Sample records for carrying mobilizable transgenes

  1. Mobilizable RDF/d-RDF burning program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemann, K.; Campbell, J.

    1982-03-01

    The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would thenmore » be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.« less

  2. The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems

    PubMed Central

    Guédon, Gérard; Libante, Virginie; Coluzzi, Charles; Payot, Sophie

    2017-01-01

    Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements. Recent findings indicated that the main actors of conjugative transfer are not the well-known conjugative or mobilizable plasmids but are the integrated elements. This paper reviews current knowledge on “integrative and mobilizable elements” (IMEs) that have recently been shown to be highly diverse and highly widespread but are still rarely described. IMEs encode their own excision and integration and use the conjugation machinery of unrelated co-resident conjugative element for their own transfer. Recent studies revealed a much more complex and much more diverse lifecycle than initially thought. Besides their main transmission as integrated elements, IMEs probably use plasmid-like strategies to ensure their maintenance after excision. Their interaction with conjugative elements reveals not only harmless hitchhikers but also hunters that use conjugative elements as target for their integration or harmful parasites that subvert the conjugative apparatus of incoming elements to invade cells that harbor them. IMEs carry genes conferring various functions, such as resistance to antibiotics, that can enhance the fitness of their hosts and that contribute to their maintenance in bacterial populations. Taken as a whole, IMEs are probably major contributors to bacterial evolution. PMID:29165361

  3. Efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with lentiviral vector

    PubMed Central

    2013-01-01

    Introduction The development of an appropriate procedure for lentiviral gene transduction into keratinocyte stem cells is crucial for stem cell biology and regenerative medicine for genetic disorders of the skin. However, there is little information available on the efficiency of lentiviral transduction into human keratinocyte stem/progenitor cells and the effects of gene transduction procedures on growth potential of the stem cells by systematic assessment. Methods In this study, we explored the conditions for efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with a lentiviral vector, by using the culture of keratinocytes on a feeder layer of 3 T3 mouse fibroblasts. The gene transduction and expansion of keratinocytes carrying a transgene were analyzed by Western blotting, quantitative PCR, and flow cytometry. Results Polybrene (hexadiamine bromide) markedly enhanced the efficiency of lentiviral gene transduction, but negatively affected the maintenance of the keratinocyte stem/progenitor cells at a concentration higher than 5 μg/ml. Rho-assiciated kinase (ROCK) inhibitor Y-27632, a small molecule which enhanced keratinocyte proliferation, significantly interfered with the lentiviral transduction into cultured human keratinocytes. However, a suitable combination of polybrene and Y-27632 effectively expanded keratinocytes carrying a transgene. Conclusions This study provides information for effective expansion of cultured human keratinocyte stem/progenitor cells carrying a transgene. This point is particularly significant for the application of genetically modified keratinocyte stem/progenitor stem cells in regenerative medicine. PMID:24406242

  4. A Mutation of the Prdm9 Mouse Hybrid Sterility Gene Carried by a Transgene.

    PubMed

    Mihola, O; Trachtulec, Z

    2017-01-01

    PRDM9 is a protein with histone-3-methyltransferase activity, which specifies the sites of meiotic recombination in mammals. Deficiency of the Prdm9 gene in the laboratory mouse results in complete arrest of the meiotic prophase of both sexes. Moreover, the combination of certain PRDM9 alleles from different mouse subspecies causes hybrid sterility, e.g., the male-specific meiotic arrest found in the (PWD/Ph × C57BL/6J)F1 animals. The fertility of all these mice can be rescued using a Prdm9-containing transgene. Here we characterized a transgene made from the clone RP24-346I22 that was expected to encompass the entire Prdm9 gene. Both (PWD/Ph × C57BL/6J)F1 intersubspecific hybrid males and Prdm9-deficient laboratory mice of both sexes carrying this transgene remained sterile, suggesting that Prdm9 inactivation occurred in the Tg(RP24-346I22) transgenics. Indeed, comparative qRT-PCR analysis of testicular RNAs from transgene-positive versus negative animals revealed similar expression levels of Prdm9 mRNAs from the exons encoding the C-terminal part of the protein but elevated expression from the regions coding for the N-terminus of PRDM9, indicating that the transgenic carries a new null Prdm9 allele. Two naturally occurring alternative Prdm9 mRNA isoforms were overexpressed in Tg(RP24-346I22), one formed via splicing to a 3'-terminal exon consisting of short interspersed element B2 and one isoform including an alternative internal exon of 28 base pairs. However, the overexpression of these alternative transcripts was apparently insufficient for Prdm9 function or for increasing the fertility of the hybrid males.

  5. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    PubMed Central

    Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu α-globin2/hu β-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845

  6. Regulated expression of the Ren-2 gene in transgenic mice derived from parental strains carrying only the Ren-1 gene.

    PubMed Central

    Tronik, D; Dreyfus, M; Babinet, C; Rougeon, F

    1987-01-01

    The Ren-2 gene encoding the mouse submaxillary gland (SMG) renin was microinjected into the pronuclei of fertilized eggs from mice carrying only the Ren-1 gene. In addition to the whole transcription unit, the injected DNA contained 2.5 and 3 kb of upstream and downstream flanking sequences, respectively. Three independent transgenic mice lines were obtained; two of them had integrated one copy of the Ren-2 gene, the last one had integrated five and eleven copies at two independent sites. Independently of the number of Ren-2 copies integrated, the pattern of Ren-2 gene expression in all the transgenic mice was identical to that observed in wild-type animals in which Ren-1 and Ren-2 are closely linked on chromosome 1. In particular, the exogenous Ren-2 gene was only transcribed in the kidney and in the SMG. In the kidney, Ren-1 and Ren-2 mRNAs were present at a comparable level, whereas in the SMG Ren-2 mRNA was at least 100-fold more abundant than Ren-1 mRNA. Moreover, Ren-2 expression in the SMG was positively regulated by androgens. Only one difference between transgenic mice and wild-type mice carrying the Ren-2 gene has been observed: the basal level of Ren-2 transcription in the SMG of transgenic females was lower than in two-gene strain females. Androgen treatment of transgenic females induced SMG renin mRNA to a level identical to that of transgenic males. This suggests that the basal level of SMG renin mRNA is dependent upon cis-acting elements which are not present in the microinjected fragment. Images Fig. 1. Fig. 2. Fig. 3. PMID:3297677

  7. An analytical model assessing the potential threat to natural habitats from insect resistance transgenes: continuous transgene input

    PubMed Central

    Kelly, Colleen K; Bowler, Michael; Breden, Felix

    2006-01-01

    The potential effects of ‘escape’ of genetically modified material (transgenes) into natural communities is a major concern in their use. These effects may be limited in the first instance by limiting the proportion of transgene-carrying plants in the natural community. We previously presented an analytical model of the ecological processes governing the relative abundance and persistence of insect resistance (IR) transgenes in a natural community. In that paper, we illustrated the case in which the transgene is input into the community in a single season using data from oilseed rape (OSR) and its known herbivore, Plutella macropennis. We found that the transgene is unlikely to have a great impact on the natural community. Here, we extend the model for repeated input of crop pollen carrying the transgene. We show the model output, again using OSR, for continuous input of the transgene over 10 years, the projected commercial lifetime of a transgene without associated undesirable agronomic effects. Our results do not change our original conclusion that the IR transgene need not have a large impact on the natural community and our suggestions for assessing and mitigating any threat still stand. PMID:17148386

  8. Transgenic cattle produced by nuclear transfer of fetal fibroblasts carrying Ipr1 gene at a specific locus.

    PubMed

    Wang, Yong Sheng; He, Xiaoning; Du, Yue; Su, Jianmin; Gao, Mingqing; Ma, Yefei; Hua, Song; Quan, Fusheng; Liu, Jun; Zhang, Yong

    2015-09-01

    This study aimed to assess the effects of the intracellular pathogen resistance 1 (Ipr1) transgene on preventing infection of Mycobacterium bovis in cattle. A specific expression vector for the Ipr1 gene was constructed and inserted in the genome between surfactant protein A and methionine adenosyltransferase I of bovine fetal fibroblasts. After SCNT, cleavage (86.9% vs. 87.4%, P > 0.05) and blastocyst developmental rates (34.6% vs. 33.5%, P > 0.05) were similar between transgenic and nontransgenic bovine fetal fibroblasts. Four surviving and one dead Ipr1-transgenic female cattle were produced by transfer of the SCNT blastocysts. Polymerase chain reaction and Southern blot analyses confirmed that the Ipr1 transgene of the cattle was located at the expected site. Inserting Ipr1 gene did not affect the expression of the surrounding genes. Main death modality of M bovis-infected peripheral blood mononuclear cells (PBMCs) derived from Ipr1-transgenic cattle was apoptosis, whereas that of PBMCs from control cattle was necrosis. In addition, the number of colony-forming units in PBMCs of Ipr1-transgenic cattle was significantly lower than that of the control cattle (P < 0.05). The finding that expression of Ipr1 transgene in PBMCs significantly increased anti-M bovis activity suggested breeding anti-M bovis cattle population by the transgenic SCNT technique could be a feasible strategy. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Growth efficiency in transgenic tilapia (Oreochromis sp.) carrying a single copy of an homologous cDNA growth hormone.

    PubMed

    Martínez, R; Juncal, J; Zaldívar, C; Arenal, A; Guillén, I; Morera, V; Carrillo, O; Estrada, M; Morales, A; Estrada, M P

    2000-01-07

    Growth hormone (GH) has been shown to have a profound impact on fish physiology and metabolism. However, detailed studies in transgenic fish have not been conducted. We have characterized the food conversion efficiency, protein profile, and biochemical correlates of growth rate in transgenic tilapia expressing the tilapia GH cDNA under the control of human cytomegalovirus regulatory sequences. Transgenic tilapia exhibited about 3.6-fold less food consumption than nontransgenic controls (P < 0.001). The food conversion efficiency was significantly (P < 0.05) higher (290%) in transgenic tilapia (2.3 +/- 0.4) than in the control group (0.8 +/- 0.2). Efficiency of growth, synthesis retention, anabolic stimulation, and average protein synthesis were higher in transgenic than in nontransgenic tilapia. Distinctive metabolic differences were found in transgenic juvenile tilapia. We had found differences in hepatic glucose, and in agreement with previous results we observed differences in the level of enzymatic activities in target organs. We conclude that GH-transgenic juvenile tilapia show altered physiological and metabolic conditions and are biologically more efficient. Copyright 2000 Academic Press.

  10. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    PubMed Central

    Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma. PMID:20422010

  11. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines.

    PubMed

    Ohshima, Yuichiro; Yajima, Ichiro; Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-04-21

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.

  12. Transfer of mupirocin resistance from Staphylococcus haemolyticus clinical strains to Staphylococcus aureus through conjugative and mobilizable plasmids.

    PubMed

    Rossi, Ciro C; Ferreira, Natália C; Coelho, Marcus L V; Schuenck, Ricardo P; Bastos, Maria do Carmo de F; Giambiagi-deMarval, Marcia

    2016-07-01

    Coagulase-negative staphylococci are thought to act as reservoirs of antibiotic resistance genes that can be transferred to Staphylococcus aureus, thus hindering the combat of this bacterium. In this work, we analyzed the presence of plasmids conferring resistance to the antibiotic mupirocin-widely used to treat and prevent S. aureus infections in hospital environments-in nosocomial S. haemolyticus strains. About 12% of the 75 strains tested were resistant to mupirocin, and this phenotype was correlated with the presence of plasmids. These plasmids were shown to be diverse, being either conjugative or mobilizable, and capable of transferring mupirocin resistance to S. aureus Our findings reinforce that S. haemolyticus, historically and mistakenly considered as a less important pathogen, is a reservoir of resistance genes which can be transferred to other bacteria, such as S. aureus, emphasizing the necessity of more effective strategies to detect and combat this emergent opportunistic pathogen. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Phytoremediation with transgenic trees.

    PubMed

    Peuke, Andreas D; Rennenberg, Heinz

    2005-01-01

    In the present paper actual trends in the use of transgenic trees for phytoremediation of contaminated soils are reviewed. In this context a current field trial in which transgenic poplars with enhanced GSH synthesis and hence elevated capacity for phytochelatin production are compared with wildtype plants for the removal of heavy metals at different levels of contamination and under different climatic conditions. The studies are carried out with grey poplar (Populus tremula x P. alba), wildtype plants and plants overexpressing the gene for gamma-glutamylcysteine synthetase (gshI) from E. coli in the cytosol. The expression of this gene in poplar leads to two- to four-fold enhanced GSH concentrations in the leaves. In greenhouse experiments under controlled conditions these transgenic poplars showed a high potential for uptake and detoxification of heavy metals and pesticides. This capacity is evaluated in field experiments. Further aims of the project are to elucidate (a) the stability of the transgene under field conditions and (b) the possibility of horizontal gene transfer to microorganisms in the rhizosphere. The results will help to assess the biosafety risk of the use of transgenic poplar for phytoremediation of soils.

  14. Insect resistance to Nilaparvata lugens and Cnaphalocrocis medinalis in transgenic indica rice and the inheritance of gna+sbti transgenes.

    PubMed

    Li, Guiying; Xu, Xinping; Xing, Hengtai; Zhu, Huachen; Fan, Qin

    2005-04-01

    Molecular genetic analysis and insect bioassay of transgenic indica rice 'Zhuxian B' plants carrying snowdrop lectin gene (gna) and soybean trypsin inhibitor gene (sbti) were investigated in detail. PCR, 'dot' blot and PCR-Southern blot analysis showed that both transgenes had been incorporated into the rice genome and transmitted up to R3 progeny in most lines tested. Some transgenic lines exhibited Mendelian segregation, but the other showed either 1:1 (positive: negative for the transgenes) or other aberrant segregation patterns. The segregation patterns of gna gene crossed between R2 and R3 progeny. In half of transgenic R3 lines, gna and sbti transgenes co-segregated. Two independent homozygous lines expressing double transgenes were identified in R3 progeny. Southern blot analysis demonstrated that the copy numbers of integrated gna and sbti transgenes varied from one to ten in different lines. Insect bioassay data showed that most transgenic plants had better resistance to both Nilaparvata lugens (Stahl) and Cnaphalocrocis medinalis (Guenee) than wild-type plants. The insect resistance of transgenic lines increased with the increase in transgene positive ratio in most of the transgenic lines. In all, we obtained nine lines of R3 transgenic plants, including one pure line, which had better resistance to both N lugens and C medinalis than wild-type plants. Copyright 2005 Society of Chemical Industry.

  15. Pest control and resistance management through release of insects carrying a male-selecting transgene.

    PubMed

    Harvey-Samuel, Tim; Morrison, Neil I; Walker, Adam S; Marubbi, Thea; Yao, Ju; Collins, Hilda L; Gorman, Kevin; Davies, T G Emyr; Alphey, Nina; Warner, Simon; Shelton, Anthony M; Alphey, Luke

    2015-07-16

    Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis ('Bt crops') emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largely successful, multiple cases of Bt resistance have now been reported. One new approach to pest management is the use of genetically engineered insects to suppress populations of their own species. Models suggest that released insects carrying male-selecting (MS) transgenes would be effective agents of direct, species-specific pest management by preventing survival of female progeny, and simultaneously provide an alternative insecticide resistance management strategy by introgression of susceptibility alleles into target populations. We developed a MS strain of the diamondback moth, Plutella xylostella, a serious global pest of crucifers. MS-strain larvae are reared as normal with dietary tetracycline, but, when reared without tetracycline or on host plants, only males will survive to adulthood. We used this strain in glasshouse-cages to study the effect of MS male P. xylostella releases on target pest population size and spread of Bt resistance in these populations. Introductions of MS-engineered P. xylostella males into wild-type populations led to rapid pest population decline, and then elimination. In separate experiments on broccoli plants, relatively low-level releases of MS males in combination with broccoli expressing Cry1Ac (Bt broccoli) suppressed population growth and delayed the spread of Bt resistance. Higher rates of MS male releases in the absence of Bt broccoli were also able to suppress P. xylostella populations, whereas either low-level MS male releases or Bt broccoli

  16. Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice.

    PubMed Central

    Kwan, H; Pecenka, V; Tsukamoto, A; Parslow, T G; Guzman, R; Lin, T P; Muller, W J; Lee, F S; Leder, P; Varmus, H E

    1992-01-01

    The Wnt-1 and int-2 proto-oncogenes are transcriptionally activated by mouse mammary tumor virus insertion mutations in virus-induced tumors and encode secretory glycoproteins. To determine whether these two genes can cooperate during carcinogenesis, we have crossed two previously characterized lines of transgenic mice to obtain bitransgenic animals carrying both Wnt-1 and int-2 transgenes under the control of the mouse mammary tumor virus long terminal repeat. Mammary carcinomas appear earlier and with higher frequency in the bitransgenic animals, especially the males, than in either parental line. Nearly all bitransgenic males develop mammary neoplasms within 8 months of birth, whereas only 15% of Wnt-1 transgenic males and none of the int-2 transgenic males have tumors. In virgin bitransgenic females, tumors occur approximately 2 months earlier than in their Wnt-1 transgenic siblings; int-2 transgenic females rarely exhibit tumors. Preneoplastic glands from the bitransgenic animals of either sex demonstrate pronounced epithelial hyperplasia similar to that seen in Wnt-1 transgenic virgin females and males, and both transgenes are expressed in the hyperplastic glands and mammary tumors. RNA from the int-2 transgene is more abundant in mammary glands from bitransgenic animals than from int-2 transgenic animals; the increase is associated with high levels of RNA specific for keratin genes 14 and 18, suggesting that Wnt-1-induced epithelial hyperplasia is responsible for the observed increase in expression of the int-2 transgene. Images PMID:1530875

  17. Improved production of genetically modified fetuses with homogeneous transgene expression after transgene integration site analysis and recloning in cattle.

    PubMed

    Bressan, Fabiana Fernandes; Dos Santos Miranda, Moyses; Perecin, Felipe; De Bem, Tiago Henrique; Pereira, Flavia Thomaz Verechia; Russo-Carbolante, Elisa Maria; Alves, Daiani; Strauss, Bryan; Bajgelman, Marcio; Krieger, José Eduardo; Binelli, Mario; Meirelles, Flavio Vieira

    2011-02-01

    Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.

  18. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification

    PubMed Central

    Cain-Hom, Carol; Splinter, Erik; van Min, Max; Simonis, Marieke; van de Heijning, Monique; Martinez, Maria; Asghari, Vida

    2017-01-01

    Abstract Cre/LoxP technology is widely used in the field of mouse genetics for spatial and/or temporal regulation of gene function. For Cre lines generated via pronuclear microinjection of a Cre transgene construct, the integration site is random and in most cases not known. Integration of a transgene can disrupt an endogenous gene, potentially interfering with interpretation of the phenotype. In addition, knowledge of where the transgene is integrated is important for planning of crosses between animals carrying a conditional allele and a given Cre allele in case the alleles are on the same chromosome. We have used targeted locus amplification (TLA) to efficiently map the transgene location in seven previously published Cre and CreERT2 transgenic lines. In all lines, transgene insertion was associated with structural changes of variable complexity, illustrating the importance of testing for rearrangements around the integration site. In all seven lines the exact integration site and breakpoint sequences were identified. Our methods, data and genotyping assays can be used as a resource for the mouse community and our results illustrate the power of the TLA method to not only efficiently map the integration site of any transgene, but also provide additional information regarding the transgene integration events. PMID:28053125

  19. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering.

    PubMed

    Kimura, Yukiko; Hisano, Yu; Kawahara, Atsuo; Higashijima, Shin-ichi

    2014-10-08

    The type II bacterial CRISPR/Cas9 system is rapidly becoming popular for genome-engineering due to its simplicity, flexibility, and high efficiency. Recently, targeted knock-in of a long DNA fragment via homology-independent DNA repair has been achieved in zebrafish using CRISPR/Cas9 system. This raised the possibility that knock-in transgenic zebrafish could be efficiently generated using CRISPR/Cas9. However, how widely this method can be applied for the targeting integration of foreign genes into endogenous genomic loci is unclear. Here, we report efficient generation of knock-in transgenic zebrafish that have cell-type specific Gal4 or reporter gene expression. A donor plasmid containing a heat-shock promoter was co-injected with a short guide RNA (sgRNA) targeted for genome digestion, a sgRNA targeted for donor plasmid digestion, and Cas9 mRNA. We have succeeded in establishing stable knock-in transgenic fish with several different constructs for 4 genetic loci at a frequency being exceeding 25%. Due to its simplicity, design flexibility, and high efficiency, we propose that CRISPR/Cas9-mediated knock-in will become a standard method for the generation transgenic zebrafish.

  20. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification.

    PubMed

    Cain-Hom, Carol; Splinter, Erik; van Min, Max; Simonis, Marieke; van de Heijning, Monique; Martinez, Maria; Asghari, Vida; Cox, J Colin; Warming, Søren

    2017-05-05

    Cre/LoxP technology is widely used in the field of mouse genetics for spatial and/or temporal regulation of gene function. For Cre lines generated via pronuclear microinjection of a Cre transgene construct, the integration site is random and in most cases not known. Integration of a transgene can disrupt an endogenous gene, potentially interfering with interpretation of the phenotype. In addition, knowledge of where the transgene is integrated is important for planning of crosses between animals carrying a conditional allele and a given Cre allele in case the alleles are on the same chromosome. We have used targeted locus amplification (TLA) to efficiently map the transgene location in seven previously published Cre and CreERT2 transgenic lines. In all lines, transgene insertion was associated with structural changes of variable complexity, illustrating the importance of testing for rearrangements around the integration site. In all seven lines the exact integration site and breakpoint sequences were identified. Our methods, data and genotyping assays can be used as a resource for the mouse community and our results illustrate the power of the TLA method to not only efficiently map the integration site of any transgene, but also provide additional information regarding the transgene integration events. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    PubMed

    Hu, Jianjun; Zhang, Jin; Chen, Xingling; Lv, Jinhui; Jia, Huixia; Zhao, Shutang; Lu, Mengzhu

    2017-01-01

    To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  2. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation

    PubMed Central

    Chen, Xingling; Lv, Jinhui; Jia, Huixia; Zhao, Shutang; Lu, Mengzhu

    2017-01-01

    To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations. PMID:28085955

  3. Comparative persistence of thiacloprid in Bt-transgenic cabbage (Brassica oleracea cv. capitata) vis-à-vis non-transgenic crop and its decontamination.

    PubMed

    Dutta, Debashis; Niwas, Ram; Gopal, Madhuban

    2012-11-01

    Thiacloprid is a systemic neonicotinoid. The study hypothesized that difference may be seen in the rate of dissipation of thiacloprid when applied on non-transgenic and transgenic cabbage. Thiacloprid was estimated by HPLC. Half life of thiacloprid in transgenic as well as in normal cabbage ranged between 12.3-13.1 days in two doses of application. Under field condition, after 15 days, 59.2% and 54.3% dissipation was recorded at lower and higher rates of application in transgenic cabbage, where as the insecticide dissipated 57.5% and 59.1% for single dose and double dose application, respectively in non-transgenic cabbage. The study establishes that there is no significant difference in dissipation of a systemic pesticide in transgenic versus non-transgenic cabbage. Decontamination of thiacloprid contaminated cabbage was carried out by different chemical treatments. The application of 0.5% NaHCO(3) (an edible alkali) may be recommended for decontamination. Thiacloprid residues in the day-3 field samples of cabbage could be reduced below Japanese MRL (1.0 mg kg(-1)) by treating with 0.5% NaHCO(3) solution for 1 h.

