Science.gov

Sample records for carmine organic dyes

  1. [Asthma and allergy due to carmine dye].

    PubMed

    Tabar, A I; Acero, S; Arregui, C; Urdánoz, M; Quirce, S

    2003-01-01

    Cochineal carmine, or simply carmine (E120), is a red colouring that is obtained from the dried bodies of the female insect Dactylopius coccus Costa (the cochineal insect). We have evaluated the prevalence of sensitization and asthma caused by carmine in a factory using natural colouring, following the diagnosis of two workers with occupational asthma. The accumulated incidence of sensitization and occupational asthma due to carmine in this factory are 48.1% and 18.5% respectively, figures that make the introduction of preventive measures obligatory. Occupational asthma caused by inhaling carmine should be considered as a further example of the capacity of certain protein particles of arthropods (in this case cochineal insects) to act as aeroallergens. Carmine should be added to the list of agents capable of producing occupational asthma, whose mechanism, according to our studies, would be immunological mediated by IgE antibodies in the face of diverse allergens of high molecular weight, which can vary from patient to patient. Nonetheless, given the existence of different components in carmine, it cannot be ruled out that substances of low molecular weight, such as carminic acid, might act as haptenes. Besides, since we are dealing with a colouring that is widely used as a food additive, as a pharmaceutical excipient and in the composition of numerous cosmetics, it is not surprising that allergic reactions can appear both through ingestion and through direct cutaneous contact. We find ourselves facing a new example of an allergen that can act through both inhalation and digestion, giving rise to an allergolical syndrome that can show itself clinically with expressions of both respiratory allergy and alimentary allergy. PMID:13679965

  2. The history, chemistry and modes of action of carmine and related dyes.

    PubMed

    Dapson, R W

    2007-08-01

    Carmine has been used in biological staining to demonstrate selectively nuclei, chromosomes or mucins, depending on the formulation. Throughout its history in science, complaints and frustrations have been expressed about dye quality. Inconsistencies in dye quality or identity have prevented thorough understanding of staining mechanisms and have caused many stain solutions to behave unsatisfactorily. The aim of this review is to (1) detail causes of these problems, which are rooted in history, geography and production, (2) offer ways to minimize problems and (3) provide modern explanations for stain behavior. Carmine is a "semi-synthetic" dye, i.e., a complex of aluminum and the natural dye cochineal (carminic acid). Carmine shows considerable batch-to-batch variability. Geography, politics, history, agricultural practices and iconography all contribute to the variability of cochineal. In addition, widely divergent manufacturing methods are used to produce carmine. Also, confusion in terminology has led to mislabeling. Pressure from the food industry for a more satisfactory colorant for acidic foods led to the introduction of a new dye, aminocarminic acid, which could enter the biological market inadvertantly. Improved methods of analysis should help the certification process by the Biological Stain Commission. Further standardization could be achieved by replacing most of the methods of solubilizing carmine. The majority of these methods use heat, which is likely to damage the dye molecule. Fortunately, carmine is readily dissolved by raising the pH of the aqueous solvent above 12, and a new form of the dye, now available commercially, is soluble in water without the need for heat or pH adjustment. Chemical structures and physical properties of carminic acid, carmine, aminocarminic acid and kermesic acid are reviewed. A new configuration for carmine is proposed, as well as possible changes to carminic acid and carmine molecules as a result of decomposition caused by heating. Each of the major classes of carmine-based stains is described as are possible mechanisms of attachment to specific substrates. Glycogen binds carmine through hydrogen bonding, and it is here that carmine decomposed by heat could have the greatest detrimental impact. Nuclei and chromosomes are stained via coordination bonds, perhaps supplemented by hydrogen bonds. Finally, acidic mucins react ionically with carmine. Specificity in the latter case may be due to unique polymeric carmine molecules that form in the presence of aluminum chloride. PMID:18074265

  3. Indigo Carmine Dye-Polymer Nanocomposite Films For Optical Limiting Applications

    NASA Astrophysics Data System (ADS)

    Sreeja, S.; Mayadevi, S.; Suresh, S. R.; Frobel, P. G. Louie; Smijesh, N.; Philip, Reji; Muneera, C. I.

    2011-10-01

    Nanocomposite films of an organic dye-polymer (Indigo Carmine-PVA) system were fabricated and their optical limiting behaviour was investigated under excitation with 532 nm laser pulses of 5 ns temporal width using the open aperture Z-scan technique. The samples displayed optical limiting behavior under the experimental conditions. The Atomic Force Microscopic (AFM) analysis of the surface topography revealed homogeneous distribution of nanoclustered aggregates grown within the polymer matrix and an average roughness of ˜2.02 nm for the surface. The estimated values of the effective nonlinear absorption coefficient, βeff (˜10-7-10-8 cm/W) marked up to the highest reported ones in literature in the nanosecond regime. The results indicate that these nanocomposite films are potential materials for optical limiting devices used for the protection of human eyes and other delicate optical sensors from laser induced optical damage.

  4. An Indigo Carmine-Based Hybrid Nanocomposite with Supramolecular Control of Dye Aggregation and Photobehavior.

    PubMed

    Costa, Ana L; Gomes, Ana C; Pillinger, Martyn; Gonçalves, Isabel S; de Melo, J Sérgio Seixas

    2015-08-17

    Zn-Al layered double hydroxides (LDHs) containing solely indigo carmine (IC) or 1-hexanesulfonate (HS) anions, or a mixture of the two with different HS/IC molar ratios, were prepared by the direct synthesis method and characterized by various techniques. Hydrotalcite-type phases were obtained with basal spacings of 17.6 Å for the LDH intercalated by IC (IC-LDH) and 18.2-18.3 Å for the other materials containing HS. From the basal spacing for IC-LDH and UV/Vis spectroscopic data, it is proposed that the dye molecules assemble within the interlayer galleries to form a J-type stacking arrangement. A comprehensive electronic spectral and photophysical study was undertaken for IC in solution and all materials, aiming to obtain a detailed characterization of the host-guest and guest-guest interactions. In solution (the solvent surrounded "isolated" molecule), IC presents a fast excited state proton transfer with rate constants of ∼1.2-1.4×10(11)  s(-1) , which is linked to the very efficient radiationless deactivation channel. In the solid state it is shown that incorporation of IC within the LDH decreases the level of aggregation, and that further addition of HS induces the appearance of isolated IC units within the LDH galleries. The indigo carmine-based nanocomposites reported constitute a step forward in the design of hybrid materials with tunable properties. PMID:26216072

  5. Charge-Transfer Complexation at Carminic Acid-CdS Interface and Its Impact on the Efficiency of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Shahzad, Naila; Shah, Syed Mujtaba; Munir, Shamsa; Hana, Amina; Jabeen, Uzma; Nosheen, Erum; Habib, Banafsha; Khan, Arif Ullah; Hassan, Zubair; Siddiq, Muhammad; Hussain, Hazrat

    2015-04-01

    We report for the first time charge-transfer complex formation at the interface of carminic acid and cadmium sulfide (CdS) nanoparticles. The complex formation was confirmed by ultraviolet-visible (UV-vis) and fluorescence emission spectroscopy. Cadmium sulfide nanoparticles were synthesized by the wet chemical method and characterized by UV-vis spectroscopy, x-ray diffraction and transmission electron microscopy. Carminic acid, in different concentrations, was chemisorbed on the surface of CdS nanoparticles. Grafting of carminic acid on CdS was confirmed by Fourier transform infrared spectroscopy. Energy levels of the highest occupied molecular orbitals and lowest unoccupied molecular orbitals (LUMO) of both carminic acid and CdS nanoparticles matched well for the injection of electron from LUMO of carminic acid to the conduction band of cadmium sulfide. The photoactive nanohybrid material was used in dye-sensitized solar cells. The efficiency of carminic acid functionalized CdS nanoparticles was found to be double the value obtained for the reference device and remained constant over a certain concentration range owing to the complex formation at the interface. However, raising the concentration of carminic acid beyond 2.5 × 10-5 M resulted in a decrease in efficiency. This was ascribed to charge recombination due to the presence of ungrafted carminic acid molecules.

  6. Effective photocatalytic decolorization of indigo carmine dye in Moroccan natural phosphate-TiO2 aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Naciri, Nouâma; Farahi, Abdelfettah; Rafqah, Salah; Nasrellah, Hamid; El Mhammedi, Moulay Abderrahim; Lançar, IbnToumaret; Bakasse, Mina

    2016-02-01

    Heterogeneous photocatalysis is a significant green technology for application in water purification. In this study, the photocatalytic activity of NP-TiO2 based on Moroccan natural phosphate (NP) doped by titanium dioxide TiO2 was evaluated by photocatalytic decolorization of indigo carmine (IC) dye in aqueous solution as a model pollutant under UV light. The NP-TiO2 catalyst was characterized by XRD, FTIR and surface area. The effect of the calcination temperature of NP-TiO2, catalyst concentration, initial concentration of the IC, initial pH, initial hydrogen peroxide H2O2 concentration and coexisting ions on the photocatalytic decolorization of IC was investigated. The NP-TiO2 showed a significantly higher rate of degradation of IC, when compared to TiO2. After 125 min of irradiation using a low intensity of UV-lamp (15 W ∗ 3 lamps = 45 W), 99% of IC solution (20 mg L-1) was decolorized with 0.5 g L-1 of the NP-TiO2 calcined at 600 °C at pH = 11. Therefore, this process can be developed as an economically feasible and environmentally friendly method to decolorize or treat dye wastewater using sunlight.

  7. Raman spectroscopy of organic dyes adsorbed on pulsed laser deposited silver thin films

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Neri, F.; Valenti, A.; Ossi, P. M.; Trusso, S.; Ponterio, R. C.

    2013-08-01

    The results of a surface-enhanced Raman scattering (SERS) study performed on representative organic and inorganic dyes adsorbed on silver nanostructured thin films are presented and discussed. Silver thin films were deposited on glass slides by focusing the beam from a KrF excimer laser (wavelength 248 nm, pulse duration 25 ns) on a silver target and performing the deposition in a controlled Ar atmosphere. Clear Raman spectra were acquired for dyes such as carmine lake, garanza lake and brazilwood overcoming their fluorescence and weak Raman scattering drawbacks. UV-visible absorption spectroscopy measurements were not able to discriminate among the different chromophores usually referred as carmine lake (carminic, kermesic and laccaic acid), as brazilwood (brazilin and brazilein) and as garanza lake (alizarin and purpurin). SERS measurements showed that the analyzed samples are composed of a mixture of different chromophores: brazilin and brazilein in brazilwood, kermesic and carminic acid in carmine lake, alizarin and purpurin in garanza lake. Detection at concentration level as low as 10-7 M in aqueous solutions was achieved. Higher Raman intensities were observed using the excitation line of 632.8 nm wavelength with respect to the 785 nm, probably due to a pre-resonant effect with the molecular electronic transitions of the dyes.

  8. Matrix-assisted laser desorption and electrospray ionization mass spectrometry of carminic acid isolated from cochineal

    NASA Astrophysics Data System (ADS)

    Maier, Marta S.; Parera, Sara D.; Seldes, Alicia M.

    2004-04-01

    Carminic acid, isolated from cochineal, was analyzed by matrix-assisted laser desorption/ionization (MALDI) and electrospray mass spectrometry (ESI-MS). Application of both techniques to the analysis of carminic acid suspended in linseed oil and applied to a piece of canvas, demonstrated the ability of MALDI and ESI-MS to identify this organic dye in a mixture as those used in easel painting.

  9. Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye

    NASA Astrophysics Data System (ADS)

    Xu, Ran; Jia, Min; Li, Fengting; Wang, Hongtao; Zhang, Bingru; Qiao, Junlian

    2012-03-01

    Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption-desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400-800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich-Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.

  10. A method for determining identity and relative purity of carmine, carminic acid and aminocarminic acid.

    PubMed

    Dapson, Rw

    2005-01-01

    Carmine is one of the few dyes currently certified by the Biological Stain Commission that is not assayed for dye content. Existing assay methods are complex and do not differentiate the three cochineal derivatives carmine, carminic acid and aminocarminic acid. The latter dye is relatively new to the food trade as an acid-stable red colorant and may eventually enter the biological stains market. The assay proposed here is a two-step procedure using quantitative spectrophotometric analysis at high pH (12.5-12.6) followed by a qualitative scan of a low pH (1.90-2.10) solution. Carmine is distinct at high pH, and the remaining dyes are easily distinguished at low pH. Four instances of mislabeling are documented from 18 commercial products, but the mislabeled dyes were not certified dyes. Samples from nearly all lots of carmine certified by the Biological Stain Commission from 1920 to 2004 proved to be carmine, but they varied widely in dye content. Batches from 1920 through the 1940s were significantly richer in dye content. Variability has been extreme since 2000, and most of the poorest lots have been submitted since 1990. PMID:16720520

  11. Carminic acid dye from the homopteran Dactylopius coccus hemolymph is consumed during treatment with different microbial elicitors.

    PubMed

    Hernández-Hernández, Fidel de la Cruz; de Muñoz, Fernando García-Gil; Rojas-Martínez, Alberto; Hernández-Martínez, Salvador; Lanz-Mendoza, Humberto

    2003-09-01

    The activation of Dactylopius coccus (Costa) hemolymph with microbial polysaccharide molecules was studied. Hemolymph incubated in the presence of laminarin, zymosan, and N-acetyl glucosamine produced a dark fibrillar precipitated, and the red pigment (carminic acid) was consumed (measured spectrophotometrically at 495 nm). Lipopolysaccharide (LPS) did not induce any response. The reaction was inhibited with millimolar concentrations of serine and cysteine protease inhibitors, EGTA and phenyl thiourea. It was also diminished by prostaglandin synthesis inhibitors: dexamethasone, acetylsalicylic acid, and indomethacin. However, Mg2+ chelator EDTA did not inhibit hemolymph activation. Hemolymph proteins were depleted from soluble phase during treatment with laminarin, but a group of around 34 kDa remained unmodified. These results showed that D. coccus hemolymph is activated by microbial elicitors, its activation depends on eicosanoids, and suggest participation of a prophenoloxidase (PPO)-like activation system that could consume carminic acid. We are currently dissecting the molecular factors involved in D. coccus hemolymph activation to determine homologies and differences with other arthropods immune response pathways. PMID:12942514

  12. Preparation and characterization of platinum (Pt) and palladium (Pd) nanoparticle decorated graphene sheets and their utilization for the elimination of basic fuchsin and indigo carmine dyes

    NASA Astrophysics Data System (ADS)

    Kurt, Belma Zengin; Durmus, Zehra; Durmus, Ali

    2016-01-01

    In this study, graphene nano sheets, prepared with chemical oxidation and reduction routes via modified-Hummer method, were successfully decorated with platinum (Pt) and palladium (Pd) nanoparticles. Structural and morphological features of resulted graphene-metal nanocomposites were characterized with FT-IR, XRD, SEM and TEM methods. Anti-oxidant activity (AOA) values of nanocomposites were determined. The IC50 values of Pt-graphene and Pd-graphene nanocomposites were found to be 46.1 and 90.2 μg/mL, respectively based on the ABTS method and 80.2 and 143.7 μg/mL according to the DPPH method. It was found that the graphene-metal nanocomposites exhibited superior free radical scavenging activity compared to several types of noble metal nano particles although the nanocomposites consist of much lower amount of active metal sites than the nano-crystalline metal powders. It was consequently reported that the graphene-metal nanocomposites could be successfully used for the photocatalytic elimination of fuchsin and indigo carmine dyes under light irradiation.

  13. Stability of γ-Irradiated Carmine

    NASA Astrophysics Data System (ADS)

    Cosentino, Hélio M.; Fontenele, Rinaldo S.; DelMastro, Nélida L.

    2005-01-01

    Carmine is a dye used mainly for coloring food products and galenicals but also in inks. As food irradiation is becoming a regular treatment for food preservation, it is desirable to have a proper knowledge about the radiation sensitivity of additives that can be included in the food formula. The aim of this work was to establish the radiation stability of carmine against Co-60 gamma radiation. Samples of 50% pure carmine powder as well as 50%, 10% and 5% aqueous solutions were irradiated in a Gammacell 220, dose rate of about 5.2 kGy/h, with doses of 0, 1, 2, 4, 8, 16 and 32 kGy. Spectrophotometric readings at 494 nm show a slight decrease of the absorbance as a function of dose: Samples irradiated with 4 and 32 kGy retained 95% and 90% of absorbance of the unirradiated samples respectively. These results indicate a rather good stability of carmine against γ-irradiation.

  14. Indigo carmine: An organic crystal as a positive-electrode material for rechargeable sodium batteries

    NASA Astrophysics Data System (ADS)

    Yao, Masaru; Kuratani, Kentaro; Kojima, Toshikatsu; Takeichi, Nobuhiko; Senoh, Hiroshi; Kiyobayashi, Tetsu

    2014-01-01

    Using sodium, instead of lithium, in rechargeable batteries is a way to circumvent the lithium's resource problem. The challenge is to find an electrode material that can reversibly undergo redox reactions in a sodium-electrolyte at the desired electrochemical potential. We proved that indigo carmine (IC, 5,5'-indigodisulfonic acid sodium salt) can work as a positive-electrode material in not only a lithium-, but also a sodium-electrolyte. The discharge capacity of the IC-electrode was ~100 mAh g-1 with a good cycle stability in either the Na or Li electrolyte, in which the average voltage was 1.8 V vs. Na+/Na and 2.2 V vs. Li+/Li, respectively. Two Na ions per IC are stored in the electrode during the discharge, testifying to the two-electron redox reaction. An X-ray diffraction analysis revealed a layer structure for the IC powder and the DFT calculation suggested the formation of a band-like structure in the crystal.

  15. Revised procedures for the certification of carmine (C.I. 75470, Natural red 4) as a biological stain.

    PubMed

    Dapson, R W; Frank, M; Penney, D P; Kiernan, J A

    2007-02-01

    Carmine is one of the original dyes certified by the Biological Stain Commission (BSC). Until now it has lacked both an assay procedure for dye content and a means to positively identify the dye. The methods for testing carmine in the laboratory of the BSC have been revised to include spectrophotometric examination at pH 12.5-12.6 to determine that the dye is carmine (lambda(max)=530-335 nm). The maximum absorbance of a solution containing 100 mg of dye per liter of water, adjusted to pH 12.5-12.6, which provides a relative measure of dye content, should lie in the range 1.2 to 1.8. If the dye is not carmine, spectrophotometry at pH 1.9-2.1 shows whether it is carminic acid (lambda(max)=490-500 nm) or 4-aminocarminic acid (lambda(max)=525-530 nm). The latter two dyes, which are also called carmine when sold as food colorants, have physical properties different from those of true carmine. The functional tests for carmine as a biological stain are Orth's lithium-carmine method for nuclei, Southgate's mucicarmine method for mucus, and Best's carmine method for glycogen. PMID:17510809

  16. Simultaneous determination of carminic acid, riboflavine, curcumin and erythrosine by derivative spectrophotometry and ratio spectra derivative.

    PubMed

    Nevado, J J; Cabanillas, C G; Salcedo, A M

    1994-05-01

    A quaternary mixture of carminic acid, riboflavine, curcumin and erythrosine can be resolved with a previous extraction step into metyl-isobutyl ketone and, resolving the binary mixtures obtained in the aqueous phase and organic phase, using derivative spectrophotometry on the basis of the zero-crossing measurements in the first derivative spectra as well as the first derivative of ratio spectra. The conditions of extraction established and the proposed methods have been tested to determine these colorants in several synthetic mixtures of four dyes, obtaining good recoveries. The methods have been applied in yoghurt samples spiked with the dyes. PMID:18966000

  17. ORGANIC DYES AND PIGMENTS DATA BASE

    EPA Science Inventory

    The objective of this research program was to compile a data base covering all the commercially significant dyes and pigments produced or imported in the United States. The Organic Dyes and Pigments Data Base (ODPDB) contains the following data elements: chemical-related data (co...

  18. Allergic contact dermatitis from carmine.

    PubMed

    Shaw, Daniel W

    2009-01-01

    A 28-year-old woman developed allergic contact dermatitis within 6 to 24 hours exclusively after using carmine-containing eyeshadows and lipsticks. She had both a positive patch test result and a positive antecubital repeated open application test result with carmine 2.5% in petrolatum. Thirty other patients had negative patch test results. Carmine is a widely used pigment derived from gravid cochineal insects. Carminic acid is the source of its color. Only two previous publications describing allergic contact dermatitis from carmine could be found. The ingredient in carmine causing these delayed hypersensitivity reactions has not been studied. In contrast, there are numerous reports of immediate hypersensitivity reactions from carmine, mostly from its use in foods and beverages but also from cosmetics and pharmaceuticals. These are immunoglobulin E-mediated reactions directed against cochineal proteins. PMID:19808007

  19. Continuous-wave organic dye lasers and methods

    DOEpatents

    Shapira, Ofer; Chua, Song-Liang; Zhen, Bo; Lee, Jeongwon; Soljacic, Marin

    2014-09-16

    An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuously so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.

  20. Influence of pulse width on decolorization efficiency of organic dye by discharge inside bubble in water

    NASA Astrophysics Data System (ADS)

    Kawano, S.; Wada, K.; Kakuta, T.; Takaki, K.; Satta, N.; Takahashi, K.

    2013-06-01

    Decolorization of an organic dye by discharge in high conductive water using a pulsed power generator and a discharge reactor was investigated. The discharge reactor consisted of a glass tube and a tungsten wire inserted into the glass tube, which was immersed in the water. Room air was injected into the glass tube to generate bubbles in the water. High voltage pulses were generated by an inductive-energy storage system using semiconductor opening switch (SOS) and by a magnetic pulse compression circuit. Fast recovery diodes were used as SOS diode in the inductive-energy storage system. The pulse width was changed in range from 10 to 1200 ns. The high voltage was applied to the tungsten wire. Indigo carmine was employed as a specimen to evaluate decolorization efficiency. Potassium nitrate was used to adjust the solution conductivity. The dye solution was successfully decolorized at 7 mS/cm conductivity. Energy efficiency for decolorization increased from 0.680 to 55.6 mg/Wh with decreasing the pulse width from 1200 to 10 ns owing to the reduction of ohmic loss.

  1. Can silicon substituted metal-free organic dyes achieve better efficiency compared to silicon free organic dyes? A computational study.

    PubMed

    Biswas, Abul Kalam; Das, Amitava; Ganguly, Bishwajit

    2015-12-14

    The power conversion efficiency of metal-free organic dyes in dye-sensitized solar cells (DSSCs) is now comparable to ruthenium-based polypyridyl and zinc-based porphyrin dyes. We have computationally investigated the structural, electronic and optical properties of a series of metal free organic dyes and their corresponding silicon substituted dyes. The DFT and TD-DFT calculations revealed that silicon substituted organic dyes have higher efficiency than the corresponding silicon free organic dyes. The computational results showed that the presence of silole units as a spacer group can significantly affect the performance of DSSCs compared to typically using thiophene as a spacer unit. These results corroborate the experimental observations reported in the literature. The time-dependent density functional theory (TDDFT) calculations performed at the CPCM–CAM-B3LYP/6-31+G* level of theory showed better agreement with the experimental absorption spectra of some reported metal free organic dyes having silole in the spacer group compared to other functionals and are employed in this study. Indoline donor based dye 5 showed a much shorter absorption spectrum (absorption peak at 425 nm) and smaller electron injection driving force (ΔGinjection = -1.77 eV) than the corresponding dye 8 containing silicon substituted indoline as a donor and a silole group as a spacer unit. λmax = 502 nm and ΔGinjection = -1.82 eV calculated for dye 8 are much larger than the corresponding silicon free dye 5. The silicon based dye 8 helps in achieving a much lower ΔGregeneration value than 5, which can facilitate the faster electron injection rate from the dye to the semiconductor TiO2. Dye 8 should also have a higher Voc value compared to other dyes (5-7) due to favourable interaction with the electrolyte (I(-)/I3(-)). The higher planarity and better conjugation in dye 8 facilitate the transfer of electrons from the dye molecules to the semiconductor TiO2. The calculations performed with phenyl protecting groups near the silicon center of the dye molecule 8 to diminish the dimerization process showed very similar optical properties as obtained with the corresponding unprotected dye system. The designed julolidine and pyrrolo-indolizine donor based dyes also showed a similar trend as observed for indoline donor based dyes. PMID:26535472

  2. Molecular design and photovoltaic performance of organic dyes containing phenothiazine for dye-sensitized solar cells.

    PubMed

    Jo, Hyo Jeong; Nam, Jung Eun; Sim, Kyoseung; Kim, Dae-Hwan; Kim, Jae Hong; Kang, Jin-Kyu

    2014-10-01

    We synthesized novel organic photosensitizers based on fluorine-substituted phenothiazine with thiophene bridge units in the chromophore for application in dye-sensitized solar cells (DSSCs). Furthermore, organic dyes with different acceptors exhibited higher molar extinction coefficients, and better light absorption at longer wavelengths. The photovoltaic properties of organic dyes composed of different acceptors in their chromophores were measured to identify their effects on the DSSC performance. The organic dye, PFSCN2 containing multi-cyanoacrylic acid as the electron acceptor, showed a power conversion efficiency of 4.67% under AM 1.5 illumination (100 mW/cm2). The retarded recombination kinetics from TiO2 electrode to electrolyte enhanced the electron life time of the organic dye, PFSCN2 in the photoanode of the DSSC. This was confirmed with impedance analysis. PMID:25942898

  3. Organic dyes based on fluorene and its derivatives

    NASA Astrophysics Data System (ADS)

    Kurdyukova, I. V.; Ishchenko, Aleksandr A.

    2012-03-01

    Data on various types of organic dyes based on fluorene and its derivatives, including polymethine, styryl, triphenylmethane, spiran, merocyanine, porphyrin and polymeric dyes, as well as azo dyes and donor-acceptor polyenes, are described systematically. The key methods for their synthesis are considered. The properties of the dyes are analyzed and summarized. The principles of development of modern functional materials based on these dyes are outlined. The use of these materials in advanced fields of science and technology such as photovoltaics, electroluminescence, nonlinear optics, holography, sensing photodynamic therapy are considered. The bibliography includes 476 references.

  4. 21 CFR 73.2087 - Carmine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2087 Carmine. (a) Identity and specifications. The color...)(2). (b) Use and restrictions. Carmine may be safely used in cosmetics generally, including cosmetics... provisions of § 70.25 of this chapter. (2) Cosmetics containing carmine that are not subject to...

  5. 21 CFR 73.2087 - Carmine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2087 Carmine. (a) Identity and specifications. The color...)(2). (b) Use and restrictions. Carmine may be safely used in cosmetics generally, including cosmetics... chapter. (2) Cosmetics containing carmine that are not subject to the requirements of § 701.3 of...

  6. 21 CFR 73.2087 - Carmine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2087 Carmine. (a) Identity and specifications. The color...)(2). (b) Use and restrictions. Carmine may be safely used in cosmetics generally, including cosmetics... provisions of § 70.25 of this chapter. (2) Cosmetics containing carmine that are not subject to...

  7. 21 CFR 73.2087 - Carmine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2087 Carmine. (a) Identity and specifications. The color...)(2). (b) Use and restrictions. Carmine may be safely used in cosmetics generally, including cosmetics... provisions of § 70.25 of this chapter. (2) Cosmetics containing carmine that are not subject to...

  8. 21 CFR 73.2087 - Carmine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2087 Carmine. (a) Identity and specifications. The color...)(2). (b) Use and restrictions. Carmine may be safely used in cosmetics generally, including cosmetics... provisions of § 70.25 of this chapter. (2) Cosmetics containing carmine that are not subject to...

  9. Computational study of diketopyrrolopyrrole-based organic dyes for dye sensitized solar cell applications.

    PubMed

    Fan, Wenjie; Tan, Dazhi; Zhang, Qijian; Wang, Huaxing

    2015-04-01

    Four diketopyrrolopyrrole (DPP)-based organic dyes utilizing the donor-π-acceptor motif were investigated by density functional theory (DFT) and time-dependent DFT (TDDFT) approaches. The four dyes were composed of different donor groups, i.e. indoline, carbazole, triphenylamine, and coumarin. We investigated the effects of the DPP unit and different donors on the spectra and electrochemical properties of the dyes, respectively. In comparison with the model dye which adopts a phenylene unit as the π-spacer, the DPP dyes all display remarkably enhanced spectral responses in the visible region of the solar spectrum. The key to this increase was the incorporation of electron-deficient DPP moieties to the molecular core, which significantly lowers LUMO levels and therefore reduces the band gap. The dye/(TiO2)46 anatase nanoparticle systems were also simulated to show the electronic structures at the interface. We studied some key properties including absorption spectra, light-harvesting efficiency, molecular orbital distributions, and injection time of electrons from the excited state of dye to the conduction band of TiO2. The dye DPP-I with indoline moiety as the electron donor demonstrates desirable energetic, electronic, and spectroscopic parameters for dye sensitized solar cells (DSSCs) applications. Our theoretical study is expected to provide valuable insights into the molecular design of novel DPP-based organic dyes for the optimizations of DSSCs. PMID:25662565

  10. Structure of acid-stable carmine.

    PubMed

    Sugimoto, Naoki; Kawasaki, Yoko; Sato, Kyoko; Aoki, Hiromitsu; Ichi, Takahito; Koda, Takatoshi; Yamazaki, Takeshi; Maitani, Tamio

    2002-02-01

    Acid-stable carmine has recently been distributed in the U.S. market because of its good acid stability, but it is not permitted in Japan. We analyzed and determined the structure of the major pigment in acid-stable carmine, in order to establish an analytical method for it. Carminic acid was transformed into a different type of pigment, named acid-stable carmine, through amination when heated in ammonia solution. The features of the structure were clarified using a model compound, purpurin, in which the orientation of hydroxyl groups on the A ring of the anthraquinone skeleton is the same as that of carminic acid. By spectroscopic means and the synthesis of acid-stable carmine and purpurin derivatives, the structure of the major pigment in acid-stable carmine was established as 4-aminocarminic acid, a novel compound. PMID:11998314

  11. Optical properties of organic dyes in nanoporous zeolite crystals

    NASA Astrophysics Data System (ADS)

    Li, Irene L.; Tang, Z. K.; Xiao, X. D.; Yang, C. L.; Ge, W. K.

    2003-09-01

    Organic dye molecules of styryl 7 were introduced into the channels of AlPO4-5 single crystals. Polarized absorption and photoluminescence spectra of the dye molecules were investigated. The polarization angle dependence of the absorption and photoluminescence intensity indicates that the dye molecules are highly oriented in the channels. The hexagonal-shaped AlPO4-5 single crystal serves as a natural microcavity for lasing action of the dye molecules. The microcavity modes of the lasing action were also demonstrated.

  12. Spectrophotometric determination of vanadium in metallurgical products with carminic acid and cetyltrimethylammonium chloride

    SciTech Connect

    Babenko, N.L.; Blokh, M. Sh.; Guseva, T.D.

    1985-11-01

    According to the authors, there is an increasing demand for sensitive, selective, and rapid methods of determining low levels of vanadium in metallurgical products, and solvent-extraction methods do not meet the requirements. The authors used an anthraquinone dye carminic acid (CA) as a chromophoric organic reagent: 1, 3, 4, 6-tetrahydroxy-2-R-5carboxy-8-methylanthra-9, 10-quinone. The CSA was cetyltrimethylammonium chloride CTA. The three-component system was examined in order to devise a reasonably sensitive and rapid method of determining vanadium in metallurgical products. A study is made of the complexing in the system formed by vanadium (IV) with CA and the CSA. The optimum conditions for the formation of the complex have been established together with the spectrophotometric characteristics. A spectrophotometric method has been devised for determining from 0.05 to 5% of vanadium in metallurgical products with a relative standard deviation of not more than 0.04.

  13. [Absolute quantification of carminic acid in cochineal extract by quantitative NMR].

    PubMed

    Sugimoto, Naoki; Tada, Atsuko; Suematsu, Takako; Arifuku, Kazunori; Saito, Takeshi; Ihara, Toshihide; Yoshida, Yuuichi; Kubota, Reiji; Tahara, Maiko; Shimizu, Kumiko; Ito, Sumio; Yamazaki, Takeshi; Kawamura, Yoko; Nishimura, Tetsuji

    2010-01-01

    A quantitative NMR (qNMR) method was applied for the determination of carminic acid. Carminic acid is the main component in cochineal dye that is widely used as a natural food colorant. Since several manufacturers only provide reagent-grade carminic acid, there is no reference material of established purity. To improve the reliability of analytical data, we are developing quantitative nuclear magnetic resonance (qNMR), based on the fact that the intensity of a given NMR resonance is directly proportional to the molar amount of that nucleus in the sample. The purities and contents of carminic acid were calculated from the ratio of the signal intensities of an aromatic proton on carminic acid to nine protons of three methyl groups on DSS-d6 used as the internal standard. The concentration of DSS-d6 itself was corrected using potassium hydrogen phthalate, which is a certified reference material (CRM). The purities of the reagents and the contents of carminic acid in cochineal dye products were determined with SI-traceability as 25.3-92.9% and 4.6-30.5% based on the crystalline formula, carminic acid potassium salt trihydrate, which has been confirmed by X-ray analysis. The qNMR method does not require a reference compound, and is rapid and simple, with an overall analysis time of only 10 min. Our approach thus represents an absolute quantitation method with SI-traceability that should be readily applicable to analysis and quality control of any natural product. PMID:20208405

  14. Enzyme immunoassay for carminic acid in foods.

    PubMed

    Yoshida, A; Takagaki, Y; Nishimune, T

    1995-01-01

    A competitive enzyme immunoassay (EIA) for carminic acid was investigated. Monoclonal anticarminic acid antibody was obtained from A/J mice immunized with carminic acid-human immunoglobulin G (IgG) conjugate. Carminic acid was extracted with distilled water from beverage, jelly, candy, pasta sauce, yogurt, or ice cream samples. Ham or fish paste samples were digested with pronase, then carminic acid was extracted from samples with sodium hydroxide solution. The extract was diluted more than 10-fold with 1% gelatin in borate buffer solution. Microtiter plates were coated with carminic acid-bovine serum albumin (BSA) conjugate or just BSA. Goat anti-mouse IgG(H+L)-peroxidase complex was used as a second antibody, and 3,3',5,5'-tetramethylbenzidine was used as a substrate for the peroxidase. The working range for quantitative analysis was 0.3-10 ng/mL, and the detection limit was 0.2 micrograms/g original sample. Recoveries of carminic acid by this assay were > 95% for milk beverage and jelly, and > 85% for yogurt and fish paste. Carminic acid was detected in 7 of 26 red-colored commercial food products and ranged from 3.5 to 356 micrograms/g. This EIA system also responded to the structural analogue of carminic acid, laccaic acid. PMID:7756895

  15. Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT.

    PubMed

    Eriksson, Susanna K; Josefsson, Ida; Ellis, Hanna; Amat, Anna; Pastore, Mariachiara; Oscarsson, Johan; Lindblad, Rebecka; Eriksson, Anna I K; Johansson, Erik M J; Boschloo, Gerrit; Hagfeldt, Anders; Fantacci, Simona; Odelius, Michael; Rensmo, Håkan

    2016-01-01

    The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface. PMID:26608268

  16. Photoproducts of carminic acid formed by a composite from Manihot dulcis waste.

    PubMed

    Antonio-Cisneros, Cynthia M; Dávila-Jiménez, Martín M; Elizalde-González, María P; García-Díaz, Esmeralda

    2015-04-15

    Carbon-TiO2 composites were obtained from carbonised Manihot dulcis waste and TiO2 using glycerol as an additive and thermally treating the composites at 800 °C. Furthermore, carbon was obtained from manihot to study the adsorption, desorption and photocatalysis of carminic acid on these materials. Carminic acid, a natural dye extracted from cochineal insects, is a pollutant produced by the food industry and handicrafts. Its photocatalysis was observed under different atmospheres, and kinetic curves were measured by both UV-Vis and HPLC for comparison, yielding interesting differences. The composite was capable of decomposing approximately 50% of the carminic acid under various conditions. The reaction was monitored by UV-Vis spectroscopy and LC-ESI-(Qq)-TOF-MS-DAD, enabling the identification of some intermediate species. The deleterious compound anthracene-9,10-dione was detected both in N2 and air atmospheres. PMID:25466082

  17. Organic polyaromatic hydrocarbons as sensitizing model dyes for semiconductor nanoparticles.

    PubMed

    Zhang, Yongyi; Galoppini, Elena

    2010-04-26

    The study of interfacial charge-transfer processes (sensitization) of a dye bound to large-bandgap nanostructured metal oxide semiconductors, including TiO(2), ZnO, and SnO(2), is continuing to attract interest in various areas of renewable energy, especially for the development of dye-sensitized solar cells (DSSCs). The scope of this Review is to describe how selected model sensitizers prepared from organic polyaromatic hydrocarbons have been used over the past 15 years to elucidate, through a variety of techniques, fundamental aspects of heterogeneous charge transfer at the surface of a semiconductor. This Review does not focus on the most recent or efficient dyes, but rather on how model dyes prepared from aromatic hydrocarbons have been used, over time, in key fundamental studies of heterogeneous charge transfer. In particular, we describe model chromophores prepared from anthracene, pyrene, perylene, and azulene. As the level of complexity of the model dye-bridge-anchor group compounds has increased, the understanding of some aspects of very complex charge transfer events has improved. The knowledge acquired from the study of the described model dyes is of importance not only for DSSC development but also to other fields of science for which electronic processes at the molecule/semiconductor interface are relevant. PMID:20135672

  18. Comparison of triphenylamine based single and double branched organic dyes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ahn, Hee Jin; Thogiti, Suresh; Cho, Jung Min; Jang, Bo Youn; Kim, Jae Hong

    2015-09-01

    A series of single and double branched organic dyes (1-4) utilizing two different acceptor groups, 2-cyanoacetic acid and rhodanine-3-acetic acid as anchoring moieties, were synthesized and characterized for their potential in dye sensitized solar cells (DSSCs). The DSSC based on sensitizer 3 has the best power conversion efficiency (3.51%) among all the devices assessed, which was 2 times higher than that of 1 with only one anchoring group. Compared to the 1-2 congeners with only one anchor, the dianchoring dyes 3-4 could suppress charge recombination more effectively and increase the electron injection efficiency, leading to a higher open-circuit voltage and short-circuit current. [Figure not available: see fulltext.

  19. Co-sensitization of organic dyes for efficient dye-sensitized solar cells.

    PubMed

    Cheng, Ming; Yang, Xichuan; Li, Jiajia; Zhang, Fuguo; Sun, Licheng

    2013-01-01

    Novel cyanine dyes, in which a tetrahydroquinoline derivative is used as an electron donor and 1-butyl-5-carboxy-3, 3-dimethyl-indol-1-ium moiety is used as an electron acceptor and anchoring group, were designed and synthesized for application in dye-sensitized solar cells. The photovoltaic performance of these solar cells depends markedly on the molecular structure of the dyes in terms of the n-hexyl chains and the methoxyl unit. Retardation of charge recombination caused by the introduction of n-hexyl chains resulted in an increase in electron lifetime. As a consequence, an improvement of open-circuit photovoltage (V(oc)) was achieved. Also, the electron injection efficiencies were improved by the introduction of methoxyl moiety, which led to a higher short-circuit photocurrent density (J(sc)). The highest average efficiency of the sensitized devices (η) was 5.6% (J(sc)=13.3 mA cm(-2), V(oc)=606 mV, and fill factor FF=69.1%) under 100 mW cm(-2) (AM 1.5G) solar irradiation. All of these dyes have very high absorption extinction coefficients and strong absorption in a relatively narrow spectrum range (500-650 nm), so one of our organic dyes was explored as a sensitizer in co-sensitized solar cells in combination with the other two other existing organic dyes. Interestingly, a considerably improved photovoltaic performance of 8.2% (J(sc)=20.1 mA cm(-2), V(oc)=597 mV, and FF=68.3%) was achieved and the device showed a panchromatic response with a high incident photon-to-current conversion efficiency exceeding 85% in the range of 400-700 nm. PMID:23193040

  20. The degradation of organic dyes by corona discharge

    SciTech Connect

    Goheen, S.C.; McCulloch, M.; Durham, D.E.; Heath, W.O.

    1992-02-01

    Several dyes in water were individually exposed to corona discharge. Light absorbance decreased for all organic dyes with time. Absorbance losses with methylene blue, malachite green, and new coccine were studied. The loss of color was followed using an in situ colorimeter and the effects of varying the current, voltage, gas phase, stirring rates, salinity, and electrode spacing were investigated. The highest reaction rates were observed using the highest current, highest voltage (up to 10kV), highest stirring rate, lowest salinity, smallest electrode spacing, and an environment containing enhanced levels of oxygen. Current was higher in the presence of nitrogen than in the presence of oxygen (for the same voltage), but the reaction of methylene blue did not proceed unless oxygen was present. These results help identify conditions using corona discharge in which dyes, and potentially other organics, can be destroyed. 22 refs., 5 figs.

  1. Organic Semiconductors based on Dyes and Color Pigments.

    PubMed

    Gsänger, Marcel; Bialas, David; Huang, Lizhen; Stolte, Matthias; Würthner, Frank

    2016-05-01

    Organic dyes and pigments constitute a large class of industrial products. The utilization of these compounds in the field of organic electronics is reviewed with particular emphasis on organic field-effect transistors. It is shown that for most major classes of industrial dyes and pigments, i.e., phthalocyanines, perylene and naphthalene diimides, diketopyrrolopyrroles, indigos and isoindigos, squaraines, and merocyanines, charge-carrier mobilities exceeding 1 cm(2) V(-1) s(-1) have been achieved. The most widely investigated molecules due to their n-channel operation are perylene and naphthalene diimides, for which even values close to 10 cm(2) V(-1) s(-1) have been demonstrated. The fact that all of these π-conjugated colorants contain polar substituents leading to strongly quadrupolar or even dipolar molecules suggests that indeed a much larger structural space shows promise for the design of organic semiconductor molecules than was considered in this field traditionally. In particular, because many of these dye and pigment chromophores demonstrate excellent thermal and (photo-)chemical stability in their original applications in dyeing and printing, and are accessible by straightforward synthetic protocols, they bear a particularly high potential for commercial applications in the area of organic electronics. PMID:27028553

  2. Magnetic separation of organic dyes using superconducting bulk magnets

    NASA Astrophysics Data System (ADS)

    Kondo, N.; Yokoyama, K.; Hosaka, S.

    Organic dyes were separated from wastewater using superconducting bulk magnets. Two types of particles, magnetic activated carbon (MAC) and reactive nanoscale iron particles (RNIP), were used as magnetic seeds. We set up a magnetic separator consisting of an acrylic pipe located between the magnetic poles of a face-to-face superconducting bulk magnet. We tested the separator under both high-gradient magnetic separation (HGMS) and open-gradient magnetic separation (OGMS). Adsorption ratios greater than 95% were achieved for sufficient concentrations of both MAC and RNIP, and separation ratios greater than 90% were achieved in HGMS and OGMS for certain dye-particle combinations.

  3. Organic synthetic dye degradation by modified pinhole discharge

    NASA Astrophysics Data System (ADS)

    Lončarić Božić, A.; Koprivanac, N.; Šunka, P.; Člupek, M.; Babický, V.

    2004-03-01

    The aim of this work was to investigate the possibility of applying a high voltage pulsed electrical discharges for dye wastewater treatment. Commercial organic monochlorotriazine reactive dye of the anthraquinone type C.I. Reactive Blue 49 (RB49) was chosen as a representative of persistent and recalcitrant wastewater pollutant. The modified pinhole discharge flow-through reactor was used to treat such type of contaminant. Applying HV pulses 30 kV, 3.15 J/pulse, 50 Hz repetition rate, complete decolorisation and partial mineralization of RB49 has been reached and demonstrated by means of UV/VIS absorption, TOC and AOX measurements.

  4. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    SciTech Connect

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the actively managed Puget Sound Naval Shipyard and Intermediate Maintenance Facility Superfund Site, where further source-control actions and monitoring are under way.

  5. Ultra-high-performance liquid chromatography/tandem high-resolution mass spectrometry analysis of sixteen red beverages containing carminic acid: identification of degradation products by using principal component analysis/discriminant analysis.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Mastroianni, Rita; Marengo, Emilio

    2015-01-15

    The study investigates the sunlight photodegradation process of carminic acid, a natural red colourant used in beverages. For this purpose, both carminic acid aqueous standard solutions and sixteen different commercial beverages, ten containing carminic acid and six containing E120 dye, were subjected to photoirradiation. The results show different patterns of degradation, not only between the standard solutions and the beverages, but also from beverage to beverage. Due to the different beverage recipes, unpredictable reactions take place between the dye and the other ingredients. To identify the dye degradation products in a very complex scenario, a methodology was used, based on the combined use of principal component analysis with discriminant analysis and ultra-high-performance liquid chromatography coupled with tandem high resolution mass spectrometry. The methodology is unaffected by beverage composition and allows the degradation products of carminic acid dye to be identified for each beverage. PMID:25149011

  6. Dynamic Characteristics of Aggregation Effects of Organic Dyes in Dye-Sensitized Solar Cells.

    PubMed

    Feng, Shuai; Li, Quan-Song; Sun, Ping-Ping; Niehaus, Thomas A; Li, Ze-Sheng

    2015-10-14

    Two organic dyes (LS-1 and IQ4) containing identical electron donor and acceptor units but distinct π units result in significantly different power conversion efficiency of the corresponding dye-sensitized solar cells (DSSCs): LS-1, 4.4%, and IQ4, 9.2%. Herein, we combine first-principle calculations and molecular dynamics to explore the aggregation effects of LS-1 and IQ4 by comparing their optical properties and intermolecular electronic couplings. The calculated absorption spectra are in good agreement with the experimental observations and reveal them to be evidently affected by the dimerization. Furthermore, molecular dynamics simulations show that steric hindrance induced by the diphenylquinoxaline unit in IQ4 can elongate the distances between intermolecular π units or electron donors, which are responsible for the fact that the intermolecular electronic coupling of LS-1 is about 10 times larger than that of IQ4. More importantly, the aggregated IQ4 remains almost perpendicular to the TiO2 surface, whereas LS-1 gradually tilts during the dynamic simulation, impacting electron injection and recombination in several ways, which clarifies why IQ4 leads to larger photocurrent and higher conversion efficiency. The deep understanding of the dye aggregation effects sheds new light on the complex factors determining DSSC function and paves the way for rational design of high-efficiency self-anti-aggregation sensitizers. PMID:26391331

  7. Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Fitri, Asmae; Benjelloun, Adil Touimi; Benzakour, Mohammed; Mcharfi, Mohammed; Hamidi, Mohammed; Bouachrine, Mohammed

    2014-11-01

    In this study, we have designed four novel organic donor-π-acceptor dyes (D1, D2, D3, D4), used for dye sensitized solar cells (DSSCs). The electron acceptor (anchoring) group was 2-cyanoacrylic for all dyes whereas the electron donor unit varied (coumarin, indoline, carbazole, triphenylamine) and the influence was investigated. These dyes, based on thiazolothiazole as π-spacer, were studied by density functional theory (DFT) and its extensible time dependant DFT (TDDFT) approaches to shed light on how the π-conjugation order influence the performance of the dyes in the DSSCs. The theoretical results have shown that the LUMO and HOMO energy levels of these dyes can be ensuring positive effect on the process of electron injection and dye regeneration. The trend of the calculated HOMO-LUMO gaps nicely compares with the spectral data. Key parameters in close connection with the short-circuit current density (Jsc), including light harvesting efficiency (LHE), injection driving force (ΔGinject.) and total reorganization energy (λtotal), were discussed. The calculated results of these dyes reveal that dye D2, with indoline as electron donor group, can be used as a potential sensitizer for TiO2 nanocrystalline solar cells due to its best electronic and optical properties and good photovoltaic parameters.

  8. Holographic investigation of DNA activated by organic dyes

    NASA Astrophysics Data System (ADS)

    Lantukh, Yu. D.; Ketsle, G. A.; Letuta, S. N.; Pashkevitch, S. N.; Alidzhanov, E. K.; Ipatov, I. V.

    2005-02-01

    The present work is devoted to investigation of holographic recording features in medium composed of bipolymer film of DNA, sensitized by organic dyes to He-Ne and YAG-Nd lasers radiation. Two types of holograms formed in the system of dye-DNA by two different modes of recording were studied: (1) transmission holograms recorded by a stationary He-Ne-laser with diffraction efficiency of order 0.02%. (2) Relief-phase holograms (RPH) recorded by a pulse YAG-Nd laser with a diffraction efficiency of order 5%. Despite distinction in efficiency and recording mechanisms the explored holograms are combined by one general property -- they disappear spontaneously during the few hours. The results of the work allow to make conclusions about mechanisms of recording and erasure of holograms, as well as to determine diffusion coefficients in dry film of DNA at a room temperature.

  9. Triphenylamine-based organic dyes with julolidine as the secondary electron donor for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Kong, Fantai; Li, Jingzhe; Fang, Xiaqin; Li, Yi; Dai, Songyuan; Chen, Qianqian; Zhang, Xianxi

    2013-12-01

    Two novel donor-donor-π-conjugated-acceptor (D-D-π-A) metal-free organic dyes (JTPA1 and JTPA2) with a julolidine moiety as the secondary electron donor for dye-sensitized solar cells (DSSCs) are synthesized. Their absorption spectra, electrochemical and photovoltaic properties are extensively investigated and compared with TPA2 dye. Transient absorption measurements show that both sensitizers are quickly regenerated and the dye cations are efficiently intercepted by the redox mediator. Both dyes show good performance as DSSC photosensitizers. In particular, a DSSC using JTPA2 with rhodanine-3-acetic acid shows better photovoltaic performance with a short-circuit photocurrent density (Jsc) of 9.30 mA cm-2, an open-circuit photovoltage (Voc) of 509 mV and a fill factor (FF) of 0.68, corresponding to an overall conversion efficiency (η) of 3.2% under AM 1.5 irradiation (100 mW cm-2). Under similar test conditions, ruthenium-based N719 dye gives an efficiency of 6.7%. Compared to TPA2, the dye regeneration rate, the short-circuit photocurrent density and the conversion efficiency of JTPA2 are doubled by introducing a julolidine unit. Our findings show that the julolidine unit may be an excellent electron donor system for organic dyes harvesting solar irradiation.

  10. Efficient degradation of organic dyes by BiAgxOy.

    PubMed

    Yu, Kai; Yang, Shaogui; Boyd, Stephen A; Chen, Hongzhe; Sun, Cheng

    2011-12-15

    A novel, simple and efficient approach for degrading organic dye, based on BiAg(x)O(y) (bismuth silver oxide, BSO), is reported for the first time. The oxidative powder BSO was prepared by simple coprecipitation of NaBiO(3)·2H(2)O and AgNO(3). The technique was evaluated for the decolorization and oxidative decomposition of Rhodamine B (RhB). The results demonstrated that mixing BSO with an aqueous solution of RhB (20 mg/L) resulted in rapid decolorization (pseudo-first-order kinetic constant k=0.5594 min(-1)) and formation of several small molecular weight products. Significant reduction in TOC (32% TOC removal in 10 min) also occurred via mineralization of RhB to CO(2)/CO(3)(2-). The reaction proceeds at ambient temperature and pressure, and requires no external energy sources or light. An advantage of the technique is that BSO can be used to degrade sequential additions of dye without significant fouling or loss of activity. The characterization of BSO and its corrosion products by XRD, FTIR, TEM, EDX and XPS revealed that Ag species were reduced to metallic silver and NaBiO(3)·2H(2)O was transformed into the Bi(2)O(2)CO(3) during the reaction process. Singlet oxygen ((1)O(2)) was identified as the major reactive species generated by BSO for the degradation of RhB and several other dyes. This novel approach could be used as a highly efficient and green technology for organic dye degradation. PMID:22018868

  11. Probing the regeneration process of triphenylamine-based organic dyes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Zhu-Zhu; Li, Quan-Song; Sun, Ping-Ping; Li, Ze-Sheng

    2015-02-01

    The regeneration processes of triphenylamine (TPA)-based dyes with cobalt redox mediator in dye-sensitized solar cells (DSSCs) have been investigated using density functional theory combined with the Marcus theory of electron transfer. Our results show that with the extension or rigidification of the oligothiophene conjugation linker the absorption spectra of TPA dyes exhibit observable red-shift in the maximum absorbance that favors light-harvesting, while the electron transfer rates for dye regeneration decrease in some degrees due to the increased activation free energies and the reduced electronic coupling energies which hampers the dye regeneration. Importantly, the undesirable influences on dye regeneration by extending the linker moiety are more significant than that by the way of rigidification. Thus, the rigidification is a better choice than the extension of the conjugated moiety for the design of D-π-A type dyes based on the properties of light-harvesting and the kinetics of dye regeneration.

  12. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Selopal, Gurpreet Singh; Wu, Hui-Ping; Lu, Jianfeng; Chang, Yu-Cheng; Wang, Mingkui; Vomiero, Alberto; Concina, Isabella; Diau, Eric Wei-Guang

    2016-01-01

    We report the synthesis and characterization of new metal-free organic dyes (namely B18, BTD-R, and CPTD-R) which designed with D-π-A concept to extending the light absorption region by strong conjugation group of π-linker part and applied as light harvester in dye sensitized solar cells (DSSCs). We compared the photovoltaic performance of these dyes in two different photoanodes: a standard TiO2 mesoporous photoanode and a ZnO photoanode composed of hierarchically assembled nanostructures. The results demonstrated that B18 dye has better photovoltaic properties compared to other two dyes (BTD-R and CPTD-R) and each dye has higher current density (Jsc) when applied to hierarchical ZnO nanocrystallites than the standard TiO2 mesoporous film. Transient photocurrent and photovoltage decay measurements (TCD/TVD) were applied to systematically study the charge transport and recombination kinetics in these devices, showing the electron life time (τR) of B18 dye in ZnO and TiO2 based DSSCs is higher than CPTD-R and BTD-R based DSSCs, which is consistent with the photovoltaic performances. The conversion efficiency in ZnO based DSSCs can be further boosted by 35%, when a compact ZnO blocking layer (BL) is applied to inhibit electron back reaction.

  13. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells

    PubMed Central

    Selopal, Gurpreet Singh; Wu, Hui-Ping; Lu, Jianfeng; Chang, Yu-Cheng; Wang, Mingkui; Vomiero, Alberto; Concina, Isabella; Diau, Eric Wei-Guang

    2016-01-01

    We report the synthesis and characterization of new metal-free organic dyes (namely B18, BTD-R, and CPTD-R) which designed with D-π-A concept to extending the light absorption region by strong conjugation group of π-linker part and applied as light harvester in dye sensitized solar cells (DSSCs). We compared the photovoltaic performance of these dyes in two different photoanodes: a standard TiO2 mesoporous photoanode and a ZnO photoanode composed of hierarchically assembled nanostructures. The results demonstrated that B18 dye has better photovoltaic properties compared to other two dyes (BTD-R and CPTD-R) and each dye has higher current density (Jsc) when applied to hierarchical ZnO nanocrystallites than the standard TiO2 mesoporous film. Transient photocurrent and photovoltage decay measurements (TCD/TVD) were applied to systematically study the charge transport and recombination kinetics in these devices, showing the electron life time (τR) of B18 dye in ZnO and TiO2 based DSSCs is higher than CPTD-R and BTD-R based DSSCs, which is consistent with the photovoltaic performances. The conversion efficiency in ZnO based DSSCs can be further boosted by 35%, when a compact ZnO blocking layer (BL) is applied to inhibit electron back reaction. PMID:26738698

  14. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells.

    PubMed

    Selopal, Gurpreet Singh; Wu, Hui-Ping; Lu, Jianfeng; Chang, Yu-Cheng; Wang, Mingkui; Vomiero, Alberto; Concina, Isabella; Diau, Eric Wei-Guang

    2016-01-01

    We report the synthesis and characterization of new metal-free organic dyes (namely B18, BTD-R, and CPTD-R) which designed with D-π-A concept to extending the light absorption region by strong conjugation group of π-linker part and applied as light harvester in dye sensitized solar cells (DSSCs). We compared the photovoltaic performance of these dyes in two different photoanodes: a standard TiO2 mesoporous photoanode and a ZnO photoanode composed of hierarchically assembled nanostructures. The results demonstrated that B18 dye has better photovoltaic properties compared to other two dyes (BTD-R and CPTD-R) and each dye has higher current density (Jsc) when applied to hierarchical ZnO nanocrystallites than the standard TiO2 mesoporous film. Transient photocurrent and photovoltage decay measurements (TCD/TVD) were applied to systematically study the charge transport and recombination kinetics in these devices, showing the electron life time (τR) of B18 dye in ZnO and TiO2 based DSSCs is higher than CPTD-R and BTD-R based DSSCs, which is consistent with the photovoltaic performances. The conversion efficiency in ZnO based DSSCs can be further boosted by 35%, when a compact ZnO blocking layer (BL) is applied to inhibit electron back reaction. PMID:26738698

  15. Interaction of protonated merocyanine dyes with amines in organic solvents

    NASA Astrophysics Data System (ADS)

    Ribeiro, Eduardo Alberton; Sidooski, Thiago; Nandi, Leandro Guarezi; Machado, Vanderlei Gageiro

    2011-10-01

    2,6-Diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate ( 1a) and 4-[(1-methyl-4(1 H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one ( 2a) were protonated in organic solvents (dichloromethane, acetonitrile, and DMSO) to form 1b and 2b, respectively. The appearance of the solvatochromic bands of 1a and 2a was studied UV-vis spectrophotometrically by deprotonation of 1b and 2b in solution in the presence of the following amines: aniline (AN), N-methylaniline (NMAN), N, N-dimethylaniline (NDAN), n-butylamine (BA), diethylamine (DEA), and triethylamine (TEA). Titrations of 1b and 2b with the amines were carried out and the binding constants were determined from the titration curves in each solvent, using a mathematical model adapted from the literature which considers the simultaneous participation of two dye: amine stoichiometries, 1:1 and 1:2. The data obtained showed the following base order for the two compounds in DMSO: BA > DEA > TEA, while aromatic amines did not cause any effect. In dichloromethane, the following base order for 1b was verified: TEA > DEA > BA ≫NDAN, while for 2b the order was: TEA > DEA > BA, suggesting that 1b is more acidic than 2b. The data in acetonitrile indicated for 1b and 2b the following order for the amines: DEA > TEA > BA. The diversity of the experimental data were explained based on a model that considers the level of interaction of the protonated dyes with the amines to be dependent on three aspects: (a) the basicity of the amine, which varies according to their molecular structure and the solvent in which it is dissolved, (b) the molecular structure of the dye, and (c) the solvent used to study the system.

  16. Theoretical investigation of new thiazolothiazole-based D-π-A organic dyes for efficient dye-sensitized solar cell.

    PubMed

    Fitri, Asmae; Benjelloun, Adil Touimi; Benzakour, Mohammed; Mcharfi, Mohammed; Hamidi, Mohammed; Bouachrine, Mohammed

    2014-04-24

    Novel ten organic donor-π-acceptor dyes (D-π-A), used for dye-sensitized solar cells (DSSCs), based on thiazolothiazole were studied by density functional theory (DFT) and time dependant DFT (TDDFT) approaches to shed light on how the π-conjugation order influence the performance of the dyes. The electron acceptor (anchoring) group was 2-cyanoacrylic for all dyes whereas the electron-donor unit varied and the influence was investigated. The theoretical results have shown that TDDFT calculations using the Coulomb attenuating method CAM-B3LYP with the polarized split-valence 6-31G (d,p) basis sets and the polarizable continuum model (PCM) were reasonably capable of predicting the excitation energies, the absorption and the emission spectra of the molecules. The LUMO and HOMO energy levels of these dyes can ensure a positive effect on the process of electron injection and dye regeneration. The trend of the calculated HOMO-LUMO gaps nicely compares with the spectral data. Key parameters in close connection with the short-circuit current density (Jsc), including light-harvesting efficiency (LHE), injection driving force (ΔG(inject)) and total reorganization energy (λtotal), were discussed. In addition, the estimated values of open-circuit photovoltage (Voc) for these dyes were presented. The calculated results of these dyes reveal that the D6 dye can be used as a potential sensitizer for TiO2 nanocrystalline solar cells due to its best electronic and optical properties and good photovoltaic parameters. PMID:24513712

  17. Catalytic degradation of organic dyes using biosynthesized silver nanoparticles.

    PubMed

    Vidhu, V K; Philip, Daizy

    2014-01-01

    The green synthesis of metallic nanoparticles paved the way to improve and protect the environment by decreasing the use of toxic chemicals and eliminating biological risks in biomedical applications. Plant mediated synthesis of metal nanoparticles is gaining more importance owing to its simplicity, rapid rate of synthesis of nanoparticles and eco-friendliness. The present article reports an environmentally benign and unexploited method for the synthesis of silver nanocatalysts using Trigonella foenum-graecum seeds, which is a potential source of phytochemicals. The UV-visible absorption spectra of the silver samples exhibited distinct band centered around 400-440 nm. The major phytochemicals present in the seed extract responsible for the formation of silver nanocatalysts are identified using FTIR spectroscopy. The report emphasizes the effect of the size of silver nanoparticles on the degradation rate of hazardous dyes, methyl orange, methylene blue and eosin Y by NaBH4. The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer process is established in the present study. PMID:24210247

  18. Hexagonal microlasers based on organic dyes in nonoporous crystals

    NASA Astrophysics Data System (ADS)

    Nöckel, Jens U.; Laeri, Franco

    2000-03-01

    Zeolites such as nanoporous AlPO_4-5 are molecular sieves which can host a wide variety of laser active dyes that fit into the channel pores. The low losses and regular matrix arrangement of the host material make optical applications feasible in which a microscopic order is imposed on the active guest molecules. The morphology of the resulting zeolite crystals is that of a hexagonal microcylinder, provided the size and concentration of the organic dyes (pyridine 2, and a new rhodamine-B derivative) can be accomodated. Lasing at optical wavelengths has been achieved in such crystals of diameters down to 4.5 μm, with the crystal facets forming a self-assembled resonator for whispering-gallery modes. In terms of pump needed to reach lasing threshold, molecular sieve microlasers are comparable to VCSELs. Wave simulations agree with the experimental characterization of the lasing properties. Whereas the spectral structure furthermore agrees with a ray picture, strong diffractive corrections to ray expectations are revealed for the emission directionality. The corners between adjacent facets of the crystal are sharp on the scale of the wavelength, and the resulting deviations from ray optics are discussed.

  19. Tri-Branched Tri-Anchoring Organic Dye for Visible Light-Responsive Dye-Sensitized Photoelectrochemical Water-Splitting Cells

    NASA Astrophysics Data System (ADS)

    Jae-Hong Kim,; Kwang-Soon Ahn,

    2010-06-01

    A tri-branched tri-anchoring organic dye (Dye 2) consisting of one donor (D) in the center, three π bridges, and three acceptor (A) groups in the order of D-π-A was designed and each A group ended with a COOH anchoring group. The Dye 2-sensitized TiO2 exhibited a significantly improved photoelectrochemical response under visible light illumination, compared to TiO2 sensitized with a mono-anchoring dye (Dye 1). It is due to the enhanced optical density and more efficient interfacial electron transfer from the photoexcited dye to the TiO2.

  20. Case study on the destruction of organic dyes in supercritical water

    SciTech Connect

    LaJeunesse, C.A.; Rice, S.F.

    1994-11-01

    Organic dyes, which were used in Navy shells to mark ships and structures, need to be disposed of without burning. A study was undertaken to assess the feasibility of using supercritical water oxidation to destroy organic dyes. Experimental destruction efficiencies, product analyses, and process configuration are reported.

  1. Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes.

    PubMed

    Kakiage, Kenji; Aoyama, Yohei; Yano, Toru; Oya, Keiji; Kyomen, Toru; Hanaya, Minoru

    2015-04-14

    The co-sensitization of organic silyl-anchor dyes in dye-sensitized solar cells (DSSCs) using carbazole and coumarin dyes with organosilicon tethers for binding to titanium dioxide has been examined. We have succeeded in fabricating a high-performance DSSC with a light-to-electric energy conversion efficiency of 12.8% under one sun simulated solar irradiation. PMID:25760960

  2. Nano- and microparticles of organic fluorescent dyes: self-organization and optical properties.

    PubMed

    Fery-Forgues, Suzanne; Abyan, Mouhammad; Lamere, Jean-François

    2008-01-01

    Organic nanostructured materials are of increasing interest for applications in the fields of bioanalysis, photocatalysis, photonics, and organic light-emitting diodes. However, their preparation is still difficult to control and their optical properties are inadequately known. A solvent-exchange process called the "reprecipitation method" was used here to prepare nano- and microcrystals from fluorescent dyes belonging, for example, to the coumarin and nitrobenzoxadiazole (NBD) series. Typically, the dyes were dissolved in a hydrophilic organic solvent and then suddenly placed in an aqueous environment, where they spontaneously produce molecular assemblies. According to the self-association properties of the dyes and to the experimental conditions used, the nano- and microcrystals obtained exhibited different sizes and shapes, as observed by fluorescence and electron microscopy. In some cases, the crystal habit was controlled by adding some additives to the reprecipitation medium. The overall optical properties of the free-standing particles in suspension were generally quite close to those of the dissolved dyes. However, strong distortions of the absorption and emission spectra were observed for crystals grown in the presence of ionic additives. Under the fluorescence microscope, individual microcrystals may show peculiar emission characteristics, displaying bright and dark zones, or behaving like tiny optical fibers. PMID:18596359

  3. Benzo[a]carbazole-Based Donor-π-Acceptor Type Organic Dyes for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Qian, Xing; Zhu, Yi-Zhou; Chang, Wen-Ying; Song, Jian; Pan, Bin; Lu, Lin; Gao, Huan-Huan; Zheng, Jian-Yu

    2015-05-01

    A novel class of metal-free organic dyes based on benzo[a]carbazole have been designed, synthesized, and used in dye-sensitized solar cells for the first time. These types of dyes consisted of a cyanoacrylic acid moiety as the electron acceptor/anchoring group and different electron-rich spacers such as thiophene (JY21), furan (JY22), and oligothiophene (JY23) as the π-linkers. The photophysical, electrochemical, and photovoltaic properties, as well as theoretical calculations of these dyes were investigated. The photovoltaic performances of these dyes were found to be highly relevant to the π-conjugated linkers. In particular, dye JY23 exhibited a broad IPCE response with a photocurrent signal up to about 740 nm covering the most region of the UV-visible light. A DSSC based on JY23 showed the best photovoltaic performance with a Jsc of 14.8 mA cm(-2), a Voc of 744 mV, and a FF of 0.68, achieving a power conversion efficiency of 7.54% under standard AM 1.5 G irradiation. PMID:25874363

  4. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres.

