieh, Peter; Fenster, Aaron; Fei, Baowei

    2011-03-01

    We are developing a molecular image-directed, 3D ultrasound-guided, targeted biopsy system for improved detection of prostate cancer. In this paper, we propose an automatic 3D segmentation method for transrectal ultrasound (TRUS) images, which is based on multi-atlas registration and statistical texture prior. The atlas database includes registered TRUS images from previous patients and their segmented prostate surfaces. Three orthogonal Gabor filter banks are used to extract texture features from each image in the database. Patient-specific Gabor features from the atlas database are used to train kernel support vector machines (KSVMs) and then to segment the prostate image from a new patient. The segmentation method was tested in TRUS data from 5 patients. The average surface distance between our method and manual segmentation is 1.61 +/- 0.35 mm, indicating that the atlas-based automatic segmentation method works well and could be used for 3D ultrasound-guided prostate biopsy.

  14. Real-time interlaced ultrasound and photoacoustic system for in vivo ovarian tissue imaging

    NASA Astrophysics Data System (ADS)

    Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing

    2013-03-01

    In this paper, we report an ultrafast co-registered ultrasound and photoacoustic imaging system based on FPGA parallel processing. The system features 128-channel parallel acquisition and digitization, along with FPGA-based reconfigurable processing for real-time co-registered imaging of up to 15 frames per second that is only limited by the laser pulse repetition frequency of 15 Hz. We demonstrated the imaging capability of the system by live imaging of a mouse tumor model in vivo, and imaging of human ovaries ex vivo. A compact transvaginal probe that includes the PAT illumination using a fiber-optic assembly was used for this purpose. The system has the potential ability to assist a clinician to perform transvaginal ultrasound scanning and to localize the ovarian mass, while simultaneously mapping the light absorption of the ultrasound detected mass to reveal its vasculature using the co-registered PAT.

  15. Observation of a cavitation cloud in tissue using correlation between ultrafast ultrasound images.

    PubMed

    Prieur, Fabrice; Zorgani, Ali; Catheline, Stefan; Souchon, Rémi; Mestas, Jean-Louis; Lafond, Maxime; Lafon, Cyril

    2015-07-01

    The local application of ultrasound is known to improve drug intake by tumors. Cavitating bubbles are one of the contributing effects. A setup in which two ultrasound transducers are placed confocally is used to generate cavitation in ex vivo tissue. As the transducers emit a series of short excitation bursts, the evolution of the cavitation activity is monitored using an ultrafast ultrasound imaging system. The frame rate of the system is several thousands of images per second, which provides several tens of images between consecutive excitation bursts. Using the correlation between consecutive images for speckle tracking, a decorrelation of the imaging signal appears due to the creation, fast movement, and dissolution of the bubbles in the cavitation cloud. By analyzing this area of decorrelation, the cavitation cloud can be localized and the spatial extent of the cavitation activity characterized. PMID:26168172

  16. Diagnostic image quality in gynaecological ultrasound: Who should measure it, what should we measure and how?

    PubMed Central

    Knapp, Karen

    2013-01-01

    Assessment of diagnostic image quality in gynaecological ultrasound is an important aspect of imaging department quality assurance. This may be addressed through audit, but who should undertake the audit, what should be measured and how, remains contentious. The aim of this study was to identify whether peer audit is a suitable method of assessing the diagnostic quality of gynaecological ultrasound images. Nineteen gynaecological ultrasound studies were independently assessed by six sonographers utilising a pilot version of an audit tool. Outcome measures were levels of inter-rater agreement using different data collection methods (binary scores, Likert scale, continuous scale), effect of ultrasound study difficulty on study score and whether systematic differences were present between reviewers of different clinical grades and length of experience. Inter-rater agreement ranged from moderate to good depending on the data collection method. A continuous scale gave the highest level of inter-rater agreement with an intra-class correlation coefficient of 0.73. A strong correlation (r = 0.89) between study difficulty and study score was yielded. Length of clinical experience between reviewers had no effect on the audit scores, but individuals of a higher clinical grade gave significantly lower scores than those of a lower grade (p = 0.04). Peer audit is a promising tool in the assessment of ultrasound image quality. Continuous scales seem to be the best method of data collection implying a strong element of heuristically driven decision making by reviewing ultrasound practitioners.

  17. Advances in endoscopic ultrasound imaging of colorectal diseases

    PubMed Central

    Cârțână, Elena Tatiana; Gheonea, Dan Ionuț; Săftoiu, Adrian

    2016-01-01

    The development of endoscopic ultrasound (EUS) has had a significant impact for patients with digestive diseases, enabling enhanced diagnostic and therapeutic procedures, with most of the available evidence focusing on upper gastrointestinal (GI) and pancreatico-biliary diseases. For the lower GI tract the main application of EUS has been in staging rectal cancer, as a complementary technique to other cross-sectional imaging methods. EUS can provide highly accurate in-depth assessments of tumour infiltration, performing best in the diagnosis of early rectal tumours. In the light of recent developments other EUS applications for colorectal diseases have been also envisaged and are currently under investigation, including beyond-rectum tumour staging by means of the newly developed forward-viewing radial array echoendoscope. Due to its high resolution, EUS might be also regarded as an ideal method for the evaluation of subepithelial lesions. Their differential diagnosis is possible by imaging the originating wall layer and the associated echostructure, and cytological and histological confirmation can be obtained through EUS-guided fine needle aspiration or trucut biopsy. However, reports on the use of EUS in colorectal subepithelial lesions are currently limited. EUS allows detailed examination of perirectal and perianal complications in Crohn’s disease and, as a safe and less expensive investigation, can be used to monitor therapeutic response of fistulae, which seems to improve outcomes and reduce the need for additional surgery. Furthermore, EUS image enhancement techniques, such as the use of contrast agents or elastography, have recently been evaluated for colorectal indications as well. Possible applications of contrast enhancement include the assessment of tumour angiogenesis in colorectal cancer, the monitoring of disease activity in inflammatory bowel disease based on quantification of bowel wall vascularization, and differentiating between benign and