  4. The growth performance of F1 transgenic mutiara catfish

    NASA Astrophysics Data System (ADS)

    Iskandar; Buwono, I. D.; Agung, M. U. K.

    2018-04-01

    The growth of catfish (African or Sangkuriang strain) these days is tend to decreased. One of the solutions due to this problem is to improve the genetics of growth using transgenesis technology, toward more profitable. The specific objective of the research is to detect the transmission of exogenous GH (African catfish GH inserts) inside the F1 transgenic Mutiara catfish using PCR (Polymerase Chain Reaction) method and to evaluate the growth performance of transgenic Mutiara catfish made using the parameters of feed conversion (FCR = Feed Conversion Ratio). Transgenic catfish (strain mutiara) F0 and F1 carried African catfish GH (600 bp) can be produced. Superiority characters of transgenic catfish represented heritability (h2 ) and heterosis (H), indicating that the offspring of hybrid F1 transgenic mutiara catfish had phenotypes rapid growth (h2 = 17.55 % and H = 42.83 %) compared to non-transgenic catfish (h 2 = 10.07 % and H = 18.56 %). Evaluation of the efficiency of feed use parameters feed conversion ratio, shows that F1 transgenic mutiara catfish (FCR = 0.85) more efficient in converting feed into meat.

  5. Ectopic bone formation and chondrodysplasia in transgenic mice carrying the rat C3(1)/T{sub AG} fusion gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, J.E.; Maroulakou, I.G.; Anver, M.

    Transgenic mice expressing the SV40 large T-antigen (T{sup AG}) under the regultory control of the hormone-responsive rat C3(1) prostatein promoter develop unusual bone and cartilage lesions, as well as ectopic bone and cartilage formation. Two lines of transgenic animals have been propagated in which the expression of the transgene in chondrocytes results in a mild to moderate generalized disorganization of cartilage growth which appears to affect multiple tissues, including the trachea, ear pinna and articular cartilage. The epiphyseal plates are also affected with normal architecture of the zones of proliferation and maturation, but marked elongation of the zone of hypertrophy.more » Immunocytochemistry demonstrates that expression of T{sup AG} is limited to the zone of hypertropny in the epiphyseal plates, suggesting that the chondrocytes become hormone-responsive at this particular stage of differentiation. Normal mineralization and trabecular formation in long bone appears to occur. Ectopic bone and cartilage formation occurs in the foot pads of the fore- and hind- feet over the course of several months. This is preceded by proliferation of sweat gland epithelial cells followed by the appearance of nodules of cartilage and bone. The nodules are closely associated with proliferating epithelium but are not contiguous with bony structures normally found in the feet. The roles of BMP`s, growth factors, oncogenes and hormones in the development of these lesions will be presented. These transgenic animals may provide new insights into hormone-responsiveness of chondrocytes, as well as factors involved in the processes of bone and cartilage differentiation and growth. These transgenic animals may serve as a useful model for human heterotopic bone formation.« less

  6. Multiple ovarian transplants to rescue a transgenic line of mice.

    PubMed

    Dawes, Joyce; Liu, Bowen; Mars, Wendy; Michalopoulos, George; Khillan, Jaspal S

    2010-06-01

    Transgenic mice are useful tools for studying gene function and regulation but can be difficult to successfully breed. To 'rescue' transgenic lines that are difficult to propagate, researchers use a variety of techniques. One method is ovarian transplant, in which researchers remove ovaries from a donor transgenic mouse, cryopreserve the ovarian tissue, transplant this tissue into histocompatible female mice and breed these recipient females. Though it is a useful technique, cryopreservation can potentially damage ovarian tissue, which could reduce fertility. In this article, the authors describe how they carried out ovarian transplants without cryopreservation to rescue a line of transgenic C57BL/6 mice. Other researchers who have experience with mouse reproductive surgery should be able to use this technique to rescue infertile transgenic lines of mice.

  7. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene.

    PubMed Central

    Maroulakou, I G; Anver, M; Garrett, L; Green, J E

    1994-01-01

    A transgenic mouse model for prostate and mammary cancer has been developed in mice containing a recombinant gene expressing the simian virus 40 early-region transforming sequences under the regulatory control of the rat prostatic steroid binding protein [C3(1)] gene. Male transgenic mice develop prostatic hyperplasia in early life that progresses to adenoma or adenocarcinoma in most animals surviving to longer than 7 months of age. Prostate cancer metastases to lung have been observed. Female animals from the same founder lines generally develop mammary hyperplasia by 3 months of age with subsequent development of mammary adenocarcinoma by 6 months of age in 100% of the animals. The development of tumors correlates with the expression of the transgene as determined by Northern blot and immunohistochemical analyses. The results of these experiments demonstrate that the C3(1) regulatory region used in these experiments is useful for targeting expression to the prostate and mammary gland. To our knowledge, this experimental system is the first reported transgenic mouse model for prostate cancer. These transgenic animals offer the opportunity to study hormone response elements in vivo and the multistage progression from normal tissue to carcinoma in the prostate and mammary glands. Images PMID:7972041

  8. An edible vaccine for malaria using transgenic tomatoes of varying sizes, shapes and colors to carry different antigens.

    PubMed

    Chowdhury, Kamal; Bagasra, Omar

    2007-01-01

    different antigens as a single dose. Besides, if immunization schedules could be arranged, the stability of vaccines carrying different malarial antigens, their transport, and the logistics of vaccination would be an almost impossible task to achieve under the current fiscal constraints. We are proposing a unique way to circumvent these logistical difficulties to deliver the malaria vaccines to every susceptible home at a small fraction of a cost. We hypothesize that the anti-malaria edible vaccines in transgenic tomato plants where different transgenic plants expressing different antigenic type(s). Immunizing individuals against 2-3 antigens and against each stage of the life cycle of the multistage parasites would be an efficient, inexpensive and safe way of vaccination. Tomatoes with varying sizes, shapes and colors carrying different antigens would make the vaccines easily identifiable by lay individuals.

  9. A transgenic model of transactivation by the Tax protein of HTLV-I.

    PubMed

    Bieberich, C J; King, C M; Tinkle, B T; Jay, G

    1993-09-01

    The human T-lymphotropic virus type I (HTLV-I) Tax protein is a transcriptional regulatory protein that has been suggested to play a causal role in the development of several HTLV-I-associated diseases. Tax regulates expression of its own LTR and of certain cellular promoters perhaps by usurping the function of the host transcriptional machinery. We have established a transgenic mouse model system to define the spectrum of tissues in vivo that are capable of supporting Tax-mediated transcriptional transactivation. Transgenic mice carrying the HTLV-I LTR driving expression of the Escherichia coli beta-galactosidase (beta gal) gene were generated, and this LTR-beta gal gene was transcriptionally inactive in all tissues. When LTR-beta gal mice were mated to transgenic mice carrying the same LTR driving expression of the HTLV-I tax gene, mice that carried both transgenes showed restricted expression of the beta gal reporter gene in several tissues including muscle, bone, salivary glands, skin, and nerve. In addition, a dramatic increase in the number of beta gal-expressing cells was seen in response to wounding. These observations provide direct evidence for viral transactivation in vivo, delimit the tissues capable of supporting that transactivation, and provide a model system to study the mechanism of gene regulation by Tax.

  10. The ecological risks of transgenic plants.

    PubMed

    Giovannetti, Manuela

    2003-01-01

    Biotechnologies have been utilized "ante litteram" for thousands of years to produce food and drink and genetic engineering techniques have been widely applied to produce many compounds for human use, from insulin to other medicines. The debate on genetically modified (GM) organisms broke out all over the world only when GM crops were released into the field. Plant ecologists, microbiologists and population geneticists carried out experiments aimed at evaluating the environmental impact of GM crops. The most significant findings concern: the spread of transgenes through GM pollen diffusion and its environmental impact after hybridisation with closely related wild species or subspecies; horizontal gene transfer from transgenic plants to soil microbes; the impact of insecticide proteins released into the soil by transformed plants on non-target microbial soil communities. Recent developments in genetic engineering produced a technology, dubbed "Terminator", which protects patented genes introduced in transgenic plants by killing the seeds in the second generation. This genetic construct, which interferes so heavily with fundamental life processes, is considered dangerous and should be ex-ante evaluated taking into account the data on "unexpected events", as here discussed, instead of relying on the "safe until proven otherwise" claim. Awareness that scientists, biotechnologists and genetic engineers cannot answer the fundamental question "how likely is that transgenes will be transferred from cultivated plants into the natural environment?" should foster long-term studies on the ecological risks and benefits of transgenic crops.

  11. Design and Management of Field Trials of Transgenic Cereals

    NASA Astrophysics Data System (ADS)

    Bedő, Zoltán; Rakszegi, Mariann; Láng, László

    The development of gene transformation systems has allowed the introgression of alien genes into plant genomes, thus providing a mechanism for broadening the genetic resources available to plant breeders. The design and the management of field trials vary according to the purpose for which transgenic cereals are developed. Breeders study the phenotypic and genotypic stability of transgenic plants, monitor the increase in homozygosity of transgenic genotypes under field conditions, and develop backcross generations to transfer the introduced genes into secondary transgenic cereal genotypes. For practical purposes, they may also multiply seed of the transgenic lines to produce sufficient amounts of grain for the detailed analysis of trait(s) of interest, to determine the field performance of transgenic lines, and to compare them with the non-transformed parental genotypes. Prior to variety registration, the Distinctness, Uniformity and Stability (DUS) tests and Value for Cultivation and Use (VCU) experiments are carried out in field trials. Field testing includes specific requirements for transgenic cereals to assess potential environmental risks. The capacity of the pollen to survive, establish and disseminate in the field test environment, the potential for gene transfer, the effects of products expressed by the introduced sequences and phenotypic and genotypic instability that might cause deleterious effects must all be specifically monitored, as required by EU Directives 2003/701/EC (1) on the release of genetically modified higher plants in the environment.

  12. Untranslatable tospoviral NSs fragment coupled with L conserved region enhances transgenic resistance against the homologous virus and a serologically unrelated tospovirus.

    PubMed

    Yazhisai, Uthaman; Rajagopalan, Prem Anand; Raja, Joseph A J; Chen, Tsung-Chi; Yeh, Shyi-Dong

    2015-08-01

    Tospoviruses cause severe damages to important crops worldwide. In this study, Nicotiana benthamiana transgenic lines carrying individual untranslatable constructs comprised of the conserved region of the L gene (denoted as L), the 5' half of NSs coding sequence (NSs) or the antisense fragment of whole N coding sequence (N) of Watermelon silver mottle virus (WSMoV), individually or in combination, were generated. A total of 15-17 transgenic N. benthamiana lines carrying individual transgenes were evaluated against WSMoV and the serologically unrelated Tomato spotted wilt virus (TSWV). Among lines carrying single or chimeric transgenes, the level of resistance ranged from susceptible to completely resistant against WSMoV. From the lines carrying individual transgenes and highly resistant to WSMoV (56-63% of lines assayed), 30% of the L lines (3/10 lines assayed) and 11% of NSs lines (1/9 lines assayed) were highly resistant against TSWV. The chimeric transgenes provided higher degrees of resistance against WSMoV (80-88%), and the NSs fragment showed an additive effect to enhance the resistance to TSWV. Particularly, the chimeric transgenes with the triple combination of fragments, namely L/NSs/N or HpL/NSs/N (a hairpin construct), provided a higher degree of resistance (both 50%, with 7/14 lines assayed) against TSWV. Our results indicate that the untranslatable NSs fragment is able to enhance the transgenic resistance conferred by the L conserved region. The better performance of L/NSs/N and HpL/NSs/N in transgenic N. benthamiana lines suggests their potential usefulness in generating high levels of enhanced transgenic resistance against serologically unrelated tospoviruses in agronomic crops.

  13. Streptococcal group B integrative and mobilizable element IMESag-rpsI encodes a functional relaxase involved in its transfer

    PubMed Central

    Lorenzo-Diaz, Fabian; Fernández-Lopez, Cris; Douarre, Pierre-Emmanuel; Baez-Ortega, Adrian; Flores, Carlos; Glaser, Philippe

    2016-01-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) are opportunistic bacteria that can cause lethal sepsis in children and immuno-compromised patients. Their genome is a reservoir of mobile genetic elements that can be horizontally transferred. Among them, integrative and conjugative elements (ICEs) and the smaller integrative and mobilizable elements (IMEs) primarily reside in the bacterial chromosome, yet have the ability to be transferred between cells by conjugation. ICEs and IMEs are therefore a source of genetic variability that participates in the spread of antibiotic resistance. Although IMEs seem to be the most prevalent class of elements transferable by conjugation, they are poorly known. Here, we have studied a GBS-IME, termed IMESag-rpsI, which is widely distributed in GBS despite not carrying any apparent virulence trait. Analyses of 240 whole genomes showed that IMESag-rpsI is present in approximately 47% of the genomes, has a roughly constant size (approx. 9 kb) and is always integrated at a single location, the 3′-end of the gene encoding the ribosomal protein S9 (rpsI). Based on their genetic variation, several IMESag-rpsI types were defined (A–J) and classified in clonal complexes (CCs). CC1 was the most populated by IMESag-rpsI (more than 95%), mostly of type-A (71%). One CC1 strain (S. agalactiae HRC) was deep-sequenced to understand the rationale underlying type-A IMESag-rpsI enrichment in GBS. Thirteen open reading frames were identified, one of them encoding a protein (MobSag) belonging to the broadly distributed family of relaxases MOBV1. Protein MobSag was purified and, by a newly developed method, shown to cleave DNA at a specific dinucleotide. The S. agalactiae HRC-IMESag-rpsI is able to excise from the chromosome, as shown by the presence of circular intermediates, and it harbours a fully functional mobilization module. Further, the mobSag gene encoded by this mobile element is able to promote plasmid transfer among pneumococcal

  14. Streptococcal group B integrative and mobilizable element IMESag-rpsI encodes a functional relaxase involved in its transfer.

    PubMed

    Lorenzo-Diaz, Fabian; Fernández-Lopez, Cris; Douarre, Pierre-Emmanuel; Baez-Ortega, Adrian; Flores, Carlos; Glaser, Philippe; Espinosa, Manuel

    2016-10-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) are opportunistic bacteria that can cause lethal sepsis in children and immuno-compromised patients. Their genome is a reservoir of mobile genetic elements that can be horizontally transferred. Among them, integrative and conjugative elements (ICEs) and the smaller integrative and mobilizable elements (IMEs) primarily reside in the bacterial chromosome, yet have the ability to be transferred between cells by conjugation. ICEs and IMEs are therefore a source of genetic variability that participates in the spread of antibiotic resistance. Although IMEs seem to be the most prevalent class of elements transferable by conjugation, they are poorly known. Here, we have studied a GBS-IME, termed IMESag-rpsI, which is widely distributed in GBS despite not carrying any apparent virulence trait. Analyses of 240 whole genomes showed that IMESag-rpsI is present in approximately 47% of the genomes, has a roughly constant size (approx. 9 kb) and is always integrated at a single location, the 3'-end of the gene encoding the ribosomal protein S9 (rpsI). Based on their genetic variation, several IMESag-rpsI types were defined (A-J) and classified in clonal complexes (CCs). CC1 was the most populated by IMESag-rpsI (more than 95%), mostly of type-A (71%). One CC1 strain (S. agalactiae HRC) was deep-sequenced to understand the rationale underlying type-A IMESag-rpsI enrichment in GBS. Thirteen open reading frames were identified, one of them encoding a protein (MobSag) belonging to the broadly distributed family of relaxases MOB V1 Protein MobSag was purified and, by a newly developed method, shown to cleave DNA at a specific dinucleotide. The S. agalactiae HRC-IMESag-rpsI is able to excise from the chromosome, as shown by the presence of circular intermediates, and it harbours a fully functional mobilization module. Further, the mobSag gene encoded by this mobile element is able to promote plasmid transfer among pneumococcal

  15. Construction of improved temperature-sensitive and mobilizable vectors and their use for constructing mutations in the adhesin-encoding acm gene of poorly transformable clinical Enterococcus faecium strains.

    PubMed

    Nallapareddy, Sreedhar R; Singh, Kavindra V; Murray, Barbara E

    2006-01-01

    Inactivation by allelic exchange in clinical isolates of the emerging nosocomial pathogen Enterococcus faecium has been hindered by lack of efficient tools, and, in this study, transformation of clinical isolates was found to be particularly problematic. For this reason, a vector for allelic replacement (pTEX5500ts) was constructed that includes (i) the pWV01-based gram-positive repAts replication region, which is known to confer a high degree of temperature intolerance, (ii) Escherichia coli oriR from pUC18, (iii) two extended multiple-cloning sites located upstream and downstream of one of the marker genes for efficient cloning of flanking regions for double-crossover mutagenesis, (iv) transcriptional terminator sites to terminate undesired readthrough, and (v) a synthetic extended promoter region containing the cat gene for allelic exchange and a high-level gentamicin resistance gene, aph(2'')-Id, to distinguish double-crossover recombination, both of which are functional in gram-positive and gram-negative backgrounds. To demonstrate the functionality of this vector, the vector was used to construct an acm (encoding an adhesin to collagen from E. faecium) deletion mutant of a poorly transformable multidrug-resistant E. faecium endocarditis isolate, TX0082. The acm-deleted strain, TX6051 (TX0082Deltaacm), was shown to lack Acm on its surface, which resulted in the abolishment of the collagen adherence phenotype observed in TX0082. A mobilizable derivative (pTEX5501ts) that contains oriT of Tn916 to facilitate conjugative transfer from the transformable E. faecalis strain JH2Sm::Tn916 to E. faecium was also constructed. Using this vector, the acm gene of a nonelectroporable E. faecium wound isolate was successfully interrupted. Thus, pTEX5500ts and its mobilizable derivative demonstrated their roles as important tools by helping to create the first reported allelic replacement in E. faecium; the constructed this acm deletion mutant will be useful for assessing the

  16. Allergenicity assessment of the Papaya ringspot virus coat protein expressed in transgenic Rainbow papaya

    USDA-ARS?s Scientific Manuscript database

    The virus-resistant, transgenic commercial papaya cultivars Rainbow and SunUp (Carica papaya L.) have been consumed locally in Hawaii and elsewhere in the mainland US and Canada since their release to planters in Hawaii in 1998. These cultivars are derived from transgenic papaya line 55-1 and carry ...

  17. Site-specific DNA excision in transgenic rice with a cell-permeable cre recombinase.

    PubMed

    Cao, Ming-Xia; Huang, Jian-Qiu; Yao, Quan-Hong; Liu, Sheng-Jun; Wang, Cheng-Long; Wei, Zhi-Ming

    2006-01-01

    The removal of selected marker genes from transgenic plants is necessary to address biosafety concerns and to carry out further experiments with transgenic organisms. In the present study, the 12-amino-acid membrane translocation sequence (MTS) from the Kaposi fibroblast growth factor (FGF)-4 was used as a carrier to deliver enzymatically active Cre proteins into living plant cells, and to produce a site-specific DNA excision in transgenic rice plants. The process, which made cells permeable to Cre recombinase-mediated DNA recombination, circumvented the need to express Cre under spatiotemporal control and was proved to be a simple and efficient system to achieve marker-free transgenic plants. The ultimate aim of the present study is to develop commercial rice cultivars free from selected marker genes to hasten public acceptance of transgenic crops.

  18. Prospecting for Microelement Function and Biosafety Assessment of Transgenic Cereal Plants

    PubMed Central

    Yu, Xiaofen; Luo, Qingchen; Huang, Kaixun; Yang, Guangxiao; He, Guangyuan

    2018-01-01

    Microelement contents and metabolism are vitally important for cereal plant growth and development as well as end-use properties. While minerals phytotoxicity harms plants, microelement deficiency also affects human health. Genetic engineering provides a promising way to solve these problems. As plants vary in abilities to uptake, transport, and accumulate minerals, and the key enzymes acting on that process is primarily presented in this review. Subsequently, microelement function and biosafety assessment of transgenic cereal plants have become a key issue to be addressed. Progress in genetic engineering of cereal plants has been made with the introduction of quality, high-yield, and resistant genes since the first transgenic rice, corn, and wheat were born in 1988, 1990, and 1992, respectively. As the biosafety issue of transgenic cereal plants has now risen to be a top concern, many studies on transgenic biosafety have been carried out. Transgenic cereal biosafety issues mainly include two subjects, environmental friendliness and end-use safety. Different levels of gene confirmation, genomics, proteomics, metabolomics and nutritiomics, absorption, metabolism, and function have been investigated. Also, the different levels of microelement contents have been measured in transgenic plants. Based on the motivation of the requested biosafety, systematic designs, and analysis of transgenic cereal are also presented in this review paper. PMID:29599791

  19. Secretion of a recombinant protein without a signal peptide by the exocrine glands of transgenic rabbits

    PubMed Central

    Iski, Gergely; Lipták, Nándor; Gócza, Elen; Kues, Wilfried A.; Bősze, Zsuzsanna

    2017-01-01

    Transgenic rabbits carrying mammary gland specific gene constructs are extensively used for excreting recombinant proteins into the milk. Here, we report refined phenotyping of previously generated Venus transposon-carrying transgenic rabbits with particular emphasis on the secretion of the reporter protein by exocrine glands, such as mammary, salivary, tear and seminal glands. The Sleeping Beauty (SB) transposon transgenic construct contains the Venus fluorophore cDNA, but without a signal peptide for the secretory pathway, driven by the ubiquitous CAGGS (CAG) promoter. Despite the absence of a signal peptide, the fluorophore protein was readily detected in milk, tear, saliva and seminal fluids. The expression pattern was verified by Western blot analysis. Mammary gland epithelial cells of SB-CAG-Venus transgenic lactating does also showed Venus-specific expression by tissue histology and fluorescence microscopy. In summary, the SB-CAG-Venus transgenic rabbits secrete the recombinant protein by different glands. This finding has relevance not only for the understanding of the biological function of exocrine glands, but also for the design of constructs for expression of recombinant proteins in dairy animals. PMID:29077768

  20. Illegal gene flow from transgenic creeping bentgrass: the saga continues.

    PubMed

    Snow, Allison A

    2012-10-01

    Ecologists have paid close attention to environmental effects that fitness-enhancing transgenes might have following crop-to-wild gene flow (e.g. Snow et al. 2003). For some crops, gene flow also can lead to legal problems,especially when government agencies have not approved transgenic events for unrestricted environmental release.Creeping bentgrass (Agrostis stolonifera), a common turf grass used in golf courses, is the focus of both areas of concern. In 2002, prior to expected deregulation (still pending), The Scotts Company planted creeping bentgrass with transgenic resistance to the herbicide glyphosate,also known as RoundUp, on 162 ha in a designated control area in central Oregon (Fig. 1).Despite efforts to restrict gene flow, wind-dispersed pollen carried transgenes to florets of local A. stolonifera and A. gigantea as far as 14 km away, and to sentinel plants placed as far as 21 km away (Watrud et al. 2004).Then, in August 2003, a strong wind event moved transgenic seeds from wind rows of cut bentgrass into nearby areas. The company’s efforts to kill all transgenic survivors in the area failed: feral glyphosate-resistant populations of A. stolonifera were found by Reichman et al.(2006), and 62% of 585 bentgrass plants had the telltale CP4 EPSPS transgene in 2006 (Zapiola et al. 2008; Fig. 2).Now, in this issue, the story gets even more interesting as Zapiola & Mallory-Smith (2012) describe a transgenic,intergeneric hybrid produced on a feral, transgenic creeping bentgrass plant that received pollen from Polypogon monspeliensis (rabbitfoot grass). Their finding raises a host of new questions about the prevalence and fitness of intergeneric hybrids, as well as how to evaluate the full extent of gene flow from transgenic crops.