    PubMed

    Fu, Jianwei; Xin, Qianqian; Wu, Xuechen; Chen, Zhonghui; Yan, Ya; Liu, Shujun; Wang, Minghuan; Xu, Qun

    2016-01-01

    Polydopamine (PDA) microspheres, synthesized by a facile oxidation polymerization route, were evaluated as a potential adsorbent for selective adsorption and separation of organic dyes. The adsorption processes towards nine water-soluble dyes (anionic dyes: methyl orange (MO), eosin-Y (EY), eosin-B (EB), acid chrome blue K (ACBK), neutral dye: neutral red (NR), and cationic dyes: rhodamine B (RhB), malachite green (MG), methylene blue (MB), safranine T (ST)) were thoroughly investigated. The adsorption selectivity of organic dyes onto PDA microspheres was successfully applied for the separation of dyes mixtures. Various influential factors such as solution pH, temperature, and contact time were employed to ascertain the optimal condition for adsorption of representative organic dyes including MB, MG and NR. The pseudo-first-order and pseudo-second-order kinetics models were used to fit the adsorption kinetics process. Five isothermal adsorption models (Langmuir, Dubnin-Radushkevich, Temkin, Freundlich and Harkins-Jura) were used to investigate the adsorption thermodynamics properties. The results showed that the PDA microspheres owned good selective adsorption ability towards cationic dyes. The adsorption kinetics process conformed to the pseudo-second-order kinetics model and the Langmuir isotherm model was more appropriate for tracing the adsorption behavior than other isotherm models. Thus, we can conclude PDA microspheres may be a high-efficiency selective adsorbent towards some cationic dyes. PMID:26407057

  5. Advanced organic dye for high-speed, high-density optical media

    NASA Astrophysics Data System (ADS)

    Kodaira, Takuo; Matsuda, Isao; Somei, Hidenori; Tsuzuki, Takeo; Yokoyama, Daizo; Endo, Akihisa; Takeguchi, Kazunobu; Kojo, Shinichi; Miyazawa, Fuyuki; Otsu, Takeshi; Murai, Wakaaki; Hattori, Masashi; Shimomai, Kenichi; Oshita, Junji; Asano, Sho; Shimizu, Atsuo; Fujii, Toru

    2015-09-01

    Advances in organic dye progress are indispensable for high-speed, high-density recording of recordable Blu-ray Disc™ (BD-R) low-to-high (LTH) discs without a low elastic modulus layer. The optimal physical properties of the organic dyes, i.e., a low decomposition calorific value, a low decomposition temperature, and a large n-value, were determined, and a dye with these properties was synthesized. A BD-R disc using the dye conformed to the BD-R LTH standard at 8× recording and ever higher speeds should be possible. Furthermore, the possibility of 33 GB/layer high-density recording was suggested.

  6. 21 CFR 73.100 - Cochineal extract; carmine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... destroy all viable Salmonella microorganisms. Pasteurization or such other treatment is deemed to permit... treatment to render the carmine and cochineal extract free of viable Salmonella microorganisms,...

  7. 21 CFR 73.100 - Cochineal extract; carmine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... destroy all viable Salmonella microorganisms. Pasteurization or such other treatment is deemed to permit... treatment to render the carmine and cochineal extract free of viable Salmonella microorganisms,...

  8. 21 CFR 73.100 - Cochineal extract; carmine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... destroy all viable Salmonella microorganisms. Pasteurization or such other treatment is deemed to permit... treatment to render the carmine and cochineal extract free of viable Salmonella microorganisms,...

  9. 21 CFR 73.100 - Cochineal extract; carmine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... destroy all viable Salmonella microorganisms. Pasteurization or such other treatment is deemed to permit... treatment to render the carmine and cochineal extract free of viable Salmonella microorganisms,...

  10. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water.

    PubMed

    Mohamed, Alaa; El-Sayed, Ramy; Osman, T A; Toprak, M S; Muhammed, M; Uheida, A

    2016-02-01

    In this study highly efficient photocatalyst based on composite nanofibers containing polyacrylonitrile (PAN), carbon nanotubes (CNT), and surface functionalized TiO2 nanoparticles was developed. The composite nanofibers were fabricated using electrospinning technique followed by chemical crosslinking. The surface modification and morphology changes of the fabricated composite nanofibers were examined through SEM, TEM, and FTIR analysis. The photocatalytic performance of the composite nanofibers for the degradation of model molecules, methylene blue and indigo carmine, under UV irradiation in aqueous solutions was investigated. The results demonstrated that high photodegradation efficiency was obtained in a short time and at low power intensity compared to other reported studies. The effective factors on the degradation of the dyes, such as the amount of catalyst, solution pH and irradiation time were investigated. The experimental kinetic data were fitted using pseudo-first order model. The effect of the composite nanofibers as individual components on the degradation efficiency of MB and IC was evaluated in order to understand the overall photodegradation mechanism. The results obtained showed that all the components possess significant effect on the photodegradation activity of the composite nanofibers. The stability studies demonstrated that the photodegradation efficiency can remain constant at the level of 99% after five consecutive cycles. PMID:26615225

  11. Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions.

    PubMed

    de Oliveira Brito, Suzana Modesto; Andrade, Heloysa Martins Carvalho; Soares, Luciana Frota; de Azevedo, Rafael Pires

    2010-02-15

    The adsorption of methylene blue and indigo carmine, respectively a basic and an acid dye, was studied on raw Brazil nut shells. The dye removal from solution by BNS was governed by: (i) polarization effects between the colored ions and the surface sites, leading to physisorbed species due to weak electrostatic forces and (ii) diffusion limitations affecting the kinetic parameters. Thermodynamic studies showed that the adsorption of methylene blue and of indigo carmine was spontaneous and exothermic occurring with entropy decrease. H(0) values confirmed the physical nature of the adsorption processes. The adsorption followed the Langmuir model and pseudo-second order kinetics over the entire range of tested concentrations but the process was controlled by intraparticle diffusion. The maximal uptakes were 7.81 mg g(-1), for methylene blue, and 1.09 mg g(-1) for indigo carmine, at room temperature. These results indicate that Brazil nut shells may be useful as adsorbent either for basic or acid dyes. PMID:19781853

  12. Preparation and spectral characterization of polymeric nanocapsules containing DR1 organic dye

    NASA Astrophysics Data System (ADS)

    Sharifimehr, Mohammad Reza; Ghanbari, Khadijeh; Ayoubi, Kazem; Mohajerani, Ezedin

    2015-07-01

    In order to provide necessary degree of freedom for organic dye molecules in optical applications and also for safety improvement, water insoluble Disperse Red 1 (DR1) dye molecules were placed inside the polymeric nanocapsules along with suitable surfactants and using controlled phase-separation method. TEM images were used to investigate the morphology of prepared nanocapsules. Total dye concentration for a solution consist of obtained polymeric nanocapsules was determined using decomposition of nanocapsules and a reference absorption spectrum. Absorption spectrum of a solution containing DR1 and dichloromethane was also compared with prepared nanocapsules at the same dye concentration, thereby a red-shift in absorption spectrum was detected.

  13. Femtosecond spectroscopic study of carminic acid DNA interactions

    NASA Astrophysics Data System (ADS)

    Comanici, Radu; Gabel, Bianca; Gustavsson, Thomas; Markovitsi, Dimitra; Cornaggia, Christian; Pommeret, Stanislas; Rusu, Catalin; Kryschi, Carola

    2006-06-01

    Photo-excited carminic acid and carminic acid-DNA complexes in a buffer solution at pH 7 have been examined using a variety of spectroscopy techniques, that are in particular, the femtosecond resolved fluorescence upconversion and transient absorption spectroscopy. The observation of dual fluorescence emission, one peaks at 470 nm and the other at 570 nm, indicates to an excited-state (S 1) intramolecular proton transfer (ESIPT). A detailed analysis of the transient absorption measurements of an aqueous carminic-acid solution at pH 7 yielded four lifetimes for the excited-state (S 1): 8, 15, 33 and 46 ps. On the other hand, only two lifetimes, 34 and 47 ps, were observed by fluorescence upconversion spectroscopy because of the detection limitation to the long wavelength edge of the carminic-acid spectrum. The four S 1 lifetimes were ascribed to the coexistence of respectively two tautomer (normal and tautomer) forms of carminic acid, in the non-dissociated state (CAH) and in the deprotonated state (CA -). The fluorescence upconversion measurements of carminic acid-DNA complexes exhibited a prolongation of the fluorescence lifetimes. This effect was accepted as evidence for the formation of intercalation complexes between the carminic acid and the DNA. The intercalative binding of the carminic acid to DNA was confirmed by the fluorescence titration experiments resulting to a binding constant of 2 × 10 5 M -1 that is typical for anthracycline-DNA complexes.

  14. [1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells.

    PubMed

    Capodilupo, Agostina L; Fabiano, Eduardo; De Marco, Luisa; Ciccarella, Giuseppe; Gigli, Giuseppe; Martinelli, Carmela; Cardone, Antonio

    2016-04-15

    Three new metal-free organic dyes with the [1]benzothieno[3,2-b]benzothiophene (BTBT) π-bridge, having the structure donor-π-acceptor (D-π-A) and labeled as 19, 20 and 21, have been designed and synthesized for application in dye-sensitized solar cells (DSSC). Once the design of the π-acceptor block was fixed, containing the BTBT as the π-bridge and the cyanoacrylic group as the electron acceptor and anchoring unit, we selected three donor units with different electron-donor capacity, in order to assemble new chromophores with high molar extinction coefficients (ε), whose absorption features well reflect the good performance of the final DSSC devices. Starting with the 19 dye, which shows a molar extinction coefficient ε of over 14,000 M(-1) cm(-1) and takes into account the absorption maximun at the longer wavelength, the substitution of the BFT donor unit with the BFA yields a great enhancement of absorptivity (molar extinction coefficient ε > 42,000 M(-1) cm(-1)), until reaching the higher value (ε > 69,000 M(-1) cm(-1)) with the BFPhz donor unit. The good general photovoltaic performances obtained with the three dyes highlight the suitable properties of electron-transport of the BTBT as the π-bridge in organic chromophore for DSSC, making this very cheap and easy to synthesize molecule particularly attractive for efficient and low-cost photovoltaic devices. PMID:26986652

  15. Combined photoacoustic and fluorescent quenching studies on organic dyes

    NASA Astrophysics Data System (ADS)

    Viappiani, Cristiano; Small, Jeanne R.

    1992-04-01

    The development of deconvolution techniques in pulsed-laser, time-resolved photoacoustics has opened the possibility of accurately distinguishing between processes occurring on different time scales, and has given photoacoustics better resolution in determining reaction enthalpies and quantum yields. While fluorescent signals are usually generated by a single de- excitation pathway in the fluorophore, photoacoustic signals usually arise from different sources, such as excited singlet and triplet deactivation, occurring on well-distinguished time scales. The understanding of the effect of quenching on photoacoustic signals therefore requires careful analysis of the data. In this work, a model is developed to describe the effect of fluorescence quenching on photoacoustic signals. The model takes advantage of the time resolution in pulsed-laser photoacoustics. Both static and dynamic quenching are taken into account. Important photophysical parameters (fluorescence and intersystem crossing quantum yields, the bimolecular quenching rate constant, and the volume of the sphere of action) appear in the expressions describing the dependence of photoacoustic signal on quencher concentration. Data from both steady-state fluorescence and time-resolved photoacoustic quenching measurements are analyzed simultaneously using a set of equations containing common parameters. Experimental data on the quenching of organic dyes are presented which support the validity of the model.

  16. High-performance dipolar organic dyes with an electron-deficient diphenylquinoxaline moiety in the π-conjugation framework for dye-sensitized solar cells.

    PubMed

    Li, Sie-Rong; Lee, Chuan-Pei; Kuo, Hui-Tung; Ho, Kuo-Chuan; Sun, Shih-Sheng

    2012-09-17

    We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye-sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron-deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35 %, which translates to approximately 79 % of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO(2) surface, rapid dye regeneration, and effective retardation of charge recombination. PMID:22890837

  17. Carminic acid-promoted oxygen radical damage to lipid and carbohydrate.

    PubMed

    Gutteridge, J M; Quinlan, G J

    1986-01-01

    The food colouring carminic acid redox cycles to produce free radicals. These radicals, in the presence of trace amounts of iron salts, readily damage membrane lipid and degrade the carbohydrate deoxyribose. Damage to membrane lipid appears to involve mainly organic oxygen radicals such as alkoxy and peroxy radicals, whereas that to deoxyribose implicates the hydroxyl radical formed in a Fenton-type reaction. Antioxidants and iron chelators prevent such damage. PMID:3803637

  18. Development and validation of a quantitative method for determination of carmine (E120) in foodstuffs by liquid chromatography: NMKL Collaborative Study.

    PubMed

    Merino, L; Edberg, U; Tidriks, H

    1997-01-01

    A liquid chromatographic method for quantitative determination of carmine (E120) in different foodstuffs is described. Qualitative and semiquantitative methods for analysis of carmine and other related dyes are well established. However, quantitative methods available are based mainly on enzymatic reactions that are time-consuming or specific for analysis of carminic acid in yoghurt. In the method developed and validated here, carminic acid is extracted by boiling the sample with HCl, purified on a solid-phase extraction cartridge, and injected on a C18 analytical column. The method was evaluated by an internal analytical quality control and a collaborative study in which 11 laboratories from the Nordic countries participated. The food samples analyzed were fruit jelly, liqueur, juice, yoghurt, and ice cream. Materials were distributed to participants as uniform level and split level. Validation showed that the proposed method is well suited for quantitative determination of carmine. The detection limit is 0.1 mg/L. The mean relative standard deviation for reproducibility varies from 7.9 to 11.7%. The proposed method is simple and relatively fast compared with previously published methods. PMID:9325582

  19. A New Organic Dye-Based Staining for The Detection of Plant DNA in Agarose Gels.

    PubMed

    Sönmezoğlu, Özlem Ateş; Özkay, Kerime

    2015-01-01

    Ethidium bromide (EtBr) is used to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. We investigated N-719, which is a visible, reliable and organic Ruthenium-based dye, and five fluorescent alternatives for staining plant DNA. For prestaining and poststaining, N-719, GelRed, and SYBR Safe stained both DNA and PCR product bands as clearly as EtBr. SYBR Green I, methylene blue, and crystal violet were effective for poststaining only. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. Consequently, organic dyes can be used as alternatives to EtBr in plant biotechnology studies. PMID:26158569

  20. Influence of selected fluorescent dyes on small aquatic organisms

    NASA Astrophysics Data System (ADS)

    Rowiński, Paweł; Chrzanowski, Marcin

    2011-02-01

    Rhodamine B and Rhodamine WT are fluorescent dyes commonly used as tracers in hydrological investigations. Since introducing intensely red substances into rivers raises understandable doubts of ecological nature, the authors aimed at examining the influence of these dyes on small water fauna using bioindication methods. Quantitative results, calculated with the use of Bliss-Weber probit statistical method, were achieved by means of standardized ecotoxicological tests containing ready-to-hatch resting forms of fairy shrimp (Thamnocephalus platyurus). Qualitative studies included observation of water flea crustacean (Daphnia magna) and horned planorbis snail (Planorbis corneus), both typically present in rivers and representative for temperate climate, as well as guppy fish (Poecilla reticulata), paramecium protozoan (Paramaecium caudatum) and the above-mentioned fairy shrimp. The investigation revealed that both dyes in concentrations used for hydrological purposes are low enough to exert almost no toxic impact on water fauna considered.

  1. The electronic structure engineering of organic dye sensitizers for solar cells: The case of JK derivatives.

    PubMed

    Zhang, Cai-Rong; Ma, Jin-Gang; Zhe, Jian-Wu; Jin, Neng-Zhi; Shen, Yu-Lin; Wu, You-Zhi; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-11-01

    The design and development of novel dye sensitizers are effective method to improve the performance of dye-sensitized solar cells (DSSCs) because dye sensitizers have significant influence on photo-to-current conversion efficiency. In the procedure of dye sensitizer design, it is very important to understand how to tune their electronic structures and related properties through the substitution of electronic donors, acceptors, and conjugated bridges in dye sensitizers. Here, the electronic structures and excited-state properties of organic JK dye sensitizers are calculated by using density functional theory (DFT) and time dependent DFT methods. Based upon the calculated results, we investigated the role of different electronic donors, acceptors, and π-conjugated bridges in the modification of electronic structures, absorption properties, as well as the free energy variations for electron injection and dye regeneration. In terms of the analysis of transition configurations and molecular orbitals, the effective chromophores which are favorable for electron injection in DSSCs are addressed. Meanwhile, considering the absorption spectra and free energy variation, the promising electronic donors, π-conjugated bridges, and acceptors are presented to design dye sensitizers. PMID:26116996

  2. Organic sensitizers containing julolidine moiety for dye-sensitized solar cells.

    PubMed

    Kim, Dong Wook; Choi, Jin Joo; Kang, Man Ku; Kang, Yongku; Lee, Changjin

    2008-09-01

    We prepared organic sensitizers (S1 and S2) containing julolidine moiety as a donor, phenyl or phenylene thiophene units as a conjugation bridge, and cyano acetic acid as an acceptor for dye sensitized solar cells. S1 exhibited two absorption maxima at 441 nm (epsilon = 26,200) and 317 nm (epsilon = 15,500) due to the pi-pi transition of the dye molecule. S2 dyes with an additional thiophene unit showed the absorption maximum extended by 18 nm. DSSCs based on S1 dye achieved 2.66% of power conversion efficiency with 8.3 mA cm(-2) of short circuit current, 576 mV of open circuit voltage, and 0.56 of fill factor. DSSCs using S2 dye with a longer conjugation attained only 1.48% of power conversion efficiency. The 0.21 V lower driving force for regeneration of the S2 dye compared to the Si dye is one of the reasons for low conversion efficiency of the S2 dye. PMID:19049103

  3. Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators.

    PubMed

    Wilson, L R; Richards, B S

    2009-01-10

    A method for measuring the photoluminescent quantum yields (PLQY) of luminescent organic dyes is presented. The self-absorption probability calculated at different dye concentrations is used to determine the absolute quantum yield from the observed values. The results for a range of commercially available dyes show high quantum yields, even at high concentrations, and an absence of quenching. The PLQY of several dye mixtures are also presented. The results indicate an absence of any reduction of PLQY in a dye mixture as compared with the individual PLQY of the dyes. PMID:19137031

  4. Hierarchical Organization of Organic Dyes and Protein Cages into Photoactive Crystals.

    PubMed

    Mikkilä, Joona; Anaya-Plaza, Eduardo; Liljeström, Ville; Caston, Jose R; Torres, Tomas; Escosura, Andrés de la; Kostiainen, Mauri A

    2016-01-26

    Phthalocyanines (Pc) are non-natural organic dyes with wide and deep impact in materials science, based on their intense absorption at the near-infrared (NIR), long-lived fluorescence and high singlet oxygen ((1)O2) quantum yields. However, Pcs tend to stack in buffer solutions, losing their ability to generate singlet oxygen, which limits their scope of application. Furthermore, Pcs are challenging to organize in crystalline structures. Protein cages, on the other hand, are very promising biological building blocks that can be used to organize different materials into crystalline nanostructures. Here, we combine both kinds of components into photoactive biohybrid crystals. Toward this end, a hierarchical organization process has been designed in which (a) a supramolecular complex is formed between octacationic zinc Pc (1) and a tetraanionic pyrene (2) derivatives, driven by electrostatic and π-π interactions, and (b) the resulting tetracationic complex acts as a molecular glue that binds to the outer surface anionic patches of the apoferritin (aFt) protein cage, inducing cocrystallization. The obtained ternary face-centered cubic (fcc) packed cocrystals, with diameters up to 100 μm, retain the optical properties of the pristine dye molecules, such as fluorescence at 695 nm and efficient light-induced (1)O2 production. Considering that (1)O2 is utilized in important technologies such as photodynamic therapy (PDT), water treatments, diagnostic arrays and as an oxidant in organic synthesis, our results demonstrate a powerful methodology to create functional biohybrid systems with unprecedented long-range order. This approach should greatly aid the development of nanotechnology and biomedicine. PMID:26691783

  5. Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes.

    PubMed

    Fan, Suhua; Lu, Xuefeng; Sun, Hong; Zhou, Gang; Chang, Yuan Jay; Wang, Zhong-Sheng

    2016-01-14

    To obtain a broad spectral response in the visible region, TiO2 film is co-sensitized with a porphyrin dye (FNE57 or FNE59) and an organic dye (FNE46). It is found that the stepwise co-sensitization in one single dye solution followed by in another single dye solution is better than the co-sensitization in a cocktail solution in terms of photovoltaic performance. The stepwise co-sensitization first with a porphyrin dye and then with an organic dye outperforms that in a reverse order. DSSC devices based on co-sensitizers FNE57 + FNE46 and FNE59 + FNE46 with a quasi-solid-state gel electrolyte generate power conversion efficiencies of 7.88% and 8.14%, respectively, which exhibits remarkable efficiency improvements of 61% and 35%, as compared with devices sensitized with the porphyrin dyes FNE57 and FNE59, respectively. Co-sensitization brings about a much improved short-circuit photocurrent due to the complementary absorption of the two sensitizers. The observed enhancement of incident monochromatic photon-to-electron conversion efficiency from individual dye sensitization to co-sensitization is attributed to the improved charge collection efficiency rather than to the light harvesting efficiency. Interestingly, the open-circuit photovoltage for the co-sensitization system comes between the higher voltage for the porphyrin dye (FNE57 or FNE59) and the lower voltage for the organic dye (FNE46), which is well correlated with their electron lifetimes. This finding indicates that not only the spectral complementation but also the electron lifetime should be considered to select dyes for co-sensitization. PMID:26651077

  6. Synthesis, linear optical, non-linear optical, thermal and mechanical characterizations of dye-doped semi-organic NLO crystals

    NASA Astrophysics Data System (ADS)

    Sesha Bamini, N.; Vidyalakshmy, Y.; Choedak, Tenzin; Kejalakshmy, N.; Muthukrishnan, P.; Ancy, C. J.

    2015-06-01

    Organic laser dyes Coumarin 485, Coumarin 540 and Rhodamine 590 Chloride were used to dope potassium acid phthalate crystals (KAP). Dye-doped KAP crystals with different dye concentrations such as 0.01 mM, 0.03 mM, 0.05 mM, 0.07 mM and 0.09 mM (in the KAP growth solution) were grown. The linear optical, non-linear optical, mechanical and thermal characterizations of dye-doped KAP crystals were studied and compared to understand the effect of dye and dye concentration on the KAP crystal. Absorption and emission studies of KAP and dye-doped KAP single crystals indicated the inclusion of the dye into the KAP crystal lattice. The effect of dye and its concentration on the SHG efficiency of the KAP crystal was studied using the Kurtz and Perry powder technique. It was observed that the absorption maximum wavelength and concentration of the dye used for doping the KAP single crystal decided the SHG efficiency of the dye-doped KAP single crystals. The mechanical hardness of the dye-doped and undoped (pure) KAP single crystals were studied using the Vickner’s microhardness test. It was observed that doping the KAP crystals with the laser dyes changed them from softer material to harder material. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with laser dyes.

  7. White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations.

    PubMed

    Lu, Ruoying; Ma, Li; He, Feng; Yu, Dong; Fan, Ruozhi; Zhang, Yangming; Long, Zheping; Zhang, Xiaoyu; Yang, Yang

    2016-03-01

    The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green. PMID:26684007

  8. Novel D-D-π-A organic dyes based on triphenylamine and indole-derivatives for high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Xunshan; Cao, Zhencai; Huang, Hongli; Liu, Xuxu; Tan, Yingzi; Chen, Huajie; Pei, Yong; Tan, Songting

    2014-02-01

    Two novel D-D-π-A organic dyes (SD1 and SD2) based on triphenylamine and indole donors are designed and synthesized for dye-sensitized solar cells (DSSCs). For the first time, an SCN group is introduced into a metal-free organic dye SD2. The effects of the SCN group on the photophysical, electrochemical and photovoltaic properties are investigated. It is found that the introduction of SCN group to the SD2 molecule leads to a higher molar extinction coefficient and better photovoltaic performances compared with dye SD1. Under AM 1.5G irradiation (100 mW cm-2), a maximum power conversion efficiency (η) of 6.74% is obtained for the SD2-based DSSCs, higher than that of SCN-free dyes SD1 (η = 5.53%). These results have demonstrated that the corporation of SCN group into the organic dye will be an effective approach to develop high-performance metal-free organic dyes.

  9. Adsorption of azo dyes from aqueous solution by the hybrid MOFs/GO.

    PubMed

    Li, Ling; Shi, Zhennan; Zhu, Hongyang; Hong, Wei; Xie, Fengwei; Sun, Keke

    2016-01-01

    In this work, a hybrid of chromium(III) terephthalate metal organic framework (MIL-101) and graphene oxide (GO) was synthesized and its performance in the removal of azo dyes (Amaranth, Sunset Yellow, and Carmine) from water was evaluated. The adsorption for azo dyes on MIL-101/GO was compared with that of MIL-101, and it was found that the addition of GO enhanced the stability of MIL-101 in water and increased the adsorption capacity. The maximum adsorption capacities of MIL-101/GO were 111.01 mg g(-1) for Amaranth, 81.28 mg g(-1) for Sunset Yellow, and 77.61 mg g(-1) for Carmine. The adsorption isotherms and kinetics were investigated, showing that the adsorption fits the Freundlich isotherm and the pseudo-second-order kinetic model. The recyclability of MIL-101/GO was shown by the regeneration by acetone. The high adsorption capability and excellent reusability make MIL-101/GO a competent adsorbent for the removal dyes from aqueous solution. PMID:27054746

  10. Laser behavior and photostability characteristics of organic dye doped silicate gel materials.

    PubMed

    Knobbe, E T; Dunn, B; Fuqua, P D; Nishida, F

    1990-06-20

    The solgel process is a solution synthesis technique which provides a low temperature chemical route for the preparation of rigid transparent matrix materials. Luminescent organic dye molecules have been incorporated via the solgel method into organically modified silicate (ORMOSIL) polymer host matrices. Optical gain, laser oscillation, and photostability of rhodamine and coumarin dyes doped into ORMOSIL gels are reported. The gel laser materials exhibit peak gain values of 40 cm(-1) and show improved photostability with respect to comparable polymeric host materials. PMID:20567322

  11. An Efficient Approach Towards the Photodegradation of Indigo Carmine by Introducing ZnO/CuO/Si Ternary Nanocomposite as Photocatalyst

    NASA Astrophysics Data System (ADS)

    Dhara, Arnab; Baral, Apurba; Chabri, Sumit; Sinha, Arijit; Bandyopadhyay, Nil Ratan; Mukherjee, Nillohit

    2016-05-01

    The authors report a facile route for the large scale synthesis of CuO/ZnO/Si ternary system achieved by non-equilibrium synthesis using High Energy Ball Milling (HEBM) technique. The synthesized material was found highly efficient for the photo-degradation of a hazardous dye Indigo Carmine, a widely used dye in textile industries with major threats to our environment. The structural properties of the prepared material were evaluated using X-ray diffraction and field emission scanning electron microscopy, which revealed, that the optimization of milling duration plays a crucial role for the formation of such ternary system. UV-Vis-NIR spectroscopy yielded broadband absorption of light over the region 1100-350 nm. The photocatalytic activities of CuO/ZnO/Si ternary system were systematically explored by monitoring the fall in specific absorption peak intensity of the aqueous Indigo Carmine solution exposed under artificial light source.

  12. Limiting the intensity of femtosecond pulses with anti-stokes excitation of organic dye solutions

    NASA Astrophysics Data System (ADS)

    Svetlichnyi, V. A.; Meshalkin, Yu. P.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2010-08-01

    Results of experimental investigations into the nonlinear absorption of the symmetric polymethine 1-butyl -3,3-dimethyl-2-[5-(1-butyl-3,3-dimethyl-3H-benz[e]indoline-2-uledene)-1,3-pentadienyl]-3H-benz[e]indolium perchlorate dye solution excited by radiation of a femtosecond titanium-sapphire laser (20 fs, 800 nm, 75 MHz, and 300 mW) by the open aperture z-scan method are presented. Record limitation of the femtosecond laser radiation intensity (by 300 times at a 93% linear transmission of the medium) was achieved. The nonlinear absorption mechanisms in organic dyes with anti-Stokes excitation by wideband high-power pulsed radiation to the absorption band edge and the prospects for organic dye application for limitation of the femtosecond laser radiation intensity are discussed.

  13. Solid state dye sensitized solar cells applying conducting organic polymers as hole conductors

    NASA Astrophysics Data System (ADS)

    Yu, Youhai; Lira-Cantu, Monica

    Solid-state dye sensitized solar cells (SSDSCs) applying mesoporous TiO2 electrodes sensitized with Ru complex dye Z907 and conducting organic polymers as the hole transport material (HTM) are prepared. We employ the in-situ photo-electrochemically polymerization technique (PEP)[1-3] in order to obtain, in a single step, the conducting organic polymer on the TiO2/Dye electrode. We developed a modification of reported method[2] which allows the polymer poly(3,4-ethylenedioxythiophene) (PEDOT) by different electrochemical techniques applying constant-voltage and constant-current methods. Polymer morphology and its influence on solar cell performance were studied. Overall conversion efficiency above 2% (AM 1.5, 100 mW cm-2) was obtained.

  14. Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes

    ERIC Educational Resources Information Center

    Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Mine G.; Wlilliams, Mary Elizabeth

    2007-01-01

    The study describes and compares the size-dependent optical properties of organic dyes with those of semiconductor nanocrystals or quantum dots (QDs). The analysis shows that mixtures of QDs contain emission colors that are sum of the individual QD components.

  15. Magnetic fluid modified peanut husks as an adsorbent for organic dyes removal

    NASA Astrophysics Data System (ADS)

    Safarik, Ivo; Safarikova, Mirka

    Magnetically responsive nanocomposite materials, prepared by modification of diamagnetic materials by magnetic fluids (ferrofluids), have already found many important applications in various areas of biosciences, medicine, biotechnology, environmental technology etc. Ferrofluid modified biological waste (peanut husks) has been successfully used for the separation and removal of water soluble organic dyes and thus this low cost adsorbent could be potentially used for waste water treatment.

  16. Photocatalytic Destruction of an Organic Dye Using TiO2 and Solar Energy.

    ERIC Educational Resources Information Center

    Giglio, Kimberly D.; And Others

    1995-01-01

    Describes a general chemistry experiment that is carried out in sunlight to illustrate the ability of TiO2 to act as a photocatalyst by mineralizing an organic dye into carbon dioxide. Details about the construction of the reactor system used to perform this experiment are included. (DDR)

  17. Liquid chromatographic determination of carminic acid in yogurt.

    PubMed

    Jalón, M; Peña, M J; Rivas, J C

    1989-01-01

    A reverse-phase liquid chromatographic method is described for the determination of carminic acid in yogurt. A C18 column is used with acetonitrile-1.19M formic acid (19 + 81) as mobile phase and diode array detection. Sample preparation includes deproteinization with papain and purification in a polyamide column. The relative standard deviation for repeated determinations of carminic acid in a commercial strawberry-flavored yogurt was 3.0%. Recoveries of carminic acid added to a natural-flavored yogurt ranged from 87.2 to 95.3% with a mean of 90.2%. The method permits measurement of amounts as low as 0.10 mg/kg. PMID:2708269

  18. Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes

    SciTech Connect

    Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik

    2014-10-15

    Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dye as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.

  19. Carbazole-dendrimer-based donor-π-acceptor type organic dyes for dye-sensitized solar cells: effect of the size of the carbazole dendritic donor.

    PubMed

    Thongkasee, Pongsathorn; Thangthong, Amonrat; Janthasing, Nittaya; Sudyoadsuk, Taweesak; Namuangruk, Supawadee; Keawin, Tinnagon; Jungsuttiwong, Siriporn; Promarak, Vinich

    2014-06-11

    A series of novel D-π-A type organic dyes, namely, GnTA (n = 1-4), containing carbazole dendrons up to fourth generation as a donor, bithiophene as π-linkage, and cyanoacrylic acid as acceptor were synthesized and characterized for applications in dye-sensitized solar cells (DSSCs). The photophysical, thermal, electrochemical, and photovoltaic properties of the new dyes as dye sensitizers were investigated, and the effects of the carbazole dendritic donors on these properties were evaluated. Results demonstrated that increasing the size or generation of the carbazole dendritic donor of the dye molecules enhances their total light absorption abilities and unluckily reduces the amount of dye uptake per unit TiO2 area because of their high molecular volumes. The latter was found to have a strong effect on the power conversion efficiency of DSSCs. Importantly, electrochemical impedance spectroscopy (EIS) revealed that the size or generation of the donor had a significant influence on a charge-transfer resistance for electron recombination at the TiO2/electrolyte interface, causing a difference in open circuit voltage (Voc) of the solar cells. Among them, dye G1TA containing first generation dendron as a donor (having lowest molecular volume) exhibited the highest power conversion efficiency of 5.16% (Jsc = 9.89 mA cm(-2), Voc = 0.72 V, ff = 0.73) under simulated AM 1.5 irradiation (100 mW cm(-2)). PMID:24878449

  20. Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers.

    PubMed

    Montagner, Cristina; Bacci, Mauro; Bracci, Susanna; Freeman, Rachel; Picollo, Marcello

    2011-09-01

    An accurate characterisation of the organic dyes used in artworks, especially those made of paper, is an important factor in designing safe conservation treatments. In the case of synthetic organic dyes used in modern works of art, for example, one frequently encountered difficulty is that some of these dyes are not still commercially available. Recognizing this problem, the authors of this paper present the results of an analysis of UV-Vis-NIR fibre optic reflectance spectra of 82 samples of dyed paper prepared with 41 dyes. The samples come from a historic book, The Dyeing of Paper in the Pulp, which was published by Interessen-Gemeinschaft (I.G.) Farbenindustrie in 1925. The dyes used in the paper pulp belong to the azo compounds, acridine, anthraquinone, azine, diphenylmethane, indigoid, methine, nitro, quinoline, thiazine, triphenylmethane, sulphur and xanthene classes. PMID:21715217

  1. Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers

    NASA Astrophysics Data System (ADS)

    Montagner, Cristina; Bacci, Mauro; Bracci, Susanna; Freeman, Rachel; Picollo, Marcello

    2011-09-01

    An accurate characterisation of the organic dyes used in artworks, especially those made of paper, is an important factor in designing safe conservation treatments. In the case of synthetic organic dyes used in modern works of art, for example, one frequently encountered difficulty is that some of these dyes are not still commercially available. Recognizing this problem, the authors of this paper present the results of an analysis of UV-Vis-NIR fibre optic reflectance spectra of 82 samples of dyed paper prepared with 41 dyes. The samples come from a historic book, The Dyeing of Paper in the Pulp, which was published by Interessen-Gemeinschaft (I.G.) Farbenindustrie in 1925. The dyes used in the paper pulp belong to the azo compounds, acridine, anthraquinone, azine, diphenylmethane, indigoid, methine, nitro, quinoline, thiazine, triphenylmethane, sulphur and xanthene classes.

  2. Organic fluorescent thermometers based on borylated arylisoquinoline dyes.

    PubMed

    Pais, Vânia F; Lassaletta, José M; Fernández, Rosario; El-Sheshtawy, Hamdy S; Ros, Abel; Pischel, Uwe

    2014-06-16

    Borylated arylisoquinolines with redshifted internal charge-transfer (ICT) emission were prepared and characterized. Upon heating, significant fluorescence quenching was observed, which forms the basis for a molecular thermometer. In the investigated temperature range (283-323 K) an average sensitivity of -1.2 to -1.8% K(-1) was found for the variations in fluorescence quantum yield and lifetime. In the physiological temperature window (298-318 K) the average sensitivity even reaches values of up to -2.4% K(-1). The thermometer function is interpreted as the interplay between excited ICT states of different geometry. In addition, the formation of an intramolecular Lewis pair can be followed by (11)B NMR spectroscopy. This provides a handle to monitor temperature-dependent ground-state geometry changes of the dyes. The role of steric hindrance is addressed by the inclusion of a derivative that lacks the Lewis pair formation. PMID:24861774

  3. Phosphonic anchoring groups in organic dyes for solid-state solar cells.

    PubMed

    Abate, Antonio; Pérez-Tejada, Raquel; Wojciechowski, Konrad; Foster, Jamie M; Sadhanala, Aditya; Steiner, Ullrich; Snaith, Henry J; Franco, Santiago; Orduna, Jesús

    2015-07-28

    We report the synthesis and the optoelectronic characterization of three new 4H-pyran-4-ylidene and thiazole derivatives (pyt) as metal-free organic dyes for solid-state dye-sensitized solar cells (DSSCs). We investigate the performance and the long-term stability of devices employing pyt dyes functionalized with carboxylic and phosphonic acids as TiO2 anchoring groups. In contrast to reports on liquid electrolyte DSSCs, we show that solid-state DSSCs prepared with phosphoric pyt derivatives can achieve similar power conversion efficiency to their carboxyl analogues. We make use of the Mott-Schottky analysis and equivalent circuit models to demonstrate that a phosphonic group induces a significant increase in built-in voltage at the TiO2-hole transporter interface, which results in a higher open circuit voltage. PMID:26123840

  4. Energy transfer studies in binary laser dye mixtures in organically modified silicates

    NASA Astrophysics Data System (ADS)

    Al-Maliki, Firas J.

    2014-08-01

    Energy transfer of binary dye mixture (Rhodamine110, as donor, and Oxizine1and/or Nile blue as acceptors) doped in organically modified silicates (ORMOSILs) matrix has been studied. The energy transfer process from donor molecules to acceptor molecules in the final bulk samples has been observed spectrally. Some of energy transfer parameters have been determined as a function of acceptor concentration. Stern-Volmer relation of energy transfer has been proved and the dominant mechanism of the energy transfer of dye mixture doped in such matrices has been determined. The results show that the emission properties of acceptor molecules (Ox1 and Nb) can be enhanced using the dye mixing recipe in sol-gel matrices.

  5. Dye-sensitized Solar Cells: New Approaches with Organic Solid-state Hole Conductors.

    PubMed

    Vlachopoulos, Nick; Zhang, Jinbao; Hagfeldt, Anders

    2015-01-01

    Solid-state dye-sensitized solar cells (sDSCs) in which a solid organic charge-transfer medium, or hole conductor (HC), is interposed between a dye-coated mesoporous oxide electrode and a conductive counter electrode, have attracted considerable interest as viable alternatives to the more ubiquitous mediator-electrolyte DSC. Of particular importance to efficient operation are, in addition to the useful processes contributing to current generation (light harvesting, electron injection and current collection), the recombinative deleterious processes. The organic HCs are highly reactive toward electrons in the oxide or the conducting glass support, therefore necessitating the inclusion of a carefully prepared thin blocking oxide underlayer support as well as the molecular design of special dark current-suppressing dyes. Initially (mid-1990s) sDSCs with organic small molecular weight hole conductors have undergone systematic investigation. At the same time the first tests of sDSCs with conducting polymer hole conductors were published, with subsequent emphasis on the in situ generation of the HC inside the pores. For both types of devices a light-to-electricity conversion efficiency, in the 5-10% range for several dye-HC combinations, approaches that of the most efficient DSCs with non-volatile liquid electrolytes, thereby encouraging further efforts for obtaining stable, efficient and inexpensive sDSCs. PMID:26507087

  6. Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells.

    PubMed

    Chen, Cheng; Yang, Xichuan; Cheng, Ming; Zhang, Fuguo; Sun, Licheng

    2013-07-01

    Organic dyes have become widely used in dye-sensitized solar cells (DSSCs) because of their good performance, flexible structural modifications, and low costs. To increase the photostability of organic dye-based DSSCs, we conducted a full study on the degradation mechanism of cyanoacrylic acid-based organic sensitizers in DSSCs. The results showed that with the synergy between water and UV light, the sensitizer could desorb from the TiO2 surface and the cyanoacrylic acid unit of the sensitizer was transformed into the aldehyde group. It was also observed that the water content had a great effect on the degradation process. Our experiments conducted using (18) O-labeled water demonstrated that the oxygen atom of the aldehyde group identified in the degraded dye came from the solvent water in the DSSCs. Therefore, controlling the water content during DSSC fabrication, good sealing of cells, and filtering the UV light are crucial to produce DSSCs that are more durable and robust. PMID:23775933

  7. Synthesis of Pt3Ni Microspheres with High Performance for Rapid Degradation of Organic Dyes

    NASA Astrophysics Data System (ADS)

    Wang, Min; Yang, Yushi; Long, Jia; Mao, Zhou; Qiu, Tong; Wu, Qingzhi; Chen, Xiaohui

    2015-05-01

    In this study, Pt3Ni microspheres consisted of nanoparticles were synthesized without addition of surfactants via the solvothermal route. The obtained sample was characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Furthermore, the catalytic performance of as-synthesized Pt3Ni microspheres was evaluated on the degradation of different organic dyes (methylene blue, methyl orange, Congo red, and rhodamine B). The results show that different dyes were rapidly decomposed by Pt3Ni microspheres in different pathways. Among different dyes, the formation and further degradation of the intermediates was observed during the degradation of methylene blue and methyl orange, suggesting the indirect degradation process of these dyes. This study provides not only a promising catalyst for the removal of organic contaminants for environment remediation, but also new insights for Pt3Ni alloy as a high-performance catalyst in organic synthesis.

  8. Dendrimer-tuned formation of fluorescent organic microcrystals. Influence of dye hydrophobicity and dendrimer charge.

    PubMed

    Bertorelle, Franck; Rodrigues, Fernanda; Fery-Forgues, Suzanne

    2006-09-26

    The reprecipitation method is a simple and useful way to prepare microcrystals through a solvent exchange process. It was applied to three fluorescent dyes of the 4-amino-7-nitrobenz-2-oxa-1,3-diazole series. Compounds 1, 2, and 3 differ by the length of the alkyl chain, which comprises 8, 12, and 18 carbon atoms, respectively. The reprecipitation process was first studied in water, in the absence of additives. The kinetics was monitored by UV/vis absorption spectroscopy. The size and shape of the microparticles were analyzed by fluorescence microscopy and transmission electron microscopy. Dyes 1 and 2 lead to microcrystals, the whole process taking much more time for 2 than for 1. The long-chained dye 3 only gave stable aggregates. Therefore, it appears that the hydrophobicity of the organic dye markedly influenced the reprecipitation process. The latter was then studied in the presence of additives. Poly(amidoamine) dendrimers, terminated by 64 carboxylate or amino groups were placed in the reprecipitation medium. They had little effect upon the formation of aggregates for dye 3. In contrast, they drastically accelerated the reprecipitation of 1 and 2 and tuned the size and shape of the microcrystals. Platelets and spindles were thus obtained by varying the nature of the dendrimer, and their optical properties were briefly investigated. PMID:16981772

  9. Degradation of organic dyes by Si/SiOx core-shell nanowires: Spontaneous generation of superoxides without light irradiation.

    PubMed

    Cao, Yu; Gu, Xiaoyu; Yu, Hongkun; Zeng, Wei; Liu, Xiang; Jiang, Suhua; Li, Yuesheng

    2016-02-01

    Recently, silicon nanowires (SiNWs) have been proven to be highly active in the photocatalysis of dye degradation. However, the unstable hydrogen-terminated surface and the need for constant light irradiation hinder their extensive use. In this work, a stable silica shell was intentionally formed on the surface of SiNWs to produce Si/SiOx core-shell silicon nanowires (S-SiNWs). Light-illuminated or not, S-SiNWs showed almost identical degradation ability for the degradation of indigo carmine (IC) in both conditions, which meant neither hydrogen termination nor light irradiation was a prerequisite for the degradation activity of S-SiNWs. UV/Vis spectroscopy and liquid chromatography/mass spectrometry showed that IC was converted into isatin sulfonic acid in this process. Quenching studies and electron paramagnetic resonance spectroscopy revealed that this bleaching ability was highly dependent on superoxides. A possible mechanism was accordingly suggested. In addition, the recently discovered reductase-like activity of SiNWs can be explained by the superoxides generation. PMID:26421622

  10. Quantum dynamics simulations of interfacial charge-transfer in organic dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rego, Luis G. C.; da Silva, R.; Hoff, D. A.

    2013-03-01

    We describe a novel time-dependent quantum-mechanics/molecular-mechanics method for studying electron transfer in dye sensitized semiconductor interfaces, that takes into account the interacting electron-hole quantum dynamics, the underlying nuclear fluctuations and solvation dynamics. We provide a comprehensive investigation of the quantum dynamics, the electronic and the structural properties of prototypical D- π-A organic dyes sensitizing the TiO2 anatase surface, both in vacuum and solvated by liquid acetonitrile. The organic dyes are comprised of an electron donating moiety and an anchoring acceptor moiety, conjugated by thiophene bridges. Although interfacial electron transfer is very efficient, it is demonstrated that the coupling between the photoexcited electron and the hole delays the electron injection. Simulations demonstrate that the solvent screens the dye from the surface, narrowing the absorption peaks and delaying the electron injection. We have also studied several aspects that are relevant for the recombination process, such as the role played by surface defects and the interaction of redox species with the TiO2 surface, and the effect of additives. J. Phys. Chem. C 116, 21169 (2012). The authors acknowledge support from CNPq and CAPES, Brazil

  11. Organic dye penetration quantification into a dental composite resin cured by LED system using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lizarelli, Rosane de Fátima Zanirato; Silva, Maciel E., Jr.; Lins, Emery C. C. C.; Costa, Mardoqueu M.; Pelino, José Eduardo P.; Bagnato, Vanderlei S.

    2007-02-01

    A major characteristic of LEDs systems is the lower heat emission related with the kind of light generation and spectral emission band. Material temperature during photoactivation can promote different photocuring performance. Organic dye penetration could be a trace to identify the efficacy of photocured composite resin. A new method using fluorescent spectroscopy through digital image evaluation was developed in this study. In order to understand if there is a real influence of material temperature during the photoactivation procedure of a dental restorative material, a hybrid composite resin (Z250, 3M-Espe, USA) and 3 light sources, halogen lamp (510 mW/cm2) and two LED systems 470+/-10nm (345 and 1000 mW/cm2) under different temperatures and intensities were used. One thousand and five hundred samples under different associations between light sources and temperatures (0, 25, 50, 75 and 100 °C were tested and immediately kept in 6G rodamin dye solution. Dye penetration was evaluated through fluorescent spectroscopy recorded by digital image data. Pixels in gray scale showed the percentage penetration of organic dye into the composite resin mass. Time and temperature were statistically significant (p<0.05) through the ANOVA statistical test. The lowest penetration value was with 60 seconds and 25 °C. Time and temperature are important factors to promote a homogeneous structure polymerized composite resin more than the light source type, halogen or LEDs system.

  12. Absorption spectrum analysis based on singular value decomposition for photoisomerization and photodegradation in organic dyes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Yoshikawa, Toshio; Chida, Toshifumi; Tada, Kazuhiro; Kawamoto, Masuki; Fujihara, Takashi; Sassa, Takafumi; Tsutsumi, Naoto

    2015-10-01

    In order to analyze the spectra of inseparable chemical mixtures, many mathematical methods have been developed to decompose them into the components relevant to species from series of spectral data obtained under different conditions. We formulated a method based on singular value decomposition (SVD) of linear algebra, and applied it to two example systems of organic dyes, being successful in reproducing absorption spectra assignable to cis/trans azocarbazole dyes from the spectral data after photoisomerization and to monomer/dimer of cyanine dyes from those during photodegaradation process. For the example of photoisomerization, polymer films containing the azocarbazole dyes were prepared, which have showed updatable holographic stereogram for real images with high performance. We made continuous monitoring of absorption spectrum after optical excitation and found that their spectral shapes varied slightly after the excitation and during recovery process, of which fact suggested the contribution from a generated photoisomer. Application of the method was successful to identify two spectral components due to trans and cis forms of azocarbazoles. Temporal evolution of their weight factors suggested important roles of long lifetimed cis states in azocarbazole derivatives. We also applied the method to the photodegradation of cyanine dyes doped in DNA-lipid complexes which have shown efficient and durable optical amplification and/or lasing under optical pumping. The same SVD method was successful in the extraction of two spectral components presumably due to monomer and H-type dimer. During the photodegradation process, absorption magnitude gradually decreased due to decomposition of molecules and their decaying rates strongly depended on the spectral components, suggesting that the long persistency of the dyes in DNA-complex related to weak tendency of aggregate formation.

  13. Supramolecular Organization of Dye Molecules in Zeolite L Channels: Synthesis, Properties, and Composite Materials.

    PubMed

    Cao, Pengpeng; Khorev, Oleg; Devaux, André; Sägesser, Lucie; Kunzmann, Andreas; Ecker, Achim; Häner, Robert; Brühwiler, Dominik; Calzaferri, Gion; Belser, Peter

    2016-03-14

    Sequential insertion of different dyes into the 1D channels of zeolite L (ZL) leads to supramolecular sandwich structures and allows the formation of sophisticated antenna composites for light harvesting, transport, and trapping. The synthesis and properties of dye molecules, host materials, composites, and composites embedded in polymer matrices, including two- and three-color antenna systems, are described. Perylene diimide (PDI) dyes are an important class of chromophores and are of great interest for the synthesis of artificial antenna systems. They are especially well suited to advancing our understanding of the structure-transport relationship in ZL because their core fits tightly through the 12-ring channel opening. The substituents at both ends of the PDIs can be varied to a large extent without influencing their electronic absorption and fluorescence spectra. The intercalation/insertion of 17 PDIs, 2 terrylenes, and 1 quaterrylene into ZL are compared and their interactions with the inner surface of the ZL nanochannels discussed. ZL crystals of about 500 nm in size have been used because they meet the criteria that must be respected for the preparation of antenna composites for light harvesting, transport, and trapping. The photostability of dyes is considerably improved by inserting them into the ZL channels because the guests are protected by being confined. Plugging the channel entrances, so that the guests cannot escape into the environment is a prerequisite for achieving long-term stability of composites embedded in an organic matrix. Successful methods to achieve this goal are described. Finally, the embedding of dye-ZL composites in polymer matrices, while maintaining optical transparency, is reported. These results facilitate the rational design of advanced dye-zeolite composite materials and provide powerful tools for further developing and understanding artificial antenna systems, which are among the most fascinating subjects of current photochemistry and photophysics. PMID:26864446

  14. High-performance liquid chromatographic separation of carminic acid, alpha- and beta-bixin, and alpha- and beta-norbixin, and the determination of carminic acid in foods.

    PubMed

    Lancaster, F E; Lawrence, J F

    1996-05-01

    During a study of natural food colours, a simple and reliable high-performance liquid chromatography system was developed for use with cochineal and annato. An isocratic mobile phase, consisting of methanol and 6% aqueous acetic acid, resolved bixin and norbixin, while a gradient system was used to separate carminic acid and the annato compounds. The carminic acid contents of cochineal extract, carmine and carmine hydrosoluble were determined using an isocratic mobile phase (40:60, v/v). The detection limit for carminic acid in the various products was approximately 100 ng/g. Carminic acid was determined quantitatively in fruit beverages, yogurt and candies. It was demonstrated that, because of decomposition, carminic acid was not suitable for use in candies when manufacturing temperatures above 100 degrees C were required. Most membrane filters are not suitable for use with cochineal solutions, but a cellulose membrane filter did not adsorb carminic acid and was used successfully to remove impurities from water-based cochineal products and food extracts containing carminic acid. PMID:8653204

  15. Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment.

    PubMed

    Anselmi, Chiara; Mosconi, Edoardo; Pastore, Mariachiara; Ronca, Enrico; De Angelis, Filippo

    2012-12-14

    First-principles computer simulations can contribute to a deeper understanding of the dye/semiconductor interface lying at the heart of Dye-sensitized Solar Cells (DSCs). Here, we present the results of simulation of dye adsorption onto TiO(2) surfaces, and of their implications for the functioning of the corresponding solar cells. We propose an integrated strategy which combines FT-IR measurements with DFT calculations to individuate the energetically favorable TiO(2) adsorption mode of acetic acid, as a meaningful model for realistic organic dyes. Although we found a sizable variability in the relative stability of the considered adsorption modes with the model system and the method, a bridged bidentate structure was found to closely match the FT-IR frequency pattern, also being calculated as the most stable adsorption mode by calculations in solution. This adsorption mode was found to be the most stable binding also for realistic organic dyes bearing cyanoacrylic anchoring groups, while for a rhodanine-3-acetic acid anchoring group, an undissociated monodentate adsorption mode was found to be of comparable stability. The structural differences induced by the different anchoring groups were related to the different electron injection/recombination with oxidized dye properties which were experimentally assessed for the two classes of dyes. A stronger coupling and a possibly faster electron injection were also calculated for the bridged bidentate mode. We then investigated the adsorption mode and I(2) binding of prototype organic dyes. Car-Parrinello molecular dynamics and geometry optimizations were performed for two coumarin dyes differing by the length of the π-bridge separating the donor and acceptor moieties. We related the decreasing distance of the carbonylic oxygen from the titania to an increased I(2) concentration in proximity of the oxide surface, which might account for the different observed photovoltaic performances. The interplay between theory/simulation and experiments appears to be the key to further DSCs progress, both concerning the design of new dye sensitizers and their interaction with the semiconductor and with the solution environment and/or an electrolyte upon adsorption onto the semiconductor. PMID:23108504

  16. Blue natural organic dyestuffs--from textile dyeing to mural painting. Separation and characterization of coloring matters present in elderberry, logwood and indigo.

    PubMed

    Pawlak, Katarzyna; Puchalska, Maria; Miszczak, Agata; Rosłoniec, Elzbieta; Jarosz, Maciej

    2006-05-01

    Natural dyestuffs used for painting or dyeing of textiles are complex mixtures of compounds of various chemical properties. Proper identification of the dye used by a painter and, even better, its origin is possible only when its compositional 'fingerprint' can be evaluated. For this reason gradient program for liquid chromatographic separation of 16 color compounds--components of natural blue dyes: elderberry, logwood and indigo--has been developed. Two detector systems were used simultaneously: UV-Vis spectrophotometry (at 280, 445, 520 and 600 nm) and ESI mass spectrometry (positive and negative SIM mode). It was found that fragmentation observed in ESI-MS is affected not only by ion source parameters, but also by chromatographic conditions, especially in case of the less stable substances: cyanidin glucosides, tannic acid, rutin and hematoxylin. Examination of characteristic dissociation pathways of the compounds under investigation after direct admission into ion source or after chromatographic separation allowed to select proper ions for SIM detection and to develop novel and efficient reversed phase high performance liquid chromatographic (RP-HPLC)-UV-Vis/ESI-MS method for the analysis of natural blue dyes. The procedure was successfully applied for identification of indigotin and carminic acid-main colorants extracted from a fiber taken from the blue-red 'Italian' tapestry (the collection of the National Museum in Warsaw, Poland). PMID:16575781

  17. Third-order nonlinear optical response of indigo carmine under 633 nm excitation for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Pramodini, S.; Poornesh, P.

    2014-11-01

    We report thermally induced third-order nonlinearity and optical limiting behaviour of Indigo Carmine dye. z-Scan technique was used to determine the sign and magnitude of absorptive and refractive nonlinearities. Continuous wave (CW) He-Ne laser operating at 633 nm was used as source of excitation. In open aperture z-scan experiments, samples exhibited reverse saturable absorption (RSA) process. For closed aperture z-scan experiments, samples revealed self-defocusing property. The presence of donor and acceptor groups in the structure increases the conjugation length and in turn increases the optical nonlinearity. Induced self-diffraction rings pattern was recorded for the samples and it is attributed to refractive index change and thermal lensing. Also, optical limiting and clamping studies were carried out for various input power. Optical clamping of about ~1 mW was observed. This endorses that the dye under investigation is a positive candidate for opto-electronic and photonic applications.

  18. Selective adsorption and release of cationic organic dye molecules on mesoporous borosilicates.

    PubMed

    Paul, Manidipa; Pal, Nabanita; Bhaumik, Asim

    2012-08-01

    Mesoporous materials can play a pivotal role as a host material for delivery application to a specific part of a system. In this work we explore the selective adsorption and release of cationic organic dye molecules such as safranine T (ST) and malachite green (MG) on mesoporous borosilicate materials. The mesoporous silica SBA-15 and borosilicate materials (MBS) were prepared using non-ionic surfactant Pluronic P123 as template via evaporation induced self-assembly (EISA) method. After template removal the materials show high surface areas and in some cases ordered mesopores of dimensions ca. 6-7 nm. High surface area, mesoporosity and the presence of heteroatom (boron) help this mesoporous borosilicate material to adsorb high amount of cationic dye molecules at its surface from the respective aqueous solutions. Furthermore, the mesoporous borosilicate samples containing higher percentage adsorbed dyes show excellent release of ST or MG dye in simulated body fluid (SBF) solution at physiological pH=7.4 and temperature 310 K. The adsorption and release efficiency of mesoporous borosilicate samples are compared with reference boron-free mesoporous pure silica material to understand the nature of adsorbate-adsorbent interaction at the surfaces. PMID:24364946

  19. Optical performance of mesostructured composite silica film loaded with organic dye.

    PubMed

    Guli, Mina; Chen, Shijian; Zhang, Dingke; Li, Xiaotian; Yao, Jianxi; Chen, Lei; Xiao, Li

    2014-01-10

    A mesoporous composite silica film loaded with organic dye has been successfully synthesized by a solgel reaction process and a simple postgrafting method at room temperature. The composite film was characterized by x-ray diffraction, transmission electron microscopy, UV-Vis, photoluminescence (PL) spectra, and laser performance, and the results confirmed the existence of dyes in the channels of the silica film. A blue-shift and fluorescence property in the PL spectrum was observed from the composite film compared with that of dye molecules in C₂H₅OH solution. The spectrum narrowing phenomena has been observed when the composite film is pumped at λp=355  nm by a Nd:YAG pulsed laser. A narrower, higher peak was observed in emission spectra from the mesostructured composite silica film compared with the PL spectrum of dye in C₂H₅OH solution. There is a substantial reduction in the full width at half-maximum of the emitting light, which results in peaks with linewidths of 26 nm or more. This collapse of the emission spectrum is one of the signatures of the presence of amplified spontaneous emission. PMID:24514063

  20. Theoretical analysis of the solvatochromism of organic dyes differing by the conjugation sequence

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Komatsu, Makoto; Nakazaki, Jotaro; Segawa, Hiroshi; Yamashita, Koichi

    2012-01-01

    Absorption peak maxima of two organic dyes differing by the position of the methine unit differ by 61 nm in dioxane and by up to 139 nm in polar solvents. It was previously reported that the difference is not reproduced by time-dependent density functional theory (TDDFT) using ab initio or hybrid functionals. TDDFT errors are different between the molecules, leading to a qualitative failure of TDDFT to predict relative energetics of the dyes. We focus on the effect of polar solvents (acetonitrile, DMSO, methanol, and 2-propanol) on the absorption spectrum, specifically, on the different between the two molecules sign of the solvatochromic shift versus dioxane. Using the correction due to Peach et al., the absolute TDDFT errors can be brought within acceptable ranges of 0.2 to 0.3 eV, and the blue shift versus dioxane is reproduced, although both dyes are predicted to exhibit positive solvatochromism. The inclusion of explicit solvent molecules did not appreciably change either TDDFT energies or the correction term. These results show that in dye design by changing the conjugation order, computational errors are expected to be more important than in the case of an extension of the size of conjugation, especially when polar solvents are used.

  1. Dimerization of Organic Dyes on Luminescent Gold Nanoparticles for Ratiometric pH Sensing.

    PubMed

    Sun, Shasha; Ning, Xuhui; Zhang, Greg; Wang, Yen-Chung; Peng, Chuanqi; Zheng, Jie

    2016-02-01

    Synergistic effects arising from the conjugation of organic dyes onto non-luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well-known pH-insensitive dye, tetramethyl-rhodamine (TAMRA), to pH-insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH-insensitive dyes, this pH-dependent dimerization can also enhance the pH sensitivity of fluorescein, a well-known pH-sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges. PMID:26748538

  2. A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability.

    PubMed

    Joly, Damien; Pellejà, Laia; Narbey, Stéphanie; Oswald, Frédéric; Chiron, Julien; Clifford, John N; Palomares, Emilio; Demadrille, Renaud

    2014-01-01

    Among the new photovoltaic technologies, the Dye-Sensitized Solar Cell (DSC) is becoming a realistic approach towards energy markets such as BIPV (Building Integrated PhotoVoltaics). In order to improve the performances of DSCs and to increase their commercial attractiveness, cheap, colourful, stable and highly efficient ruthenium-free dyes must be developed. Here we report the synthesis and complete characterization of a new purely organic sensitizer (RK1) that can be prepared and synthetically upscaled rapidly. Solar cells containing this orange dye show a power conversion efficiency of 10.2% under standard conditions (AM 1.5G, 1000 Wm(-2)) using iodine/iodide as the electrolyte redox shuttle in the electrolyte, which is among the few examples of DSC using an organic dyes and iodine/iodide red/ox pair to overcome the 10% efficiency barrier. We demonstrate that the combination of this dye with an ionic liquid electrolyte allows the fabrication of solar cells that show power conversion efficiencies of up to 7.36% that are highly stable with no measurable degradation of initial performances after 2200 h of light soaking at 65°C under standard irradiation conditions. RK1 achieves one of the best output power conversion efficiencies for a solar cell based on the iodine/iodide electrolyte, combining high efficiency and outstanding stability. PMID:24504344

  3. A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability

    NASA Astrophysics Data System (ADS)

    Joly, Damien; Pellejà, Laia; Narbey, Stéphanie; Oswald, Frédéric; Chiron, Julien; Clifford, John N.; Palomares, Emilio; Demadrille, Renaud

    2014-02-01

    Among the new photovoltaic technologies, the Dye-Sensitized Solar Cell (DSC) is becoming a realistic approach towards energy markets such as BIPV (Building Integrated PhotoVoltaics). In order to improve the performances of DSCs and to increase their commercial attractiveness, cheap, colourful, stable and highly efficient ruthenium-free dyes must be developed. Here we report the synthesis and complete characterization of a new purely organic sensitizer (RK1) that can be prepared and synthetically upscaled rapidly. Solar cells containing this orange dye show a power conversion efficiency of 10.2% under standard conditions (AM 1.5G, 1000 Wm-2) using iodine/iodide as the electrolyte redox shuttle in the electrolyte, which is among the few examples of DSC using an organic dyes and iodine/iodide red/ox pair to overcome the 10% efficiency barrier. We demonstrate that the combination of this dye with an ionic liquid electrolyte allows the fabrication of solar cells that show power conversion efficiencies of up to 7.36% that are highly stable with no measurable degradation of initial performances after 2200 h of light soaking at 65°C under standard irradiation conditions. RK1 achieves one of the best output power conversion efficiencies for a solar cell based on the iodine/iodide electrolyte, combining high efficiency and outstanding stability.

  4. A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability

    PubMed Central

    Joly, Damien; Pellejà, Laia; Narbey, Stéphanie; Oswald, Frédéric; Chiron, Julien; Clifford, John N.; Palomares, Emilio; Demadrille, Renaud

    2014-01-01

    Among the new photovoltaic technologies, the Dye-Sensitized Solar Cell (DSC) is becoming a realistic approach towards energy markets such as BIPV (Building Integrated PhotoVoltaics). In order to improve the performances of DSCs and to increase their commercial attractiveness, cheap, colourful, stable and highly efficient ruthenium-free dyes must be developed. Here we report the synthesis and complete characterization of a new purely organic sensitizer (RK1) that can be prepared and synthetically upscaled rapidly. Solar cells containing this orange dye show a power conversion efficiency of 10.2% under standard conditions (AM 1.5G, 1000 Wm−2) using iodine/iodide as the electrolyte redox shuttle in the electrolyte, which is among the few examples of DSC using an organic dyes and iodine/iodide red/ox pair to overcome the 10% efficiency barrier. We demonstrate that the combination of this dye with an ionic liquid electrolyte allows the fabrication of solar cells that show power conversion efficiencies of up to 7.36% that are highly stable with no measurable degradation of initial performances after 2200 h of light soaking at 65°C under standard irradiation conditions. RK1 achieves one of the best output power conversion efficiencies for a solar cell based on the iodine/iodide electrolyte, combining high efficiency and outstanding stability. PMID:24504344

  5. Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Gayathri, Shunmugiah; Kottaisamy, Muniasamy; Ramakrishnan, Veerabahu

    2015-12-01

    An efficient and facile method was adopted to prepare TiO2-graphene (TG) nanocomposites with TiO2 nanoparticles uniformly distributed on graphene. By adjusting the amount of TiO2 precursor, both high and low dense TiO2 nanoparticles on graphene were effectively attained via electrostatic attraction between graphene oxide sheets and TiO2 nanoparticles. The prepared nanocomposites were characterized by various characterization techniques. The TG nanocomposite showed an excellent activity for the photodegradation of the organic dyes such as methylene blue (MB) and rose bengal (RB) under ultra violet (UV) light irradiation. The TG nanocomposite of TG 2.5 showed better photocatalytic performance than bare TiO2 nanoparticles and other composites. The enhanced activity of the composite material is attributed to the reduction in charge recombination and interaction of organic dyes with graphene. The decrease in charge recombination was evidenced from the photoluminescence (PL) spectra. The observed results suggest that the synthesized TG composites have a potential application to treat the industrial effluents, which contain organic dyes.

  6. The study of synthetic food dyes by positron annihilation lifetime spectroscopy.

    NASA Astrophysics Data System (ADS)

    Pivtsaev, A. A.; Razov, V. I.

    2015-06-01

    By method of positron annihilation lifetime spectroscopy (PALS), substances are food dyes were studied: E-102 (Tartrazine), E-124 (Ponso 4R), E 132 (Indigo carmine), E-133 (Brilliant Blue), E-151 (Black Shiny). They are examined for the presence of carcinogenic properties. The difference between dyes having explicit carcinogenic properties and mutagenic properties (non-explicit carcinogens) is established.