  18. Advances in endoscopic ultrasound imaging of colorectal diseases.

    PubMed

    Cârțână, Elena Tatiana; Gheonea, Dan Ionuț; Săftoiu, Adrian

    2016-02-01

    The development of endoscopic ultrasound (EUS) has had a significant impact for patients with digestive diseases, enabling enhanced diagnostic and therapeutic procedures, with most of the available evidence focusing on upper gastrointestinal (GI) and pancreatico-biliary diseases. For the lower GI tract the main application of EUS has been in staging rectal cancer, as a complementary technique to other cross-sectional imaging methods. EUS can provide highly accurate in-depth assessments of tumour infiltration, performing best in the diagnosis of early rectal tumours. In the light of recent developments other EUS applications for colorectal diseases have been also envisaged and are currently under investigation, including beyond-rectum tumour staging by means of the newly developed forward-viewing radial array echoendoscope. Due to its high resolution, EUS might be also regarded as an ideal method for the evaluation of subepithelial lesions. Their differential diagnosis is possible by imaging the originating wall layer and the associated echostructure, and cytological and histological confirmation can be obtained through EUS-guided fine needle aspiration or trucut biopsy. However, reports on the use of EUS in colorectal subepithelial lesions are currently limited. EUS allows detailed examination of perirectal and perianal complications in Crohn's disease and, as a safe and less expensive investigation, can be used to monitor therapeutic response of fistulae, which seems to improve outcomes and reduce the need for additional surgery. Furthermore, EUS image enhancement techniques, such as the use of contrast agents or elastography, have recently been evaluated for colorectal indications as well. Possible applications of contrast enhancement include the assessment of tumour angiogenesis in colorectal cancer, the monitoring of disease activity in inflammatory bowel disease based on quantification of bowel wall vascularization, and differentiating between benign and

  19. Adaptive non-local means method for speckle reduction in ultrasound images

    NASA Astrophysics Data System (ADS)

    Ai, Ling; Ding, Mingyue; Zhang, Xuming

    2016-03-01

    Noise removal is a crucial step to enhance the quality of ultrasound images. However, some existing despeckling methods cannot ensure satisfactory restoration performance. In this paper, an adaptive non-local means (ANLM) filter is proposed for speckle noise reduction in ultrasound images. The distinctive property of the proposed method lies in that the decay parameter will not take the fixed value for the whole image but adapt itself to the variation of the local features in the ultrasound images. In the proposed method, the pre-filtered image will be obtained using the traditional NLM method. Based on the pre-filtered result, the local gradient will be computed and it will be utilized to determine the decay parameter adaptively for each image pixel. The final restored image will be produced by the ANLM method using the obtained decay parameters. Simulations on the synthetic image show that the proposed method can deliver sufficient speckle reduction while preserving image details very well and it outperforms the state-of-the-art despeckling filters in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Experiments on the clinical ultrasound image further demonstrate the practicality and advantage of the proposed method over the compared filtering methods.

  20. Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays

    NASA Astrophysics Data System (ADS)

    Montilla, Leonardo G.; Olafsson, Ragnar; Bauer, Daniel R.; Witte, Russell S.

    2013-01-01

    Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information during a routine breast exam for cancer. PAI enhances contrast between blood vessels and background tissue, which can help characterize suspicious lesions. However, most PAI systems are either not compatible with commercial ultrasound systems or inefficiently deliver light to the region of interest, effectively reducing the sensitivity of the technique. To address and potentially overcome these limitations, we developed an accessory for a standard linear ultrasound array that optimizes light delivery for PAI. The photoacoustic enabling device (PED) exploits an optically transparent acoustic reflector to help direct laser illumination to the region of interest. This study compares the PED with standard fiber bundle illumination in scattering and non-scattering media. In scattering media with the same incident fluence, the PED enhanced the photoacoustic signal by 18 dB at a depth of 5 mm and 6 dB at a depth of 20 mm. To demonstrate in vivo feasibility, we also used the device to image a mouse with a pancreatic tumor. The PED identified blood vessels at the periphery of the tumor, suggesting that PAI provides complementary contrast to standard pulse echo ultrasound. The PED is a simple and inexpensive solution that facilitates the translation of PAI technology to the clinic for routine screening of breast cancer.

  1. Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays.

    PubMed

    Montilla, Leonardo G; Olafsson, Ragnar; Bauer, Daniel R; Witte, Russell S

    2013-01-01

    Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information during a routine breast exam for cancer. PAI enhances contrast between blood vessels and background tissue, which can help characterize suspicious lesions. However, most PAI systems are either not compatible with commercial ultrasound systems or inefficiently deliver light to the region of interest, effectively reducing the sensitivity of the technique. To address and potentially overcome these limitations, we developed an accessory for a standard linear ultrasound array that optimizes light delivery for PAI. The photoacoustic enabling device (PED) exploits an optically transparent acoustic reflector to help direct laser illumination to the region of interest. This study compares the PED with standard fiber bundle illumination in scattering and non-scattering media. In scattering media with the same incident fluence, the PED enhanced the photoacoustic signal by 18 dB at a depth of 5 mm and 6 dB at a depth of 20 mm. To demonstrate in vivo feasibility, we also used the device to image a mouse with a pancreatic tumor. The PED identified blood vessels at the periphery of the tumor, suggesting that PAI provides complementary contrast to standard pulse echo ultrasound. The PED is a simple and inexpensive solution that facilitates the translation of PAI technology to the clinic for routine screening of breast cancer. PMID:23221479

  2. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    SciTech Connect

    Huang, Lianjie; Simonetti, Francesco; Huthwaite, Peter; Rosenberg, Robert; Williamson, Michael

    2010-01-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  3. Late magnetic resonance imaging and clinical findings in neonates with unilateral lesions on cranial ultrasound.

    PubMed

    Bouza, H; Dubowitz, L M; Rutherford, M; Cowan, F; Pennock, J M

    1994-11-01

    Twenty-two neonates (11 term and 11 preterm) with predominantly unilateral hemispheric lesions on ultrasound were re-examined clinically and by magnetic resonance imaging (MRI) at between two and nine years of age. The aim was to correlate early ultrasound and late MRI findings with the development of hemiplegia. At follow-up, five children were normal and 15 had hemiplegia, which was mild in seven and moderate in 10. The presence or absence of hemiplegia, or its severity, could not be predicted from either early ultrasound or later MRI appearances. PMID:7958513

  4. Wearable Ultrasound Array for Point-of-Care Imaging and Patient Monitoring.

    PubMed

    Mierzwa, Andrzej P; Huang, Sean P; Nguyen, Kristen T; Culjat, Martin O; Singh, Rahul S

    2016-01-01

    A versatile, flexible piezoceramic array has been developed for a variety of ultrasound applications. The transducer can be configured as a linear or curvilinear transducer array, or mounted directly onto the body as a patch or wearable device. Results using a prototype 16-element array demonstrated equivalence to commercial linear array probes in accuracy of vessel diameter measurements in vascular phantoms. The ability to view needle insertion for peripherally inserted central catheter (PICC) procedures was also demonstrated. Opportunities for wearable ultrasound devices include point-of-care imaging, combat casualty care, ultrasound therapy, patient monitoring, and personal health. PMID:27046585

  5. Endoscopic ultrasound

    MedlinePlus

    Endoscopic ultrasound is a type of imaging test. It is used to see organs in and near the digestive ... Ultrasound is a way to see the inside of the body using high-frequency sound waves. Endoscopic ...