  1. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning.

    PubMed

    Monzani, P S; Sangalli, J R; De Bem, T H C; Bressan, F F; Fantinato-Neto, P; Pimentel, J R V; Birgel-Junior, E H; Fontes, A M; Covas, D T; Meirelles, F V

    2013-02-28

    Recombinant coagulation factor IX must be produced in mammalian cells because FIX synthesis involves translational modifications. Human cell culture-based expression of human coagulation factor IX (hFIX) is expensive, and large-scale production capacity is limited. Transgenic animals may greatly increase the yield of therapeutic proteins and reduce costs. In this study, we used a lentiviral system to obtain transgenic cells and somatic cell nuclear transfer (SCNT) to produce transgenic animals. Lentiviral vectors carrying hFIX driven by 3 bovine β-casein promoters were constructed. Bovine epithelial mammary cells were transduced by lentivirus, selected with blasticidin, plated on extracellular matrix, and induced by lactogenic hormones; promoter activity was evaluated by quantitative PCR. Transcriptional activity of the 5.335-kb promoter was 6-fold higher than the 3.392- and 4.279-kb promoters, which did not significantly differ. Transgenic bovine fibroblasts were transduced with lentivirus carrying the 5.335-kb promoter and used as donor cells for SCNT. Cloned transgenic embryo production yielded development rates of 28.4%, similar to previous reports on cloned non-transgenic embryos. The embryos were transferred to recipient cows (N = 21) and 2 births of cloned transgenic cattle were obtained. These results suggest combination of the lentiviral system and cloning may be a good strategy for production of transgenic cattle.

  2. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene.

    PubMed

    Fu, Jianming; Ristic, Zoran

    2010-06-01

    We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation following exposure to heat stress (18 h at 45 degrees C) [Fu et al. in Plant Mol Biol 68:277-288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45 degrees C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.

  3. A transgenic apple callus showing reduced polyphenol oxidase activity and lower browning potential.

    PubMed

    Murata, M; Nishimura, M; Murai, N; Haruta, M; Homma, S; Itoh, Y

    2001-02-01

    Polyphenol oxidase (PPO) is responsible for enzymatic browning of apples. Apples lacking PPO activity might be useful not only for the food industry but also for studies of the metabolism of polyphenols and the function of PPO. Transgenic apple calli were prepared by using Agrobacterium tumefaciens carrying the kanamycin (KM) resistant gene and antisense PPO gene. Four KM-resistant callus lines were obtained from 356 leaf explants. Among these transgenic calli, three calli grew on the medium containing KM at the same rate as non-transgenic callus on the medium without KM. One callus line had an antisense PPO gene, in which the amount and activity of PPO were reduced to half the amount and activity in non-transgenic callus. The browning potential of this line, which was estimated by adding chlorogenic acid, was also half the browning potential of non-transgenic callus.

  4. Simple and rapid determination of homozygous transgenic mice via in vivo fluorescence imaging.

    PubMed

    Lin, Xiaolin; Jia, Junshuang; Qin, Yujuan; Lin, Xia; Li, Wei; Xiao, Gaofang; Li, Yanqing; Xie, Raoying; Huang, Hailu; Zhong, Lin; Wu, Qinghong; Wang, Wanshan; Huang, Wenhua; Yao, Kaitai; Xiao, Dong; Sun, Yan

    2015-11-17

    Setting up breeding programs for transgenic mouse strains require to distinguish homozygous from the heterozygous transgenic animals. The combinational use of the fluorescence reporter transgene and small animal in-vivo imaging system might allow us to rapidly and visually determine the transgenic mice homozygous for transgene(s) by the in vivo fluorescence imaging. RLG, RCLG or Rm17LG transgenic mice ubiquitously express red fluorescent protein (RFP). To identify homozygous RLG transgenic mice, whole-body fluorescence imaging for all of newborn F2-generation littermates produced by mating of RFP-positive heterozygous transgenic mice (F1-generation) derived from the same transgenic founder was performed. Subsequently, the immediate data analysis of the in vivo fluorescence imaging was carried out, which greatly facilitated us to rapidly and readily distinguish RLG transgenic individual(s) with strong fluorescence from the rest of F2-generation littermates, followed by further determining this/these RLG individual(s) showing strong fluorescence to be homozygous, as strongly confirmed by mouse mating. Additionally, homozygous RCLG or Rm17LG transgenic mice were also rapidly and precisely distinguished by the above-mentioned optical approach. This approach allowed us within the shortest time period to obtain 10, 8 and 2 transgenic mice homozygous for RLG, RCLG and Rm17LG transgene, respectively, as verified by mouse mating, indicating the practicality and reliability of this optical method. Taken together, our findings fully demonstrate that the in vivo fluorescence imaging offers a visual, rapid and reliable alternative method to the traditional approaches (i.e., mouse mating and real-time quantitative PCR) in identifying homozygous transgenic mice harboring fluorescence reporter transgene under the control of a ubiquitous promoter in the situation mentioned in this study.

  5. Simple and rapid determination of homozygous transgenic mice via in vivo fluorescence imaging

    PubMed Central

    Li, Wei; Xiao, Gaofang; Li, Yanqing; Xie, Raoying; Huang, Hailu; Zhong, Lin; Wu, Qinghong; Wang, Wanshan; Huang, Wenhua; Yao, Kaitai; Xiao, Dong; Sun, Yan

    2015-01-01

    Setting up breeding programs for transgenic mouse strains require to distinguish homozygous from the heterozygous transgenic animals. The combinational use of the fluorescence reporter transgene and small animal in-vivo imaging system might allow us to rapidly and visually determine the transgenic mice homozygous for transgene(s) by the in vivo fluorescence imaging. RLG, RCLG or Rm17LG transgenic mice ubiquitously express red fluorescent protein (RFP). To identify homozygous RLG transgenic mice, whole-body fluorescence imaging for all of newborn F2-generation littermates produced by mating of RFP-positive heterozygous transgenic mice (F1-generation) derived from the same transgenic founder was performed. Subsequently, the immediate data analysis of the in vivo fluorescence imaging was carried out, which greatly facilitated us to rapidly and readily distinguish RLG transgenic individual(s) with strong fluorescence from the rest of F2-generation littermates, followed by further determining this/these RLG individual(s) showing strong fluorescence to be homozygous, as strongly confirmed by mouse mating. Additionally, homozygous RCLG or Rm17LG transgenic mice were also rapidly and precisely distinguished by the above-mentioned optical approach. This approach allowed us within the shortest time period to obtain 10, 8 and 2 transgenic mice homozygous for RLG, RCLG and Rm17LG transgene, respectively, as verified by mouse mating, indicating the practicality and reliability of this optical method. Taken together, our findings fully demonstrate that the in vivo fluorescence imaging offers a visual, rapid and reliable alternative method to the traditional approaches (i.e., mouse mating and real-time quantitative PCR) in identifying homozygous transgenic mice harboring fluorescence reporter transgene under the control of a ubiquitous promoter in the situation mentioned in this study. PMID:26472024

  6. Generation of transgenic chickens expressing the human erythropoietin (hEPO) gene in an oviduct-specific manner: Production of transgenic chicken eggs containing human erythropoietin in egg whites

    PubMed Central

    Kim, Dohyang; Nam, Yu Hwa; Cui, Xiang-Shun; Kim, Nam-Hyung

    2018-01-01

    The transgenic chicken has been considered as a prospective bioreactor for large-scale production of costly pharmaceutical proteins. In the present study, we report successful generation of transgenic hens that lay eggs containing a high concentration of human erythropoietin (hEPO) in the ovalbumin. Using a feline immunodeficiency virus (FIV)-based pseudotyped lentivirus vector enveloped with G glycoproteins of the vesicular stomatitis virus, the replication-defective vector virus carrying the hEPO gene under the control of the chicken ovalbumin promoter was microinjected to the subgerminal cavity of freshly laid chicken eggs (stage X). Stable germline transmission of the hEPO transgene to the G1 progeny, which were non-mosaic and hemizygous for the hEPO gene under the ovalbumin promoter, was confirmed by mating of a G0 rooster with non-transgenic hens. Quantitative analysis of hEPO in the egg whites and in the blood samples taken from G1 transgenic chickens showed 4,810 ~ 6,600 IU/ml (40.1 ~ 55.0 μg/ml) and almost no detectable concentration, respectively, indicating tightly regulated oviduct-specific expression of the hEPO transgene. In terms of biological activity, there was no difference between the recombinant hEPO contained in the transgenic egg white and the commercially available counterpart, in vitro. We suggest that these results imply an important step toward efficient production of human cytokines from a transgenic animal bioreactor. PMID:29847554

  7. Induction of parkinsonism-related proteins in the spinal motor neurons of transgenic mouse carrying a mutant SOD1 gene.

    PubMed

    Morimoto, Nobutoshi; Nagai, Makiko; Miyazaki, Kazunori; Ohta, Yasuyuki; Kurata, Tomoko; Takehisa, Yasushi; Ikeda, Yoshio; Matsuura, Tohru; Asanuma, Masato; Abe, Koji

    2010-06-01

    Amyotrophic lateral sclerosis is a progressive and fatal disease caused by selective death of motor neurons, and a number of these patients carry mutations in the superoxide dismutase 1 (SOD1) gene involved in ameliorating oxidative stress. Recent studies indicate that oxidative stress and disruption of mitochondrial homeostasis is a common mechanism for motor neuron degeneration in amyotrophic lateral sclerosis and the loss of midbrain dopamine neurons in Parkinson's disease. Therefore, the present study investigated the presence and alterations of familial Parkinson's disease-related proteins, PINK1 and DJ-1, in spinal motor neurons of G93ASOD1 transgenic mouse model of amyotrophic lateral sclerosis. Following onset of disease, PINK1 and DJ-1 protein expression increased in the spinal motor neurons. The activated form of p53 also increased and translocated to the nuclei of spinal motor neurons, followed by increased expression of p53-activated gene 608 (PAG608). This is the first report demonstrating that increased expression of PAG608 correlates with activation of phosphorylated p53 in spinal motor neurons of an amyotrophic lateral sclerosis model. These results provide further evidence of the profound correlations between spinal motor neurons of amyotrophic lateral sclerosis and parkinsonism-related proteins.

  8. High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants.

    PubMed

    Rech, Elibio L; Vianna, Giovanni R; Aragão, Francisco J L

    2008-01-01

    This protocol describes a method for high-frequency recovery of transgenic soybean, bean and cotton plants, by combining resistance to the herbicide imazapyr as a selectable marker, multiple shoot induction from embryonic axes of mature seeds and biolistics techniques. This protocol involves the following stages: plasmid design, preparation of soybean, common bean and cotton apical meristems for bombardment, microparticle-coated DNA bombardment of apical meristems and in vitro culture and selection of transgenic plants. The average frequencies (the total number of fertile transgenic plants divided by the total number of bombarded embryonic axes) of producing germline transgenic soybean and bean and cotton plants using this protocol are 9, 2.7 and 0.55%, respectively. This protocol is suitable for studies of gene function as well as the production of transgenic cultivars carrying different traits for breeding programs. This protocol can be completed in 7-10 months.

  9. [TSA improve transgenic porcine cloned embryo development and transgene expression].

    PubMed

    Kong, Qing-Ran; Zhu, Jiang; Huang, Bo; Huan, Yan-Jun; Wang, Feng; Shi, Yong-Qian; Liu, Zhong-Feng; Wu, Mei-Ling; Liu, Zhong-Hua

    2011-07-01

    Uncompleted epigenetic reprogramming is attributed to the low efficiency of producing transgenic cloned animals. Histone modification associated with epigenetics can directly influence the embryo development and transgene expression. Trichostatin A (TSA), as an inhibitor of histone deacetylase, can change the status of histone acetylation, improve somatic cell reprogramming, and enhance cloning efficiency. TSA prevents the chromatin structure from being condensed, so that transcription factor could binds to DNA sequence easily and enhance transgene expression. Our study established the optimal TSA treatment on porcine donor cells and cloned embryos, 250 nmol/L, 24 h and 40 nmol/L, 24 h, respectively. Furthermore, we found that both the cloned embryo and the donor cell treated by TSA resulted in the highest development efficiency. Meanwhile, TSA can improve transgene expression in donor cell and cloned embryo. In summary, TSA can significantly improve porcine reconstructed embryo development and transgene expression.

  10. Phenotypic performance of transgenic potato (Solanum tuberosum L.) plants with pyramided rice cystatin genes (OCI and OCII)

    USDA-ARS?s Scientific Manuscript database

    The evaluation of transgenic plants commonly carried out under controlled conditions in culture rooms and greenhouses can give valuable information about the influence of introduced genes on transgenic plant phenotype. However, an overall assessment of plant performance can only be made by testing t...

  11. Assessment of the salt tolerance and environmental biosafety of Eucalyptus camaldulensis harboring a mangrin transgene.

    PubMed

    Yu, Xiang; Kikuchi, Akira; Shimazaki, Takayoshi; Yamada, Akiyo; Ozeki, Yoshihiro; Matsunaga, Etsuko; Ebinuma, Hiroyasu; Watanabe, Kazuo N

    2013-01-01

    Increasing soil salinization of arable land has a major impact on the global ecosystem. One approach to increase the usable global forest area is to develop transgenic trees with higher tolerance to conditions of salt stress. An allene oxide cyclase homolog, mangrin, contains a core protein domain that enhances the salt tolerance of its host. We utilized this feature to develop improved salt-tolerant eucalyptus trees, by using transgenic Eucalyptus camaldulensis carrying the mangrin gene as a model. Since the Japanese government requires an environmental biosafety assessment for the surrounding biosphere, we performed experiments on trees grown in a special netted-house. This study examined the transgenic E. camaldulensis carrying the mangrin gene to assess the feasibility of using these transformants, and assessed their salt tolerance and environmental biosafety. We found that seven of 36 transgenic genotypes had significantly higher salt tolerance than non-transformants, and more importantly, that these plants had no significant impact on environmental biosafety. These results suggest that introduction of the mangrin gene may be one approach to safely enhance salt tolerance in genetically modified Eucalyptus species, and that the transformants have no apparent risks in terms of environmental biosafety. Thus, this study provides valuable information regarding the use of transgenic trees in situ.

  12. Creating Transgenic shRNA Mice by Recombinase-Mediated Cassette Exchange

    PubMed Central

    Premsrirut, Prem K.; Dow, Lukas E.; Park, Youngkyu; Hannon, Gregory J.; Lowe, Scott W.

    2014-01-01

    RNA interference (RNAi) enables sequence-specific, experimentally induced silencing of virtually any gene by tapping into innate regulatory mechanisms that are conserved among most eukaryotes. The principles that enable transgenic RNAi in cell lines can also be used to create transgenic animals, which express short-hairpin RNAs (shRNAs) in a regulated or tissue-specific fashion. However, RNAi in transgenic animals is somewhat more challenging than RNAi in cultured cells. The activities of promoters that are commonly used for shRNA expression in cell culture can vary enormously in different tissues, and founder lines also typically vary in transgene expression due to the effects of their single integration sites. There are many ways to produce mice carrying shRNA transgenes and the method described here uses recombinase-mediated cassette exchange (RMCE). RMCE permits insertion of the shRNA transgene into a well-characterized locus that gives reproducible and predictable expression in each founder and enhances the probability of potent expression in many cell types. This procedure is more involved and complex than simple pronuclear injection, but if even a few shRNA mice are envisioned, for example, to probe the functions of several genes, the effort of setting up the processes outlined below are well worthwhile. Note that when creating a transgenic mouse, one should take care to use the most potent shRNA possible. As a rule of thumb, the sequence chosen should provide >90% knockdown when introduced into cultured cells at single copy (e.g., on retroviral infection at a multiplicity of ≤0.3). PMID:24003198

  13. Highly Efficient Generation of Transgenic Sheep by Lentivirus Accompanying the Alteration of Methylation Status

    PubMed Central

    Liu, Chenxi; Wang, Liqin; Li, Wenrong; Zhang, Xuemei; Tian, Yongzhi; Zhang, Ning; He, Sangang; Chen, Tong; Huang, Juncheng; Liu, Mingjun

    2013-01-01

    Background Low efficiency of gene transfer and silence of transgene expression are the critical factors hampering the development of transgenic livestock. Recently, transfer of recombinant lentivirus has been demonstrated to be an efficient transgene delivery method in various animals. However, the lentiviral transgenesis and the methylation status of transgene in sheep have not been well addressed. Methodology/Principle Findings EGFP transgenic sheep were generated by injecting recombinant lentivirus into zygotes. Of the 13 lambs born, 8 carried the EGFP transgene, and its chromosomal integration was identified in all tested tissues. Western blotting showed that GFP was expressed in all transgenic founders and their various tissues. Analysis of CpG methylation status of CMV promoter by bisulfate sequencing unraveled remarkable variation of methylation levels in transgenic sheep. The average methylation levels ranged from 37.6% to 79.1% in the transgenic individuals and 34.7% to 83% in the tested tissues. Correlative analysis of methylation status with GFP expression revealed that the GFP expression level was inversely correlated with methylation density. The similar phenomenon was also observed in tested tissues. Transgene integration determined by Southern blotting presented multiple integrants ranging from 2 to 6 copies in the genome of transgenic sheep. Conclusions/Significance Injection of lentiviral transgene into zygotes could be a promising efficient gene delivery system to generate transgenic sheep and achieved widespread transgene expression. The promoter of integrants transferred by lentiviral vector was subjected to dramatic alteration of methylation status and the transgene expression level was inversely correlative with promoter methylation density. Our work illustrated for the first time that generation of transgenic sheep by injecting recombinant lentivirus into zygote could be an efficient tool to improve sheep performance by genetic modification

  14. Inheritance and effectiveness of two transgenes determining PVY resistance in progeny from crossing independently transformed tobacco lines.

    PubMed

    Czubacka, Anna; Sacco, Ermanno; Olszak-Przybyś, Hanna; Doroszewska, Teresa

    2017-05-01

    Genetic transformation of plants allows us to obtain improved genotypes enriched with the desired traits. However, if transgenic lines were to be used in breeding programs the stability of inserted transgenes is essential. In the present study, we followed the inheritance of transgenes in hybrids originated from crossing two transgenic tobacco lines resistant to Potato virus Y (PVY): MN 944 LMV with the transgene containing Lettuce mosaic virus coat protein gene (LMV CP) and AC Gayed ROKY2 with PVY replicase gene (ROKY2). Progeny populations generated by successive self-pollination were analyzed with respect to the transgene segregation ratio and resistance to Potato virus Y in tests carried out under greenhouse conditions. The presence of the virus in inoculated plants was detected by DAS-ELISA method. The results demonstrated the Mendelian fashion of inheritance of transgenes which were segregated independently and stably. As a result, we obtained T 4 generation of hybrid with both transgenes stacked and which was highly resistant to PVY.

  15. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Luna, Aderval S.; da Silva, Arnaldo P.; Pinho, Jéssica S. A.; Ferré, Joan; Boqué, Ricard

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  16. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase.

    PubMed

    Chen, Lei; Auh, Chung-Kyoon; Dowling, Paul; Bell, Jeremey; Chen, Fang; Hopkins, Andrew; Dixon, Richard A; Wang, Zeng-Yu

    2003-11-01

    Lignification of cell walls during plant development has been identified as the major factor limiting forage digestibility and concomitantly animal productivity. cDNA sequences encoding a key lignin biosynthetic enzyme, cinnamyl alcohol dehydrogenase (CAD), were cloned from the widely grown monocotyledonous forage species tall fescue (Festuca arundinacea Schreb.). Recombinant tall fescue CAD expressed in E. coli exhibited the highest V(max)/K(m) values when coniferaldehyde and sinapaldehyde were used as substrates. Transgenic tall fescue plants carrying either sense or antisense CAD gene constructs were obtained by microprojectile bombardment of single genotype-derived embryogenic suspension cells. Severely reduced levels of mRNA transcripts and significantly reduced CAD enzymatic activities were found in two transgenic plants carrying sense and antisense CAD transgenes, respectively. These CAD down-regulated transgenic lines had significantly decreased lignin content and altered ratios of syringyl (S) to guaiacyl (G), G to p-hydroxyphenyl (H) and S to H units. No significant changes in cellulose, hemicellulose, neutral sugar composition, p-coumaric acid and ferulic acid levels were observed in the transgenic plants. Increases of in vitro dry matter digestibility of 7.2-9.5% were achieved in the CAD down-regulated lines, thus providing a novel germplasm to be used for the development of grass cultivars with improved forage quality.

  17. Nas transgenic mouse line allows visualization of Notch pathway activity in vivo

    PubMed Central

    Souilhol, Céline; Cormier, Sarah; Monet, Marie; Vandormael-Pournin, Sandrine; Joutel, Anne; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-01-01

    The Notch signalling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular the precise mapping of its sites of activity, remain unclear. To address this issue, we have generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jκ binding sites. Here we show that this transgenic line, we named NAS for Notch Activity Sensor, displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jκ deficient background indicating that it indeed requires Notch/RBP-Jκ signalling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signalling pathway. PMID:16708386

  18. Nas transgenic mouse line allows visualization of Notch pathway activity in vivo.

    PubMed

    Souilhol, Céline; Cormier, Sarah; Monet, Marie; Vandormael-Pournin, Sandrine; Joutel, Anne; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-06-01

    The Notch signaling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular, the precise mapping of its sites of activity, remain unclear. To address this issue, we generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jkappa binding sites. Here we show that this transgenic line, which we termed NAS (for Notch Activity Sensor), displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jkappa-deficient background, indicating that it indeed requires Notch/RBP-Jkappa signaling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signaling pathway.

  19. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    PubMed

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorinated dibenzeno-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of residential and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  20. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    PubMed

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  1. Lead suppresses chimeric human transferrin gene expression in transgenic mouse liver.