  7. Novel thiazolo[5,4-d]thiazole-based organic dyes for quasi-solid-state dye-sensitized solar cells.

    PubMed

    Zhang, Weiyi; Feng, Quanyou; Wang, Zhong-Sheng; Zhou, Gang

    2013-05-01

    A series of novel metal-free organic dyes containing the thiazolo[5,4-d]thiazole moiety were designed and synthesized for quasi-solid-state dye-sensitized solar cells (DSSCs). Different alkoxy chains were introduced into the electron donor part of the dye molecules for comparison. The optical, electrochemical, and photovoltaic properties for all sensitizers were systematically investigated. It was found that the sensitizers with the different alkoxy groups have similar photophysical and electrochemical properties, such as absorbance and energy levels, owing to their close chemical structures. However, the quasi-solid-state DSSCs based on the resulting sensitizers exhibit different performance parameters. The quasi-solid-state DSSC based on sensitizer FNE74 with two octyloxy chains possessed the highest solar energy conversion efficiency of 5.10 % under standard AM 1.5G sunlight illumination without the use of coadsorbant agents. PMID:23420544

  8. Stability of fluorescent labels in PLGA polymeric nanoparticles: Quantum dots versus organic dyes.

    PubMed

    Abdel-Mottaleb, Mona M A; Beduneau, Arnaud; Pellequer, Yann; Lamprecht, Alf

    2015-10-15

    Polymeric nanoparticles (NPs) are currently being investigated for various therapeutic, diagnostic and drug delivery applications. The study of their interactions and fate in biological systems is frequently performed via their fluorescent labeling and following them using fluorescent microscopy. Quantum dots are proposed as stable fluorescent label and compared to other organic dyes (Nile red and DiI) in terms of their entrapment, diffusion in different aqueous or lipophilic media and photostability. In vitro transfer to hydrophilic PBS solution showed that after 8h, 4.2±2.2, 15.5±2.0 and 0.9±0.02% was released from the QDs, NR and DiI nanoparticles, respectively. However, higher diffusion rates were observed in the lipophilic medium chain triglyceride and artificial sebum for all the dyes used. Fluorescent intensity of the three different markers was found to be stable over a period of 24h. Continuous illumination with laser beam using a confocal laser scanning microscopy indicated the superior stability of quantum dots compared to the other organic dyes. Skin permeation experiments have shown that QDs were the most representative marker for the polymeric nanoparticles skin penetration. PMID:26307264

  9. Tailoring of Energy Levels in D-π-A Organic Dyes via Fluorination of Acceptor Units for Efficient Dye-Sensitized Solar Cells

    PubMed Central

    Lee, Min-Woo; Kim, Jae-Yup; Son, Hae Jung; Kim, Jin Young; Kim, BongSoo; Kim, Honggon; Lee, Doh-Kwon; Kim, Kyungkon; Lee, Duck-Hyung; Ko, Min Jae

    2015-01-01

    A molecular design is presented for tailoring the energy levels in D-π-A organic dyes through fluorination of their acceptor units, which is aimed at achieving efficient dye-sensitized solar cells (DSSCs). This is achieved by exploiting the chemical structure of common D-π-A organic dyes and incorporating one or two fluorine atoms at the ortho-positions of the cyanoacetic acid as additional acceptor units. As the number of incorporated fluorine atoms increases, the LUMO energy level of the organic dye is gradually lowered due to the electron-withdrawing effect of fluorine, which ultimately results in a gradual reduction of the HOMO-LUMO energy gap and an improvement in the spectral response. Systematic investigation of the effects of incorporating fluorine on the photovoltaic properties of DSSCs reveals an upshift in the conduction-band potential of the TiO2 electrode during impedance analysis; however, the incorporation of fluorine also results in an increased electron recombination rate, leading to a decrease in the open-circuit voltage (Voc). Despite this limitation, the conversion efficiency is gradually enhanced as the number of incorporated fluorine atoms is increased, which is attributed to the highly improved spectral response and photocurrent. PMID:25591722

  10. Tailoring of energy levels in D-π-A organic dyes via fluorination of acceptor units for efficient dye-sensitized solar cells.

    PubMed

    Lee, Min-Woo; Kim, Jae-Yup; Son, Hae Jung; Kim, Jin Young; Kim, BongSoo; Kim, Honggon; Lee, Doh-Kwon; Kim, Kyungkon; Lee, Duck-Hyung; Ko, Min Jae

    2015-01-01

    A molecular design is presented for tailoring the energy levels in D-π-A organic dyes through fluorination of their acceptor units, which is aimed at achieving efficient dye-sensitized solar cells (DSSCs). This is achieved by exploiting the chemical structure of common D-π-A organic dyes and incorporating one or two fluorine atoms at the ortho-positions of the cyanoacetic acid as additional acceptor units. As the number of incorporated fluorine atoms increases, the LUMO energy level of the organic dye is gradually lowered due to the electron-withdrawing effect of fluorine, which ultimately results in a gradual reduction of the HOMO-LUMO energy gap and an improvement in the spectral response. Systematic investigation of the effects of incorporating fluorine on the photovoltaic properties of DSSCs reveals an upshift in the conduction-band potential of the TiO2 electrode during impedance analysis; however, the incorporation of fluorine also results in an increased electron recombination rate, leading to a decrease in the open-circuit voltage (Voc). Despite this limitation, the conversion efficiency is gradually enhanced as the number of incorporated fluorine atoms is increased, which is attributed to the highly improved spectral response and photocurrent. PMID:25591722

  11. Computational characterization of the molecular structure and properties of Dye 7 for organic photovoltaics.

    PubMed

    Baldenebro-López, Jesús; Castorena-González, José; Flores-Holguin, Norma; Calderón-Guillén, Joel; Glossman-Mitnik, Daniel

    2012-03-01

    Organic dyes have great potential for its use in solar cells. In this recent work, the molecular structure and properties of Dye 7 were obtained using density functional theory (DFT) and different levels of calculation. Upon comparing the molecular structure and the ultraviolet visible spectrum with experimental data reported in the literature, it was found that the M05-2X/6-31G(d) level of calculation gave the best approximation. Once the appropriate methodology had been obtained, the molecule was characterized by obtaining the infrared spectrum, dipole moment, total energy, isotropic polarizability, molecular orbital energies, free energy of solvation in different solvents, and the chemical reactivity sites using the condensed Fukui functions. PMID:21597962

  12. Quantum dot and quantum dot-dye co-sensitized solar cells containing organic thiolate-disulfide redox electrolyte

    NASA Astrophysics Data System (ADS)

    Meng, Ke; Surolia, Praveen K.; Byrne, Owen; Thampi, K. Ravindranathan

    2015-02-01

    Quantum dot sensitized solar cells (QDSSCs) require special electrolytes, which are not always compatible with the requirements of dye sensitized solar cells. CdS and PbS quantum dot sensitized solar cells are able to show promising power conversion efficiencies in the presence of an organic thiolate/disulfide redox electrolyte. Also, an appreciable enhancement in performance is noticed when such devices are co-sensitized with a Ru-dye. The measured cell efficiencies of the CdS/dye and PbS/dye co-sensitized solar cells are 3.93% and 4.18%, respectively, which are higher than the sum of the corresponding individual QDSSCs and the dye sensitized solar cell (DSSCs). The enhancement seen with co-sensitization was investigated and explained by the fact that it suppressed back electron transfer processes in the cell, which was ascertained by electrochemical impedance spectroscopy (EIS) results.

  13. Highly sensitive wavelength-dependent nonaqueous capillary electrophoresis for simultaneous screening of various synthetic organic dyes.

    PubMed

    Park, Moonhee; Bahng, Seung-Hoon; Woo, Nain; Kang, Seong Ho

    2016-05-15

    A novel multi-wavelength nonaqueous capillary electrophoresis (MW-NACE) technique based on wavelength-dependent laser-induced fluorescence (LIF) detection was investigated for the simultaneous screening of various synthetic organic dyes. Multi-wavelength excitation light sources were utilized to excite different organic dyes [e.g., 543nm for crystal violet (CV), methyl violet B (MVB), methyl violet B base (MBB), rhodamine 6G (R6G), and rhodamine B base (RBB); 635nm for nile blue A (NBA) and methylene blue (MB)] simultaneously. Using a nonaqueous buffer system composed of 15mM sodium borate and 835mM acetic acid in 100% ethanol (pH=5.4), all dyes were analyzed within 15min with excellent resolution (R≥4.0) under an electric field of 500V/cm. Calibration curves showed excellent linearity with square of correlation coefficients (r(2)) greater than 0.9908 over wide dynamic ranges of 0.4-50μM for CV, 0.8-50μM for MVB, 1.5-50μM for MBB, 0.08-5nM for R6G, 0.06-10μM for MB, 0.02-10μM for NBA, and 0.13-10 pM for RBB. The detection limits (S/N=3) of 40fM to 0.5μM were 10-200,000 times lower than those of previous detection methods. While adjacent peaks were not well distinguished with baseline separation in a single capillary, the devised technique was faster and more sensitive than conventional aqueous and nonaqueous CE approaches, thereby enabling the quantitative analysis of various dyes based on wavelength-dependent fluorescence detection with different excitation wavelengths. PMID:26992516

  14. Development of a Rapid and Simple Method for Detection of Protein Contaminants in Carmine

    PubMed Central

    Nakayama, Norihisa; Ohtsu, Yutaka; Maezawa-Kase, Daisuke; Sano, Ken-Ichi

    2015-01-01

    Protein contaminants in carmine can cause dyspnea and anaphylactic reactions in users and consumers of products containing this pigment. The method generally used for detection of proteins in carmine has low reproducibility and is time-consuming. In this study, a rapid, simple, and highly reproducible method was developed for the detection of protein contaminants in carmine. This method incorporates acidic protein denaturation conditions and ultrafiltration. To prevent protein aggregation, sodium dodecyl sulfate containing gel electrophoresis running buffer was used for dispersing the carmine before filtration. An ultrafiltration device was used to separate the protein contaminants from carminic acid in the carmine solution. Two ultrafiltration devices were compared, and a cylindrical device containing a modified polyethersulfone membrane gave the best results. The method had high reproducibility. PMID:25892994

  15. Development of a rapid and simple method for detection of protein contaminants in carmine.

    PubMed

    Nakayama, Norihisa; Ohtsu, Yutaka; Maezawa-Kase, Daisuke; Sano, Ken-Ichi

    2015-01-01

    Protein contaminants in carmine can cause dyspnea and anaphylactic reactions in users and consumers of products containing this pigment. The method generally used for detection of proteins in carmine has low reproducibility and is time-consuming. In this study, a rapid, simple, and highly reproducible method was developed for the detection of protein contaminants in carmine. This method incorporates acidic protein denaturation conditions and ultrafiltration. To prevent protein aggregation, sodium dodecyl sulfate containing gel electrophoresis running buffer was used for dispersing the carmine before filtration. An ultrafiltration device was used to separate the protein contaminants from carminic acid in the carmine solution. Two ultrafiltration devices were compared, and a cylindrical device containing a modified polyethersulfone membrane gave the best results. The method had high reproducibility. PMID:25892994

  16. Rapid Synthesis of Thiophene-Based, Organic Dyes for Dye-Sensitized Solar Cells (DSSCs) by a One-Pot, Four-Component Coupling Approach.

    PubMed

    Matsumura, Keisuke; Yoshizaki, Soichi; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Kaiho, Tatsuo; Fuse, Shinichiro; Tanaka, Hiroshi; Takahashi, Takashi

    2015-06-26

    This one-pot, four-component coupling approach (Suzuki-Miyaura coupling/C-H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene-based organic dyes for dye-sensitized solar cells (DSSCs). Seven thiophene-based, organic dyes of various donor structures with/without the use of a 3,4-ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one-pot, 3-step, 35-61%). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short-circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open-circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n-hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2-5.6%). PMID:26017569

  17. Cosensitization of D-A-π-A quinoxaline organic dye: efficiently filling the absorption valley with high photovoltaic efficiency.

    PubMed

    Pei, Kai; Wu, Yongzhen; Li, Hui; Geng, Zhiyuan; Tian, He; Zhu, Wei-Hong

    2015-03-11

    In the efficient cosensitization, the pure organic sensitizers with high molecular extinction coefficients and long wavelength response are highly preferable since the dye loading amount for each dye in cosensitization is decreased with respect to single dye sensitization. A D-A-π-A featured quinoxaline organic sensitizer IQ21 is specifically designed. The high conjugation building block of 4H-cyclopenta[2,1-b:3,4-b']dithiophene (CPDT) is introduced as the π bridge, instead of the traditional thiophene unit, especially in realizing high molecular extinction coefficients (up to 66 600 M(-1) cm(-1)) and extending the light response wavelength. With respect to the reference dye IQ4, the slightly lower efficiency of IQ21 (9.03%) arises from the decrease of VOC, which offsets the gain in JSC. While cosensitized with a smaller D-π-A dye S2, the efficiency in IQ21 is further improved to 10.41% (JSC = 19.8 mA cm(-2), VOC = 731 mV, FF = 0.72). The large improvement in efficiency is attributed to the well-matched molecular structures and loading amounts of both dyes in the cosensitization system. We also demonstrated that coabsorbent dye S2 can distinctly compensate the inherent drawbacks of IQ21, not only enhancing the response intensity of IPCE, making up the absorption defects around low wavelength region of IPCE, but also repressing the charge recombination rate to some extent. PMID:25710618

  18. Metal-organic gel templated synthesis of magnetic porous carbon for highly efficient removal of organic dyes.

    PubMed

    Wang, Luhuan; Ke, Fei; Zhu, Junfa

    2016-03-21

    Magnetic porous carbon composites are promising materials in various applications, such as adsorbents, supercapacitors and catalyst supports, due to their high surface area, thermal and chemical stability, and easy separation. However, despite the increasing number of reports of magnetic porous carbon composites, the preparation of these materials with environmentally friendly procedures still remains a great challenge. Herein, we report a facile method to prepare a magnetic porous carbon composite with high surface area from a Fe-based metal-organic gel (MOG) template, an extended structure of a metal-organic framework (MOF). The obtained magnetic porous carbon composite was applied to remove organic dyes from an aqueous solution by selecting methyl orange (MO) as a model molecule. It exhibits excellent adsorption capacity (182.82 mg g(-1)), fast adsorption kinetics (8.13 × 10(-3) g mg(-1) min(-1)), and a perfect magnetic separation performance for the MO removal. This study demonstrates a new way to achieve clean synthesis of magnetic porous carbon materials, and opens a new door for the application of MOGs in organic dye removal. PMID:26842305

  19. Spatial modulation spectroscopy for imaging and quantitative analysis of single dye-doped organic nanoparticles inside cells

    NASA Astrophysics Data System (ADS)

    Devadas, Mary Sajini; Devkota, Tuphan; Guha, Samit; Shaw, Scott K.; Smith, Bradley D.; Hartland, Gregory V.

    2015-05-01

    Imaging of non-fluorescent nanoparticles in complex biological environments, such as the cell cytosol, is a challenging problem. For metal nanoparticles, Rayleigh scattering methods can be used, but for organic nanoparticles, such as dye-doped polymer beads or lipid nanoparticles, light scattering does not provide good contrast. In this paper, spatial modulation spectroscopy (SMS) is used to image single organic nanoparticles doped with non-fluorescent, near-IR croconaine dye. SMS is a quantitative imaging technique that yields the absolute extinction cross-section of the nanoparticles, which can be used to determine the number of dye molecules per particle. SMS images were recorded for particles within EMT-6 breast cancer cells. The measurements allowed mapping of the nanoparticle location and the amount of dye in a single cell. The results demonstrate how SMS can facilitate efforts to optimize dye-doped nanoparticles for effective photothermal therapy of cancer.Imaging of non-fluorescent nanoparticles in complex biological environments, such as the cell cytosol, is a challenging problem. For metal nanoparticles, Rayleigh scattering methods can be used, but for organic nanoparticles, such as dye-doped polymer beads or lipid nanoparticles, light scattering does not provide good contrast. In this paper, spatial modulation spectroscopy (SMS) is used to image single organic nanoparticles doped with non-fluorescent, near-IR croconaine dye. SMS is a quantitative imaging technique that yields the absolute extinction cross-section of the nanoparticles, which can be used to determine the number of dye molecules per particle. SMS images were recorded for particles within EMT-6 breast cancer cells. The measurements allowed mapping of the nanoparticle location and the amount of dye in a single cell. The results demonstrate how SMS can facilitate efforts to optimize dye-doped nanoparticles for effective photothermal therapy of cancer. Electronic supplementary information (ESI) available: TEM imaging, calibration experiments for the SMS instrument with gold nanoparticles, SMS images of dye doped polymer beads from a commercial source, evidence for endosome uptake, and additional SMS images of dye-doped LPNPs in EMT-6 cells, and spectra of SRfluor680/croconaine doped lipid-polymer nanoparticles. See DOI: 10.1039/C5NR01614B

  20. Evidences for Ti-N anchoring in organic dyes on TiO2 and its influence on photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Meng, Sheng; SEEC Lab Team

    2011-03-01

    New metal-free organic dyes with a novel donor-pi-acceptor design produce efficiencies exceeding 10% for dye-sensitized solar cells (DSSC) applications since 2010. Based on state-of- the-art electronic structure calculations and real time time- dependent density functional theory (TDDFT) simulations, we present consolidated evidences for novel Ti-N anchoring at the interface for such a broad group of new dyes, inferred from energetics, vibrational recognition, and electronic and optical data. This fact is contrary to what people usually believed and assumed in previous experiments and was largely ignored. We further demonstrate that the presence of interface Ti-N bonds largely benefit the electronic level alignment and photoelectron injection dynamics, greatly contributing to the improved efficiencies of DSSC based on cost-effective, environment-friendly organic dyes. We acknowledge supports from NSFC and hundred-talent program of CAS.

  1. Efficient adsorbents of nanoporous aluminosilicate monoliths for organic dyes from aqueous solution.

    PubMed

    El-Safty, Sherif A; Shahat, Ahmed; Awual, Md Rabiul

    2011-07-01

    Growing public awareness on the potential risk to humans of toxic chemicals in the environment has generated demand for new and improved methods for toxicity assessment and removal, rational means for health risk estimation. With the aim of controlling nanoscale adsorbents for functionality in molecular sieving of organic pollutants, we fabricated cubic Im3m mesocages with uniform entrance and large cavity pores of aluminosilicates as highly promising candidates for the colorimetric monitoring of organic dyes in an aqueous solution. However, a feasible control over engineering of three-dimensional (3D) mesopore cage structures with uniform entrance (~5 nm) and large cavity (~10 nm) allowed the development of nanoadsorbent membranes as a powerful tool for large-quantity and high-speed (in minutes) adsorption/removal of bulk molecules such as organic dyes. Incorporation of high aluminum contents (Si/Al=1) into 3D cubic Im3m cage mesoporous silica monoliths resulted in small, easy-to-use optical adsorbent strips. In such adsorption systems, natural surfaces of active acid sites of aluminosilicate strips strongly induced both physical adsorption of chemically responsive dyes and intraparticle diffusion into cubic Im3m mesocage monoliths. Results likewise indicated that although aluminosilicate strips with low Si/Al ratios exhibit distortion in pore ordering and decrease in surface area and pore volume, enhancement of both molecular converges and intraparticle diffusion onto the network surfaces and into the pore architectures of adsorbent membranes was achieved. Moreover, 3D mesopore cage adsorbents are reversible, offering potential for multiple adsorption assays. PMID:21514595

  2. Identification of natural dyes in archeological Coptic textiles by liquid chromatography with diode array detection.

    PubMed

    Orska-Gawryś, Jowita; Surowiec, Izabella; Kehl, Jerzy; Rejniak, Hanna; Urbaniak-Walczak, Katarzyna; Trojanowicz, Marek

    2003-03-14

    Reversed-phase HPLC with diode-array UV-Vis spectrophotometric detection has been used for identification of natural dyes in extracts from wool and silk fibres from archeological textiles. The examined objects originate from 4th to 12th Century Egypt and belong to the collection of Early Christian Art of the National Museum in Warsaw. Extraction from fibres was carried out with HCl solution containing ethanol or with warm pyridine. As the main individual chemical components of natural dyes, anthraquinone, indigoid and flavonoid dyes including alizarin, purpurin, luteolin, apigenin, carminic acid, ellagic acid, gallic acid, laccaic acids A and B and indigotin were found. For pyridine extracts another mobile phase with an optimized gradient of organic modifier concentration was used. With such an eluent the appearance of double peaks for indigotin and indirubin was eliminated. For acidic extraction of dyes from fibres, ethanol was used. Due to its higher boiling point than methanol it evaporates slower from the extraction solution enabling a more efficient extraction of dyes. PMID:12650256

  3. Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes

    SciTech Connect

    Kowalczyk, T.; Yost, S. R.; Van Voorhis, T.

    2010-01-01

    This paper assesses the accuracy of the ΔSCF method for computing low-lying HOMO→LUMO transitions in organic dye molecules. For a test set of vertical excitation energies of 16 chromophores, surprisingly similar accuracy is observed for time-dependent density functional theory and for ΔSCF density functional theory. In light of this performance, we reconsider the ad hoc ΔSCF prescription and demonstrate that it formally obtains the exact stationary density within the adiabatic approximation, partially justifying its use. The relative merits and future prospects of ΔSCF for simulating individual excited states are discussed.

  4. Real-time imaging and tracking of ultrastable organic dye nanoparticles in living cells.

    PubMed

    Xu, Ruirui; Huang, Liming; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong; Zhang, Xiujuan

    2016-07-01

    Semiconductor quantum dots and upconversion nanoparticles have been broadly used for live cell imaging due to their color tunability and photostability etc. However, these inorganic materials often contain heavy metals and potentially have metabolism problems. To overcome these issues, herein, we report a type of organic dye nanoparticles (NPs) with coating of a thin silica layer and folic acid targeting molecules on the surface for live cell imaging. These organic NPs possess superior characteristics of high fluorescence intensity, large Stokes shift, good photostability, emission in the NIR range, and targeted delivery, enabling them to be a powerful fluorescent probe for living cell imaging. In our study, we successfully demonstrate their applications in investigating cell division, exploring the cellular uptake kinetics and pathway of NPs, observing the distribution of NPs, and live-time tracking the trajectory of specific NPs. Considering the excellent properties and unique clathrin- and caveollae-independent intracellular uptake pathway, we expect that this type of organic dye NPs will play an important role in live cell imaging. PMID:27064960

  5. Effect of viscosity, basicity and organic content of composite flocculant on the decolorization performance and mechanism for reactive dyeing wastewater.

    PubMed

    Wang, Yuanfang; Gao, Baoyu; Yue, Qinyan; Wang, Yan

    2011-01-01

    A coagulation/flocculation process using the composite flocculant polyaluminum chloride-epichlorohydrin dimethylamine (PAC-EPI-DMA) was employed for the treatment of an anionic azo dye (Reactive Brilliant Red K-2BP dye). The effect of viscosity (eta), basicity (B = [OH]/[Al]) and organic content (W(P)) on the flocculation performance as well as the mechanism of PAC-EPI-DMA flocculant were investigated. The eta was the key factor affecting the dye removal efficiency of PAC-EPI-DMA. PAC-EPI-DMA with an intermediate eta (2400 mPa x sec) gave higher decolorization efficiency by adsorption bridging and charge neutralization due to the co-effect of PAC and EPI-DMA polymers. The W(P) of the composite flocculant was a minor important factor for the flocculation. The adsorption bridging of PAC-EPI-DMA with eta of 300 or 4300 mPa x sec played an important role with the increase of W(P), whereas the charge neutralization of them was weaker with the increase of W(P). There was interaction between W(P) and B on the removal of reactive dye. The composite flocculant with intermediate viscosity and organic content was effective for the treatment of reactive dyeing wastewater, which could achieve high reactive dye removal efficiency with low organic dosage. PMID:22432257

  6. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    PubMed

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  7. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    PubMed Central

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  8. Post-assembly atomic layer deposition of ultrathin metal-oxide coatings enhances the performance of an organic dye-sensitized solar cell by suppressing dye aggregation.

    PubMed

    Son, Ho-Jin; Kim, Chul Hoon; Kim, Dong Wook; Jeong, Nak Cheon; Prasittichai, Chaiya; Luo, Langli; Wu, Jinsong; Farha, Omar K; Wasielewski, Michael R; Hupp, Joseph T

    2015-03-11

    Dye aggregation and concomitant reduction of dye excited-state lifetimes and electron-injection yields constitute a significant mechanism for diminution of light-to-electrical energy conversion efficiencies in many dye-sensitized solar cells (DSCs). For TiO2-based DSCs prepared with an archetypal donor-acceptor organic dye, (E)-2-cyano-3-(5'-(5''-(p-(diphenylamino)phenyl)-thiophen-2''-yl)thiophen-2'-yl)acrylic acid (OrgD), we find, in part via ultrafast spectroscopy measurements, that postdye-adsorption atomic layer deposition (ALD) of ultrathin layers of either TiO2 or Al2O3 effectively reverses residual aggregation. Notably, the ALD treatment is significantly more effective than the widely used aggregation-inhibiting coadsorbent, chenodeoxycholic acid. Primarily because of reversal of OrgD aggregation, and resulting improved injection yields, ALD post-treatment engenders a 30+% increase in overall energy conversion efficiency. A secondary contributor to increased currents and efficiencies is an ALD-induced attenuation of the rate of interception of injected electrons, resulting in slightly more efficient charge collection. PMID:25695408

  9. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds

    NASA Astrophysics Data System (ADS)

    Schreiber, Robert; Do, Jaekwon; Roller, Eva-Maria; Zhang, Tao; Schüller, Verena J.; Nickels, Philipp C.; Feldmann, Jochen; Liedl, Tim

    2014-01-01

    The self-assembly of nanoscale elements into three-dimensional structures with precise shapes and sizes is important in fields such as nanophotonics, metamaterials and biotechnology. Short molecular linkers have previously been used to create assemblies of nanoparticles, but the approach is limited to small interparticle distances, typically less than 10 nm. Alternatively, DNA origami can precisely organize nanoscale objects over much larger length scales. Here we show that rigid DNA origami scaffolds can be used to assemble metal nanoparticles, quantum dots and organic dyes into hierarchical nanoclusters that have a planet-satellite-type structure. The nanoclusters have a tunable stoichiometry, defined distances of 5-200 nm between components, and controllable overall sizes of up to 500 nm. We also show that the nanoscale components can be positioned along the radial DNA spacers of the nanostructures, which allows short- and long-range interactions between nanoparticles and dyes to be studied in solution. The approach could, in the future, be used to construct efficient energy funnels, complex plasmonic architectures, and porous, nanoengineered scaffolds for catalysis.

  10. Preparation of C60 Nanowhiskers-SnO2 Nanocomposites and Photocatalytic Degradation of Organic Dyes.

    PubMed

    Park, Hae Soo; Ko, Weon Bae

    2015-10-01

    C60 nanowhiskers were prepared using a liquid-liquid interfacial precipitation (LLIP) method. Tin oxide (SnO2) nanoparticles were synthesized by a reaction of tin (IV) chloride pentahydrate with ammonium nitrate in an electric furnace. The C60 nanowhiskers-SnO2 nanocomposites were calcined in an electric furnace at 700 °C under an inert argon gas atmosphere for 2 h. The crystallinity, morphology and optical properties of the samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and UV-vis spectrophotometry. The photocatalytic activity of the C60 nanowhiskers-SnO2 nanocomposites in the degradation of the organic dyes, such as methylene blue, methyl orange, rhodamine B, and brilliant green, under ultraviolet light at 254 nm by UV-vis spectrophotometry was evaluated and compared with that of C60 nanowhiskers and SnO2 nanoparticles. The experimental results showed that C60 nanowhiskers-SnO2 nanocomposites exhibited remarkably higher photocatalytic degradation of organic dyes compared to C60 nanowhiskers and SnO2 nanoparticles. PMID:26726474

  11. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds.

    PubMed

    Schreiber, Robert; Do, Jaekwon; Roller, Eva-Maria; Zhang, Tao; Schüller, Verena J; Nickels, Philipp C; Feldmann, Jochen; Liedl, Tim

    2014-01-01

    The self-assembly of nanoscale elements into three-dimensional structures with precise shapes and sizes is important in fields such as nanophotonics, metamaterials and biotechnology. Short molecular linkers have previously been used to create assemblies of nanoparticles, but the approach is limited to small interparticle distances, typically less than 10 nm. Alternatively, DNA origami can precisely organize nanoscale objects over much larger length scales. Here we show that rigid DNA origami scaffolds can be used to assemble metal nanoparticles, quantum dots and organic dyes into hierarchical nanoclusters that have a planet-satellite-type structure. The nanoclusters have a tunable stoichiometry, defined distances of 5-200 nm between components, and controllable overall sizes of up to 500 nm. We also show that the nanoscale components can be positioned along the radial DNA spacers of the nanostructures, which allows short- and long-range interactions between nanoparticles and dyes to be studied in solution. The approach could, in the future, be used to construct efficient energy funnels, complex plasmonic architectures, and porous, nanoengineered scaffolds for catalysis. PMID:24292513

  12. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure

    NASA Astrophysics Data System (ADS)

    SchlierfThese Authors Contributed Equally To This Work., Andrea; Yang, Huafeng; Gebremedhn, Elias; Treossi, Emanuele; Ortolani, Luca; Chen, Liping; Minoia, Andrea; Morandi, Vittorio; Samor, Paolo; Casiraghi, Cinzia; Beljonne, David; Palermo, Vincenzo

    2013-05-01

    We study the mechanism of surface adsorption of organic dyes on graphene, and successive exfoliation in water of these dye-functionalized graphene sheets. A systematic, comparative study is performed on pyrenes functionalized with an increasing number of sulfonic groups. By combining experimental and modeling investigations, we find an unambiguous correlation between the graphene-dye interaction energy, the molecular structure and the amount of graphene flakes solubilized. The results obtained indicate that the molecular dipole is not important per se, but because it facilitates adsorption on graphene by a ``sliding'' mechanism of the molecule into the solvent layer, facilitating the lateral displacement of the water molecules collocated between the aromatic cores of the dye and graphene. While a large dipole and molecular asymmetry promote the adsorption of the molecule on graphene, the stability and pH response of the suspensions obtained depend on colloidal stabilization, with no significant influence of molecular charging and dipole.We study the mechanism of surface adsorption of organic dyes on graphene, and successive exfoliation in water of these dye-functionalized graphene sheets. A systematic, comparative study is performed on pyrenes functionalized with an increasing number of sulfonic groups. By combining experimental and modeling investigations, we find an unambiguous correlation between the graphene-dye interaction energy, the molecular structure and the amount of graphene flakes solubilized. The results obtained indicate that the molecular dipole is not important per se, but because it facilitates adsorption on graphene by a ``sliding'' mechanism of the molecule into the solvent layer, facilitating the lateral displacement of the water molecules collocated between the aromatic cores of the dye and graphene. While a large dipole and molecular asymmetry promote the adsorption of the molecule on graphene, the stability and pH response of the suspensions obtained depend on colloidal stabilization, with no significant influence of molecular charging and dipole. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00258f

  13. Investigation of electrodeposited cobalt sulphide counter electrodes and their application in next-generation dye sensitized solar cells featuring organic dyes and cobalt-based redox electrolytes

    NASA Astrophysics Data System (ADS)

    Swami, Sanjay Kumar; Chaturvedi, Neha; Kumar, Anuj; Kapoor, Raman; Dutta, Viresh; Frey, Julien; Moehl, Thomas; Grätzel, Michael; Mathew, Simon; Nazeeruddin, Mohammad Khaja

    2015-02-01

    Cobalt sulphide (CoS) films are potentiodynamically deposited on fluorine-doped tin oxide (FTO) coated glass substrates employing one, three and five sweep cycles (CoS-I, CoS-III and CoS-V respectively). Analysis of the CoS-III film by impedance spectroscopy reveals a lower charge transfer resistance (RCT) than that measured for Pt CE (0.75 Ω cm-2 and 0.85 Ω cm-2, respectively). The CoS films are used as counter electrodes (CE) in dye-sensitized solar cells (DSSCs) featuring the combination of a high absorption coefficient organic dye (C218) and the cobalt-based redox electrolyte [Co(bpy)3]2/3+. DSSCs fabricated with the CoS-III CE yield the highest short-circuit current density (JSC) of 12.84 mA cm-2, open circuit voltage (VOC) of 805 mV and overall power conversion efficiency (PCE) of 6.72% under AM 1.5G illumination (100 mW cm-2). These values are comparable to the performance of an analogous cell fabricated with the Pt CE (PCE = 6.94%). Owing to relative lower cost (due to the inherit earth abundance of Co) and non-toxicity, CoS can be considered as a promising alternative to the more expensive Pt as a CE material for next-generation DSSCs that utilize organic dyes and cobalt-based redox electrolytes.

  14. Connecting Direct C-H Arylation Reactions with Dye-Sensitized Solar Cells: A Shortcut to D-A-π-A Organic Dyes.

    PubMed

    Lin, Po-Han; Lu, Te-Jui; Cai, Deng-Jhou; Lee, Kun-Mu; Liu, Ching-Yuan

    2015-10-12

    A step-economical synthetic strategy is developed to target thieno[3,4-c]pyrrole-4,6-dione (TPD)-based D-A-π-A organic dyes for dye-sensitized solar cells (DSSCs). Through sequential Pd-catalyzed direct C-H (hetero)arylation reaction, synthesis of the push-pull-type small molecules is reduced from the traditional six steps to two steps. In this report, we focus on the optimization of the key C-H monoarylation of TPD by screening ligands, acid additives, bases, and solvents. The reaction proves versatile toward new D-A-π-A organic dyes with a variety of different donor groups, and several derivatives are efficiently prepared under optimum reaction conditions. The sensitive aldehyde functionality that is a required intermediate for conversion into anchoring groups for TiO2 is well tolerated. Based on our synthetic study, DSSCs are fabricated and characterized using two designed sensitizers. The photovoltaic characterization of the devices affords an open-circuit voltage of 0.60-0.69 V, a short-circuit current density of 10.85-11.07 mA cm(-2), and a fill factor of 69.9-70.8 %, which corresponds to an overall power conversion efficiency of 4.61-5.33 %. PMID:26347029

  15. A highly selective optode for determination of Hg (II) by a modified immobilization of indigo carmine on a triacetylcellulose membrane

    NASA Astrophysics Data System (ADS)

    Tavallali, Hossein; Shaabanpur, Elham; Vahdati, Parvin

    2012-04-01

    A new mercury optical sensor was designed with indigo carmine (IC) as a dye indicator. The water-soluble indicator was lipophilized in the form of an ion-pair with N-cetyl pyridinium chloride (CPC) and dissolved in methanol (70 °C), then immobilized on a triacetylcellulose membrane. This optode exhibits a linear range of 24.0-468.0 μM of the Hg (II) ion concentration with detection limit of 7.2 μM at 669.5 nm. Response time was within 8-10 min, depending on the Hg (II) ion concentration. The sensor could readily be regenerated with a hydrochloric acid solution (0.01 M) in a reversible manner and its response was reproducible (RSD = 3.2%). The method was applied to the determination of mercury content of a variety of samples which gave satisfactory results.

  16. Screening for larvicidal activity of ten carminative plants.

    PubMed

    Pitasawat, B; Choochote, W; Kanjanapothi, D; Panthong, A; Jitpakdi, A; Chaithong, U

    1998-09-01

    Ten species of plants, reported to possess carminative property, were screened for larvicidal potential against Culex quinquefasciatus by exposing early 4th instar larvae to a series of concentrations of the ethanolic extracts of the plants. Mortality counts were made after 24 hours exposure. Probit analysis using computerized Harvard Programming (Hg1, 2) was employed to determine the LC50, LC95 and LC99 values in order to compare the larvicidal potency of the ten plants. Marked larvicidal effects were seen with Kaempferia galanga, Illicium vernum and Spilanthes acmella having LC50 values of 50.54, 54.11 and 61.43 ppm, respectively. PMID:10437975

  17. Activated carbon doped with biogenic manganese oxides for the removal of indigo carmine.

    PubMed

    Hu, Yichen; Chen, Xiao; Liu, Zhiqiang; Wang, Gejiao; Liao, Shuijiao

    2016-01-15

    Indigo carmine (IC) is one of the oldest, most important, and highly toxic dyes which is released from the effluents of many industries and results in serious pollution in water. In this study, the biogenic Mn oxides were activated by NaOH and then heated for 3 h at 350 °C to produce activated carbon doped with Mn oxide (Bio-MnOx-C), which were produced by culturing Mn (II)-oxidizing bacterial strain MnI7-9 in liquid A medium at 28 °C with 10 mmol/L MnCl2. Bio-MnOx-C was characterized by SEM, TEM, IR, XPS, XRD, etc. It contained C, O, and Mn which comprised Mn (IV) and Mn (III) valence states at a ratio of 3.81:1. It had poorly crystalline ε-MnO2 with a specific surface area of 130.94 m(2)/g. A total of 0.1 g Bio-MnOx-C could remove 45.95 g IC from 500 mg/L IC solution after 0.5 h contact time. IC removal by Bio-MnOx-C included a rapid oxidation reaction and the removal reaction followed second-order kinetic equation. These results confirmed that Bio-MnOx-C could be a potential material for wastewater remediation. PMID:26595178

  18. The hazardous effects of three natural food dyes on developmental stages and longevity of Drosophila melanogaster.

    PubMed

    Uysal, Handan; Semerdken, S?d?ka; olak, Deniz Altun; Ayar, Arif

    2015-07-01

    Nowadays, food dyes obtained from herbal, animal, microbial and mineral sources are widely used as food additives. In this study, the toxic effects of three different natural food dyes (carmine, turmeric and annatto) on 724h larvae of Oregon-R wild type of Drosophila melanogaster were investigated. For this purpose, four different application doses (50, 75, 100, 125mgmL(-1)) were chosen by means of preliminary studies. It was determined that larval mortality increased with increasing concentration in the application groups and the toxicity order was carmine>turmeric>annatto. It was observed that the survival rate was highest in the control with 98% and lowest in 125mgmL(-1) carmine with 16%. In addition, the average lifespan of the adult individuals obtained from third instar larvae was also studied. While the average lifespan was 40.881.44days in the control group, these values were 10.810.55-23.901.27days in the carmine group, 15.000.80-22.421.43days in the turmeric group and 10.331.03-35.681.54days in the annatto group, respectively. According to the obtained results, when both the developmental period from larvae into adults and the lifespan of the developing adults were compared with the control group, the food dyes were found to be toxic and the toxicity order of carmine>turmeric>annatto was identified. PMID:23456813

  19. A novel porous anionic metal-organic framework with pillared double-layer structure for selective adsorption of dyes

    NASA Astrophysics Data System (ADS)

    Sheng, Shu-Nan; Han, Yi; Wang, Bin; Zhao, Cui; Yang, Fan; Zhao, Min-Jian; Xie, Ya-Bo; Li, Jian-Rong

    2016-01-01

    A novel porous anionic metal-organic framework, (Me2NH2)2[Zn2L1.5bpy]·2DMF (BUT-201; H4L=4,8-disulfonaphthalene-2,6-dicarboxylic acid; bpy=4,4-bipyridine; DMF=N,N-dimethylformamide), with pillared double-layer structure has been synthesized through the reaction of a sulfonated carboxylic acid ligand and Zn(NO3)2·6H2O with 4,4-bipyridine as a co-ligand. It is found that BUT-201 can rapidly adsorb cationic dyes with a smaller size such as Methylene Blue (MB) and Acriflavine Hydrochloride (AH) by substitution of guest (CH3)2NH2+, but has no adsorption towards the cationic dyes with a lager size such as Methylene Violet (MV), the anionic dyes like C. I. Acid Yellow 1 (AY1) and neutral dyes like C. I. Solvent Yellow 7 (SY7), respectively. The results show that the adsorption behavior of BUT-201 relates not only to the charge but also to the size/shape of dyes. Furthermore, the adsorbed dyes can be gradually released in the methanol solution of LiNO3.

  20. Molecular engineering of organic dyes with a hole-extending donor tail for efficient all-solid-state dye-sensitized solar cells.

    PubMed

    Lu, Jianfeng; Chang, Yu-Cheng; Cheng, Hsu-Yang; Wu, Hui-Ping; Cheng, Yibing; Wang, Mingkui; Diau, Eric Wei-Guang

    2015-08-10

    We report a new concept for the design of metal-free organic dyes (OD5-OD9) with an extended donor-π-acceptor (D-π-A) molecular framework, in which the donor terminal unit is attached by a hole-extending side chain to retard back electron transfer and charge recombination; the π-bridge component contains varied thiophene-based substituents to enhance the light-harvesting ability of the device. The best dye (OD9) has a D-A-π-A configuration with the hexyloxyphenylthiophene (HPT) side chain as a hole-extension component and a benzothiadiazole (BTD) internal acceptor as a π-extension component. The co-sensitization of OD9 with the new porphyrin dye LW24 enhanced the light-harvesting ability to 800 nm; thus, a power conversion efficiency 5.5 % was achieved. Photoinduced absorption (PIA) and transient absorption spectral (TAS) techniques were applied to account for the observed trend of the open-circuit voltage (VOC ) of the devices. This work provides insights into the molecular design, photovoltaic performance, and kinetics of charge recombination. PMID:26119886

  1. A novel structural Fenton-like nanocatalyst with highly improved catalytic performance for generalized preparation of iron oxide@organic dye polymer core-shell nanospheres.

    PubMed

    Zhao, Guanghui; Peng, Xiaomen; Li, Hongping; Wang, Jianzhi; Zhou, Lincheng; Zhao, Tianqi; Huang, Zhihao; Jiang, Haifei

    2015-05-01

    FexOy@FexOy/C nanoparticles with a soap-bubble-like shell have been synthesized, and the materials exhibit excellent Fenton catalytic performance. More importantly, FexOy@FexOy/C nanoparticles as catalysts and precursors could catalyze organic dye molecules to form iron oxide@organic dye polymer core-shell nanospheres. PMID:25828271

  2. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    NASA Astrophysics Data System (ADS)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei; Zhang, Jingwei; Zhang, Jiwei; Gong, Chunhong; Zhou, Jingfang; Zhang, Zhijun

    2015-12-01

    In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  3. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed. PMID:26444488

  4. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    PubMed Central

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  5. Hierarchically porous silicon-carbon-nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes.

    PubMed

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon-carbon-nitrogen (Si-C-N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g(-1) and 1084.5 mg·g(-1) for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si-C-N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  6. Hierarchically porous silicon-carbon-nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    NASA Astrophysics Data System (ADS)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon-carbon-nitrogen (Si-C-N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg.g-1 and 1084.5 mg.g-1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si-C-N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants.

  7. Synthesis of magnetic nanoporous carbon from metal-organic framework for the fast removal of organic dye from aqueous solution

    NASA Astrophysics Data System (ADS)

    Jiao, Caina; Wang, Yanen; Li, Menghua; Wu, Qiuhua; Wang, Chun; Wang, Zhi

    2016-06-01

    In this paper, a magnetic nanoporous carbon (Fe3O4/NPC) was successfully synthesized by using MOF-5 as carbon precursor and Fe salt as magnetic precursor. The texture properties of the as-synthesized nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometer (VSM), and N2 adsorption-desorption isotherms. The Fe3O4/NPC had a high surface area with strong magnetic strength. Its adsorption behavior was tested by its adsorption capacity for the removal of methylene blue from aqueous solution. The results demonstrated that the Fe3O4/NPC had a high adsorption capacity, rapid adsorption rate, and easy magnetic separabilty. Moreover, the adsorbent could be easily regenerated by washing it with ethanol. The Fe3O4/NPC can be used as a good alternative for the effective removal of organic dyes from wastewater.

  8. Solid-state dye-sensitized solar cells based on poly(3,4-ethylenedioxypyrrole) and metal-free organic dyes.

    PubMed

    Zhang, Jinbao; Häggman, Leif; Jouini, Mohamed; Jarboui, Adel; Boschloo, Gerrit; Vlachopoulos, Nick; Hagfeldt, Anders

    2014-04-14

    Poly(3,4-ethylenedioxypyrrole) (PEDOP), combined with metal-free organic sensitizers, is efficiently used for the first time as the hole-transporting material in solid-state dye-sensitized solar cells. Devices employing PEDOP as the hole conductor and D35 or D21 L6 as the sensitizer show a ten-times-higher energy-conversion efficiency (of 4.5% and 3.3%, respectively) compared to Ru-Z907-based devices. This is due to the efficient suppression of electron recombination. PMID:24596255

  9. Simple metal-free organic D-pi-A dyes with alkoxy- or fluorine substitutions: application in dye sensitized solar cells.

    PubMed

    Chandrasekharam, M; Chiranjeevi, B; Gupta, K S V; Singh, Surya Prakash; Islam, A; Han, L; Kantam, M Lakshmi

    2012-06-01

    Two new metal-free organic sensitizers with simplest structural variations have been synthesized for application in nanocrystalline TiO2 sensitized solar cells. The donor-pi-bridge-acceptor (D-pi-A) structure dyes, Y2 and Y3 each designed with three parts, an electron donor unit (substituted phenyl), a linker unit (thiophene), and an anchor unit (cyanoacrylic acid) showed maximal monochromatic incident photon to current conversion efficiencies (IPCE) in a device reaching upto 67% and 82% respectively. The organic sensitizers with 3,4,5-trimethoxy phenyl (Y3) as donor moieties obtained better solar light to electrical energy conversion efficiencies of 3.30% where as the organic sensitizer with 2,4-difluoro phenyl as donor (Y2) showed comparatively lower efficiency of 1.02%. The efficiency obtained with the reference sensitizer N719 under similar fabrication and evaluation conditions was 5.84%. PMID:22905490

  10. Quantitative determination of carmine in foods by high-performance liquid chromatography.

    PubMed

    Lim, Ho-Soo; Choi, Jae-Chon; Song, Sung-Bong; Kim, Meehye

    2014-09-01

    A simple and rapid method has been developed and validated for the determination of carmine in foods. Samples were homogenised and extracted with 0.05 M NaOH, followed by centrifugation. The resulting solution was filtered and injected to HPLC. Carmine was separated by HPLC using an NovaPak C18 column coupled to a photodiode array detector. The contents of carmine were finally quantified using corresponding calibration curves over ranges of 1.0-100 μg ml(-1), with good correlation coefficients (r(2)=0.9999). The recoveries of carmine from foods spiked at levels of 10, 50, and 100 μg g(-1) which ranged from 90.4% to 96.2% with relative standard deviations between 2.8% and 6.8%. Limit of detection and limit of quantification of carmine were 0.4 and 1.0 μg ml(-1), respectively. This method was found to be useful to distinguish carmine from carminic acid, a major component of cochineal extract. The method has been successfully applied to various foods. PMID:24731378

  11. Visible-Light-Induced Photoredox Catalysis of Dye-Sensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides.

    PubMed

    Lang, Xianjun; Zhao, Jincai; Chen, Xiaodong

    2016-04-01

    TiO2 photoredox catalysis has recently attracted much interest for use in performing challenging organic transformations under mild reaction conditions. However, the reaction scheme is hampered by the fact that TiO2 can only be excited by UV light of wavelengths λ shorter than 385 nm. One promising strategy to overcome this issue is to anchor an organic, preferably metal-free dye onto the surface of TiO2 . Importantly, we observed that the introduction of a catalytic amount of the redox mediator TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl] ensured the stability of the anchored dye, alizarin red S, thereby resulting in the selective oxidation of organic sulfides with O2 . This result affirms the essential role of the redox mediator in enabling the organic transformations by visible-light photoredox catalysis. PMID:26969891

  12. Tailoring oxides of copper-Cu2O and CuO nanoparticles and evaluation of organic dyes degradation

    NASA Astrophysics Data System (ADS)

    Raghav, Ragini; Aggarwal, Priyanka; Srivastava, Sudha

    2016-04-01

    We report a simple one-pot colloidal synthesis strategy tailoring cuprous or cupric nano-oxides in pure state. NaOH provided alkaline conditions (pH 12.5 -13) for nano-oxides formation, while its concentration regulated the oxidation state of the nano-oxides. The morphological, structural and optical properties of synthesized Cu2O and CuO nanoparticles were studied by transmission electron microscopy (TEM), X-Ray diffraction (XRD) and UV-vis spectroscopy. Dye degradation capability of CuO and Cu2O nanoparticles was evaluated using four organic dyes - Malachite green, Methylene blue, Methyl orange and Methyl red. The results demonstrate effective degradation of all four dyes employing with almost comparable activity both Cu2O and CuO nanoparticles.

  13. Photoinduced absorption measurement on a microchip equipped with organic dye-doped polymer waveguide

    NASA Astrophysics Data System (ADS)

    Kawaguchi, T.; Nagai, K.; Yamashita, K.

    2013-05-01

    We have fabricated a waveguide-type optical sensing microchip and succeeded in on-chip photoinduced absorption (PIA) spectroscopy. The PIA microchip was fabricated with a conventional photolithographic technique and consisted of plastic optical waveguides and microfluidic channels. Furthermore, a serially-cascaded polymer waveguide doped with organic dyes was integrated on this microchip, which was fabricated using a self-written waveguide process. This dye-doped waveguide was pumped by a UV light emitting diode (UV-LED) and used as a probe light source with a broad emission spectrum. At the same time, a solution of test material in the microfluidic channel was synchronously pumped by a UV-LED or UV laser diode. Since the transmission spectrum of the photo-excited test material could be measured, the PIA spectra were obtained easily. In this study, we have demonstrated the on-chip PIA measurements for two classes of test materials, rare-earth complex and chlorophyll molecules. In the measurement for the aqueous solution of Neodymium (III) acetate hydrate, PIA signals attributed to the 4f-4f transition was observed. Furthermore, by varying the modulation frequency of the pulsed optical pumping, lifetime analysis of the excited 4f states was achieved. In the measurements for the ethanol solutions of chlorophyll a and chlorophyll b, PIA signals were observed at the wavelength near the Q-band absorption peaks. These spectra were very similar to the well-known feature for the photosystem II protein complex observed in a conventional PIA system. From these results, it is expected that the onchip PIA measurement technique is applicable to the transient analyses for the material systems with photoexcited charge transfer.

  14. Theoretical analysis of the absorption spectra of organic dyes differing by the conjugation sequence: illusion of negative solvatochromism

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Segawa, Hiroshi; Yamashita, Koichi

    2012-06-01

    Absorption peak maxima of two organic dyes differing by the position of the methine unit differ by 61 nm in dioxane and 128 nm in acetonnitrile. The difference is not reproduced by TDDFT using ab initio or hybrid functionals. TDDFT errors are different between the molecules due to a different albeit small extent of charge transfer, leading to a qualitative failure of TDDFT to predict relative energetics of the dyes. The TDDFT errors in non-polar solvents (such as dioxane) could be corrected based on the approach of Peach et al. (J. Chem. Phy. 128, 044118 (2008)). Here, we focus on the effect on the absorption spectrum of a polar solvent, specifically of the different between the two molecules sign of the solvatochromic shift vs. dioxane. Using the corrrection due to Peach et al, the absolute TDDFT errors can be brought within accetable ranges of 0.2-0.3 eV with the PCM solvent model, and the blue shift vs.dioxane is reporoduced, although both dyes are predicted to exhibit positive solvatochromism. The inclusion of explicit solvent molecules forming hydrogen bonds with the dye did not appreciably change neither TDDFT energies nor the correction term. These results show the importance of a more careful assessment of computational errors in the strategy of computationaly dye design by changing the conjugation order, where they are expected to be more important than in the case of an extension of the size of conjugation, and more so when polar solvents are used.

  15. Self-organizing core-shell nanostructures: spontaneous accumulation of dye in the core of doped silica nanoparticles.

    PubMed

    Rampazzo, Enrico; Bonacchi, Sara; Montalti, Marco; Prodi, Luca; Zaccheroni, Nelsi

    2007-11-21

    The process of formation of silica nanoparticles doped with a newly synthesized pyrene derivative has been investigated by means of fluorescence steady-state and time-resolved spectroscopy. The changes in the photophysical properties of the fluorophore were correlated to the increase of the nanoparticles hydrodynamic volume measured via dynamic light scattering (DLS) allowing us to determine the radial profile of the concentration of the dye. Experiments performed at a "low" degree of doping show that the fluorophore is almost completely included considerably before the end of the nanoparticles growth, allowing us to identify a self-organizing core-shell substructure. A strong enhancement of the fluorescence of the dye and a corresponding increase of its excited-state lifetime was observed upon its inclusion as a result of the shielding effect from molecular oxygen due to the silica matrix, a situation confirmed by the absence of the oxygen singlet emission in the near-infrared luminescence spectra. In the case of "high" loading, on the other hand, a heavily doped core showing an excimeric-like emission is first formed. Further growth leads to the formation of layers where the concentration of dye gradually decreases and the monomeric emission becomes relevant. The effect of the degree of doping on the kinetics of growth is also reported. At both concentration regimes, ultrafiltration experiments revealed the complete inclusion of the dye molecules. The average number of dye molecule per nanoparticles was also determined. PMID:17958420

  16. Photoconductivity of organic polymer films doped with porous silicon nanoparticles and ionic polymethine dyes

    SciTech Connect

    Davidenko, N. A. Skrichevsky, V. A.; Ishchenko, A. A.; Karlash, A. Yu.; Mokrinskaya, E. V.

    2009-05-15

    Features of electrical conductivity and photoconductivity of polyvinylbutyral films containing porous silicon nanoparticles and similar films doped with cationic and anionic polymethine dyes are studied. Sensitization of the photoelectric effect by dyes with different ionicities in films is explained by the possible photogeneration of holes and electrons from dye molecules and the intrinsic bipolar conductivity of porous silicon nanoparticles. It is assumed that the electronic conductivity in porous silicon nanoparticles is higher in comparison with p-type conductivity.

  17. Abatements of reduced sulphur compounds, colour, and organic matter from indigo dyeing effluents by electrocoagulation.

    PubMed

    Tünay, Olcay; Simşeker, Merve; Kabdaşli, Isik; Olmez-Hanci, Tugba

    2014-08-01

    In the present study, the treatability of indigo dyeing effluents by the electrocoagulation (EC) process using stainless steel electrodes was experimentally investigated. The samples used were concentrated with main pollutant parameters of chemical oxygen demand (COD) (1000-1100 mg/L), reduced sulphur species (over 2000 mg SO2-(3)/L), and colour (0.12-0.13 1/cm). The study focused on the effect of main operation parameters on the EC process performance in terms of abatement of reduced sulphur compounds as well as decolourization and organic matter reduction. Results indicated that the performance of EC proved to be high providing total oxidation of the reduced sulphur compounds, almost complete decolourization, and COD removal up to 90%. Increasing applied current density from 22.5 to 45 mA/cm2 appreciably improved abatement of the reduced sulphur compounds for Sample I, but a further increase in the applied current density to 67.5 mA/cm2 did not accelerate the conversion rate to sulphate. The process performance was adversely affected by increasing initial concentration of the reduced sulphur compounds. Decolourization and organic matter removal efficiency enhanced with increasing applied current density. The main removal mechanism of the reduced sulphur compounds by EC was explained as conversion to sulphate via oxidation. Conversion rate to sulphate fitted pseudo-first-order kinetics very well. PMID:24956747

  18. Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.

    PubMed

    Chen, Guanying; Damasco, Jossana; Qiu, Hailong; Shao, Wei; Ohulchanskyy, Tymish Y; Valiev, Rashid R; Wu, Xiang; Han, Gang; Wang, Yan; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2015-11-11

    Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion. PMID:26487489

  19. A metal-organic tetrahedron as a redox vehicle to encapsulate organic dyes for photocatalytic proton reduction.

    PubMed

    Jing, Xu; He, Cheng; Yang, Yang; Duan, Chunying

    2015-03-25

    The design of artificial systems that mimic highly evolved and finely tuned natural photosynthetic systems is a subject of intensive research. We report herein a new approach to constructing supramolecular systems for the photocatalytic generation of hydrogen from water by encapsulating an organic dye molecule into the pocket of a redox-active metal-organic polyhedron. The assembled neutral Co4L4 tetrahedron consists of four ligands and four cobalt ions that connect together in alternating fashion. The cobalt ions are coordinated by three thiosemicarbazone NS chelators and exhibit a redox potential suitable for electrochemical proton reduction. The close proximity between the redox site and the photosensitizer encapsulated in the pocket enables photoinduced electron transfer from the excited state of the photosensitizer to the cobalt-based catalytic sites via a powerful pseudo-intramolecular pathway. The modified supramolecular system exhibits TON values comparable to the highest values reported for related cobalt/fluorescein systems. Control experiments based on a smaller tetrahedral analogue of the vehicle with a filled pocket and a mononuclear compound resembling the cobalt corner of the tetrahedron suggest an enzymatic dynamics behavior. The new, well-elucidated reaction pathways and the increased molarity of the reaction within the confined space render these supramolecular systems superior to other relevant systems. PMID:25738748

  20. An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell.

    PubMed

    Kakiage, Kenji; Aoyama, Yohei; Yano, Toru; Otsuka, Takahiro; Kyomen, Toru; Unno, Masafumi; Hanaya, Minoru

    2014-06-18

    Dye-sensitized solar cells fabricated by using a novel metal-free alkoxysilyl carbazole as a sensitizing dye and a Co(3+/2+)-complex redox electrolyte exhibited light-to-electric energy conversion efficiencies of over 12% with open-circuit photovoltages higher than 1 V by applying a hierarchical multi-capping treatment to the photoanode. PMID:24801395

  1. Organic Dye Effects on DNAPL Entry Pressure in Water Saturated Porous Media

    SciTech Connect

    Iversen, G.M.

    2001-10-02

    One of three diazo dyes with the same fundamental structure have been used in most studies of DNAPL behavior in porous media to stain the NAPL: Sudan III, Sudan IV, or Oil-Red-O. The dyes are generally implicitly assumed to not influence DNAPL behavior. That assumption was tested using simple entry pressure experiments.

  2. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.

    2015-07-01

    A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52 m2 g-1), excellent magnetic response (14.89 emu g-1), and large mesopore volume (0.09 cm3 g-1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting π-π stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84 mg MB g-1 at an initial MB concentration of 30 mg L-1, which increased to 245 mg g-1 when the initial MB concentration was 300 mg L-1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles.

  3. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water

    PubMed Central

    Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.

    2015-01-01

    A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52 m2 g−1), excellent magnetic response (14.89 emu g−1), and large mesopore volume (0.09 cm3 g−1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting π–π stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84 mg MB g−1 at an initial MB concentration of 30 mg L−1, which increased to 245 mg g−1 when the initial MB concentration was 300 mg L−1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles. PMID:26149818

  4. Novel metal-organic photocatalysts: synthesis, characterization and decomposition of organic dyes.

    PubMed

    Gopal Reddy, N B; Murali Krishna, P; Kottam, Nagaraju

    2015-02-25

    An efficient method for the photocatalytic degradation of methylene blue in an aqueous medium was developed using metal-organic complexes. Two novel complexes were synthesized using, Schiff base ligand, N'-[(E)-(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide (HL) and Ni(II) (Complex 1)/Co(II) (Complex 2) chloride respectively. These complexes were characterized using microanalysis, various spectral techniques. Spectral studies reveal that the complexes exhibit square planar geometry with ligand coordination through azomethine nitrogen and enolic oxygen. The effects of catalyst dosage, irradiation time and aqueous pH on the photocatalytic activity were studied systematically. The photocatalytic activity was found to be more efficient in the presence of Ni(II) complexes than the Co(II) complex. Possible mechanistic aspects were discussed. PMID:25233028

  5. Multifunctional organized mesoporous tin oxide films templated by graft copolymers for dye-sensitized solar cells.

    PubMed

    Park, Jung Tae; Ahn, Sung Hoon; Roh, Dong Kyu; Lee, Chang Soo; Kim, Jong Hak

    2014-07-01

    The synthesis of organized mesoporous SnO2 films with high porosity, larger pores, and good interconnectivity, obtained by sol-gel templating with an amphiphilic graft copolymer, poly(vinyl chloride)-graft-poly(oxyethylene methacrylate), is reported. An improved performance of dye-sensitized solar cells (DSSCs) is demonstrated by the introduction of a 400 nm thick organized mesoporous SnO2 interfacial (om-SnO2 IF) layer between nanocrystalline TiO2 (nc-TiO2 ) and a fluorine-doped tin oxide substrate. To elucidate the improved efficiency, the structural, optical, and electrochemical properties of the devices were characterized by SEM, UV/Vis spectroscopy, noncontact 3D surface profilometry, intensity-modulated photocurrent/voltage spectroscopy, incident photon-to-electron conversion efficiency, and electrochemical impedance spectroscopy measurements. The energy-conversion efficiency of the solid polymerized ionic liquid based DSSC fabricated with the om-SnO2 IF/nc-TiO2 photoanode reached 5.9% at 100 mW cm(-2) ; this is higher than those of neat nc-TiO2 (3.5%) and organized mesoporous TiO2 interfacial/nc-TiO2 layer (5.4%) photoanodes. The improved efficiency is attributed to the antireflective property, cascadal energy band gap, good interconnectivity, and high electrical conductivity of the om-SnO2 IF layer, which results in enhanced light harvesting, increased electron transport, reduced charge recombination, and decreased interfacial/internal resistance. PMID:24678065

  6. High-performance plastic dye-sensitized solar cells based on low-cost commercial P25 TiO2 and organic dye.

    PubMed

    Yin, Xiong; Xue, Zhaosheng; Wang, Long; Cheng, Yueming; Liu, Bin

    2012-03-01

    High-performance plastic dye-sensitized solar cells (DSCs) based on low-cost commercial Degussa P25 TiO(2) and organic indoline dye D149 have been fabricated using electrophoretic deposition (EPD) with compression post-treatment at room temperature. The pressed EPD electrode outperformed the sintered EPD electrode and as-prepared EPD electrode in short-circuit current density and power conversion efficiency. About 150% and 180% enhancement in power conversion efficiency have been achieved in DSC devices with sintering and compression post-treatment as compared to the as-prepared electrode, respectively. Several characterizations including intensity modulated photocurrent spectroscopy, incident photon-to-electron conversion efficiency and electrochemical impedance spectra have been employed to reveal the nature of improvement with post-treatment. Experimental results indicate that the sintering and compression post-treatment are beneficial to improve the electron transport and thus lead to the enhancement of photocurrent and power conversion efficiency. In addition, the compression post-treatment is more efficient than sintering post-treatment in improving interparticle connection in the as-prepared EPD electrode. Under optimized conditions, the conversion efficiency of plastic devices with D149-sensitized P25 TiO(2) photoanode has reached 5.76% under illumination of AM 1.5G (100 mW cm(-2)). This study demonstrates that the EPD combined with compression post-treatment provides a way to fabricate highly efficient plastic photovoltaic devices. PMID:22324725

  7. HPLC-DAD-MS analysis of dyes identified in textiles from Mount Athos.

    PubMed

    Mantzouris, Dimitrios; Karapanagiotis, Ioannis; Valianou, Lemonia; Panayiotou, Costas

    2011-03-01

    Organic colorants contained in 30 textiles (16th to early 20th century) from the monastery of Simonos Petra (Mount Athos) have been investigated using high-performance liquid chromatography equipped with diode-array detection and mass spectrometry (HPLC-DAD-MS). The components of natural dyes identified in samples treated by the standard HCl dyestuff extraction method were: alizarin, apigenin, butein, carminic acid, chrysoeriol, dcII, dcIV, dcVII, ellagic acid, emodin, fisetin, flavokermesic acid, fustin, genistein, haematein derivative (Hae'), indigotin, indirubin, isoliquiritigenin, isorhamnetin, kaempferide, kaempferol, kermesic acid, luteolin, naringenin, purpurin, quercetin, rhamnazin, rhamnetin, sulfuretin, and type B and type C compounds (last two are markers for Caesalpinia trees). Early, semi-synthetic dyes, for example indigo carmine, fuchsin components, and rhodamine B were identified in objects dated late 19th to early 20th century. A dyestuff extraction method which involves use of TFA, instead of HCl, was applied to selected historical samples, showing that the mild method enables efficient extraction of weld (Reseda luteola L.) and dyer's broom (Genista tinctoria L.) glycosides. The marker compound (Hae') for logwood (Haematoxylum campechianum L.) identification after treatment with HCl was investigated by liquid chromatography coupled to mass spectrometry (LC-MS) in negative electrospray ionization (LC-MS-ESI(-)) mode. LC-MS in negative atmospheric pressure chemical ionization (LC-MS-APCI(-)) mode was used, probably for the first time, to investigate cochineal (Dactylopius coccus Costa) samples. Positive electrospray ionization (LC-MS-ESI(+)) mode was used for identification of fuchsin components. Detailed HPLC-DAD studies were performed on young fustic (Cotinus coggygria Scop.) and Persian berries (Rhamnus trees). PMID:21271239

  8. Distributed feedback dye laser holographically induced in improved organic-inorganic photocurable nanocomposites

    NASA Astrophysics Data System (ADS)

    Sakhno, O. V.; Stumpe, J.; Smirnova, T. N.

    2011-06-01

    Distributed feedback (DFB) lasing in permanent volume transmission gratings formed in a laser dye-doped organic-inorganic nanocomposite has been investigated. DFB laser cavities were fabricated using one-step two-beam holographic exposure of Pyrromethene 567 (PM567) doped photopolymerizable acrylate monomers containing inorganic (LaPO4) nanoparticles. Compared to the formulation previously utilized, the material composition presented provides longer lifetime of the laser. Spectral and polarization properties, input-output and stability characteristics of the laser output have been investigated by varying the material composition and the patterning parameters. DFB lasing emission of the second and the third diffraction orders has been demonstrated. The spectral linewidth of ˜0.08 nm has been observed at a pump energy threshold of about 0.2 μJ/pulse for the second-order DFB lasing when pumped with 532 nm 500 ps laser pulses. Spectral tuning of the lasing output over ˜56 and ˜7 nm was obtained by varying the grating period and the content of inorganic nanoparticles in the polymer matrix, respectively.

  9. Surface Binding and Organization of Sensitizing Dyes on Metal Oxide Single Crystal Surfaces

    SciTech Connect

    Parkinson, Bruce

    2010-06-04

    Even though investigations of dye-sensitized nanocrystalline semiconductors in solar cells has dominated research on dye-sensitized semiconductors over the past two decades. Single crystal electrodes represent far simpler model systems for studying the sensitization process with a continuing train of studies dating back more than forty years. Even today single crystal surfaces prove to be more controlled experimental models for the study of dye-sensitized semiconductors than the nanocrystalline substrates. We analyzed the scientific advances in the model sensitized single crystal systems that preceded the introduction of nanocrystalline semiconductor electrodes. It then follows the single crystal research to the present, illustrating both their striking simplicity of use and clarity of interpretation relative to nanocrystalline electrodes. Researchers have employed many electrochemical, photochemical and scanning probe techniques for studying monolayer quantities of sensitizing dyes at specific crystallographic faces of different semiconductors. These methods include photochronocoulometry, electronic spectroscopy and flash photolysis of dyes at potential-controlled semiconductor electrodes and the use of total internal reflection methods. In addition, we describe the preparation of surfaces of single crystal SnS2 and TiO2 electrodes to serve as reproducible model systems for charge separation at dye sensitized solar cells. This process involves cleaving the SnS2 electrodes and a photoelectrochemical surface treatment for TiO2 that produces clean surfaces for sensitization (as verified by AFM) resulting in near unity yields for electron transfer from the molecular excited dyes into the conduction band.