  6. Pregnancy ultrasound

    MedlinePlus

    ... 3D ultrasound References Richards DS. Obstetrical ultrasound: Imaging, dating, and growth. In: Gabbe SG, Niebyl JR, Simpson ... the first to achieve this important distinction for online health information and services. Learn more about A. ...

  7. Experimental characterization, comparison and image quality assessment of two ultrasound contrast agents: Optison and Definity

    NASA Astrophysics Data System (ADS)

    Hughes, Amy C.; Day, Steven W.; Linte, Cristian A.; Schwarz, Karl Q.

    2016-04-01

    Microbubble-based contrast agents are commonly used in ultrasound imaging to help differentiate the blood pool from the endocardial wall. It is essential to use an agent which produces high image intensity relative to the surrounding tissue, commonly referred to contrast effect. When exposed to ultrasound waves, microbubbles produce an intense backscatter signal in addition to the contrast produced by the fluctuating size of the microbubbles. However, over time, the microbubble concentration depletes, leading to reduced visual enhancement. The retention time associated with contrast effect varies according to the frequency and power level of the ultrasound wave, as well as the contrast agent used. The primary objective of this study was to investigate and identify the most appropriate image acquisition parameters that render optimal contrast effect for two intravenous contrast agents, Optison™ and Definity™. Several controlled in vitro experiments were conducted using an experimental apparatus that featured a perfused tissue-emulating phantom. A continuous flow of contrast agent was imaged using ultrasound at different frequencies and power levels, while a pulse wave Doppler device was used to monitor the concentration of the contrast agent solution. The contrast effect was determined based on the image intensity inside the flow pipe mimicking the blood-pool relative to the intensity of the surrounding phantom material mimicking cardiac tissue. To identify the combination of parameters that yielded optimal visualization for each contrast agent tested, the contrast effect was assessed at different microbubble concentrations and different ultrasound imaging frequencies and transmission power levels.

  8. Frequency-space prediction filtering for acoustic clutter and random noise attenuation in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Shin, Junseob; Huang, Lianjie

    2016-04-01

    Frequency-space prediction filtering (FXPF), also known as FX deconvolution, is a technique originally developed for random noise attenuation in seismic imaging. FXPF attempts to reduce random noise in seismic data by modeling only real signals that appear as linear or quasilinear events in the aperture domain. In medical ultrasound imaging, channel radio frequency (RF) signals from the main lobe appear as horizontal events after receive delays are applied while acoustic clutter signals from off-axis scatterers and electronic noise do not. Therefore, FXPF is suitable for preserving only the main-lobe signals and attenuating the unwanted contributions from clutter and random noise in medical ultrasound imaging. We adapt FXPF to ultrasound imaging, and evaluate its performance using simulated data sets from a point target and an anechoic cyst. Our simulation results show that using only 5 iterations of FXPF achieves contrast-to-noise ratio (CNR) improvements of 67 % in a simulated noise-free anechoic cyst and 228 % in a simulated anechoic cyst contaminated with random noise of 15 dB signal-to-noise ratio (SNR). Our findings suggest that ultrasound imaging with FXPF attenuates contributions from both acoustic clutter and random noise and therefore, FXPF has great potential to improve ultrasound image contrast for better visualization of important anatomical structures and detection of diseased conditions.

  9. Evaluation of a targeted nanobubble ultrasound contrast agent for potential tumor imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Shen, Chunxu; Liu, Haijuan; Wu, Kaizhi; Zhou, Qibing; Ding, Mingyue

    2015-03-01

    Targeted nanobubbles have been reported to improve the contrast effect of ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, the contrast enhancement abilities and the tumor targeting potential of a self-made VEGFR2-targeted nanobubble ultrasound contrast agent was evaluated in-vitro and in-vivo. Size distribution and zeta potential were assessed. Then the contrast-enhanced ultrasound imaging of the VEGFR2 targeted nanobubbles were evaluated with a custom-made experimental apparatus and in normal Wistar rats. Finally, the in-vivo tumor-targeting ability was evaluated on nude mice with subcutaneous tumor. The results showed that the target nanobubbles had uniform distribution with the average diameter of 208.1 nm, polydispersity index (PDI) of 0.411, and zeta potential of -13.21 mV. Significant contrast enhancement was observed in both in-vitro and in-vivo ultrasound imaging, demonstrating that the self-made target nanobubbles can enhance the contrast effect of ultrasound imaging efficiently. Targeted tumor imaging showed less promising result, due to the fact that the targeted nanobubbles arriving and permeating through tumor vessels were not many enough to produce significant enhancement. Future work will focus on exploring new imaging algorithm which is sensitive to targeted nanobubbles, so as to correctly detect the contrast agent, particularly at a low bubble concentration.

  10. Imaging results of multi-modal ultrasound computerized tomography system designed for breast diagnosis.

    PubMed

    Opieliński, Krzysztof J; Pruchnicki, Piotr; Gudra, Tadeusz; Podgórski, Przemysław; Kurcz, Jacek; Kraśnicki, Tomasz; Sąsiadek, Marek; Majewski, Jarosław

    2015-12-01

    Nowadays, in the era of common computerization, transmission and reflection methods are intensively developed in addition to improving classical ultrasound methods (US) for imaging of tissue structure, in particular ultrasound transmission tomography UTT (analogous to computed tomography CT which uses X-rays) and reflection tomography URT (based on the synthetic aperture method used in radar imaging techniques). This paper presents and analyses the results of ultrasound transmission tomography imaging of the internal structure of the female breast biopsy phantom CIRS Model 052A and the results of the ultrasound reflection tomography imaging of a wire sample. Imaging was performed using a multi-modal ultrasound computerized tomography system developed with the participation of a private investor. The results were compared with the results of imaging obtained using dual energy CT, MR mammography and conventional US method. The obtained results indicate that the developed UTT and URT methods, after the acceleration of the scanning process, thus enabling in vivo examination, may be successfully used for detection and detailed characterization of breast lesions in women. PMID:25759234

  11. Ultrasound phase contrast thermal imaging with reflex transmission imaging methods in tissue phantoms

    PubMed Central

    Farny, Caleb H.; Clement, Gregory T.