    PubMed

    Adrian, G S; Rivera, E V; Adrian, E K; Lu, Y; Buchanan, J; Herbert, D C; Weaker, F J; Walter, C A; Bowman, B H

    1993-01-01

    The major iron-transport protein in serum is transferrin (TF) which also has the capacity to transport other metals. This report presents evidence that synthesis of human TF can be regulated by the metal lead. Transgenic mice carrying chimeric human TF-chloramphenicol acetyl transferase (CAT) genes received lead or sodium salts by intraperitoneal injections or in drinking water. Transgene expression in liver was suppressed 31 to 50% by the lead treatment. Lead regulates human TF transgenes at the mRNA level since liver CAT enzyme activity, CAT protein, and TF-CAT mRNA levels were all suppressed. The dosages of lead did not alter synthesis of the other liver proteins, mouse TF and albumin, as measured by Northern blot analysis of total liver RNA and rocket immunoelectrophoresis of mouse sera. Moderate levels of lead exposure were sufficient to evoke the human TF transgene response; blood lead levels in mice that received lead acetate in drinking water ranged from 30 micrograms/dl to 56 micrograms/dl. In addition to suppressing expression of TF-CAT genes in transgenic mice, lead also suppressed synthesis of TF protein in cultured human hepatoma HepG2 cells. The regulation of human TF apparently differs from the regulation of mouse TF which is unresponsive to lead exposure.

  2. Interpreting a sequenced genome: toward a cosmid transgenic library of Caenorhabditis elegans.

    PubMed

    Janke, D L; Schein, J E; Ha, T; Franz, N W; O'Neil, N J; Vatcher, G P; Stewart, H I; Kuervers, L M; Baillie, D L; Rose, A M

    1997-10-01

    We have generated a library of transgenic Caenorhabditis elegans strains that carry sequenced cosmids from the genome of the nematode. Each strain carries an extrachromosomal array containing a single cosmid, sequenced by the C. elegans Genome Sequencing Consortium, and a dominate Rol-6 marker. More than 500 transgenic strains representing 250 cosmids have been constructed. Collectively, these strains contain approximately 8 Mb of sequence data, or approximately 8% of the C. elegans genome. The transgenic strains are being used to rescue mutant phenotypes, resulting in a high-resolution map alignment of the genetic, physical, and DNA sequence maps of the nematode. We have chosen the region of chromosome III deleted by sDf127 and not covered by the duplication sDp8(III;I) as a starting point for a systematic correlation of mutant phenotypes with nucleotide sequence. In this defined region, we have identified 10 new essential genes whose mutant phenotypes range from developmental arrest at early larva, to maternal effect lethal. To date, 8 of these 10 essential genes have been rescued. In this region, these rescues represent approximately 10% of the genes predicted by GENEFINDER and considerably enhance the map alignment. Furthermore, this alignment facilitates future efforts to physically position and clone other genes in the region. [Updated information about the Transgenic Library is available via the Internet at http://darwin.mbb.sfu.ca/imbb/dbaillie/cos mid.html.

  3. Perspective on the combined use of an independent transgenic sexing and a multifactorial reproductive sterility system to avoid resistance development against transgenic Sterile Insect Technique approaches

    PubMed Central

    2014-01-01

    Background The Sterile Insect Technique (SIT) is an accepted species-specific genetic control approach that acts as an insect birth control measure, which can be improved by biotechnological engineering to facilitate its use and widen its applicability. First transgenic insects carrying a single killing system have already been released in small scale trials. However, to evade resistance development to such transgenic approaches, completely independent ways of transgenic killing should be established and combined. Perspective Most established transgenic sexing and reproductive sterility systems are based on the binary tTA expression system that can be suppressed by adding tetracycline to the food. However, to create 'redundant killing' an additional independent conditional expression system is required. Here we present a perspective on the use of a second food-controllable binary expression system - the inducible Q system - that could be used in combination with site-specific recombinases to generate independent transgenic killing systems. We propose the combination of an already established transgenic embryonic sexing system to meet the SIT requirement of male-only releases based on the repressible tTA system together with a redundant male-specific reproductive sterility system, which is activated by Q-system controlled site-specific recombination and is based on a spermatogenesis-specifically expressed endonuclease acting on several species-specific target sites leading to chromosome shredding. Conclusion A combination of a completely independent transgenic sexing and a redundant reproductive male sterility system, which do not share any active components and mediate the induced lethality by completely independent processes, would meet the 'redundant killing' criteria for suppression of resistance development and could therefore be employed in large scale long-term suppression programs using biotechnologically enhanced SIT. PMID:25471733

  4. Field Performance of Transgenic Sugarcane Lines Resistant to Sugarcane Mosaic Virus

    PubMed Central

    Yao, Wei; Ruan, Miaohong; Qin, Lifang; Yang, Chuanyu; Chen, Rukai; Chen, Baoshan; Zhang, Muqing

    2017-01-01

    Sugarcane mosaic disease is mainly caused by the sugarcane mosaic virus (SCMV), which can significantly reduce stalk yield and sucrose content of sugarcane in the field. Coat protein mediated protection (CPMP) is an effective strategy to improve virus resistance. A 2-year field study was conducted to compare five independent transgenic sugarcane lines carrying the SCMV-CP gene (i.e., B2, B36, B38, B48, and B51) with the wild-type parental clone Badila (WT). Agronomic performance, resistance to SCMV infection, and transgene stability were evaluated and compared with the wild-type parental clone Badila (WT) at four experimental locations in China across two successive seasons, i.e., plant cane (PC) and 1st ratoon cane (1R). All transgenic lines derived from Badila had significantly greater tons of cane per hectare (TCH) and tons of sucrose per hectare (TSH) as well as lower SCMV disease incidence than those from Badila in the PC and 1R crops. The transgenic line B48 was highly resistant to SCMV with less than 3% incidence of infection. The recovery phenotype of transgenic line B36 was infected soon after virus inoculation, but the subsequent leaves showed no symptoms of infection. Most control plants developed symptoms that persisted and spread throughout the plant with more than 50% incidence. B48 recorded an average of 102.72 t/ha, which was 67.2% more than that for Badila. The expression of the transgene was stable over many generations with vegetative propagation. These results show that SCMV-resistant transgenic lines derived from Badila can provide resistant germplasm for sugarcane breeding and can also be used to study virus resistance mechanisms. This is the first report on the development and field performance of transgenic sugarcane plants that are resistant to SCMV infection in China. PMID:28228765

  5. Field Performance of Transgenic Sugarcane Lines Resistant to Sugarcane Mosaic Virus.

    PubMed

    Yao, Wei; Ruan, Miaohong; Qin, Lifang; Yang, Chuanyu; Chen, Rukai; Chen, Baoshan; Zhang, Muqing

    2017-01-01

    Sugarcane mosaic disease is mainly caused by the sugarcane mosaic virus (SCMV), which can significantly reduce stalk yield and sucrose content of sugarcane in the field. Coat protein mediated protection (CPMP) is an effective strategy to improve virus resistance. A 2-year field study was conducted to compare five independent transgenic sugarcane lines carrying the SCMV-CP gene (i.e., B2, B36, B38, B48, and B51) with the wild-type parental clone Badila (WT). Agronomic performance, resistance to SCMV infection, and transgene stability were evaluated and compared with the wild-type parental clone Badila (WT) at four experimental locations in China across two successive seasons, i.e., plant cane (PC) and 1st ratoon cane (1R). All transgenic lines derived from Badila had significantly greater tons of cane per hectare (TCH) and tons of sucrose per hectare (TSH) as well as lower SCMV disease incidence than those from Badila in the PC and 1R crops. The transgenic line B48 was highly resistant to SCMV with less than 3% incidence of infection. The recovery phenotype of transgenic line B36 was infected soon after virus inoculation, but the subsequent leaves showed no symptoms of infection. Most control plants developed symptoms that persisted and spread throughout the plant with more than 50% incidence. B48 recorded an average of 102.72 t/ha, which was 67.2% more than that for Badila. The expression of the transgene was stable over many generations with vegetative propagation. These results show that SCMV-resistant transgenic lines derived from Badila can provide resistant germplasm for sugarcane breeding and can also be used to study virus resistance mechanisms. This is the first report on the development and field performance of transgenic sugarcane plants that are resistant to SCMV infection in China.

  6. Transgenic algae engineered for higher performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  7. Competitive Performance of Transgenic Wheat Resistant to Powdery Mildew

    PubMed Central

    Kalinina, Olena; Zeller, Simon L.; Schmid, Bernhard

    2011-01-01

    Genetically modified (GM) plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis) or chitinase and glucanase genes from barley (resistance against fungi in general) were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes) or the actin promoter from rice (glucanase gene). Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree of expression

  8. The dynamics of long-term transgene expression in engrafted neural stem cells.

    PubMed

    Lee, Jean-Pyo; Tsai, David J; In Park, Kook; Harvey, Alan R; Snyder, Evan Y

    2009-07-01

    To assess the dynamics and confounding variables that influence transgene expression in neural stem cells (NSCs), we generated distinct NSC clones from the same pool of cells, carrying the same reporter gene transcribed from the same promoter, transduced by the same retroviral vector, and transplanted similarly at the same differentiation state, at the same time and location, into the brains of newborn mouse littermates, and monitored in parallel for over a year in vivo (without immunosuppression). Therefore, the sole variables were transgene chromosomal insertion site and copy number. We then adapted and optimized a technique that tests, at the single cell level, persistence of stem cell-mediated transgene expression in vivo based on correlating the presence of the transgene in a given NSC's nucleus (by fluorescence in situ hybridization [FISH]) with the frequency of that transgene's product within the same cell (by combined immunohistochemistry [IHC]). Under the above-stated conditions, insertion site is likely the most contributory variable dictating transgene downregulation in an NSC after 3 months in vivo. We also observed that this obstacle could be effectively and safely counteracted by simple serial infections (as few as three) inserting redundant copies of the transgene into the prospective donor NSC. (The preservation of normal growth control mechanisms and an absence of tumorigenic potential can be readily screened and ensured ex vivo prior to transplantation.) The combined FISH/IHC strategy employed here for monitoring the dynamics of transgene expression at the single cell level in vivo may be used for other types of therapeutic and housekeeping genes in endogenous and exogenous stem cells of many organs and lineages. Copyright 2009 Wiley-Liss, Inc.

  9. Insulators to improve expression of a 3(')IgH LCR-driven reporter gene in transgenic mouse models.

    PubMed

    Guglielmi, Laurence; Le Bert, Marc; Truffinet, Véronique; Cogné, Michel; Denizot, Yves

    2003-08-01

    A locus control region (LCR) containing four transcriptional enhancers lies downstream of the IgH chain locus. We studied transgenes carrying a 3(')IgH LCR-driven GFP reporter gene for expression and B cell differentiation stage specificity. We also compared transgenes that were or were not flanked by two copies of the beta-globin HS4 insulator, an element defined by its ability to protect transgenes from the influences of surrounding genes at the insertion site. Results indicate that insulators are instrumental in sustaining GFP expression in GFP-3(')LCR transgenic mice when they were included. Flow cytometry experiments reported a strictly B cell specific GFP expression from pre-B cells in bone marrow to mature B cells in spleen. Despite addition of 5(')HS4 insulators to the GFP-3(')LCR construct, complete transgene silencing occurred in some transgenic lines and was systematically observed in ageing animals from all lines.

  10. Lactation induction as a predictor of post-parturition transgene expression in bovine milk.

    PubMed

    Powell, Ann; Kerr, David; Guthrie, David; Wall, Robert

    2007-05-01

    The bovine's long generation interval results in a delay of several years when evaluating mammary specific transgenes in genetically engineered animals. This experiment was conducted to evaluate the feasibility of reducing that waiting period. Lactation was induced in prepubertal bull and heifer calves as a means of predicting transgene behaviour during subsequent post-parturient lactations in the heifers themselves, and in daughters sired by the bulls. The animals carry a lactation-specific transgene encoding lysostaphin, an antimicrobial protein that kills Staphlococcus aureus, a mastitis-causing pathogen. Oestrogen, progesterone and dexamethasone were administered as previously described (Ball et al. 2000) to nine heifers (five transgenics) ranging in weight from 80 to 145 kg. Eight bull calves (seven transgenics) weighing 81-178 kg received additional oestrogen and progesterone injection prior to dexamethasone treatment. All nine heifers responded to the milk induction scheme yielding between 19 ml and 4.5 l over 5 d. Milk volume from the four responding males (30 microl to 2.5 ml) was significantly less than that harvested from females (P=0.025). Only bull calves >117 kg had a positive response. Lysostaphin was detected in all transgenic prepubertal heifers and in two transgenic prepubertal bull calves induced. A positive relationship was observed between lysostaphin's stapholytic activity in the two types of lactations (r2=0.907, P<0.001) thus providing a useful means of predicting subsequent lysostaphin production in post-partum milk.

  11. [Reproduction,genotype identification and evaluation of APP/PS1 transgenic mice].

    PubMed

    Tan, Long; Li, Hai-Qiang; Li, Yi-Bo; Liu, Wei; Pang, Wei; Jiang, Yu-Gang

    2018-02-08

    To identify the genotype of (APP/PS1) transgenic mice and evaluate the changing of cognitive and behavioral fu nctions, provide an effective animal model for the Alzheimer's disease (AD) research. Male APP/PS1 transgenic mice mated with female APP/PS1 transgenic mice, and the genotype of their filial mice was identified by PCR. The APP +/PS1 + mice were assigned into AD model group (AD group, n =8), and the APP/PS1 mice were assigned into control group (CT group, n =8). The Morris water maze test was carried out to detect the capacity of learning and memory of mice. After that, the mice were sacrificed and the brain tissues were sampled and stained by HE and congo red for the pathological examination. ①A APP/PS1 genome DNA about 360 bp size was detected. The methods of feeding and breeding were successful to attain APP/PS1 transgenic mice.②Statistical significance was found in the differences of the capacity of learning and memory between 7-month-old APP/PS1 positive mice and negative mice ( P <0.05).③The results of HE stain showed that the structure and cellular morphology of hippocampus of AD mice were obviously abnormal. The results of congo red stain showed that positive amyloid plaque was observed in brains of AD mice. APP/PS1 transgenic mice present typical symptoms and behaviors of Alzheimer's disease. The transgenic mouse is an effective tool for the research and prevention of AD.

  12. Transgenic oil palm: production and projection.

    PubMed

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.

  13. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system

    PubMed Central

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g−1 of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples. PMID:22428884

  14. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants.

    PubMed

    Meyer, P; Heidmann, I

    1994-05-25

    We analysed de novo DNA methylation occurring in plants obtained from the transgenic petunia line R101-17. This line contains one copy of the maize A1 gene that leads to the production of brick-red pelargonidin pigment in the flowers. Due to its integration into an unmethylated genomic region the A1 transgene is hypomethylated and transcriptionally active. Several epigenetic variants of line 17 were selected that exhibit characteristic and somatically stable pigmentation patterns, displaying fully coloured, marbled or colourless flowers. Analysis of the DNA methylation patterns revealed that the decrease in pigmentation among the epigenetic variants was correlated with an increase in methylation, specifically of the transgene DNA. No change in methylation of the hypomethylated integration region could be detected. A similar increase in methylation, specifically in the transgene region, was also observed among progeny of R101-17del, a deletion derivative of R101-17 that no longer produces pelargonidin pigments due to a deletion in the A1 coding region. Again de novo methylation is specifically directed to the transgene, while the hypomethylated character of neighbouring regions is not affected. Possible mechanisms for transgene-specific methylation and its consequences for long-term use of transgenic material are discussed.

  15. Molecular Characterization of Transgene Integration by Next-Generation Sequencing in Transgenic Cattle

    PubMed Central

    Zhang, Ran; Yin, Yinliang; Zhang, Yujun; Li, Kexin; Zhu, Hongxia; Gong, Qin; Wang, Jianwu; Hu, Xiaoxiang; Li, Ning

    2012-01-01

    As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species. PMID:23185606

  16. [Detection of the exogenous gene copy number of the transgenic tomato anti-caries vaccine].

    PubMed

    Bai, Guo-hui; Liu, Jian-guo; Tian, Yuan; Chen, Zhu; Bai, Peng-yuan; Han, Qi; Gu, Yu; Guan, Xiao-yan; Wang, Hai-hui

    2013-12-01

    To detect the exogenous gene copy number of the transgenic tomato anti-caries vaccine by using the SYBR Green real-time PCR. Recombinant plasmid pEAC10 and pEPC10 were used as standard to detect genome samples of exogenous gene pacA-ctxB and pacP-ctxB by SYBR green fluorescent quantitation, then the average value was calculated as gene copy number. The copy number of the transgenic tomato carrying pacA-ctxB was 1.3 and the pacP-ctxB was 3.2. The transgenic tomato plants which have high stability are low-copy transgenic plants. Supported by National Natural Science Foundation of China (30160086, 81260164), Science and Technical Fund of Guizhou Province (LKZ[2011]41), Project of Technology Innovation Team in Guizhou Province, Leading Academic Discipline Construction Project in Guizhou Province and Excellent Scientific Research Team Cultivation Project in Zunyi Medical College ([2012]12).

  17. Reduced aortic lesions and elevated high density lipoprotein levels in transgenic mice overexpressing mouse apolipoprotein A-IV.

    PubMed Central

    Cohen, R D; Castellani, L W; Qiao, J H; Van Lenten, B J; Lusis, A J; Reue, K

    1997-01-01

    Transgenic mouse lines carrying several copies of the mouse apo A-IV gene were produced. Lipoprotein composition and function, and aortic lesion development were examined. Apo A-IV levels in the plasma of transgenic mice were elevated threefold compared with nontransgenic littermates on a chow diet, and sixfold in mice fed an atherogenic diet. Plasma concentrations of total cholesterol, HDL cholesterol, triglycerides, and free fatty acids were similar in transgenic and control mice fed a chow diet. However, with the atherogenic diet, male transgenic mice exhibited significantly higher levels of plasma triglycerides (P < 0.05), total cholesterol (P < 0.01), HDL cholesterol (P < 0.0001), and free fatty acids (P < 0.05), and lower levels of unesterified cholesterol (P < 0.05), than nontransgenic littermates. Expression of the apo A-IV transgene had a protective effect against the formation of diet-induced aortic lesions, with transgenics exhibiting lesion scores of approximately 30% those seen in control mice. HDL-sized lipoproteins isolated from transgenic mice fed the atherogenic diet promoted cholesterol efflux from cholesterol-loaded human monocytes more efficiently than comparable lipoproteins from nontransgenic counterparts. Plasma from transgenics also exhibited higher endogenous cholesterol esterification rates. Taken together, these results suggest that apo A-IV levels influence the metabolism and antiatherogenic properties of HDL. PMID:9109435

  18. Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors.

    PubMed

    Wang, Y; Smallwood, P M; Cowan, M; Blesh, D; Lawler, A; Nathans, J

    1999-04-27

    This study examines the mechanism of mutually exclusive expression of the human X-linked red and green visual pigment genes in their respective cone photoreceptors by asking whether this expression pattern can be produced in a mammal that normally carries only a single X-linked visual pigment gene. To address this question, we generated transgenic mice that carry a single copy of a minimal human X chromosome visual pigment gene array in which the red and green pigment gene transcription units were replaced, respectively, by alkaline phosphatase and beta-galactosidase reporters. As determined by histochemical staining, the reporters are expressed exclusively in cone photoreceptor cells. In 20 transgenic mice carrying any one of three independent transgene insertion events, an average of 63% of expressing cones have alkaline phosphatase activity, 10% have beta-galactosidase activity, and 27% have activity for both reporters. Thus, mutually exclusive expression of red and green pigment transgenes can be achieved in a large fraction of cones in a dichromat mammal, suggesting a facile evolutionary path for the development of trichromacy after visual pigment gene duplication. These observations are consistent with a model of visual pigment expression in which stochastic pairing occurs between a locus control region and either the red or the green pigment gene promotor.

  19. Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple.

    PubMed

    Smolka, Anders; Li, Xue-Yuan; Heikelt, Catrin; Welander, Margareta; Zhu, Li-Hua

    2010-12-01

    Although cultivation of genetic modified (GM) annual crops has been steadily increasing in the recent 10 years, the commercial cultivation of GM fruit tree is still very limited and reports of field trials on GM fruit trees are rare. This is probably because development and evaluation of GM fruit trees require a long period of time due to long life cycles of trees. In this study, we report results from a field trial on three rolB transgenic dwarfing apple rootstocks of M26 and M9 together with non-transgenic controls grafted with five non-transgenic scion cultivars. We intended to investigate the effects of transgenic rootstock on non-transgenic scion cultivars under natural conditions as well as to evaluate the potential value of using the rolB gene to modify difficult-to-root rootstocks of fruit trees. The results showed that all rolB transgenic rootstocks significantly reduced vegetative growth including tree height regardless of scion cultivar, compared with the non-transgenic rootstocks. Flowering and fruiting were also decreased for cultivars grown on the transgenic rootstocks in most cases, but the fruit quality was not clearly affected by the transgenic rootstocks. Cutting experiment and RT-PCR analysis showed that the rolB gene was stably expressed under field conditions. PCR and RT-PCR analyses displayed that the rolB gene or its mRNA were not detectable in the scion cultivars, indicating no translocation of the transgene or its mRNA from rootstock to scion. Our results suggest that rolB modified rootstocks should be used in combination with vigorous scion cultivars in order to obtain sufficient vegetative growth and good yield. Alternatively, the rolB gene could be used to dwarf vigorous rootstocks of fruit trees or produce bonzai plants as it can significantly reduce the vegetative growth of plants.

  20. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation.

    PubMed

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.

  1. Morphometric Modifications in Canthon quinquemaculatus Castelnau 1840 (Coleoptera: Scarabaeinae): Sublethal Effects of Transgenic Maize?

    PubMed Central

    Alves, Victor Michelon; Hernández, Malva Isabel Medina

    2017-01-01

    The effects of transgenic compounds on non-target organisms remain poorly understood, especially in native insect species. Morphological changes (e.g., changes in body size and shape) may reflect possible responses to environmental stressors, like transgenic toxins. The dung beetle Canthon quinquemaculatus (Coleoptera: Scarabaeinae) is a non-target species found in transgenic crops. We evaluated whether C. quinquemaculatus individuals inhabiting corn fields cultivated with different seed types (conventional, creole and transgenic) present modifications in body shape compared to individuals inhabiting adjacent native forest fragments. We collected C. quinquemaculatus specimens across an agricultural landscape in southern Brazil, during the summer of 2015. Six populations were sampled: three maize crop populations each under a different seed type, and three populations of adjacent forests. After sampling, specimens were subjected to morphometric analyses to discover differences in body shape. We chose fifteen landmarks to describe body shape, and morphometric data were tested with Procrustes ANOVA and Discriminant Analysis. We found that body shape did not differ between individuals collected in conventional and creole crops with their respective adjacent forests (p > 0.05); however, transgenic crop populations differed significantly from those collected in adjacent forests (p < 0.05). Insects in transgenic maize are more oval and have a retraction in the abdominal region, compared with the respective adjacent forest, this result shows the possible effect of transgenic crops on non-target species. This may have implications for the ecosystem service of organic matter removal, carried out by these organisms. PMID:29065452

  2. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    EPA Science Inventory

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  3. [Obtaining the transgenic lines of finger millet Eleusine coracana (L.) Gaertn. With dinitroaniline resistance].