  10. Aggregation control of organic sensitizers for panchromatic dye co-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Chi Hwan; Kim, Sang A.; Jung, Mi Ran; Ahn, Kwang-Soon; Han, Yoon Soo; Kim, Jae Hong

    2014-08-01

    The photovoltaic properties of dye co-sensitized solar cells were compared with those of mono-sensitized devices. Co-sensitized TiO2 photo-electrodes were prepared from a phenothiazine chromophore for the RED dye and a squaraine chromophore for the BLUE dye to achieve panchromatic light absorption in dye co-sensitized solar cells (DSSCs). Co-sensitization on the TiO2 photo-electrode could reduce the aggregation of the BLUE dye adsorbed on the TiO2 surface, which led to an enhancement of the short circuit current (Jsc) of the co-sensitized solar cells. The dye co-sensitized solar cells with the RED and BLUE dyes optimized according to the dipping time showed an increase in the photon-to-current efficiency compared to that of the solar cell with a mono-sensitized photo-electrode. The photovoltaic and aggregation properties of the DSSCs were examined by measuring the current-voltage curve, incident photon-to-current efficiency, and electrochemical impedance spectra.

  11. Template-free hydrothermal derived cobalt oxide nanopowders: Synthesis, characterization, and removal of organic dyes

    SciTech Connect

    Nassar, Mostafa Y.; Ahmed, Ibrahim S.

    2012-09-15

    Graphical abstract: XRD patterns of the products obtained by hydrothermal treatment at 160 °C for 24 h, and at different [Co{sup 2+}]/[CO{sub 3}{sup 2−}] ratios: (a) 1:6, (b) 1:3, (c) 1:1.5, (d) 1:1, (e) 1:0.5. Highlights: ► Spinel cobalt oxide nanoparticles with different morphologies were prepared by hydrothermal approach. ► The optical characteristics of the as-prepared cobalt oxide revealed the presence of two band gaps. ► Adsorption of methylene blue dye on Co{sub 3}O{sub 4} was investigated and the percent uptake was found to be >99% in 24 h. -- Abstract: Pure spinel cobalt oxide nanoparticles were prepared through hydrothermal approach using different counter ions. First, the pure and uniform cobalt carbonate (with particle size of 21.8–29.8 nm) were prepared in high yield (94%) in an autoclave in absence unfriendly organic surfactants or solvents by adjusting different experimental parameters such as: pH, reaction time, temperature, counter ions, and (Co{sup 2+}:CO{sub 3}{sup 2−}) molar ratios. Thence, the spinel Co{sub 3}O{sub 4} (with mean particle size of 30.5–47.35 nm) was produced by thermal decomposition of cobalt carbonate in air at 500 °C for 3 h. The products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal analysis (TA). Also, the optical characteristics of the as-prepared Co{sub 3}O{sub 4} nanoparticles revealed the presence of two band gaps (1.45–1.47, and 1.83–1.93 eV). Additionally, adsorption of methylene blue dye on Co{sub 3}O{sub 4} nanoparticles was investigated and the uptake% was found to be >99% in 24 h.

  12. Preparation of graphene-ZrO2 nanocomposites by heat treatment and photocatalytic degradation of organic dyes.

    PubMed

    Cho, Bum Hwi; Ko, Weon Bae

    2013-11-01

    ZrO2 nanoparticles were synthesized by combining a solution containing zinconyl chloride in distilled water with a NH4OH solution under microwave irradiation. Graphene and ZrO2 nanocomposites were synthesized in an electric furnace at 700 degrees C for 2 hours. The heated graphene-ZrO2 nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. In addition, UV-vis spectrophotometry was used to evaluate the heated graphene-ZrO2 nanocomposites as a catalyst in the photocatalytic degradation of organic dyes. The photocatalytic effect of the heated graphene-ZrO2 nanocomposites was compared with that of unheated graphene nanoparticles, heated graphene nanoparticles, and unheated graphene-ZrO2 nanocomposites in organic dyes (methylene blue, methyl orange, and rhodamine B) under ultraviolet light at 254 nm. PMID:24245304

  13. Simulation of solid-state dye solar cells based on organic and Perovskite sensitizers

    NASA Astrophysics Data System (ADS)

    Di Carlo, Aldo; Gentilini, Desire; Gagliardi, Alessio

    2015-03-01

    In this work we present a multiscale numerical simulation of solid-state Dye and Perovskite Solar Cells where the real morphology of the mesoporous active layer is taken into account. Band alignment and current densities are computed using the drift-diffusion model. In the case of Dye cells, a portion of the real interface is merged between two regions described using the effective medium approximation, casting light on the role of trapped states at the interface between TiO2 / Dye / hole transporting materials. A second case of study is the simulation of Perovskite Solar Cell where the performances of cells based on Alumina and Titania mesoporous layer are compared.

  14. Studies on the two-photon pumped upconverted fluorescence and superradiance of a new organic dye material in solutions

    NASA Astrophysics Data System (ADS)

    Zhou, Guangyong; Wang, Dong; Yang, Shengjun; Xu, Xinguang; Ren, Yan; Shao, Zongshu; Jiang, Minhua; Tian, Yupeng; Hao, Fuying; Li, Shengli

    2002-10-01

    The linear and nonlinear optical properties of a new organic dye, trans-4-p-(N-ethyl-N-ethylamino)-styryl-N-methyl-pyridinium tris(thiocyanato) cadmates (II), are reported in this paper. When pumped with a picosecond laser at the wavelength range of 850-1200 nm, intense upconversion fluorescence can be obtained. The upconversion efficiencies at different pump energies were measured when pumped with a 1064-nm laser beam from a mode-locked Nd:YAG laser. The highest upconversion efficiencies were measured to be 5.8% and 7.6% in dimethyl formamide (DMF) and methanol. The lifetime of the dye in DMF was measured to be 75 ps. The strongest nonlinear absorption was at the wavelength of 940 nm, and the highest upconversion efficiency was at the wavelength of 1030 nm. The difference of the two wavelengths was caused by excited state absorption in the dye at wavelengths shorter than 1000 nm. The dye solution in DMF and methanol show a clear optical power limiting effect.

  15. Studies on the two-photon pumped upconverted fluorescence and superradiance of a new organic dye material in solutions.

    PubMed

    Zhou, Guangyong; Wang, Dong; Yang, Shengjun; Xu, Xinguang; Ren, Yan; Shao, Zongshu; Jiang, Minhua; Tian, Yupeng; Hao, Fuying; Li, Shengli; Shi, Pengfei

    2002-10-20

    The linear and nonlinear optical properties of a new organic dye, trans-4-[p-(N-ethyl-N-ethylamino)-styryl]-N-methyl-pyridinium tris(thiocyanato) cadmates (II), are reported in this paper. When pumped with a picosecond laser at the wavelength range of 850-1200 nm, intense upconversion fluorescence can be obtained. The upconversion efficiencies at different pump energies were measured when pumped with a 1064-nm laser beam from a mode-locked Nd:YAG laser. The highest upconversion efficiencies were measured to be 5.8% and 7.6% in dimethyl formamide (DMF) and methanol. The lifetime of the dye in DMF was measured to be 75 ps. The strongest nonlinear absorption was at the wavelength of 940 nm, and the highest upconversion efficiency was at the wavelength of 1030 nm. The difference of the two wavelengths was caused by excited state absorption in the dye at wavelengths shorter than 1000 nm. The dye solution in DMF and methanol show a clear optical power limiting effect. PMID:12396187

  16. Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2016-05-01

    A purified papaya laccase was immobilized in chitosan beads using entrapment approach and its physico-chemical properties were investigated and compared with that of free enzyme. Increase in properties of the laccase such as optimum temperature (by 10°C), thermostability (by 3-folds) and optimum pH (from 8.0 to 10.0) was observed after immobilization. Immobilization led to increased tolerance of enzyme to a number of metal ions (including heavy metals) and organic solvents namely, ethanol, isopropanol, methanol, benzene and DMF. The catalytic efficiency (Kcat/Km) of the immobilized enzyme was found to increase more than ten folds, in comparison to that of the free enzyme, with hydroquinone as substrate. Immobilization of laccase also led to improvement in dye decolorization such that the synthetic dye indigo carmine (50μg/ml) was completely decolorized within 8h of incubation as compared to that of the free laccase which decolorized the same dye to only 56% under similar conditions. Thus, immobilization of laccase into chitosan beads led to tremendous improvement in various useful attributes of this enzyme thereby making it more versatile for its industrial exploitation. PMID:26812115

  17. Photostabilizing effects of lidocaine and tris(8-hydroxy-quinoline) aluminum on organic fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Sisk, Wade N.

    2003-07-01

    The photostabilization efficacy of lidocaine and tris(8-hydroxy-quinoline) aluminum (Alq3) was determined for methanol solutions of the fluorescent laser dyes 1,3,5,7,8-pentamethyl-2,6-diethylpyrromethene-difluoroborate complex (PM-567) and rhodamine 590 (R590) by evaluation with the , rose bengal (RB). The photostability was measured by noting the decrease in fluorescence with accumulated 532 nm Nd:YAG laser pulses. Rose bengal demonstrated dramatic photostability enhancement upon lidocaine or Alq3 addition; whereas nominal photostability enhancement was observed for PM-567 and R590 upon lidocaine or Alq3 addition. A geminate dye-singlet oxygen complex is proposed to explain the disparity in dye photostability enhancement between rose bengal and the laser dyes.

  18. Induction, Purification and Characterization of a Novel Manganese Peroxidase from Irpex lacteus CD2 and Its Application in the Decolorization of Different Types of Dye

    PubMed Central

    Qin, Xing; Zhang, Jie; Zhang, Xiaoyu; Yang, Yang

    2014-01-01

    Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology. PMID:25412169

  19. Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye.

    PubMed

    Qin, Xing; Zhang, Jie; Zhang, Xiaoyu; Yang, Yang

    2014-01-01

    Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology. PMID:25412169

  20. The mitochondrial fluorescent dye rhodamine 123 is a high-affinity substrate for organic cation transporters (OCTs) 1 and 2.

    PubMed

    Jouan, Elodie; Le Vee, Marc; Denizot, Claire; Da Violante, Georges; Fardel, Olivier

    2014-02-01

    Rhodamine 123 is a fluorescent cationic dye commonly used as a mitochondrial probe and known or suspected to be transported by certain drug membrane transporters. The present study was designed to characterize the putative interactions of rhodamine 123 with human organic cation transporter (OCT) 1 and OCT2. Intracellular uptake of the dye was demonstrated to be enhanced in both hOCT1- and hOCT2-overexpressing HEK293 cells when compared with control HEK293 cells. This increase of rhodamine 123 influxes was found to be a saturable carrier-mediated process, with low K(m) values (K(m) = 0.54 ?m and K(m) = 0.61 ?m for transport of the dye in hOCT1- and hOCT2-positive HEK293 cells, respectively). Known inhibitors of hOCT1 and hOCT2 activities such as verapamil, amitriptyline, prazosin, and quinine were next demonstrated to decrease rhodamine 123 accumulation in hOCT1- and hOCT2-overexpressing HEK293 cells. In addition, the dye was found to inhibit hOCT1- and hOCT2-mediated uptake of tetraethylammonium (TEA), a model substrate for both hOCT1 and hOCT2; rhodamine 123 appeared nevertheless to be a more potent inhibitor of hOCT1-mediated TEA transport (IC?? = 0.37 ?m) than of that mediated by hOCT2 (IC?? = 61.5 ?m). Taken together, these data demonstrate that rhodamine 123 is a high-affinity substrate for both hOCT1 and hOCT2. This dye may be therefore useful for fluorimetrically investigating cellular hOCT1 or hOCT2 activity, knowing, however, that other factors potentially contributing to cellular accumulation of rhodamine 123, including mitochondrial membrane potential or expression of the efflux transporter P-glycoprotein, have also to be considered. PMID:22913740

  1. Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent.

    PubMed

    Wang, Hou; Yuan, Xingzhong; Zeng, Guangming; Leng, Lijian; Peng, Xin; Liao, Kailingli; Peng, Lijuan; Xiao, Zhihua

    2014-10-01

    Natural adsorbent (Cinnamomum camphora sawdust) modified by organic acid (oxalic acid, citric acid, and tartaric acid) was investigated as a potential adsorbent for the removal of hazardous malachite green (MG) dye in aqueous media in a batch process. The extent of MG adsorption onto modified sawdust increased with increasing organic acid concentrations, pH, contact time, and temperature but decreased with increasing adsorbent dosage and ionic strength. Kinetic study indicated that the pseudo-second-order kinetic model could best describe the adsorption kinetics of MG. Equilibrium data were found to fit well with the Langmuir model, and the maximum adsorption capacity of the three kinds of organic acid-modified sawdust was 280.3, 222.8, and 157.5 mg/g, respectively. Thermodynamic parameters suggested that the sorption of MG was an endothermic process. The adsorption mechanism, the application of adsorbents in practical wastewater, the prediction of single-stage batch adsorption system, and the disposal of depleted adsorbents were also discussed. PMID:25028314

  2. Microscopy of hierarchically organized TiO2 photoelectrode for dye solar cells

    NASA Astrophysics Data System (ADS)

    Eskandar, A.; Mohamed, N. M.

    2015-07-01

    Research on improving the performance of dye solar cells has various aspects of the device being investigated. This paper analyzes the deliberately hierarchized photoelectrode configuration for DSC applications to improve the performance of DSCs. Multiple layers of differently composed TiO2 particle types namely aggregates and nanoparticles were deposited to form a photoelectrode with thickness of about 12 µm. The photoelectrodes were assembled into working DSCs with an active area of 1 cm2. Measurement for solar power conversion performance was measured under 1 sun at AM1.5 spectrum simulated sunlight. Electron microscopy for photoelectrode analysis was conducted using Field Emission Scattering Electron Microscopy with enhanced resolution. External Quantum Efficiency was measured using a purpose built instrument. Kinetics were investigated using the Electrochemical Impedance Spectroscopy (EIS) measurement with a potentiostat. The best performing DSC is of the hierarchically organized photoelectrode with a photoconversion efficiency of 4.58%, an increase of 14% in comparison to the reference samples with fully aggregates configuration. Short circuit current density, Jsc increases by about 2.223 mA cm-2 relative to the blanks. The electron microscopy confirmed expected thickness at around 10 µm and layers forming the photoelectrode being hierarchically deposited with ˜20 nm TiO2 nanoparticles and 450 nm TiO2 aggregates mixture composition. EQE improved especially for visible region of 500-550 nm light wavelengths with 12 % increase in the response of in that region. Improvement to the diffusion coefficient as measured by the EIS contributed to the performance increase of the photoelectrode configuration under investigation.

  3. Organic solar cells with a multicharge separation structure consisting of a thin rubrene fluorescent dye for open circuit voltage enhancement

    NASA Astrophysics Data System (ADS)

    Huang, Jiang; Yu, Junsheng; Wang, Wan; Jiang, Yadong

    2011-01-01

    Organic solar cells were fabricated by inserting a thin rubrene fluorescent dye between pentacene and fullerene heterojunction with a multicharge separation (MCS) structure, which was adopted to inherently further improve maximum open circuit voltage and power conversion efficiency. The morphology of organic films showed that a more surface roughness of pentacene film could be beneficial for an effective MCS interface, exciton dissociation, and charge carrier transportation. Moreover, a slight improvement of short-circuit current density when adding a 1 or 2 nm rubrene layer was also analyzed in detail based on external quantum efficiency spectra and optical transfer matrix theory.

  4. Two-photon induced optical-power limiting and upconverted superradiance properties of a new organic dye HEASPI

    NASA Astrophysics Data System (ADS)

    Zhuo, Guangyong; Wang, Xiaomei; Wang, Dong; Wang, Chun; Zhao, Xian; Shao, Zongshu; Jiang, Minhua

    2001-06-01

    A new organic dye trans-4-[ p-( N-ethyl- N-hydroxyethylamino)styryl]- N-methylpyridinium iodide (abbreviated as HEASPI hereafter) with large two-photon absorption (TPA) cross section and excellent upconverted superradiance properties was synthesized in our group recently. The TPA cross section was measured to be ? 2'=7.010 -48 cm4 s/ photon by using an open aperture Z-scan system. Linear absorption, single-photon induced fluorescence, two-photon induced fluorescence and two-photon pumped (TPP) upconverted superradiance properties were systematically studied. The highest net upconversion efficiency from the absorbed pump energy to the output upconverted superradiance energy is as high as 19.6% at the pump energy of 2.07 mJ from a mode-locked Nd : YAG picosecond laser. The dye solution also shows a clear optical power limiting effect.

  5. Filling the Green Gap of a Megadalton Photosystem I Complex by Conjugation of Organic Dyes.

    PubMed

    Gordiichuk, Pavlo I; Rimmerman, Dolev; Paul, Avishek; Gautier, Daniel A; Gruszka, Agnieszka; Saller, Manfred; de Vries, Jan Willem; Wetzelaer, Gert-Jan A H; Manca, Marianna; Gomulya, Widianta; Matmor, Maayan; Gloukhikh, Ekaterina; Loznik, Mark; Ashkenasy, Nurit; Blom, Paul W M; Rögner, Matthias; Loi, Maria Antonietta; Richter, Shachar; Herrmann, Andreas

    2016-01-20

    Photosynthesis is Nature's major process for converting solar into chemical energy. One of the key players in this process is the multiprotein complex photosystem I (PSI) that through absorption of incident photons enables electron transfer, which makes this protein attractive for applications in bioinspired photoactive hybrid materials. However, the efficiency of PSI is still limited by its poor absorption in the green part of the solar spectrum. Inspired by the existence of natural phycobilisome light-harvesting antennae, we have widened the absorption spectrum of PSI by covalent attachment of synthetic dyes to the protein backbone. Steady-state and time-resolved photoluminescence reveal that energy transfer occurs from these dyes to PSI. It is shown by oxygen-consumption measurements that subsequent charge generation is substantially enhanced under broad and narrow band excitation. Ultimately, surface photovoltage (SPV) experiments prove the enhanced activity of dye-modified PSI even in the solid state. PMID:26619248

  6. Thermoresponsive cellulose ether and its flocculation behavior for organic dye removal.

    PubMed

    Tian, Ye; Ju, Benzhi; Zhang, Shufen; Hou, Linan

    2016-01-20

    A thermoresponsive polymer, 2-hydroxy-3-butoxypropyl hydroxyethyl cellulose (HBPEC), was prepared by grafting butyl glycidyl ether (BGE) onto hydroxyethyl cellulose (HEC). The lower critical solution temperature (LCST) and critical flocculation temperature (CFT) of HBPEC were varied by changing the molar substitution (MS) and salt concentrations. Transmission electron microscopy (TEM) images and fluorescence spectroscopy showed that HBPEC can assemble into micelles. Additionally, using Nile Red as a model dye, the performance of HBPEC for the removing Nile Red from aqueous solutions via cloud point extraction procedures was investigated in detail. The encapsulation behavior of dye in the aqueous solution of HBPEC was studied by fluorescence spectroscopy and fluorescence microscope. The experimental results indicated that 99.4% of dye was removed from the aqueous solutions, and the HBPEC was recycled and reused easily, Furthermore, the recycle efficiency (RE) and maximum loading capacity portrayed little loss with the number of cycles. PMID:26572464

  7. Tailoring of organic dyes with oxidoreductive compounds to obtain photocyclic radical generator systems exhibiting photocatalytic behavior

    PubMed Central

    Christmann, Julien; Ibrahim, Ahmad; Stefano, Luciano H Di; Allonas, Xavier

    2014-01-01

    Summary The combination of a dye which absorbs the photon, an electron acceptor and an electron donor leading to energy conversion through electron transfer, was the basis of the so called three-component systems. In this paper, an experimental work combining Rose bengal dye with a triazine derivative as electron acceptor and ethyl 4-(dimethylamino)benzoate as electron donor, will underline the benefit of the photocyclic behavior of three-component systems leading to the dye regeneration. A thermodynamic approach of the photocycle is presented, followed by a mechanistic and computational study of ideal photocycles, in order to outline the specific kinetics occuring in so called photocatalytic systems. The simple kinetic model used is enough to outline the benefit of the cyclic system and to give the basic requirements in term of chemical combination needed to be fulfilled in order to obtain a photocatalytic behavior. PMID:24991243

  8. Preparation of cube micrometer potassium niobate (KNbO3) by hydrothermal method and sonocatalytic degradation of organic dye.

    PubMed

    Zhang, Hongbo; Wei, Chunsheng; Huang, Yingying; Wang, Jun

    2016-05-01

    Cube micrometer potassium niobate (KNbO3) powder, as a high effective sonocatalyst, was prepared using hydrothermal method, and then, was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of prepared KNbO3 powder, the sonocatalytic degradation of some organic dyes was studied. In addition, some influencing factors such as heat-treatment temperature and heat-treatment time on the sonocatalytic activity of prepared KNbO3 powder and catalyst added amount and ultrasonic irradiation time on the sonocatalytic degradation efficiency were examined by using UV-visible spectrophotometer and Total Organic Carbon (TOC) determination. The experimental results showed that the best sonocatalytic degradation ratio (69.23%) of organic dyes could be obtained when the conditions of 5.00 mg/L initial concentration, 1.00 g/L prepared KNbO3 powder (heat-treated at 400 °C for 60 min) added amount, 5.00 h ultrasonic irradiation (40 kHz frequency and 300 W output power), 100mL total volume and 25-28 °C temperature were adopted. Therefore, the micrometer KNbO3 powder could be considered as an effective sonocatalyst for treating non- or low-transparent organic wastewaters. PMID:26597541

  9. Response Characterization of a Fiber Optic Sensor Array with Dye-Coated Planar Waveguide for Detection of Volatile Organic Compounds

    PubMed Central

    Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won

    2014-01-01

    We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt's dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylamino)cinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics. PMID:24988381

  10. Facile synthesis of PbWO4: Applications in photoluminescence and photocatalytic degradation of organic dyes under visible light

    NASA Astrophysics Data System (ADS)

    Saraf, Rohit; Shivakumara, C.; Behera, Sukanti; Nagabhushana, H.; Dhananjaya, N.

    2015-02-01

    Stolzite polymorph of PbWO4 catalyst was prepared by the facile room temperature precipitation method. Structural parameters were refined by the Rietveld analysis using powder X-ray data. PbWO4 was crystallized in the scheelite-type tetragonal structure with space group I41/a (No. 88). Field emission scanning electron microscopy revealed leaf like morphology. Photoluminescence spectra exhibit broad blue emission (425 nm) under the excitation of 356 nm. The photocatalytic degradation of Methylene blue, Rhodamine B and Methyl orange dyes were measured under visible illumination. The 100% dye degradation was observed for MB and RhB dyes within 60 and 105 min. The rate constant was found to be in the decreasing order of MB > RhB > MO which followed the 1st order kinetic mechanism. Therefore, PbWO4 can be a potential candidate for blue component in white LEDs and also acts as a catalyst for the treatment of toxic and non-biodegradable organic pollutants in water.

  11. Doping effects of fluorinated organic dyes on the open-circuit voltage of bulk-heterojunction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoki; Yamashita, Kenichi

    2015-08-01

    We have investigated photovoltaic properties of bulk-heterojunction (BHJ) organic absorption layer doped with fluorinated Coumarin dyes. By dilute doping of a fluorinated Coumarin dye, Coumarin 307, into poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) BHJ absorption layer, the open-circuit voltage of photovoltaic device increased by ∼90 mV without the significant degradation in the short-circuit current density. On the other hand, the doping of non-fluorinated Coumarin dye such as Coumarin 2 did not induce such the enhancement effect in the open-circuit voltage. In ultraviolet photoelectron spectroscopies, the doping of Coumarin 307 was found to have no impact on P3HT, but the density of state of PCBM was significantly modified by the doping. The change in the density of state was confirmed also in ultraviolet absorption measurement. Possible explanations for the enhancement in the open-circuit voltage are discussed from the experimental results, and a shift of the vacuum level by the doping can be considered as a direct origin.

  12. Polyethyleneimine as a novel desorbent for anionic organic dyes on layered double hydroxide surface.

    PubMed

    Wang, Siming; Li, Zenghe; Lu, Chao

    2015-11-15

    Polyethyleneimine (PEI) is a positively charged polymer with hydrogen-bonding sites and hydrophobic chains. Therefore, it has been clearly established as an efficient adsorbent by means of these native properties in the literatures. However, there is apparently no good reason to disregard the use of PEI as a desired desorbent. Herein, using methyl orange as a model anionic dye, we investigated the desorption performances of PEI toward anionic dyes adsorbed on the surface of CO3-layered double hydroxides (LDHs) in a wide range of pH values. The experiment results showed that the positively charged PEI had very strong desorption capacity for anionic dyes at low pH values (<9.5) through electrostatic attraction between PEI and methyl orange because of the high degree of protonation of PEI. At high pH values (>9.5), PEI existed as neutral molecule, it could desorb methyl orange via hydrogen bonding between the amino groups of it and sulfonate group of methyl orange; simultaneously, the anion-exchange process occurred between abundant hydroxyl anions and anionic methyl orange. The adsorption capacity of the used LDH adsorbent was about 80% after five cycles of adsorption-desorption-regeneration, which was much higher than that conducted by 0.1M NaOH solution. These findings suggested that PEI could be regarded as a promising desorbent for enriching anionic dyes in wastewater and regenerating LDHs through surface adsorption-desorption cycles. PMID:26255712

  13. 75 FR 81949 - Disclosure of Cochineal Extract and Carmine in the Labeling of Wines, Distilled Spirits, and Malt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Notice No. 111 published in the Federal Register (75 FR 67669) on Wednesday, November 3, 2010, TTB... Extract and Carmine in the Labeling of Wines, Distilled Spirits, and Malt Beverages; Comment Period... Extract and Carmine in the Labeling of Wines, Distilled Spirits, and Malt Beverages, a notice of...

  14. Variation in the concentration of carminic acid produced by Dactylopius coccus (Hemiptera: Dactylopidae) at various maturation stages.

    PubMed

    Flores-Alatorre, H L; Abrego-Reyes, V; Reyes-Esparza, J A; Angeles, E; Alba-Hurtado, F

    2014-08-01

    The concentration of carminic acid was found to vary based on the size and life cycle stage of the cochineal, Dactylopius coccus Costa. The concentration of carminic acid in cochineal eggs, nymph I, nymph II, fertilized adults, ovipositing adults, and sterile adults female was measured using capillary electrophoresis, and the total fluorescence of the carminic acid globules was measured using flow cytometry. The smallest sterile adult females had a greater percentage of carminic acid relative to their weight (26.27%; P < 0.001) than adult females in the remaining groups. In general, ovipositing females had a greater percentage of carminic acid than the remainder of the females. Nymph II was the phase that had the smallest percentage of carminic acid. Using flow cytometry, it was demonstrated that ovipositing females had a greater total fluorescence than the other sampled groups (P < 0.05). A positive correlation was found between the percentage of carminic acid and the total fluorescence of the carminic acid globules (r2 = 0.68; P < 0.05). The results of this study, together with others that involve industrial processes, shall allow an improvement of the current classification criteria of the commercial quality of dry cochineal. PMID:25195465

  15. [Identification of acid-stable carmine in imported apple syrup product].

    PubMed

    Kawasaki, Yoko; Sugimoto, Naoki; Sato, Kyoko; Yamazaki, Takeshi; Ishiwata, Hajimu; Maitani, Tamio

    2002-08-01

    An unknown red pigment was purified from an apple syrup product imported from Canada, using a DIAION HP-20 column with methanol as the eluent. By spectroscopic means and chemical synthesis, the isolated pigment was identified as 4-aminocarminic acid, which is the major pigment of acid-stable carmine (a red colorant illegal in Japan). In addition, HPLC and TLC methods were proposed to detect this illegal colorant. While the color of carminic acid changed from yellow to red in the pH range of McIlvaine buffer (3.0-7.0), the color of 4-aminocarminic acid was always red, and also the ultraviolet/visible (UV/Vis) spectra did not change. These characteristics are useful to distinguish 4-aminocarminic acid from carminic acid. PMID:12436709

  16. Genotoxicity studies in vitro and in vivo on carminic acid (natural red 4).

    PubMed

    Loprieno, G; Boncristiani, G; Loprieno, N

    1992-09-01

    The potential genotoxic activity of carminic acid (CAS no. 1260-17-9; EINECS no. 215-023-3; C.I. no. 75410), a component of natural red colouring products (cochineal: CAS no. 1343-78-8; EINECS no. 215-680-6; C.I. no. 75470), used in food, cosmetics and drugs, has been evaluated by means of a series of short-term tests in vitro and in vivo, namely Salmonella reverse mutation, chromosome aberrations and sister chromatid exchanges in vitro on Chinese hamster ovary cells, and the mouse micronucleus test. All studies have produced negative results. The data obtained strongly support the non-mutagenic/non-carcinogenic activity of this compound. Genotoxicity data previously obtained for carminic acid, concerning the induction of a series of other genetic endpoints in different test systems, have also been considered, as have recent findings that indicate lack of carcinogenic activity in the cochineal preparation containing 29.8% carminic acid. PMID:1385283

  17. Defensive use of an acquired substance (carminic acid) by predaceous insect larvae.

    PubMed

    Eisner, T; Ziegler, R; McCormick, J L; Eisner, M; Hoebeke, E R; Meinwald, J

    1994-06-15

    Larvae of two insects, a coccinellid beetle (Hyperaspis trifurcata) and a chamaemyiid fly (Leucopis sp.), feed on cochineal insects and appropriate their prey's defensive chemical, carminic acid, for protective purposes of their own. H. trifurcata discharges the chemical with droplets of blood (hemolymph) that it emits when disturbed; Leucopis sp. ejects the compound with rectal fluid. Ants are thwarted by these defenses, which are compared with the previously-described defense of a pyralid caterpillar (Laetilia coccidivora) that disgorges carminic acid-laden crop fluid. The defensive fluid of all three larvae contains carminic acid at concentrations spanning a range (0.2-6.2%) proven deterrent to ants. Many insects are known to appropriate defensive substances from plants. Insects that acquire defensive chemicals from animal sources may be relatively rare. PMID:8020623

  18. Rational Molecular Engineering of Indoline-Based D-A-π-A Organic Sensitizers for Long-Wavelength-Responsive Dye-Sensitized Solar Cells.

    PubMed

    Zhang, Weiwei; Wu, Yongzhen; Zhu, Haibo; Chai, Qipeng; Liu, Jingchuan; Li, Hui; Song, Xiongrong; Zhu, Wei-Hong

    2015-12-01

    Indoline-based D-A-π-A organic sensitizers are promising candidates for highly efficient and long-term stable dye-sensitized solar cells (DSSCs). In order to further broaden the spectral response of the known indoline dye WS-2, we rationally engineer the molecular structure through enhancing the electron donor and extending the π-bridge, resulting in two novel indoline-based D-A-π-A organic sensitizers WS-92 and WS-95. By replacing the 4-methylphenyl group on the indoline donor of WS-2 with a more electron-rich carbazole unit, the intramolecular charge transfer (ICT) absorption band of dye WS-92 is slightly red-shifted from 550 nm (WS-2) to 554 nm (WS-92). In comparison, the incorporation of a larger π-bridge of cyclopentadithiophene (CPDT) unit in dye WS-95 not only greatly bathochromatically tunes the absorption band to 574 nm but also largely enhances the molar extinction coefficients (ε), thus dramatically improving the light-harvesting capability. Under the standard global AM 1.5 solar light condition, the photovoltaic performances of both organic dyes have been evaluated in DSSCs on the basis of the iodide/triiodide electrolyte without any coadsorbent or cosensitizer. The DSSCs based on WS-95 display better device performance with power conversion efficiency (η) of 7.69%. The additional coadsorbent in the dye bath of WS-95 does not improve the photovoltaic performance, indicative of its negligible dye aggregation, which can be rationalized by the grafted dioctyl chains on the CPDT unit. The cosensitization of WS-95 with a short absorption wavelength dye S2 enhances the IPCE and improves the η to 9.18%. Our results indicate that extending the π-spacer is more rational than enhancing the electron donor in terms of broadening the spectral response of indoline-based D-A-π-A organic sensitizers. PMID:26552499

  19. Influences of Electron-Withdrawing Groups of Organic Dyes on Spectral Property and Photovoltaic Performance in Dye-sensitized Solar Cells Application

    NASA Astrophysics Data System (ADS)

    Numata, Youhei; Han, Liyuan

    2012-10-01

    We synthesized five donor-π-spacer-acceptor type organic photosensitizers bearing different types of electron-withdrawing groups (EWGs); trifluoromethyl, o-nitrophenyl, p-nitrophenyl, cyano, and carboxyl groups, on their acceptor part in the aim of observing an influence of the EWGs on spectral and photovoltaic properties from viewpoints of steric structure and π-conjugation. The EWG possessing smaller dihedral angle between the EWG and dye skeleton exhibited larger bathochromic shift in absorptions. Highly planer cyano group presented the most red-shifted absorption at 464 nm, and the highest conversion efficiency of 5.69% was obtained. In contrast, highly distorted o- and p-nitrophenyl groups exhibited blue-shifted absorption at 416 and 422, respectively; however, despite of resemble spectral properties, o- and p-nitrophenyl gave second best and the worst conversion efficiencies of 4.05 and 2.51%, respectively. By combination with computational chemistry, it was indicated that the configuration of the EWG and distance between TiO2 surface and the EWG dominated electron injection efficiency.

  20. Synthesis of fungus-like MoS2 nanosheets with ultrafast adsorption capacities toward organic dyes

    NASA Astrophysics Data System (ADS)

    Song, HaoJie; You, Shengsheng; Jia, XiaoHua

    2015-11-01

    Fungus-like molybdenum disulfide (MoS2) nanosheets with a thickness of a few nanometers have been successfully synthesized via one-pot hydrothermal method. The as-prepared MoS2 nanosheets with a high surface area of 106.989 m2 g-1 exhibited excellent wastewater treatment performance with high removal capacities toward organic dyes. In addition, the fungus-like MoS2 nanosheets can absorb Congo red completely within 2 min. Successful access to high quality fungus-like MoS2 nanosheets will make it possible for their potential application in catalysis and other fields.

  1. Comparative study on the process behavior and reaction kinetics in sonocatalytic degradation of organic dyes by powder and nanotubes TiO2.

    PubMed

    Pang, Yean Ling; Abdullah, Ahmad Zuhairi

    2012-05-01

    Sonocatalytic degradation of various organic dyes (Congo Red, Reactive Blue 4, Methyl Orange, Rhodamine B and Methylene Blue) catalyzed by powder and nanotubes TiO(2) was studied. Both catalysts were characterized using transmission electron microscope (TEM), surface analyzer, Raman spectroscope and thermal gravimetric analyzer (TGA). Sonocatalytic activity of powder and nanotubes TiO(2) was elucidated based on the degradation of various organic dyes. The former catalyst was favorable for treatment of anionic dyes, while the latter was more beneficial for cationic dyes. Sonocatalytic activity of TiO(2) nanotubes could be up to four times as compared to TiO(2) powder under an ultrasonic power of 100 W and a frequency of 42 kHz. This was associated with the higher surface area and the electrostatic attraction between dye molecules and TiO(2) nanotubes. Fourier transform-infrared spectrometer (FT-IR) was used to identify changes that occurred on the functional group in Rhodamine B molecules and TiO(2) nanotubes after the reaction. Sonocatalytic degradation of Rhodamine B by TiO(2) nanotubes apparently followed the Langmuir-Hinshelwood adsorption kinetic model with surface reaction rate of 1.75 mg/L min. TiO(2) nanotubes were proven for their high potential to be applied in sonocatalytic degradation of organic dyes. PMID:22000097

  2. Superiority of D-A-D over D-A type of organic dyes for the application in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Biswas, Santu; Pramanik, Anup; Ahmed, Tasnim; Sahoo, Suman Kalyan; Sarkar, Pranab

    2016-04-01

    We study the optoelectronic properties of some recently synthesized D-A-D chromophores which are susceptible for superior intramolecular charge transfer (ICT) property. Our first principle calculations reveal that, the chromophores have enhanced charge transfer probability in the excited state in comparison to their corresponding ground states indicating faster electron injection at the interface of dye-semiconductor composites. We compute the photovoltaic properties of the dyes with and without substitution and way out a root for optimizing the device performance. Finally, dye-TiO2 QD composite systems are studied as a model for realistic photovoltaic device.

  3. Random lasing in liquid and solid solutions oversaturated with organic laser dye

    NASA Astrophysics Data System (ADS)

    Sznitko, Lech; Cyprych, Konrad; Szukalski, Adam; Miniewicz, Andrzej; Mysliwiec, Jaroslaw

    2014-03-01

    We present the results of studies carried out for oversaturated solutions with common laser dye 4- (Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and 3-(1,1-Dicyanoethenyl)-1-phenyl-4,5- dihydro-1H-pyrazole (DCNP) nonlinear chromophore. We show that oversaturating the solution leads to formation of crystals suspension resulting in strong Mie scattering and thus random laser operation can be observed. The formation of aggregates can be induced be oversaturating the solution or by injection of non-solvent to the dye solution, leading to reduction of solubility limit. Similar situation can be obtained for polymeric matrices for which small crystals are precipitated during layer formation (solvent evaporation) when film is casted from the solution.

  4. A comparative study of non-covalent encapsulation methods for organic dyes into silica nanoparticles

    PubMed Central

    2011-01-01

    Numerous luminophores may be encapsulated into silica nanoparticles (< 100 nm) using the reverse microemulsion process. Nevertheless, the behaviour and effect of such luminescent molecules appear to have been much less studied and may possibly prevent the encapsulation process from occurring. Such nanospheres represent attractive nanoplatforms for the development of biotargeted biocompatible luminescent tracers. Physical and chemical properties of the encapsulated molecules may be affected by the nanomatrix. This study examines the synthesis of different types of dispersed silica nanoparticles, the ability of the selected luminophores towards incorporation into the silica matrix of those nanoobjects as well as the photophysical properties of the produced dye-doped silica nanoparticles. The nanoparticles present mean diameters between 40 and 60 nm as shown by TEM analysis. Mainly, the photophysical characteristics of the dyes are retained upon their encapsulation into the silica matrix, leading to fluorescent silica nanoparticles. This feature article surveys recent research progress on the fabrication strategies of these dye-doped silica nanoparticles. PMID:21711855

  5. Preparation of C60(O)n-ZnO nanocomposite under electric furnace and photocatalytic degradation of organic dyes.

    PubMed

    Cho, Bum Hwi; Oh, Youn Jun; Mun, Sang Mi; Ko, Weon Bae

    2012-07-01

    Zinc oxide (ZnO) nanoparticles were synthesized sonochemically by applying ultrasonic irradiation to a mixed aqueous-alcoholic solution of zinc nitrate with sodium hydroxide at room temperature. The morphology and optical properties of the ZnO nanoparticles were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis spectroscopy. The C60(O)n nanoparticles were synthesized by heating a mixture of C60 and 3-chloroperoxybenzoic acid in a benzene solvent under the reflux system. The heated C60(O)n-ZnO nanocomposite was synthesized in an electric furnace at 700 degrees C for two hours. The heated C60(O)n-ZnO nanocomposite was characterized by XRD, SEM, and TEM, and examined as a catalyst in the photocatalytic degradation of organic dyes by UV-vis spectroscopy. The photocatalytic effect of the heated C60(O)n-ZnO nanocomposite was evaluated by a comparison with that of unheated C60(O)n nanoparticles, heated C60(O)n nanoparticles, and unheated C60(O)n-ZnO in organic dyes, such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultraviolet light at 365 nm. PMID:22966679

  6. Organically modified siloxane glass films prepared via a non-aqueous gel coating process and doped with optically active dyes rhodamine 6G and coumarin 152

    NASA Astrophysics Data System (ADS)

    Menaa, Bouzid; Takahashi, Masahide; Tokuda, Yomei; Yoko, Toshinobu

    2008-09-01

    A facile and non-aqueous gel coating process to obtain optically active dyes rhodamine 6G (Rh6G) and coumarin 152 (C152) doped in phenylsilsesquioxane-diphenylsiloxane hybrid glass films has been employed using a single-step dip-coating at room temperature. The polyphenylsiloxane hybrid matrix has the interesting property to be soluble in any organic solvent without phase segregation making possible the choice and incorporation of dyes without miscibility problems. The preparation of the coating sols simply by dissolving the preformed polyphenylsiloxane hybrid directly into anhydrous dye solutions presents the advantage to obtain easy coatings on any substrate or support. Homogeneous and transparent films with controllable thickness (from 1 to 17 μm) can be loaded with high concentration of optically active organic dyes of interest. In addition, the non-aqueous process permits in the case of rhodamine 6G to limit the effect of the dye dimerisation or aggregation and to enhance the fluorescence of the dye. The results obtained owing to the properties of the polyphenylsiloxane hybrid matrix and the non-aqueous films' preparation offer up tremendous possibilities not only for applications concerning the design of new optical and photonic materials but also for protective coating and biomaterials.

  7. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples

    NASA Astrophysics Data System (ADS)

    Madrakian, Tayyebeh; Afkhami, Abbas; Ahmadi, Mazaher

    2012-12-01

    Adsorption of seven different organic dyes from aqueous solutions onto magnetite nanoparticles loaded tea waste (MNLTW) was studied. MNLTW was prepared via a simple method and was fully characterized. The properties of this magnetic adsorbent were characterized by scanning electron microscopy and X-ray diffraction. Adsorption characteristics of the MNLTW adsorbent was examined using Janus green, methylene blue, thionine, crystal violet, Congo red, neutral red and reactive blue 19 as adsorbates. Dyes adsorption process was thoroughly studied from both kinetic and equilibrium points of view for all adsorbents. The experimental isotherm data were analyzed using Langmuir, Freundlich, Sips, Redlich-Peterson, Brouers-Sotolongo and Temkin isotherms. The results from Langmuir isotherm indicated that the capacity of MNLTW for the adsorption of cationic dyes was higher than that for anionic dyes. The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models at different experimental conditions.

  8. Smectite clays of Serbia and their application in adsorption of organic dyes

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil

    2014-05-01

    Colorants and dyes are currently available in over a 100.000 different species and several biggest industries are using them daily in their manufacture processes (textile, cosmetics, food industry, etc.). Since colorants are easily dissoluble in water they pass through filter membranes without further decomposing and in that manner they end up in the environment. The main goal of this work is to apply certain methods in determining the suitability of individual clay in adsorbing and removing colorants from polluted waters. For this study we have chosen four different raw clays from three regions in Serbia: Svrljig (B), Bogovina (Bo) and Slatina-Ub (C and V) and as colorant - methylene blue dye (MB (MERCK, for analytical purposes)). Experiments where carried out to determine the sample structure (XRD and IR), grain size (granulometry), cationic exchange capacity (CEC via spectrophotometry using MB) and adsorption capabilities (spectrophotometry and fluorimetry using MB). XRD and IR data are showing that the samples are smectite clays where samples B i Bo are mainly montmorillonite while C and V are montmorillonite-illite clays. Granulometric distribution results indicate that samples B i Bo have smaller grain size, less that 1μ (over 60%) whereas the samples C and V are more coarse grained (40% over 20μ). This grain distribution is affecting their specific surface area in the manner that those coarse grained samples have smaller specific surface area. Cationic exchange capacity determined with methylene blue indicate that montmorillonite samples have larger CEC (B = 37 meq/100g, Bo = 50 meq/100g) and montmorillonite-illite samples smaller CEC (V = 5 meq/100g, V = 3 meq/100g). Fluorimetry measurement results gave us a clear distinction between those with higher and smaller adsorption capability. Montmorillonite samples (B and Bo) with higher CEC values and smaller grain size are adsorbing large amounts of methylene blue witch is visible by absence of fluorimetric band corresponding to methylene blue. Montmorillonite-illite samples with smaller CEC values and coarser grain size are adsorbing very small amounts of methylene blue from the suspension which is visible by appearance of the methylene blue band. Untreated, raw smectite clays of Serbia are efficient adsorbent material for removal of dyes from polluted waters. Samples from two regions especially, Bogovina and Svrljig, are showing favorable adsorption results and they are representing good raw materials for purification of waste-waters containing dyes. References: - Jović-Jovičić, N., Milutinović-Nikolić, A., Gržetić, I., Jovanović, D.; Organobentonite as efficient textile dye sorbent; Chem. Eng. Technol. 2008, 31, No. 4, 567-574 - Žunić, M.J., Milutinović-Nikolić, A.D., Jović-Jovičić, N.P., Banković, P.T., Mojović, Z.D., Manojlović, D.D., Jovanović, D.M.; Modified bentonite as adsorbent and catalyst for purification of wastewaters containing dyes; Hem. ind. 2010, 64 ,No. 3, 193-199

  9. Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon-containing organic copolymers

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; del Agua, D.; Penzkofer, A.; García, O.; Sastre, R.; Costela, A.; García-Moreno, I.

    2007-12-01

    Samples of the dipyrromethene-BF 2 dye PM597 incorporated in copolymers of 3-trimethoxysilylpropyl 2-methylprop-2-enoate (TMSPMA, number of polymerizable CC double bonds: κ = 1) with 2-(2-methylprop-2-enoyloxy)ethyl 2-methylprop-2-enoate (EGDMA, κ = 2), [2-(hydroxymethyl)-3-prop-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate (PETA, κ = 3), and [3-prop-2-enoyloxy-2,2-bis(prop-2-2-enoyloxymethyl)propyl]prop-2-enoate (PETRA, κ = 4) are characterized. The fluorescence quantum distributions, fluorescence quantum yields, degrees of fluorescence polarization, and fluorescence lifetimes are measured. The radiative lifetimes are calculated from fluorescence lifetime and quantum yield. Absorption coefficient spectra are determined from transmission measurements. Absolute absorption cross-section spectra and dye concentrations are obtained by calibration to the radiative lifetimes and to saturable absorptions. Excited-state absorption cross-sections at 527 nm are determined by saturable absorption measurements. The photo-degradation is studied under cw laser excitation conditions and quantum yields of photo-degradation are extracted. The excited-state absorption cross-sections were found to be rather small, and the photo-stability turned out to be high (up to 3 million excitation cycles before degradation) making this class of dipyrromethene dye-doped polymers attractive active laser media. Structural and thermo-mechanical properties of the materials have been determined by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry, densitometry, and refractometry. They improve with increasing inter-crossing (copolymerization of TMSPMA with PETA and PETRA). The laser properties of the PM597 doped copolymers were evaluated by transverse pumping with 6 ns laser pulses at 532 nm. The best laser materials resulted to be the 7:3 and 9:1 TMSPMA-monomer copolymers.

  10. Experimental and numerical investigation of the effect of liquid temperature on the sonolytic degradation of some organic dyes in water.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Boutamine, Zineb; Rezgui, Yacine; Guemini, Miloud

    2016-01-01

    This paper presents a comprehensive experimental and numerical investigation of the effects of liquid temperature on the sonochemical degradation of three organic dyes, Rhodamine B (RhB), Acid orange 7 (AO7) and Malachite green (MG), largely used in the textile industry. The experiments have been carried out for an ultrasonic frequency of 300 kHz. The obtained experimental results were discussed using a new approach combining the results of single-bubble event and the number of active bubbles. The single-bubble event was predicted using a model that combines the bubble dynamics with chemical kinetics occurring inside a bubble during the strong collapse. The number of active bubbles was predicted using a method developed in our previous work. The experiments showed that the degradation rate of the three dyes increased significantly with increasing liquid temperature in the range 25-55°C. It was predicted that the main pathway of pollutants degradation is the attack by OH radicals. The simulations showed that there exists an optimum liquid temperature of about 35°C for the production of OH inside a bubble whereas the number of active bubbles increased sharply with the rise of the liquid temperature. It was predicted that the overall production rate of OH increased with increasing liquid temperature in the range 25-55°C. Finally, it was concluded that the effect of liquid temperature on the sonochemical degradation of the three dyes in aqueous phase was controlled by the number of active bubbles in the range 35-55°C and by both the number of bubbles and the single bubble yield in the range 25-35°C. PMID:26384922

  11. UV light induced photodegradation of organic dye by ZnO nanocatalysts

    NASA Astrophysics Data System (ADS)

    Sumesh, C. K.; Patel, Bhavin; Parekh, Kinnari

    2013-06-01

    Ultraviolet light induced photocatalytic activity of ZnO nanocatalyst prepared using a wet chemical precipitation route and mineralization of the methyl orange (MO) dye has been carried out in a photocatalytic reactor. The degradation of the MO was monitored spectrophotometrically and showed a decolorization efficiency of 92% after nine hours of irradiation in the MO-ZnO/UV light system. The blue shifting of maximum peak position of the MO and the formation of extra peak at 247 nm during irradiation time advances revealed that MO degrades in the form of intermediates during the photocatalytic process.

  12. UV light induced photodegradation of organic dye by ZnO nanocatalysts

    SciTech Connect

    Sumesh, C. K.; Patel, Bhavin; Parekh, Kinnari

    2013-06-03

    Ultraviolet light induced photocatalytic activity of ZnO nanocatalyst prepared using a wet chemical precipitation route and mineralization of the methyl orange (MO) dye has been carried out in a photocatalytic reactor. The degradation of the MO was monitored spectrophotometrically and showed a decolorization efficiency of 92% after nine hours of irradiation in the MO-ZnO/UV light system. The blue shifting of maximum peak position of the MO and the formation of extra peak at 247 nm during irradiation time advances revealed that MO degrades in the form of intermediates during the photocatalytic process.

  13. Chromatographic and spectroscopic identification and recognition of ammoniacal cochineal dyes and pigments

    NASA Astrophysics Data System (ADS)

    Chieli, A.; Sanyova, J.; Doherty, B.; Brunetti, B. G.; Miliani, C.

    2016-06-01

    In this work a combined chromatographic and spectroscopic approach is used to provide a diagnostic assessment of semi-synthetic ammoniacal cochineal through the syntheses of its dyes and lakes according to art historical recipes. Commercially introduced in the late XIX century as a dye and pigment, it was used to obtain a brilliant purplish/violet nuance which provided a more stable option over carminic acid although its evidenced use in manufacts and artworks of heritage importance have been scarcely documented. Through HPLC-DAD, it has been possible to identify 4-aminocarminic acid as the main component of ammoniacal cochineal highlighting a chemical formula analogous to acid stable carmine, a recent patented food dye. FTIR clearly distinguishes the amine group in the ammoniacal cochineal dye preparation and TLC-SERS allows for an adequate separation and spectral differentiation in its main components to be evidenced. Colloidal SERS has permitted spectral markers useful in discerning ammoniacal cochineal over carminic acid to be highlighted and discussed. Finally, the methods experimented in this study for the identification of ammoniacal cochineal have been validated on analyzing a sample of dyed wool.

  14. Chromatographic and spectroscopic identification and recognition of ammoniacal cochineal dyes and pigments.

    PubMed

    Chieli, A; Sanyova, J; Doherty, B; Brunetti, B G; Miliani, C

    2016-06-01

    In this work a combined chromatographic and spectroscopic approach is used to provide a diagnostic assessment of semi-synthetic ammoniacal cochineal through the syntheses of its dyes and lakes according to art historical recipes. Commercially introduced in the late XIX century as a dye and pigment, it was used to obtain a brilliant purplish/violet nuance which provided a more stable option over carminic acid although its evidenced use in manufacts and artworks of heritage importance have been scarcely documented. Through HPLC-DAD, it has been possible to identify 4-aminocarminic acid as the main component of ammoniacal cochineal highlighting a chemical formula analogous to acid stable carmine, a recent patented food dye. FTIR clearly distinguishes the amine group in the ammoniacal cochineal dye preparation and TLC-SERS allows for an adequate separation and spectral differentiation in its main components to be evidenced. Colloidal SERS has permitted spectral markers useful in discerning ammoniacal cochineal over carminic acid to be highlighted and discussed. Finally, the methods experimented in this study for the identification of ammoniacal cochineal have been validated on analyzing a sample of dyed wool. PMID:26985877

  15. Tunable synthesis of SiO2-encapsulated zero-valent iron nanoparticles for degradation of organic dyes

    PubMed Central

    2014-01-01

    A series of nanocomposites consisting of zero-valent iron nanoparticles (ZVI NPs) encapsulated in SiO2 microspheres were successfully synthesized through a successive two-step method, i.e., the wet chemical reduction by borohydride followed by a modified Stöber method. The as-synthesized nanocomposites were characterized using X-ray diffraction, field emission scanning electron microscopy, vibrating sample magnetometer, and inductively coupled plasma-atomic emission spectrometer. The catalytic performance of SiO2-encapsulated ZVI nanocomposites for the degradation of organic dyes was investigated using methylene blue (MB) as the model dye in the presence of H2O2. The results showed that the degradation efficiency and apparent rate constant of the degradation reaction were significantly enhanced with increased ZVI NPs encapsulated in SiO2 microspheres, whereas the dosage of H2O2 remarkably promoted degradation rate without affecting degradation efficiency. The content-dependent magnetic property ensured the excellent magnetic separation of degradation products under an external magnet. This strategy for the synthesis of SiO2-encapsulated ZVI NPs nanocomposites was low cost and easy to scale-up for industrial production, thereby enabling promising applications in environmental remediation. PMID:25258615

  16. Tunable synthesis of SiO2-encapsulated zero-valent iron nanoparticles for degradation of organic dyes.

    PubMed

    Mao, Zhou; Wu, Qingzhi; Wang, Min; Yang, Yushi; Long, Jia; Chen, Xiaohui

    2014-01-01

    A series of nanocomposites consisting of zero-valent iron nanoparticles (ZVI NPs) encapsulated in SiO2 microspheres were successfully synthesized through a successive two-step method, i.e., the wet chemical reduction by borohydride followed by a modified Stöber method. The as-synthesized nanocomposites were characterized using X-ray diffraction, field emission scanning electron microscopy, vibrating sample magnetometer, and inductively coupled plasma-atomic emission spectrometer. The catalytic performance of SiO2-encapsulated ZVI nanocomposites for the degradation of organic dyes was investigated using methylene blue (MB) as the model dye in the presence of H2O2. The results showed that the degradation efficiency and apparent rate constant of the degradation reaction were significantly enhanced with increased ZVI NPs encapsulated in SiO2 microspheres, whereas the dosage of H2O2 remarkably promoted degradation rate without affecting degradation efficiency. The content-dependent magnetic property ensured the excellent magnetic separation of degradation products under an external magnet. This strategy for the synthesis of SiO2-encapsulated ZVI NPs nanocomposites was low cost and easy to scale-up for industrial production, thereby enabling promising applications in environmental remediation. PMID:25258615

  17. Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes

    PubMed Central

    Jiao, Tifeng; Liu, Yazhou; Wu, Yitian; Zhang, Qingrui; Yan, Xuehai; Gao, Faming; Bauer, Adam J. P.; Liu, Jianzhao; Zeng, Tingying; Li, Bingbing

    2015-01-01

    This study reports the facile preparation and the dye removal efficiency of nanohybrids composed of graphene oxide (GO) and Fe3O4 nanoparticles with various geometrical structures. In comparison to previously reported GO/Fe3O4 composites prepared through the one-pot, in situ deposition of Fe3O4 nanoparticles, the GO/Fe3O4 nanohybrids reported here were obtained by taking advantage of the physical affinities between sulfonated GO and Fe3O4 nanoparticles, which allows tuning the dimensions and geometries of Fe3O4 nanoparticles in order to decrease their contact area with GO, while still maintaining the magnetic properties of the nanohybrids for easy separation and adsorbent recycling. Both the as-prepared and regenerated nanohybrids demonstrate a nearly 100% removal rate for methylene blue and an impressively high removal rate for Rhodamine B. This study provides new insights into the facile and controllable industrial scale fabrication of safe and highly efficient GO-based adsorbents for dye or other organic pollutants in a wide range of environmental-related applications. PMID:26220847

  18. Hybrid functional calculated optical and electronic structures of thin anatase TiO2 nanowires with organic dye adsorbates

    NASA Astrophysics Data System (ADS)

    Ünal, Hatice; Gunceler, Deniz; Gülseren, Oğuz; Ellialtıoğlu, Şinasi; Mete, Ersen

    2015-11-01

    The electronic and optical properties of thin anatase TiO2 (1 0 1) and (0 0 1) nanowires have been investigated using the screened Coulomb hybrid density functional calculations. For the bare nanowires with sub-nanometer diameters, the calculated band gaps are larger relative to the bulk values due to size effects. The role of organic light harvesting sensitizers on the absorption characteristics of the anatase nanowires has been examined using the hybrid density functional method incorporating partial exact exchange with range separation. For the lowest lying excitations, directional charge redistribution of tetrahydroquinoline (C2-1) dye shows a remarkably different profile in comparison to a simple molecule which is chosen as the coumarin skeleton. The binding modes and the adsorption energies of C2-1 dye and coumarin core on the anatase nanowires have been studied including non-linear solvation effetcs. The calculated optical and electronic properties of the nanowires with these two different types of sensitizers have been interpreted in terms of their electron-hole generation, charge carrier injection and recombination characteristics.

  19. Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes

    NASA Astrophysics Data System (ADS)

    Jiao, Tifeng; Liu, Yazhou; Wu, Yitian; Zhang, Qingrui; Yan, Xuehai; Gao, Faming; Bauer, Adam J. P.; Liu, Jianzhao; Zeng, Tingying; Li, Bingbing

    2015-07-01

    This study reports the facile preparation and the dye removal efficiency of nanohybrids composed of graphene oxide (GO) and Fe3O4 nanoparticles with various geometrical structures. In comparison to previously reported GO/Fe3O4 composites prepared through the one-pot, in situ deposition of Fe3O4 nanoparticles, the GO/Fe3O4 nanohybrids reported here were obtained by taking advantage of the physical affinities between sulfonated GO and Fe3O4 nanoparticles, which allows tuning the dimensions and geometries of Fe3O4 nanoparticles in order to decrease their contact area with GO, while still maintaining the magnetic properties of the nanohybrids for easy separation and adsorbent recycling. Both the as-prepared and regenerated nanohybrids demonstrate a nearly 100% removal rate for methylene blue and an impressively high removal rate for Rhodamine B. This study provides new insights into the facile and controllable industrial scale fabrication of safe and highly efficient GO-based adsorbents for dye or other organic pollutants in a wide range of environmental-related applications.

  20. Influence of niobium doping in hierarchically organized titania nanostructure on performance of dye-sensitized solar cells.

    PubMed

    Park, Jong Hoon; Noh, Jun Hong; Han, Byung Suh; Shin, Seong Sik; Park, Ik Jae; Kim, Dong Hoe; Hong, Kug Sun

    2012-06-01

    Niobium doped hierarchically organized TiO2 nanostructures composed of 20 nm size anatase nanocrystals were synthesized using pulsed laser deposition (PLD). The Nb doping concentration could be facilely controlled by adjusting the concentration of Nb in target materials. We could investigate the influence of Nb doping in the TiO2 photoelectrode on the cell performance of dye-sensitized solar cells (DSSCs) by the exclusion of morphological effects using the prepared Nb-doped TiO2 anostructures. We found no significant change in short circuit current density (Jsc) as a function of Nb doping concentration. However, open circuit voltage (Voc) and fill factor (FF) monotonously decrease with increasing Nb concentration. Dark current characteristics of the DSSCs reveal that the decrease in Voc and FF is attributed to the decrease in shunt resistance due to the increase in conductivity TiO2 by Nb doping. However, electrochemical impedance spectra (EIS) analysis at open circuit condition under illumination showed that the resistance at the TiO2/dye/electrolyte interface increases with Nb concentration, revealing that Nb doping suppress the charge recombination at the interface. In addition, electron life time obtained using characteristic frequency in Bode plot increases from 14 msec to 56 msec with increasing Nb concentration from 0 to 1.2 at%. This implies that the improved light harvesting can be achieved by increasing diffusion length through Nb-doping in the conventional TiO2 photoelectrode. PMID:22905583

  1. Hydrothermal fabrication of selectively doped organic assisted advanced ZnO nanomaterial for solar driven photocatalysis.

    PubMed

    Namratha, K; Byrappa, K; Byrappa, S; Venkateswarlu, P; Rajasekhar, D; Deepthi, B K

    2015-08-01

    Hydrothermal fabrication of selectively doped (Ag(+)+Pd(3+)) advanced ZnO nanomaterial has been carried out under mild pressure temperature conditions (autogeneous; 150°C). Gluconic acid has been used as a surface modifier to effectively control the particle size and morphology of these ZnO nanoparticles. The experimental parameters were tuned to achieve optimum conditions for the synthesis of selectively doped ZnO nanomaterials with an experimental duration of 4 hr. These selectively doped ZnO nanoparticles were characterized using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy and scanning electron microscopy (SEM). The solar driven photocatalytic studies have been carried out for organic dyes, i.e., Procion MX-5B dye, Cibacron Brilliant Yellow dye, Indigo Carmine dye, separately and all three mixed, by using gluconic acid modified selectively doped advanced ZnO nanomaterial. The influence of catalyst, its concentration and initial dye concentration resulted in the photocatalytic efficiency of 89% under daylight. PMID:26257367

  2. Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor.

    PubMed

    Rodríguez, Francisca A; Mateo, María N; Aceves, Juan M; Rivero, Eligio P; González, Ignacio

    2013-01-01

    This work presents a study on degradation of indigo carmine dye in a filter-press type FM01-LC reactor using Sb2O5-doped Ti/IrO2-SnO2 dimensionally stable anode (DSA) electrodes. Micro- and macroelectrolysis studies were carried out using solutions of 0.8 mM indigo carmine in 0.05 M NaCl, which resemble blue denim laundry industrial wastewater. Microelectrolysis results show the behaviour of DSA electrodes in comparison with the behaviour of boron-doped diamond (BDD) electrodes. In general, dye degradation reactions are carried out indirectly through active chlorine generated on DSA, whereas in the case of BDD electrodes more oxidizing species are formed, mainly OH radicals, on the electrode surface. The well-characterized geometry, flow pattern and mass transport of the FM01-LC reactor used in macroelectrolysis experiments allowed the evaluation of the effect of hydrodynamic conditions on the chlorine-mediated degradation rate. Four values of Reynolds number (Re) (93, 371, 464 and 557) at four current densities (50, 100, 150 and 200 A/m2) were tested. The results show that the degradation rate is independent of Re at low current density (50 A/m2) but becomes dependent on the Re at high current density (200 A/m2). This behaviour shows the central role of mass transport and the reactor parameters and design. The low energy consumption (2.02 and 9.04 kWh/m3 for complete discolouration and chemical oxygen demand elimination at 50 A/m2, respectively) and the low cost of DSA electrodes compared to BDD make DSA electrodes promising for practical application in treating industrial textile effluents. In the present study, chlorinated organic compounds were not detected. PMID:23837306

  3. Computational design of small organic dyes with strong visible absorption by controlled quinoidization of the thiophene unit

    NASA Astrophysics Data System (ADS)

    Tan, Yi Yin; Tu, Wei Han; Manzhos, Sergei

    2014-02-01

    We present rational design of phenothiazine dyes by controlled quinoidization of the thiophene unit. We systematically study the effect of electron-withdrawing functional groups including pseudo- and super-halogens. We propose a new dye where a fumaronitrile unit induces an increase in the bond length alternation and a concurrent red shift in the absorption spectrum vs. the parent dye. The visible absorption peak is predicted at 520 nm, in CH2Cl2 vs. 450 nm for the parent dye. The LUMO and HOMO levels of the new dye are suitable for injection into TiO2 and regeneration by available redox shuttles, respectively.

  4. Aqueous synthesis of hierarchical bismuth nanobundles with high catalytic activity to organic dyes

    NASA Astrophysics Data System (ADS)

    Ma, Dechong; Zhao, Yan; Zhao, Jingzhe; Li, Yawen; Lu, Yan; Zhao, Duijia

    2015-07-01

    Bundle-like bismuth (Bi) nanoarchitectures were successfully prepared on a large scale by an aqueous reducing strategy with polyethylene glycol (PEG) as directing agent at 90 °C for 55 min. The bundle-like Bi nanoarchitectures have a length of 4-5 μm and diameter of 0.5-1 μm with fairly uniform construction. Catalytic activities of the as-prepared hierarchical Bi nanobundles were investigated for degrading Rhodamine B (RhB) dye solution under visible-light irradiation. The Bi nanostructures extended excellent catalytic activity and good cycling performance toward photodegradation of RhB. Possible mechanism was proposed for Bi-assisted photocatalytic degradation of RhB under visible-light.

  5. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    NASA Astrophysics Data System (ADS)

    Abbasi, Alireza; Gharib, Maniya; Najafi, Mahnaz; Janczak, Jan

    2016-03-01

    A new one-dimensional (1D) coordination polymer, [Zn(4,4‧-bpy)(H2O)4](ADC)·4H2O (1) (4,4‧-bpy=4,4‧-bipyridine and H2ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles.

  6. Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells.

    PubMed

    Swierk, John R; Méndez-Hernández, Dalvin D; McCool, Nicholas S; Liddell, Paul; Terazono, Yuichi; Pahk, Ian; Tomlin, John J; Oster, Nolan V; Moore, Thomas A; Moore, Ana L; Gust, Devens; Mallouk, Thomas E

    2015-02-10

    Solar fuel generation requires the efficient capture and conversion of visible light. In both natural and artificial systems, molecular sensitizers can be tuned to capture, convert, and transfer visible light energy. We demonstrate that a series of metal-free porphyrins can drive photoelectrochemical water splitting under broadband and red light (λ > 590 nm) illumination in a dye-sensitized TiO2 solar cell. We report the synthesis, spectral, and electrochemical properties of the sensitizers. Despite slow recombination of photoinjected electrons with oxidized porphyrins, photocurrents are low because of low injection yields and slow electron self-exchange between oxidized porphyrins. The free-base porphyrins are stable under conditions of water photoelectrolysis and in some cases photovoltages in excess of 1 V are observed. PMID:25583488

  7. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity.

    PubMed

    Coles, David M; Somaschi, Niccolo; Michetti, Paolo; Clark, Caspar; Lagoudakis, Pavlos G; Savvidis, Pavlos G; Lidzey, David G

    2014-07-01

    Strongly coupled optical microcavities containing different exciton states permit the creation of hybrid-polariton modes that can be described in terms of a linear admixture of cavity-photon and the constituent excitons. Such hybrid states have been predicted to have optical properties that are different from their constituent parts, making them a test bed for the exploration of light-matter coupling. Here, we use strong coupling in an optical microcavity to mix the electronic transitions of two J-aggregated molecular dyes and use both non-resonant photoluminescence emission and photoluminescence excitation spectroscopy to show that hybrid-polariton states act as an efficient and ultrafast energy-transfer pathway between the two exciton states. We argue that this type of structure may act as a model system to study energy-transfer processes in biological light-harvesting complexes. PMID:24793357

  8. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells.