    2009-01-01

    Thermal imaging measurements using ultrasound phase contrast have been performed in tissue phantoms heated with a focused ultrasound source. Back projection and reflex transmission imaging principles were employed to detect sound speed-induced changes in the phase caused by an increase in the temperature. The temperature was determined from an empirical relationship for the temperature dependence on sound speed. The phase contrast was determined from changes in the sound field measured with a hydrophone scan conducted before and during applied heating. The lengthy scanning routine used to mimic a large two-dimensional array required a steady-state temperature distribution within the phantom. The temperature distribution in the phantom was validated with magnetic resonance (MR) thermal imaging measurements. The peak temperature was found to agree within 1°C with MR and good agreement was found between the temperature profiles. The spatial resolution was 0.3 × 0.3 × 0.3 mm, comparing favorably with the 0.625 × 0.625 × 1.5 mm MR spatial resolution. PMID:19683380

  12. Stable Support Recovery of Stream of Pulses With Application to Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Bendory, Tamir; Bar-Zion, Avinoam; Adam, Dan; Dekel, Shai; Feuer, Arie

    2016-07-01

    This paper considers the problem of estimating the delays of a weighted superposition of pulses, called stream of pulses, in a noisy environment. We show that the delays can be estimated using a tractable convex optimization problem with a localization error proportional to the square root of the noise level. Furthermore, all false detections produced by the algorithm have small amplitudes. Numerical and in-vitro ultrasound experiments corroborate the theoretical results and demonstrate their applicability for the ultrasound imaging signal processing.

  13. Improving Appropriateness and Quality in Cardiovascular Imaging: A Review of the Evidence.

    PubMed

    Bhattacharyya, Sanjeev; Lloyd, Guy

    2015-12-01

    High-quality cardiovascular imaging requires a structured process to ensure appropriate patient selection, accurate and reproducible data acquisition, and timely reporting which answers clinical questions and improves patient outcomes. Several guidelines provide frameworks to assess quality. This article reviews interventions to improve quality in cardiovascular imaging, including methods to reduce inappropriate testing, improve accuracy, reduce interobserver variability, and reduce diagnostic and reporting errors. PMID:26628582

  14. Reliability and Validity Study of Clinical Ultrasound Imaging on Lateral Curvature of Adolescent Idiopathic Scoliosis

    PubMed Central

    Wang, Q.; Li, M.; Lou, Edmond H. M.; Wong, M. S.

    2015-01-01

    Background Non-ionizing radiation imaging assessment has been advocated for the patients with adolescent idiopathic scoliosis (AIS). As one of the radiation-free methods, ultrasound imaging has gained growing attention in scoliosis assessment over the past decade. The center of laminae (COL) method has been proposed to measure the spinal curvature in the coronal plane of ultrasound image. However, the reliability and validity of this ultrasound method have not been validated in the clinical setting. Objectives To evaluate the reliability and validity of clinical ultrasound imaging on lateral curvature measurements of AIS with their corresponding magnetic resonance imaging (MRI) measurements. Methods Thirty curves (ranged 10.2°–68.2°) from sixteen patients with AIS were eligible for this study. The ultrasound scan was performed using a 3-D ultrasound unit within the same morning of MRI examination. Two researchers were involved in data collection of these two examinations. The COL method was used to measure the coronal curvature in ultrasound image, compared with the Cobb method in MRI. The intra- and inter-rater reliability of the COL method was evaluated by intra-class correlation coefficient (ICC). The validity of this method was analyzed by paired Student’s t-test, Bland–Altman statistics and Pearson correlation coefficient. The level of significance was set as 0.05. Results The COL method showed high intra- and inter-rater reliabilities (both with ICC (2, K) >0.9, p<0.05) to measure the coronal curvature. Compared with Cobb method, COL method showed no significant difference (p<0.05) when measuring coronal curvature. Furthermore, Bland-Altman method demonstrated an agreement between these two methods, and Pearson’s correlation coefficient (r) was high (r>0.9, p<0.05). Conclusion The ultrasound imaging could provide a reliable and valid measurement of spinal curvature in the coronal plane using the COL method. Further research is needed to validate the

  15. Neonatal magnetic resonance imaging in double aortic arch diagnosed prenatally by ultrasound.

    PubMed

    Trobo Marina, Duna; Bravo, Coral; Lancharro, Ángel; Gámez Alderete, Francisco; Marín, Carlos; de León-Luis, Juan

    2016-05-01

    Congenital double aortic arch (DAA) is an uncommon vascular anomaly; however, its prenatal detection is associated with congenital heart defects and chromosomal abnormalities, including 22q11 deletion. We present a case of DAA diagnosed prenatally. DAA can be diagnosed by prenatal ultrasound in the transverse three vessel-trachea view, which shows a trident image formed by a complete vascular ring and the ductus arteriosus. Postnatal magnetic resonance images in this view correlate well with prenatal ultrasound images and help in confirmation of diagnosis, evaluation of the risk of airway or esophageal compression, and planning of surgery. PMID:26979672

  16. Learning a structured graphical model with boosted top-down features for ultrasound image segmentation.

    PubMed

    Hao, Zhihui; Wang, Qiang; Wang, Xiaotao; Kim, Jung Bae; Hwang, Youngkyoo; Cho, Baek Hwan; Guo, Ping; Lee, Won Ki

    2013-01-01

    A key problem for many medical image segmentation tasks is the combination of different-level knowledge. We propose a novel scheme of embedding detected regions into a superpixel based graphical model, by which we achieve a full leverage on various image cues for ultrasound lesion segmentation. Region features are mapped into a higher-dimensional space via a boosted model to become well controlled. Parameters for regions, superpixels and a new affinity term are learned simultaneously within the framework of structured learning. Experiments on a breast ultrasound image data set confirm the effectiveness of the proposed approach as well as our two novel modules. PMID:24505670

  17. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.

    PubMed

    Hsiao, Yi-Sing; Deng, Cheri X

    2016-02-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634

  18. High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.

    PubMed

    Hu, Chang-Hong; Snook, Kevin A; Cao, Pei-Jie; Shung, K Kirk

    2006-02-01

    This is the second part of a two-paper series reporting a recent effort in the development of a high-frequency annular array ultrasound imaging system. In this paper an imaging system composed of a six-element, 43 MHz annular array transducer, a six-channel analog front-end, a field programmable gate array (FPGA)-based beamformer, and a digital signal processor (DSP) microprocessor-based scan converter will be described. A computer is used as the interface for image display. The beamformer that applies delays to the echoes for each channel is implemented with the strategy of combining the coarse and fine delays. The coarse delays that are integer multiples of the clock periods are achieved by using a first-in-first-out (FIFO) structure, and the fine delays are obtained with a fractional delay (FD) filter. Using this principle, dynamic receiving focusing is achieved. The image from a wire phantom obtained with the imaging system was compared to that from a prototype ultrasonic backscatter microscope with a 45 MHz single-element transducer. The improved lateral resolution and depth of field from the wire phantom image were observed. Images from an excised rabbit eye sample also were obtained, and fine anatomical structures were discerned. PMID:16529105

  19. Integrated Interventional Devices For Real Time 3D Ultrasound Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Smith, Stephen W.; Lee, Warren; Gentry, Kenneth L.; Pua, Eric C.; Light, Edward D.