    PubMed

    Baer, G Ia; Emets, A I; Blium, Ia B

    2014-01-01

    The current data is dedicated to the study of bioballistic and Agrobacterium-mediated transformation of finger millet with the constructs carrying the mutant alpha-tubulin gene (TUAm 1), isolated from R-biotype goosegrass (Eleusine indica L.), for the decision of problem of dinitroaniline-resistance. It was found that 10 microM of trifluralin is optimal for the selection of transgene plants of finger millet. PCR analysis of transformed lines confirmed the transgene nature of plants. The analysis of seed of T1 oftransgene lines confirmed heterozygous character of inheritance of the resistance.

  4. [Advances of transgenic breeding in livestock].

    PubMed

    Yu, Da-Wei; Zhu, Hua-Bin; DU, Wei-Hua

    2011-05-01

    Transgenic technology represents a revolutionary way to produce elite livestock breeds, allowing introduction of alien gene into livestock genome. Currently, pronuclear microinjection of DNA and somatic cell nuclear transfer are two popular methods used to make transgenic farm animals. Transgenic technology can be used in livestock breeding for improving disease resistance, carcass composition, lactational performance, wool production, growth rate, and reproductive performance, as well as reducing negative environmental impact. In addition to introduction of animal transgenic technologies, this review described the status and the future perspective of transgenic breeding in livestock.

  5. [New advances in animal transgenic technology].

    PubMed

    Sun, Zhen-Hong; Miao, Xiang-Yang; Zhu, Rui-Liang

    2010-06-01

    Animal transgenic technology is one of the fastest growing biotechnology in the 21st century. It is used to integrate foreign genes into the animal genome by genetic engineering technology so that foreign genes can be expressed and inherited to the offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors on preparation of transgenic animals. A variety of transgenic techniques are available, each of which has its own advantages and disadvantages and still needs further study because of unresolved technical and safety issues. With the in-depth research, the transgenic technology will have broad application prospects in the fields of exploration of gene function, animal genetic improvement, bioreactor, animal disease models, organ transplantation and so on. This article reviews the recently developed animal gene transfer techniques, including germline stem cell mediated method to improve the efficiency, gene targeting to improve the accuracy, RNA interference (RNAi)-mediated gene silencing technology, and the induced pluripotent stem cells (iPS) transgenic technology. The new transgenic techniques can provide a better platform for the study of trans-genic animals and promote the development of medical sciences, livestock production, and other fields.

  6. Expression and biological effects of high levels of serum IgE in epsilon heavy chain transgenic mice.

    PubMed

    Adamczewski, M; Köhler, G; Lamers, M C

    1991-03-01

    We have generated and examined transgenic mice carrying a rearranged immunoglobulin transgene coding for the heavy chain of an IgE antibody. These mice produce the secreted form of the recombinant epsilon heavy chain. Serum IgE levels were increased at least 100-fold over control values. Transgenic epsilon mRNA was detected in spleen and thymus, not in liver and heart. Transgenic epsilon production in vitro was slightly up-regulated by T cells, but not affected by interleukin 4 in vitro or Nippostrongylus infestation in vivo. The B cell and T cell compartments and antigen-specific IgE, IgG1 and IgM responses as well as the increase in endogenous IgE after Nippostrongylus infestation in transgenic mice were normal. These data indicate that the presence of high levels of transgenic IgE did not induce class-specific suppressive mechanisms. Transgenic IgE bound to Fc epsilon receptor type I and Fc epsilon receptor type II and mediated histamine release from mast cells in vitro and an allergic skin reaction in vivo. It inhibited an ovalbumin-specific skin reaction in ovalbumin-immunized transgenic mice only during the initial phases of the immune response. This result has a bearing on the feasibility of immune therapy of allergic diseases with substances that block binding of IgE to its receptors.

  7. Transgene expression in pear (Pyrus communis L.) driven by a phloem-specific promoter

    USDA-ARS?s Scientific Manuscript database

    A gene expression cassette carrying ß-glucuronidase (uidA) reporter gene under the control of the promoter of the Arabidopsis sucrose-H+ symporter gene (AtSUC2) was introduced to pear plants via an Agrobacterium-mediated leaf-explant transformation procedure. Transgenic shoots were regenerated from...

  8. Genomic evaluation of oxalate-degrading transgenic soybean in response to Sclerotinia sclerotiorum infection

    USDA-ARS?s Scientific Manuscript database

    Oxalate oxidases catalyze the degradation of oxalic acid (OA). Highly resistant transgenic soybean carrying an oxalate oxidase (OxO) gene and its susceptible parent soybean line, AC Colibri, were tested for genome-wide gene expression in response to the necrotrophic, OA producing pathogen Sclerotini...

  9. Generation of marker-free Bt transgenic indica rice and evaluation of its yellow stem borer resistance.

    PubMed

    Kumar, S; Arul, L; Talwar, D

    2010-01-01

    We report on generation of marker-free (‘clean DNA’) transgenic rice (Oryza sativa), carrying minimal gene-expression-cassettes of the genes of interest, and evaluation of its resistance to yellow stem borer Scirpophaga incertulas (Lepidoptera: Pyralidae). The transgenic indica rice harbours a translational fusion of 2 different Bacillus thuringiensis (Bt) genes, namely cry1B-1Aa, driven by the green-tissue-specific phosphoenol pyruvate carboxylase (PEPC) promoter. Mature seed-derived calli of an elite indica rice cultivar Pusa Basmati-1 were co-bombarded with gene-expression-cassettes (clean DNA fragments) of the Bt gene and the marker hpt gene, to generate marker-free transgenic rice plants. The clean DNA fragments for bombardment were obtained by restriction digestion and gel extraction. Through biolistic transformation, 67 independent transformants were generated. Transformation frequency reached 3.3%, and 81% of the transgenic plants were co-transformants. Stable integration of the Bt gene was confirmed, and the insert copy number was determined by Southern analysis. Western analysis and ELISA revealed a high level of Bt protein expression in transgenic plants. Progeny analysis confirmed stable inheritance of the Bt gene according to the Mendelian (3:1) ratio. Insect bioassays revealed complete protection of transgenic plants from yellow stem borer infestation. PCR analysis of T2 progeny plants resulted in the recovery of up to 4% marker-free transgenic rice plants.

  10. Limited Fitness Advantages of Crop-Weed Hybrid Progeny Containing Insect-Resistant Transgenes (Bt/CpTI) in Transgenic Rice Field

    PubMed Central

    Yang, Xiao; Wang, Feng; Su, Jun; Lu, Bao-Rong

    2012-01-01

    Background The spread of insect-resistance transgenes from genetically engineered (GE) rice to its coexisting weedy rice (O. sativa f. spontanea) populations via gene flow creates a major concern for commercial GE rice cultivation. Transgene flow to weedy rice seems unavoidable. Therefore, characterization of potential fitness effect brought by the transgenes is essential to assess environmental consequences caused by crop-weed transgene flow. Methodology/Principal Findings Field performance of fitness-related traits was assessed in advanced hybrid progeny of F4 generation derived from a cross between an insect-resistant transgenic (Bt/CpTI) rice line and a weedy strain. The performance of transgene-positive hybrid progeny was compared with the transgene-negative progeny and weedy parent in pure and mixed planting of transgenic and nontransgenic plants under environmental conditions with natural vs. low insect pressure. Results showed that under natural insect pressure the insect-resistant transgenes could effectively suppress target insects and bring significantly increased fitness to transgenic plants in pure planting, compared with nontransgenic plants (including weedy parent). In contrast, no significant differences in fitness were detected under low insect pressure. However, such increase in fitness was not detected in the mixed planting of transgenic and nontransgenic plants due to significantly reduced insect pressure. Conclusions/Significance Insect-resistance transgenes may have limited fitness advantages to hybrid progeny resulted from crop-weed transgene flow owning to the significantly reduced ambient target insect pressure when an insect-resistant GE crop is grown. Given that the extensive cultivation of an insect-resistant GE crop will ultimately reduce the target insect pressure, the rapid spread of insect-resistance transgenes in weedy populations in commercial GE crop fields may be not likely to happen. PMID:22815975

  11. Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III.

    PubMed

    Fujimura, Tatsuya; Kurome, Mayuko; Murakami, Hiroshi; Takahagi, Yoichi; Matsunami, Katsuyoshi; Shimanuki, Shinichi; Suzuki, Kohei; Miyagawa, Shuji; Shirakura, Ryota; Shigehisa, Tamotsu; Nagashima, Hiroshi

    2004-01-01

    The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.

  12. Neuroanatomy and transgenic technologies

    USDA-ARS?s Scientific Manuscript database

    This is a short review that introduces recent advances of neuroanatomy and transgenic technologies. The anatomical complexity of the nervous system remains a subject of tremendous fascination among neuroscientists. In order to tackle this extraordinary complexity, powerful transgenic technologies a...

  13. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.

    PubMed

    Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P

    2016-01-01

    Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.

  14. Elucidation of Factors Effecting Enzymatic Saccharification using Transgenic Hardwoods

    NASA Astrophysics Data System (ADS)

    Min, Douyong

    Three groups of transgenic wood samples were used as starting materials to elucidate the recalcitrance of enzymatic saccharification with/without pretreatments. The first group of transgenic wood samples is low lignin P. trichocarpa. The second group is low xylan P. trichocarpa. The third one is 12 hybrid poplars which have different levels of S/V ratio and lignin content. Four pretreatments were carried out in this research including dilute sulfuric acid, green liquor, auto hydrolysis and ozone delignification. The behavior among pretreatments as a function of removal of lignin appears to be different. Lignin is the major factor of recalcitrance of the lignocellulosic material to ethanol conversion process. Xylan also plays key role in this process. In addition, the crude milled wood lignin was isolated from these three groups of transgenic samples. Lignin carbohydrate complexes was characterized by 1H-13C HMQC and 13C NMR. Thus the effect of LCCs on enzymatic saccharification was elucidated. High S/V ratio propels the lignin removal during pretreatments however; high S/V ratio retards the enzymatic saccharification on the lignocellulosic material without pretreatments. The level of LCCs linkages accounts for additional recalcitrance of the lignocellulosic material to ethanol conversion process. The amount of LCCs linkages is affected by xylan content, lignin content and S/V ratio.

  15. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21.

    PubMed

    Gao, Lifen; Cao, Yinghao; Xia, Zhihui; Jiang, Guanghuai; Liu, Guozhen; Zhang, Weixiong; Zhai, Wenxue

    2013-10-29

    The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study.

  16. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? - A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21

    PubMed Central

    2013-01-01

    Background The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Results Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. Conclusions These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study. PMID:24165682

  17. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack)

    PubMed Central

    2012-01-01

    Background While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Results Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. Conclusions The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants. PMID:23006412

  18. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack).

    PubMed

    Hensel, Goetz; Oleszczuk, Sylwia; Daghma, Diaa Eldin S; Zimny, Janusz; Melzer, Michael; Kumlehn, Jochen

    2012-09-25

    While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants.

  19. Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera.

    PubMed

    Ghosh, Gourab; Ganguly, Shreeparna; Purohit, Arnab; Chaudhuri, Rituparna Kundu; Das, Sampa; Chakraborti, Dipankar

    2017-07-01

    Independent transgenic pigeonpea events were developed using two cry genes. Transgenic Cry2Aa-pigeonpea was established for the first time. Selected transgenic events demonstrated 100% mortality of Helicoverpa armigera in successive generations. Lepidopteran insect Helicoverpa armigera is the major yield constraint of food legume pigeonpea. The present study was aimed to develop H. armigera-resistant transgenic pigeonpea, selected on the basis of transgene expression and phenotyping. Agrobacterium tumefaciens-mediated transformation of embryonic axis explants of pigeonpea cv UPAS 120 was performed using two separate binary vectors carrying synthetic Bacillus thuringiensis insecticidal crystal protein genes, cry1Ac and cry2Aa. T 0 transformants were selected on the basis of PCR and protein expression profile. T 1 events were exclusively selected on the basis of expression and monogenic character for cry, validated through Western and Southern blot analyses, respectively. Independently transformed 12 Cry1Ac and 11 Cry2Aa single-copy events were developed. The level of Cry-protein expression in T 1 transgenic events was 0.140-0.175% of total soluble protein. Expressed Cry1Ac and Cry2Aa proteins in transgenic pigeonpea exhibited significant weight loss of second-fourth instar larvae of H. armigera and ultimately 80-100% mortality in detached leaf bioassay. Selected Cry-transgenic pigeonpea events, established at T 2 generation, inherited insect-resistant phenotype. Immunohistofluorescence localization in T 3 plants demonstrated constitutive accumulation of Cry1Ac and Cry2Aa in leaf tissues of respective transgenic events. This study is the first report of transgenic pigeonpea development, where stable integration, effective expression and biological activity of two Cry proteins were demonstrated in subsequent three generations (T 0 , T 1, and T 2 ). These studies will contribute to biotechnological breeding programmes of pigeonpea for its genetic improvement.

  20. Risk assessment of transgenic apomictic tetraploid bahiagrass, cytogenetics, breeding behavior and performance of intra-specific hybrids.

    PubMed

    Sandhu, Sukhpreet; James, Victoria A; Quesenberry, Kenneth H; Altpeter, Fredy

    2009-11-01

    Pollen-mediated gene transfer from stress tolerant or herbicide-resistant transgenic plants may cause environmental or agronomic problems. Apomictic seed production found in some bahiagrass cultivars may serve as a natural transgene containment system. Under greenhouse conditions, the average gene transfer frequency from an herbicide-resistant apomictic tetraploid to a population of sexual diploid bahiagrass genotypes or apomictic tetraploid bahiagrass was 0.16% when the transgenic pollen donor was placed at 0.5-1.5 m distance from the non-transgenic pollen receptors. The herbicide-resistant hybrids were characterized for transgene integration, expression and ploidy, by Southern blot analysis, immuno-chromatography and flow cytometry, respectively. Hybrids resulting from open pollination of non-transgenic diploid female plants with transgenic tetraploid male plants were triploids or near-triploids, with 2n = 26-34. These hybrids displayed a wide range of phenotypic variability, including some non-persistent or non-flowering dwarf-type hybrids with good vigor, or hybrids with vegetative growth similar to non-transgenic plants, but with significantly reduced seed set. Non-flowering aneu-triploids with good vigor/field performance will provide the highest level of transgene containment. Embryo sac analysis of pollinated spikelets confirmed a high proportion of aborted ovules. An apospory-linked RFLP marker was detected in 13 of the 15 near-triploid hybrids. All flowering aneuploid hybrids displayed significantly reduced seed set, and none of the sexual near-triploid hybrids produced any seeds. All tetraploid gene transfer events carried the apospory-linked RFLP marker, suggesting that despite the presence of the aposporus locus, a low degree of sexuality co-exists in apomictic tetraploid cultivars. Thus, tetraploid apomictic bahiagrass does not provide complete transgene containment, although intra-specific gene transfer is drastically reduced compared to sexually

  1. Infertility in transgenic mice overexpressing the bovine growth hormone gene: luteal failure secondary to prolactin deficiency.

    PubMed

    Cecim, M; Kerr, J; Bartke, A

    1995-05-01

    Overexpression of growth hormone (GH) in transgenic mice is associated with various degrees of impairment of female reproductive functions. Transgenic PEPCK.bGH mice express high GH levels, and only around 20% of the females will carry gestation to Day 7. The objective of the present study was to investigate luteal function in PEPCK.bGH mice during early pregnancy, when CL are fully dependent on the pituitary. Plasma progesterone levels measured on Days 2 or 7 postcoitum (p.c.) were lower in transgenic than in normal females. In transgenic females with a previous history of infertility, daily injections of 1 mg progesterone starting on Day 2 p.c. significantly increased the proportion of animals pregnant on Day 7. When ovaries from transgenic mice were transplanted into ovariectomized normal littermates, the recipients exhibited normal vaginal cycles and responded to mating by vaginal cytology changes consistent with pseudopregnancy. In contrast, ovariectomized transgenic females bearing transplants of ovaries from normal mice had slightly prolonged estrous cycles and failed to become pseudopregnant after mating. Plasma progesterone levels on Days 2 and 7 p.c. in normal females with transgenic ovaries were not different from plasma progesterone levels measured in normal females into which normal ovaries had been transplanted. Twice-daily injections of 100 micrograms of prolactin (PRL) in saline or in polyvinylpyrrolidone starting on the evening of Day 2 p.c. were able to rescue luteal function. The proportion of PRL-injected transgenic animals that were pregnant on Day 7 was significantly higher than that of saline-injected transgenic controls and resembled the pregnancy rate of normal animals.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. A transgenic approach to study argininosuccinate synthetase gene expression

    PubMed Central

    2014-01-01

    Background Argininosuccinate synthetase (ASS) participates in urea, nitric oxide and arginine production. Besides transcriptional regulation, a post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. To study whether such post-transcriptional regulation underlines particular temporal and spatial ASS expression, and to investigate how human ASS gene behaves in a mouse background, a transgenic mouse system using a modified bacterial artificial chromosome carrying the human ASS gene tagged with EGFP was employed. Results Two lines of ASS-EGFP transgenic mice were generated: one with EGFP under transcriptional control similar to that of the endogenous ASS gene, another with EGFP under both transcriptional and post-transcriptional regulation as that of the endogenous ASS mRNA. EGFP expression in the liver, the organ for urea production, and in the intestine and kidney that are responsible for arginine biosynthesis, was examined. Organs taken from embryos E14.5 stage to young adult were examined under a fluorescence microscope either directly or after cryosectioning. The levels of EGFP and endogenous mouse Ass mRNAs were also quantified by S1 nuclease mapping. EGFP fluorescence and EGFP mRNA levels in both the liver and kidney were found to increase progressively from embryonic stage toward birth. In contrast, EGFP expression in the intestine was higher in neonates and started to decline at about 3 weeks after birth. Comparison between the EGFP profiles of the two transgenic lines indicated the developmental and tissue-specific regulation was mainly controlled at the transcriptional level. The ASS transgene was of human origin. EGFP expression in the liver followed essentially the mouse Ass pattern as evidenced by zonation distribution of fluorescence and the level of EGFP mRNA at birth. However, in the small intestine, Ass mRNA level declined sharply at 3 week of age, and yet substantial EGFP mRNA was still detectable at this stage

  3. Accumulation of 24 nucleotide transgene-derived siRNAs is associated with crinivirus immunity in transgenic plants.

    PubMed

    Qiao, Wenjie; Zarzyńska-Nowak, Aleksandra; Nerva, Luca; Kuo, Yen-Wen; Falk, Bryce W

    2018-04-28

    RNA silencing is a conserved antiviral defense mechanism that has been used to develop robust resistance against plant virus infections. Previous efforts have been made to develop RNA silencing-mediated resistance to criniviruses, yet none have given immunity. In this study, transgenic Nicotiana benthamiana plants harboring a hairpin construct of the Lettuce infectious yellows virus (LIYV) RdRp sequence exhibited immunity to systemic LIYV infection. Deep-sequencing analysis was performed to characterize virus-derived siRNAs (vsiRNAs) generated upon systemic LIYV infection in non-transgenic N. benthamiana plants as well as transgene-derived siRNAs (t-siRNAs) derived from the immune transgenic plants before and after LIYV inoculation. Interestingly, a similar sequence distribution pattern was obtained with t-siRNAs and vsiRNAs mapped to the transgene region in both immune and susceptible plants except a significant increase of t-siRNAs of 24 nt in length, which was consistent with small RNA northern blot results that showed the abundance of t-siRNAs of 21-, 22-, and 24- nt in length. The accumulated 24-nt sequences haven't yet been reported in transgenic plants partially resistant to criniviruses, thus may indicate their correlation with crinivirus immunity. To further test this hypothesis, we developed transgenic melon (Cucumis melo) plants immune to systemic infection of another crinivirus, Cucurbit yellow stunting disorder virus (CYSDV). As predicted, the accumulation of 24-nt t-siRNAs was detected in transgenic melon plants by northern blot. Together with our findings and previous studies on crinivirus resistance, we propose that the accumulation of 24 nt t-siRNAs is associated with crinivirus immunity in transgenic plants. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  4. Fertility comparison between wild type and transgenic mice by in vitro fertilization.

    PubMed

    Vasudevan, Kuzhalini; Raber, James; Sztein, Jorge

    2010-08-01

    Transgenic mice are increasingly used as animal models for studies of gene function and regulation of mammalian genes. Although there has been continuous and remarkable progress in the development of transgenic technology over several decades, many aspects of the resulting transgenic model's phenotype cannot be completely predicted. For example, it is well known that as a consequence of the random insertion of the injected DNA construct, several founder mice of the new line need to be analyzed for possible differences in phenotype secondary to different insertion sites. The Knock out technique for transgenic production disrupts a specific gene by insertion or homologous recombination creating a null expression or replacement of the gene with a marker to localize it expression. This modification could result in pleiotropic phenotype if the gene is also expressed in tissues other than the target organs. Although the future breeding performance of the newly created model is critical to many studies, it is rarely anticipated that the new integrations could modify the reproductive profile of the new transgenic line. To date, few studies have demonstrated the difference between the parent strain's reproductive performance and the newly developed transgenic model. This study was designed to determine whether a genetic modification, knock out (KO) or transgenics, not anticipated to affect reproductive performance could affect the resulting reproductive profile of the newly developed transgenic mouse. More specifically, this study is designed to study the impact of the genetic modification on the ability of gametes to be fertilized in vitro. We analyzed the reproductive performance of mice with different background strains: FVB/N, C57BL/6 (129Sv/J x C57Bl/6)F1 and outbred CD1((R)) and compared them to mice of the same strain carrying a transgene or KO which was not anticipated to affect fertility. In vitro Fertilization was used to analyze the fertility of the mice. Oocytes

  5. Transgenic cotton: from biotransformation methods to agricultural application.

    PubMed

    Zhang, Baohong

    2013-01-01

    Transgenic cotton is among the first transgenic plants commercially adopted around the world. Since it was first introduced into the field in the middle of 1990s, transgenic cotton has been quickly adopted by cotton farmers in many developed and developing countries. Transgenic cotton has offered many important environmental, social, and economic benefits, including reduced usage of pesticides, indirect increase of yield, minimizing environmental pollution, and reducing labor and cost. Agrobacterium-mediated genetic transformation method is the major method for obtaining transgenic cotton. However, pollen tube pathway-mediated method is also used, particularly by scientists in China, to breed commercial transgenic cotton. Although transgenic cotton plants with disease-resistance, abiotic stress tolerance, and improved fiber quality have been developed in the past decades, insect-resistant and herbicide-tolerant cotton are the two dominant transgenic cottons in the transgenic cotton market.

  6. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks.