    PubMed

    Wang, Mingkui; Chamberland, Nathalie; Breau, Livain; Moser, Jacques-E; Humphry-Baker, Robin; Marsan, Benot; Zakeeruddin, Shaik M; Grtzel, Michael

    2010-05-01

    Dye-sensitized solar cells (DSCs) have achieved impressive conversion efficiencies for solar energy of over 11% with an electrolyte that contains triiodide/iodide as a redox couple. Although triiodide/iodide redox couples work efficiently in DSCs, they suffer from two major disadvantages: electrolytes that contain triiodide/iodide corrode electrical contacts made of silver (which reduces the options for the scale up of DSCs to module size) and triiodide partially absorbs visible light. Here, we present a new disulfide/thiolate redox couple that has negligible absorption in the visible spectral range, a very attractive feature for flexible DSCs that use transparent conductors as current collectors. Using this novel, iodide-free redox electrolyte in conjunction with a sensitized heterojunction, we achieved an unprecedented efficiency of 6.4% under standard illumination test conditions. This novel redox couple offers a viable pathway to develop efficient DSCs with attractive properties for scale up and practical applications. PMID:20414239

  9. Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells

    PubMed Central

    Swierk, John R.; Méndez-Hernández, Dalvin D.; McCool, Nicholas S.; Liddell, Paul; Terazono, Yuichi; Pahk, Ian; Tomlin, John J.; Oster, Nolan V.; Moore, Thomas A.; Moore, Ana L.; Gust, Devens; Mallouk, Thomas E.

    2015-01-01

    Solar fuel generation requires the efficient capture and conversion of visible light. In both natural and artificial systems, molecular sensitizers can be tuned to capture, convert, and transfer visible light energy. We demonstrate that a series of metal-free porphyrins can drive photoelectrochemical water splitting under broadband and red light (λ > 590 nm) illumination in a dye-sensitized TiO2 solar cell. We report the synthesis, spectral, and electrochemical properties of the sensitizers. Despite slow recombination of photoinjected electrons with oxidized porphyrins, photocurrents are low because of low injection yields and slow electron self-exchange between oxidized porphyrins. The free-base porphyrins are stable under conditions of water photoelectrolysis and in some cases photovoltages in excess of 1 V are observed. PMID:25583488

  10. Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser

    NASA Astrophysics Data System (ADS)

    Shi, Lan-Ting; Jin, Feng; Zheng, Mei-Ling; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2011-02-01

    The authors have demonstrated the optimization of the active layer thickness on the threshold of organic solid-state dye-doped laser (SSDL), which was fabricated by three-dimensional polymeric opal photonic crystal and tert-butyl Rhodamine B (t-Bu-RhB) doped polymer film. Gain media were produced by incorporating t-Bu-RhB into polymer film at 3.0 wt %. The sandwiched laser resonator cavities with different active layer thickness displayed single-mode lasing oscillations in the reflection band gap of the resonator structure. The lasing threshold as low as 1.13 μJ/pulse was achieved. The optimization of active layer would provide an opportunity to accelerate the development of low threshold polymeric SSDLs.

  11. Ligand Induced Anionic Cuprous Cyanide Framework for Cupric Ion Turn on Luminescence Sensing and Photocatalytic Degradation of Organic Dyes.

    PubMed

    Xu, Xiao-Yan; Chen, Qiu-Cheng; Yu, Ya-Dong; Huang, Xiao-Chun

    2016-01-01

    A new microporous luminescent coordination polymer [(CH3)2NH2]·[Cu2(CN)3] (1) with channels occupied by dimethylamine cations was synthesized due to the inducing effect of 2-(2'-pyridyl)imidazole. Complex 1 exhibits bright-green emission in the solid state, and its emission intensity would be significantly enhanced, especially by DMAc and cupric ion after immersing the as-synthesized crystals of 1 into common organic solvents or methanol solutions of various metal ions. In addition, 1 exhibits photocatalytic activity for the degradation of RhB and MB under natural light and is stable during the photocatalysis process. Thus, 1 can act as a multifunctional material for selectively sensing of Cu(2+) and effectively photocatalytic degradation of dyes. PMID:26671534

  12. The energy transfer mechanism of a photoexcited and electroluminescent organic hybrid thin film of blue, green, and red laser dyes

    NASA Astrophysics Data System (ADS)

    Li, Weiling; Zhang, Jing; Zheng, Yanqiong; Chen, Guo; Cai, Miao; Wei, Bin

    2015-04-01

    Though optically pumped lasing has been realized for years, electrically pumped lasing has not yet been achieved in organic semiconductor devices. In order to make a better understanding of the laser mechanisms of the organic materials, we prepared organic thin films consisting of three efficient laser dyes of a blue emitter, 4″,4″'-N,N-diphenylamine-4,4'-diphenyl-1,1'-binaphthyl (BN), a green emitter, 1,4-bis[2-[4-[N,N-di(p-tolyl)amino] phenyl]vinyl]benzene (DSB), and a red emitter, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidy-l-9-enyl)-4H-pyran (DCJTB) with different doping concentrations for the first time to investigate the cascade energy transfer process. The energy transfer schemes in the co-doped thin films in photoluminescence and electroluminescence have been investigated. The results indicated that the DSB molecules acted as a bridge to deliver energy more effectively from the host (BN) to the guest (DCJTB). Meanwhile, the maximum current efficiency ( C E) and power efficiency ( P E) of the organic light-emitting devices (OLEDs) with the emitting layer of lower doping concentration were 13.5 cd/A and 14.1 lm/W, respectively.

  13. The energy transfer mechanism of a photoexcited and electroluminescent organic hybrid thin film of blue, green, and red laser dyes.

    PubMed

    Li, Weiling; Zhang, Jing; Zheng, Yanqiong; Chen, Guo; Cai, Miao; Wei, Bin

    2015-01-01

    Though optically pumped lasing has been realized for years, electrically pumped lasing has not yet been achieved in organic semiconductor devices. In order to make a better understanding of the laser mechanisms of the organic materials, we prepared organic thin films consisting of three efficient laser dyes of a blue emitter, 4″,4″'-N,N-diphenylamine-4,4'-diphenyl-1,1'-binaphthyl (BN), a green emitter, 1,4-bis[2-[4-[N,N-di(p-tolyl)amino] phenyl]vinyl]benzene (DSB), and a red emitter, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidy-l-9-enyl)-4H-pyran (DCJTB) with different doping concentrations for the first time to investigate the cascade energy transfer process. The energy transfer schemes in the co-doped thin films in photoluminescence and electroluminescence have been investigated. The results indicated that the DSB molecules acted as a bridge to deliver energy more effectively from the host (BN) to the guest (DCJTB). Meanwhile, the maximum current efficiency (C E) and power efficiency (P E) of the organic light-emitting devices (OLEDs) with the emitting layer of lower doping concentration were 13.5 cd/A and 14.1 lm/W, respectively. PMID:25977665

  14. Separation and recovery of food coloring dyes using aqueous biphasic extraction chromatographic resins.

    PubMed

    Huddleston, J G; Willauer, H D; Boaz, K R; Rogers, R D

    1998-06-26

    Aqueous biphasic systems (ABS) and aqueous biphasic extraction chromatographic (ABEC) resins are currently under investigation for their utility in the removal of color from textile plant wastes. The structures of several widely used food colorings, suggest that these dyes would also be retained on the resins. In work currently in progress, we have begun to investigate the retention and resolution of several common food colorings including indigo carmine, amaranth, carminic acid. erythrosin B, tartrazine and quinoline yellow. The relationship between the uptake of these dyes on ABEC resins in terms of the binding strengths and capacities of the resins and their partitioning behavior in ABS is illustrated. Some possible theoretical and practical approaches to the prediction of the partitioning and retention behavior is discussed. PMID:9699992

  15. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Gong, Wenpeng; Luo, Jing; Zou, Chentao; Yang, Yun; Yang, Shuijin

    2016-01-01

    A novel environmental friendly adsorbent H6P2W18O62/MOF-5 was synthesized by a simple one-step reaction under solvothermal conditions and characterized by XRD, FTIR, thermogravimetric analyses (TGA) and N2 adsorption-desorption isotherms. The removal rate of H6P2W18O62/MOF-5 was quite greater (85%) than that of MOF-5 (almost zero), showing that the adsorption performance of porous MOF-5 can be improved through the modification of H6P2W18O62. Further study revealed that H6P2W18O62/MOF-5 exhibited a fast adsorption rate and selective adsorption ability towards the cationic dyes in aqueous solution. The removal rate was up to 97% for cationic dyes methylene blue (MB) and 68% for rhodamine B(Rhb) within 10 min. However, anionicdye methyl orange(MO) can only reach to 10%. The influences including initial concentration, contact time, initial solution pH and temperature of MB adsorption onto H6P2W18O62/MOF-5 were investigated in detail. The kinetic study indicated that the adsorption of MB onto H6P2W18O62/MOF-5 followed the pseudo second-order model well. The isotherm obtained from experimental data fitted the Langmuir model, yielding maximum adsorption capacity of 51.81 mg/g. The thermodynamic parameters analysis illustrated that the MB adsorption onto H6P2W18O62 immobilized MOF-5 was spontaneous and endothermic process. Besides, these results implied that designing a novel material polyoxometalate-based metal-organic frameworks is great potential for removing cationic organic pollutants and even extended to improve other specific application.

  16. Amphiphilic block-graft copolymer templates for organized mesoporous TiO2 films in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lim, Jung Yup; Lee, Chang Soo; Lee, Jung Min; Ahn, Joonmo; Cho, Hyung Hee; Kim, Jong Hak

    2016-01-01

    Amphiphilic block-graft copolymers composed of poly(styrene-b-butadiene-b-styrene) (SBS) backbone and poly(oxyethylene methacrylate) (POEM) side chains are synthesized and combined with hydrophilically preformed TiO2 (Pre-TiO2), which works as a structural binder as well as titania source. This results in the formation of crack free, 6-μm-thick, organized mesoporous TiO2 (OM-TiO2) films via one-step doctor-blading based on self-assembly of SBS-g-POEM as well as preferential interaction of POEM chains with Pre-TiO2. SBS-g-POEM with different numbers of ethylene oxide repeating units, SBS-g-POEM(500) and SBS-g-POEM(950), are used to form OM-TiO2(500) and OM-TiO2(950), respectively. The efficiencies of dye-sensitized solar cells (DSSCs) with a quasi-solid-state polymer electrolyte reach 5.7% and 5.8% at 100 mW/cm2 for OM-TiO2(500) and OM-TiO2(950), respectively. The surface area of OM-TiO2(950) was greater than that of OM-TiO2(500) but the light reflectance was lower in the former, which is responsible for similar efficiency. Both DSSCs exhibit much higher efficiency than one (4.8%) with randomly-organized particulate TiO2 (Ran-TiO2), which is attributed to the higher dye loading, reduced charge recombination and improved pore infiltration of OM-TiO2. When utilizing poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII) and mesoporous TiO2 spheres as the solid electrolyte and the scattering layer, the efficiency increases up to 7.5%, one of the highest values for N719-based solid-state DSSCs.

  17. Comparison of historic Grübler dyes with modern counterparts.

    PubMed

    Titford, M

    2001-01-01

    Seventeen Grübler dyes produced in Germany between 1880 and 1939 were examined in this study. These dyes were: fuchsin-bacillus, diamond fuchsin, fuchsin S acid, rubin S, safranin O water soluble, safranin yellowish water soluble, methyl eosin, Sudan III, scarlet R, auramine, orange G, aniline blue, pyronin, carmine, lithium carmine, hematein and aurantia. Spectrophotometry and staining characteristics were used to determine the maximum absorbance and efficacy of each dye in common staining techniques. The spectral curves and staining characteristics of these dyes compared well with modern dyes used as controls. Fuchsin bacillus and diamond fuchsin are synonyms for basic fuchsin. Fuchsin S acid and rubin S are synonyms for acid fuchsin. The scarlet R sample was the same as the Sudan III. The two safranins were the same. The basic fuchsin samples were unsuitable for preparation of Schiff's reagent. Both basic fuchsin and pyronin samples were less concentrated than modern counterparts. It is noteworthy that the dyes worked well after up to 100 years in storage, and this observation indicates that dyes can have a long shelf life when stored in cool, dry, air-tight conditions. PMID:11440299

  18. Evaluation of quantum dot immunofluorescence and a digital CMOS imaging system as an alternative to conventional organic fluorescence dyes and laser scanning for quantifying protein microarrays.

    PubMed

    Jain, Aarti; Taghavian, Omid; Vallejo, Derek; Dotsey, Emmanuel; Schwartz, Dan; Bell, Florian G; Greef, Chad; Davies, D Huw; Grudzien, Jennipher; Lee, Abraham P; Felgner, Philip L; Liang, Li

    2016-04-01

    Organic fluorescent dyes are widely used for the visualization of bound antibody in a variety of immunofluorescence assays. However, the detection equipment is often expensive, fragile, and hard to deploy widely. Quantum dots (Qdot) are nanocrystals made of semiconductor materials that emit light at different wavelengths according to the size of the crystal, with increased brightness and stability. Here, we have evaluated a small benchtop "personal" optical imager (ArrayCAM) developed for quantification of protein arrays probed by Qdot-based indirect immunofluorescence. The aim was to determine if the Qdot imager system provides equivalent data to the conventional organic dye-labeled antibody/laser scanner system. To do this, duplicate proteome microarrays of Vaccinia virus, Brucella melitensis and Plasmodium falciparum were probed with identical samples of immune sera, and IgG, IgA, and IgM profiles visualized using biotinylated secondary antibodies followed by a tertiary reagent of streptavidin coupled to either P3 (an organic cyanine dye typically used for microarrays) or Q800 (Qdot). The data show excellent correlation for all samples tested (R > 0.8) with no significant change of antibody reactivity profiles. We conclude that Qdot detection provides data equivalent to that obtained using conventional organic dye detection. The portable imager offers an economical, more robust, and deployable alternative to conventional laser array scanners. PMID:26842269

  19. Fabrication of highly hydrophobic organic-inorganic hybrid magnetic polysulfone microcapsules: A lab-scale feasibility study for removal of oil and organic dyes from environmental aqueous samples.

    PubMed

    Pan, Yanan; Wang, Jiaojiao; Sun, Caiyun; Liu, Xiaoyan; Zhang, Haixia

    2016-05-15

    In this work, three kinds of organic-inorganic hybrid materials (vinyl benzene linear polymer modified SBA-15, attapulgite and halloysite nanotubes) in the shape of powder and the corresponding magnetic polysulfone microcapsules were developed for removal of oil and dyes from environmental aqueous samples, respectively. As determined from the oil and dye adsorption studies, the developed magnetic polysulfone microcapsules exhibited high adsorption capacity of 13.8-17.3g/g for oil. The prepared functionalized materials and the corresponding microcapsules can remove 85.0-91.6% and 81.8-87.8% Sudan I in 80min and 7.6h, respectively. The results showed a significant improvement in their adsorption capacities and removal efficiencies compared to the parent matrices, indicating that the introducing of the vinyl benzene linear polymer was a major factor in the removal of the hydrophobic pollutants. At the same time, the adsorption capacity for the investigated pollutants also depended on the textural feature of matrix itself. In view of the utilization of low-cost clay minerals (attapulgite and halloysite nanotubes), these proposed functionalized materials and the corresponding magnetic polysulfone microcapsules had a great promise to be used as an efficient sorbent for removal of pollutants from environmental aqueous samples. PMID:26874312

  20. Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater.

    PubMed

    Fan, Jun; Li, Haibo; Shuang, Chendong; Li, Wentao; Li, Aimin

    2014-08-01

    This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (<3kDa) DOM fractions constituted a major portion (>50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency. PMID:25108712

  1. Enhancement of the antiviral and interferon-inducing activities of poly r(A-U) by carminic acid.

    PubMed

    Jamison, J M; Flowers, D G; Jamison, E; Kitareewan, S; Krabill, K; Rosenthal, K S; Tsai, C

    1988-01-01

    Experiments have been designed to systematically examine the effects of carminic acid (CAR) on the antiviral/interferon-inducing activity of poly r(A-U), using the human foreskin fibroblast-vesicular stomatitis virus bioassay system. Modulation of the antiviral/interferon-inducing activity of poly r(A-U) by carminic acid was examined at fixed poly r(A-U) concentrations of 0.05 mM or 0.2 mM while varying the carminic acid concentrations to produce variable CAR/ribonucleotide ratios ranging from 1:16 to 2:1. Carminic acid and poly r(A-U) were tested individually at the concentrations employed in the CAR/poly r(A-U) combinations. Neither the carminic acid alone nor poly r(A-U) alone were effective antiviral agents/interferon inducers. The antiviral/interferon-inducing activity of poly r(A-U) was potentiated twelve-fold at CAR/ribonucleotide ratios in the region of 1/6 to 1/4. These results suggest a synergism between the poly r(A-U) and the carminic acid at the concentrations employed in this study. PMID:2451107

  2. Carrier multiplication in semiconductor nanocrystals detected by energy transfer to organic dye molecules

    PubMed Central

    Xiao, Jun; Wang, Ying; Hua, Zheng; Wang, Xiaoyong; Zhang, Chunfeng; Xiao, Min

    2012-01-01

    Carrier multiplication describes an interesting optical phenomenon in semiconductors whereby more than one electron-hole pair, or exciton, can be simultaneously generated upon absorption of a single high-energy photon. So far, it has been highly debated whether the carrier multiplication efficiency is enhanced in semiconductor nanocrystals as compared with their bulk counterpart. The controversy arises from the fact that the ultrafast optical methods currently used need to correctly account for the false contribution of charged excitons to the carrier multiplication signals. Here we show that this charged exciton issue can be resolved in an energy transfer system, where biexcitons generated in the donor nanocrystals are transferred to the acceptor dyes, leading to an enhanced fluorescence from the latter. With the biexciton Auger and energy transfer lifetime measurements, an average carrier multiplication efficiency of ~17.1% can be roughly estimated in CdSe nanocrystals when the excitation photon energy is ~2.46 times of their energy gap. PMID:23132020

  3. Effects of surface modification on dye-sensitized solar cell based on an organic dye with naphtho[2,1-b:3,4-b']dithiophene as the conjugated linker.

    PubMed

    Wang, Xiaoxu; Guo, Lei; Xia, Ping Fang; Zheng, Fan; Wong, Man Shing; Zhu, Zhengtao

    2014-02-12

    We have investigated the effects of surface modification on the dye-sensitized solar cell (DSSC) based on a donor-(π-spacer)-acceptor organic dye. A major challenge for donor-(π-spacer)--acceptor molecules as sensitizers in DSSCs is the fast recombination reactions that occur at both the photoanode (e.g., TiO2) surface and the fluorine-doped tin oxide (FTO) electrode, which presents unfavorable effects on the DSSC performance. The two interfaces of TiO2/electrolyte and FTO/electrolyte are passivated selectively in a DSSC using an organic dye with Naphtho[2,1-b:3,4-b']dithiophene as the conjugated linker and the I(-)/I3(-) electrolyte. The current density-voltage characteristics, the dark current analysis, the open circuit voltage-light intensity dependence, and the transient photovoltage/photocurrent results indicate that the recombination processes are affected strongly by surface passivation under variable light intensity. At high light intensity, the recombination reaction at the TiO2 surface is dominant. In this case, silane passivation of the TiO2 surface can suppress recombination significantly, while the c-TiO2 layer makes little contribution to the reduction of the recombination. At low illumination intensity, the recombination at FTO becomes significant, and the recombination can be reduced by applying a c-TiO2 layer. PMID:24377275

  4. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    SciTech Connect

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng E-mail: cxue@ntu.edu.sg; Zhang, Ming-Yi; Xue, Can E-mail: cxue@ntu.edu.sg

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x} particles are durable and active catalysts for photocatalytic H{sub 2} generation.

  5. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiOx nanoparticles for efficient visible-light-driven hydrogen generation

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ling; Wang, Rong; Zhang, Ming-Yi; Yuan, Yu-Peng; Xue, Can

    2015-10-01

    The Ni/NiOx particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H2 generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H2 production rate of 125 μmol h-1 was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiOx catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H2 generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiOx particles are durable and active catalysts for photocatalytic H2 generation.

  6. Exploring the heterogeneous interfaces in organic or ruthenium dye-sensitized liquid- and solid-state solar cells.

    PubMed

    Kwon, Young Soo; Song, Inwoo; Lim, Jong Chul; Song, In Young; Siva, Ayyanar; Park, Taiho

    2012-06-27

    The interfacial properties were systematically investigated using an organic sensitizer (3-(5'-{4-[(4-tert-butyl-phenyl)-p-tolyl-amino]-phenyl}-[2,2']bithiophenyl-5-yl)-2-cyano-acrylic acid (D)) and inorganic sensitizer (bis(tetrabutylammonium) cis-bis(thiocyanato)bis(2,2'-bipyridine-4,4'-dicarboxylato) ruthenium(II) (N719)) in a liquid-state and a solid-state dye-sensitized solar cell (DSC). For liquid-DSCs, the faster charge recombination for the surface of D-sensitized TiO2 resulted in shorter diffusion length (LD) of ∼3.9 μm than that of N719 (∼7.5 μm), limiting the solar cell performance at thicker films used in liquid-DSCs. On the other hand, for solid-DSCs using thin TiO2 films (∼ 2 μm), D-sensitized device outperforms the N719-sensitized device in an identical fabrication condition, mainly due to less perfect wetting ability of solid hole conductor into the porous TiO2 network, inducing the dye monolayer act as an insulation layer, while liquid electrolyte is able to fully wet the surface of TiO2. Such insulation effect was attributed to the fact that the significant increase in recombination resistance (from 865 to 4,400 Ω/cm(2)) but shorter electron lifetime (from 10.8 to 0.8 ms) when compared to liquid-DSCs. Higher recombination resistance for solid-DSCs induced the electron transport-limited situation, showing poor performance of N719-sensitized device which has shorter electron transport time and similar LD (2.9 μm) with D-sensitized device (3.0 μm). PMID:22658859

  7. Relationship between temperature-induced changes in internal microscopic structures of poly(N-isopropylacrylamide) microgels and organic dye uptake behavior.

    PubMed

    Kureha, Takuma; Sato, Takaaki; Suzuki, Daisuke

    2014-07-29

    Temperature-induced changes in the internal structures of poly(N-isopropylacrylamide) (pNIPAm) microgels were evaluated by small-angle X-ray scattering (SAXS), and the results were used to explain organic dye uptake by the microgels. The dye uptake experiments were conducted using two organic dyes: cationic rhodamine 6G (R6G) and anionic erythrosine. In the SAXS investigation, the internal structures of the microgels were characterized in terms of the correlation length, ξ, and the distance, d*, which originated from the local packing of the isopropyl groups of two neighboring chains. With increasing temperature up to the volume phase transition temperature (VPTT) of the microgels, the correlation length, ξ, was increased and the distance, d*, was decreased. At the same time, the amounts of the dyes taken up by the pNIPAm microgels were increased, despite a decrease in the volume of the microgels. The results indicated that the pNIPAm chains were closer to each other due to the hydrophobic association of isopropyl groups, which resulted in the growth of the hydrophobic domains. Thus, the hydrophobic interactions between the dyes and pNIPAm were probably accompanied by the domain formation. With a further increase of temperature above the VPTT, the correlation length, ξ, was decreased and then not defined because the Ornstein-Zernike type contribution disappeared, and the distance, d*, was not largely changed. At the same time, the uptake amounts of the dyes per unit volume of the microgels were also not largely changed, which behaved similar to the distance, d*. It was probably due to the fact that the internal structures of the microgels were not largely changed because the isopropyl groups were in contact with each other. The view was supported by the result of the uptake study of the nonthermoresponsive microgels which did not have the hydrophobic isopropyl groups. PMID:25003512

  8. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.

    2016-02-01

    The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10-6 S cm-1 and this value was increased to 7.43×10-5 S cm-1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.

  9. Effects of indigo carmine intravenous injection on noninvasive and continuous total hemoglobin measurement.

    PubMed

    Isosu, Tsuyoshi; Satoh, Tomohiko; Oishi, Rieko; Imaizumi, Tsuyoshi; Hakozaki, Takahiro; Obara, Shinju; Ikegami, Yukihiro; Kurosawa, Shin; Murakawa, Masahiro

    2016-06-01

    The effects of an intravenous injection of indigo carmine on noninvasive and continuous total hemoglobin (SpHb) measurement were retrospectively evaluated. The subjects were 21 patients who underwent elective gynecologic surgery under general anesthesia. During surgery, 5 mL of 0.4 % indigo carmine was intravenously injected, and subsequent changes in SpHb concentrations were evaluated. The results demonstrate that the pre-injection SpHb level was 10 g/dL, and the minimum post-injection SpHb level was 8.3 g/dL. The amount of decrease was 1.8 g/dL. The time to reach the minimum value was 4 min, and the time to return to the pre-injection value was 15 min. The decrease in SpHb was greater in the group with a perfusion index (PI) < 1.4 than in the group with a PI > 1.4. The assessment of SpHb after an intravenous injection of indigo carmine necessitates caution. PMID:26076807

  10. Enhancing dye-sensitized solar cell performances by molecular engineering: highly efficient π-extended organic sensitizers.

    PubMed

    Grisorio, Roberto; De Marco, Luisa; Agosta, Rita; Iacobellis, Rosabianca; Giannuzzi, Roberto; Manca, Michele; Mastrorilli, Piero; Gigli, Giuseppe; Suranna, Gian Paolo

    2014-09-01

    This study deals with the synthesis and characterization of two π-extended organic sensitizers (G1 and G2) for applications in dye-sensitized solar cells. The materials are designed with a D-A-π-A structure constituted by i) a triarylamine group as the donor part, ii) a dithienyl-benzothiadiazole chromophore followed by iii) a further ethynylene-thiophene (G1) or ethynylene-benzene (G2) π-spacer and iv) a cyano-acrylic moiety as acceptor and anchoring part. An unusual structural extension of the π-bridge characterizes these structures. The so-configured sensitizers exhibit a broad absorption profile, the origin of which is supported by density functional theory. The absence of hypsochromic shifts as a consequence of deprotonation as well as notable optical and electrochemical stabilities are also observed. Concerning the performances in devices, electrochemical impedance spectroscopy indicates that the structural modification of the π-spacer mainly increases the electron lifetime of G2 with respect to G1. In devices, this feature translates into a superior power conversion efficiency of G2, reaching 8.1%. These results are comparable to those recorded for N719 and are higher with respect to literature congeners, supporting further structural engineering of the π-bridge extension in the search for better performing π-extended organic sensitizers. PMID:25056642

  11. Straightforward fabrication of stable white LEDs by embedding of inorganic UV-LEDs into bulk polymerized polymethyl-methacrylate doped with organic dyes.

    PubMed

    Di Martino, Daniela; Beverina, Luca; Sassi, Mauro; Brovelli, Sergio; Tubino, Riccardo; Meinardi, Francesco

    2014-01-01

    Stable white-emitting down-converted LEDs are straightforwardly prepared by bulk polymerization of an organic dye doped polymethyl-methacrylate (PMMA) shell directly on top of a highly efficient commercial blue-emitting InGaN LED. Our optimized polymerization procedure allows for extending the form factor of achievable luminescence converter (LUCO) material beyond the conventional thin film form and to directly produce devices with light bulb design. The selected organic dyes, the blue-emitting Coumarin 30 and a red-emitting diketopyrrolopyrrole derivative, exhibit high compatibility with the free radical polymerization reaction of the PMMA matrix and ensure high stability of the final hybrid device. The control of both the thickness of the PMMA shell and the concentration of the dopant dyes allow for fine tuning of the emission color of the LUCO LED and to obtain white light with CIE chromatic coordinates x = 0.32 and y = 0.33, with rendering index as high as 80. This simple and versatile procedure is not dye-exclusive and is therefore extendable to other molecular systems for color-tunable efficient solid-state lighting sources. PMID:24638041

  12. Straightforward fabrication of stable white LEDs by embedding of inorganic UV-LEDs into bulk polymerized polymethyl-methacrylate doped with organic dyes

    NASA Astrophysics Data System (ADS)

    di Martino, Daniela; Beverina, Luca; Sassi, Mauro; Brovelli, Sergio; Tubino, Riccardo; Meinardi, Francesco

    2014-03-01

    Stable white-emitting down-converted LEDs are straightforwardly prepared by bulk polymerization of an organic dye doped polymethyl-methacrylate (PMMA) shell directly on top of a highly efficient commercial blue-emitting InGaN LED. Our optimized polymerization procedure allows for extending the form factor of achievable luminescence converter (LUCO) material beyond the conventional thin film form and to directly produce devices with light bulb design. The selected organic dyes, the blue-emitting Coumarin 30 and a red-emitting diketopyrrolopyrrole derivative, exhibit high compatibility with the free radical polymerization reaction of the PMMA matrix and ensure high stability of the final hybrid device. The control of both the thickness of the PMMA shell and the concentration of the dopant dyes allow for fine tuning of the emission color of the LUCO LED and to obtain white light with CIE chromatic coordinates x = 0.32 and y = 0.33, with rendering index as high as 80. This simple and versatile procedure is not dye-exclusive and is therefore extendable to other molecular systems for color-tunable efficient solid-state lighting sources.

  13. Straightforward fabrication of stable white LEDs by embedding of inorganic UV-LEDs into bulk polymerized polymethyl-methacrylate doped with organic dyes

    PubMed Central

    Di Martino, Daniela; Beverina, Luca; Sassi, Mauro; Brovelli, Sergio; Tubino, Riccardo; Meinardi, Francesco

    2014-01-01

    Stable white-emitting down-converted LEDs are straightforwardly prepared by bulk polymerization of an organic dye doped polymethyl-methacrylate (PMMA) shell directly on top of a highly efficient commercial blue-emitting InGaN LED. Our optimized polymerization procedure allows for extending the form factor of achievable luminescence converter (LUCO) material beyond the conventional thin film form and to directly produce devices with light bulb design. The selected organic dyes, the blue-emitting Coumarin 30 and a red-emitting diketopyrrolopyrrole derivative, exhibit high compatibility with the free radical polymerization reaction of the PMMA matrix and ensure high stability of the final hybrid device. The control of both the thickness of the PMMA shell and the concentration of the dopant dyes allow for fine tuning of the emission color of the LUCO LED and to obtain white light with CIE chromatic coordinates x = 0.32 and y = 0.33, with rendering index as high as 80. This simple and versatile procedure is not dye-exclusive and is therefore extendable to other molecular systems for color-tunable efficient solid-state lighting sources. PMID:24638041

  14. Detection of volatile organic compounds through a sensing film of TiO II doped with organic dyes deposited on an optical fiber

    NASA Astrophysics Data System (ADS)

    Muñoz A., S.; Ramos M., J.; Martínez H., C.; Castillo M., J.; Beltrán P., G.; Palomino M., R.

    2007-03-01

    The necessity of detection and recognition of different types of gases, such as volatile organic compounds, which are frequently found in food and beverage industries among others, requires the development of different types of sensors. In this work, an application of optical fiber for the detection of volatile organic compounds, particularly ethanol is presented. The sensor was constructed removing a portion of the cladding and depositing instead a sensing titanium dioxide (TiO II) film doped with an organic dye (rhodamine 6G) by the sol-gel method. The sensor response was measured in a Teflon chamber where the sample to be measured was injected. A He-Ne laser beam was coupled to the fiber and the variation in the output power was measured which indicates the gas presence. The difference between the output power with and without gas gives a measure of the concentration that exists in the chamber. The experimental results showed that for an ethanol concentration range from 0 to 10500 ppm, the response of the sensor was approximately linear with a correlation coefficient of 0.9924.

  15. Transparent Organic Photodetector using a Near-Infrared Absorbing Cyanine Dye

    PubMed Central

    Zhang, Hui; Jenatsch, Sandra; De Jonghe, Jelissa; Nüesch, Frank; Steim, Roland; Véron, Anna C.; Hany, Roland

    2015-01-01

    Organic photodetectors are interesting for low cost, large area optical sensing applications. Combining organic semiconductors with discrete absorption bands outside the visible wavelength range with transparent and conductive electrodes allows for the fabrication of visibly transparent photodetectors. Visibly transparent photodetectors can have far reaching impact in a number of areas including smart displays, window-integrated electronic circuits and sensors. Here, we demonstrate a near-infrared sensitive, visibly transparent organic photodetector with a very high average visible transmittance of 68.9%. The transmitted light of the photodetector under solar irradiation exhibits excellent transparency colour perception and rendering capabilities. At a wavelength of 850 nm and at −1 V bias, the photoconversion efficiency is 17% and the specific detectivity is 1012 Jones. Large area photodetectors with an area of 1.6 cm2 are demonstrated. PMID:25803320

  16. Film Properties and Polycrystallization of Organic Dyes on ITOs with Surface Treatment for Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Iwama, Yuki; Mori, Tatsuo; Mizutani, Teruyoshi

    ITO(Indium-Tin-Oxide) has been now widely used as the transparent anode for organic light-emitting devices(OLEDs). We used various methods of ITO surface treatment and examined the effects of them by measuring contact angle and calculating surface energy. We also prepared OLEDs with ITO treated by each method, and estimated their characteristics. The surface of ITO treated by UV-O3 or O2-plasma was more hydrophilic than that treated by only organic rinse or no treatment, and consequently the characteristic of the OLED was improved. We suppose these treatments affect the hole injection from ITO into organic layer, due to ionization potential or surface cleanness. We also investigated time degradation of NPD films on the ITO substrates. The films deposited with high deposition rate porycrystallized faster.

  17. Synthesis of a Near-Infrared Emitting Squaraine Dye in an Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Marks, Patrick; Levine, Mindy

    2012-01-01

    Squaraines are a class of organic fluorophores that possess unique photophysical properties, including strong near-infrared absorption and emission. The synthesis of many squaraines involves the condensation of an electron-rich aromatic ring with squaric acid. These reactions are generally refluxed overnight in a benzene-butanol solvent mixture.…

  18. Synthesis of a Near-Infrared Emitting Squaraine Dye in an Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Marks, Patrick; Levine, Mindy

    2012-01-01

    Squaraines are a class of organic fluorophores that possess unique photophysical properties, including strong near-infrared absorption and emission. The synthesis of many squaraines involves the condensation of an electron-rich aromatic ring with squaric acid. These reactions are generally refluxed overnight in a benzene-butanol solvent mixture.

  19. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kwon-Hyeon; Lee, Sunghun; Moon, Chang-Ki; Kim, Sei-Yong; Park, Young-Seo; Lee, Jeong-Hwan; Woo Lee, Jin; Huh, June; You, Youngmin; Kim, Jang-Joo

    2014-09-01

    Organic light-emitting diodes (OLEDs) are among the most promising organic semiconductor devices. The recently reported external quantum efficiencies (EQEs) of 29-30% for green and blue phosphorescent OLEDs are considered to be near the limit for isotropically oriented iridium complexes. The preferred orientation of transition dipole moments has not been thoroughly considered for phosphorescent OLEDs because of the lack of an apparent driving force for a molecular arrangement in all but a few cases, even though horizontally oriented transition dipoles can result in efficiencies of over 30%. Here we use quantum chemical calculations to show that the preferred orientation of the transition dipole moments of heteroleptic iridium complexes (HICs) in OLEDs originates from the preferred direction of the HIC triplet transition dipole moments and the strong supramolecular arrangement within the co-host environment. We also demonstrate an unprecedentedly high EQE of 35.6% when using HICs with phosphorescent transition dipole moments oriented in the horizontal direction.

  20. Nickel-supported carbon nitride photocatalyst combined with organic dye for visible-light-driven hydrogen evolution from water.

    PubMed

    Mori, Kohsuke; Itoh, Taiki; Kakudo, Hiroki; Iwamoto, Tomoyuki; Masui, Yoichi; Onaka, Makoto; Yamashita, Hiromi

    2015-10-01

    A noble-metal-free photocatalytic H2 production system consisting of a Ni-based catalyst, visible-light-responsive organic dye, and graphitic carbon nitride (g-C3N4) as a support has been developed. Characterization by means of XAFS revealed that the deposition of a trinuclear Ni precursor complex, Ni(NiL2)2Cl2 (L = β-mercaptoethylamine), on the g-C3N4 affords a monomeric Ni(ii) species involving β-mercaptoethylamine and aqua ligands in an octahedral coordination geometry. Such a Ni species acts as a hydrogen production site from an aqueous solution without an electron relay reagent by combining with thiazole orange (TO) as a photosensitizer. The emission of the attached TO at around 550 nm decreases with increasing loading amount of Ni catalyst, suggesting electron transfer from TO to the Ni catalyst via the g-C3N4 support. Leaching and agglomeration of the active Ni catalyst and TO are not observed during the photocatalytic reaction. Moreover, the use of highly porous carbon nitride (nanoporous carbon nitride; nanoC3N4) is proven to significantly enhance the photocatalytic activity because of the high surface area due to the unique porous structure as well as high absorption and emission properties of TO associated with nanoC3N4. PMID:26314210

  1. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye.

    PubMed

    Du, Jing-Jing; Yuan, Yu-Peng; Sun, Jia-Xin; Peng, Fu-Min; Jiang, Xia; Qiu, Ling-Guang; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2011-06-15

    The photocatalytic decolorization of methylene blue dye in aqueous solution using a novel photocatalyst MIL-53(Fe) metal-organic frameworks was investigated under UV-vis light and visible light irradiation. The effect of electron acceptor H(2)O(2), KBrO(3) and (NH(4))(2)S(2)O(8) addition on the photocatalytic performance of MIL-53(Fe) was also evaluated. The results show that MIL-53(Fe) photocatalyst exhibited photocatalytic activity for MB decolorization both under UV-vis light and visible light irradiation, and the MB decolorization over MIL-53(Fe) photocatalyst followed the first-order kinetics. The addition of different electron acceptors all enhances the photocatalytic performance of MIL-53(Fe) photocatalyst, and the enhanced rate follows the order of H(2)O(2)>(NH(4))(2)S(2)O(8)>KBrO(3) under UV-vis light irradiation, while in the order of (NH(4))(2)S(2)O(8)>H(2)O(2)>KBrO(3) under visible light irradiation. Moreover, MIL-53(Fe) did not exhibit any obvious loss of the activity for MB decolorization during five repeated usages. The photocatalytic activities over MIL-53(M) (M=Al, Fe), the isostructure to MIL-53(Fe), indicate that the metal centers show nil effect on the photocatalytic activity of MIL-53(M) photocatalysts. PMID:21531507

  2. Photocatalytic property of a keggin-type polyoxometalates-containing bilayer system for degradation organic dye model.

    PubMed

    Li, Taohai; Gao, Shuiying; Li, Feng; Cao, Rong

    2009-10-15

    The photocatalytic activity composite films incorporating the Keggin-type polyoxometalates (POM) K6CoW12O40.-16H2O and K3PW12O40.-nH2O (MW12 (M=P, Co)) and [Cu(II)(1,8-dimethyl-1, 3, 6, 8, 10, 13-hexaazacycloteradecane)](2+)(L) have been prepared by the layer-by-layer (LbL) self-assembly method. The experimental results show that the deposition process is linear and highly reproducible from layer to layer. Atomic force microscopy (AFM) images of the L/MW12 composite films indicate that the film surface is relatively uniform and smooth. In addition, the films show high photocatalytic activity to the degradation of organic dye model (methyl orange (MO)), attributed to the formation of an O-->W charge-transfer excited state at W-O-W bridge bond, resulting in generating highly reactive holes and electrons; The photocatalytic efficiency of the films have little change after several times of photocatalytic cycle, indicating that the composite films are stable, reused and recovered. PMID:19656521

  3. Extractive spectrophotometric and fluorimetric determination of boron with 2,2,4-trimethyl-1,3-pentanediaol and carminic acid.

    PubMed

    Aznarez, J; Ferrer, A; Rabadan, J M; Marco, L

    1985-12-01

    Boric acid at mug ml or ng ml level can be extracted from 1-6M hydrochloric acid into 2,2,4-trimethyl-1,3-pentanediol solution in chloroform and thus separated from many ions which interfere in the usual spectrophotometric methods. The boron is determined directly in the organic phase without back-extraction into water, by adding a solution of carminic acid in a mixture of sulphuric and glacial acetic acids (1+2 v v ) and measuring the absorbance at 549 nm. The molar absorptivity is 2.58 x 10(4) l.mole(-1).cm(-1) and Beer's law is valid for the 0.05-0.4 mug ml boron range. In the fluorimetric method, 509 or 547 nm can be used as the excitation wavelength and 567 nm for emission measurement, giving a linear response in the 8-120 ng ml boron range. Both methods have been applied to determination of boron in plants and natural waters with good precision and accuracy. PMID:18963973

  4. Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Li, Peng; Xiao, Hang; Zhang, Yayun; Shi, Xiaoyang; Lü, Xiaomeng; Chen, Xi

    2015-11-01

    Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO) as a flocculant to remove methylene blue (MB) from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion) character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.

  5. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.

    PubMed

    De Angelis, Filippo

    2014-11-18

    CONSPECTUS: Over the last 2 decades, researchers have invested enormous research effort into hybrid/organic photovoltaics, leading to the recent launch of the first commercial products that use this technology. Dye-sensitized solar cells (DSCs) have shown clear advantages over competing technologies. The top certified efficiency of DSCs exceeds 11%, and the laboratory-cell efficiency is greater than 13%. In 2012, the first reports of high efficiency solid-state DSCs based on organohalide lead perovskites completely revolutionized the field. These materials are used as light absorbers in DSCs and as light-harvesting materials and electron conductors in meso-superstructured and flat heterojunction solar cells and show certified efficiencies that exceed 17%. To effectively compete with conventional photovoltaics, emerging technologies such as DSCs need to achieve higher efficiency and stability, while maintaining low production costs. Many of the advances in the DSC field have relied on the computational design and screening of new materials, with researchers examining material characteristics that can improve device performance or stability. Suitable modeling strategies allow researchers to observe the otherwise inaccessible but crucial heterointerfaces that control the operation of DSCs, offering the opportunity to develop new and more efficient materials and optimize processes. In this Account, we present a unified view of recent computational modeling research examining DSCs, illustrating how the principles and simulation tools used for these systems can also be adapted to study the emerging field of perovskite solar cells. Researchers have widely applied first-principles modeling to the DSC field and, more recently, to perovskite-based solar cells. DFT/TDDFT methods provide the basic framework to describe most of the desired materials and interfacial properties, and Car-Parrinello molecular dynamics allow researchers the further ability to sample local minima and dynamical fluctuations at finite temperatures. However, conventional DFT/TDDFT has some limitations, which can be overcome in part by tailored solutions or using many body perturbation theory within the GW approach, which is however more computationally intensive. Relativistic effects, such as spin-orbit coupling, are also included in simulations since they are fundamental for addressing systems that contain heavy atoms. We illustrate the performance of the proposed simulation toolbox along with the fundamental modeling strategies using selected examples of relevant isolated device constituents, including dye and perovskite absorbers, metal-oxide surfaces and nanoparticles, and hole transporters. We critically assess the accuracy of various computational approaches against the related experimental data. We analyze the representative interfaces that control the operational mechanism of the devices, including dye-sensitized TiO2/hole transporter and organohalide lead perovskite/TiO2, and the results reveal fundamental aspects of the device's operational mechanism. Although the modeling of DSCs is relatively mature, the recent "perovskite storm" has presented new problems and new modeling challenges, such as understanding exciton formation and dissociation at interfaces and carrier recombination in these materials. PMID:24856085

  6. A simple method for determination of carmine in food samples based on cloud point extraction and spectrophotometric detection.

    PubMed

    Heydari, Rouhollah; Hosseini, Mohammad; Zarabi, Sanaz

    2015-11-01

    In this paper, a simple and cost effective method was developed for extraction and pre-concentration of carmine in food samples by using cloud point extraction (CPE) prior to its spectrophotometric determination. Carmine was extracted from aqueous solution using Triton X-100 as extracting solvent. The effects of main parameters such as solution pH, surfactant and salt concentrations, incubation time and temperature were investigated and optimized. Calibration graph was linear in the range of 0.04-5.0 μg mL(-1) of carmine in the initial solution with regression coefficient of 0.9995. The limit of detection (LOD) and limit of quantification were 0.012 and 0.04 μg mL(-1), respectively. Relative standard deviation (RSD) at low concentration level (0.05 μg mL(-1)) of carmine was 4.8% (n=7). Recovery values in different concentration levels were in the range of 93.7-105.8%. The obtained results demonstrate the proposed method can be applied satisfactory to determine the carmine in food samples. PMID:26103432

  7. Efficiency enhancement of top-emitting organic light-emitting diodes using conversion dyes

    NASA Astrophysics Data System (ADS)

    Schwab, Tobias; Thomschke, Michael; Hofmann, Simone; Furno, Mauro; Leo, Karl; Lüssem, Björn

    2011-10-01

    We report recent results on top-emitting organic light-emitting diodes (OLEDs) using color conversion layers (CCLs) embedded into the electron transport layer of the OLED structure. The method of color conversion provides the possibility to generate a color stable emission with operating lifetime. Due to a constant ratio between absorbed blue emission and converter emission, the spectral shape remains for all time. This guarantees constant color coordinates of the OLED, which is essential for lighting applications. It is shown that OLEDs using conversion layers reach external quantum efficiencies (EQE) which can be higher than the corresponding blue top-emitting OLED. The used conversion layer thickness is below 100 nm, reaching Commission Internationale de l'Éclairage (CIE) coordinates of (0.23; 0.27) close to the Planckian locus at a maximum EQE of 3.16% using a blue fluorescent emitter system. Furthermore, we show that the excitation mechanism of the conversion layer is caused by absorption and no parasitic electrical excitation is taking place. Investigations on the emission color over the lifetime show color-stability over a period of up to 2200 h.

  8. First record of the carmine spider mite, Tetranychus urticae, infesting Withania somnifera in India.

    PubMed

    Sharma, Ashutosh; Kumar Pati, Pratap

    2012-01-01

    During April-June 2010, red two-spotted carmine spider mites Tetranychus urticae Koch (Trombidiformes: Tetranychidae) were found on aerial apical parts of Ashwagandha Withania somnifera (L.) Dunal (Solanales: Solanaceae) plants in the Amritsar District of Punjab Province in the North Indian plains. The mites fed on the leaves, making them shiny white in color, which gradually dried off and were later shed. The pest was identified as T. urticae. To best of our knowledge, this is the first record of this pest infesting W. somnifera in India. PMID:22970740

  9. Diffuse Limb Discoloration with Indigotindisulfonate (Indigo Carmine®) and the Associated Implications.

    PubMed

    Herway, Seth T; Pollock, Kimberly; Fairbanks, Kristin E; Benumof, Jonathan L

    2016-04-01

    Anesthesiologists often administer medications through an IV catheter that is distal to a noninvasive blood pressure (NIBP) cuff. We report 2 cases where indigotindisulfonate (Indigo Carmine) was administered through an IV catheter distal to an NIBP cuff. NIBP cuff inflation after indigotindisulfonate administration resulted in diffuse limb discoloration distal to the NIBP cuff although the IV catheter remained completely within the intact vein. These cases suggest that administration of medications that have the same physical characteristics as indigotindisulfonate under the same conditions (i.e., proximal venous occlusion) could also result in an interstitial distribution of these drugs. PMID:26795909

  10. TiO2 immobilized on Manihot carbon: optimal preparation and evaluation of its activity in the decomposition of indigo carmine.

    PubMed

    Antonio-Cisneros, Cynthia M; Dávila-Jiménez, Martín M; Elizalde-González, María P; García-Díaz, Esmeralda

    2015-01-01

    Applications of carbon-TiO2 materials have attracted attention in nanotechnology due to their synergic effects. We report the immobilization of TiO2 on carbon prepared from residues of the plant Manihot, commercial TiO2 and glycerol. The objective was to obtain a moderate loading of the anatase phase by preserving the carbonaceous external surface and micropores of the composite. Two preparation methods were compared, including mixing dry precursors and immobilization using a glycerol slurry. The evaluation of the micropore blocking was performed using nitrogen adsorption isotherms. The results indicated that it was possible to use Manihot residues and glycerol to prepare an anatase-containing material with a basic surface and a significant SBET value. The activities of the prepared materials were tested in a decomposition assay of indigo carmine. The TiO2/carbon eliminated nearly 100% of the dye under UV irradiation using the optimal conditions found by a Taguchi L4 orthogonal array considering the specific surface, temperature and initial concentration. The reaction was monitored by UV-Vis spectrophotometry and LC-ESI-(Qq)-TOF-MS, enabling the identification of some intermediates. No isatin-5-sulfonic acid was detected after a 60 min photocatalytic reaction, and three sulfonated aromatic amines, including 4-amino-3-hydroxybenzenesulfonic acid, 2-(2-amino-5-sulfophenyl)-2-oxoacetic acid and 2-amino-5-sulfobenzoic acid, were present in the reaction mixture. PMID:25588214

  11. TiO2 Immobilized on Manihot Carbon: Optimal Preparation and Evaluation of Its Activity in the Decomposition of Indigo Carmine

    PubMed Central

    Antonio-Cisneros, Cynthia M.; Dávila-Jiménez, Martín M.; Elizalde-González, María P.; García-Díaz, Esmeralda

    2015-01-01

    Applications of carbon-TiO2 materials have attracted attention in nanotechnology due to their synergic effects. We report the immobilization of TiO2 on carbon prepared from residues of the plant Manihot, commercial TiO2 and glycerol. The objective was to obtain a moderate loading of the anatase phase by preserving the carbonaceous external surface and micropores of the composite. Two preparation methods were compared, including mixing dry precursors and immobilization using a glycerol slurry. The evaluation of the micropore blocking was performed using nitrogen adsorption isotherms. The results indicated that it was possible to use Manihot residues and glycerol to prepare an anatase-containing material with a basic surface and a significant SBET value. The activities of the prepared materials were tested in a decomposition assay of indigo carmine. The TiO2/carbon eliminated nearly 100% of the dye under UV irradiation using the optimal conditions found by a Taguchi L4 orthogonal array considering the specific surface, temperature and initial concentration. The reaction was monitored by UV-Vis spectrophotometry and LC-ESI-(Qq)-TOF-MS, enabling the identification of some intermediates. No isatin-5-sulfonic acid was detected after a 60 min photocatalytic reaction, and three sulfonated aromatic amines, including 4-amino-3-hydroxybenzenesulfonic acid, 2-(2-amino-5-sulfophenyl)-2-oxoacetic acid and 2-amino-5-sulfobenzoic acid, were present in the reaction mixture. PMID:25588214

  12. Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane.

    PubMed

    Yang, Cheng; Li, Li; Shi, Jialu; Long, Chao; Li, Aimin

    2015-03-01

    Strict regulations are forcing dyeing factory to upgrade existing waste treatment system. In this study, advanced treatment of dyeing secondary effluent by magnetic anion exchange resin (NDMP) was investigated and compared with ultrafiltration (UF); NDMP as a pre-treatment of reverse osmosis (RO) was also studied. NDMP resin (20 mL/L) gave higher removal of dissolved organic carbon (DOC) (83.9%) and colority (94.9%) than UF with a cut-off of 10 kDa (only 48.6% and 44.1%, respectively), showing that NDMP treatment was effective to meet the stringent discharge limit of DOC and colority. Besides, NDMP resin (20 mL/L) as a pretreatment of RO increased the permeate flux by 12.5% and reduced irreversible membrane fouling by 6.6%, but UF pretreatment did not mitigate RO membrane fouling. The results of excitation-emission matrix fluorescence spectra and resin fractions showed that NDMP had more efficient removal than UF for transphilic acid and hydrophilic fraction, such as protein-like organic matters and soluble microbial products, which contributed to a significant proportion of RO membrane fouling. In sum, NDMP resin treatment not only gave effective removal of DOC and colority of dyeing secondary effluent, but exhibited some improvement for RO membrane flux and irreversible fouling. PMID:25463217

  13. Growth of potassium sulfate crystals in the presence of organic dyes: in situ characterization by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Mauri, Andrea; Moret, Massimo

    2000-01-01

    In situ atomic force microscopy (AFM) has been used to observe potassium sulfate crystals growing in the presence of acid fuchsin and pyranine. These polysulfonated dyes are well known for their ability to adsorb onto the {1 1 0} and {0 1 0} (pyranine only) crystal faces. Using AFM, we analyzed the changes in surface micromorphology induced by the additives on advancing steps for the {1 1 0} and {0 1 0} surfaces. In situ AFM showed that layers grow by step flow at pre-existing steps by the addition of growth units at the step edges. It has been found that dye concentrations as low as ˜2×10 -6 M for pyranine and ˜4×10 -4 M for acid fuchsin produce significant changes in the step morphology and growth rates. The additive molecules attach to the terraces and pin the growing front. As a consequence, the edges of the growing steps become jagged as the dye molecules are adsorbed onto the crystal surface. At critical dye concentrations crystal growth is heavily hampered or even stopped along certain crystallographic directions producing, on a macroscopic scale, strong habit modifications. The formation of dye inclusions by means of macrosteps overgrowing the poisoned surface was also imaged. Interestingly, comparison of the in situ AFM experiments with previous habit modification studies showed acid fuchsin is also able to enter the {0 1 0} surfaces, a previously unnoticed phenomenon.

  14. [Case of urticaria due to cochineal dye in red-colored diet].

    PubMed

    Kotobuki, Yorihisa; Azukizawa, Hiroaki; Nishida, Youko; Murota, Hiroyuki; Katayama, Ichiro; Yoshikawa, Kunihiko

    2007-12-01

    We herein describe a 33-year-old female who recurrently exhibited urticaria accompanied by vomiting, diarrhea and dyspnea after taking red-colored food. From her history, we suspected the cochineal dye, the commonly used natural red dye in red-colored food and beverage, to be the cause of her symptoms. Oral provocation test using cochineal dye-stained red-colored boiled-fish-paste induced urticaria and respiratory symptoms. Furthermore the prick tests and the scratch tests with cochineal dye and carminic acid, the major ingredient of cochineal dye, were also positive. These results indicate that type 1 allergy to cochineal dye caused urticaria in this patient. Thereafter, she avoided the foods containing a cochineal dye and showed a complete clinical remission. Recently, the number of literatures described about increased incidence of type 1 allergy to cochineal dye. As the usage of cochineal dye is increasing in the Japanese market, we should keep in mind that cochineal dye can be a cause of urticaria in daily practice. PMID:18195555

  15. A cascaded QSAR model for efficient prediction of overall power conversion efficiency of all-organic dye-sensitized solar cells.

    PubMed

    Li, Hongzhi; Zhong, Ziyan; Li, Lin; Gao, Rui; Cui, Jingxia; Gao, Ting; Hu, Li Hong; Lu, Yinghua; Su, Zhong-Min; Li, Hui

    2015-05-30

    A cascaded model is proposed to establish the quantitative structure-activity relationship (QSAR) between the overall power conversion efficiency (PCE) and quantum chemical molecular descriptors of all-organic dye sensitizers. The cascaded model is a two-level network in which the outputs of the first level (JSC, VOC, and FF) are the inputs of the second level, and the ultimate end-point is the overall PCE of dye-sensitized solar cells (DSSCs). The model combines quantum chemical methods and machine learning methods, further including quantum chemical calculations, data division, feature selection, regression, and validation steps. To improve the efficiency of the model and reduce the redundancy and noise of the molecular descriptors, six feature selection methods (multiple linear regression, genetic algorithms, mean impact value, forward selection, backward elimination, and +n-m algorithm) are used with the support vector machine. The best established cascaded model predicts the PCE values of DSSCs with a MAE of 0.57 (%), which is about 10% of the mean value PCE (5.62%). The validation parameters according to the OECD principles are R(2) (0.75), Q(2) (0.77), and Qcv2 (0.76), which demonstrate the great goodness-of-fit, predictivity, and robustness of the model. Additionally, the applicability domain of the cascaded QSAR model is defined for further application. This study demonstrates that the established cascaded model is able to effectively predict the PCE for organic dye sensitizers with very low cost and relatively high accuracy, providing a useful tool for the design of dye sensitizers with high PCE. PMID:25773984

  16. Degradation of Dye Wastewater by ns-Pulse DBD Plasma

    NASA Astrophysics Data System (ADS)

    Gao, Jin; Gu, Pingdao; Yuan, Li; Zhong, Fangchuan

    2013-09-01

    Two plasma reactors have been developed and used to degrade dye wastewater agents. The configuration of one plasma reactor is a comb-like extendable unit module consisting of 5 electrodes covered with a quartz tube and the other one is an array reactor which is extended from the unit module. The decomposition of wastewater by ns pulse dielectric barrier discharge (DBD) plasma have been carried out by atomizing the dyeing solutions into the reactors. During experiments, the indigo carmine has been treated as the waste agent. The measurements of UV-VIS absorption spectroscopy and the chemical oxygen demand (COD) are carried out to demonstrate the decomposition effect on the wastewater. It shows that the decoloration rate of 99% and the COD degradation rate of 65% are achieved with 15 min treatment in the unit reactor. The effect of electrical parameters on degradation has been studied in detail. Results from the array reactor indicate that it has a better degradation effect than the unit one. It can not only totally remove the chromogenic bond of the indigo carmine solution, but also effectively degrade unsaturated bonds. The decoloration rate reaches 99% after 10 min treatment, the decomposition rate of the unsaturated bond reaches 83% after 60 min treatment, and the COD degradation rate is nearly 74%.

  17. Real-time histological imaging of kidneys stained with food dyes using multiphoton microscopy.

    PubMed

    Nagao, Yasuaki; Kimura, Kazushi; Wang, Shujie; Fujiwara, Takeshi; Mizoguchi, Akira

    2015-10-01

    We have developed a real-time imaging technique for diagnosis of kidney diseases which is composed of two steps, staining renal cells safely with food dyes and optical sectioning of living renal tissue to obtain histological images by multiphoton microscopy (MPM). Here, we demonstrated that the MPM imaging with food dyes, including erythrosine and indigo carmine, could be used as fluorescent agents to visualize renal functions and structures such as glomerular bloodstreams, glomerular filtration, and morphology of glomeruli and renal tubules. We also showed that the kidneys of IgA nephropathy model-mice stained with the food dyes presented histopathological characteristics different from those observed in normal kidneys. The use of the food dyes enhances the quality of tissue images obtained by MPM and offers the potential to contribute to a clinical real-time diagnosis of kidney diseases. PMID:26260138

  18. High-performance aqueous/organic dye-sensitized solar cells based on sensitizers containing triethylene oxide methyl ether.

    PubMed

    Lin, Ryan Yeh-Yung; Wu, Feng-Ling; Li, Chun-Ting; Chen, Pei-Yu; Ho, Kuo-Chuan; Lin, Jiann T

    2015-08-10

    Metal-free dyes (EO1 to EO4) containing the hydrophilic triethylene oxide methyl ether (TEOME) unit in the spacer have been synthesized and used in dye-sensitized solar cells (DSSCs). Efficient lithium-ion trapping by TEOME results in improved open-circuit voltage (VOC ), leading to excellent conversion efficiency of the cells, ranging from 9.02 to 9.98 % with I(-) /I3 (-) electrolyte in acetonitrile under AM 1.5 illumination. The TEOME unit also enhances the wettability of the dye molecules for application in aqueous-based DSSCs. Aqueous-based DSSCs with a dual TEMPO/iodide electrolyte exhibit high VOC values (0.80-0.88 V) and very promising cell performances of up to 5.97 %. PMID:26098636

  19. Photocatalytic degradation of indigo carmine by hydrothermally synthesized Bi₂MoO ₆ in presence of EDTA.

    PubMed

    Sánchez Trinidad, C; Martínez-de la Cruz, A; López Cuéllar, E

    2015-01-01

    Bi2MoO6 oxide was synthesized by hydrothermal reaction in the presence of EDTA under different experimental conditions (time of reaction and EDTA concentration) in order to obtain materials with specific textural properties. It was determined that the addition of EDTA influences the final physical properties of Bi2MoO6. The photocatalytic activity of Bi2MoO6 samples was evaluated in the degradation reaction of indigo carmine (IC) in aqueous solution under solar radiation type. The best results as photocatalyst were obtained with the sample hydrothermally synthesized at 150 ºC for 4h in presence of a 0.031 M EDTA solution. This sample was able to whiten a solution of IC in a 94% after 120 min of lamp irradiation with t 1/2 = 31 min. In general, the samples prepared with lower concentrations of EDTA were the best photocatalysts. A gradual decrease in the activity was observed in the samples prepared with the same EDTA concentration as was increased in the reaction time. Beyond differences in morphology and textural properties of the samples prepared, the presence of EDTA by-products on the samples and the decomposition degree of it were important factors in determining the activity of the photocatalysts. Analysis of total organic carbon (TOC) of samples irradiated for 100 h confirmed that Bi2MoO6 oxide is able to mineralize the complex organic molecule of IC to CO2 and H2O in 55 %. PMID:24865501

  20. Carminic acid modified anion exchanger for the removal and preconcentration of Mo(VI) from wastewater.

    PubMed

    El-Moselhy, Medhat Mohamed; Sengupta, Arup K; Smith, Ryan

    2011-01-15

    Removal and preconcentration of Mo(VI) from water and wastewater solutions was investigated using carminic acid modified anion exchanger (IRA743). Various factors influencing the adsorption of Mo(VI), e.g. pH, initial concentration, and coexisting oxyanions were studied. Adsorption reached equilibrium within <10 min and was independent of initial concentration of Mo(VI). Studies were performed at different pH values to find the pH at which maximum adsorption occurred and was determined to be at a pH between 4.0 and 6.0. The Langmuir adsorption capacity (q(max)) was found to be 13.5mg Mo(VI)/g of the adsorbent. The results showed that modification of IRA743 with carminic acid is suitable for the removal of Mo(VI), as molybdate, from water and wastewater samples. The concentration of Mo(VI) was determined spectrophotometrically using bromopyrogallol red as a complexation reagent. This allows the determination of Mo(VI) in the range 1.0-100.0 μg/mL. The obtained material was subjected to efficient regeneration. PMID:20943315

  1. Determination of boron in produced water using the carminic acid assay.

    PubMed

    Floquet, Cedric F A; Sieben, Vincent J; MacKay, Bruce A; Mostowfi, Farshid

    2016-04-01

    Using the carminic acid assay, we determined the concentration of boron in oilfield waters. We investigated the effect of high concentrations of salts and dissolved metals on the assay performance. The influence of temperature, development time, reagent concentration, and water volume was studied. Ten produced and flowback water samples of different origins were measured, and the method was successfully validated against ICP-MS measurements. In water-stressed regions, produced water is a potential source of fresh water for irrigation, industrial applications, or consumption. Therefore, boron concentration must be determined and controlled to match the envisaged waste water reuse. Fast, precise, and onsite measurements are needed to minimize errors introduced by sample transportation to laboratories. We found that the optimum conditions for our application were a 5:1 mixing volume ratio (reagent to sample), a 1gL(-1) carminic acid concentration in 99.99% sulfuric acid, and a 30min reaction time at ambient temperature (20°C to 23°C). Absorption values were best measured at 610nm and 630nm and baseline corrected at 865nm. Under these conditions, the sensitivity of the assay to boron was maximized while its cross-sensitivity to dissolved titanium, iron, barium and zirconium was minimized, alleviating the need for masking agents and extraction methods. PMID:26838405

  2. Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways.

    PubMed

    Wu, Jin; Ma, Luming; Chen, Yunlu; Cheng, Yunqin; Liu, Yan; Zha, Xiaosong

    2016-04-01

    Catalytic ozonation of organic pollutants from actual bio-treated dyeing and finishing wastewater (BDFW) with iron shavings was investigated. Catalytic ozonation effectively removed organic pollutants at initial pH values of 7.18-7.52, and the chemical oxygen demand (COD) level decreased from 142 to 70 mg·L(-1) with a discharge limitation of 80 mg·L(-1). A total of 100% and 42% of the proteins and polysaccharides, respectively, were removed with a decrease in their contribution to the soluble COD from 76% to 41%. Among the 218 organic species detected by liquid chromatography-mass spectrometry, 58, 77, 79 and 4 species were completely removed, partially removed, increased and newly generated, respectively. Species including textile auxiliaries and dye intermediates were detected by gas chromatography-mass spectrometry. The inhibitory effect decreased from 51% to 33%, suggesting a reduction in the acute toxicity. The enhanced effect was due to hydroxyl radical (OH) oxidation, co-precipitation and oxidation by other oxidants. The proteins were removed by OH oxidation (6%), by direct ozonation, co-precipitation and oxidation by other oxidants (94%). The corresponding values for polysaccharides were 21% and 21%, respectively. In addition, the iron shavings behaved well in successive runs. These results indicated that the process was favorable for engineering applications for removal of organic pollutants from BDFW. PMID:26849317

  3. In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater.

    PubMed

    Karthikeyan, S; Boopathy, R; Sekaran, G

    2015-06-15

    In this study, cobalt oxide doped nanoporous activated carbon (Co-NPAC) was synthesized and used as a heterogeneous catalyst for the Fenton oxidation of organic dye chemicals used in tannery process. The nanoporous activated carbon (NPAC) was prepared from rice husk by precarbonization followed by chemical activation at elevated temperature (600 °C). The cobalt oxide was impregnated onto NPAC and characterized for UV-visible, Fluorescence spectroscopy, FT-IR, HR-TEM, XRD, BET surface area and XPS analyses. The hydroxyl radical generation potential of Co-NPAC from hydrogen peroxide decomposition was identified (λ(exi), 320 nm; λ(emi), 450 nm) by Excitation Emission Spectra (EES) analysis. The conditions for the degradation of tannery dyeing wastewater such as, Co-NPAC dose, concentration of H2O2, and temperature were optimized in heterogeneous Fenton oxidation process and the maximum percentage of COD removal was found to be 77%. The treatment of dyes in wastewater was confirmed through UV-Visible spectra, EES and FT-IR spectra analyses. PMID:25733392

  4. Microwave synthesis of cyanine dyes.

    PubMed

    Winstead, Angela J; Williams, Richard; Zhang, Yongchao; McLean, Charlee; Oyaghire, Stanley

    2010-01-01

    Heptamethine cyanine dyes are a class of near infrared (NIR) dyes that have captured the interest of the scientific community. Although applications that utilize NIR fluorescence technology are rapidly expanding, progress is limited by the lack of availability and cost of suitable compounds that can be utilized as labels and/or probes. Herein, we report the use of microwave assisted organic synthesis of five NIR cyanine dyes in yields ranging from 64-83% with a significant reduction in solvent use. Spectra characteristics including absorbance and emission spectra, molar absorptivity, quantum yield, fluorescence lifetime, and redox potentials were determined for each synthesized NIR cyanine dye. PMID:21721469

  5. Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization.