    2006-05-01

    Two recent advances have expanded the potential of medical ultrasound: the introduction of real-time 3-D ultrasound imaging with catheter, transesophageal and laparoscopic probes and the development of interventional ultrasound therapeutic systems for focused ultrasound surgery, ablation and ultrasound enhanced drug delivery. This work describes devices combining both technologies. A series of transducer probes have been designed, fabricated and tested including: 1) a 12 French side scanning catheter incorporating a 64 element matrix array for imaging at 5MHz and a piston ablation transducer operating at 10 MHz. 2) a 14 Fr forward-scanning catheter integrating a 112 element 2-D array for imaging at 5 MHz encircled by an ablation annulus operating at 10 MHz. Finite element modeling was then used to simulate catheter annular and linear phased array transducers for ablation. 3) Linear phased array transducers were built to confirm the finite element analysis at 4 and 8 MHz including a mechanically focused 86 element 9 MHz array which transmits an ISPTA of 29.3 W/cm2 and creates a lesion in 2 minutes. 4) 2-D arrays of 504 channels operating at 5 MHz have been developed for transesophageal and laparascopic 3D imaging as well as therapeutic heating. All the devices image the heart anatomy including atria, valves, septa and en face views of the pulmonary veins.

  20. Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery.

    PubMed

    Loizou, Christos P; Pattichis, Constantinos S; Christodoulou, Christodoulos I; Istepanian, Robert S H; Pantziaris, Marios; Nicolaides, Andrew

    2005-10-01

    It is well-known that speckle is a multiplicative noise that degrades the visual evaluation in ultrasound imaging. The recent advancements in ultrasound instrumentation and portable ultrasound devices necessitate the need of more robust despeckling techniques for enhanced ultrasound medical imaging for both routine clinical practice and teleconsultation. The objective of this work was to carry out a comparative evaluation of despeckle filtering based on texture analysis, image quality evaluation metrics, and visual evaluation by medical experts in the assessment of 440 (220 asymptomatic and 220 symptomatic) ultrasound images of the carotid artery bifurcation. In this paper a total of 10 despeckle filters were evaluated based on local statistics, median filtering, pixel homogeneity, geometric filtering, homomorphic filtering, anisotropic diffusion, nonlinear coherence diffusion, and wavelet filtering. The results of this study suggest that the first order statistics filter lsmv, gave the best performance, followed by the geometric filter gf4d, and the homogeneous mask area filter lsminsc. These filters improved the class separation between the asymptomatic and the symptomatic classes based on the statistics of the extracted texture features, gave only a marginal improvement in the classification success rate, and improved the visual assessment carried out by the two experts. More specifically, filters lsmv or gf4d can be used for despeckling asymptomatic images in which the expert is interested mainly in the plaque composition and texture analysis; and filters lsmv, gf4d, or lsminsc can be used for the despeckling of symptomatic images in which the expert is interested in identifying the degree of stenosis and the plaque borders. The proper selection of a despeckle filter is very important in the enhancement of ultrasonic imaging of the carotid artery. Further work is needed to evaluate at a larger scale and in clinical practice the performance of the proposed

  1. Ultrasound

    MedlinePlus

    ... a type of imaging. It uses high-frequency sound waves to look at organs and structures inside the ... part of your body. The transducer sends out sound waves, which bounce off the tissues inside your body. ...

  2. Local binary pattern texture-based classification of solid masses in ultrasound breast images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Sehgal, Chandra M.; Udupa, Jayaram K.

    2012-03-01

    Breast cancer is one of the leading causes of cancer mortality among women. Ultrasound examination can be used to assess breast masses, complementarily to mammography. Ultrasound images reveal tissue information in its echoic patterns. Therefore, pattern recognition techniques can facilitate classification of lesions and thereby reduce the number of unnecessary biopsies. Our hypothesis was that image texture features on the boundary of a lesion and its vicinity can be used to classify masses. We have used intensity-independent and rotation-invariant texture features, known as Local Binary Patterns (LBP). The classifier selected was K-nearest neighbors. Our breast ultrasound image database consisted of 100 patient images (50 benign and 50 malignant cases). The determination of whether the mass was benign or malignant was done through biopsy and pathology assessment. The training set consisted of sixty images, randomly chosen from the database of 100 patients. The testing set consisted of forty images to be classified. The results with a multi-fold cross validation of 100 iterations produced a robust evaluation. The highest performance was observed for feature LBP with 24 symmetrically distributed neighbors over a circle of radius 3 (LBP24,3) with an accuracy rate of 81.0%. We also investigated an approach with a score of malignancy assigned to the images in the test set. This approach provided an ROC curve with Az of 0.803. The analysis of texture features over the boundary of solid masses showed promise for malignancy classification in ultrasound breast images.

  3. Real-time interleaved photoacoustic/ultrasound (PAUS) imaging for interventional procedure guidance

    NASA Astrophysics Data System (ADS)

    Wei, Chen-wei; Nguyen, Thu-Mai; Xia, Jinjun; Arnal, Bastien; Pelivanov, Ivan; O'Donnell, Matthew

    2015-03-01

    Ultrasound-guided photoacoustic imaging has shown great potential for many clinical applications including vascular visualization, detection of nanoprobes sensing molecular profiles, and guidance of interventional procedures. However, bulky and costly lasers are usually required to provide sufficient pulse energies for deep imaging. The low pulse repetition rate also limits potential real-time applications of integrated photoacoustic/ultrasound (PAUS) imaging. With a compact and low-cost laser operating at a kHz repetition rate, we aim to integrate photoacoustics (PA) into a commercial ultrasound (US) machine utilizing an interleaved scanning approach for clinical translation, with imaging depth up to a few centimeters and frame rates > 30 Hz. Multiple PA sub-frames are formed by scanning laser firings covering a large scan region with a rotating galvo mirror, and then combined into a final frame. Ultrasound pulse-echo beams are interleaved between laser firings/PA receives. The approach was implemented with a diode-pumped laser, a commercial US scanner, and a linear array transducer. Insertion of an 18-gauge needle into a piece of chicken tissue, with subsequent injection of an absorptive agent into the tissue, was imaged with an integrated PAUS frame rate of 30 Hz, covering a 2.8 cm × 2.8 cm imaging plane. Given this real-time image rate and high contrast (> 40 dB at more than 1-cm depth in the PA image), we have demonstrated that this approach is potentially attractive for clinical procedure guidance.