    PubMed

    Haroldsen, Victor M; Chi-Ham, Cecilia L; Bennett, Alan B

    2012-10-31

    Genetically engineered (GE) rootstocks may offer some advantages for biotechnology applications especially in woody perennial crops such as grape or walnut. Transgrafting combines horticultural grafting practices with modern GE methods for crop improvement. Here, a non-GE conventional scion (upper stem portion) is grafted onto a transgenic GE rootstock. Thus, the scion does not contain the genetic modification present in the rootstock genome. We examined transgene presence in walnut and tomato GE rootstocks and non-GE fruit-bearing scions. Mobilization of transgene DNA, protein, and mRNA across the graft was not detected. Though transgenic siRNA mobilization was not observed in grafted tomatoes or walnut scions, transgenic siRNA signal was detected in walnut kernels. Prospective benefits from transgrafted plants include minimized risk of GE pollen flow (Lev-Yadun and Sederoff, 2001), possible use of more than one scion per approved GE rootstock which could help curb the estimated US$136 million (CropLife International, 2011) cost to bring a GE crop to international markets, as well as potential for improved consumer and market acceptance since the consumable product is not itself GE. Thus, transgrafting provides an alternative option for agricultural industries wishing to expand their biotechnology portfolio. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer.

    PubMed

    Feng, Xiujing; Cao, Shaoxian; Wang, Huili; Meng, Chunhua; Li, Jingxin; Jiang, Jin; Qian, Yong; Su, Lei; He, Qiang; Zhang, Qingxiao

    2015-02-01

    Production of human α-lactalbumin (hα-LA) transgenic cloned dairy goats has great potential in improving the nutritional value and perhaps increasing the yield of dairy goat milk. Here, a mammary-specific expression vector 5A, harboring goat β-lactoglobulin (βLG) promoter, the hα-LA gene, neo(r) and EGFP dual markers, was constructed. Then, it was effectively transfected into goat mammary epithelial cells (GMECs) and the expression of hα-LA was investigated. Both the hα-LA transcript and protein were detected in the transfected GMECs after the induction of hormonal signals. In addition, the 5A vector was introduced into dairy goat fetal fibroblasts (transfection efficiency ≈60-70%) to prepare competent transgenic donor cells. A total of 121 transgenic fibroblast clones were isolated by 96-well cell culture plates and screened with nested-PCR amplification and EGFP fluorescence. After being frozen for 8 months, the transgenic cells still showed high viabilities, verifying their ability as donor cells. Dairy goat cloned embryos were produced from these hα-LA transgenic donor cells by somatic cell nuclear transfer (SCNT), and the rates of fusion, cleavage, and the development to blastocyst stages were 81.8, 84.4, and 20.0%, respectively. A total of 726 reconstructed embryos derived from the transgenic cells were transferred to 74 recipients and pregnancy was confirmed at 90 days in 12 goats. Of six female kids born, two carried hα-LA and the hα-LA protein was detected in their milk. This study provides an effective system to prepare SCNT donor cells and transgenic animals for human recombinant proteins.

  8. Impacts of elevated CO2 on exogenous Bacillus thuringiensis toxins and transgene expression in transgenic rice under different levels of nitrogen.

    PubMed

    Jiang, Shoulin; Lu, Yongqing; Dai, Yang; Qian, Lei; Muhammad, Adnan Bodlah; Li, Teng; Wan, Guijun; Parajulee, Megha N; Chen, Fajun

    2017-11-07

    Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO 2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO 2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2, 1 and 2 N). It is elucidated that the increased levels of global atmospheric CO 2 concentration will trigger up-regulation of Bt toxin expression in transgenic rice, especially with appropriate increase of N fertilizer supply, while, to some extent, the exogenous Bt-transgene expression is reduced at sub-N levels (1/4 and 1/2N), even though the total protein of plant tissues is reduced and the plant growth is restricted. The unpredictable and stochastic occurrence of transgene silencing and epigenetic alternations remains unresolved for most transgenic plants. It is expected that N fertilization supply may promote the expression of transgenic Bt toxin in transgenic Bt rice, particularly under elevated CO 2 .

  9. Characterization of growth and reproduction performance, transgene integration, expression and transmission patterns in transgenic pigs produced by piggyBac transposition-mediated gene transfer

    PubMed Central

    Zeng, Fang; Li, Zicong; Cai, Gengyuan; Gao, Wenchao; Jiang, Gelong; Liu, Dewu; Urschitz, Johann; Moisyadi, Stefan; Wu, Zhenfang

    2016-01-01

    Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance, and characterized the transgene insertion, transmission and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favourable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition. PMID:27565868

  10. Cardiac phenotype induced by a dysfunctional α 1C transgene: a general problem for the transgenic approach.

    PubMed

    Asemu, Girma; Fishbein, Kenneth; Lao, Qi Zong; Ravindran, Arippa; Herbert, Ron; Canuto, Holly C; Spencer, Richard G; Soldatov, Nikolai M

    2011-01-01

    Based on stable integration of recombinant DNA into a host genome, transgenic technology has become an important genetic engineering methodology. An organism whose genetic characteristics have been altered by the insertion of foreign DNA is supposed to exhibit a new phenotype associated with the function of the transgene. However, successful insertion may not be sufficient to achieve specific modification of function. In this study we describe a strain of transgenic mouse, G7-882, generated by incorporation into the mouse genome of human CaV 1.2 α(1C) cDNA deprived of 3'-UTR to exclude transcription. We found that, in response to chronic infusion of isoproterenol, G7-882 develops dilated cardiomyopathy, a misleading "transgenic artifact" compatible with the expected function of the incorporated "correct" transgene. Specifically, using magnetic resonance imaging (MRI), we found that chronic β-adrenergic stimulation of G7-882 mice caused left ventricular hypertrophy and aggravated development of dilated cardiomyopathy, although no significant changes in the kinetics, density and voltage dependence of the calcium current were observed in G7-882 cardiomyocytes as compared to cells from wild type mice. This result illustrates the possibility that even when a functional transgene is expressed, an observed change in phenotype may be due to the artifact of "incidental incorporation" leading to misleading conclusions. To exclude this possibility and thus provide a robust tool for exploring biological function, the new transgenic phenotype must be replicated in several independently generated transgenic strains.

  11. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.

    PubMed

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Overview of expression of hepatitis B surface antigen in transgenic plants.

    PubMed

    Guan, Zheng-jun; Guo, Bin; Huo, Yan-lin; Guan, Zheng-ping; Wei, Ya-hui

    2010-10-28

    Hepatitis B virus (HBV), a pathogen for chronic liver infection, afflicts more than 350 million people world-wide. The effective way to control the virus is to take HBV vaccine. Hepatitis B surface antigen (HBsAg) is an effective protective antigen suitable for vaccine development. At present, "edible" vaccine based on transgenic plants is one of the most promising directions in novel types of vaccines. HBsAg production from transgenic plants has been carried out, and the transgenic plant expression systems have developed from model plants (such as tobacco, potato and tomato) to other various plant platforms. Crude or purified extracts of transformed plants have been found to conduct immunological responses and clinical trials for hepatitis B, which gave the researches of plant-based HBsAg production a big boost. The aim of this review was to summarize the recent data about plant-based HBsAg development including molecular biology of HBsAg gene, selection of expression vector, the expression of HBsAg gene in plants, as well as corresponding immunological responses in animal models or human. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Meclozine promotes longitudinal skeletal growth in transgenic mice with achondroplasia carrying a gain-of-function mutation in the FGFR3 gene.

    PubMed

    Matsushita, Masaki; Hasegawa, Satoru; Kitoh, Hiroshi; Mori, Kensaku; Ohkawara, Bisei; Yasoda, Akihiro; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2015-02-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias causing short stature owing to a gain-of-function mutation in the FGFR3 gene, which encodes the fibroblast growth factor receptor 3. We found that meclozine, an over-the-counter drug for motion sickness, inhibited elevated FGFR3 signaling in chondrocytic cells. To examine the feasibility of meclozine administration in clinical settings, we investigated the effects of meclozine on ACH model mice carrying the heterozygous Fgfr3(ach) transgene. We quantified the effect of meclozine in bone explant cultures employing limb rudiments isolated from developing embryonic tibiae from Fgfr3(ach) mice. We found that meclozine significantly increased the full-length and cartilaginous primordia of embryonic tibiae isolated from Fgfr3(ach) mice. We next analyzed the skeletal phenotypes of growing Fgfr3(ach) mice and wild-type mice with or without meclozine treatment. In Fgfr3(ach) mice, meclozine significantly increased the body length after 2 weeks of administration. At skeletal maturity, the bone lengths including the cranium, radius, ulna, femur, tibia, and vertebrae were significantly longer in meclozine-treated Fgfr3(ach) mice than in untreated Fgfr3(ach) mice. Interestingly, meclozine also increased bone growth in wild-type mice. The plasma concentration of meclozine during treatment was within the range that has been used in clinical settings for motion sickness. Increased longitudinal bone growth in Fgfr3(ach) mice by oral administration of meclozine in a growth period suggests potential clinical feasibility of meclozine for the improvement of short stature in ACH.

  14. Fast-tracking determination of homozygous transgenic lines and transgene stacking using a reliable quantitative real-time PCR assay.

    PubMed

    Wang, Xianghong; Jiang, Daiming; Yang, Daichang

    2015-01-01

    The selection of homozygous lines is a crucial step in the characterization of newly generated transgenic plants. This is particularly time- and labor-consuming when transgenic stacking is required. Here, we report a fast and accurate method based on quantitative real-time PCR with a rice gene RBE4 as a reference gene for selection of homozygous lines when using multiple transgenic stacking in rice. Use of this method allowed can be used to determine the stacking of up to three transgenes within four generations. Selection accuracy reached 100 % for a single locus and 92.3 % for two loci. This method confers distinct advantages over current transgenic research methodologies, as it is more accurate, rapid, and reliable. Therefore, this protocol could be used to efficiently select homozygous plants and to expedite time- and labor-consuming processes normally required for multiple transgene stacking. This protocol was standardized for determination of multiple gene stacking in molecular breeding via marker-assisted selection.

  15. Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.)

    PubMed Central

    2013-01-01

    Background Genetically engineered (GE) ringspot virus-resistant papaya cultivars ‘Rainbow’ and ‘SunUp’ have been grown in Hawai’i for over 10 years. In Hawai’i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. Results We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. Conclusions This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai’i for the presence of transgenic

  16. Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.).

    PubMed

    Nageswara-Rao, Madhugiri; Kwit, Charles; Agarwal, Sujata; Patton, Mariah T; Skeen, Jordan A; Yuan, Joshua S; Manshardt, Richard M; Stewart, C Neal

    2013-09-01

    Genetically engineered (GE) ringspot virus-resistant papaya cultivars 'Rainbow' and 'SunUp' have been grown in Hawai'i for over 10 years. In Hawai'i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai'i for the presence of transgenic seed at typical regulatory threshold levels

  17. Developing tTA Transgenic Rats for Inducible and Reversible Gene Expression

    PubMed Central

    Zhou, Hongxia; Huang, Cao; Yang, Min; Landel, Carlisle P; Xia, Pedro Yuxing; Liu, Yong-Jian; Xia, Xu Gang

    2009-01-01

    To develop transgenic lines for conditional expression of desired genes in rats, we generated several lines of the transgenic rats carrying the tetracycline-controlled transactivator (tTA) gene. Using a vigorous, ubiquitous promoter to drive the tTA transgene, we obtained widespread expression of tTA in various tissues. Expression of tTA was sufficient to strongly activate its reporter gene, but was below the toxicity threshold. We examined the dynamics of Doxycycline (Dox)-regulated gene expression in transgenic rats. In the two transmittable lines, tTA-mediated activation of the reporter gene was fully subject to regulation by Dox. Dox dose-dependently suppressed tTA-activated gene expression. The washout time for the effects of Dox was dose-dependent. We tested a complex regime of Dox administration to determine the optimal effectiveness and washout duration. Dox was administered at a high dose (500 μg/ml in drinking water) for two days to reach the effective concentration, and then was given at a low dose (20 μg/ml) to maintain effectiveness. This regimen of Dox administration can achieve a quick switch between ON and OFF statuses of tTA-activated gene expression. In addition, administration of Dox to pregnant rats fully suppressed postnatal tTA-activated gene expression in their offspring. Sufficient levels of Dox are present in mother's milk to produce maximal efficacy in nursing neonates. Administration of Dox to pregnant or nursing rats can provide a continual suppression of tTA-dependent gene expression during embryonic and postnatal development. The tTA transgenic rat allows for inducible and reversible gene expression in the rat; this important tool will be valuable in the development of genetic rat models of human diseases. PMID:19214245

  18. Transgenic horticultural crops in Asia

    USDA-ARS?s Scientific Manuscript database

    Modern biotechnology applications, including genetic engineering, are a powerful tool to complement the conventional methods of crop improvement. Asia currently has three countries cultivating biotech/transgenic crops – China, India, and the Philippines, but only China commercially grows a transgen...

  19. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    PubMed

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  20. Efficient Generation of Marker-Free Transgenic Rice Plants Using an Improved Transposon-Mediated Transgene Reintegration Strategy1

    PubMed Central

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551

  1. Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field.

    PubMed

    Millwood, Reginald; Nageswara-Rao, Madhugiri; Ye, Rongjian; Terry-Emert, Ellie; Johnson, Chelsea R; Hanson, Micaha; Burris, Jason N; Kwit, Charles; Stewart, C Neal

    2017-05-02

    Switchgrass is C 4 perennial grass species that is being developed as a cellulosic bioenergy feedstock. It is wind-pollinated and considered to be an obligate outcrosser. Genetic engineering has been used to alter cell walls for more facile bioprocessing and biofuel yield. Gene flow from transgenic cultivars would likely be of regulatory concern. In this study we investigated pollen-mediated gene flow from transgenic to nontransgenic switchgrass in a 3-year field experiment performed in Oliver Springs, Tennessee, U.S.A. using a modified Nelder wheel design. The planted area (0.6 ha) contained sexually compatible pollen source and pollen receptor switchgrass plants. One hundred clonal switchgrass 'Alamo' plants transgenic for an orange-fluorescent protein (OFP) and hygromycin resistance were used as the pollen source; whole plants, including pollen, were orange-fluorescent. To assess pollen movement, pollen traps were placed at 10 m intervals from the pollen-source plot in the four cardinal directions extending to 20 m, 30 m, 30 m, and 100 m to the north, south, west, and east, respectively. To assess pollination rates, nontransgenic 'Alamo 2' switchgrass clones were planted in pairs adjacent to pollen traps. In the eastward direction there was a 98% decrease in OFP pollen grains from 10 to 100 m from the pollen-source plot (Poisson regression, F1,8 = 288.38, P < 0.0001). At the end of the second and third year, 1,820 F 1 seeds were collected from pollen recipient-plots of which 962 (52.9%) germinated and analyzed for their transgenic status. Transgenic progeny production detected in each pollen-recipient plot decreased with increased distance from the edge of the transgenic plot (Poisson regression, F1,15 = 12.98, P < 0.003). The frequency of transgenic progeny detected in the eastward plots (the direction of the prevailing wind) ranged from 79.2% at 10 m to 9.3% at 100 m. In these experiments we found transgenic pollen movement and hybridization rates to be

  2. Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses

    PubMed Central

    ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.

    2009-01-01

    Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune

  3. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field.

    PubMed

    Koller, Teresa; Brunner, Susanne; Herren, Gerhard; Hurni, Severine; Keller, Beat

    2018-04-01

    The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.

  4. Isogenic transgenic homozygous fish induced by artificial parthenogenesis.

    PubMed

    Nam, Y K; Cho, Y S; Kim, D S

    2000-12-01

    As a model system for vertebrate transgenesis, fish have many attractive advantages, especially with respect to the characteristics of eggs, allowing us to produce isogenic, transgenic, homozygous vertebrates by combining with chromosome-set manipulation. Here, we describe the large-scale production of isogenic transgenic homozygous animals using our experimental organism, the mud loach Misgurnus mizolepis, by the simple process of artificial parthenogenesis in a single generation. These isogenic fish have retained transgenic homozygous status in a stable manner during the subsequent 5 years, and exhibited increased levels of transgene expression. Furthermore, their isogenic nature was confirmed by cloned transgenic homozygous offspring produced via another step of parthenogenic reproduction of the isogenic homozygous transgenic fish. These results demonstrate that a combination of transgenesis and artificial parthenogenesis will make the rapid utilization of genetically pure homozygous transgenic system in vertebrate transgenesis possible.

  5. Transgenic mice in developmental toxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woychik, R.P.

    1992-12-31

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areasmore » of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.« less

  6. Transgenic mice in developmental toxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woychik, R.P.

    1992-01-01

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areasmore » of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.« less

  7. Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology.

    PubMed

    Reichenbach, Myriam; Lim, Tiongti; Reichenbach, Horst-Dieter; Guengoer, Tuna; Habermann, Felix A; Matthiesen, Marieke; Hofmann, Andreas; Weber, Frank; Zerbe, Holm; Grupp, Thomas; Sinowatz, Fred; Pfeifer, Alexander; Wolf, Eckhard

    2010-08-01

    Lentiviral vectors are a powerful tool for the genetic modification of livestock species. We previously generated transgenic founder cattle with lentiviral integrants carrying enhanced green fluorescent protein (EGFP) under the control of the phosphoglycerate kinase (PGK) promoter. In this study, we investigated the transmission of LV-PGK-EGFP integrants through the female and male germ line in cattle. A transgenic founder heifer (#562, Kiki) was subjected to superovulation treatment and inseminated with semen from a non-transgenic bull. Embryos were recovered and transferred to synchronized recipient heifers, resulting in the birth of a healthy male transgenic calf expressing EGFP as detected by in vivo imaging. Semen from a transgenic founder bull (#561, Jojo) was used for in vitro fertilization (IVF) of in vitro matured (IVM) oocytes from non-transgenic cows. The rates of cleavage and development to blastocyst in vitro corresponded to 52.0 +/- 4.1 and 24.5 +/- 4.4%, respectively. Expression of EGFP was observed at blastocyst stage (day 7 after IVF) and was seen in 93.0% (281/302) of the embryos. 24 EGFP-expressing embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos, flushed from the uterus on day 15, two fetuses recovered on day 45, and a healthy male transgenic calf revealed consistent high-level expression of EGFP in all tissues investigated. Our study shows for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. The pattern of inheritance was consistent with Mendelian rules. Importantly, high fidelity expression of EGFP in embryos, fetuses, and offspring of founder #561 provides interesting tools for developmental studies in cattle, including interactions of gametes, embryos and fetuses with their maternal environment.

  8. [Breeding of transgenic mice expressing human tau isoform with P301L mutation and identification of homozygous transgenic mice].

    PubMed

    Wang, Yan-yan; Chen, Ru-zhui; Zhu, Xiao-nani; Liu, Jing; Li, Zhi-hui; Liu, Xiu-juan; Li, Zhi-hui; Na, Xin; Liang, Shan-shan; Qiu, Guo-guang; Zhang, Wei; Wang, Hai; Wang, Xue-lan

    2012-05-01

    To establish homozygous transgenic mouse strain expressing human tau isoform with P301L mutation. Five transgenic mice expressing human tau isoform with P301L mutation were obtained by microinjection into male nuclei. Homozygote and hemizygote were identified by PCR and real-time fluorescent quantitative PCR. Ninety five homozygous transgenic mice were selected, and the results indicated that homozygous transgenic mice were superior to hemizygote in simulating the changes of biological characteristics. Exogenous gene tau is able to stably transmit to next generation and the combination of SYBR Green real-time fluorescent quantitative PCR with the traditional mating is a fast, reliable and economical way to screen homozygous and hemizygous transgenic mice.

  9. Transgene flow: Facts, speculations and possible countermeasures

    PubMed Central

    Ryffel, Gerhart U

    2014-01-01

    Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology. PMID:25523171

  10. Pollen Competition as a Reproductive Isolation Barrier Represses Transgene Flow between Compatible and Co-Flowering Citrus Genotypes

    PubMed Central

    Pons, Elsa; Navarro, Antonio; Ollitrault, Patrick; Peña, Leandro

    2011-01-01

    Background/Objective Despite potential benefits granted by genetically modified (GM) fruit trees, their release and commercialization raises concerns about their potential environmental impact, and the transfer via pollen of transgenes to cross-compatible cultivars is deemed to be the greatest source for environmental exposure. Information compiled from field trials on GM trees is essential to propose measures to minimize the transgene dispersal. We have conducted a field trial of seven consecutive years to investigate the maximum frequency of pollen-mediated crop-to-crop transgene flow in a citrus orchard, and its relation to the genetic, phenological and environmental factors involved. Methodology/Principal Findings Three different citrus genotypes carrying the uidA (GUS) tracer marker gene (pollen donors) and a non-GM self-incompatible contiguous citrus genotype (recipient) were used in conditions allowing natural entomophilous pollination to occur. The examination of 603 to 2990 seeds per year showed unexpectedly low frequencies (0.17–2.86%) of transgene flow. Paternity analyses of the progeny of subsets of recipient plants using 10 microsatellite (SSR) loci demonstrated a higher mating competence of trees from another non-GM pollen source population that greatly limited the mating chance of the contiguous cross-compatible and flowering-synchronized transgenic pollen source. This mating superiority could be explained by a much higher pollen competition capacity of the non-GM genotypes, as was confirmed through mixed-hand pollinations. Conclusions/Significance Pollen competition strongly contributed to transgene confinement. Based on this finding, suitable isolation measures are proposed for the first time to prevent transgene outflow between contiguous plantings of citrus types that may be extendible to other entomophilous transgenic fruit tree species. PMID:21991359

  11. Pollen competition as a reproductive isolation barrier represses transgene flow between compatible and co-flowering citrus genotypes.

    PubMed

    Pons, Elsa; Navarro, Antonio; Ollitrault, Patrick; Peña, Leandro

    2011-01-01

    Despite potential benefits granted by genetically modified (GM) fruit trees, their release and commercialization raises concerns about their potential environmental impact, and the transfer via pollen of transgenes to cross-compatible cultivars is deemed to be the greatest source for environmental exposure. Information compiled from field trials on GM trees is essential to propose measures to minimize the transgene dispersal. We have conducted a field trial of seven consecutive years to investigate the maximum frequency of pollen-mediated crop-to-crop transgene flow in a citrus orchard, and its relation to the genetic, phenological and environmental factors involved. Three different citrus genotypes carrying the uidA (GUS) tracer marker gene (pollen donors) and a non-GM self-incompatible contiguous citrus genotype (recipient) were used in conditions allowing natural entomophilous pollination to occur. The examination of 603 to 2990 seeds per year showed unexpectedly low frequencies (0.17-2.86%) of transgene flow. Paternity analyses of the progeny of subsets of recipient plants using 10 microsatellite (SSR) loci demonstrated a higher mating competence of trees from another non-GM pollen source population that greatly limited the mating chance of the contiguous cross-compatible and flowering-synchronized transgenic pollen source. This mating superiority could be explained by a much higher pollen competition capacity of the non-GM genotypes, as was confirmed through mixed-hand pollinations. Pollen competition strongly contributed to transgene confinement. Based on this finding, suitable isolation measures are proposed for the first time to prevent transgene outflow between contiguous plantings of citrus types that may be extendible to other entomophilous transgenic fruit tree species.

  12. [Progress in transgenic fish techniques and application].