    PubMed

    Azad, F Nasiri; Ghaedi, M; Dashtian, K; Hajati, S; Pezeshkpour, V

    2016-07-01

    Activated carbon (AC) composite with HKUST-1 metal organic framework (AC-HKUST-1 MOF) was prepared by ultrasonically assisted hydrothermal method and characterized by FTIR, SEM and XRD analysis and laterally was applied for the simultaneous ultrasound-assisted removal of crystal violet (CV), disulfine blue (DSB) and quinoline yellow (QY) dyes in their ternary solution. In addition, this material, was screened in vitro for their antibacterial actively against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO1) bacteria. In dyes removal process, the effects of important variables such as initial concentration of dyes, adsorbent mass, pH and sonication time on adsorption process optimized by Taguchi approach. Optimum values of 4, 0.02g, 4min, 10mgL(-1) were obtained for pH, AC-HKUST-1 MOF mass, sonication time and the concentration of each dye, respectively. At the optimized condition, the removal percentages of CV, DSB and QY were found to be 99.76%, 91.10%, and 90.75%, respectively, with desirability of 0.989. Kinetics of adsorption processes follow pseudo-second-order model. The Langmuir model as best method with high applicability for representation of experimental data, while maximum mono layer adsorption capacity for CV, DSB and QY on AC-HKUST-1 estimated to be 133.33, 129.87 and 65.37mgg(-1) which significantly were higher than HKUST-1 as sole material with Qm to equate 59.45, 57.14 and 38.80mgg(-1), respectively. PMID:26964963

  6. 76 FR 3584 - Disclosure of Cochineal Extract and Carmine in the Labeling of Wines, Distilled Spirits, and Malt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Alcohol and Tobacco Tax and Trade Bureau 27 CFR Parts 5 RIN 1513-AB79 Disclosure of Cochineal Extract and Carmine in the Labeling of Wines, Distilled Spirits, and Malt Beverages Correction In proposed...

  7. Molecular Design, Characterization, and Application of Multiinformation Dyes for Multidimensional Optical Chemical Sensings. 2. Preparation of the Optical Sensing Membranes for the Simultaneous Measurements of pH and Water Content in Organic Media.

    PubMed

    Hisamoto, H; Manabe, Y; Yanai, H; Tohma, H; Yamada, T; Suzuki, K

    1998-04-01

    Optical chemical sensing of pH and water content in organic solvents is proposed, using multiinformation dyes (MIDs) based on the support matrixes for the dyes. In this investigation, four kinds of merocyanine-type dyes having a polymerizable olefin unit as the MIDs were synthesized. These dyes were copolymerized with hydrophilic monomer molecules to obtain dye-immobilized optical chemical sensor (optode) membranes. In this case, selection of the monomer molecule gave optode membranes having different color change properties, because different monomer molecules provided different chemical environments around the immobilized dye. These optode membranes were used for the measurement of pH and water content in organic solvents. These membranes offered two-dimensional sensing information in one spectrum when they were employed for water content sensing in organic solvents, in which the maximum wavelength represents the water content and the absorbance at this wavelength represents the pH of the water present. These polymer membranes have a long lifetime, which can be adequate for practical use. PMID:21644721

  8. Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems.

    PubMed

    Shen, Dazhong; Fan, Jianxin; Zhou, Weizhi; Gao, Baoyu; Yue, Qinyan; Kang, Qi

    2009-12-15

    The performances of polydiallydimethylammonium modified bentonite (PDADMA-bentonite) as an adsorbent to remove anionic dyes, namely Acid Scarlet GR (AS-GR), Acid Turquoise Blue 2G (ATB-2G) and Indigo Carmine (IC), were investigated in single, binary and ternary dye systems. In adsorption from single dye solutions with initial concentration of 100 micromol/L, the dosage of PDADMA-bentonite needed to remove 95% dye was 0.42, 0.68 and 0.75 g/L for AS-GR, ATB-2G and IC, respectively. The adsorption isotherms of the three dyes obeyed the Langmuir isotherm model with the equilibrium constants of 0.372, 0.629 and 4.31 L/micromol, the saturation adsorption amount of 176.3, 149.2 and 228.7 micromol/g for ATB-2G, IC and AS-GR, respectively. In adsorption from mixed dye solutions, the isotherm of each individual dye followed an expanded Langmuir isotherm model and the relationship between the total amount of dyes adsorbed and the total equilibrium dye concentration was interpreted well by Langmuir isotherm model. In the region of insufficient dosage of PDADMA-bentonite, the dye with a larger affinity was preferentially removed by adsorption. Desorption was observed in the kinetic curve of the dye with lower affinity on PDADMA-bentonite surface by the competitive adsorption. The kinetics in single dye solution and the total adsorption of dyes in binary and ternary dye systems nicely followed pseudo-second-order kinetic model. PMID:19631461

  9. Enhancement of a solar photo-Fenton reaction with ferric-organic ligands for the treatment of acrylic-textile dyeing wastewater.

    PubMed

    Soares, Petrick A; Batalha, Mauro; Souza, Selene M A Guelli U; Boaventura, Rui A R; Vilar, Vítor J P

    2015-04-01

    Literature describes a kinetic mineralization profile for most of acrylic-textile dyeing wastewaters using a photo-Fenton reaction characterized by a slow degradation process and high reactants consumption. This work tries to elucidate that the slow decay on DOC concentration is associated with the formation of stable complexes between Fe(3+) and textile auxiliary products, limiting the photoreduction of Fe(3+). This work also evaluates the enhancement of a solar photo-Fenton reaction through the use of different ferric-organic ligands applied to the treatment of a simulated acrylic-textile dyeing wastewater, as a pre-oxidation step to enhance its biodegradability. The photo-Fenton reaction was negatively affected by two dyeing auxiliary products: i) Sera(®) Tard A-AS, a surfactant mainly composed of alkyl dimethyl benzyl ammonium chloride and ii) Sera(®) Sperse M-IW, a dispersing agent composed of polyglycol solvents. The catalytic activity of the organic ligands toward the ferrous-catalysed system followed this order: Fe(III)-Oxalate > Fe(III)-Citrate > Fe(III)-EDDS, and all were better than the traditional photo-Fenton reaction. Different design parameters such as iron concentration, pH, temperature, flow conditions, UV irradiance and H2O2 addition strategy and dose were evaluated. The ferrioxalate induced photo-Fenton process presented the best results, achieving 87% mineralization after 9.3 kJUV L(-1) and allowing to work until near neutral pH values. As expected, the biodegradability of the textile wastewater was significantly enhanced during the photo-Fenton treatment, achieving a value of 73%, consuming 32.4 mM of H2O2 and 5.7 kJUV L(-1). PMID:25618444

  10. Carminic acid, a non-competitive inhibitor of kidney UDP-glucose:galactosylhydroxylysine-collagen glucosyltransferase.

    PubMed

    Chang, A Y; Noble, R E

    1982-01-01

    1. UDP-glucose:galactosylhydroxylsine-collagen glucosyltransferase was purified 12-fold from rat kidney. 2. An assay using calf-skin gelatin as substrate showed time- and enzyme-dependent incorporation; KmS for UDP-glucose and gelatin were 16-7 microM and 4.5 mg/ml, respectively. 3. Column chromatography of the alkaline hydrolysate of reaction product on Dowex 50W-4X(H+) showed that 84% of the radioactivity was in the glycosylgalactosylhydroxylsine peak. 4. Carminic acid inhibited collagen glycosyltransferase; a dose-dependent study showed a two-stage inhibition and kinetic analysis by double-reciprocal plots at varying UDP-glucose concentrations revealed a non-competitive mode of inhibition. PMID:6214439

  11. Subcellular localization and antiviral activity of carminic acid/poly r(A-U) combinations.

    PubMed

    Krabill, K; Jamison, J M; Gilloteaux, J; Summers, J L

    1993-10-01

    Carminic acid (CAR) enhances the antiviral activity of poly r(A-U) twelve-fold without increasing interferon induction, inactivating the vesicular stomatitis virus or inducing host cell cytotoxicity. Phase contrast photomicrographs of human foreskin fibroblasts (HSF) incubated with CAR alone, poly r(A-U) alone or with a CAR/poly r(A-U) combination illustrate that the CAR/poly r(A-U) combinations display altered subcellular distribution with the CAR being localized in the nucleoli and chromatin. Phase contrast and fluorescence photomicrographs of adriamycin (ADR)-treated and ADR/poly r(A-U)-treated HSF cells corroborate these findings. These results suggest that modulation of one or more nucleolar processes may be responsible for the enhanced antiviral activity. PMID:8287022

  12. The impact of active layer nanomorphology on the efficiency of organic solar cells based on a squaraine dye electron donor

    NASA Astrophysics Data System (ADS)

    Stoyanova, D.; Kitova, S.; Dikova, J.; Kandinska, M.; Vasilev, A.; Zhivkov, I.; Kovalenko, A.

    2016-03-01

    The possibilities were studied of improving the photovoltaic performance of solution processed BHJ solar cells by solvent vapor annealing (SVA) of the active layers, based on a squaraine dye Sq1 as a donor and the fullerene derivative PCBM as an acceptor. For this purpose, the optical properties were determined of as-deposited and of annealed with tetrahydrofuran (THF) vapors for different duration Sq1/PCMB layers, as well as the efficiency of cells built on their basis. A considerable change was established in the absorption spectra of treated for only a few seconds films and a twofold increase of the power conversion efficiency after 6 sec SVA. The results obtained are explained in terms of solvent vapor induced phase separation and formation of squaraine dye small aggregates in the blend nanostructure. The assumption made was confirmed by morphological investigation of as-deposited and of annealed Sq1/PCBM blended layers. On this basis, the impact of the active layer nanomorphology on the efficiency of solar cells based on squariane dye as electron donor is discussed.

  13. Microencapsulated jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity.

    PubMed

    Baldin, Juliana Cristina; Michelin, Euder Cesar; Polizer, Yana Jorge; Rodrigues, Isabela; de Godoy, Silvia Helena Seraphin; Fregonesi, Raul Pereira; Pires, Manoela Alves; Carvalho, Larissa Tátero; Fávaro-Trindade, Carmen Silvia; de Lima, César Gonçalves; Fernandes, Andrezza Maria; Trindade, Marco Antonio

    2016-08-01

    The aim was to evaluate the addition of microencapsulated jabuticaba extract (MJE) to fresh sausage as natural dye with antioxidant and antimicrobial activity. Fresh sausages without dye, with cochineal carmine and with addition of 2% and 4% MJE were evaluated for chemical, microbiological and sensory properties during 15days of refrigerated storage. TBARS values were lower (P<0.05) throughout the storage period in sausages with 2% and 4% MJE (below 0.1mg of malondialdehyde/kg sample) than in control and carmine treatments (from 0.3 to 0.6mg of malondialdehyde/kg sample). T2% and T4% also showed lower microbial counts on storage days 4 and 15 for APCs. The addition of 4% MJE negatively influenced (P<0.05) sensory color, texture and overall acceptance attributes. On the other hand, T2% presented similar (P>0.05) sensory acceptance to control and carmine treatments in most of the attributes evaluated except for a decrease in color. Thus, addition of 2% MJE to fresh sausage can be considered as a natural pigment ingredient. PMID:27016672

  14. Green synthesis of AgI-reduced graphene oxide nanocomposites: Toward enhanced visible-light photocatalytic activity for organic dye removal

    NASA Astrophysics Data System (ADS)

    Reddy, D. Amaranatha; Lee, Seunghee; Choi, Jiha; Park, Seonhwa; Ma, Rory; Yang, Haesik; Kim, Tae Kyu

    2015-06-01

    Novel reduced graphene oxide (RGO) enwrapped AgI nanocomposites were successfully fabricated by a facile template-free ultrasound-assisted method at room temperature. The structural, morphological, and optical studies demonstrate that the obtained nanostructures have good crystallinity and that the graphene nanosheets are decorated densely with AgI nanostructures. The photocatalytic activity of the composite was evaluated by the degradation of an organic dye, Rhodamine B (RhB), under visible-light irradiation. The results indicate that AgI with incorporated graphene exhibited much higher photocatalytic activity than the pure AgI due to the improved separation efficiency of the photogenerated carriers and that it prolonged the lifetime of the electron-hole pairs due to the chemical bonding between AgI and graphene. AgI (0.4 mg mL-1 of graphene oxide) nanocomposites displayed the highest photocatalytic degradation efficiency and the corresponding catalytic efficiencies within 70 min were ∼96%. Moreover, with the assistance of H2O2 the photocatalytic ability of the as-obtained AgI-RGO nanocomposites was enhanced. The corresponding catalytic efficiencies within 30 min were ∼96.8% (for 1 mL H2O2) under the same irradiation conditions. The excellent visible-light photocatalytic efficiency and luminescence properties make the AgI-RGO nanocomposites promising candidates for the removal of organic dyes for water purification and enable their application in near-UV white LEDs.

  15. Quantum dots-based double imaging combined with organic dye imaging to establish an automatic computerized method for cancer Ki67 measurement.

    PubMed

    Wang, Lin-Wei; Qu, Ai-Ping; Liu, Wen-Lou; Chen, Jia-Mei; Yuan, Jing-Ping; Wu, Han; Li, Yan; Liu, Juan

    2016-01-01

    As a widely used proliferative marker, Ki67 has important impacts on cancer prognosis, especially for breast cancer (BC). However, variations in analytical practice make it difficult for pathologists to manually measure Ki67 index. This study is to establish quantum dots (QDs)-based double imaging of nuclear Ki67 as red signal by QDs-655, cytoplasmic cytokeratin (CK) as yellow signal by QDs-585, and organic dye imaging of cell nucleus as blue signal by 4',6-diamidino-2-phenylindole (DAPI), and to develop a computer-aided automatic method for Ki67 index measurement. The newly developed automatic computerized Ki67 measurement could efficiently recognize and count Ki67-positive cancer cell nuclei with red signals and cancer cell nuclei with blue signals within cancer cell cytoplasmic with yellow signals. Comparisons of computerized Ki67 index, visual Ki67 index, and marked Ki67 index for 30 patients of 90 images with Ki67 ≤ 10% (low grade), 10% < Ki67 < 50% (moderate grade), and Ki67 ≥ 50% (high grade) showed computerized Ki67 counting is better than visual Ki67 counting, especially for Ki67 low and moderate grades. Based on QDs-based double imaging and organic dye imaging on BC tissues, this study successfully developed an automatic computerized Ki67 counting method to measure Ki67 index. PMID:26839163

  16. An Anion Metal-Organic Framework with Lewis Basic Sites-Rich toward Charge-Exclusive Cationic Dyes Separation and Size-Selective Catalytic Reaction.

    PubMed

    Wang, Xu-Sheng; Liang, Jun; Li, Lan; Lin, Zu-Jin; Bag, Partha Pratim; Gao, Shui-Ying; Huang, Yuan-Biao; Cao, Rong

    2016-03-01

    Organic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can separate and reuse them. Here, we report the synthesis and characterization of a microporous anion metal-organic framework (MOF) with Lewis basic sites-rich based on TDPAT (2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine) ligand, FJI-C2, which shows high adsorption and separation of cationic dye based on the charge-exclusive effect. Compared to other MOF materials, FJI-C2 shows the largest adsorption amount of methylene blue (1323 mg/g) at room temperature due to the nature of the anion frameworks and high surface area/pore volume. Furthermore, motivated by the adsorption properties of large guest molecules, we proceeded to investigate the catalytic behaviors of FJI-C2, not only because the large pore facilitates the mass transfer of guest molecules but also because the high density of Lewis basic sites can act as effective catalytic sites. As expected, FJI-C2 exhibits excellent catalytic performance for size-selective Knoevenagel condensation under mild conditions and can be reused several times without a significant decrease of the activity. PMID:26886437

  17. Quantum dots-based double imaging combined with organic dye imaging to establish an automatic computerized method for cancer Ki67 measurement

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Wei; Qu, Ai-Ping; Liu, Wen-Lou; Chen, Jia-Mei; Yuan, Jing-Ping; Wu, Han; Li, Yan; Liu, Juan

    2016-02-01

    As a widely used proliferative marker, Ki67 has important impacts on cancer prognosis, especially for breast cancer (BC). However, variations in analytical practice make it difficult for pathologists to manually measure Ki67 index. This study is to establish quantum dots (QDs)-based double imaging of nuclear Ki67 as red signal by QDs-655, cytoplasmic cytokeratin (CK) as yellow signal by QDs-585, and organic dye imaging of cell nucleus as blue signal by 4‧,6-diamidino-2-phenylindole (DAPI), and to develop a computer-aided automatic method for Ki67 index measurement. The newly developed automatic computerized Ki67 measurement could efficiently recognize and count Ki67-positive cancer cell nuclei with red signals and cancer cell nuclei with blue signals within cancer cell cytoplasmic with yellow signals. Comparisons of computerized Ki67 index, visual Ki67 index, and marked Ki67 index for 30 patients of 90 images with Ki67 ≤ 10% (low grade), 10% < Ki67 < 50% (moderate grade), and Ki67 ≥ 50% (high grade) showed computerized Ki67 counting is better than visual Ki67 counting, especially for Ki67 low and moderate grades. Based on QDs-based double imaging and organic dye imaging on BC tissues, this study successfully developed an automatic computerized Ki67 counting method to measure Ki67 index.

  18. Organic fluorescent dyes supported on activated boron nitride: a promising blue light excited phosphors for high-performance white light-emitting diodes.

    PubMed

    Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun

    2015-01-01

    We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500-650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm·W(-1). Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs. PMID:25682730

  19. Organic Fluorescent Dyes Supported on Activated Boron Nitride: A Promising Blue Light Excited Phosphors for High-Performance White Light-Emitting Diodes

    PubMed Central

    Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun

    2015-01-01

    We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500–650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm·W−1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs. PMID:25682730

  20. Nickel Nanoparticle-Decorated Porous Carbons for Highly Active Catalytic Reduction of Organic Dyes and Sensitive Detection of Hg(II) Ions.

    PubMed

    Veerakumar, Pitchaimani; Chen, Shen-Ming; Madhu, Rajesh; Veeramani, Vediyappan; Hung, Chin-Te; Liu, Shang-Bin

    2015-11-11

    High surface area carbon porous materials (CPMs) synthesized by the direct template method via self-assembly of polymerized phloroglucinol-formaldehyde resol around a triblock copolymer template were used as supports for nickel nanoparticles (Ni NPs). The Ni/CPM materials fabricated through a microwave-assisted heating procedure have been characterized by various analytical and spectroscopic techniques, such as X-ray diffraction, field emission transmission electron microscopy, vibrating sample magnetometry, gas physisorption/chemisorption, thermogravimetric analysis, and Raman, Fourier-transform infrared, and X-ray photon spectroscopies. Results obtained from ultraviolet-visible (UV-vis) spectroscopy demonstrated that the supported Ni/CPM catalysts exhibit superior activity for catalytic reduction of organic dyes, such as methylene blue (MB) and rhodamine B (RhB). Further electrochemical measurements by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) also revealed that the Ni/CPM-modified electrodes showed excellent sensitivity (59.6 μA μM(-1) cm(-2)) and a relatively low detection limit (2.1 nM) toward the detection of Hg(II) ion. The system has also been successfully applied for the detection of mercuric ion in real sea fish samples. The Ni/CPM nanocomposite represents a robust, user-friendly, and highly effective system with prospective practical applications for catalytic reduction of organic dyes as well as trace level detection of heavy metals. PMID:26479076

  1. Organic Fluorescent Dyes Supported on Activated Boron Nitride: A Promising Blue Light Excited Phosphors for High-Performance White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun

    2015-02-01

    We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500-650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm.W-1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs.

  2. Quantum dots-based double imaging combined with organic dye imaging to establish an automatic computerized method for cancer Ki67 measurement

    PubMed Central

    Wang, Lin-Wei; Qu, Ai-Ping; Liu, Wen-Lou; Chen, Jia-Mei; Yuan, Jing-Ping; Wu, Han; Li, Yan; Liu, Juan

    2016-01-01

    As a widely used proliferative marker, Ki67 has important impacts on cancer prognosis, especially for breast cancer (BC). However, variations in analytical practice make it difficult for pathologists to manually measure Ki67 index. This study is to establish quantum dots (QDs)-based double imaging of nuclear Ki67 as red signal by QDs-655, cytoplasmic cytokeratin (CK) as yellow signal by QDs-585, and organic dye imaging of cell nucleus as blue signal by 4′,6-diamidino-2-phenylindole (DAPI), and to develop a computer-aided automatic method for Ki67 index measurement. The newly developed automatic computerized Ki67 measurement could efficiently recognize and count Ki67-positive cancer cell nuclei with red signals and cancer cell nuclei with blue signals within cancer cell cytoplasmic with yellow signals. Comparisons of computerized Ki67 index, visual Ki67 index, and marked Ki67 index for 30 patients of 90 images with Ki67 ≤ 10% (low grade), 10% < Ki67 < 50% (moderate grade), and Ki67 ≥ 50% (high grade) showed computerized Ki67 counting is better than visual Ki67 counting, especially for Ki67 low and moderate grades. Based on QDs-based double imaging and organic dye imaging on BC tissues, this study successfully developed an automatic computerized Ki67 counting method to measure Ki67 index. PMID:26839163

  3. ASSESSMENT OF POTENTIAL TOXIC RELEASES FROM LEATHER INDUSTRY DYEING OPERATIONS

    EPA Science Inventory

    The study focused on the organic dyes released to the environment in the wastewaters from leather dyeing operations. Basically, three types of dyes--acid, basic, and direct--are used, although the number of different dyes are well over 50, and the number of formulations used at a...

  4. Solution-processable, photo-stable, low-threshold, and broadly tunable thin film organic lasers based on novel high-performing laser dyes

    NASA Astrophysics Data System (ADS)

    Díaz-García, María. A.; Morales-Vidal, Marta; Ramírez, Manuel G.; Villalvilla, José M.; Boj, Pedro G.; Quintana, José A.; Retolaza, A.; Merino, S.

    2015-09-01

    Thin film organic lasers (TFOLs) represent a new generation of inexpensive, mechanically flexible devices with demonstrated applicability in numerous applications in the fields of spectroscopy, optical communications and sensing requiring an organic, efficient, stable, wavelength-tunable and solution-processable laser material. A distributed feedback (DFB) laser is a particularly attractive TFOL because it shows single mode emission, low pump energy, easy integration with other devices, mechanical flexibility and potentially low production cost. Here, amplified spontaneous emission (ASE) and DFB laser applications of novel high performing perylene dyes and p-phenylenevinylene (PV) oligomers, both dispersed in thermoplastic polymers, used as passive matrixes, are reported. Second-order DFB lasers based on these materials show single mode emission, wavelength tunability across the visible spectrum, operational lifetimes of >105 pump pulses, larger than previously reported PV oligomers or polymers, and thresholds close to pumping requirements with light-emitting diodes.

  5. Graphene nanoplatelets doped with N at its edges as metal-free cathodes for organic dye-sensitized solar cells.

    PubMed

    Ju, Myung Jong; Jeon, In-Yup; Kim, Jae Cheon; Lim, Kimin; Choi, Hyun-Jung; Jung, Sun-Min; Choi, In Taek; Eom, Yu Kyung; Kwon, Young Jin; Ko, Jaejung; Lee, Jae-Joon; Kim, Hwan Kyu; Baek, Jong-Beom

    2014-05-21

    Challenging precious Pt-based electrocatalysts for dye-sensitized solar cells (DSSCs), graphene nanoplatelets that are N-doped at the edges (NGnPs) are prepared via simply ball-milling graphite in the presence of nitrogen gas. DSSCs based on specific nanoplatelets designated "NGnP5" display superior photovoltaic performance (power conversion efficiency, 10.27%) compared to that of conventional Pt-based devices (9.96%). More importantly, the NGnP counter electrode exhibits outstanding electrochemical stability and electrocatalytic activity with a cobalt-complex redox couple. PMID:24677174

  6. Study of nonlinear refraction of organic dye by Z-scan technique using He-Ne laser

    SciTech Connect

    Medhekar, S.; Kumar, R.; Mukherjee, S.; Choubey, R. K.

    2013-02-05

    Laser induced third-order nonlinear optical responses of Brilliant Green solution has been investigated by utilizing single beam Z-scan technique with a continuous-wave He-Ne laser radiation at 632.8 nm. It was observed that the material exhibits self-defocusing type optical nonlinearity. The measurements of nonlinear refraction were carried out at different dye concentrations and found that the increase in solution concentration leads to the linear increase of the nonlinear refractive index. The experimental results confirm great potential of the Brilliant Green for the application in nonlinear optical devices.

  7. Treatment of a textile effluent from dyeing with cochineal extracts using Trametes versicolor fungus.

    PubMed

    Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M L; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio

    2011-01-01

    Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated. PMID:21552764

  8. Adsorption of porphyrin and carminic acid on TiO2 nanoparticles: A photo-active nano-hybrid material for hybrid bulk heterojunction solar cells.

    PubMed

    Munir, Shamsa; Shah, Syed Mujtaba; Hussain, Hazrat; Siddiq, Muhammad

    2015-12-01

    A photo-active nano-hybrid material consisting of titania nanoparticles, carminic acid, and sulphonic acid functionalized porphyrin is reported here. In an attempt to extend the absorption spectrum of titania to visible region by co-adsorbing carminic acid and sulphonic acid functionalized porphyrin on its surface. Interesting changes in the UV-visible and fluorescence spectra were noticed. The adsorption of carminic acid resulted in the formation of charge transfer complex with titania nanoparticles. This was confirmed by the electronic absorption and fluorescence emission spectroscopies. Chemisorption of porphyrin on the carminic acid functionalized titania further boosted the charge transfer effect. This was noticed by the increase in intensity and width of the charge transfer absorption and emission bands. Energy level diagram showed that the interaction among the constituents of the nano-hybrid assembly permitted the flow of electron in a cascade manner from carminic acid to TiO2.This also allowed direct flow of electrons either from carminic acid or porphyrin toward titania. The material was used as an active blend in hybrid bulk heterojunction solar cells. Co-functionalized TiO2-based devices were found 3.5 times more efficient than the reference device but morphology of the device proved a major setback. PMID:26555643

  9. Dye molecule bonded titanium alkoxide: a possible new type of dye for sensitized solar cells.

    PubMed

    Su, Hu-Chao; Wu, Yin-Yin; Hou, Jin-Le; Zhang, Guang-Ling; Zhu, Qin-Yu; Dai, Jie

    2016-03-01

    An organic dye coordinated titanium iso-propoxide compound is designed and synthesized. Taking advantage of the hydrolysis of the titanium alkoxide moiety on the surface of TiO2 electrode, the dye-semiconductor surface properties, including anchoring and dispersivity, are improved, which opens a new perspective to explore dyes for DSSCs. PMID:26898850

  10. Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye.

    PubMed

    Zhang, Manlin; Yao, Qingfeng; Lu, Chao; Li, Zenghe; Wang, Wenxing

    2014-11-26

    It would be of significance to design a green composite for efficient removal of contaminants. Herein, we fabricated a facile and environmentally friendly composite via direct assembly of surface passivated carbon dots with abundant oxygen-containing functional groups on the surface of the positively charged layered double hydroxide (LDH). The resulting LDH-carbon dot composites were characterized by X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and N2 adsorption-desorption technique. The adsorption performances of the resulting LDH-carbon dot composites were evaluated for the removal of anionic methyl blue dye. Taking advantage of the combined benefits of LDH and carbon dots, the as-prepared composites exhibited high uptake capability of methyl blue (185 mg/g). The adsorption behavior of this new adsorbent fitted well with Langmuir isotherm and the pseudo-second-order kinetic model. The reasons for the excellent adsorption capacity of methyl blue on the surface of the LDH-carbon dot hybrid were further discussed. A probable mechanism was speculated to involve the cooperative contributions of hydrogen bonding between methyl blue and carbon dots and electrostatic attraction between methyl blue and LDH, in the adsorption process. This work is anticipated to open up new possibilities in fabricating LDH-carbon dot materials in dealing with anionic dye pollutants. PMID:25313875

  11. Evaluation of the treatment performance of lab-scaled vertical flow constructed wetlands in removal of organic compounds, color and nutrients in azo dye-containing wastewater.

    PubMed

    Dogdu, Gamze; Yalcuk, Arda

    2016-01-01

    The objective of this study is to examine the treatment performance of vertical flow intermittent feeding constructed wetland (VFCW) in removal of organic pollution, nutrients and color in azo-dye containing wastewater. The systems consisted of PVC reactors, some filling materials such as gravel, sand and zeolite and wetland plants including Typha angustifolia and Canna indica. The average treatment efficiency of the systems for COD, color, sulphate, NH4-N, and PO4-P were in the range of 57-63%, 94-99%, 44-48%, 39-44%, and 84-88%, respectively among the VFCW reactors. It is concluded that VFCW reactor system can effectively be used in the treatment of dye-rich wastewater, especially for the removal of color and in the reduction of COD. Biofilm formation and cleavage of azo bonds could be observed by SEM and FTIR results, respectively. Almost similar NH4-N and PO4-P removal were obtained in all reactors by using same amount of zeolite media. PMID:26248021

  12. Vertical-cavity surface-emitting laser in the long-wavelength (700 nm) region in the visible by energy transfer between organic dyes

    NASA Astrophysics Data System (ADS)

    Liao, Zhifu; Zhou, Yuan; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2014-06-01

    In this work, organic vertical-cavity surface-emitting lasers (VCSELs) with single-mode laser output in the long-wavelength region (~700 nm) of the visible were reported based on the energy transfer between dye pairs consisting of pyrromethene 597 (PM597) and rhodamine 700 (LD700). By co-doping PM597 into the polymeric hosts, the fluorescence intensity of LD700 was enhanced by 30-fold and the photophysical parameters of the donor-acceptor pairs were investigated, indicating the involvement of non-radiative resonance energy transfer processes between PM597 and LD700. Active distributed Bragg reflectors (DBR) were made by alternately spin-coating dye-doped polyvinylcarbazole and cellulose acetate thin films as the high and low refractive index layers, respectively. By sandwiching the active layer with 2 DBR mirrors, VCSEL emission at 698.9 nm in the biological first window (650-950 nm) was observed under the 532-nm laser pulses. The laser slope efficiency and threshold were also measured.

  13. Organic-free Anatase TiO₂ Paste for Efficient Plastic Dye-Sensitized Solar Cells and Low Temperature Processed Perovskite Solar Cells.

    PubMed

    Fu, Nianqing; Huang, Chun; Liu, Yan; Li, Xing; Lu, Wei; Zhou, Limin; Peng, Feng; Liu, Yanchun; Huang, Haitao

    2015-09-01

    Recently, the synthesis of fine TiO2 paste with organic-free binder emerged as an indispensable technique for plastic photovoltaics due to the low temperature processing requirement. In this study, pure anatase TiO2 nanoparticles and organic-free TiO2-sol were successfully synthesized individually in organic-free solution. By mixing the pure anatase TiO2 with the newly developed TiO2-sol binder, mechanically robust and well-interconnected TiO2 films were prepared via UV-irradiation at low temperature for applications in plastic dye-sensitized solar cells (p-DSSCs). The structural, electrical, and photovoltaic properties of the films as well as the devices were investigated by various techniques. The dye-loading amount of the obtained film is 2.6 times that of the P25 electrodes. As revealed by electrochemical impedance spectroscopy results, the film derived from the as-prepared anatase TiO2 paste (A-TiO2) exhibits much smaller charge transport resistance and lower electron recombination rate than the P25 film, while the introduction of TiO2-sol into the paste can further remarkably decrease the resistance of the produced film (AS-TiO2). The p-DSSCs employing AS-TiO2 photoanode yield a high efficiency up to 7.51%, which is 86% higher than the P25 reference cells and also 31% higher than the A-TiO2 cell. As a proof of concept, the newly developed AS-TiO2 paste was also applied to low temperature processed perovskite solar cells (PSCs), and a promising high efficiency up to 9.95% was achieved. PMID:26284590

  14. A hydrazone covalent organic polymer based micro-solid phase extraction for online analysis of trace Sudan dyes in food samples.

    PubMed

    Zhang, Chengjiang; Li, Gongke; Zhang, Zhuomin

    2015-11-01

    Covalent organic polymers (COPs) connected by covalent bonds are a new class of porous network materials with large surface area and potential superiority in sample pretreatment. In this study, a new hydrazone linked covalent organic polymer (HL-COP) adsorbent was well-designed and synthesized based on a simple Schiff-base reaction. The condensation of 1,4-phthalaldehyde and 1,3,5-benzenetricarbohydrazide as organic building blocks led to the synthesis of HL-COP with uniform particle size and good adsorption performance. This HL-COP adsorbent with high hydrophobic property and rich stacking π electrons contained abundant phenyl rings and imine (CN) groups throughout the entire molecular framework. The adsorption mechanism was explored and discussed based on π-π affinity, hydrophobic effect, hydrogen bonding and electron-donor-acceptor (EDA) interaction, which contributed to its strong recognition affinity to target compounds. Enrichment factors were 305-757 for six Sudan dyes by HL-COP micro-solid phase extraction (μ-SPE), indicating its remarkable preconcentration ability. Furthermore, the adsorption amounts by HL-COP μ-SPE were 1.0-11.0 folds as those by three commonly used commercial adsorbents. Then, HL-COP was applied as adsorbent of online μ-SPE coupled with high performance liquid chromatography (HPLC) for enrichment and analysis of trace Sudan dyes in food samples with detection limit of 0.03-0.15μg/L. The method was successfully applied for online analysis of chilli powder and sausage samples. Sudan II and Sudan III in one positive chilli powder sample were actually found and determined with concentrations of 8.3 and 6.8μg/kg, respectively. The recoveries of chilli powder and sausage samples were in range of 75.8-108.2% and 73.8-112.6% with relative standard deviations of 1.2-8.5% and 1.9-9.4% (n=5), respectively. The proposed method was accurate, reliable and convenient for the online simultaneous analysis of trace Sudan dyes in food samples. PMID:26456513

  15. Naphtho[2,3-c][1,2,5]thiadiazole and 2H-Naphtho[2,3-d][1,2,3]triazole-Containing D-A-π-A Conjugated Organic Dyes for Dye-Sensitized Solar Cells.

    PubMed

    Yen, Yung-Sheng; Ni, Jen-Shyang; Hung, Wei-I; Hsu, Chih-Yu; Chou, Hsien-Hsin; Lin, Jiann-T Suen

    2016-03-01

    Dipolar dyes comprising an arylamine as the electron donor, a cyanoacrylic acid as electron acceptor, and an electron deficient naphtho[2,3-c][1,2,5]thiadiazole (NTD) or naphtho[2,3-d][1,2,3]triazole (NTz) entity in the conjugated spacer, were developed and used as the sensitizers in dye-sensitized solar cells (DSSCs). The introduction of the NTD unit into the molecular frame distinctly narrows the HOMO/LUMO gap with electronic absorption extending to >650 nm. However, significant charge trapping and dye aggregation were found in these dyes. Under standard global AM 1.5 G illumination, the best cell photovoltaic performance achieved 6.37 and 7.53% (∼94% relative to N719-based standard cell) without and with chenodeoxycholic acid (CDCA) coadsorbent, respectively. Without CDCA, the NTz dyes have higher power conversion efficiency (7.23%) than NTD dyes due to less charge trapping, dye aggregation, and better dark current suppression. PMID:26891701

  16. Vibrational spectroscopy to study degradation of natural dyes. Assessment of oxygen-free cassette for safe exposition of artefacts.

    PubMed

    Koperska, Monika; Łojewski, Tomasz; Łojewska, Joanna

    2011-03-01

    An important issue connected with conservation chemistry is how to improve the storage and exposure conditions in order to suppress the fading and degradation of dyes and other components of paintings. Although the oxygen-free exposure cassettes are commonly known in museums, there is still lack of information in the literature about the effect of anoxic conditions on the degradation of dyes. This study is an attempt to start a database formation on the dyes degradation. Five commercial dyes (indigo, dragon's blood, curcumin, madder, carminic acid) were submitted to accelerated ageing by exposure to intensive light in the visible range in both oxygen-free (anoxia) and -rich conditions. Degradation of the samples was investigated by several analytical techniques (attenuated total reflectance infrared spectroscopy, Raman spectroscopy, reflectance UV-Vis spectroscopy, X-ray fluorescence spectroscopy and optical microscopy). The conclusions are based on the estimators (derived from the determination of colour differences from Vis spectra and from the changes in FTIR and Raman vibrational bands intensity). According to them, only indigo, dragon's blood and curcumin show greater stability in anoxic conditions in comparison with oxygen-rich ones while madder, carminic acid undergo greater degradation. PMID:21165610

  17. Spectrophotometric determination of nitrite based on its catalytic effect on the oxidation of carminic acid by bromate.

    PubMed

    Manzoori, J L; Sorouraddin, M H; Haji-Shabani, A M

    1998-08-01

    A highly sensitive and selective method is described for the determination of trace amounts of nitrite based on its effect on the oxidation of carminic acid with bromate. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of carminic acid at 490 nm after 3 min of mixing the reagents. The optimum reaction conditions were 1.8x10(-1) mol l(-1) H(2)SO(4), 3.8x10(-3) mol l(-1) KBrO(3), and 1.2x10(-4) mol l(-1) carminic acid at 30 degrees C. By using the recommended procedure, the calibration graph was linear from 0.2 to 14 ng ml(-1) of nitrite; the detection limit was 0.04 ng ml(-1); the R.S.D. for six replicate determinations of 6 ng ml(-1) was 1.7%. The method is mostly free from interference, especially from large amounts of nitrate and ammonium ions. The proposed method was applied to the determination of nitrite in rain and river water. PMID:18967267

  18. Spectrophotometric determination of osmium based on its catalytic effect on the oxidation of carminic acid by hydrogen peroxide.

    PubMed

    Manzoori, J L; Sorouraddin, M H; Amjadi, M

    2000-10-01

    A highly sensitive spectrophotometric method is described for the determination of trace amounts of osmium(VIII), based on its catalytic effect on the oxidation of carminic acid by hydrogen peroxide. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of carminic acid at 540 nm after 3 min of mixing the reagents. The optimum reaction conditions were 1x10(-4) mol l(-1) carminic acid, 0.013 mol l(-1) hydrogen peroxide and pH 10 at 25 degrees C. By using the recommended procedure, the calibration graph was linear from 0.1 to 1.5 ng ml(-1) of osmium; the detection limit was 0.02 ng ml(-1); the RSD for five replicate determinations of 0.2-1.4 ng ml(-1) was in the range of 1.8-4.7%. The influence of several foreign ions on osmium determination were studied and the effect of interfering ions were removed by extracting osmium into isobuthyl methyl ketone and back extracting into sodium hydroxide solution. PMID:18968089

  19. Use of novel nest boxes by carmine bee-eaters (Merops nubicus) in captivity.

    PubMed

    Elston, Jennifer J; Carney, Jennifer; Quinones, Glorieli; Sky, Christy; Plasse, Chelle; Bettinger, Tammie

    2007-01-01

    Carmine bee-eaters make attractive additions to zoo aviaries but breeding programs have had challenges and limited success. The objectives of this study were to document nesting behavior of Carmine bee-eaters in a captive setting and compare reproductive success between a novel nest box (plastic, 17 x 30 x 22 cm) and a PVC pipe model used previously (30 cm long, 8 cm in diameter). Three bee-eater pairs were given access to seven nest chambers (six novel boxes, one PVC model). Behavioral observations occurred during a 15-min period in the morning or afternoon before egg production and continued until chicks fledged for a total of 87 observation periods (21.75 hr). All occurrences by an individual bird entering or exiting a nest tunnel, food provision, and the time (min) spent inside a nest cavity were documented. Additionally, daily temperature within each nest chamber was recorded. Before eggs were produced the average daily temperature (23.02 degrees C) within the nest chambers did not differ, suggesting that nest cavity choice was not influenced by temperature. No differences were detected among pairs in percent of observed time spent inside their nest cavities or number of times a nest tunnel was entered during the incubation or fledging periods. During incubation females spent a greater percent of observed time inside the nest cavity than males (P=0.02). During the fledging period food provision did not differ between the pairs, however males entered their nest tunnels more often per hour than females (P=0.03), and males tended to provide food more often than females (P=0.053). Two pairs nested in novel nest boxes and successfully fledged one chick each. The pair that nested in the PVC model did not fledge a chick. A nest box that aids in keeping eggs intact is essential for breeding bee-eaters in captivity, and maintaining captive populations will provide opportunities for zoo visitors to enjoy these birds and will reduce the need to remove birds from the wild. Zoo Biol 0:1-13, 2007. (c) 2007 Wiley-Liss, Inc. PMID:19360559

  20. Influence of the Terminal Electron Donor in D-D-π-A Organic Dye-Sensitized Solar Cells: Dithieno[3,2-b:2',3'-d]pyrrole versus Bis(amine).

    PubMed

    Dai, Panpan; Yang, Lin; Liang, Mao; Dong, Huanhuan; Wang, Peng; Zhang, Chunyao; Sun, Zhe; Xue, Song

    2015-10-14

    With respect to the electron-withdrawing acceptors of D-A-π-A organic dyes, reports on the second electron-donating donors for D-D-π-A organic dyes are very limited. Both of the dyes have attracted significant attention in the field of dye-sensitized solar cells (DSCs). In this work, four new D-D-π-A organic dyes with dithieno[3,2-b:2',3'-d]pyrrole (DTP) or bis(amine) donor have been designed and synthesized for a investigation of the influence of the terminal electron donor in D-D-π-A organic dye-sensitized solar cells. It is found that DTP is a promising building block as the terminal electron donor when introduced in the dithiophenepyrrole direction, but not just a good bridge, which exhibits several characteristics: (i) efficiently increasing the maximum molar absorption coefficient and extending the absorption bands; (ii) showing stronger charge transfer interaction as compared with the pyrrole direction; (iii) beneficial to photocurrent generation of DSCs employing cobalt electrolytes. DSCs based on M45 with the Co-phen electrolyte exhibit good light-to-electric energy conversion efficiencies as high as 9.02%, with a short circuit current density (JSC) of 15.3 mA cm(-2), open circuit voltage (VOC) of 867 mV and fill factor (FF) of 0.68 under AM 1.5 illumination (100 mW cm(-2)). The results demonstrate that N,S-heterocycles such as DTP unit could be promising candidates for application in highly efficient DSCs employing cobalt electrolyte. PMID:26394089

  1. Towards modeling of random lasing in dye doped bio-organic based systems: ray-tracing and cellular automaton analysis

    NASA Astrophysics Data System (ADS)

    Mitus, A. C.; Stopa, P.; Zaklukiewicz, W.; Pawlik, G.; Mysliwiec, J.; Kajzar, F.; Rau, I.

    2015-08-01

    One of many photonic applications of biopolymers as functional materials is random lasing resulting from an incorporation of highly luminescent dyes into biopolymeric matrix, which leads to a random but coherent light scattering in amplifying medium. In spite of numerous theoretical and experimental studies the origin of the coherence is still not clear and various scenarios are discussed. In particular, inhomogeneity of biopolymeric layers can hypothetically promote the feedback in the scattering of the emitted light resulting in coherent and incoherent random lasing. In this paper we analyze the light scattering in a model system of scattering centers of circular shapes and various dimensions using ray-tracing techniques. In the second part, which has mostly a tutorial character, we present the approach to the study of random lasing using a cellular automaton model of Wiersma et al.

  2. CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light.

    PubMed

    Wu, Yuxin; Xu, Mingquan; Chen, Xi; Yang, Shuanglei; Wu, Hanshuo; Pan, Jun; Xiong, Xiang

    2015-12-17

    A novel nanostructure of perpendicular ultrathin MoSe2 nanosheets directly grown on graphene was produced by a facile hydrothermal method in the presence of CTAB. The vertically-oriented and ultrathin MoSe2 nanosheets distribute uniformly on the surface of graphene, and the nanosheets are typically 2-3 layers, which is confirmed by TEM and red shift of the A1g Raman peak. In comparison with pure MoSe2 and MoSe2 nanospheres on graphene, vertically oriented MoSe2 nanosheets on graphene show enhanced organic dye adsorption ability and photocatalytic performance in the degradation of MB, RhB and MO under dark conditions and visible light irradiation. The excellent photocatalytic activity may be contributed by the unique perpendicular MoSe2 nanosheets with fully exposed active edges and hybridized with graphene for reduced electron-hole pair recombination. PMID:26627597

  3. Identification and characterization of artists' red dyes and their mixtures by surface-enhanced Raman spectroscopy.

    PubMed

    Whitney, Alyson V; Casadio, Francesca; Van Duyne, Richard P

    2007-09-01

    Silver film over nanospheres (AgFONs) were successfully employed as surface-enhanced Raman spectroscopy (SERS) substrates to characterize several artists' red dyes including: alizarin, purpurin, carminic acid, cochineal, and lac dye. Spectra were collected on sample volumes (1 x 10(-6) M or 15 ng/microL) similar to those that would be found in a museum setting and were found to be higher in resolution and consistency than those collected on silver island films (AgIFs). In fact, to the best of the authors' knowledge, this work presents the highest resolution spectrum of the artists' material cochineal to date. In order to determine an optimized SERS system for dye identification, experiments were conducted in which laser excitation wavelengths were matched with correlating AgFON localized surface plasmon resonance (LSPR) maxima. Enhancements of approximately two orders of magnitude were seen when resonance SERS conditions were met in comparison to non-resonance SERS conditions. Finally, because most samples collected in a museum contain multiple dyestuffs, AgFONs were employed to simultaneously identify individual dyes within several dye mixtures. These results indicate that AgFONs have great potential to be used to identify not only real artwork samples containing a single dye but also samples containing dyes mixtures. PMID:17910797

  4. CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light

    NASA Astrophysics Data System (ADS)

    Wu, Yuxin; Xu, Mingquan; Chen, Xi; Yang, Shuanglei; Wu, Hanshuo; Pan, Jun; Xiong, Xiang

    2015-12-01

    A novel nanostructure of perpendicular ultrathin MoSe2 nanosheets directly grown on graphene was produced by a facile hydrothermal method in the presence of CTAB. The vertically-oriented and ultrathin MoSe2 nanosheets distribute uniformly on the surface of graphene, and the nanosheets are typically 2-3 layers, which is confirmed by TEM and red shift of the A1g Raman peak. In comparison with pure MoSe2 and MoSe2 nanospheres on graphene, vertically oriented MoSe2 nanosheets on graphene show enhanced organic dye adsorption ability and photocatalytic performance in the degradation of MB, RhB and MO under dark conditions and visible light irradiation. The excellent photocatalytic activity may be contributed by the unique perpendicular MoSe2 nanosheets with fully exposed active edges and hybridized with graphene for reduced electron-hole pair recombination.A novel nanostructure of perpendicular ultrathin MoSe2 nanosheets directly grown on graphene was produced by a facile hydrothermal method in the presence of CTAB. The vertically-oriented and ultrathin MoSe2 nanosheets distribute uniformly on the surface of graphene, and the nanosheets are typically 2-3 layers, which is confirmed by TEM and red shift of the A1g Raman peak. In comparison with pure MoSe2 and MoSe2 nanospheres on graphene, vertically oriented MoSe2 nanosheets on graphene show enhanced organic dye adsorption ability and photocatalytic performance in the degradation of MB, RhB and MO under dark conditions and visible light irradiation. The excellent photocatalytic activity may be contributed by the unique perpendicular MoSe2 nanosheets with fully exposed active edges and hybridized with graphene for reduced electron-hole pair recombination. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05748e

  5. Discoloration of indigo carmine using aqueous extracts from vegetables and vegetable residues as enzyme sources.

    PubMed

    Solís, A; Perea, F; Solís, M; Manjarrez, N; Pérez, H I; Cassani, J

    2013-01-01

    Several vegetables and vegetable residues were used as sources of enzymes capable to discolor indigo carmine (IC), completely or partially. Complete discoloration was achieved with aqueous extracts of green pea seeds and peels of green pea, cucumber, and kohlrabi, as well as spring onion leaves. The source of polyphenol oxidase (PPO), pH, time, and aeration is fundamental for the discoloration process catalyzed by PPO. The PPO present in the aqueous extract of green pea seeds was able to degrade 3,000 ppm of IC at a pH of 7.6 and magnetic stirring at 1,800 rpm in about 36 h. In addition, at 1,800 rpm and a pH of 7.6, this extract discolored 300 ppm of IC in 1:40 h; in the presence of 10% NaCl, the discoloration was complete in 5:50 h, whereas it was completed in 4:30 h with 5% NaCl and 2% laundry soap. PMID:24151588

  6. Discoloration of Indigo Carmine Using Aqueous Extracts from Vegetables and Vegetable Residues as Enzyme Sources

    PubMed Central

    Solís, A.; Perea, F.; Solís, M.; Manjarrez, N.; Pérez, H. I.; Cassani, J.

    2013-01-01

    Several vegetables and vegetable residues were used as sources of enzymes capable to discolor indigo carmine (IC), completely or partially. Complete discoloration was achieved with aqueous extracts of green pea seeds and peels of green pea, cucumber, and kohlrabi, as well as spring onion leaves. The source of polyphenol oxidase (PPO), pH, time, and aeration is fundamental for the discoloration process catalyzed by PPO. The PPO present in the aqueous extract of green pea seeds was able to degrade 3,000 ppm of IC at a pH of 7.6 and magnetic stirring at 1,800 rpm in about 36 h. In addition, at 1,800 rpm and a pH of 7.6, this extract discolored 300 ppm of IC in 1:40 h; in the presence of 10% NaCl, the discoloration was complete in 5:50 h, whereas it was completed in 4:30 h with 5% NaCl and 2% laundry soap. PMID:24151588

  7. Usefulness of colonoscopic examination with indigo carmine in diagnosing microscopic colitis.

    PubMed

    Suzuki, G; Mellander, M R; Suzuki, A; Rubio, C A; Lambert, R; Björk, J; Schmidt, P T

    2011-12-01

    Microscopic colitis, comprising collagenous colitis and lymphocytic colitis, is epitomized by chronic watery diarrhea, endoscopically normal colonic mucosa, and characteristic histopathological features. Reports on chromoendoscopic findings in microscopic colitis are scarce and in this paper we describe such findings. We have examined 13 patients with microscopic colitis by means of chromoendoscopy with indigo carmine 0.2 % - 0.5 %. In all 13 cases continuous mucosal changes were seen, with disappearance of innominate grooves or with irregularity of grooves. The segmental distribution of abnormal chromoendoscopic findings corresponded almost completely with the microscopic features. A diffuse mosaic pattern was found in five of 10 cases of collagenous colitis and in all three cases of lymphocytic colitis. Uneven surface was seen in four cases of collagenous colitis, one of collagenous colitis in remission, and one of lymphocytic colitis, and a nodular surface was recorded in five cases of collagenous colitis but in none of the lymphocytic colitis cases. If these findings can be reproduced in larger series of microscopic colitis cases, the need for biopsies as a diagnostic tool might be restricted to patients where chromoendoscopy shows clear mucosal changes, thereby saving costs and limiting possible complications associated with multiple biopsies. PMID:22057822

  8. Novel polymer gel electrolyte with organic solvents for quasi-solid-state dye-sensitized solar cells.

    PubMed

    Shen, Sheng-Yen; Dong, Rui-Xuan; Shih, Po-Ta; Ramamurthy, Vittal; Lin, Jiang-Jen; Ho, Kuo-Chuan

    2014-11-12

    A cross-linked copolymer was previously synthesized from poly(oxyethylene) diamine (POE-amine) and an aromatic anhydride and cured to generate an amide-imide cross-linking structure. The copolymer containing several chemical groups such as POE, amido acids, and imide, enabled to absorb liquid electrolytes in methoxypropionitrile (MPN) for suitable uses in dye-sensitized solar cells. To establish the advantages of polymer gel electrolytes (PGE), the same copolymer was studied by using different electrolyte solvents including propylene carbonate (PC), dimethylformamide, and N-methyl-2-pyrrolidone, and shown their long-term stability. The morphology of the copolymer after absorbing liquid electrolytes in these solvents was proven the same as a 3D interconnected nanochannels, evidenced field emission-scanning electron microscopy. Among these solvents, PC was selected as the optimized PGE, which demostrated a higher power conversion efficiency (8.31%) than that of the liquid electrolyte (7.89%). In particular, the long-term stability of only a 5% decrease in the cell efficiency after 1000 h of testing was achieved. It was proven the developed copolymer as PGE was versatile for different solvents showing high efficiency and long-term durability. PMID:25296883

  9. Aegle marmelos Mediated Green Synthesis of Different Nanostructured Metal Hexacyanoferrates: Activity against Photodegradation of Harmful Organic Dyes

    PubMed Central

    Jassal, Vidhisha; Kaith, B. S.

    2016-01-01

    Prussian blue analogue potassium metal hexacyanoferrate (KMHCF) nanoparticles Fe4[Fe(CN)6]3 (FeHCF), K2Cu3[Fe(CN)6]2 (KCuHCF), K2Ni[Fe(CN)6]·3H2O (KNiHCF), and K2Co[Fe(CN)6] (KCoHCF) have been synthesized using plant based biosurfactant Aegle marmelos (Bael) and water as a green solvent. It must be emphasized here that no harmful reagent or solvent was used throughout the study. Plant extracts are easily biodegradable and therefore do not cause any harm to the environment. Hence, the proposed method of synthesis of various KMHCF nanoparticles followed a green path. The synthesized nanoparticles were characterized by powder X-ray diffraction (PXRD), Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FT-IR). MHCF nanoparticles were used for the photocatalytic degradation of toxic dyes like Malachite Green (MG), Eriochrome Black T (EBT), Methyl Orange (MO), and Methylene Blue (MB). Under optimized reaction conditions, maximum photocatalytic degradation was achieved in case of KCuHCF nanoparticles mediated degradation process (MG: 96.06%, EBT: 83.03%, MB: 94.72%, and MO: 63.71%) followed by KNiHCF (MG: 95%, EBT: 80.32%, MB: 91.35%, and MO: 59.42%), KCoHCF (MG: 91.45%, EBT: 78.84%, MB: 89.28%, and MO: 58.20%). PMID:27034896

  10. THERMOSPRAY IONIZATION AND TANDEM MASS SPECTROMETRY OF DYES

    EPA Science Inventory

    Sixteen commercial dye samples and three liquid wastes from organic pigment and dye manufacture have been characterized without prior chromatography by thermospray ionization and low energy collision-activated dissociation of protonated molecules using a triple quadrupole mass sp...

  11. Analysis of organic colouring and binding components in colour layer of art works.

    PubMed

    Kuckova, S; Nemec, I; Hynek, R; Hradilova, J; Grygar, T

    2005-05-01

    Two methods of analysis of organic components of colour layers of art works have been tested: IR microspectroscopy of indigo, Cu-phthalocyanine, and Prussian blue, and MALDI-TOF-MS of proteinaceous binders and a protein-containing red dye. The IR spectra distortion common for smooth outer surfaces and polished cross sections of colour layer of art works is suppressed by reflectance measurement of microtome slices. The detection limit of the three blue pigments examined is approximately 0.3 wt% in reference colour layers in linseed oil binder with calcite as extender and lead white as a drying agent. The sensitivity has been sufficient to identify Prussian blue in repaints on a Gothic painting. MALDI-TOF-MS has been used to identify proteinaceous binders in two historical paintings, namely isinglass (fish glue) and rabbit glue. MALDI-TOF-MS has also been proposed for identification of an insect red dye, cochineal carmine, according to its specific protein component. The enzymatic cleavage with trypsin before MALDI-TOF-MS seems to be a very gentle and specific way of dissolution of the colour layers highly polymerised due to very long aging of old, e.g. medieval, samples. PMID:15800763

  12. Simultaneous identification of natural dyes in the collection of drawings and maps from The Royal Chancellery Archives in Granada (Spain) by CE.

    PubMed

    López-Montes, Ana; Blanc García, Rosario; Espejo, Teresa; Huertas-Perez, José F; Navalón, Alberto; Vílchez, José Luis

    2007-04-01

    A simple and rapid capillary electrophoretic method with UV detection (CE-UV) has been developed for the identification of five natural dyes namely, carmine, indigo, saffron, gamboge and Rubia tinctoria root. The separation was performed in a fused-silica capillary of 64.5 cm length and 50 microm id. The running buffer was 40 mM sodium tetraborate buffer solution (pH 9.25). The applied potential was 30 kV, the temperature was 25 degrees C and detections were performed at 196, 232, 252, 300 and 356 nm. The injections were under pressure of 50 mbar during 13 s. The method was applied to the identification of carminic acid, gambogic acid, crocetin, indigotin, alizarin and purpurin in the collection of drawings and maps at the Royal Chancellery Archives in Granada (Spain). The method was validated by using HPLC as a reference method. PMID:17366480

  13. Dye laser amplifier

    DOEpatents

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  14. Organic dyes with a fused segment comprising benzotriazole and thieno[3,2-b]pyrrole entities as the conjugated spacer for high performance dye-sensitized solar cells.

    PubMed

    Ni, Jen-Shyang; Yen, Yi-Chi; Lin, Jiann T

    2015-12-14

    Sensitizers with a fused segment comprising electron deficient benzotriazole () and electron rich thiophene or thieno[3,2-b]pyrrole entities as the conjugated spacer have been synthesized for dye-sensitized solar cells (DSSCs). The power conversion efficiency (PCE) increases with elongation of the conjugated spacer, and the dye with the dithieno[3,2-b]pyrrolobenzotriazole spacer has the best efficiency of 8.14%, which is comparable with that of an -based DSSC (8.03%). After coadsorbed with 1 mM CDCA, the efficiency was improved to 8.4%. The J-aggregation of the dye results in light harvesting at a longer wavelength spectral region and increasing the photocurrent of the cell. PMID:26452205

  15. Hierarchical Heteroaggregation of Binary Metal-Organic Gels with Tunable Porosity and Mixed Valence Metal Sites for Removal of Dyes in Water

    PubMed Central

    Mahmood, Asif; Xia, Wei; Mahmood, Nasir; Wang, Qingfei; Zou, Ruqiang

    2015-01-01

    Hierarchical heteronuclear metal-organic gels (MOGs) based on iron (Fe) and aluminium (Al) metal-organic framework (MOF) backbones bridged by tri-carboxylate ligands have firstly been synthesized by simple solvothermal method. Monometallic MOGs based on Fe or Al give homogenous monoliths, which have been tuned by introduction of heterogeneity in the system (mismatched growth). The developed gels demonstrate that surface areas, pore volumes and pore sizes can be readily tuned by optimizing heterogeneity. The work also elaborates effect of heterogeneity on size of MOG particles which increase substantially with increasing heterogeneity as well as obtaining mixed valence sites in the gels. High surface areas (1861 m2/g) and pore volumes (9.737 cc/g) were obtained for heterogeneous gels (0.5Fe-0.5Al). The large uptakes of dye molecules (290 mg/g rhodamine B and 265 mg/g methyl orange) with fast sorption kinetics in both neutral and acidic mediums show good stability and accessibility of MOG channels (micro and meso-/macropores), further demonstrating their potential applications in catalysis and sorption of large molecules. PMID:26014755

  16. A recyclable and highly active Co{sub 3}O{sub 4} nanoparticles/titanate nanowire catalyst for organic dyes degradation with peroxymonosulfate

    SciTech Connect

    Chen, Zhili; Chen, Shihua; Li, Yonghe; Si, Xiaolei; Huang, Jun; Massey, Sylvain; Chen, Guangliang

    2014-09-15

    Sodium ions of TNWs were exchanged with hydrogen ions, and this protocol was very suitable for capturing high density of cobalt ions. Meanwhile, the fabricated Co{sub 3}O{sub 4}/TNWs nano-material presented a highly catalytic and stable activity for dye degradation. - Highlights: • Co{sub 3}O{sub 4} nanoparticles were deposited on the pretreated TNWs surface. • The TNWs treated by hydrogen ions captures higher density of cobalt ions. • The Co{sub 3}O{sub 4}/TNWs catalyst possesses highly efficiency for dyes degradation with oxone. - Abstract: In this paper, we reported a recyclable and highly active porous catalyst of titanate nanowires (TNWs) coated with well-distributed Co{sub 3}O{sub 4} nanoparticles (NPs) (Co{sub 3}O{sub 4}/TNWs). Sodium ions of TNWs were exchanged with hydrogen ions in the dilute nitric acid, and this protocol was very suitable for capturing cobalt ions. X-ray diffraction (XRD) demonstrated the existence of Co{sub 3}O{sub 4} phase with unique lattice planes, such as (2 2 0), (3 1 1) and (5 1 1). Electron microscopes (FE-SEM and TEM) indicated that the Co{sub 3}O{sub 4} NPs with an average diameter of 22 ± 3 nm were coated uniformly on TNWs surface (average diameter: 37 ± 5.5 nm), and the Co{sub 3}O{sub 4} NPs mainly exposed their (2 2 0) and (2 2 2) active planes. XPS analysis confirms the formation of Co{sub 3}O{sub 4} phase by the presence of Co 2p peaks at 780.1 eV (2p 3/2) and 795.5 eV (2p 1/2). Methylene blue (MB) and other organic dyes (rhodamine B (RhB) and methyl orange (MO)) were chosen as target compounds for catalytic degradation under indoor scattering light. Compared to the original Co{sub 3}O{sub 4}/TNWs catalyst, the catalytic efficiency of nanoscaled catalyst with oxone for MB was about 15 times higher, and the MB solution (10 mg L{sup −1}) was completely degraded within 8 min. The catalytic activity of recycled catalyst used in the sixth run still remained very active, and the degradation time for MB was only 16 min. The nanosized catalyst also had a high activity for dyes of RhB (10 mg L{sup −1}) and MO (10 mg L{sup −1}), as the degradation efficiencies of RhB and MO after 10 min of contact time were about 90.2% and 92.6%, respectively.

  17. In-tube electro-membrane extraction with a sub-microliter organic solvent consumption as an efficient technique for synthetic food dyes determination in foodstuff samples.

    PubMed

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Asghari, Alireza; Abdossalami asl, Yousef

    2015-09-01

    A simple and efficient extraction technique with a sub-microliter organic solvent consumption termed as in-tube electro-membrane extraction (IEME) is introduced. This method is based upon the electro-kinetic migration of ionized compounds by the application of an electrical potential difference. For this purpose, a thin polypropylene (PP) sheet placed inside a tube acts as a support for the membrane solvent, and 30μL of an aqueous acceptor solution is separated by this solvent from 1.2mL of an aqueous donor solution. This method yielded high extraction recoveries (63-81%), and the consumption of the organic solvent used was only 0.5μL. By performing this method, the purification is high, and the utilization of the organic solvent, used as a mediator, is very simple and repeatable. The proposed method was evaluated by extraction of four synthetic food dyes (Amaranth, Ponceau 4R, Allura Red, and Carmoisine) as the model analytes. Optimization of variables affecting the method was carried out in order to achieve the best extraction efficiency. These variables were the type of membrane solvent, applied extraction voltage, extraction time, pH range, and concentration of salt added. Under the optimized conditions, IEME-HPLC-UV provided a good linearity in the range of 1.00-800ngmL(-1), low limits of detection (0.3-1ngmL(-1)), and good extraction repeatabilities (RSDs below 5.2%, n=5). It seems that this design is a proper one for the automation of the method. Also the consumption of the organic solvent in a sub-microliter scale, and its simplicity, high efficiency, and high purification can help one getting closer to the objectives of the green chemistry. PMID:26256917

  18. Zeolite-Dye Microlasers

    NASA Astrophysics Data System (ADS)

    Vietze, U.; Krauß, O.; Laeri, F.; Ihlein, G.; Schüth, F.; Limburg, B.; Abraham, M.

    1998-11-01

    We present a new class of micro lasers based on nanoporous molecular sieve host-guest systems. Organic dye guest molecules of 1-ethyl-4-[4-( p-dimethylaminophenyl)-1,3-butadienyl]-pyridinium Perchlorat were inserted into the 0.73-nm-wide channel pores of a zeolite AlPO 4-5 host. The zeolitic microcrystal compounds were hydrothermally synthesized according to a particular host-guest chemical process. The dye molecules are found not only to be aligned along the host channel axis, but to be oriented as well. Single mode laser emission at 687 nm was obtained from a whispering gallery mode oscillating in a 8-μm-diameter monolithic microresonator, in which the field is confined by total internal reflection at the natural hexagonal boundaries inside the zeolitic microcrystals.

  19. [Mutagenic effect of the food-coloring agents tartrazine and indigo carmine].

    PubMed

    Karpliuk, I A; Volkova, N A; Okuneva, L A; Gogol', A T; Rybakova, K D

    1984-01-01

    The authors studied the mutagenic action of the food dyes, tartrazine (both Soviet and imported) and indigocarmine in a microbial model and in warm-blooded animals (linear mice). Determined the toxicity and mutagenic action of the dyes on E. coli, strain K-12, carried out chromosomal analysis of the bone marrow, examined the dominant lethals in CBA X C57BL/6 mice. The recommended daily dose amounts to 400 mg/kg for tartrazine and to 50 mg/kg for indigocarmine with regard to the safety factor equal to 100. The data derived as a result of studying the mutagenic activity of tartrazine manufactured in the USSR and CSSR and indigocarmine paste in 3 experimental models allow the conclusion to be made that the doses of these dyes applied in food industry are fairly safe. PMID:6377691

  20. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study.

    PubMed

    Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin

    2016-07-01

    Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2min), adsorbent mass (0.029g), initial dyes concentration (4.5mgL(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29mgg(-1), respectively. PMID:26964982

  1. Synergistic inhibition behavior between indigo carmine and cetyl trimethyl ammonium bromide on carbon steel corroded in a 0.5 M HCl solution

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Tian, Ningchen; Li, Xiuying; Zhang, Lingzhi; Wu, Ling; Huang, Yan

    2015-12-01

    This work reports on a newly observed synergistic inhibition between indigo carmine and cetyl trimethyl ammonium bromide (CTAB) on 1045 carbon steel (CS) corroded in a 0.5 M HCl solution. The results of electrochemical measurements showed that CTAB could change indigo carmine in a manner that would accelerate corrosion and produce an effective inhibitor. The maximal protection efficiency was significantly greater than 0.985, with the concentration of the combination inhibitors reaching approximately 5 × 10-5 M. The microstructure of the CS corrosion surface demonstrated that the indigo disulfonate anions and cetyltrimethylammonium cations were adsorbed simultaneously on the CS surface to protect it from corrosion. Diffusion coefficient analysis and the surface concentration profiles of the corrosive species were used to investigate the synergistic effect of the indigo carmine/CTAB combination inhibitors, and the results demonstrate the existence of synergy.