  4. Non-negative constraint for image-based breathing gating in ultrasound hepatic perfusion data

    NASA Astrophysics Data System (ADS)

    Wu, Kaizhi; Ding, Mingyue; Chen, Xi; Deng, Wenjie; Zhang, Zhijun

    2015-12-01

    Images acquired during free breathing using contrast enhanced ultrasound hepatic perfusion imaging exhibits a periodic motion pattern. It needs to be compensated for if a further accurate quantification of the hepatic perfusion analysis is to be executed. To reduce the impact of respiratory motion, image-based breathing gating algorithm was used to compensate the respiratory motion in contrast enhanced ultrasound. The algorithm contains three steps of which respiratory kinetics extracted, image subsequences determined and image subsequences registered. The basic performance of the algorithm was to extract the respiratory kinetics of the ultrasound hepatic perfusion image sequences accurately. In this paper, we treated the kinetics extracted model as a non-negative matrix factorization (NMF) problem. We extracted the respiratory kinetics of the ultrasound hepatic perfusion image sequences by non-negative matrix factorization (NMF). The technique involves using the NMF objective function to accurately extract respiratory kinetics. It was tested on simulative phantom and used to analyze 6 liver CEUS hepatic perfusion image sequences. The experimental results show the effectiveness of our proposed method in quantitative and qualitative.

  5. A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging.

    PubMed

    Turnbull, D H; Starkoski, B G; Harasiewicz, K A; Semple, J L; From, L; Gupta, A K; Sauder, D N; Foster, F S

    1995-01-01

    There is a growing interest in high resolution, subsurface imaging of cutaneous tissues using higher frequency ultrasound, and several commercial systems have been developed recently which operate at 20 MHz. Some of the possible applications of higher frequency skin imaging include tumour staging, boundary definition, and studies of the response of tumours to therapy, investigations of inflammatory skin conditions such as psoriasis and eczema, and basic studies of skin aging, sun damage and the effects of irritants. Investigation of these areas is quite new, and the role of ultrasound skin imaging is continuing to evolve. Lateral resolution in the 20 MHz imaging systems ranges from 200 to 300 microns, which limits imaging applications to cutaneous structures which are relatively large in size. In this paper, a real-time ultrasound backscatter microscope (UBM) for skin imaging is described which operates in the 40-100 MHz range, providing axial resolution between 17 and 30 microns and lateral resolution between 33 and 94 microns. This improvement in resolution over current skin ultrasound systems should prove useful in determining the margins of small skin lesions, and in obtaining more precise, in vivo skin thickness measurements to characterize nonmalignant skin disease. Example images of normal skin, seborrhoeic keratosis and malignant melanoma illustrate the imaging potential of this system. PMID:7754581

  6. Optimizing nonrigid registration performance between volumetric true 3D ultrasound images in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2011-03-01

    Compensating for brain shift as surgery progresses is important to ensure sufficient accuracy in patient-to-image registration in the operating room (OR) for reliable neuronavigation. Ultrasound has emerged as an important and practical imaging technique for brain shift compensation either by itself or through computational modeling that estimates whole-brain deformation. Using volumetric true 3D ultrasound (3DUS), it is possible to nonrigidly (e.g., based on B-splines) register two temporally different 3DUS images directly to generate feature displacement maps for data assimilation in the biomechanical model. Because of a large amount of data and number of degrees-of-freedom (DOFs) involved, however, a significant computational cost may be required that can adversely influence the clinical feasibility of the technique for efficiently generating model-updated MR (uMR) in the OR. This paper parametrically investigates three B-splines registration parameters and their influence on the computational cost and registration accuracy: number of grid nodes along each direction, floating image volume down-sampling rate, and number of iterations. A simulated rigid body displacement field was employed as a ground-truth against which the accuracy of displacements generated from the B-splines nonrigid registration was compared. A set of optimal parameters was then determined empirically that result in a registration computational cost of less than 1 min and a sub-millimetric accuracy in displacement measurement. These resulting parameters were further applied to a clinical surgery case to demonstrate their practical use. Our results indicate that the optimal set of parameters result in sufficient accuracy and computational efficiency in model computation, which is important for future application of the overall biomechanical modeling to generate uMR for image-guidance in the OR.

  7. Mesoscopics of ultrasound and seismic waves: application to passive imaging

    NASA Astrophysics Data System (ADS)

    Larose, É.

    2006-05-01

    This manuscript deals with different aspects of the propagation of acoustic and seismic waves in heterogeneous media, both simply and multiply scattering ones. After a short introduction on conventional imaging techniques, we describe two observations that demonstrate the presence of multiple scattering in seismic records: the equipartition principle, and the coherent backscattering effect (Chap. 2). Multiple scattering is related to the mesoscopic nature of seismic and acoustic waves, and is a strong limitation for conventional techniques like medical or seismic imaging. In the following part of the manuscript (Chaps. 3 5), we present an application of mesoscopic physics to acoustic and seismic waves: the principle of passive imaging. By correlating records of ambient noise or diffuse waves obtained at two passive sensors, it is possible to reconstruct the impulse response of the medium as if a source was placed at one sensor. This provides the opportunity of doing acoustics and seismology without a source. Several aspects of this technique are presented here, starting with theoretical considerations and numerical simulations (Chaps. 3, 4). Then we present experimental applications (Chap. 5) to ultrasound (passive tomography of a layered medium) and to seismic waves (passive imaging of California, and the Moon, with micro-seismic noise). Physique mésoscopique des ultrasons et des ondes sismiques : application à l'imagerie passive. Cet article de revue rassemble plusieurs aspects fondamentaux et appliqués de la propagation des ondes acoustiques et élastiques dans les milieux hétérogènes, en régime de diffusion simple ou multiple. Après une introduction sur les techniques conventionelles d'imagerie sismique et ultrasonore, nous présentons deux expériences qui mettent en évidence la présence de diffusion multiple dans les enregistrements sismologiques : l'équipartition des ondes, et la rétrodiffusion cohérente (Chap. 2). La diffusion multiple des

  8. The Speckle Noise Reduction and the Boundary Enhancement on Medical Ultrasound Images using the Cellular Neural Networks

    NASA Astrophysics Data System (ADS)

    Park, Hyunkyung; Miyazaki, Ryota; Nishimura, Toshihiro; Tamaki, Yasuhiro

    The purpose is to remove the speckle noise and to emphasize the boundary of a tumor by filtering based on the intensity difference in the medical ultrasound images. The proposed method is evaluated using numerical phantom simulating ultrasound B-mode images, and the effect is confirmed by applying to medical ultrasound images. Therefore, some important features such as tissue boundaries and small tumors may be overlooked. A CNN (cellular neural networks) for the speckle reduction and the edge enhancement are proposed in this paper. A CNN which is a kind of recurrent neural network can deal with images by the weight of neurons called a cell. It could be obtained more detail images recognition compared with the previous studies. A determination template parameters of the CNN for ultrasound image processing is discussed. The experimental results show effectiveness of applying the proposed method to boundary enhancement and the speckle reduction of medical ultrasound image.