    PubMed

    Ye, Xing; Tian, Yuan-Yuan; Gao, Feng-Ying

    2011-05-01

    Transgenic technique provides a new way for fish breeding. Stable lines of growth hormone gene transfer carps, salmon and tilapia, as well as fluorescence protein gene transfer zebra fish and white cloud mountain minnow have been produced. The fast growth characteristic of GH gene transgenic fish will be of great importance to promote aquaculture production and economic efficiency. This paper summarized the progress in transgenic fish research and ecological assessments. Microinjection is still the most common used method, but often resulted in multi-site and multi-copies integration. Co-injection of transposon or meganuclease will greatly improve the efficiency of gene transfer and integration. "All fish" gene or "auto gene" should be considered to produce transgenic fish in order to eliminate misgiving on food safety and to benefit expression of the transferred gene. Environmental risk is the biggest obstacle for transgenic fish to be commercially applied. Data indicates that transgenic fish have inferior fitness compared with the traditional domestic fish. However, be-cause of the genotype-by-environment effects, it is difficult to extrapolate simple phenotypes to the complex ecological interactions that occur in nature based on the ecological consequences of the transgenic fish determined in the laboratory. It is critical to establish highly naturalized environments for acquiring reliable data that can be used to evaluate the environ-mental risk. Efficacious physical and biological containment strategies remain to be crucial approaches to ensure the safe application of transgenic fish technology.

  13. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    PubMed Central

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  14. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep.

    PubMed

    Ma, Teng; Tao, Jingli; Yang, Minghui; He, Changjiu; Tian, Xiuzhi; Zhang, Xiaosheng; Zhang, Jinlong; Deng, Shoulong; Feng, Jianzhong; Zhang, Zhenzhen; Wang, Jing; Ji, Pengyun; Song, Yukun; He, Pingli; Han, Hongbing; Fu, Juncai; Lian, Zhengxing; Liu, Guoshi

    2017-08-01

    Melatonin as a potent antioxidant exhibits important nutritional and medicinal values. To produce melatonin-enriched milk will benefit the consumers. In this study, a sheep bioreactor which generates melatonin-enriched milk has been successfully developed by the technology that combined CRISPR/Cas9 system and microinjection. The AANAT and ASMT were cloned from pineal gland of Dorper sheep (Ovis aries). The in vitro studies found that AANAT and ASMT were successfully transferred to the mammary epithelial cell lines and significantly increased melatonin production in the culture medium compared to the nontransgenic cell lines. In addition, the Cas9 mRNA, sgRNA, and the linearized vectors pBC1-AANAT and pBC1-ASMT were co-injected into the cytoplasm of pronuclear embryos which were implanted into ewes by oviducts transferring. Thirty-four transgenic sheep were generated with the transgenic positive rate being roughly 35% which were identified by Southern blot and sequencing. Seven carried transgenic AANAT, two carried ASMT, and 25 carried both of AANAT and ASMT genes. RT-PCR and Western blot demonstrated that the lambs expressed these genes in their mammary epithelial cells and these animals produced melatonin-enriched milk. This is the first report to show a functional AANAT and ASMT transgenic animal model which produce significantly high levels of melatonin milk compared to their wild-type counterparts. The advanced technologies used in the study laid a foundation for generating large transgenic livestock, for example, the cows, which can produce high level of melatonin milk. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Generation of transgenic Hydra by embryo microinjection.

    PubMed

    Juliano, Celina E; Lin, Haifan; Steele, Robert E

    2014-09-11

    As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology(1). Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost.

  16. Transgenic plants with enhanced growth characteristics

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  17. Transgenic plants with enhanced growth characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of themore » double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.« less

  18. Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange.

    PubMed

    Matsunari, Hitomi; Onodera, Masafumi; Tada, Norihiro; Mochizuki, Hideki; Karasawa, Satoshi; Haruyama, Erika; Nakayama, Naoki; Saito, Hitoshi; Ueno, Satoshi; Kurome, Mayuko; Miyawaki, Atsushi; Nagashima, Hiroshi

    2008-09-01

    Genetically engineered pigs with cell markers such as fluorescent proteins are highly useful in lines of research that include the tracking of transplanted cells or tissues. In this study, we produced transgenic-cloned pigs carrying a gene for the newly developed red fluorescent protein, humanized Kusabira-Orange (huKO), which was cloned from the coral stone Fungia concinna. The nuclear transfer embryos, reconstructed with fetal fibroblast cells that had been transduced with huKO cDNA using retroviral vector D Delta Nsap, developed efficiently in vitro into blastocysts (28.0%, 37/132). Nearly all (94.6%, 35/37) of the cloned blastocysts derived from the transduced cells exhibited clear huKO gene expression. A total of 429 nuclear transfer embryos were transferred to four recipients, all of which became pregnant and gave birth to 18 transgenic-cloned offspring in total. All of the pigs highly expressed huKO fluorescence in all of the 23 organs and tissues analyzed, including the brain, eyes, intestinal and reproductive organs, skeletal muscle, bone, skin, and hoof. Furthermore, such expression was also confirmed by histological analyses of various tissues such as pancreatic islets, renal corpuscles, neuronal and glial cells, the retina, chondrocytes, and hematopoietic cells. These data demonstrate that transgenic-cloned pigs exhibiting systemic red fluorescence expression can be efficiently produced by nuclear transfer of somatic cells retrovirally transduced with huKO gene.

  19. Molecular breeding of transgenic white clover (Trifolium repens L.) with field resistance to Alfalfa mosaic virus through the expression of its coat protein gene.

    PubMed

    Panter, S; Chu, P G; Ludlow, E; Garrett, R; Kalla, R; Jahufer, M Z Z; de Lucas Arbiza, A; Rochfort, S; Mouradov, A; Smith, K F; Spangenberg, G

    2012-06-01

    Viral diseases, such as Alfalfa mosaic virus (AMV), cause significant reductions in the productivity and vegetative persistence of white clover plants in the field. Transgenic white clover plants ectopically expressing the viral coat protein gene encoded by the sub-genomic RNA4 of AMV were generated. Lines carrying a single copy of the transgene were analysed at the molecular, biochemical and phenotypic level under glasshouse and field conditions. Field resistance to AMV infection, as well as mitotic and meiotic stability of the transgene, were confirmed by phenotypic evaluation of the transgenic plants at two sites within Australia. The T(0) and T(1) generations of transgenic plants showed immunity to infection by AMV under glasshouse and field conditions, while the T(4) generation in an agronomically elite 'Grasslands Sustain' genetic background, showed a very high level of resistance to AMV in the field. An extensive biochemical study of the T(4) generation of transgenic plants, aiming to evaluate the level and composition of natural toxicants and key nutritional parameters, showed that the composition of the transgenic plants was within the range of variation seen in non-transgenic populations.

  20. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight.

    PubMed

    Datta, K; Baisakh, N; Thet, K Maung; Tu, J; Datta, S K

    2002-12-01

    Here we describe the development of transgene-pyramided stable elite rice lines resistant to disease and insect pests by conventional crossing of two transgenic parental lines transformed independently with different genes. The Xa21 gene (resistance to bacterial blight), the Bt fusion gene (for insect resistance) and the chitinase gene (for tolerance of sheath blight) were combined in a single rice line by reciprocal crossing of two transgenic homozygous IR72 lines. F4 plant lines carrying all the genes of interest stably were identified using molecular methods. The identified lines, when exposed to infection caused by Xanthomonas oryzae pv oryzae, showed resistance to bacterial blight. Neonate larval mortality rates of yellow stem borer ( Scirpophaga incertulas) in an insect bioassay of the same identified lines were 100%. The identified line pyramided with different genes to protect against yield loss showed high tolerance of sheath blight disease caused by Rhizoctonia solani.

  1. A Primer for Using Transgenic Insecticidal Cotton in Developing Countries

    PubMed Central

    Showalter, Ann M.; Heuberger, Shannon; Tabashnik, Bruce E.; Carrière, Yves

    2009-01-01

    Many developing countries face the decision of whether to approve the testing and commercial use of insecticidal transgenic cotton and the task of developing adequate regulations for its use. In this review, we outline concepts and provide information to assist farmers, regulators and scientists in making decisions concerning this technology. We address seven critical topics: 1) molecular and breeding techniques used for the development of transgenic cotton cultivars, 2) properties of transgenic cotton cultivars and their efficacy against major insect pests, 3) agronomic performance of transgenic cotton in developing countries, 4) factors affecting transgene expression, 5) impact of gene flow between transgenic and non-transgenic cotton, 6) non-target effects of transgenic cotton, and 7) management of pest resistance to transgenic cotton. PMID:19613464

  2. NanoSMGT: transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency.

    PubMed

    Campos, Vinicius Farias; de Leon, Priscila Marques Moura; Komninou, Eliza Rossi; Dellagostin, Odir Antônio; Deschamps, João Carlos; Seixas, Fabiana Kömmling; Collares, Tiago

    2011-11-01

    The objectives were to investigate whether: 1) nanotransfectants are more effective than other common transfection methods for SMGT; 2) NanoSMGT is able to transmit exogenous DNA molecules to bovine embryos; and 3) halloysite clay nanotubes (HCNs) can be used as a transfection reagent to improve transgene transmission. Four transfection systems were used: naked DNA (without transfectant), lipofection, nanopolymer, and halloysite clay nanotubes. Plasmid uptake by sperm and its transfer to embryos were quantified by conventional and real-time PCR, as well as EGFP expression by fluorescence microscopy. Furthermore, sperm motility and viability, and embryo development were investigated. Mean number of plasmids taken up was affected (P < 0.05) by transfection procedure, with the nanopolymer being the most effective transfectant (∼ 153 plasmids per spermatozoon). None of the treatments affected sperm motility or viability. The mean number of plasmids transmitted to four-cell stage embryos was higher (P < 0.05) in nanopolymer and HCNs than liposomes and naked DNA groups. The number of embryos carrying the transgene increased from 8-10% using naked DNA or liposomes to 40-45% using nanopolymer or HCN as transfectants (P < 0.05). There were no significant differences among transfection procedures regarding blastocyst formation rate of resulting embryos. However, no EGFP-expressing embryo was identified in any treatment. Therefore, nanotransfectants improved transgene transmission in bovine embryos without deleterious effects on embryo development. To our knowledge, this was the first time that bovine embryos carrying a transgene were produced by NanoSMGT. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristics

    PubMed Central

    Brough, Rachel; Papanastasiou, Antigoni M; Porter, Andrew CG

    2007-01-01

    Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support

  4. Optimization of Biofuel Production From Transgenic Microalgae

    DTIC Science & Technology

    2013-02-27

    AFRL-OSR-VA-TR-2013-0145 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Richard Sayre Donald Danforth...Technical 20080815 to 20120630 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE FA9550-08-1-0451 Richard Sayre Donald Danforth Plant...BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Grant/Contract Number: FA9550-08-1-0451 Reporting Period: Final Report Abstract: We have compared the

  5. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong

    2016-03-25

    Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. IDENTIFICATION OF ESCAPED TRANSGENIC CREEPING BENTGRASS IN OREGON

    EPA Science Inventory

    When transgenic plants are cultivated near wild species that are sexually compatible with the crop, gene flow between the crop and wild plants is possible. A resultant concern is that transgene flow and transgene introgression within wild populations could have unintended ecologi...

  7. Oral Vaccination Against Anthrax Using a Transgenic Plant Expressing Protective Antigen.

    DTIC Science & Technology

    1996-09-01

    unpublished results). In Phase II, development of a tomato -based system for edible vaccine delivery will be carried out in parallel with experiments testing...Frederick, MD 21702-5012. AUTHORITY USAMRMC ltr, 4 Dec 2002 THIS PAGE IS UNCLASSIFIED AD CONTRACT NUMBER: DAMD17-95-C-5102 TITLE: Oral Vaccination ...COVERED I September 1996 Final - Phase I, 15 Auxg 95-14 Aug 96 4. TITLE AND 9UBTITLE 5. FUNDING NUMBERS Oral Vaccination Against Anthrax Using a Transgenic

  8. Generation of Marker-free Transgenic Plants Concurrently Resistant to a DNA Geminivirus and a RNA Tospovirus

    PubMed Central

    Yang, Ching-Fu; Chen, Kuan-Chun; Cheng, Ying-Hui; Raja, Joseph A. J.; Huang, Ya-Ling; Chien, Wan-Chu; Yeh, Shyi-Dong

    2014-01-01

    Global threats of ssDNA geminivirus and ss(-)RNA tospovirus on crops necessitate the development of transgenic resistance. Here, we constructed a two-T DNA vector carrying a hairpin of the intergenic region (IGR) of Ageratum yellow vein virus (AYVV), residing in an intron inserted in an untranslatable nucleocapsid protein (NP) fragment of Melon yellow spot virus (MYSV). Transgenic tobacco lines highly resistant to AYVV and MYSV were generated. Accumulation of 24-nt siRNA, higher methylation levels on the IGR promoters of the transgene, and suppression of IGR promoter activity of invading AYVV indicate that AYVV resistance is mediated by transcriptional gene silencing. Lack of NP transcript and accumulation of corresponding siRNAs indicate that MYSV resistance is mediated through post-transcriptional gene silencing. Marker-free progenies with concurrent resistance to both AYVV and MYSV, stably inherited as dominant nuclear traits, were obtained. Hence, we provide a novel way for concurrent control of noxious DNA and RNA viruses with less biosafety concerns. PMID:25030413

  9. Prototypic chromatin insulator cHS4 protects retroviral transgene from silencing in Schistosoma mansoni

    PubMed Central

    Suttiprapa, Sutas; Rinaldi, Gabriel; Brindley, Paul J.

    2011-01-01

    Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) virions can transduce schistosomes, leading to chromosomal integration of reporter transgenes. To develop VSVG-MLV for functional genomics in schistosomes, the influence of the chicken β-globin cHS4 element, a prototypic chromatin insulator, on transgene expression was examined. Plasmid pLNHX encoding the MLV 5′- and 3′-Long Terminal Repeats (LTRs) flanking the neomycin phosphotransferase gene (neo) was modified to include, within the U3 region of the 3′-LTR, active components of cHS4 insulator, the 250 bp core fused to the 400 bp 3′-region. Cultured larvae of Schistosoma mansoni were transduced with virions from producer cells transfected with control or cHS4-bearing plasmids. Schistosomules transduced with cHS4 virions expressed two to 20 times higher levels of neo than controls, while carrying comparable numbers of integrated proviral transgenes. The findings not only demonstrated that cHS4 was active in schistosomes but also they represent the first report of activity of cHS4 in any Lophotrochozoan species, which has significant implications for evolutionary conservation of heterochromatin regulation. The findings advance prospects for transgenesis in functional genomics of the schistosome genome to discover intervention targets because they provide the means to enhance and extend transgene activity including for vector based RNA interference. PMID:21918820

  10. Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to Fusarium graminearum.

    PubMed

    Li, Xin; Shin, Sanghyun; Heinen, Shane; Dill-Macky, Ruth; Berthiller, Franz; Nersesian, Natalya; Clemente, Thomas; McCormick, Susan; Muehlbauer, Gary J

    2015-11-01

    Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.

  11. A proteomic study to identify soya allergens--the human response to transgenic versus non-transgenic soya samples.

    PubMed

    Batista, Rita; Martins, Isabel; Jeno, Paul; Ricardo, Cândido Pinto; Oliveira, Maria Margarida

    2007-01-01

    In spite of being among the main foods responsible for allergic reactions worldwide, soybean (Glycine max)-derived products continue to be increasingly widespread in a variety of food products due to their well-documented health benefits. Soybean also continues to be one of the elected target crops for genetic modification. The aim of this study was to characterize the soya proteome and, specifically, IgE-reactive proteins as well as to compare the IgE response in soya-allergic individuals to genetically modified Roundup Ready soya versus its non-transgenic control. We performed two-dimensional gel electrophoresis of protein extracts from a 5% genetically modified Roundup Ready flour sample and its non-transgenic control followed by Western blotting with plasma from 5 soya-sensitive individuals. We used peptide tandem mass spectrometry to identify soya proteins (55 protein matches), specifically IgE-binding ones, and to evaluate differences between transgenic and non-transgenic samples. We identified 2 new potential soybean allergens--one is maturation associated and seems to be part of the late embryogenesis abundant proteins group and the other is a cysteine proteinase inhibitor. None of the individuals tested reacted differentially to the transgenic versus non-transgenic samples under study. Soybean endogenous allergen expression does not seem to be altered after genetic modification. Proteomics should be considered a powerful tool for functional characterization of plants and for food safety assessment. Copyright (c) 2007 S. Karger AG, Basel.

  12. [Effect of transgenic insect-resistant rice on biodiversity].

    PubMed

    Zhang, Lei; Zhu, Zhen

    2011-05-01

    Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.

  13. [Review of transgenic crop breeding in China].

    PubMed

    Huang, Dafang

    2015-06-01

    The development history and fundamental experience of transgenic crops (Genetically modified crops) breeding in China for near 30 years were reviewed. It was illustrated that a scientific research, development and industrialization system of transgenic crops including gene discovery, transformation, variety breeding, commercialization, application and biosafety assessment has been initially established which was few in number in the world. The research innovative capacity of transgenic cotton, rice and corn has been lifted. The research features as well as relative advantages have been initially formed. The problems and challenges of transgenic crop development were discussed. In addition, three suggestions of promoting commercialization, speeding up implementation of the Major National Project of GM Crops, and enhancing science communication were made.

  14. Airway-Specific Inducible Transgene Expression Using Aerosolized Doxycycline

    PubMed Central

    Tata, Purushothama Rao; Pardo-Saganta, Ana; Prabhu, Mythili; Vinarsky, Vladimir; Law, Brandon M.; Fontaine, Benjamin A.; Tager, Andrew M.

    2013-01-01

    Tissue-specific transgene expression using tetracycline (tet)-regulated promoter/operator elements has been used to revolutionize our understanding of cellular and molecular processes. However, because most tet-regulated mouse strains use promoters of genes expressed in multiple tissues, to achieve exclusive expression in an organ of interest is often impossible. Indeed, in the extreme case, unwanted transgene expression in other organ systems causes lethality and precludes the study of the transgene in the actual organ of interest. Here, we describe a novel approach to activating tet-inducible transgene expression solely in the airway by administering aerosolized doxycycline. By optimizing the dose and duration of aerosolized doxycycline exposure in mice possessing a ubiquitously expressed Rosa26 promoter–driven reverse tet-controlled transcriptional activator (rtTA) element, we induce transgene expression exclusively in the airways. We detect no changes in the cellular composition or proliferative behavior of airway cells. We used this newly developed method to achieve airway basal stem cell–specific transgene expression using a cytokeratin 5 (also known as keratin 5)–driven rtTA driver line to induce Notch pathway activation. We observed a more robust mucous metaplasia phenotype than in mice receiving doxycycline systemically. In addition, unwanted phenotypes outside of the lung that were evident when doxycycline was received systemically were now absent. Thus, our approach allows for rapid and efficient airway-specific transgene expression. After the careful strain by strain titration of the dose and timing of doxycycline inhalation, a suite of preexisting transgenic mice can now be used to study airway biology specifically in cases where transient transgene expression is sufficient to induce a phenotype. PMID:23848320

  15. Minute Pirate Bug (Orius Insidiosus Say) populations on transgenic and non-transgenic maize using different sampling techniques

    USDA-ARS?s Scientific Manuscript database

    Field experiments were conducted to evaluate the populations of minute pirate bug [Orius insidiosus (Say)] using visual, sticky cards, and destructive sampling techniques in transgenic and non-transgenic maize in three locations in Nebraska (Mead, Clay Center, and Concord), United States of America,...

  16. Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome.

    PubMed

    Babenko, Vladimir N; Makunin, Igor V; Brusentsova, Irina V; Belyaeva, Elena S; Maksimov, Daniil A; Belyakin, Stepan N; Maroy, Peter; Vasil'eva, Lyubov A; Zhimulev, Igor F

    2010-05-21

    Eukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of D. melanogaster. Here we demonstrate that these underreplicated regions (URs) have a low density of P-element and piggyBac insertions compared to the genome average or neighboring regions. In contrast, Minos-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single P-element by analysis of eye color determined by the mini-white marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of P-elements and piggyBacs in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of P-elements and piggyBac insertions. In transgenes with two marker genes suppression of mini-white gene in eye coincides with suppression of yellow gene in bristles. Our results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.

  17. Establishment and characterization of CAG/EGFP transgenic rabbit line.

    PubMed

    Takahashi, Ri-ichi; Kuramochi, Takashi; Aoyagi, Kazuki; Hashimoto, Shu; Miyoshi, Ichiro; Kasai, Noriyuki; Hakamata, Yoji; Kobayashi, Eiji; Ueda, Masatsugu

    2007-02-01

    Cell marking is a very important procedure for identifying donor cells after cell and/or organ transplantation in vivo. Transgenic animals expressing marker proteins such as enhanced green fluorescent protein (EGFP) in their tissues are a powerful tool for research in fields of tissue engineering and regenerative medicine. The purpose of this study was to establish transgenic rabbit lines that ubiquitously express EGFP under the control of the cytomegalovirus immediate early enhancer/beta-actin promoter (CAG) to provide a fluorescent transgenic animal as a bioresource. We microinjected the EGFP expression vector into 945 rabbit eggs and 4 independent transgenic candidate pups were obtained. Two of them died before sexual maturation and one was infertile. One transgenic male candidate founder rabbit was obtained and could be bred by artificial insemination. The rabbit transmitted the transgene in a Mendelian manner. Using fluorescence in situ hybridization analysis, we detected the transgene at 7q11 on chromosome 7 as a large centromeric region in two F1 offspring (one female and one male). Eventually, one transgenic line was established. Ubiquitous EGFP fluorescence was confirmed in all examined organs. There were no gender-related differences in fluorescence. The established CAG/EGFP transgenic rabbit will be an important bioresource and a useful tool for various studies in tissue engineering and regenerative medicine.

  18. RNAi-Mediated Knockdown of IKK1 in Transgenic Mice Using a Transgenic Construct Containing the Human H1 Promoter

    PubMed Central

    Moreno-Maldonado, Rodolfo; Murillas, Rodolfo; Page, Angustias; Suarez-Cabrera, Cristian; Alameda, Josefa P.; Bravo, Ana; Casanova, M. Llanos

    2014-01-01

    Inhibition of gene expression through siRNAs is a tool increasingly used for the study of gene function in model systems, including transgenic mice. To achieve perdurable effects, the stable expression of siRNAs by an integrated transgenic construct is necessary. For transgenic siRNA expression, promoters transcribed by either RNApol II or III (such as U6 or H1 promoters) can be used. Relatively large amounts of small RNAs synthesis are achieved when using RNApol III promoters, which can be advantageous in knockdown experiments. To study the feasibility of H1 promoter-driven RNAi-expressing constructs for protein knockdown in transgenic mice, we chose IKK1 as the target gene. Our results indicate that constructs containing the H1 promoter are sensitive to the presence of prokaryotic sequences and to transgene position effects, similar to RNApol II promoters-driven constructs. We observed variable expression levels of transgenic siRNA among different tissues and animals and a reduction of up to 80% in IKK1 expression. Furthermore, IKK1 knockdown led to hair follicle alterations. In summary, we show that constructs directed by the H1 promoter can be used for knockdown of genes of interest in different organs and for the generation of animal models complementary to knockout and overexpression models. PMID:24523631

  19. Multiple effects of genetic background on variegated transgene expression in mice.

    PubMed Central

    Opsahl, Margaret L; McClenaghan, Margaret; Springbett, Anthea; Reid, Sarah; Lathe, Richard; Colman, Alan; Whitelaw, C Bruce A

    2002-01-01

    BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression. PMID:11901126

  20. Multiple effects of genetic background on variegated transgene expression in mice.

    PubMed

    Opsahl, Margaret L; McClenaghan, Margaret; Springbett, Anthea; Reid, Sarah; Lathe, Richard; Colman, Alan; Whitelaw, C Bruce A

    2002-03-01

    BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression.