  2. Accidental injection of patent blue dye during gynaecological surgery: Lack of knowledge constitutes a system error.

    PubMed

    Laukaityte, Edita; Bruyère, Marie; Bull, Amanda; Benhamou, Dan

    2015-02-01

    The authors report a case in which an intravenous injection of Patent Blue V dye instead of Indigo Carmine was given during routine gynaecological surgery. The patient presented with temporary arterial (spurious) desaturation and skin discoloration over a 48-hour period. Pharmacological differences between these dyes are described. Root cause analysis based on the ALARM (Association of Litigation and Risk Management) model is presented. The authors emphasise that use of this model should not be limited solely to describing and correcting well known systems errors such as working conditions or teamwork and communication. Furthermore, they conclude that insufficient knowledge must also be recognised as a systems error and as such should be sought out and corrected using similar strategies to those used to discover other contributory factors, without allocation of blame to any individual. PMID:25829317

  3. CuO embedded chitosan spheres as antibacterial adsorbent for dyes.

    PubMed

    Khan, Sher Bahadar; Ali, Fayaz; Kamal, Tahseen; Anwar, Yasir; Asiri, Abdullah M; Seo, Jongchul

    2016-07-01

    Chitosan/copper oxide (CS/CuO) composite spheres were prepared by simple mixing of CuO nanomaterials in CS solution followed by dropwise addition to NH4OH solution. The characterizations of all the prepared spheres were carried out by FESEM, EDS, XRD, XPS, and FTIR analyses while the thermal properties were analyzed by TGA. Further the ability of composite spheres was tested as an easily removable pollutant adsorbent from water containing different dyes and compared with pure CS. Composite spheres were found to be the best adsorbent when applied to remove indigo carmine (IC), congo red (CR) and methyl orange (MO) from water. Amongst the three dyes, CS/CuO composite spheres were more selective toward MO adsorption. CS/CuO composite spheres also displayed significant antibacterial activity by inhibiting Pseudomonas aeruginosa growth. Thus the fabricated composite spheres can be used as a biosorbent in the future. PMID:26993528

  4. Application of surface-enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art

    SciTech Connect

    Chen, Kui; Leona, Marco; Yan, Fei; Wabuyele, Musundi B; Vo Dinh, Tuan

    2006-04-01

    Surface-enhanced Raman scattering (SERS) was investigated for applications in the analysis of anthraquinone dyes used in works of art. Two SERS procedures were developed and evaluated with three frequently used anthraquinone dyes, alizarin, carminic acid and lac dye. The first procedure involves coating a layer of silver nanoparticles directly on pieces of filter paper stained with the dyes of interest by thermal evaporation to induce SERS effect. In the second procedure, a SERS-active Ag-Al{sub 2}O{sub 3} substrate was prepared by spin-coating an alumina-nanoparticle layer onto a glass slide to provide the nanostructure of the substrate, followed by thermally evaporating a layer of silver nanoparticles on top of the alumina layer. Aliquots of dye solutions were delivered onto this substrate to be analyzed. Intense SERS spectra characteristic of alizarin, carminic acid and lac dye were obtained using both SERS procedures. The effects of two parameters, the concentration of the alumina suspension and the thickness of the silver nanoparticle layer on the performance of the Ag-Al{sub 2}O{sub 3} substrate were examined with alizarin as the model compound. Comparative studies were conducted between the Ag-Al{sub 2}O{sub 3} substrate and the SERS substrate prepared using Tollens reaction. The Ag-Al{sub 2}O{sub 3} substrate was shown to offer larger enhancement and improved reproducibility than the Tollens substrates. Finally, the potential applicability of the Ag-Al{sub 2}O{sub 3} substrate for the analysis of real artifact objects was illustrated by the identification of alizarin extracted from a small piece of textile dyed using traditional methods and materials. The limit of detection for alizarin was estimated to be 7 x 10{sup -15} g from tests performed on solutions of known concentration.

  5. Preparation of Double Dye-Layer Structure of Dye-Sensitized Solar Cells from Cocktail Solutions for Harvesting Light in Wide Range of Wavelengths

    NASA Astrophysics Data System (ADS)

    Noma, Yusuke; Iizuka, Keita; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi

    2009-02-01

    Dye-sensitized solar cells (DSCs) consisting of a double dye-layer structure of Ru dye (Z907) and organic dye (NK3705) were prepared by dipping porous titania substrates into dye mixture solutions. Dye structures such as NK3705 were crucial for realizing the double layer structure. A porous titania layer adsorbed NK3705 predominantly in the dye mixture. The adsorbed NK3705 was then replaced by Z907 from the top to the bottom of the porous titania surface as a function of dipping time. The DSCs based on the double dye-layer structure were able to harvest light in a wide range of wavelengths.

  6. Just Dyeing to Find Out.

    ERIC Educational Resources Information Center

    Monhardt, Becky Meyer

    1996-01-01

    Presents a multidisciplinary unit on natural dyes designed to take advantage of the natural curiosity of middle school students. Discusses history of dyes, natural dyes, preparation of dyes, and the dyeing process. (JRH)

  7. Hematoxylin substitutes: a survey of mordant dyes tested and consideration of the relation of their structure to performance as nuclear stains.

    PubMed

    Lillie, R D; Pizzolato, P; Donaldson, P T

    1976-01-01

    In the search for hematoxylin substitutes 26 dyes were more or less extensively tested for performance as nuclear stains, usually in combination with aluminum, chronic, ferrous and ferric salts. Reports from the literature on hematoxylin substitutes were also considered, and efforts were made to obtain samples of favorably reported dyes and test them. The reports on anthocyanins include isolated reports on several berry juices and a considerable number of studies on Sambucus niger and Vaccinium myrtillus. None of these have so far been tested by us. Otherwise favorable reports have appeared on eleven synthetic dyes and on carmine, brazilin, and hematin. Except for one of the synthetics, naphthazarin, which is no longer fractured, we had samples of all of these. In addition, more or less unsuccessful trials were made on twelve dyestuffs, some of which were new syntheses designed to combine chelating capacity with nucleophilia. Following Fyg's report of blue nuclear staining with chrome alum carmine, trial was made to change the red nuclear stain of kernechtrot by altering the metal mordant. The most successful dyes were phenocyanin TC, gallein, fluorone black, alizarin cyanin BB and alizarin blue S. Celestin blue B with an iron mordant is quite successful if properly handled to prevent gelling of solutions. PMID:59410

  8. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    NASA Astrophysics Data System (ADS)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-11-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash -SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties.

  9. Introduction of double amidoxime group by double post surface modification on poly(vinylbenzyl chloride) beads for higher amounts of organic dyes, As (V) and Cr (VI) removal.

    PubMed

    Ajmal, Muhammad; Demirci, Sahin; Uzun, Yusuf; Siddiq, Mohammad; Aktas, Nahit; Sahiner, Nurettin

    2016-05-15

    In this study, the synthesis of micron-sized poly(vinylbenzyl chloride) (p(VBC)) beads and subsequent conversion of the reactive chloromethyl groups to double amidoxime group containing moieties by post modification is reported. The prepared beads were characterized by SEM and FT-IR spectroscopy. The amidoximated p(VBC) beads were used as adsorbent for the removal of organic dyes, such as eosin y (EY) and methyl orange (MO), and heavy metals containing complex ions such as dichromate (Cr2O7(2-)) and arsenate (HAsO4(2)(-)) from aqueous media. The effect of the adsorbent dose on the percent removal, the effect of initial concentration of adsorbates on the adsorption rate and their amounts were also investigated. The Langmuir, Freundlich and Temkin adsorption isotherms were applied to the adsorption processes. The results indicated that the adsorption of both dichromate and arsenate ions obeyed the Langmuir adsorption model. Interestingly, it was found that the prepared beads were capable of removing significant amounts of arsenate and dichromate ions from tap and river (Sarıcay, Canakkale-Turkey) water. PMID:26930538

  10. Platinum-Free Counter Electrode Comprised of Metal-Organic-Framework (MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs)

    PubMed Central

    Hsu, Shao-Hui; Li, Chun-Ting; Chien, Heng-Ta; Salunkhe, Rahul R.; Suzuki, Norihiro; Yamauchi, Yusuke; Ho, Kuo-Chuan; Wu, Kevin C.-W.

    2014-01-01

    We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs. PMID:25382139

  11. New organic donor-acceptor-π-acceptor sensitizers for efficient dye-sensitized solar cells and photocatalytic hydrogen evolution under visible-light irradiation.

    PubMed

    Li, Xing; Cui, Shicong; Wang, Dan; Zhou, Ying; Zhou, Hao; Hu, Yue; Liu, Jin-Gang; Long, Yitao; Wu, Wenjun; Hua, Jianli; Tian, He

    2014-10-01

    Two organic donor-acceptor-π-acceptor (D-A-π-A) sensitizers (AQ and AP), containing quinoxaline/pyrido[3,4-b]pyrazine as the auxiliary acceptor, have been. Through fine-tuning of the auxiliary acceptor, a higher designed and synthesized photoelectric conversion efficiency of 6.02% for the AQ-based dye-sensitized solar cells under standard global AM1.5 solar conditions was achieved. Also, it was found that AQ-Pt/TiO2 photocatalysts displayed a better rate of H2 evolution under visible-light irradiation (420 nm<λ<780 nm) because of the stability of the oxidized states and the lower rates of electron recombination. Importantly, sensitizers AQ and AP-Pt/TiO2 showed strong photocatalytic activity during continuous light soaking for 10 h with methanol as the sacrificial electron donor. Additionally, the processes of their intermolecular electron transfer were further investigated theoretically by using time-dependent DFT. The calculated results indicate that the auxiliary acceptor plays the role of an electron trap and results in broad spectral responses. PMID:25154958

  12. The Enhanced Catalytic Activities of Asymmetric Au-Ni Nanoparticle Decorated Halloysite-Based Nanocomposite for the Degradation of Organic Dyes.

    PubMed

    Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing

    2016-12-01

    Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabrication of two different magnetic HNTs@Fe3O4@Au and HNTs@Fe3O4@Au-Ni NCs. The catalytic activity and recyclability of the two NCs have been evaluated considering the degradation of Congo red (CR) and 4-nitrophenol (4-NP) using sodium borohydride as a model reaction. The results reveal that the symmetric Au NPs participated NCs display low activity in the degradation of the above organic dyes. However, a detailed kinetic study demonstrates that the employ of bimetallic Janus Au-Ni NPs in the NCs indicates enhanced catalytic activity, owing to the structurally specific nature. Furthermore, the magnetic functional NCs reported here can be used as recyclable catalyst which can be recovered simply by magnet. PMID:26852228

  13. The Enhanced Catalytic Activities of Asymmetric Au-Ni Nanoparticle Decorated Halloysite-Based Nanocomposite for the Degradation of Organic Dyes

    NASA Astrophysics Data System (ADS)

    Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing

    2016-02-01

    Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabrication of two different magnetic HNTs@Fe3O4@Au and HNTs@Fe3O4@Au-Ni NCs. The catalytic activity and recyclability of the two NCs have been evaluated considering the degradation of Congo red (CR) and 4-nitrophenol (4-NP) using sodium borohydride as a model reaction. The results reveal that the symmetric Au NPs participated NCs display low activity in the degradation of the above organic dyes. However, a detailed kinetic study demonstrates that the employ of bimetallic Janus Au-Ni NPs in the NCs indicates enhanced catalytic activity, owing to the structurally specific nature. Furthermore, the magnetic functional NCs reported here can be used as recyclable catalyst which can be recovered simply by magnet.

  14. 3D hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency.

    PubMed

    Lin, Jianjian; Heo, Yoon-Uk; Nattestad, Andrew; Sun, Ziqi; Wang, Lianzhou; Kim, Jung Ho; Dou, Shi Xue

    2014-01-01

    Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously. PMID:25167837

  15. 3D Hierarchical Rutile TiO2 and Metal-free Organic Sensitizer Producing Dye-sensitized Solar Cells 8.6% Conversion Efficiency

    NASA Astrophysics Data System (ADS)

    Lin, Jianjian; Heo, Yoon-Uk; Nattestad, Andrew; Sun, Ziqi; Wang, Lianzhou; Kim, Jung Ho; Dou, Shi Xue

    2014-08-01

    Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of `next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.

  16. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min. PMID:26775100

  17. Platinum-Free Counter Electrode Comprised of Metal-Organic-Framework (MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs)

    NASA Astrophysics Data System (ADS)

    Hsu, Shao-Hui; Li, Chun-Ting; Chien, Heng-Ta; Salunkhe, Rahul R.; Suzuki, Norihiro; Yamauchi, Yusuke; Ho, Kuo-Chuan; Wu, Kevin C.-W.

    2014-11-01

    We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs.

  18. Photoinduced electron transfer (PET) versus excimer formation in supramolecular p/n-heterojunctions of perylene bisimide dyes and implications for organic photovoltaics.

    PubMed

    Nowak-Król, Agnieszka; Fimmel, Benjamin; Son, Minjung; Kim, Dongho; Würthner, Frank

    2015-01-01

    Foldamer systems comprised of two perylene bisimide (PBI) dyes attached to the conjugated backbones of 1,2-bis(phenylethynyl)benzene and phenylethynyl-bis(phenylene)indane, respectively, were synthesized and investigated with regard to their solvent-dependent properties. UV/Vis absorption and steady-state fluorescence spectra show that both foldamers exist predominantly in a folded H-aggregated state consisting of π-π-stacked PBIs in THF and in more random conformations with weaker excitonic coupling between the PBIs in chloroform. Time-resolved fluorescence spectroscopy and transient absorption spectroscopy reveal entirely different relaxation pathways for the photoexcited molecules in the given solvents, i.e. photoinduced electron transfer leading to charge separated states for the open conformations (in chloroform) and relaxation into excimer states with red-shifted emission for the stacked conformations (in THF). Supported by redox data from cyclic voltammetry and Rehm-Weller analysis we could relate the processes occurring in these solution-phase model systems to the elementary processes in organic solar cells. Accordingly, only if relaxation pathways such as excimer formation are strictly avoided in molecular semiconductor materials, excitons may diffuse over larger distances to the heterojunction interface and produce photocurrent via the formation of electron/hole pairs by photoinduced electron transfer. PMID:26399996

  19. Characterization of anthocyanin based dye-sensitized organic solar cells (DSSC) and modifications based on bio-inspired ion mobility improvements

    NASA Astrophysics Data System (ADS)

    Mawyin, Jose Amador

    The worldwide electrical energy consumption will increase from currently 10 terawatts to 30 terawatts by 2050. To decrease the current atmospheric CO2 would require our civilization to develop a 20 terawatts non-greenhouse emitting (renewable) electrical power generation capability. Solar photovoltaic electric power generation is thought to be a major component of proposed renewable energy-based economy. One approach to less costly, easily manufactured solar cells is the Dye-sensitized solar cells (DSSC) introduced by Greatzel and others. This dissertation describes the work focused on improving the performance of DSSC type solar cells. In particular parameters affecting dye-sensitized solar cells (DSSC) based on anthocyanin pigments extracted from California blackberries (Rubus ursinus) and bio-inspired modifications were analyzed and solar cell designs optimized. Using off-the-shelf materials DSSC were constructed and tested using a custom made solar spectrum simulator and photoelectric property characterization. This equipment facilitated the taking of automated I-V curve plots and the experimental determination of parameters such as open circuit voltage (V OC), short circuit current (JSC), fill factor (FF), etc. This equipment was used to probe the effect of various modifications such as changes in the annealing time and composition of the of the electrode counter-electrode. Solar cell optimization schemes included novel schemes such as solar spectrum manipulation to increase the percentage of the solar spectrum capable of generating power in the DSSC. Solar manipulation included light scattering and photon upconversion. Techniques examined here focused on affordable materials such as silica nanoparticles embedded inside a TiO2 matrix. Such materials were examined for controlled scattering of visible light and optimize light trapping within the matrix as well as a means to achieve photon up-energy-conversion using the Raman effect in silica nano-particles (due to a strong Raman anti-Stoke scattering probability). Finally, solutions to the mobility problem of organic photovoltaics were explored. The solutions examined here were based on the bio-inspired neural ionic conduction were nature has overcome the poor ionic mobility in solutions (D 10-5cm2/ s) to achieve amazingly fast ionic conduction using non-electric field energy gradients. Electric-permeability-graded layers with possibility to create an energy gradient that helps the diffusion DSSC electrolyte diffusion were explored in this work.

  20. Coordination compounds of manganese(II) with polyamines - catalysts of the oxidation of organic dyes by hydrogen peroxide

    SciTech Connect

    Batyr, D.G.; Isak, V.G.; Kirienko, A.A.; Kharitonov, Yu.Ya.

    1987-02-01

    The peroxidase activity of complexes of manganese(II) with polyamines has been characterized. A comparison of the original and literature data has led to the conclusion that the oxidation of organic substrates having some complexing ability with respect to Manganese(II) in Mn(II)-ligand-H/sub 2/O/sub 2/-S systems takes place according to an inner-sphere ion-molecule mechanism. In cases in which the substrate does not have any complexing ability with respect to Manganese(II), the oxidation process takes place according to an outer-sphere mechanism.

  1. Dye-adsorption-induced gelation of suspensions of spherical and rodlike zinc oxide nanoparticles in organic solvents.

    PubMed

    Martini, Cyril; Stadler, Florian J; Said, Aurore; Heresanu, Vasile; Ferry, Daniel; Bailly, Christian; Ackermann, Jörg; Fages, Frédéric

    2009-08-01

    The adsorption of amphiphilic Ru(II) complex Z907 onto the surface of ZnO nanospheres and nanorods causes the gelation of organic solvents, such as THF and acetone. The gels are thermally stable at very low concentration (nanoparticle volume fraction phi = 0.009) but mechanically fragile, with the behavior being dependent on the nature of the solvent, nanoparticle concentration, and the Z907/ZnO mole/weight ratio. Rheological experiments confirmed that the solid component built up a network to give a viscoelastic gel-phase material with a weak value of storage modulus G'. However, TEM and SEM experiments did not give evidence that nanoparticle long-range ordering occurred under the experimental conditions investigated. Moreover, time-dependent SAXS measurements pointed to a decrease in the nanoparticle aggregate size upon gelation. All together, the data obtained might be rationalized in terms of the aggregate-to-aggregate transition in solution, with the primitive large aggregates giving rise to smaller ones upon reaction with Z907. The resulting smaller hybrid aggregates could be the active species that act as self-assembling components in the gelation process. Given the interesting electronic and photonic properties of zinc oxide nanoparticles, such hybrid organic-inorganic gels could open new directions in materials science, low-cost electronics, and photovoltaics. PMID:19301838

  2. TD-DFT investigation of D-π-A organic dyes with thiophene moieties as π-spacers for use as sensitizers in DSSCs.

    PubMed

    Hasanein, Ahmed A; Elmarassi, Yasser R; Kassem, Eman N

    2016-05-01

    The geometrical, conformational, and electronic properties of a series of D-π-A metal-free dyes designed for use as sensitizers in DSSCs were studied using DFT and TD-DFT methods. A substituted triphenylamine moiety was used as the donor group and 2-cyanoacrylic acid as the acceptor group in these dyes. They also contained conjugated bridging π-linker groups containing two or more thiophene rings to enhance the intramolecular charge transfer. The B3LYP, M06-HF, ωB97XD and CAM-B3LYP functionals were utilized in combination with the 6-31G(d,p) basis set for the calculations. The dye solvation process was taken into account via the polarizable continuum model. To rationalize the relationships between dye structure and the photochemical properties of the dyes when used as sensitizers in DSSCs, the vertical excitation energies, the light-harvesting efficiencies, the free-energy changes during the process of injecting an electron into the surface of a TiO2 nanocrystalline semiconductor, and the open-circuit potentials were calculated for all of the dyes in the solvent THF using the above methods. The results of these computations are discussed and compared with the available corresponding experimental data. PMID:27126050

  3. Synthesis, Photophysics, Electrochemistry and Electrogenerated Chemiluminescence of PEG-Modified BODIPY dyes in Organic and Aqueous Solutions

    PubMed Central

    Nepomnyashchii, Alexander B.; Pistner, Allen J.; Bard, Allen J.; Rosenthal, Joel

    2013-01-01

    A set polyethylene glycol (PEG) appended BODIPY architectures (BOPEG1 – BOPEG3) have been prepared and studied in CH2Cl2, H2O:CH3CN (1:1) and aqueous solutions. BOPEG1 and BOPEG2 both contain a short PEG chain and differ in substitution about the BODIPY framework. BOPEG3 is comprised of a fully substituted BODIPY moiety linked to a PEG polymer that is roughly 13 units in length. The photophysics and electrochemical properties of these compounds have been thoroughly characterized in CH2Cl2 and aqueous CH3CN solutions. The behavior of BOPEG1 – BOPEG3 correlates with established rules of BODIPY stability based on substitution about the BODIPY moiety. ECL for each of these compounds was also monitored. BOPEG1, which is unsubstituted at the 2- and 6-positions dimerized upon electrochemical oxidation while BOPEG2, which contains ethyl groups at the 2- and 6-positions, was much more robust and served as an excellent ECL luminophore. BOPEG3 is highly soluble in water due to the long PEG tether and demonstrated modest ECL activity in aqueous solutions using tri-n-propylamine (TPrA) as a coreactant. As such, BOPEG3 represents the first BODIPY derivative that has been shown to display ECL in water without the need for an organic cosolvent, and marks an important step in the development of BODIPY based ECL probes for various biosensing applications. PMID:23626863

  4. Application of surface-enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art

    NASA Astrophysics Data System (ADS)

    Chen, K.; Leona, Marco; Vo-Dinh, K. C.; Yan, F.; Wabuyele, M.; Vo-Dinh, Tuan

    2005-11-01

    Surface-enhanced Raman scattering (SERS) was investigated for applications in the analysis of anthraquinone dyes used in works of art. Two SERS procedures were developed and evaluated with frequently used anthraquinone dyes, alizarin, carminic acid and lac dye. The first procedure involves the removal of a microscopic fragment containing alizarin from a painting, and a layer of silver nanoparticles was thermally evaporated directly on the fragment to induce SERS signal from alizarin. The applicability of this procedure for analyzing solid samples of color layer from paintings was discussed in detail. In the second procedure, a SERS-active substrate was prepared by spin-coating an alumina-nanoparticle layer onto a glass slide, followed by thermally evaporating a layer of silver nanoparticles on top of the alumina layer. Aliquots of dye solutions were delivered onto this substrate where intense SERS spectra characteristic of alizarin, carminic acid, and lac dye were obtained. The effects of two parameters, the concentration of the alumina suspension, and the thickness of the silver nanoparticle layer, on the performance of the Ag-Al2O3 substrate were examined with alizarin as the model compound. Comparative studies with other common SERS substrates showed larger enhancement and improved reproducibility for the Ag-Al2O3 substrate. The potential applicability of the Ag-Al2O3 substrate for the analysis of real artifact objects was illustrated by the identification of alizarin extracted from a small piece of textile dyed with traditional methods and materials. The limit of detection for alizarin was estimated to be 7×10-15 g from tests using solutions of known concentration.

  5. The Development and Application of Novel IR and NMR-Based Model for the Evaluation of Carminative Effect of Artemisia judaica L. Essential Oil

    PubMed Central

    Alzweiri, Muhammed; Alrawashdeh, Ibrahim M.; Bardaweel, Sanaa K.

    2014-01-01

    Artemisia judaica L. is a medicinal plant that is traditionally used to relieve abdominal pains through its carminative activity. In this study, spectroscopic analysis was employed to investigate the carminative activity associated with A. judaica. Using infrared spectroscopy, the carminative activity was evaluated based on the first derivative of IR-characteristic stretching signal of CO2. Our results indicate that A. judaica oil effectively reduced the response of CO2 signal equivalent to thymol standard. Additionally, 1H-NMR spectroscopy was utilized to assess surface activity of A. judaica crude oil through the reduction of interfacial tension in a D2O/CDCl3 system. Apparently, 10 mg of the oil was able to solubilize water in a chloroform layer up to 4.3% (w/w). In order to correlate the observed surface activity of the oil to its actual composition, GC-MS and GC-FID structural analysis were undertaken. The results revealed that the oil composition consists of oxygenated terpenes which might be responsible for the carminative effect. Furthermore, owing to its sensitivity, our model provides a fundamental basis for the pharmacological assessment of trace amounts of oils with high precision and accuracy. PMID:25614741

  6. Accurate simulation of optical properties in dyes.

    PubMed

    Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo

    2009-02-17

    Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them. PMID:19113946

  7. Influence of physicochemical-electronic properties of transition metal ion doped polycrystalline titania on the photocatalytic degradation of Indigo Carmine and 4-nitrophenol under UV/solar light

    NASA Astrophysics Data System (ADS)

    Devi, L. Gomathi; Kumar, S. Girish

    2011-01-01

    To understand the role of dopant inside TiO2 matrix, anatase TiO2 was doped with transition metal ions like Mn2+, Fe3+, Ru3+ and Os3+ having unique half filled electronic configuration and their photocatalytic activity was probed in the degradation of Indigo Carmine (IC) and 4-nitrophenol (NP) under UV/solar light. For comparison, TiO2 was also doped with V5+, Ni2+ and Zn2+ metal ions having d0, d8 and d10 electronic configuration respectively. Irrespective of excitation source UV/solar light and nature of the organic pollutant, photocatalytic activities of doped photocatalysts followed the order: Mn2+-TiO2 > Fe3+-TiO2 > Ru3+-TiO2 ≥ Os3+-TiO2 > Zn2+-TiO2 > V5+-TiO2 > Ni2+-TiO2 at an optimum concentration of dopant. Based on the experimental results obtained, it is proposed that the existence of dopant with half filled electronic configuration in TiO2 matrix which is known to enhance the photocatalytic activity is not universal! Rather it is a complex function of several physicochemical-electronic properties of doped titania. Enhanced photocatalytic activity of Mn2+ (0.06 at.%)-TiO2 was attributed to the combined factors of high positive reduction potential of Mn2+/Mn3+ pairs, synergistic effects in the mixed polymorphs of anatase and rutile, smaller crystallite size with high intimate contact between two phases and favorable surface structure of the photocatalyst. Despite the intense research devoted to transition metal ion doped TiO2, it is rather difficult to make unifying conclusion which is highlighted in this study.

  8. Adsorption of dyes on Sahara desert sand.

    PubMed

    Varlikli, Canan; Bekiari, Vlasoula; Kus, Mahmut; Boduroglu, Numan; Oner, Ilker; Lianos, Panagiotis; Lyberatos, Gerasimos; Icli, Siddik

    2009-10-15

    Sahara desert sand (SaDeS) was employed as a mineral sorbent for retaining organic dyes from aqueous solutions. Natural sand has demonstrated a strong affinity for organic dyes but significantly lost its adsorption capacity when it was washed with water. Therefore, characterization of both natural and water washed sand was performed by XRD, BET, SEM and FTIR techniques. It was found that water-soluble kyanite, which is detected in natural sand, is the dominant factor affecting adsorbance of cationic dyes. The sand adsorbs over 75% of cationic dyes but less than 21% for anionic ones. Among the dyes studied, Methylene Blue (MB) demonstrated the strongest affinity for Sahara desert sand (Q(e)=11.98 mg/g, for initial dye solution concentration 3.5 x 10(-5)mol/L). The effects of initial dye concentration, the amount of the adsorbent, the temperature and the pH of the solution on adsorption capacity were tested by using Methylene Blue as model dye. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were applied. It was concluded that adsorption of Methylene Blue on Sahara desert sand followed pseudo-second order kinetics. Gibbs free energy, enthalpy change and entropy change were calculated and found -6411 J/mol, -30360 J/mol and -76.58 J/mol K, respectively. These values indicate that the adsorption is an exothermic process and has a spontaneous nature at low temperatures. PMID:19515485

  9. Study on the fluorescence enhancement in Lanthanum(III)-carminic acid-cetyltrimethylammonium bromide system and its analytical application

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Huang, Wei; Li, Kexiang; Li, Aihua; Gao, Wei; Tang, Bo

    2011-09-01

    A fluorescent enhancement system carminic acid (CA)-La 3+-CTAB is found and based on this finding a new fluorimetric method for the determination of CA is developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of CA in the range of 0.01231-12.31 μg mL -1. The detection limit is 10.92 ng mL -1. Compared with other methods that have been reported to determine CA, this method has high sensitivity, stability and wide linear range. In addition, the luminescence mechanism indicates that the complex of La 3+-CA (1:2) forms and solubilizes in CTAB micelle.

  10. Study on the fluorescence enhancement in Lanthanum(III)-carminic acid-cetyltrimethylammonium bromide system and its analytical application.

    PubMed

    Wang, Feng; Huang, Wei; Li, Kexiang; Li, Aihua; Gao, Wei; Tang, Bo

    2011-09-01

    A fluorescent enhancement system carminic acid (CA)-La3+-CTAB is found and based on this finding a new fluorimetric method for the determination of CA is developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of CA in the range of 0.01231-12.31 μg mL(-1). The detection limit is 10.92 ng mL(-1). Compared with other methods that have been reported to determine CA, this method has high sensitivity, stability and wide linear range. In addition, the luminescence mechanism indicates that the complex of La3+-CA (1:2) forms and solubilizes in CTAB micelle. PMID:21703912

  11. Anthracene/phenothiazine π-conjugated sensitizers for dye-sensitized solar cells using redox mediator in organic and water-based solvents.

    PubMed

    Lin, Ryan Yeh-Yung; Chuang, Tzu-Man; Wu, Feng-Ling; Chen, Pei-Yu; Chu, Te-Chun; Ni, Jen-Shyang; Fan, Miao-Syuan; Lo, Yih-Hsing; Ho, Kuo-Chuan; Lin, Jiann T

    2015-01-01

    Metal-free dyes (MD1 to MD5) containing an anthracene/phenothiazine unit in the spacer have been synthesized. The conversion efficiency (7.13 %) of the dye-sensitized solar cell using MD3 as the sensitizer reached approximately 85 % of the N719-based standard cell (8.47 %). The cell efficiency (8.42 %) of MD3-based dye-sensitized solar cells (DSSCs) with addition of chenodeoxycholic acid is comparable with that of N719-based standard cell. The MD3 water-based DSSCs using a dual-TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl)/iodide electrolyte exhibited very promising cell performance of 4.96 % with an excellent Voc of 0.77 V. PMID:25404282

  12. Electron transfer mediation by aqueous C60 aggregates in H2O2/UV advanced oxidation of indigo carmine

    NASA Astrophysics Data System (ADS)

    Ge, Ling; Moor, Kyle; Zhang, Bo; He, Yiliang; Kim, Jae-Hong

    2014-10-01

    C60 fullerene has long been known to exhibit favorable electron accepting and shuttling properties, but little is known about the possibility of electron transfer mediation by fullerene aggregates (nC60) in water. In this study, we investigated the electron shuttling capabilities of nC60 using UV/H2O2 as a model oxidation process in the presence of an electron donor, indigo carmine (IC). nC60 addition to the IC/H2O2 system was found to drastically increase IC degradation and shift the reactive oxygen species (ROS) balance, favoring the formation of superoxide and perhydroxyl radical species compared to hydroxyl radicals. Results indicate that nC60 can act as an electron mediator, where the adsorbed IC donates an electron to nC60, which is subsequently transferred to H2O2 or perhydroxyl radical.C60 fullerene has long been known to exhibit favorable electron accepting and shuttling properties, but little is known about the possibility of electron transfer mediation by fullerene aggregates (nC60) in water. In this study, we investigated the electron shuttling capabilities of nC60 using UV/H2O2 as a model oxidation process in the presence of an electron donor, indigo carmine (IC). nC60 addition to the IC/H2O2 system was found to drastically increase IC degradation and shift the reactive oxygen species (ROS) balance, favoring the formation of superoxide and perhydroxyl radical species compared to hydroxyl radicals. Results indicate that nC60 can act as an electron mediator, where the adsorbed IC donates an electron to nC60, which is subsequently transferred to H2O2 or perhydroxyl radical. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03647f

  13. Anthraquinone dyes decolorization capacity of anamorphic Bjerkandera adusta CCBAS 930 strain and its HRP-like negative mutants.

    PubMed

    Korniłłowicz-Kowalska, Teresa; Rybczyńska, Kamila

    2014-06-01

    Cultures of the anamorphic fungus Bjerkandera adusta CCBAS 930 decolorizing, in stationary cultures, 0.01 % solutions of carminic acid and Poly R-478, were characterised by a strong increase in the activity of the horseradish peroxidase (HRP-like) and manganese-dependent peroxidase (MnP) at a low activity of lignin peroxidase. Genotypically modified mutants of B. adusta CCBAS 930: 930-5 and 930-14, with total or partial loss of decolorization capabilities relative to anthraquinonic dyes, showed inhibition of the activity of HRP-like peroxidase and MnP. Whereas, compared to the parental strain, in the mutant cultures there was an increase in the activity of lignin peroxidase and laccase. The paper presents a discussion of the role of the studied enzymatic activities in the process of decolorization of anthraquinonic dyes by the strain B. adusta CCBAS 930. PMID:24415463

  14. Identification of anthraquinone coloring matters in natural red dyes by electrospray mass spectrometry coupled to capillary electrophoresis.

    PubMed

    Puchalska, Maria; Orlińska, Magdalena; Ackacha, Mohamed A; Połeć-Pawlak, Kasia; Jarosz, Maciej

    2003-12-01

    Capillary electrophoresis with UV/visible diode-array detection (DAD) and electrospray mass spectrometric (ESI-MS) detection were used for the identification of anthraquinone color components of cochineal, lac-dye and madder, natural red dyestuffs often used by ancient painters. For the purpose of such analysis, ESI-MS was found to be a much more appropriate detection technique than DAD one owing to its higher sensitivity (detection limits in the range 0.1-0.5 micro g ml(-1)) and selectivity. The method developed made it possible to identify unequivocally carminic acid and laccaic acids A, B and E as coloring matters in the examined preparations of cochineal and lac-dye, respectively. In madder, European Rubia tinctorum, alizarin and purpurin were found. The method allows the rapid, direct and straightforward identification and quantification of components of natural products used in art and could be very helpful in restoration and conservation procedures. PMID:14696204

  15. Evaluation of potential genotoxicity of five food dyes using the somatic mutation and recombination test.

    PubMed

    Sarıkaya, Rabia; Selvi, Mahmut; Erkoç, Figen

    2012-08-01

    In this study, different concentrations of five food dyes (amaranth, patent blue, carminic acid, indigotine and erythrosine) have been evaluated for genotoxicity in the Somatic Mutation and Recombination Test (SMART) of Drosophila melanogaster. Standard cross was used in the experiment. Larvae including two linked recessive wing hair mutations were chronically fed at different concentrations of the test compounds in standard Drosophila Instant Medium. Feeding ended with pupation of the surviving larvae. Wings of the emerging adult flies were scored for the presence of spots of mutant cells which can result from either somatic mutation or somatic recombination. For the evaluation of genotoxic effects, the frequencies of spots per wing in the treated series were compared to the control group, which was distilled water. The present study shows that carminic acid and indigotine demonstrated negative results while erythrosine demonstrated inconclusive results. In addition 25 mg mL(-1) concentration of patent blue and 12.5, 25 and 50 mg mL(-1) concentrations of amaranth demonstrated positive results in the SMART. PMID:22482698

  16. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study.

    PubMed

    Jamshidi, M; Ghaedi, M; Dashtian, K; Hajati, S; Bazrafshan, A A

    2016-09-01

    Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019g ZnO: Cr-NPs-AC, 3.9min sonication at 4.5, 4.8 and 4.7mgL(-1) of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R(2), adjusted and predicted R(2) for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6mgg(-1) for MG, EY and AO, respectively. PMID:27150752

  17. Method of dye removal for the textile industry

    SciTech Connect

    Stone, M.L.

    2000-07-25

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention uses an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  18. Method of dye removal for the textile industry

    DOEpatents

    Stone, Mark L.

    2000-01-01

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  19. Enhanced photocatalytic and adsorptive degradation of organic dyes by mesoporous Cu/Al2O3-MCM-41: intra-particle mesoporosity, electron transfer and OH radical generation under visible light.

    PubMed

    Pradhan, Amaresh C; Parida, K M; Nanda, Binita

    2011-07-28

    Mesoporous Cu/Al(2)O(3)-MCM-41 composite was synthesized by two step processes; in situ incorporation of high surface area mesoporous Al(2)O(3) (MA) into the framework of MCM-41 (in situ method) followed by impregnation of Cu(II) by incipient wetness method. The interesting thing is that starch was used for the first time as template for the preparation of high surface area MA. To evaluate the structural and electronic properties, these catalysts were characterized by low angle X-ray diffraction (LXRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-vis DRS, FTIR and photoluminescent (PL) spectra. The various cationic dye such as methylene blue (MB), methyl violet (MV), malachite green (MG) and rhodamine 6G (Rd 6G) of high concentration 500 mg L(-1) were degraded and adsorbed very efficiently (100%) using the 5 Cu/Al(2)O(3)-MCM-41 composite within 30 and 60 min, respectively. The high and quick removal of such concerted cationic organic dyes and also mixed dyes (MB+MV+MG+Rd 6G) by means of photocatalysis/adsorption is basically due to the combined effect three characteristics of synthesized mesoporous 5 Cu/Al(2)O(3)-MCM-41 composite. These characteristics are intra-particle mesoporosity, electron transfer and ?OH radical generation under solar light. PMID:21681290

  20. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    NASA Astrophysics Data System (ADS)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  1. Analysis of dimeric cyanine-nucleic acid dyes by capillary zone electrophoresis in N,N-dimethylacetamide as non-aqueous organic solvent.

    PubMed

    Muzikar, Jan; Rozing, Gerard; van de Goor, Tom; Eberwein, Christine; Kenndler, Ernst

    2002-03-15

    A method based on capillary zone electrophoresis is presented for the determination of the purity of commercial dimeric cyanine dyes (TOTO, YOYO, BOBO, all -1 and -3 species, LOLO-1, POPO-1) that are common as fluorescent probes for nucleic acid staining. These dyes are tetracharged cations, and have a strong tendency to interact with negatively charged centres, where they are rapidly adsorbed, especially from aqueous solutions. Thus anionic sites at the capillary wall must be avoided, and aqueous buffers are not suitable. The method introduced here avoids both complications, using non-aqueous N,N-dimethylacetamide as solvent, and suppressing the dissociation of silanol groups at the capillary surface due to selection of acidic separation conditions (20 mmol/l perchloric acid as background electrolyte). The present method enables the determination of the purity of all 10 dyes in less than 15 min. The selectivity of the method allows separation of at least five main and differentiating a number of unresolved minor contaminants as demonstrated in detail for TOTO-3 as an example. Quantitation (with 100% normalisation of the peak areas) of nine lots of this dye results in a purity between 33 and 87%. PMID:11990999

  2. Development of efficiency improved polymer-modified TiO2 for the photocatalytic degradation of an organic dye from wastewater environment

    NASA Astrophysics Data System (ADS)

    Sangareswari, Murugan; Meenakshi Sundaram, Mariappan

    2015-10-01

    In this study, the photocatalytic activity of polypyrrole-TiO2 nanocomposite was studied experimentally for the degradation of methylene blue (MB) dye under simulating solar light irradiation. To improve the photocatalytic activity of TiO2 under sunlight irradiation, conducting polymers such as polypyrrole (PPy) and its derivatives are generally used as photosensitizers. The PPy-TiO2 nanocomposite was prepared by the chemical oxidative polymerization method. The prepared nanocomposite showed better photocatalytic activity than bare TiO2 under sunlight irradiation for the degradation of MB dye. The prepared nanocomposite was subjected to characterization techniques such as SEM-EDAX, FT-IR, UV-DRS, XRD, TGA and PL spectral analysis. Different influencing operating parameters like initial concentration of dye, irradiation time, pH and amount of PPy-TiO2 nanocomposite used have also been studied. The optical density of the dye degradation was measured by UV-Visible spectrophotometer. The repeatability of photocatalytic activity was also tested. A plausible mechanism was proposed and discussed on the basis of experimental results.

  3. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    PubMed

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. PMID:26149246

  4. Preparation of Nanoporous TiO2 for Dye-Sensitized Solar Cell (DSSC) Using Various Dyes

    NASA Astrophysics Data System (ADS)

    Yuliarto, Brian; Fanani, Fahiem; Fuadi, M. Kasyful; Nugraha

    2010-10-01

    This article reports the development of organic dyes as an attempt to reduce material costs of Dye-Sensitized Solar Cell (DSSC). Indonesia, a country with variety and considerable number of botanical resources, is suitable to perform the research. Indonesian black rice, curcuma, papaya leaf, and the combination were chosen as organic dyes source. Dyes were extracted using organic solvent and adsorbed on mesoporous Titanium Dioxide (TiO2) which has been optimized in our laboratory. The best dyes light absorbance and performance obtained from papaya leaf as chlorophyll dyes that gives two peaks at 432 nm and 664 nm from UV-Vis Spectrophotometry and performance under 100 mW/cm2 Xenon light solar simulator gives VOC = 0.566 Volt, JSC = 0.24 mA/cm2, Fill Factor = 0.33, and efficiency of energy conversion 0,045%.

  5. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. PMID:26964959

  6. Optimization of Luminescent Solar Concentrators Using a Triple Dye System

    NASA Astrophysics Data System (ADS)

    Wittmershaus, Bruce P.; Bailey, Sheldon T.; Lokey, Gretchen E.; Zhang, Yu-Zhong

    2004-03-01

    A possible alternative to the expensive photovoltaic cell (PVC) is the Luminescent Solar Concentrator (LSC). A LSC is a flat, translucent plate that absorbs sunlight through embedded, highly fluorescent chromophores. About 74 percent of the fluorescence is concentrated via total internal reflection at the edges of the LSC where PVCs convert it to electricity. Cost savings are realized through the reduced area of PVC material. A typical LSC employs a single organic dye, limiting the amount of light absorbed. A multiple dye LSC absorbs more light resulting in greater optical efficiency. We report on the performance of LSCs made with one, two, or three dyes in a 20 micron thick polymer layer on a glass substrate. By varying the relative concentrations of the dyes contained within the film, fluorescence resonance energy transfer between the dyes was optimized. The triple dye LSC showed a 36 percent increase in power over that of our best single dye LSC.

  7. In vitro genotoxicity of dyes present in colored smoke munitions

    SciTech Connect

    Brooks, A.L.; Seiler, F.A.; Hanson, R.L.; Henderson, R.F. )

    1989-01-01

    Genetic toxicology studies were conducted on organic dyes and mixtures used in colored smoke munitions. The dyes studied included Solvent Red 1; two different batches (Lot 1 and Lot 2) of Disperse Red 11; terephthalic acid; and a mixture of 25 parts Solvent Red 1, 5 parts Disperse Red 11, and 16 parts terephthalic acid. The dyes were evaluated for their ability to produce mutations in Salmonella bacterial strains and in Chinese hamster ovary (CHO) cells. The dyes were also tested in CHO cells to determine cytotoxicity and the induction of sister chromatid exchanges and chromosome aberration. The mutagenic activity of the dye mixture was not significant, suggesting no synergistic interaction between the dyes. These studies demonstrated that none of the dyes was clastogenic and that a contaminant in Disperse Red 11 (Lot 2) may be responsible for the weak mutagenic activity in both mammalian and bacterial cell systems.

  8. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye

    NASA Astrophysics Data System (ADS)

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-01

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  9. The influence of Yb, B, and Ga-doped Er3+:Y3Al5O12 on solar light photocatalytic activity of TiO2 in degradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, Y.; Wang, J.; Zhang, L.; Gao, J. Q.; Wang, B. X.; Yang, Q.; Fan, P.

    2014-01-01

    Five up-conversion luminescence agents (Er3+:Y3Al5O12, Er3+:Yb n Y3 - n Al5O12, Er3+:Y3B a Al5 - a O12, Er3+:Y3Ga b Al5 - b O12, and Er3+:Yb n Y3 - n B a Ga b Al5 - a - b O12) were synthesized using sol-gel method and then the corresponding coated composites (Er3+:Y3Al5O12/TiO2, Er3+:Yb n Y3- n Al5O12/TiO2, Er3+:Y3B a Al5 - a O12/TiO2, Er3+:Y3Ga b Al5 - b O12/TiO2, and Er3+:Yb n Y3 - n B a Ga b Al5 - a - b O12/TiO2) as photocatalysts were prepared by sol-gel coating process. The XRD and SEM were used to confirm the crystalline phase and surface morphology. The UV-vis absorption and fluorescence-emission spectra were used to research the effect of doping category and amount on the up-conversion emission ability. The photocatalytic activities were detected through the degradation of Acid Red B dye in aqueous solution. Some key parameters of catalyst amount and initial concentration of organic dye on solar light photocatalytic degradation were also examined. The extensive feasibility of prepared photocatalysts in solar light degradation was detected by other organic dyes. The results suggest that the photocatalysts can be widely used in sewage treatment.

  10. Resistance status of the carmine spider mite, Tetranychus cinnabarinus and the twospotted spider mite, Tetranychus urticae to selected acaricides on strawberries.

    PubMed

    Bi, Jian-Long; Niu, Zi-Mian; Yu, Lu; Toscano, Nick C

    2016-02-01

    The carmine spider mite, Tetranychus cinnabarinus (Boisduval) and the twospotted spider mite, Tetranychus urticae Koch, are serious pests of strawberries and many other horticultural crops. Control of these pests has been heavily dependent upon chemical acaricides. Objectives of this study were to determine the resistance status of these two pest species to commonly used acaricides on strawberries in a year-round intensive horticultural production region. LC90 of abamectin for adult carmine spider mites was 4% whereas that for adult twospotted spider mites was 24% of the top label rate. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 0.5%, 0.5%, 1.4% and 83% of their respective highest label rates for carmine spider mite eggs, 0.7%, 2.7%, 12.1% and 347% of their respective highest label rates for the nymphs. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 4.6%, 11.1%, 310% and 62% of their respective highest label rates for twospotted spider mite eggs, 3%, 13%, 432,214% and 15% of their respective highest label rates for the nymphs. Our results suggest that T. cinnabarinus have developed resistance to bifenazate and that the T. urticae have developed resistance to hexythiazox. These results strongly emphasize the need to develop resistance management strategies in the region. PMID:25409919

  11. Modification of TiO₂ electrode with organic silane interposed layer for high-performance of dye-sensitized solar cells.

    PubMed

    Sewvandi, Galhenage A; Tao, Zhuoqi; Kusunose, Takafumi; Tanaka, Yasuhiro; Nakanishi, Shunsuke; Feng, Qi

    2014-04-23

    Back electron transfer from the TiO2 electrode surface to the electrolyte is the main reason behind the low-open circuit potential (Voc) and the low-fill factor (FF) of the dye-sensitized solar cells (DSSCs). Modifications to the TiO2 electrode, fabricated using {010}-faceted TiO2 nanoparticles with six different kinds of silane, are reported to decrease the back electron transfer on the TiO2 surface. The effect of alkyl chain length of hydrocarbon silanes and fluorocarbon silanes on adsorption parameters of surface coverage and adsorption constant, interfacial resistance, and photovoltaic performances were investigated. Adsorption isotherms, impedance analysis, and photovoltaic measurements were used as the investigation techniques. The reduction of back electron transfer depended on the TiO2 surface coverage by silane, alkyl chain length, and the molecular structure of the silane. Even though Voc and FF were improved, significant reduction in short-circuit photocurrent density (Jsc) was observed after silanization because of desorption of dye during silanization. A new approach, sequential adsorption process of silane and dye, was introduced to enhance Voc and FF without lowering Jsc. Heptadecafluorodecyl trimethoxy-silane showed the highest coverage on the surface of the TiO2 and had the highest effect on the performance improvement of the DSSC, where Voc, FF, and efficiency (η) were improved by 22, 8.0, and 22%, respectively. PMID:24684283

  12. Effect of mercerization and gamma irradiation on the dyeing behaviour of cotton using stilbene based direct dye

    NASA Astrophysics Data System (ADS)

    Bhatti, Ijaz Ahmad; Adeel, Shahid; Fazal-ur-Rehman; Irshad, Misbah; Abbas, Muhammad

    2012-07-01

    The dyeing behaviour of mercerized and gamma irradiated cotton fabric using stilbene based direct dye has been investigated. The fabric was treated with different concentrations of alkali to optimize the mercerization. The optimum mercerized cotton fabric was irradiated to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature, time of dyeing, pH of dyeing solutions and salt concentration were optimized. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organization (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It was found that mercerized and irradiated cotton have not only improved the colour strength but enhanced the rating of fastness properties also.

  13. Making cancer visible - Dyes in surgical oncology.

    PubMed

    Yap, Kiryu K; Neuhaus, Susan J

    2016-03-01

    Dyes share an intricate relationship with oncology. Dyes can cause cancer as chemical carcinogens, but can also be harnessed against cancer when used as diagnostic and therapeutic agents. Histopathology, imaging, and newer molecular diagnostics all rely on dyes, and their use in sentinel lymph node biopsies and intra-operative imaging has helped drive a paradigm shift in cancer surgery towards minimally-invasive and organ sparing approaches with enhanced resection accuracy. As therapeutic agents, the cytotoxicity of specific dyes can be employed in direct chemo-ablation or in photodynamic therapy. The same agent can have dual functionalities in cancer detection and treatment, in a novel field known as theranostics. This is facilitated by newer generation dyes conjugated with tumour-targeting probes such as antibodies, and these bio-conjugate agents can also incorporate nanotechnology or radio-isotopes. Further advances will be closely aligned with our increasing understanding of molecular oncology, and will form a new generation of cancer detection and treatment agents that promote precision medicine for cancer. Dyes and their roles have evolved and been reinvented, but they remain relevant as ever. This review explores the fascinating history of dyes, and their place in the state-of-the-art of oncology. PMID:26979638

  14. Efficiency Records in Mesoscopic Dye-Sensitized Solar Cells.

    PubMed

    Albero, Josep; Atienzar, Pedro; Corma, Avelino; Garcia, Hermenegildo

    2015-08-01

    The aim of the present review article is to show the progress achieved in the efficiency of dye-sensitized solar cells (DSSCs) by evolution in the structure and composition of the dye. After an initial brief description of DSSCs and the operating mechanism the major part of the present article is organized according to the type of dye, trying to show the logic in the variation of the dye structure in order to achieve strong binding on the surface of the layer of nanoparticulate TiO2 , efficient interfacial electron injection between the excited dye and the semiconductor, and minimization of the unwanted dark current processes. Besides metal complexes, including polypyridyls and nitrogenated macro rings, organic dyes and inorganic light harvesters such as quantum dots and perovskites have also been included in the review. The last section summarizes the current state of the art and provides an overview on future developments in the field. PMID:26183911

  15. Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells.

    PubMed

    Cole, Jacqueline M; Low, Kian Sing; Ozoe, Hiroaki; Stathi, Panagiota; Kitamura, Chitoshi; Kurata, Hiroyuki; Rudolf, Petra; Kawase, Takeshi

    2014-12-28

    A major deficit in suitable dyes is stifling progress in the dye-sensitised solar cell (DSC) industry. Materials discovery strategies have afforded numerous new dyes; yet, corresponding solution-based DSC device performance has little improved upon 11% efficiency, achieved using the N719 dye over two decades ago. Research on these dyes has nevertheless revealed relationships between the molecular structure of dyes and their associated DSC efficiency. Here, such structure-property relationships have been codified in the form of molecular dye design rules, which have been judiciously sequenced in an algorithm to enable large-scale data mining of dye structures with optimal DSC performance. This affords, for the first time, a DSC-specific dye-discovery strategy that predicts new classes of dyes from surveying a representative set of chemical space. A lead material from these predictions is experimentally validated, showing DSC efficiency that is comparable to many well-known organic dyes. This demonstrates the power of this approach. PMID:25011389

  16. Data Mining with Molecular Design Rules Identifies New Class of Dyes for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Cole, Jacqueline

    2014-03-01

    A major deficit in suitable dyes is stiffling progress in the dye-sensitized solar cell (DSC) industry. Materials discovery strategies have afforded numerous new dyes; yet, corresponding solution-based DSC device performance has little improved upon 11% efficiency, achieved using the N719 dye over two decades ago. Research on these dyes has nevertheless revealed relationships between the molecular structure of dyes and their associated DSC efficiency. Here, we have codified such structure-property relationships in the form of molecular dye design rules, which have been judiciously sequenced in an algorithm to enable large-scale data mining of dye structures with optimal DSC performance. For the first time, we have a DSC-specific dye-discovery strategy that predicts new classes of dyes from surveying a representative set of chemical space. A lead material from these predictions is experimentally validated herein, showing DSC efficiency that is comparable to many well-known organic dyes. This demonstrates the power of this approach.

  17. Detoxification of azo dyes in the context of environmental processes.

    PubMed

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    Azo dyes account for >70% of the global industrial demand (∼9 million tons). Owing to their genotoxic/carcinogenic potential, the annual disposal of ∼4,500,000 tons of dyes and/or degraded products is an environmental and socio-economic concern. In comparison to physico-chemical methods, microbe-mediated dye degradation is considered to be low-input, cost-effective and environmentally-safe. However, under different environmental conditions, interactions of chemically diverse dyes with metabolically diverse microbes produce metabolites of varying toxicity. In addition, majority of studies on microbial dye-degradation focus on decolorization with least attention towards detoxification. Therefore, the environmental significance of microbial dye detoxification research of past >3 decades is critically evaluated with reference to dye structure and the possible influence of microbial interactions in different environments. In the absence of ecosystem-based studies, the results of laboratory-based studies on dye degradation, metabolite production and their genotoxic impact on model organisms are used to predict the possible fate and consequences of azo dyes/metabolites in the environment. In such studies, the predominance of fewer numbers of toxicological assays that too at lower levels of biological organization (molecular/cellular/organismic) suggests its limited ecological significance. Based on critical evaluation of these studies the recommendations on inclusion of multilevel approach (assessment at multiple levels of biological organization), multispecies microcosm approach and native species approach in conjunction with identification of dye metabolites have been made for future studies. Such studies will bridge the gap between the fundamental knowledge on dye-microbe-environment interactions and its application to combat dye-induced environmental toxicity. Thus an environmental perspective on dye toxicity in the background of dye structure and effects of environmental processes has been developed. Based on past 3 decades of research on microbial dye detoxification, the current state of knowledge has been analyzed, environmental relevance of these studies was ascertained, research gaps in microbe-mediated azo dye detoxification have been identified and a research framework emphasizing a better understanding of complex interactions between dye-microbe and environmental processes has been proposed. It provides directions for undertaking environmentally sound microbial dye detoxification research. PMID:27155475

  18. Defective expression of the mu3 subunit of the AP-3 adaptor complex in the Drosophila pigmentation mutant carmine.

    PubMed

    Mullins, C; Hartnell, L M; Wassarman, D A; Bonifacino, J S

    1999-10-01

    The adaptor protein (AP) complexes AP-1, AP-2, and AP-3 mediate coated vesicle formation and sorting of integral membrane proteins in the endocytic and late exocytic pathways in mammalian cells. A search of the Drosophila melanogaster expressed sequence tag (EST) database identified orthologs of family members mammalian medium (mu) chain families mu1, mu2, and mu3, of the corresponding AP complexes, and delta-COP, the analogous component of the coatomer (COPI) complex. The Drosophila orthologs exhibit a high degree of sequence identity to mammalian medium chain and delta-COP proteins. Northern analysis demonstrated that medium chain and delta-COP mRNAs are expressed uniformly throughout fly development. Medium chain and delta-COP genes were cytologically mapped and the mu3 gene was found to localize to a region containing the pigmentation locus carmine (cm). Analysis of genomic DNA of the cm1 mutant allele indicated the presence of a large insertion in the coding region of the mu3 gene and Northern analysis revealed no detectable mu3 mRNA. Light microscopy of the cm1 mutant showed a reduction in primary, secondary, and tertiary pigment granules in the adult eye. These findings provide evidence of a role for mu3 in the sorting processes required for pigment granule biogenesis in Drosophila. PMID:10589826

  19. Influence of Exposure to Imidacloprid on Survivorship, Reproduction and Vitellin Content of the Carmine Spider Mite, Tetranychus cinnabarinus

    PubMed Central

    Zeng, Chun-Xiang; Wang, Jin-Jun

    2010-01-01

    Occasional reports linking neonicotinoid insecticide applications to field population outbreaks of the spider mite have been a topic of concern for integrated pest management programs. To elucidate the impacts of a neonicotinoid insecticide on the carmine spider mite, Tetranychus cinnabarinus Boisduval (Acari: Tetranychidae), the survivorship, reproduction, and vitellin contents of the mite were investigated after exposure to various concentrations of imidacloprid on the V. unguiculata leaf discs at 25°C, 80% RH and a photoperiod of 14:10 (L:D) in the laboratory. The results showed that the field-relevant dose of imidacloprid did not significantly affect the hatch rate of eggs or pre-imaginal survivorship of the mite, while sublethal doses of imidacloprid, previously determined for Myzus persicae, led to a significant increase in the hatch rate of eggs and pre-imaginal survivorship of the mite compared to the untreated control. Adult longevity and fecundity of T. cinnabarinus for imidacloprid-treated populations were slightly prolonged and increased, respectively, but the difference from the untreated control was not significant. The vitellin content in eggs increased significantly after exposure to imidacloprid. Imidacloprid may be one of the major reasons for the outbreak of T. cinnabarinus in the field. PMID:20578884

  20. Organization of supramolecular assemblies of fullerene, porphyrin and fluorescein dye derivatives on TiO 2 nanoparticles for light energy conversion

    NASA Astrophysics Data System (ADS)

    Hasobe, Taku; Hattori, Shigeki; Kamat, Prashant V.; Urano, Yasuteru; Umezawa, Naoki; Nagano, Tetsuo; Fukuzumi, Shunichi

    2005-12-01

    TiO 2 nanoparticles were modified with a porphyrin derivative, 5-[4-benzoic acid]-10,15,20-tris[3,5-di- tert-butylphenyl]-21 H,23 H-porphyrin ( H2P- COOH), and fluorescein derivatives, 9-[2-(3-carboxy-9,10-diphenyl)anthryl]-2,7-difluoro-6-hydroxy-3 H-xanthen-3-one ( DPAX- COOH) and 2',7'-difluorofluorescein ( FL- COOH). The dye-modified TiO 2 nanoparticles were deposited on nanostructured OTE/SnO 2 (OTE: optically transparent electrodes) together with nanoclusters of fullerene (C 60) from acetonitrile/toluene (3:1, v/v) using an electrophoretic deposition technique. The dye-modified TiO 2 composite electrodes [OTE/SnO 2/(dye + C 60) n] have broad as well as high absorbance properties in the visible region, exhibiting the photo response under visible light excitation using I3-/I- redox couple. The incident photon to photocurrent efficiency (IPCE) for these electrodes increases in order: OTE/SnO 2/( H2P) n < OTE/SnO 2/( H2P- COO- TiO2) n < OTE/SnO 2/( H2P- COO- TiO2 + C 60). The IPCE value can be further improved by replacing H2P- COOH with a fluorescein derivative containing an electron donor moiety: DPAX- COOH ( DPA: diphenylanthracene). The maximum IPCE value (42%) is obtained for OTE/SnO 2/( DPAX- COO- TiO2 + C 60) n under the bias of 0.2 V vs. SCE.

  1. Enhancement of solar light photocatalytic activity of TiO2-CeO2 composite by Er3+:Y3Al5O12 in organic dye degradation

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Zhang, L.; Wang, J.; Li, Y.; Ma, C. H.

    2014-12-01

    The Er3+:Y3Al5O12, as an upconversion luminescence agent which is able to transform the visible part of the solar light to ultraviolet light, was prepared by nitrate-citrate sol-gel method. A novel solar light photocatalyst, Er3+:Y3Al5O12/TiO2-CeO2 composite was synthesized using ultrasonic treatment. The X-ray diffraction (XRD) and scanning election microscopy (SEM) were used to characterize the structural morphology of the Er3+:Y3Al5O12/TiO2-CeO2 composite. In order to evaluate the solar light photocatalytic activity of Er3+:Y3Al5O12/TiO2-CeO2 composite, the Azo Fuchsine dye was used as a model organic pollutant. The progress of the degradation reaction was monitored by UV-Vis spectroscopy and ion chromatography. The key influences on the solar light photocatalytic activity of Er3+:Y3Al5O12/TiO2-CeO2 were studied, such as Ti/Ce molar ratio, heat-treatment temperature and heat-treatment time. Otherwise, the effects of initial dye concentration, Er3+:Y3Al5O12/TiO2-CeO2 amount, solar light irradiation time and the nature of the dye on the solar light photocatalytic degradation process were investigated. It was found that the solar light photocatalytic activity of Er3+:Y3Al5O12/TiO2-CeO2 composite was superior to Er3+:Y3Al5O12/TiO2 and Er3+:Y3Al5O12/CeO2 powder in the similar conditions.

  2. Rational design of hyperbranched 3D heteroarrays of SrS/CdS: synthesis, characterization and evaluation of photocatalytic properties for efficient hydrogen generation and organic dye degradation

    NASA Astrophysics Data System (ADS)

    Khan, Ziyauddin; Chetia, Tridip Ranjan; Qureshi, Mohammad

    2012-05-01

    Hyperbranched 3D SrS/CdS nanostructures were synthesized using a one pot hydrothermal method. Transmission Electron Microscopy (TEM) and Field Emission-Scanning Electron Microscopy (FE-SEM) analysis showed the formation of flower-like structure and the crystalline phase was confirmed by powder X-ray diffraction. The prepared 3D SrS/CdS exhibited improved photocatalytic activity for water splitting leading to H2 generation (AQY 10%) and nearly complete degradation of methyl orange (MO) dye. The dye degradation followed first order kinetics and the apparent reaction rate constant (kapp) was 0.136 min-1. The present 3D SrS/CdS structure promise to be efficient photocatalysts due to (i) the facile intersystem charge transfer resulting from their band alignment (ii) enhanced specific surface area and (iii) crystallinity.Hyperbranched 3D SrS/CdS nanostructures were synthesized using a one pot hydrothermal method. Transmission Electron Microscopy (TEM) and Field Emission-Scanning Electron Microscopy (FE-SEM) analysis showed the formation of flower-like structure and the crystalline phase was confirmed by powder X-ray diffraction. The prepared 3D SrS/CdS exhibited improved photocatalytic activity for water splitting leading to H2 generation (AQY 10%) and nearly complete degradation of methyl orange (MO) dye. The dye degradation followed first order kinetics and the apparent reaction rate constant (kapp) was 0.136 min-1. The present 3D SrS/CdS structure promise to be efficient photocatalysts due to (i) the facile intersystem charge transfer resulting from their band alignment (ii) enhanced specific surface area and (iii) crystallinity. Electronic supplementary information (ESI) available: Schematic experimental setup for photocatalytic hydrogen generation, TEM of CdS NWs and SrS NPs, FESEM images of 3D SrS/CdS, Low resolution TEM images for 3D SrS/CdS, EDX and SAED, SEM of SrS/CdS at different ratios, progress of hydrogen production at different time interval, different UV-Vis absorption spectra of MO. See DOI: 10.1039/c2nr30666b

  3. Characteristics and photocatalytic activity of TiO2 thin film sensitized with a porphyrin dye.

    PubMed

    Yao, K S; Wang, D Y; Chang, C Y; Ho, W Y; Yang, L Y

    2008-05-01

    In this study, a novel porphyrin dye, 5, 10, 15, 20-tetraphenyl-21H, 23H-porphine nickel (TPPN) doped TiO2 (TiO2/TPPN) thin film with visible light respondency was prepared using a sol-gel method and characterized with XRD, SEM, UV-Vis instruments. The observation showed that the absorption edge of TPPN dye-doped thin film shifted into the visible light region. The photocatalytic indigo carmine degradation results showed that under visible light irradiation (lambda > 400 nm) for 6 hrs, the photocatalytic activity of TiO2 thin film sensitized with 200 microM of TPPN dye showed the best performance, with an indigo degradation ratio up to 96%. Moreover, the TiO2/TPPN thin film showed a relevant photocatalytic bactericidal effect on Erwinia carotovora subsp. carotovora 7 induced vegetable soft rot disease in the visible spectral region. Evidence for the photocatalytic disinfection technique against a plant pathogen under visible light irradiation will have potential for direct application in future control of plant diseases in irrigation water systems. PMID:18572711

  4. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  5. Upconverting Organic Dye Doped Core-Shell Nano-Composites for Dual-Modality NIR Imaging and Photo-Thermal Therapy

    PubMed Central

    Shan, Guobin; Weissleder, Ralph; Hilderbrand, Scott A.

    2013-01-01

    Nanotechnology approaches offer the potential for creating new optical imaging agents with unique properties that enable uses such as combined molecular imaging and photo-thermal therapy. Ideal preparations should fluoresce in the near-infrared (NIR) region to ensure maximal tissue penetration depth along with minimal scattering and light absorption. Due to their unique photophysical properties, upconverting ceramics such as NaYF4:Er3+,Yb3+ nanoparticles have become promising optical materials for biological imaging. In this work, the design and synthesis of NaYF4:Er3+,Yb3+@SiO2 core-shell nano-composites, which contain highly absorbing NIR carbocyanine dyes in their outer silica shell, are described. These materials combine optical emission (from the upconverting core nanoparticle) with strong NIR absorption (from the carbocyanine dyes incorporated into the shell) to enable both optical imaging and photo-thermal treatment, respectively. Ultimately, this hybrid composite nanomaterial approach imparts the ability to both visualize, via upconversion imaging, and treat, via photo-thermal heating, using two distinct optical channels. Proof-of-principle in vitro experiments are presented to demonstrate the combined imaging and photo-thermal properties of this new functional nano-composite. PMID:23606913

  6. Two-photon Absorption and Nonlinear Optical Properties of a New Organic Dye Trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methylpyridinium p-toluene Sulfonate

    NASA Astrophysics Data System (ADS)

    Zhou, Guangyong; Ren, Yan; Wang, Chun; Wang, Dong; Zhao, Xian; Shao, Zongshu; Jiang, Minhua

    2001-03-01

    Trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methylpyridinium p-toluene sulfonate (abbreviated as HMASPS) is a newly synthesized dye that possesses a much greater two-photon-absorption (TPA) cross-section and much stronger upconversion fluorescence emission than common dyes (such as rhodamine) when excited with near infrared laser radiation. TPA induced upconverted lasing has been obtained in HMASPS solution in dim eth ylformamide (abbreviated as DMF) pumped by near infrared laser beam from 900 to 1150 nm. The central wavelength and bandwidth of the lasing are 626 nm and 26 nm. The upconversion efficiencies of 1cm-path HMASPS solution in DMF at 0.05 mol/l concentration at different wavelengths from 900 to 1150 nm were measured. The net upconversion efficiency from the absorbed pump energy to the upconverted lasing output was 14% at the pump energy level of 2.04 mJ when the pump laser beam was provided by Nd:YAG laser. The molecular TPA cross-section at 1064 nm was ?2=6.010-48 cm4{\\cdot}s/photon measured by using an open aperture Z-scan system. The linear absorption, single-photon induced fluorescence, two-photon induced fluorescence and two-photon induced upconverted lasing properties have also been studied in this paper.