  9. Validation of Ultrasound Imaging to Rule-out Thoracic Trauma on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Melton, Shannon; Martin, David; Dulchavsky, Scott A.

    2006-01-01

    Introduction: Aboard the International Space Station (ISS) an intra-thoracic injury may be disastrous to the crew member if the diagnosis is missed or even delayed. Pneumothorax and hemothorax commonly seen in trauma patients; the diagnosis is usually confirmed by chest X-ray or computed tomography. In this study, the ability of ultrasound to rule out pneumothorax by the presence "lung sliding" and hemothorax by the absence of pleural fluid was validated. Methods: The research activities were approved by the NASA Johnson Space Center Committee for the Protection of Human Subjects, and the participating crewmembers signed informed consent prior to the activity. ISS crewmembers received 2-hours of "hands on" ultrasound training 8 months prior to the on-orbit ultrasound exam. Baseline ultrasound images of the thorax were acquired on the crewmebers of Increment 8 and 9 prior to launch from Bakonur, Russia. Ultrasound examination of the thorax were performed on crewmembers at 30 day intervals (n=??) throughout their flight. Post flight images were acquired on or about landing day 10. Ultrasound images were acquired using the ISS Health Research Facility ultrasound system and examined by experts on the ground to rule out the presence of pneumothorax and hemothorax. Results: The presence of "lung sliding" which excludes pneumothorax, was seen in all subjects. The absence of pleural fluid, which excludes hemothorax was seen in all subjects. The optimal position between sonographer and patient under microgravity conditions and the amount and type of training for a non-physician crew medical officer for these procedures was also established for this procedure. Conclusion: Ultrasound can be performed on orbit under microgravity condition to rule thoracic trauma, such as pneumothorax and hemothorax.

  10. High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system

    PubMed Central

    Sivasubramanian, Kathyayini; Pramanik, Manojit

    2016-01-01

    Photoacoustic tomography, a hybrid imaging modality combining optical and ultrasound imaging, is gaining attention in the field of medical imaging. Typically, a Q-switched Nd:YAG laser is used to excite the tissue and generate photoacoustic signals. But, such photoacoustic imaging systems are difficult to translate into clinical applications owing to their high cost, bulky size often requiring an optical table to house such lasers. Moreover, the low pulse repetition rate of few tens of hertz prevents them from being used in high frame rate photoacoustic imaging. In this work, we have demonstrated up to 7000 Hz photoacoustic imaging (B-mode) and measured the flow rate of a fast moving object. We used a ~140 nanosecond pulsed laser diode as an excitation source and a clinical ultrasound imaging system to capture and display the photoacoustic images. The excitation laser is ~803 nm in wavelength with ~1.4 mJ energy per pulse. So far, the reported 2-dimensional photoacoustic B-scan imaging is only a few tens of frames per second using a clinical ultrasound system. Therefore, this is the first report on 2-dimensional photoacoustic B-scan imaging with 7000 frames per second. We have demonstrated phantom imaging to view and measure the flow rate of ink solution inside a tube. This fast photoacoustic imaging can be useful for various clinical applications including cardiac related problems, where the blood flow rate is quite high, or other dynamic studies. PMID:26977342

  11. High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system.

    PubMed

    Sivasubramanian, Kathyayini; Pramanik, Manojit

    2016-02-01

    Photoacoustic tomography, a hybrid imaging modality combining optical and ultrasound imaging, is gaining attention in the field of medical imaging. Typically, a Q-switched Nd:YAG laser is used to excite the tissue and generate photoacoustic signals. But, such photoacoustic imaging systems are difficult to translate into clinical applications owing to their high cost, bulky size often requiring an optical table to house such lasers. Moreover, the low pulse repetition rate of few tens of hertz prevents them from being used in high frame rate photoacoustic imaging. In this work, we have demonstrated up to 7000 Hz photoacoustic imaging (B-mode) and measured the flow rate of a fast moving object. We used a ~140 nanosecond pulsed laser diode as an excitation source and a clinical ultrasound imaging system to capture and display the photoacoustic images. The excitation laser is ~803 nm in wavelength with ~1.4 mJ energy per pulse. So far, the reported 2-dimensional photoacoustic B-scan imaging is only a few tens of frames per second using a clinical ultrasound system. Therefore, this is the first report on 2-dimensional photoacoustic B-scan imaging with 7000 frames per second. We have demonstrated phantom imaging to view and measure the flow rate of ink solution inside a tube. This fast photoacoustic imaging can be useful for various clinical applications including cardiac related problems, where the blood flow rate is quite high, or other dynamic studies. PMID:26977342

  12. Automated Breast Ultrasound: Dual-Sided Compared with Single-Sided Imaging.

    PubMed

    Larson, Eric D; Lee, Won-Mean; Roubidoux, Marilyn A; Goodsitt, Mitchel M; Lashbrook, Chris; Zafar, Fouzaan; Kripfgans, Oliver D; Thomenius, Kai; Carson, Paul L

    2016-09-01

    The design and performance of a mammographically configured, dual-sided, automated breast ultrasound (ABUS) 3-D imaging system are described. Dual-sided imaging (superior and inferior) is compared with single-sided imaging to aid decisions on clinical implementation of the more complex, but potentially higher-quality dual-sided imaging. Marked improvement in image quality and coverage of the breast is obtained in dual-sided ultrasound over single-sided ultrasound. Among hypo-echoic masses imaged, there are increases in the mean contrast-to-noise ratio of 57% and 79%, respectively, for spliced dual-sided versus superior or inferior single-sided imaging. The fractional breast volume coverage, defined as the percentage volume in the transducer field of view that is imaged with clinically acceptable quality, is improved from 59% in both superior and inferior single-sided imaging to 89% in dual-sided imaging. Applying acoustic coupling to the breast requires more effort or sophisticated methods in dual-sided imaging than in single-sided imaging. PMID:27264914

  13. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  14. High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions.

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E

    2015-07-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal, and mechanical effects was investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n = 13) under slow denaturation or boiling regimes. A passive cavitation detector (PCD) was used to assess the acoustic cavitation activity, and a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating the tissue initial-softening-then- stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46 ± 0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown under both boiling and slow denaturation regimes to be effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  15. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images. PMID:24965564

  16. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    PubMed

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis

  17. Monte Carlo modeling of ultrasound probes for image guided radiotherapy

    SciTech Connect

    Bazalova-Carter, Magdalena; Schlosser, Jeffrey; Chen, Josephine; Hristov, Dimitre

    2015-10-15

    Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 and 8.0 g/cm{sup 3}. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm{sup 2} beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm{sup 2} beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm{sup 3}, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical orientation. The

  18. Quantitative evaluation of automatic methods for lesions detection in breast ultrasound images

    NASA Astrophysics Data System (ADS)

    Marcomini, Karem D.; Schiabel, Homero; Carneiro, Antonio Adilton O.

    2013-02-01

    Ultrasound (US) is a useful diagnostic tool to distinguish benign from malignant breast masses, providing more detailed evaluation in dense breasts. Due to the subjectivity in the images interpretation, computer-aid diagnosis (CAD) schemes have been developed, increasing the mammography analysis process to include ultrasound images as complementary exams. As one of most important task in the evaluation of this kind of images is the mass detection and its contours interpretation, automated segmentation techniques have been investigated in order to determine a quite suitable procedure to perform such an analysis. Thus, the main goal in this work is investigating the effect of some processing techniques used to provide information on the determination of suspicious breast lesions as well as their accurate boundaries in ultrasound images. In tests, 80 phantom and 50 clinical ultrasound images were preprocessed, and 5 segmentation techniques were tested. By using quantitative evaluation metrics the results were compared to a reference image delineated by an experienced radiologist. A self-organizing map artificial neural network has provided the most relevant results, demonstrating high accuracy and low error rate in the lesions representation, corresponding hence to the segmentation process for US images in our CAD scheme under tests.

  19. Three-dimensional ultrasound imaging of vessel wall for evaluating atherosclerosis risk and disease

    NASA Astrophysics Data System (ADS)

    Amin, Viren R.; Wang, Bo; Sonka, Milan; Lauer, Ronald M.

    2002-04-01

    This research aims at developing a three-dimensional (3D) ultrasound system for carotid and brachial artery scanning for evaluating vessel wall characteristics. In the long term, we seek to test hypothesis that the artery wall measurements of carotid intima-media-thickness and brachial flow mediated dilatation using 3D ultrasound data provide better repeatability than those derived from conventional 2D ultrasound scans. The approach is to implement a free-hand data acquisition scheme using conventional 2D medical ultrasound scanner, develop data processing algorithms for appropriately registering and displaying the volumetric ultrasound vessel scans, and develop techniques for measuring vessel wall characteristics. The system uses electromagnetic sensor mounted on the transducer to acquire position and orientation of each image slice as the transducer is moved freely to scan the area of interest. These non-parallel images are registered into a 3D dataset for reconstruction, segmentation, and measurements of the vessel wall structure. A simple calibration object is developed using a small stainless-steel sphere in a fixed position to perform coordinate transformations and pixel registration. A commercial 3D ultrasound tissue-mimicking phantom is used for assessment of freehand 3D data acquisition, calibration, registration, and visualization schemes. Early results of experimental carotid artery scans of volunteers are presented.

  20. Perfluorooctyl bromide traces self-assembled with polymeric nanovesicles for blood pool ultrasound imaging.

    PubMed

    Li, Hao; Wang, Ping; Wang, Xuan; Yin, Tinghui; Zhou, Guofu; Shuai, Xintao; Zheng, Rongqin

    2016-06-24

    A novel perfluorooctyl bromide (PFOB)-loaded nanovesicle with a size of about 500 nm was prepared by self-assembly of an amphiphilic block copolymer, poly(ethylene oxide)-b-poly(d,l-lactic acid) (PEG-PDLLA), for blood pool ultrasound imaging. The excellent compatibility of PFOB with the hydrophobic PDLLA block makes PFOB uniformly distribute and integrate well within the nanovesicle shell. In theory, both the compressibility and shell density of the nanovesicle as ultrasound scatterers are enhanced, resulting in much higher echo intensity compared to the other PFOB nanoparticles. In vitro and in vivo imaging results illustrate that these polymeric nanovesicles with extremely low content of PFOB show quite a good contrast-enhancing effect even if highly diluted in blood. Therefore this PFOB-loaded polymeric nanovesicle is anticipated to be applicable as an ultrasound contrast agent for normal angiography and specific imaging of capillary-abundant organs or tissues (e.g. tumors). PMID:27121357

  1. Utilization of diagnostic ultrasound and intravenous lipid-encapsulated perfluorocarbons in non-invasive targeted cardiovascular therapeutics.

    PubMed

    Porter, Thomas R; Choudhury, Songita A; Xie, Feng

    2016-01-01

    Diagnostic ultrasound (DUS) pressures have the ability to induce inertial cavitation (IC) of systemically administered microbubbles; this bioeffect has many diagnostic and therapeutic implications in cardiovascular care. Diagnostically, commercially available lipid-encapsulated perfluorocarbons (LEP) can be utilized to improve endocardial and vascular border delineation as well as assess myocardial perfusion. Therapeutically, the liquid jets induced by IC can alter endothelial function and dissolve thrombi within the immediate vicinity of the cavitating microbubbles. The cavitating LEP can also result in the localized release of any bound therapeutic substance at the site of insonation. DUS-induced IC has been tested in pre-clinical studies to determine what effect it has on acute vascular and microvascular thrombosis as well as nitric oxide (NO) release. These pre-clinical studies have consistently shown that DUS-induced IC of LEP is effective in restoring coronary vascular and microvascular flow in acute ST segment elevation myocardial infarction (STEMI), with microvascular flow improving even if upstream large vessel flow has not been achieved. The initial clinical trials examining the efficacy of short pulse duration DUS high mechanical index impulses in patients with STEMI are underway, and preliminary studies have suggested that earlier epicardial vessel recanalization can be achieved prior to arriving in the cardiac catheterization laboratory. DUS high mechanical index impulses have also been effective in pre-clinical studies for targeting DNA delivery that has restored islet cell function in type I diabetes and restored vascular flow in the extremities downstream from a peripheral vascular occlusion. Improvements in this technique will come from three dimensional arrays for therapeutic applications, more automated delivery techniques that can be applied in the field, and use of submicron-sized acoustically activated LEP droplets that may better permeate the

  2. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 2: Radiolabeled Probes

    PubMed Central

    Stendahl, John C.; Sinusas, Albert J.

    2016-01-01

    Nanoparticulate imaging agents and therapeutics have proven to be valuable tools in preclinical