  7. Low temperature (150 °C) fabrication of high-performance TiO{sub 2} films for dye-sensitized solar cells using ultraviolet light and plasma treatments of TiO{sub 2} paste containing organic binder

    SciTech Connect

    Zen, Shungo Ono, Ryo; Inoue, Yuki

    2015-03-14

    Dye-sensitized solar cells (DSSCs) require annealing of TiO{sub 2} photoelectrodes at 450 °C to 550 °C. However, such high-temperature annealing is unfavorable because it limits the use of materials that cannot withstand high temperatures, such as plastic substrates. In our previous paper, a low-temperature annealing technique of TiO{sub 2} photoelectrodes using ultraviolet light and dielectric barrier discharge treatments was proposed to reduce the annealing temperature from 450 °C to 150 °C for a TiO{sub 2} paste containing an organic binder. Here, we measure the electron diffusion length in the TiO{sub 2} film, the amount of dye adsorption on the TiO{sub 2} film, and the sheet resistance of a glass substrate of samples manufactured with the 150 °C annealing method, and we discuss the effect that the 150 °C annealing method has on those properties of DSSCs.

  8. Bi-anchoring organic sensitizers of type D-(π-A)₂ comprising thiophene-2-acetonitrile as π-spacer and malonic acid as electron acceptor for dye sensitized solar cell applications.

    PubMed

    Reddy, Gachumale Saritha; Ramkumar, Sekar; Asiri, Abdullah M; Anandan, Sambandam

    2015-06-15

    Two new bi-anchoring organic sensitizers of type D-(π-A)2 comprising the identical π-spacer (thiophene-2-acetonitrile) and electron acceptor (malonic acid) but different aryl amine as electron donors (diphenylamine and carbazole) were synthesized, characterized and fabricated metal free dye-sensitized solar cell devices. The intra molecular charge transfer property and electrochemical property of these dyes were investigated by molecular absorption, emission, cyclic voltammetric experiments and in addition, quantum chemical calculation studies were performed to provide sufficient driving force for the electron injection into the conduction band of TiO2 which leads to efficient charge collection. Among the fabricated devices, carbazole based device exhibits high current conversion efficiency (η=4.7%) with a short circuit current density (JSC) 15.3 mA/cm(2), an open circuit photo voltage (VOC) of 0.59 V and a fill factor of 0.44 under AM 1.5 illumination (85 mW/cm(2)) compared to diphenylamine based device. PMID:25801442

  9. Bi-anchoring organic sensitizers of type D-(π-A)2 comprising thiophene-2-acetonitrile as π-spacer and malonic acid as electron acceptor for dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Reddy, Gachumale Saritha; Ramkumar, Sekar; Asiri, Abdullah M.; Anandan, Sambandam

    2015-06-01

    Two new bi-anchoring organic sensitizers of type D-(π-A)2 comprising the identical π-spacer (thiophene-2-acetonitrile) and electron acceptor (malonic acid) but different aryl amine as electron donors (diphenylamine and carbazole) were synthesized, characterized and fabricated metal free dye-sensitized solar cell devices. The intra molecular charge transfer property and electrochemical property of these dyes were investigated by molecular absorption, emission, cyclic voltammetric experiments and in addition, quantum chemical calculation studies were performed to provide sufficient driving force for the electron injection into the conduction band of TiO2 which leads to efficient charge collection. Among the fabricated devices, carbazole based device exhibits high current conversion efficiency (η = 4.7%) with a short circuit current density (JSC) 15.3 mA/cm2, an open circuit photo voltage (VOC) of 0.59 V and a fill factor of 0.44 under AM 1.5 illumination (85 mW/cm2) compared to diphenylamine based device.

  10. Theoretical study of acene-bridged dyes for dye-sensitized solar cells.

    PubMed

    Li, Minjie; Kou, Li; Diao, Ling; Zhang, Qing; Li, Zhonggao; Wu, Qiang; Lu, Wencong; Pan, Dengyu

    2015-04-01

    The electronic structures and absorption spectra for a series of acene-based organic dyes and the adsorption energy and optical properties for these dyes adsorbed on (TiO2)38 have been investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The effects of acene units and different substitution positions of electron donors on the optoelectronic properties of the acene-modified dyes are demonstrated. The photophysical properties of tetracene- and pentacene-based dyes are found to be tuned by changing the size of acene and the substitution position of the donor. The donor sites have a significant influence on the absorption wavelength mainly because of different molecular orbital (MO) contributions of the highest occupied molecular orbital (HOMO) on the bridging acene units, and the increasing MO contribution would lead to the red shift in the absorption spectra. Meanwhile, the donor is located close to the center of the π-conjugated bridge, and the absorption spectra are extended. The adsorption energy and optical properties of tetracene- and pentacene-based dyes adsorbed on (TiO2)38 suggest that acene-bridged dyes could be adsorbed on the TiO2 surface and inject electrons into semiconductors effectively. Then the results obtained from the hexacene-based dyes confirm the conclusions proposed from the tetracene- and pentence-based dyes. This study will provide a useful reference to the future design and optimization of acene dyes for dye-sensitized solar cell applications. PMID:25756752

  11. Oxazine laser dyes

    DOEpatents

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  12. Diode-pumped dye laser analysis and design

    NASA Astrophysics Data System (ADS)

    Benfey, D. P.; Brown, D. C.; Davis, S. J.; Piper, L. G.; Foutter, R. F.

    1992-11-01

    A feasibility study of diode pumping organic dye lasers (DPDL) is presented. Two dyes were selected from a number of candidate laser dyes operating in the visible to near-infrared spectrum to obtain the critical parameters including absorption/emission spectra, radiative lifetimes, and quantum yields. These parameters were used in the design analysis for efficient operation of a DPDL. A conceptual design for a synchronously pumped dye laser has been developed which is based on diode arrays modulated in such a way that an array pulse width is of the order of a nanosecond, and a repetition rate is adjusted so that the pump pulse arrives at the dye cell coincident with the circulating dye pulse.

  13. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  14. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  15. Molecular design of the diketopyrrolopyrrole-based dyes with varied donor units for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zang, Xu-Feng; Huang, Zu-Sheng; Wu, Han-Lun; Iqbal, Zafar; Wang, Lingyun; Meier, Herbert; Cao, Derong

    2014-12-01

    Three types of novel diketopyrrolopyrrole-based organic dyes (Type 1-3) with phenyl unit as an additional π-bridge and triphenylamine or phenothiazine as the donors are designed and synthesized for dye-sensitized solar cells (DSSCs). Type 1 dyes incorporating the donor segment directly to the diketopyrrolopyrrole core lead to a better electron communication between the donor and acceptor, allowing an efficient charge transfer process. Type 2 and Type 3 dyes with a phenyl unit between the donor and diketopyrrolopyrrole unit show lower delocalization of the excited state. Compared with Type 3 dyes, Type 1 dyes exhibit higher conjugated skeleton co planarity and shorter electron transfer distance from the donor to TiO2, resulting in the red-shifts of absorption and promotion of electron injection, respectively. Moreover, the dyes with triphenylamine as the donor display better UV performance and lower trend of aggregation than the dyes with phenothiazine as the donor. Finally, a power conversion efficiency of 8% with chenodeoxycholic acid as the co-absorbant for the DSSC based on Type 1 dyes with triphenylamine is achieved. The results reveal that the donors, the position and number of phenyl unit of the dyes significantly influence the photovoltaic performance of their DSSCs.

  16. Solid state dye lasers with scattering feedback

    NASA Astrophysics Data System (ADS)

    Costela, A.; Cerdán, L.; García-Moreno, I.

    2013-11-01

    Over the last decade, significant advances have been made toward the development of practical, tunable solid state dye lasers, which resulted in improved lasing efficiency with reduced dye photodegradation. To achieve this goal, a “chemical” approach was followed, where attention was focused onto the particular dye/host interaction and compatibility, specifically choosing already existing hosts for a given dye, synthesizing new dyes and/or matrices, or chemically modifying existing ones. Nevertheless, this approach was limited by a single fact learnt from the experience: there is no universal matrix which optimizes the efficiency and photostability of all dyes. This limitation could be overcome by following a “physical” approach, where the emission properties of the active medium are tailored by means of physical and structural modifications of the dye host. Following this approach, in this paper recent theoretical and experimental work is reviewed where it is demonstrated that following a simultaneous “physical” and “chemical” approach to tailor the emission properties of the host materials for solid state dye lasers, may lead, under specific circumstances, to the improvement of both the laser efficiency and photostability. In particular, it is demonstrated that optical scattering is not always detrimental either to conventional bulk lasers (laser rods or colloidal suspensions) or to integrated devices, but may give place, on the contrary, to dramatic improvements in the laser operation of organic (hybrid) laser rods, and to alternative ways of obtaining laser light from integrated devices based on the phenomenon of coherent random lasing, where feedback is provided by light scattering in an appropriate medium, without the need to manufacture complex periodic structures in the substrate. The processing and pumping flexibility of these materials, together with their low cost and capability of efficient emission across the whole visible spectrum makes them very attractive for the fabrication and development of coherent light sources suitable for integration in optoelectronic and disposable spectroscopic and sensing devices.

  17. A green-chemical synthetic route to fabricate a lamellar-structured Co/Co(OH)2 nanocomposite exhibiting a high removal ability for organic dye.

    PubMed

    Wu, Longyun; Liu, Yuhua; Zhang, Lishu; Zhao, Lijun

    2014-04-14

    A novel lamellar-structured Co/Co(OH)2 nanocomposite was synthesized with a room-temperature solution-phase reduction method. A possible reaction mechanism and shape evolutionary process for the Co/Co(OH)2 nanocomposite were supposed. The Co/Co(OH)2 nanocomposite shows a ferromagnetic behavior. Congo red (CR) was used to evaluate the Co/Co(OH)2 nanocomposite wastewater treatment capability. It was found that 150 ppm of CR could be removed from an aqueous solution within 10 min using the Co/Co(OH)2 nanocomposite, and the adsorption maximum is 2058 mg g(-1) which is higher than all previously reported values. The significantly reduced treatment time required to remove the CR and the simple, low-cost and pollution-free preparation method make the Co/Co(OH)2 nanocomposite promising for use in the highly efficient removal of dyes from wastewater. PMID:24519445

  18. Peculiarities of the photovoltaic properties of films based on photoconducting polymer and organic dye in samples with free surfaces and between electric contacts

    NASA Astrophysics Data System (ADS)

    Bulavko, G. V.; Davidenko, N. A.; Ishchenko, A. A.; Studzinsky, S. L.; Shkavro, A. G.

    2015-02-01

    Composite films based on a carbazolyl-containing oligomer with polymethine dye additives exhibit a change in the magnitude and sign of the photovoltaic response on the passage from the samples with free surfaces to sandwich structures. It is concluded that the photovoltaic effect in the former case is determined by the diffusion of positive charge carriers possessing higher mobility, while in the latter case this effect is controlled by a significant drift of carriers in the electric field created by different work functions of the charge-collecting electrodes. It is shown that the photovoltaic effect also takes place in a nonphotoconducting polymer (polyvinyl ethylal). However, neither the sign nor magnitude of the effect in this case change on the passage from the samples with free surfaces to sandwich structures.

  19. Interactions of Enolizable Barbiturate Dyes.

    PubMed

    Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan

    2016-04-11

    The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1) H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. PMID:26945529

  20. Application of video recording technology to improve husbandry and reproduction in the carmine bee-eater (Merops n. nubicus).

    PubMed

    Ferrie, Gina M; Sky, Christy; Schutz, Paul J; Quinones, Glorieli; Breeding, Shawnlei; Plasse, Chelle; Leighty, Katherine A; Bettinger, Tammie L

    2016-01-01

    Incorporating technology with research is becoming increasingly important to enhance animal welfare in zoological settings. Video technology is used in the management of avian populations to facilitate efficient information collection on aspects of avian reproduction that are impractical or impossible to obtain through direct observation. Disney's Animal Kingdom(®) maintains a successful breeding colony of Northern carmine bee-eaters. This African species is a cavity nester, making their nesting behavior difficult to study and manage in an ex situ setting. After initial research focused on developing a suitable nesting environment, our goal was to continue developing methods to improve reproductive success and increase likelihood of chicks fledging. We installed infrared bullet cameras in five nest boxes and connected them to a digital video recording system, with data recorded continuously through the breeding season. We then scored and summarized nesting behaviors. Using remote video methods of observation provided much insight into the behavior of the birds in the colony's nest boxes. We observed aggression between birds during the egg-laying period, and therefore immediately removed all of the eggs for artificial incubation which completely eliminated egg breakage. We also used observations of adult feeding behavior to refine chick hand-rearing diet and practices. Although many video recording configurations have been summarized and evaluated in various reviews, we found success with the digital video recorder and infrared cameras described here. Applying emerging technologies to cavity nesting avian species is a necessary addition to improving management in and sustainability of zoo avian populations. Zoo Biol. 35:76-82, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661620

  1. Improvement of catalytic activity of Fe3O4/CuO/TiO2 nanocomposites using the combination of ultrasonic and UV light irradiation for degradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Fauzian, Malleo; Taufik, Ardiansyah; Saleh, Rosari

    2016-04-01

    Iron-copper-titania mixed oxides was synthesized with Fe3O4/CuO to various TiO2 molar ratio using sol-gel method at low temperature and the intrinsic characteristics were studied by a variety of techniques such as X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and BET surface area analyzer. The results demonstrate that all samples contained Fe3O4, CuO and TiO2 structures and exhibited ferromagnetic behavior at room temperature. In this study, methylene blue is used as a model of organic dyes. The degradation of methylene blue was observed using sonocatalysis and photocatalysis systems simultaneously. The experimental results showed that kinetic data followed the pseudo-first order model and the apparent rate constant of simultaneously processes of sonocatalysis and photocatalysis is higher than the respective individual processes.

  2. Detection of reactive oxygen species (ROS) generated by TiO2(R), TiO2(R/A) and TiO2(A) under ultrasonic and solar light irradiation and application in degradation of organic dyes.

    PubMed

    Guo, Yuwei; Cheng, Chunping; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Li, Kai; Kang, Pingli; Gao, Jingqun

    2011-08-30

    In the present work, the rutile, anatase and mixed (rutile and anatase) crystal phase TiO(2) powders were irradiated by ultrasound and solar light, respectively, and the generation of reactive oxygen species (ROS) were detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). The DPCO can be extracted by the mixed solvent of benzene and carbon tetrachloride and the extract liquors display an obvious absorption peak around 563nm. In addition, the influences of (ultrasonic or solar light) irradiation time, TiO(2) addition amount and DPCI concentration on the quantities of generated ROS were also reviewed. The kinds of generated ROS were determined by using several radical scavengers. At last, the researches on the sonocatalytic and photocatalytic degradation of several organic dyes were also performed. It is wished that this paper might offer some important subjects for broadening the applications of sonocatalytic and photocatalytic technologies. PMID:21700389

  3. Adaptation for improving lifetime of dye laser using coumarin dyes

    SciTech Connect

    Fletcher, A.N.

    1984-10-23

    The effective lasing lifetime of laser dyes including coumarin dyes are significantly extended by the use of an inert cover gas for the laser dye solution such as argon in combination with the employment of a glass filter such as Pyrex disposed between the pumping flash lamp and the dye laser cavity capable of absorbing electromagnetic radiation of about 300 nanometers or shorter wavelength.

  4. TEXTILE DYES AND DYEING EQUIPMENT: CLASSIFICATION, PROPERTIES, AND ENVIRONMENTAL ASPECTS

    EPA Science Inventory

    The report gives results of a study of available information on textile dyeing equipment, dyeing procedures, and dye chemistry, to serve as background data for estimating the properties and evaluating the associated risks of new commercial dyestuffs. It reports properties of dyes...

  5. Matrix-assisted laser desorption/ionization mass spectrometric analysis of poly(3,4-ethylenedioxythiophene) in solid-state dye-sensitized solar cells: comparison of in situ photoelectrochemical polymerization in aqueous micellar and organic media.

    PubMed

    Zhang, Jinbao; Ellis, Hanna; Yang, Lei; Johansson, Erik M J; Boschloo, Gerrit; Vlachopoulos, Nick; Hagfeldt, Anders; Bergquist, Jonas; Shevchenko, Denys

    2015-04-01

    Solid-state dye-sensitized solar cells (sDSCs) are devoid of such issues as electrolyte evaporation or leakage and electrode corrosion, which are typical for traditional liquid electrolyte-based DSCs. Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most popular and efficient p-type conducting polymers that are used in sDSCs as a solid-state hole-transporting material. The most convenient way to deposit this insoluble polymer into the dye-sensitized mesoporous working electrode is in situ photoelectrochemical polymerization. Apparently, the structure and the physicochemical properties of the generated conducting polymer, which determine the photovoltaic performance of the corresponding solar cell, can be significantly affected by the preparation conditions. Therefore, a simple and fast analytical method that can reveal information on polymer chain length, possible chemical modifications, and impurities is strongly required for the rapid development of efficient solar energy-converting devices. In this contribution, we applied matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the analysis of PEDOT directly on sDSCs. It was found that the PEDOT generated in aqueous micellar medium possesses relatively shorter polymeric chains than the PEDOT deposited from an organic medium. Furthermore, the micellar electrolyte promotes a transformation of one of the thiophene terminal units to thiophenone. The introduction of a carbonyl group into the PEDOT molecule impedes the growth of the polymer chain and reduces the conductivity of the final polymer film. Both the simplicity of sample preparation (only application of the organic matrix onto the solar cell is needed) and the rapidity of analysis hold the promise of making MALDI MS an essential tool for the physicochemical characterization of conducting polymer-based sDSCs. PMID:25751409

  6. Green synthesis of the reduced graphene oxide-CuI quasi-shell-core nanocomposite: A highly efficient and stable solar-light-induced catalyst for organic dye degradation in water

    NASA Astrophysics Data System (ADS)

    Choi, Jiha; Reddy, D. Amaranatha; Islam, M. Jahurul; Seo, Bora; Joo, Sang Hoon; Kim, Tae Kyu

    2015-12-01

    Surfactant-free, reduced graphene oxide (RGO)-CuI quasi-shell-core nanocomposites were successfully synthesized using ultra-sonication assisted chemical method at room temperature. The morphologies, structures and optical properties of the CuI and CuI-RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), UV-visible absorption spectroscopy, and photoluminescence (PL) spectroscopy. Morphological and structural analyses indicated that the CuI-RGO core-shell nanocomposites comprise single-crystalline face-centered cubic phase CuI nanostructures, coated with a thin RGO quasi-shell. Photocatalysis experiments revealed that the as-synthesized CuI-RGO nanocomposites exhibit remarkably enhanced photocatalytic activities and stabilities for photo degradation of Rhodamine-B (RhB) organic dye under simulated solar light irradiation. The photo degradation ability is strongly affected by the concentration of RGO in the nanocomposites; the highest photodegradation rate was obtained at a graphene loading content of 2 mg mL-1 nanocomposite. The remarkable photocatalytic performance of the CuI-RGO nanocomposites mainly originates from their unique adsorption and electron-accepting and electron-transporting properties of RGO. The present work provides a novel green synthetic route to producing CuI-RGO nanocomposites without toxic solvents or reducing agents, thereby providing highly efficient and stable solar light-induced RGO-CuI quasi-shell-core nanocomposites for organic dye photo degradation in water.

  7. [Aqueous Fingerprint of Printing and Dyeing Wastewater].

    PubMed

    Wang, Shi-feng; Wu, Jing; Cheng, Cheng; Yang, Lin; Zhao, Yu-fei; Lü, Qing; Fu, Xin-mei

    2015-12-01

    Aqueous fingerprint has an advantage to represent the organic components of water samples as compared to traditional parameters such as chemical oxygen demand (COD) and total organic carbon (TOC). Printing and dyeing wastewater is one of the major types of industrial wastewater in China. It is of huge volume and heavy pollution, containing large numbers of luminescent components and being difficult to be degraded. In this study the aqueous fingerprint of printing and dyeing wastewater was investigated with the fluorescent spectrometry. The experimental results showed that there existed two peaks in the aqueous fingerprint of the printing and dyeing wastewater, locating at the excitation/emission wavelength around 230/340 nm and 280/310 nm respectively. The intensity of the excitation/emission wavelength at 230/340 nm was higher than that of 280/310 nm. The locations and intensities of peaks varied within small range. The intensities of the two peaks linearly correlated with coefficient of 0.910 8 and slope of 1.506. The intensity ratio of Peak at 280/310 nm to Peak at 230/340 nm averagely was 0.777, ranging between 0.712 and 0.829. It was found that the aqueous fingerprints of sewage and aniline compounds were significantly different from that of the printing and dyeing wastewater, but the aqueous fingerprints of several types of widely-used dye were similar to that of the printing and dyeing wastewater. Thus dye may be the main luminescent components in the wastewater. The aqueous fingerprint can be used as a novel tool of early warning of waterbodies. PMID:26964226

  8. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  9. Chemical stabilization of laser dyes

    NASA Astrophysics Data System (ADS)

    Koch, Tad H.

    1987-05-01

    Coumarin laser dyes upon excitation degrade to produce products which absorb at the lasing wavelength. This results in attenuation of dye laser output through interference of stimulated emission. The roles of singlet oxygen and excitation intensity on dye degradation were explored. Singlet oxygen is formed but its reactions with the dye do not appear to be a major cause of dye laser output deterioration. High light intensity results in dye sensitized, solvent oligomerization to yield materials which interfere with dye stimulated emission. 1, 4-Diazabicyclo2,2,2octane (DABCO)inhibits this oligomerization.

  10. Quirks of dye nomenclature. 3. Trypan blue.

    PubMed

    Cooksey, C J

    2014-11-01

    Trypan blue is colorant from the 19(th) century that has an association with Africa as a chemotherapeutic agent against protozoan (Trypanosomal) infections, which cause sleeping sickness. The dye still is used for staining biopsies, living cells and organisms, and it also has been used as a colorant for textiles. PMID:24867494

  11. Hair dye poisoning

    MedlinePlus

    ... are: Arsenic Bismuth Denatured alcohol Lead ( lead poisoning ) Mercury Pyrogallol Silver Hair dyes may contain other harmful ... bleeding and infection. Continued exposure to lead or mercury can lead to permanent brain and nervous system ...

  12. DFT study of the effect of different metals on structures and electronic spectra of some organic-metal compounds as sensitizing dyes

    NASA Astrophysics Data System (ADS)

    Tang, Guodong; Li, Rongqing; Kou, Shanshan; Tang, Tingling; Zhang, Yu; Wang, Yiwei

    2014-02-01

    Ruthenium polypyridined-derivative complexes are used in dye-sensitized solar cell [DSSC] as a light to current conversion sensitizer. In order to lower the cost of the DSSC the normal transition metals were used to replace the noble metal ruthenium, and some compounds [ML2L'] (M = Pt, Fe, Ni, Zn; L = isonicotinic acid, L' = maleonitriledithiolate, I = PtL2L', II = FeL2L', III = NiL2L', IV = ZnL2L') were selected as the replacement. The geometries, electronic structures and optical absorption spectra of these compounds have been studied by using density functional theory (DFT) calculation at the B3LYP/LANL2DZ, B3P86/LANL2DZ, B3LYP/GEN level of theory. All the geometric parameters are close to the experimental values. The HOMOs are mainly on the maleonitriledithiolate groups mixed with fewer characters of the metal atom, the LUMOs are mainly on the two pyridine ligands. This means that the electron transition is attributed to the LLCT. The maximum absorptions of complexes are found to be at 351 nm, 806 nm for compound I, and 542 nm for compound II. The maximum absorptions of complexes are found to be at 884 nm for compound III, and 560 nm for compound IV. This means that those compounds may be as a suitable sensitizer for solar energy conversion applications.

  13. Facile water-stability evaluation of metal-organic frameworks and the property of selective removal of dyes from aqueous solution.

    PubMed

    Qi, Zhao-Peng; Yang, Ji-Min; Kang, Yan-Shang; Guo, Fan; Sun, Wei-Yin

    2016-06-01

    A facile and universal method was developed to evaluate the relative water stability of porous MOFs and morphological evolution was achieved by controlling the volume ratio of DMF and H2O. The relative water stability of the studied MOFs is in the order HKUST-1 > MOF-505 ∼ UMCM-150 > NOTT-101 > DUT-23(Cu) > [Zn2(BPnDC)2(DABCO)] ∼ [Cu3(TPTrC)2(DABCO)] > MOF-5. In addition, DUT-23(Cu) [Cu6(BTB)4(BPY)3] (H3BTB = 4,4',4''-benzene-1,3,5-triyl-tribenzoic acid, BPY = 4,4'-bipyridine) nanoparticles obtained with a volume ratio of DMF and H2O of 18 : 2 show excellent adsorption capacity for methylene blue (MB) (814 mg g(-1)) with high selectivity compared with methyl orange, rhodamine B, and acid chrome blue K dyes due to the size and the electrostatic repulsion effects in aqueous solution. PMID:27139895

  14. Improvement of sonocatalytic activity of TiO2 by using Yb, N and F-doped Er3+:Y3Al5O12 for degradation of organic dyes.

    PubMed

    Wang, Jian; Zhou, Songying; Wang, Jun; Li, Shuguang; Gao, Jingqun; Wang, Baoxin; Fan, Ping

    2014-01-01

    In this study, several up-conversion luminescence agents (Er(3+):Y3Al5O12, Er(3+):Yb0.2Y2.79Al5O12, Er(3+):Yb0.2Y2.79Al5N0.01O11.99, Er(3+):Yb0.2Y2.79Al5F0.01O11.99 and Er(3+):Yb0.2Y2.79Al5N0.01F0.01O11.98) were synthesized using sol-gel method. And then, the corresponding sonocatalyst (Er(3+):Y3Al5O12/TiO2, Er(3+):Yb0.2Y2.79Al5O12/TiO2, Er(3+):Yb0.2Y2.79Al5N0.01O11.99/TiO2, Er(3+):Yb0.2Y2.79Al5F0.01O11.99/TiO2 and Er(3+):Yb0.2Y2.79Al5N0.01F0.01O11.98/TiO2 coated composites) were prepared by sol-gel coating process. The synthesized up-conversion luminescence agents and their coated composites were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). And that, the sonocatalytic activities were detected through the degradation of Azo Fuchsine (AF) dye in aqueous solution by UV-vis spectroscopy. Some key influences such as heat-treated temperature and heat-treated time on the sonocatalytic activity of Er(3+):YbaY2.99-aNxFyAl5O12-x-y/TiO2 coated composite, as well as ultrasonic irradiation time and initial dye concentration on the sonocatalytic degradation were studied. The results showed that the doping of Yb, N and F into Er(3+):Y3Al5O12/TiO2 significantly enhanced the sonocatalytic activity of Er(3+):Y3Al5O12/TiO2 coated composite in the degradation of organic dyes. Particularly, Er(3+):Yb0.2Y2.79Al5N0.01F0.01O11.98/TiO2 coated composites with 3:7 M ratio heat-treated at 550 °C for 60 min showed the highest sonocatalytic activity. At last, the experiments also indicated that the Er(3+):Yb0.2Y2.79Al5N0.01F0.01O11.98/TiO2 coated composites has a good sonocatalytic activity to degrade other organic dyes under ultrasonic irradiation. PMID:23735891

  15. Unexpected radiation hazard in dyes of textiles.

    PubMed

    Abdel Ghany, Hayam A; Ibrahim, Eman M

    2014-01-01

    Textile dyes are among the most problematic pollutants because of their toxicity on several organisms and ecosystems. Many of the chemicals used in the textile industry may represent some health concerns. The determination of the radioactivity in textile dyes is therefore very important for both human health and environment. The study was designated to determine, for the first time, the values of (238)U, (232)Th and (40)K in nine different dyes employed in the textile industry using gamma spectrometry with a Hyper Pure Germanium (HPGe) detector. The mean activity concentrations of (238)U, (232)Th and (40)K were 29.37 ± 4.48, 1.15 ± 0.13 and 565 ± 4 Bq/kg, respectively. The calculated radium equivalents for all samples were lower than the maximum admissible value (370 Bq/kg). The absorbed dose rates due to the natural radioactivity of the investigated samples ranged from 2.94 ± 0.05 to 166 ± 3 nGy/h. So, the absorbed dose rates for all samples of textile dyes were lower than the international recommended value (55 nGy/h) except the yellow dye (166 ± 3 nGy/h), which recorded a significant radiological hazard. The external hazard index was also calculated. Conclusively, the results have indicated that the textile dyes may possess a measurable amount of radioactivity that should be taken into account. Therefore, safety rules and precautions should be applied for dyes used in the textile industry and for people working in this field. PMID:25322918

  16. Enhanced chemiluminescence of carminic acid-permanganate by CdS quantum dots and its application for sensitive quenchometric flow injection assays of cloxacillin.

    PubMed

    Khataee, Alireza; Hasanzadeh, Aliyeh; Lotfi, Roya; Joo, Sang Woo

    2016-05-15

    A novel chemiluminescence (CL) system is introduced based on the oxidation of carminic acid by KMnO4 in acidic conditions. CdS quantum dots (QDs) were synthesized using a facile hydrothermal method which efficiently enhanced the intensity of the CL system. A possible mechanism for the proposed system is presented using the kinetic curves, CL spectra, photoluminescence (PL), and ultraviolet-visible (UV-Vis) analysis. The emission intensity of the KMnO4-carminic acid-CdS QDs system was quenched in the presence of a trace level of cloxacillin. Based on this quenching effect, a novel and sensitive flow injection CL method was developed for determining cloxacillin concentrations. At optimal experimental conditions, the decreased CL intensity had a good linear relation with the cloxacillin concentration in the range of 0.008 to 22.0mgL(-1). The detection limit (3σ) was 5.8µgL(-1). The precision of the method was calculated by analyzing samples containing 4.0mgL(-1) of cloxacillin (n=11), and the relative standard deviations (RSD%) were 2.08%. The feasibility of the method is also demonstrated for determining cloxacillin concentrations in environmental water samples and a pharmaceutical formulation. PMID:26992508

  17. Indirect determination of alkaline phosphatase based on the amperometric detection of indigo carmine at a screen-printed electrode in a flow system.

    PubMed

    Daz-Gonzlez, Mara; Fernndez-Snchez, Csar; Costa-Garca, Agustn

    2002-11-01

    Amperometric analysis of indigo carmine at a bare screen-printed electrode placed in an FIA system is reported. This compound is easily detected at a potential of -0.3 V (vs. Ag pseudo-reference electrode) without observing any fouling of the electrode surface, thus allowing the repetitive use of the same electrode in a reproducible manner (coefficients of variation down to 7% for more than 20 consecutive determinations). A linear range of three orders of magnitude and a limit of detection in the sub-micromolar range were attained for this molecule. Based on these studies, indirect amperometric measurements of alkaline phosphatase (ALP) activity in solution were easily carried out using 3-indoxyl phosphate substrate. Its hydrolysis catalyzed by ALP gave rise to indigo product. This product is insoluble in aqueous solutions but it was easily converted into its soluble parent compound, indigo carmine, by addition of fuming sulfuric acid to the reaction media. Using this approach, we achieved a linear range of more than one order of magnitude and a limit of detection of 1 U/l ALP, for an enzymatic reaction time of 60 min. PMID:12458705

  18. [Natural dyes and dyeing from the XVIIth century to the birth of synthetic dyes].

    PubMed

    Viel, Claude

    2005-01-01

    After historical considerations on the state and evolution of French dyeing industry in the end of the XVIIth century to the beginning of XIXth, we find this presentation a résumé of the different states of tissues dyeing. We easily note that the techniques of dyeing. We easily note that the techniques of dyeing were very brought forward the end of the XVIIIth century before that synthetic dyes appeared in the second half of the XIXth century. PMID:16358458

  19. Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. Technical report, 1 January 1982-31 October 1982

    SciTech Connect

    Jones, G. II; Jackson, W.R.; Choi, C.; Bergmark, W.R.

    1983-10-31

    Photophysical parameters have been determined for coumarin laser dyes in organic solvents and water. Fluorescence yields and lifetimes were sensitive to solvent polarity depending on subtle features of dye structure. Protic solvents were important in reducing emission yield for certain dyes. Radiative and non-radiative rates were obtained and trends analyzed in terms of dye structure, solvent properties, and medium temperature.

  20. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    SciTech Connect

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-22

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  1. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  2. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts

    NASA Astrophysics Data System (ADS)

    MeenaKumari, M.; Philip, Daizy

    2015-01-01

    We present for the first time biogenic reduction and stabilization of gold and silver ions at room temperature using fruit juice of Punica granatum. The formation, morphology and crystalline structure of the synthesized nanoparticles are determined using UV-Visible, XRD and TEM. An attempt to reveal the partial role of phenolic hydroxyls in the reduction of Au3+ and Ag+ is done through FTIR analysis. The synthesized nanoparticles are used as potential catalysts in the degradation of a cationic phenothiazine dye, an anionic mono azo dye and a cationic fluorescent dye. The calculated values of percentage removal of dyes and the rate constants from pseudo first order kinetic data fit give a comparative study on degradation of organic dyes in presence of prepared gold and silver nanoparticles.

  3. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts.

    PubMed

    MeenaKumari, M; Philip, Daizy

    2015-01-25

    We present for the first time biogenic reduction and stabilization of gold and silver ions at room temperature using fruit juice of Punica granatum. The formation, morphology and crystalline structure of the synthesized nanoparticles are determined using UV-Visible, XRD and TEM. An attempt to reveal the partial role of phenolic hydroxyls in the reduction of Au(3+) and Ag(+) is done through FTIR analysis. The synthesized nanoparticles are used as potential catalysts in the degradation of a cationic phenothiazine dye, an anionic mono azo dye and a cationic fluorescent dye. The calculated values of percentage removal of dyes and the rate constants from pseudo first order kinetic data fit give a comparative study on degradation of organic dyes in presence of prepared gold and silver nanoparticles. PMID:25128675

  4. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells.

    PubMed

    Jeon, Jiwon; Park, Young Choon; Han, Sang Soo; Goddard, William A; Lee, Yoon Sup; Kim, Hyungjun

    2014-12-18

    During the light-harvesting process of dye-sensitized solar cells (DSSCs), the hole localized on the dye after the charge separation yields an oxidized dye, D(+). The fast regeneration of D(+) using the redox pair (typically the I(-)/I3(-) couple) is critical for the efficient DSSCs. However, the kinetic processes of dye regeneration remain uncertain, still promoting vigorous debates. Here, we use molecular dynamics simulations to determine that the inner-sphere electron-transfer pathway provides a rapid dye regeneration route of ∼4 ps, where penetration of I(-) next to D(+) enables an immediate electron transfer, forming a kinetic barrier. This explains the recently reported ultrafast dye regeneration rate of a few picoseconds determined experimentally. We expect that our MD based comprehensive understanding of the dye regeneration mechanism will provide a helpful guideline in designing TiO2-dye-electrolyte interfacial systems for better performing DSSCs. PMID:26273975

  5. Pigment violet 19 - a test case to define a simple method to simulate the vibronic structure of absorption spectra of organic pigments and dyes in solution.

    PubMed

    Champagne, Benoît; Liégeois, Vincent; Zutterman, Freddy

    2015-02-01

    A typical quinacridone pigment, PV19, has been used to analyze the impact of several computational parameters on the UV/vis absorption band shape in solution, simulated using density functional theory and time-dependent density functional theory levels of approximation. These encompass, (i) the choice of exchange-correlation functional, (ii) the basis set, (iii) the method for non-equilibrium optimization of the excited state geometry, (iv) the approach for evaluating the vibronic band structure, (v) the peak broadening, and (vi) the scaling of the harmonic vibrational frequencies. Among these, the choice of exchange-correlation functional is certainly of the most importance because it can drastically modify the spectral shape. In the case of PV19, the M05-2X and to a lesser extent CAM-B3LYP XC functionals are the most efficient to reproduce the vibronic structure, confirming the important role of exact Hartree-Fock exchange. Still, these functionals are not the most reliable to predict the excitation energies and oscillator strengths, for which M05, a functional with less HF exchange, performs better. For evaluating the vibronic structure, the simple gradient method, where only one step of geometry optimization of the excited state is carried out and the gradients are used to evaluate the Huang-Rhys factors as well as to determine the excited state geometries produces a spectrum that is very similar to the ones obtained with the more involved Duschinsky and geometry methods, opening the way to a fast simulation of the UV/vis absorption spectra of pigments and dyes. Then, the effect of scaling the calculated vibrational frequencies to account for anharmonicity effects as well as for limitation of the method also impacts the shape of the vibronic spectrum and this effect depends on the method used to determine the Huang-Rhys factors. Indeed, scaling the vibrational frequencies by a factor which is typically smaller than 1.0 results in a relative decrease of the 0-1 peak intensity with respect to the 0-0 band when optimizing the geometry of the excited state whereas the effect is opposite and magnified if using the gradient method. PMID:25501947

  6. Textile dye degradation using nano zero valent iron: A review.

    PubMed

    Raman, Chandra Devi; Kanmani, S

    2016-07-15

    Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites. PMID:27115482

  7. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  8. Hair cosmetics: dyes.

    PubMed

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. PMID:24656996

  9. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  10. Capturing the Potential of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Benson, James

    2010-10-01

    Dye-sensitized solar cells are a continually developing type of low-cost solar cells that have commercial efficiency around 6-10%. The proposed research here will be focusing on the photo-bleaching and improving techniques for electron transport. Nature has given us a goal to reach towards with proven techniques for converting light into energy with around 30-40% efficiency, however, chlorophyll, the light absorber in plants, is expensive and it is not practical to make solar cells with only chlorophyll as the absorber. One such alternative to chlorophyll is phthalocyanines which is a common industrial dye used in many applications. This dye has a common similar ring without the long phytol chain that chlorophyll has. Previous research has shown that encapsulating organic dyes can magnify the properties of dye from the increased concentration with a possible benefit of stabilizing the dye allowing it to slow down the photo bleaching significantly. Likewise, such encapsulation may help with thermal stability since many dye-sensitized solar cells require a liquid or gel solution that is sensitive to thermal expansion. Many researchers are also finding new ways to encapsulate the dyes or dope the p-n layers with nano and meso tubes to help with electron transport or build the p-n layers right in the tubes. This allows for countless layers and an overall more efficient design.

  11. Thermally stable water insoluble azo-azomethine dyes: Synthesis, characterization and solvatochromic properties

    NASA Astrophysics Data System (ADS)

    Khanmohammadi, Hamid; Rezaeian, Khatereh

    2012-11-01

    Six new water insoluble azo-azomethine dyes have been synthesized via condensation reaction of α,α'-bis(o-aminophenylthio)-1,2-xylene with substituted azo-coupled salicylaldehyde. The condensation reaction provides the expected bis-iminated azo-azomethine dyes in good yields, ranging from 59% to 90%. The dyes have been characterized by IR, UV-Vis and 1H NMR spectroscopic methods as well as elemental analysis. The thermal behavior of the prepared dyes has been determined using thermogravimetry technique. Furthermore, the effect of various organic solvents with different polarities on the UV-Vis spectra of the dyes has been also studied.

  12. Thermally stable water insoluble azo-azomethine dyes: synthesis, characterization and solvatochromic properties.

    PubMed

    Khanmohammadi, Hamid; Rezaeian, Khatereh

    2012-11-01

    Six new water insoluble azo-azomethine dyes have been synthesized via condensation reaction of α,α'-bis(o-aminophenylthio)-1,2-xylene with substituted azo-coupled salicylaldehyde. The condensation reaction provides the expected bis-iminated azo-azomethine dyes in good yields, ranging from 59% to 90%. The dyes have been characterized by IR, UV-Vis and (1)H NMR spectroscopic methods as well as elemental analysis. The thermal behavior of the prepared dyes has been determined using thermogravimetry technique. Furthermore, the effect of various organic solvents with different polarities on the UV-Vis spectra of the dyes has been also studied. PMID:22858613

  13. The Comparative Nucleophilicity of Naphthoxide Derivatives in Reactions with a Fast-Red TR Dye: A Discovery-Oriented Capstone Project for the Second-Year Organic Laboratory

    ERIC Educational Resources Information Center

    Mascarenhas, Cheryl M.

    2008-01-01

    In this experiment, organic chemistry students perform reactions between three naphthyl acetate derivatives and the diazonium salt Fast-Red TR, under basic conditions. The three naphthyl acetate derivatives used in this study are 2-naphthyl acetate (1a), 6-bromo-2-naphthyl acetate (1b) and 1,6-dibromo-2-naphthyl acetate (1c). The two-step, one-pot

  14. The Comparative Nucleophilicity of Naphthoxide Derivatives in Reactions with a Fast-Red TR Dye: A Discovery-Oriented Capstone Project for the Second-Year Organic Laboratory

    ERIC Educational Resources Information Center

    Mascarenhas, Cheryl M.

    2008-01-01

    In this experiment, organic chemistry students perform reactions between three naphthyl acetate derivatives and the diazonium salt Fast-Red TR, under basic conditions. The three naphthyl acetate derivatives used in this study are 2-naphthyl acetate (1a), 6-bromo-2-naphthyl acetate (1b) and 1,6-dibromo-2-naphthyl acetate (1c). The two-step, one-pot…

  15. Hair care and dyeing.

    PubMed

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient. PMID:26370650

  16. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  17. Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of organic dye in the presence of ternary Fe3O4/ZnO/CuO magnetic heteregenous nanocatalyst

    NASA Astrophysics Data System (ADS)

    Taufik, Ardiansyah; Saleh, Rosari

    2016-04-01

    The Fe3O4/ZnO/CuO nanocatalyst with various CuO loading were synthesized by sol-gel method and were characterized by powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-Vis spectroscopy, and vibrating sample magnetometry. The findings demonstrate that all samples exhibit ferromagnetic behavior at room temperatureand containa well-crystalline ternary oxide nanocatalyst. Methylene blue was taken as the model of organic dye to evaluate its photocatalytic and sonocatalytic degradation in the presence of Fe3O4/ZnO/CuO nanocatalyst. The observed degradation activity indicate that the order of degradation of methylene blue issonocatalysis> photocatalysis. Fe3O4/ZnO/CuO nanocatalyst with the lowest CuO loading exhibit the highest rate of degradation of methylene blue during the sono- and photocatalytic processes. The experimental data shows that holes are the predominant oxidative species involved in the sono- and photodegradation of methylene blue.

  18. Modulation of Electron Injection Dynamics of Ru-Based Dye/TiO2 System in the Presence of Three Different Organic Solvents: Role of Solvent Dipole Moment and Donor Number.

    PubMed

    Mahanta, Subrata; Matsuzaki, Hiroyuki; Murakami, Takurou N; Katoh, Ryuzi; Matsumoto, Hajime; Furube, Akihiro

    2015-06-01

    In the present work, femtosecond transient absorption spectroscopy (fs-TAS) has been employed to investigate the electron injection efficiency (EIE) both from the singlet and triplet excited states of a well-known ruthenium dye (N719) to the conduction band (CB) of nanostructured TiO(2) in presence of three different organic solvents [γ-butylactone (GBL), 3-methoxypropionitrile (MPN), and dimethylformamide (DMF)] with different donor numbers (DNs) and dipole moments (DMs). The DM and DN of a solvent modulates the CB edge energy of TiO(2), and this effect reflects well in the fs-TAS results, which shows an EIE trend following the order GBL≥MPN≫DMF, that is, highest in GBL and lowest in DMF solvent environments. Fs-TAS results indicate a lower contribution of electron injection from both the singlet and triplet states in DMF, for which the dominant adsorption of DMF molecules on the TiO(2) surface seems to play an important role in the mechanism. PMID:25832779

  19. Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes.

    PubMed

    Wang, Jun; Guo, Yuwei; Liu, Bin; Jin, Xudong; Liu, Lijun; Xu, Rui; Kong, Yumei; Wang, Baoxin

    2011-01-01

    Recently, the sonocatalytic technology using various semiconductors combined with ultrasonic irradiation has been received much attention to solve the environmental problems. In this paper, nano-sized titanium dioxide (TiO(2)) powder as a sonocatalyst was irradiated by ultrasound and the generation of reactive oxygen species (ROS) during sonocatalytic reaction process has been estimated by the method of Oxidation-Extraction Photometry (OEP). That is, the 1,5-diphenylcarbohydrazide (DPCI) can be oxidized by ROS into diphenylcarbonzone (DPCO), which can be extracted by the mixed solution of benzene and carbon tetrachloride and show the great absorbance at 563 nm wavelength. The synergistic effect of TiO(2) and ultrasonic irradiation was estimated and some influencing factors, such as ultrasonic irradiation time and TiO(2) addition amount on the generation of ROS were reviewed. The results indicate that the quantities of generated ROS increase with the increase of ultrasonic irradiation time and TiO(2) addition amount. Moreover, the relationship between quantities of generated ROS and DPCI concentration was also studied. And then, several quenchers were used to determine the kind of the generated ROS. At last, the researches on the sonocatalytic degradation of organic dyes and the corresponding reaction kinetics have also been performed, which is found to follow the pseudo first-order kinetics approximately. This paper may offer some important subjects for broadening the applications of sonocatalytic technology. PMID:20684888

  20. Alzheimer's Dye Test?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only…

  1. Vegetable Dyeing of Wool

    ERIC Educational Resources Information Center

    Greenberg, Pearl

    1976-01-01

    In keeping with the Bicentennial celebration, many art teachers will find themselves "looking back" to crafts of the American past. Dyeing is certainly one that was used extensively and here a professor in a Fine Arts Department details how the process takes place. (Author/RK)

  2. Alzheimer's Dye Test?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only

  3. Dye sensitization of single crystal semiconductor electrodes.

    PubMed

    Spitler, Mark T; Parkinson, B A

    2009-12-21

    Even though investigations of dye-sensitized nanocrystalline semiconductors in solar cells has dominated research on dye-sensitized semiconductors over the past two decades, single crystal electrodes represent far simpler model systems for studying the sensitization process with a continuing train of studies dating back more than 40 years. Even today single crystal surfaces prove to be more controlled experimental models for the study of dye-sensitized semiconductors than the nanocrystalline substrates. This Account analyzes the scientific advances in the model sensitized single crystal systems that preceded the introduction of nanocrystalline semiconductor electrodes. It then follows the single crystal research to the present, illustrating both their striking simplicity of use and clarity of interpretation relative to nanocrystalline electrodes. Researchers have employed many electrochemical, photochemical, and scanning probe techniques for studying monolayer quantities of sensitizing dyes at specific crystallographic faces of different semiconductors. These methods include photochronocoulometry, electronic spectroscopy, and flash photolysis of dyes at potential-controlled semiconductor electrodes and the use of total internal reflection methods. In addition, we describe the preparation of surfaces of single crystal SnS(2) and TiO(2) electrodes to serve as reproducible model systems for charge separation at dye-sensitized solar cells. This process involves cleaving the SnS(2) electrodes and a photoelectrochemical surface treatment for TiO(2) that produces clean surfaces for sensitization (as verified by AFM) resulting in near unity yields for electron transfer from the molecular excited dyes into the conduction band. In recent experiments with ruthenium complexes at TiO(2) and with carboxylated cyanine dyes, we demonstrate the promise of this simple model for understanding dye-sensitized solar cells. In each of these systems, we can observe and analyze the complex photochemistry in a quantitative manner. Molecules of the well-known N3 ruthenium complex attach to four different crystallographic faces of anatase and rutile TiO(2) at different rates and to a different extent. With carboxylated cyanine dye sensitizers on these surfaces, molecular aggregation on the surface is a function of molecular structure and crystallographic face. In contrast with the N3 sensitizer these organic dyes undergo a photoinduced dimerization and desorption reaction when hydroquinone regenerators are present. With both classes of sensitizers, we demonstrate a new photochronocoulometric technique that quantifies the amount of attached dye on the electrode surface. We have completed initial experiments examining quantum dot sensitization of TiO(2) crystals, which could eventually lead to sensitizers with higher stability and absorption coefficients. Although these single crystal electrode models show promise for providing insights and predictive value in understanding the sensitization process, more sophisticated models will be needed to fully understand the charge transfer from the localized electronic states of the sensitizer to the extended states of the semiconductor. PMID:19924998

  4. Chalcogenopyrylium Dyes with Anchors to Nanoparticle and Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Bedics, Matthew Allen

    Surface enhanced Raman scattering (SERS) has gained widespread attention as a biomedical imaging technique due to its multiplexing capabilities and the low limits of detection (LODs) of SERS-nanoprobes. The library of available reporter molecules, which are used to generate unique SERS spectra, was previously limited to commercially available dyes or a small group of cyanine reporters. Herein, the design and synthesis of a novel group of chalcogenopyrylium SERS reporters is described. These dyes have a high affinity for Au and absorption maxima that range into the NIR region. These reporter molecules enabled the use of the 1280 nm laser, which was previously incompatible with SERS imaging. Also, nanoprobe LODs using these dyes as reporters are lower than any previously documented systems, with a 100 aM LOD using a 785 nm excitation and multiple examples of fM to pM LODs using a 1064 nm or 1280 nm excitation source. Nanoprobes functionalized with these compounds have also been successfully utilized in vivo, and produce more intense SERS spectra as compared to a commonly used cyanine reporter. Dye sensitized solar cells (DSSCs) have produced considerable interest as an alternative to conventionally used Si-based solar cells. Specifically, DSSCs that use metal-free organic dyes as sensitizers are important due to the lower cost and the use of earth abundant materials as starting materials. Herein, a group of chalcogenopyrylium dyes were appended with an anchoring group to TiO2, which enables the use of these dyes as sensitizers. Structural modifications were used to extend absorption maxima into the near-infrared region of the light spectrum and to evaluate the effect that dye aggregation has on device performance. The monomethine dyes successfully produced a photocurrent, with incident photon to current efficiency values as high as 20%. Aggregation was found to benefit these systems due to the spectral broadening of aggregated dyes, and consequent increased range of wavelengths that produce a photocurrent.

  5. Immobilization of Polyoxometalate in the Metal-Organic Framework rht-MOF-1: Towards a Highly Effective Heterogeneous Catalyst and Dye Scavenger.

    PubMed

    Sun, Jing-Wen; Yan, Peng-Fei; An, Guang-Hui; Sha, Jing-Quan; Li, Guang-Ming; Yang, Guo-Yu

    2016-01-01

    A series of three remarkable complexes [PMo12O40]@[Cu6O(TZI)3(H2O)9]4·OH·31H2O (H3TZI = 5-tetrazolylisophthalic acid; denoted as HLJU-1, HLJU = Heilongjiang University), [SiMo12O40]@[Cu6O(TZI)3(H2O)9]4·32H2O (denoted as HLJU-2), and [PW12O40]@[Cu6O(TZI)3(H2O)6]4·OH·31H2O (denoted as HLJU-3) have been isolated by using simple one-step solvothermal reaction of copper chloride, 5-tetrazolylisophthalic acid (H3TZI), and various Keggin-type polyoxometalates (POMs), respectively. Crystal analysis of HLJU 1-3 reveals that Keggin-type polyoxoanions have been fitted snuggly in the cages of rht-MOF-1 (MOF: metal-organic framework) with large cell volume in a range of 87968-88800 Å(3) and large pore volume of about 68%. HLJU 1-3 exhibit unique catalytic selectivity and reactivity in the oxidation of alkylbenzene with environmental benign oxidant under mild condition in aqueous phase as well as the uptake capacity towards organic pollutants in aqueous solution. PMID:27157290

  6. Immobilization of Polyoxometalate in the Metal-Organic Framework rht-MOF-1: Towards a Highly Effective Heterogeneous Catalyst and Dye Scavenger

    PubMed Central

    Sun, Jing-Wen; Yan, Peng-Fei; An, Guang-Hui; Sha, Jing-Quan; Li, Guang-Ming; Yang, Guo-Yu

    2016-01-01

    A series of three remarkable complexes [PMo12O40]@[Cu6O(TZI)3(H2O)9]4·OH·31H2O (H3TZI = 5-tetrazolylisophthalic acid; denoted as HLJU-1, HLJU = Heilongjiang University), [SiMo12O40]@[Cu6O(TZI)3(H2O)9]4·32H2O (denoted as HLJU-2), and [PW12O40]@[Cu6O(TZI)3(H2O)6]4·OH·31H2O (denoted as HLJU-3) have been isolated by using simple one-step solvothermal reaction of copper chloride, 5-tetrazolylisophthalic acid (H3TZI), and various Keggin-type polyoxometalates (POMs), respectively. Crystal analysis of HLJU 1−3 reveals that Keggin-type polyoxoanions have been fitted snuggly in the cages of rht-MOF-1 (MOF: metal−organic framework) with large cell volume in a range of 87968−88800 Å3 and large pore volume of about 68%. HLJU 1–3 exhibit unique catalytic selectivity and reactivity in the oxidation of alkylbenzene with environmental benign oxidant under mild condition in aqueous phase as well as the uptake capacity towards organic pollutants in aqueous solution. PMID:27157290

  7. Planar amine-based dye features the rigidified O-bridged dithiophene π-spacer: A potential high-efficiency sensitizer for dye-sensitized solar cells application

    NASA Astrophysics Data System (ADS)

    Li, Wei; Bai, Fu-Quan; Chen, Jie; Wang, Jian; Zhang, Hong-Xing

    2015-02-01

    This work reports a systematically theoretical study concerning the design of D-π-A organic dyes for DSSC. Two elaborate strategies, namely the rigidity of dithiophene and introduction of strong electron rich/deficient moieties, are proposed. By using the state-of-the-art theoretical calculations, the general influences of fastening atoms (C, N, and O) for π-spacer rigidification in planar amine-based organic dyes are firstly investigated and elucidated. The properties of isolated dye, dye/(TiO2)38, and dye-I2 interaction are discussed in detail. The results show that, compared with the P2T dye containing dithiophene π-spacer, its three counterparts with rigidified dithiophene π-spacers would present the improved absorption properties. We further demonstrate that incorporation of O-bridged dithiophene moiety into the π-spacer was promising to challenge the photoelectric conversion efficiency 8.29% of P2T. Furthermore, benzothiadiazole (BTD) and 3,4-ethylenedioxythiophene (EDOT) moieties are the well-known π-skeletons that can effectively tune the electronic structure properties and the light-harvesting ability. Subsequently, a series of dyes are designed through introducing the BTD and EDOT groups into π-spacer. The calculated results reveal that the dye with the incorporation of EDOT moiety would be more beneficial for photocurrent and photovoltage performance. The current theoretical studies are expected to be very relevant for the molecular design of D-π-A organic dyes in DSSC.

  8. Photochemistry of coumarin laser dyes

    SciTech Connect

    von Trebra, R.J.

    1984-01-01

    Coumarin laser dyes are widely used in dye lasers for the generation of tunable laser light in the blue-green spectral region. As in the case with most laser dyes, coumarin dyes undergo photochemical reactions that interfere with simulated emission and result in loss of laser power output. This thesis describes the photochemistry of coumarin laser dyes under both anaerobic and aerobic conditions and some attempts to extend the useful lifetime of several dyes in dye lasers. Irradiation of Coumarin 311, 7-dimethylamino-4-methyl-coumarin (15), in oxygen-free ethanol solution results in the inefficient dye destruction. Products formed absorb light at the lasing wavelength of the dye, interfere with stimulated emission, and decrease the power output of the dye laser. Addition of the sulfur free radical chain transfer agents ethanethiol and ethyl disulfide retard the rate of formation of photoproducts absorbing at the lasing wavelengths. Deuterium incorporation, from the irradiation of Coumarin 311 in the presence of ethanethiol-S-d and ethyl disulfide, indicates that photoproducts most likely result from the reactions of free radicals which are generated in a bimolecular reaction between excited Coumarin 311 and ground state Coumarin 311. Ethanethiol and ethyl disulfide are shown to decrease the rate of power loss from a Coumarin 1 (3) dye laser. The naturally occurring amino acid cysteine acts similarly.

  9. [Allergy to dyes in stockings].

    PubMed

    Hausen, B M; Schulz, K H

    1984-09-28

    Skin allergies caused by the wearing of stockings and hose have received little attention. Findings in patients of an allergy department, enquiries at stocking counters of stores and recent publications indicate, however, that probably many more persons have an allergy to stocking dyes than is generally thought. Skin tests with isolated stocking dyes indicate that azo dye dispersion yellow 3, dispersion orange 3 and dispersion red 1 are the most important contact allergens. They were demonstrated in 18-21 of the 23 hose examined. In textile materials, azo dye dispersion blue 124 is predominant among allergens. Cross-reactions may occur to other dispersion azo dyes, used in cosmetics, textiles, toiletries and hygenic articles, permitted food additives and hair dyes. It is suggested that in persons who have dye allergy or intolerance, decolouration followed by colouring with natural colours be undertaken. PMID:6479046

  10. A review of NIR dyes in cancer targeting and imaging.

    PubMed

    Luo, Shenglin; Zhang, Erlong; Su, Yongping; Cheng, Tianmin; Shi, Chunmeng

    2011-10-01

    The development of multifunctional agents for simultaneous tumor targeting and near infrared (NIR) fluorescence imaging is expected to have significant impact on future personalized oncology owing to the very low tissue autofluorescence and high tissue penetration depth in the NIR spectrum window. Cancer NIR molecular imaging relies greatly on the development of stable, highly specific and sensitive molecular probes. Organic dyes have shown promising clinical implications as non-targeting agents for optical imaging in which indocyanine green has long been implemented in clinical use. Recently, significant progress has been made on the development of unique NIR dyes with tumor targeting properties. Current ongoing design strategies have overcome some of the limitations of conventional NIR organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. This potential is further realized with the use of these NIR dyes or NIR dye-encapsulated nanoparticles by conjugation with tumor specific ligands (such as small molecules, peptides, proteins and antibodies) for tumor targeted imaging. Very recently, natively multifunctional NIR dyes that can preferentially accumulate in tumor cells without the need of chemical conjugation to tumor targeting ligands have been developed and these dyes have shown unique optical and pharmaceutical properties for biomedical imaging with superior signal-to-background contrast index. The main focus of this article is to provide a concise overview of newly developed NIR dyes and their potential applications in cancer targeting and imaging. The development of future multifunctional agents by combining targeting, imaging and even therapeutic routes will also be discussed. We believe these newly developed multifunctional NIR dyes will broaden current concept of tumor targeted imaging and hold promise to make an important contribution to the diagnosis and therapeutics for the treatment of cancer. PMID:21724249

  11. Eco- and genotoxicological assessments of two reactive textile dyes.

    PubMed

    Leme, Daniela Morais; Oliveira, Gisele Augusto Rodrigues de; Meireles, Gabriela; Brito, Lara Barroso; Rodrigues, Laís de Brito; Palma de Oliveira, Danielle

    2015-01-01

    Contamination of natural waters has been one of the major problems of modern society and the textile industry is rated as an important polluting source, due to the generation of large amounts of wastewaters. The aim of this study was to assess textile dyes Reactive Blue 19 (RB19, anthraquinone dye) and Reactive Red 120 (RR120, azo dye) in terms of the potential to induce adverse effects on aquatic organisms and humans. Thus, these dyes were tested using the following assays: Microtox assay (Vibrio fischeri); brine shrimp (Artemia salina); Daphnia similis; and Comet with normal human dermal fibroblasts as well as Ames test (TA98, TA100, YG1041, YG1042--with and without S9). RB19 was relatively nontoxic to all aquatic bioindicators analyzed with an EC50 of more than 100 mg/L, whereas RR120 was only moderately toxic to A. salina with a EC50-48h of 81.89 mg/L. Mutagenicity through base pair substitution was observed with RB19 in the presence of S9 (Ames-positive). The comet assay did not demonstrate any apparent genotoxic effects for any tested dye. Although mutagenicity was detected with RB19, the mutagenic effect observed may be considered weak compared to the ability to induce DNA damage by other classes of dyes such as disperse dyes. Therefore, these dyes may be classified as nonmutagens (RR120) or weak mutagens (RB19) and relatively nontoxic for aquatic organisms. However, it is noteworthy that the weak acute toxicity to A. salina induced by RR120 is sufficient to suggest potential damage to the aquatic ecosystem and emphasizes the need for biomonitoring dye levels in wastewater systems. PMID:25734625

  12. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    PubMed Central

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-01-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures. PMID:26891851

  13. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    NASA Astrophysics Data System (ADS)

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-02-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures.

  14. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces.

    PubMed

    Cappel, Ute B; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A; Barnes, Piers R F

    2016-01-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures. PMID:26891851

  15. Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands.

    PubMed

    Zhou, Tao; Lim, Teik-Thye; Wu, Xiaohui

    2011-04-01

    The sonophotolytic advance oxidation system (US/UV/Fe(3+)) could achieve synergistic degradation of reactive black 5 (RB5), as compared to UV/Fe(3+) and US/Fe(3+) systems. A synergy factor of 2.5 based on the pseudo-first-order degradation rate constant (k(obs)) was found, along with enhancements in organic detoxification and mineralization. The presence of organic ligands could affect the US/UV/Fe(3+) system differently. Oxalate, citrate, tartrate and succinate could enhance the RB5 degradation, while NTA and EDTA exhibited strong inhibitions. The influence of these ligands on k(obs)(RB5) in the US/UV/Fe(III)-ligand systems followed the sequence of oxalate > tartrate > succinate > citrate > without ligand > NTA > EDTA, while they could be degraded simultaneously with the k(obs)(ligand) order of oxalate > citrate > tartrate > succinate > NTA > EDTA. Monitoring of iron species and the generated H(2)O(2) and •OH revealed that the ligands in the US/UV/Fe(III)-ligand system could play different mechanistic roles: (1) promoting H(2)O(2) production, (2) accelerating Fenton reaction, and (3) competing with RB5 for reacting with •OH. Among the ligands, oxalate exhibited the most significant enhancement of RB5 oxidation in the sonophotolytic system, and the process was pH-dependent. An initial reaction lag in RB5 degradation was observed when Fe(2+) was used in lieu of Fe(3+) as the catalyst in the sonophotolytic system. PMID:21444101

  16. Indanthrone dye revisited after sixty years.

    PubMed

    Kotwica, Kamil; Bujak, Piotr; Wamil, Damian; Materna, Mariusz; Skorka, Lukasz; Gunka, Piotr A; Nowakowski, Robert; Golec, Barbara; Luszczynska, Beata; Zagorska, Malgorzata; Pron, Adam

    2014-10-01

    Indanthrone, an old, insoluble dye can be converted into a solution processable, self-assembling and electroluminescent organic semiconductor, namely tetraoctyloxydinaptho[2,3-a:2',3'-h]phenazine (P-C8), in a simple one-pot process consisting of the reduction of the carbonyl group by sodium dithionite followed by the substitution with solubility inducing groups under phase transfer catalysis conditions. PMID:25133516

  17. Reuse of reactive dyes for dyeing of jute fabric.

    PubMed

    Chattopadhyay, S N; Pan, N C; Day, A

    2006-01-01

    The aim of the work was to find out suitable method of dyeing so that costly reactive dye can be reused without draining them. The bleached jute fabric was dyed with four different class of reactive dyes namely, cold brand, hot brand, vinyl sulphone and high exhaustion (HE) brand. It is found that the two-step two-bath method of reactive dyeing, where exhaustion and fixation step is separated, is most ideal for reuse of dye bath. Separate original samples produced K/S value same as that of original sample and the K/S value of separate reuse sample varied from 50% to 80% of the original sample depending on the class of dye. In case of same bath method, colour yield of original reuse samples varies from only 10% to maximum 30% of the original samples depending on the class of dyes. Reuse of reactive dyes following separate bath method is particularly suitable for higher depth of shade (4% and above). This process not only utilises costly reactive dyes to the maximum extent but it also produces low water pollution as the effluent contain minimum amount of dye. So the process is economic and eco-friendly as well. PMID:16154505

  18. Fluorescence properties of organic dyes: quantum chemical studies on the green/blue neutral and protonated DMA-DPH emitters in polymer matrices.

    PubMed

    Kerkines, Ioannis S K; Petsalakis, Ioannis D; Argitis, Panagiotis; Theodorakopoulos, Giannoula

    2011-12-28

    The absorption and fluorescence spectra of the green emitter DMA-DPH {1-[4-(dimethylamino)phenyl]-6-phenylhexa-1,3,5-triene} and its protonated blue-emitter form have been studied theoretically through time-dependent density functional theory (TD-DFT) and resolution-of-identity 2nd order perturbative coupled cluster (RI-CC2) calculations with basis sets up to augmented triple-ζ quality, in the gas phase and in solvents of different polarity. These systems dispersed in a polymer matrix are of interest for applications in organic light emitting diode devices (OLEDs). Calculations show that the observed absorption and emission spectra correspond to transitions between the S(0) and S(1) states, in both systems. The nature and characteristics of these transitions are discussed. Excellent agreement with experimental data is obtained, both for absorption and emission, provided that the state-specific polarized continuum model (SS-PCM) method is employed for the inclusion of the solvent. PMID:22025129

  19. Ozonation of exhausted dark shade reactive dye bath for reuse.

    PubMed

    Sundrarajan, M; Vishnu, G; Joseph, Kurian

    2006-10-01

    Exhausted reactive dye bath of dark shades were collected from cotton knit wear dyeing units in Tirupur. Ozonation was conducted in a column reactor system fed with ozone at the rate of 0.16 g/min to assess its efficiency in reducing the color, chemical oxygen demand and total organic carbon. The potential of the decolorized dye bath for its repeated reuse was also analyzed. The results from the reusability studies indicate that the dyeing quality was not affected by the reuse of decolorized dye bath for two successive cycles. Complete decolorization of the effluent was achieved in 60 minutes contact time at an ozone consumption of 183 mg/L for Red, 175 for Navy Blue and 192 for Green shades respectively. The corresponding COD removal was 60%, 54% and 63% for the three shades while TOC removal efficiency was 59%, 55% and 62% respectively. It is concluded that ozonation is efficient in decolorization of exhausted dye bath effluents containing conventional reactive dyes. However, the corresponding removal of COD from the textile effluent was not significant. PMID:18179124

  20. Enhancement of the photoproperties of solid-state TiO2|dye|CuI cells by coupling of two dyes

    NASA Astrophysics Data System (ADS)

    Sirimanne, P. M.; Senevirathna, M. K. I.; Premalal, E. V. A.; Pitigala, P. K. D. D. P.

    2006-06-01

    The electronic coupling of a natural pigment extracted from pomegranate fruits (rich with cyanin and exist as flavylium at natural PH) with an organic dye mercurochrome enhanced the performance of solid-state TiO2|dye|CuI-type photovoltaic cells sensitized from pomegranate pigments or mercurochrome individually.