  1. Production of transgenic pigs over-expressing the antiviral gene Mx1.

    PubMed

    Yan, Quanmei; Yang, Huaqiang; Yang, Dongshan; Zhao, Bentian; Ouyang, Zhen; Liu, Zhaoming; Fan, Nana; Ouyang, Hongsheng; Gu, Weiwang; Lai, Liangxue

    2014-01-01

    The myxovirus resistance gene (Mx1) has a broad spectrum of antiviral activities. It is therefore an interesting candidate gene to improve disease resistance in farm animals. In this study, we report the use of somatic cell nuclear transfer (SCNT) to produce transgenic pigs over-expressing the Mx1 gene. These transgenic pigs express approximately 15-25 times more Mx1 mRNA than non-transgenic pigs, and the protein level of Mx1 was also markedly enhanced. We challenged fibroblast cells isolated from the ear skin of transgenic and control pigs with influenza A virus and classical swine fever virus (CFSV). Indirect immunofluorescence assay (IFA) revealed a profound decrease of influenza A proliferation in Mx1 transgenic cells. Growth kinetics showed an approximately 10-fold reduction of viral copies in the transgenic cells compared to non-transgenic controls. Additionally, we found that the Mx1 transgenic cells were more resistant to CSFV infection in comparison to non-transgenic cells. These results demonstrate that the Mx1 transgene can protect against viral infection in cells of transgenic pigs and indicate that the Mx1 transgene can be harnessed to develop disease-resistant pigs.

  2. Technical advance: stringent control of transgene expression in Arabidopsis thaliana using the Top10 promoter system

    NASA Technical Reports Server (NTRS)

    Love, J.; Scott, A. C.; Thompson, W. F.; Brown, C. S. (Principal Investigator)

    2000-01-01

    We show that the tightly regulated tetracycline-sensitive Top10 promoter system (Weinmann et al. Plant J. 1994, 5, 559-569) is functional in Arabidopsis thaliana. A pure breeding A. thaliana line (JL-tTA/8) was generated which expressed a chimeric fusion of the tetracycline repressor and the activation domain of Herpes simplex virus (tTA), from a single transgenic locus. Plants from this line were crossed with transgenics carrying the ER-targeted green fluorescent protein coding sequence (mGFP5) under control of the Top10 promoter sequence. Progeny from this cross displayed ER-targeted GFP fluorescence throughout the plant, indicating that the tTA-Top10 promoter interaction was functional in A. thaliana. GFP expression was repressed by 100 ng ml-1 tetracycline, an order of magnitude lower than the concentration used previously to repress expression in Nicotiana tabacum. Moreover, the level of GFP expression was controlled by varying the concentration of tetracycline in the medium, allowing a titred regulation of transgenic activity that was previously unavailable in A. thaliana. The kinetics of GFP activity were determined following de-repression of the Top10:mGFP5 transgene, with a visible ER-targeted GFP signal appearing from 24 to 48 h after de-repression.

  3. Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing.

    PubMed

    Gu, Keyu; Tian, Dongsheng; Mao, Huizhu; Wu, Lifang; Yin, Zhongchao

    2015-10-08

    Jatropha curcas L. is a potential biofuel plant and its seed oil is suitable for biodiesel production. Despite this promising application, jatropha seeds contain two major toxic components, namely phorbol esters and curcins. These compounds would reduce commercial value of seed cake and raise safety and environment concerns on jatropha plantation and processing. Curcins are Type I ribosome inactivating proteins. Several curcin genes have been identified in the jatropha genome. Among which, the Curcin 1 (C1) gene is identified to be specifically expressed in endosperm, whereas the Curcin 2A (C2A) is mainly expressed in young leaves. A marker-free RNAi construct carrying a β-estradiol-regulated Cre/loxP system and a C1 promoter-driven RNAi cassette for C1 gene was made and used to generate marker-free transgenic RNAi plants to specifically silence the C1 gene in the endosperm of J. curcas. Plants of transgenic line L1, derived from T0-1, carry two copies of marker-free RNAi cassette, whereas plants of L35, derived from T0-35, harbored one copy of marker-free RNAi cassette and three copies of closely linked and yet truncated Hpt genes. The C1 protein content in endosperm of L1 and L35 seeds was greatly reduced or undetectable, while the C2A proteins in young leaves of T0-1 and T0-35 plants were unaffected. In addition, the C1 mRNA transcripts were undetectable in the endosperm of T3 seeds of L1 and L35. The results demonstrated that the expression of the C1 gene was specifically down-regulated or silenced by the double-stranded RNA-mediated RNA interference generated from the RNAi cassette. The C1 promoter-driven RNAi cassette for the C1 gene in transgenic plants was functional and heritable. Both C1 transcripts and C1 proteins were greatly down-regulated or silenced in the endosperm of transgenic J. curcas. The marker-free transgenic plants and curcin-deficient seeds developed in this study provided a solution for the toxicity of curcins in jatropha seeds and

  4. Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)?

    PubMed

    Tiimonen, Heidi; Aronen, Tuija; Laakso, Tapio; Saranpää, Pekka; Chiang, Vincent; Ylioja, Tiina; Roininen, Heikki; Häggman, Hely

    2005-11-01

    Transgenic silver birch (Betula pendula Roth) lines were produced in order to modify lignin biosynthesis. These lines carry COMT (caffeate/5-hydroxyferulate O-methyltransferase) gene from Populus tremuloides driven by constitutive promoter 35S CaMV (cauliflower mosaic virus) or UbB1 (ubiquitin promoter from sunflower). The decreased syringyl/guaiacyl (S/G) ratio was found in stem and leaf lignin of 35S CaMV-PtCOMT transgenic silver birch lines when compared to non-transformed control or UbB1-PtCOMT lines. In controlled feeding experiments the leaves of transgenic birch lines as well as controls were fed to insect herbivores common in boreal environment, i.e., larvae of Aethalura punctulata, Cleora cinctaria and Trichopteryx carpinata (Lepidoptera: Geometridae) as well as the adults of birch leaf-feeding beetles Agelastica alni (Coleoptera: Chrysomelidae) and Phyllobius spp. (Coleoptera: Curculionidae). The feeding preferences of these herbivores differed in some cases among the tested birch lines, but these differences could not be directly associated to lignin modification. They could as well be explained by other characteristics of leaves, either natural or caused by transgene site effects. Growth performance of lepidopteran larvae fed on transgenic or control leaves did not differ significantly.

  5. Transgenic bovine as bioreactors: Challenges and perspectives

    PubMed Central

    Monzani, Paulo S.; Adona, Paulo R.; Ohashi, Otávio M.; Meirelles, Flávio V.; Wheeler, Matthew B.

    2016-01-01

    ABSTRACT The use of recombinant proteins has increased in diverse commercial sectors. Various systems for protein production have been used for the optimization of production and functional protein expression. The mammary gland is considered to be a very interesting system for the production of recombinant proteins due to its high level of expression and its ability to perform post-translational modifications. Cows produce large quantities of milk over a long period of lactation, and therefore this species is an important candidate for recombinant protein expression in milk. However, transgenic cows are more difficult to generate due to the inefficiency of transgenic methodologies, the long periods for transgene detection, recombinant protein expression and the fact that only a single calf is obtained at the end of each pregnancy. An increase in efficiency for transgenic methodologies for cattle is a big challenge to overcome. Promising methodologies have been proposed that can help to overcome this obstacle, enabling the use of transgenic cattle as bioreactors for protein production in milk for industry. PMID:27166649

  6. How To Produce and Characterize Transgenic Plants.

    ERIC Educational Resources Information Center

    Savka, Michael A.; Wang, Shu-Yi; Wilson, Mark

    2002-01-01

    Explains the process of establishing transgenic plants which is a very important tool in plant biology and modern agriculture. Produces transgenic plants with the ability to synthesize opines. (Contains 17 references.) (YDS)

  7. Transgenic Animals.

    ERIC Educational Resources Information Center

    Jaenisch, Rudolf

    1988-01-01

    Describes three methods and their advantages and disadvantages for introducing genes into animals. Discusses the predictability and tissue-specificity of the injected genes. Outlines the applications of transgenic technology for studying gene expression, the early stages of mammalian development, mutations, and the molecular nature of chromosomes.…

  8. Transgenes for tea?

    PubMed

    Heritage, John

    2005-01-01

    So far, no compelling scientific evidence has been found to suggest that the consumption of transgenic or genetically modified (GM) plants by animals or humans is more likely to cause harm than is the consumption of their conventional counterparts. Despite this lack of scientific evidence, the economic prospects for GM plants are probably limited in the short term and there is public opposition to the technology. Now is a good time to address several issues concerning GM plants, including the potential for transgenes to migrate from GM plants to gut microbes or to animal or human tissues, the consequences of consuming GM crops, either as fresh plants or as silage, and the problems caused by current legislation on GM labelling and beyond.

  9. Recloned dogs derived from adipose stem cells of a transgenic cloned beagle.

    PubMed

    Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Hong, So Gun; Ra, Jeong Chan; Jo, Jung Youn; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2011-04-15

    A number of studies have postulated that efficiency in mammalian cloning is inversely correlated with donor cell differentiation status and may be increased by using undifferentiated cells as nuclear donors. Here, we attempted the recloning of dogs by nuclear transfer of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) from a transgenic cloned beagle to determine if cAd-MSCs can be a suitable donor cell type. In order to isolate cAd-MSCs, adipose tissues were collected from a transgenic cloned beagle produced by somatic cell nuclear transfer (SCNT) of canine fetal fibroblasts modified genetically with a red fluorescent protein (RFP) gene. The cAd-MSCs expressed the RFP gene and cell-surface marker characteristics of MSCs including CD29, CD44 and thy1.1. Furthermore, cAd-MSCs underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. In order to investigate the developmental potential of cAd-MSCs, we carried out SCNT. Fused-couplets (82/109, 75.2%) were chemically activated and transferred into the uterine tube of five naturally estrus-synchronized surrogates. One of them (20%) maintained pregnancy and subsequently gave birth to two healthy cloned pups. The present study demonstrated for the first time the successful production of cloned beagles by nuclear transfer of cAd-MSCs. Another important outcome of the present study is the successful recloning of RFP-expressing transgenic cloned beagle pups by nuclear transfer of cells derived from a transgenic cloned beagle. In conclusion, the present study demonstrates that adipose stem cells can be a good nuclear donor source for dog cloning. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests.

    PubMed

    Vajhala, Chakravarthy S K; Sadumpati, Vijaya Kumar; Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2013-01-01

    Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1-2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects.

  11. Development of Transgenic Cotton Lines Expressing Allium sativum Agglutinin (ASAL) for Enhanced Resistance against Major Sap-Sucking Pests

    PubMed Central

    Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2013-01-01

    Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1–2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects. PMID:24023750

  12. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2009-05-11

    Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levelsmore » of latency-associated peptide and transforming growth factor beta 1 (TGF{beta}1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography. The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGF{beta}1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice

  13. Recent advances in the development of new transgenic animal technology.

    PubMed

    Miao, Xiangyang

    2013-03-01

    Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.

  14. Extra-prostatic Transgene-associated Neoplastic Lesions in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) Mice

    PubMed Central

    Berman-Booty, Lisa D.; Thomas-Ahner, Jennifer M.; Bolon, Brad; Oglesbee, Michael J.; Clinton, Steven K.; Kulp, Samuel K.; Chen, Ching-Shih; La Perle, Krista

    2014-01-01

    Male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice are frequently used in prostate cancer research because their prostates consistently develop a series of pre-neoplastic and neoplastic lesions. Disease progression in TRAMP mouse prostates culminates in metastatic, poorly differentiated carcinomas with neuroendocrine features. The androgen dependence of the rat probasin promoter largely limits transgene expression to the prostatic epithelium. However, extra-prostatic transgene-positive lesions have been described in TRAMP mice, including renal tubulo-acinar carcinomas, neuroendocrine carcinomas of the urethra, and phyllodes-like tumors of the seminal vesicle. Here we describe the histologic and immunohistochemical features of two novel extra-prostatic lesions in TRAMP mice: primary anaplastic tumors of uncertain cell origin in the midbrain, and poorly differentiated adenocarcinomas of the submandibular salivary gland. These newly characterized tumors apparently result from transgene expression in extra-prostatic locations rather than representing metastatic prostate neoplasms because lesions were identified in both male and female mice as well as in male TRAMP mice without histologically apparent prostate tumors. In this paper we also calculate the incidences of the urethral carcinomas and renal tubulo-acinar carcinomas, further elucidate the biological behavior of the urethral carcinomas, and demonstrate the critical importance of complete necropsies even when evaluating presumably well characterized phenotypes in genetically engineered mice. PMID:24742627

  15. Extra-prostatic transgene-associated neoplastic lesions in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice.

    PubMed

    Berman-Booty, Lisa D; Thomas-Ahner, Jennifer M; Bolon, Brad; Oglesbee, Michael J; Clinton, Steven K; Kulp, Samuel K; Chen, Ching-Shih; La Perle, Krista M D

    2015-02-01

    Male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice are frequently used in prostate cancer research because their prostates consistently develop a series of preneoplastic and neoplastic lesions. Disease progression in TRAMP mouse prostates culminates in metastatic, poorly differentiated carcinomas with neuroendocrine features. The androgen dependence of the rat probasin promoter largely limits transgene expression to the prostatic epithelium. However, extra-prostatic transgene-positive lesions have been described in TRAMP mice, including renal tubuloacinar carcinomas, neuroendocrine carcinomas of the urethra, and phyllodes-like tumors of the seminal vesicle. Here, we describe the histologic and immunohistochemical features of 2 novel extra-prostatic lesions in TRAMP mice: primary anaplastic tumors of uncertain cell origin in the midbrain and poorly differentiated adenocarcinomas of the submandibular salivary gland. These newly characterized tumors apparently result from transgene expression in extra-prostatic locations rather than representing metastatic prostate neoplasms because lesions were identified in both male and female mice and in male TRAMP mice without histologically apparent prostate tumors. In this article, we also calculate the incidences of the urethral carcinomas and renal tubuloacinar carcinomas, further elucidate the biological behavior of the urethral carcinomas, and demonstrate the critical importance of complete necropsies even when evaluating presumably well characterized phenotypes in genetically engineered mice. © 2014 by The Author(s).

  16. [Retrospect and prospect of transgenic fish breeding in China].

    PubMed

    Wang, Yaping; He, Libo

    2016-07-25

    The first transgenic fish was generated in China about 30 years ago. Since then, considerable progress has been achieved for farmed fishes breeding with improvement of target traits of growth, disease resistance, stress tolerance, and nutrition qualities. Up to now, the technology of transgenic fish breeding is almost mature and the biosafety assessment is established. In this review, a successful example of the fast-growing transgenic common carp was presented and the foreground of transgenic fish breeding was also discussed and prospected.

  17. Determining the transgene containment level provided by chloroplast transformation.

    PubMed

    Ruf, Stephanie; Karcher, Daniel; Bock, Ralph

    2007-04-24

    Plastids (chloroplasts) are maternally inherited in most crops. Maternal inheritance excludes plastid genes and transgenes from pollen transmission. Therefore, plastid transformation is considered a superb tool for ensuring transgene containment and improving the biosafety of transgenic plants. Here, we have assessed the strictness of maternal inheritance and the extent to which plastid transformation technology confers an increase in transgene confinement. We describe an experimental system facilitating stringent selection for occasional paternal plastid transmission. In a large screen, we detected low-level paternal inheritance of transgenic plastids in tobacco. Whereas the frequency of transmission into the cotyledons of F(1) seedlings was approximately 1.58 x 10(-5) (on 100% cross-fertilization), transmission into the shoot apical meristem was significantly lower (2.86 x 10(-6)). Our data demonstrate that plastid transformation provides an effective tool to increase the biosafety of transgenic plants. However, in cases where pollen transmission must be prevented altogether, stacking with other containment methods will be necessary to eliminate the residual outcrossing risk.

  18. Successful recovery of transgenic cowpea (Vigna unguiculata) using the 6-phosphomannose isomerase gene as the selectable marker.

    PubMed

    Bakshi, Souvika; Saha, Bedabrata; Roy, Nand Kishor; Mishra, Sagarika; Panda, Sanjib Kumar; Sahoo, Lingaraj

    2012-06-01

    A new method for obtaining transgenic cowpea was developed using positive selection based on the Escherichia coli 6-phosphomannose isomerase gene as the selectable marker and mannose as the selective agent. Only transformed cells were capable of utilizing mannose as a carbon source. Cotyledonary node explants from 4-day-old in vitro-germinated seedlings of cultivar Pusa Komal were inoculated with Agrobacterium tumefaciens strain EHA105 carrying the vector pNOV2819. Regenerating transformed shoots were selected on medium supplemented with a combination of 20 g/l mannose and 5 g/l sucrose as carbon source. The transformed shoots were rooted on medium devoid of mannose. Transformation efficiency based on PCR analysis of individual putative transformed shoots was 3.6%. Southern blot analysis on five randomly chosen PCR-positive plants confirmed the integration of the pmi transgene. Qualitative reverse transcription (qRT-PCR) analysis demonstrated the expression of pmi in T₀ transgenic plants. Chlorophenol red (CPR) assays confirmed the activity of PMI in transgenic plants, and the gene was transmitted to progeny in a Mendelian fashion. The transformation method presented here for cowpea using mannose selection is efficient and reproducible, and could be used to introduce a desirable gene(s) into cowpea for biotic and abiotic stress tolerance.

  19. Potential of MuS1 Transgenic Tobacco for Phytoremediation of the Urban Soils Contaminated with Cadmium

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Kim, Y. N.; Kim, S. H.

    2010-05-01

    Urban soils are prone to contamination by trace elements such as Cd, Cu, Pb and Zn. Phytoremediation is one of the attractive remediation methods for soils contaminated with trace elements due to its non-destructive and environmentally-friendly characteristic. Scientists have tried to find hyper-accumulator plants in nature or to develop transgenic plant through genetic engineering. This study was carried out to identify a potential of MuS1 transgenic tobacco for phytoremediation of the urban soils contaminated with Cd. MuS1 is known as a multiple stress related gene with several lines. The previous study using RT-PCR showed that the expression of MuS1 gene in tobacco plant induced tolerance to Cd stress. For this study, MuS1 transgenic tobacco and wild-type tobacco (control) were cultivated in a hydroponic system treated with Cd (0, 50, 100 and 200μM Cd) for 3 weeks. At harvest, both tobacco and nutrient solution were collected and were analyzed for Cd. Effect of Cd treatment on morphological change of the tobacco leaves was also observed by variable-pressure scanning electron microscopy (VP-SEM). The tolerance of MuS1 transgenic tobacco to Cd stress was better than that of wild-type tobacco at all Cd levels. Especially, wild-type tobacco showed chlorosis and withering with 200μM Cd treatment, whereas MuS1 transgenic tobacco gradually recovered from Cd damage. Wild-type tobacco accumulated more Cd (4.65mg per plant) than MuS1 transgenic tobacco (2.37mg per plant) with 200μM Cd treatment. Cd translocation rate from root to leaves was 81.8 % for wild-type tobacco compared to 37.1 % for MuS1 transgenic tobacco. Result of VP-SEM showed that the number of trichome in the leaves for wild-type tobacco increased in comparison with that for untreated samples after 3 weeks, while that for MuS1 transgenic tobacco was not changed by Cd treatment. Results showed that the mechanism of the recovery of the MuS1 tobacco plant was not by high level of Cd uptake and accumulation

  20. Advancing environmental risk assessment for transgenic biofeedstock crops

    PubMed Central

    Wolt, Jeffrey D

    2009-01-01

    Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release. For currently envisioned biofeedstock crops, particular emphasis in risk assessment will be given to characterization of altered metabolic profiles and their implications relative to non-target environmental effects and food safety; weediness and invasiveness when plants are modified for abiotic stress tolerance or are domesticated; and aggregate risk when plants are platforms for multi-product production. Robust risk assessments for transgenic biofeedstock crops are case-specific, initiated through problem formulation, and use tiered approaches for risk characterization. PMID:19883509

  1. Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington's disease.

    PubMed

    Tang, Bin; Seredenina, Tamara; Coppola, Giovanni; Kuhn, Alexandre; Geschwind, Daniel H; Luthi-Carter, Ruth; Thomas, Elizabeth A

    2011-06-01

    R6/2 transgenic mice with expanded CAG repeats (>300) have a surprisingly prolonged disease progression and longer lifespan than prototypical parent R6/2 mice (carrying 150 CAGs); however, the mechanism of this phenotype amelioration is unknown. We compared gene expression profiles in the striatum of R6/2 transgenic mice carrying ~300 CAG repeats (R6/2(Q300) transgenic mice) to those carrying ~150 CAG repeats (R6/2(Q150) transgenic mice) and littermate wildtype controls in order to identify genes that may play determinant roles in the time course of phenotypic expression in these mice. Of the top genes showing concordant expression changes in the striatum of both R6/2 lines, 85% were decreased in expression, while discordant expression changes were observed mostly for genes upregulated in R6/2(Q300) transgenic mice. Upregulated genes in the R6/2(Q300) mice were associated with the ubiquitin ligase complex, cell adhesion, protein folding, and establishment of protein localization. We qPCR-validated increases in expression of genes related to the latter category, including Lrsam1, Erp29, Nasp, Tap1, Rab9b, and Pfdn5 in R6/2(Q300) mice, changes that were not observed in R6/2 mice with shorter CAG repeats, even in late stages (i.e., 12 weeks of age). We further tested Lrsam1 and Erp29, the two genes showing the greatest upregulation in R6/2(Q300) transgenic mice, for potential neuroprotective effects in primary striatal cultures overexpressing a mutated human huntingtin (htt) fragment. Overexpression of Lrsam1 prevented the loss of NeuN-positive cell bodies in htt171-82Q cultures, concomitant with a reduction of nuclear htt aggregates. Erp29 showed no significant effects in this model. This is consistent with the distinct pattern of htt inclusion localization observed in R6/2(Q300) transgenic mice, in which smaller cytoplasmic inclusions represent the major form of insoluble htt in the cell, as opposed to large nuclear inclusions observed in R6/2(Q150) transgenic mice

  2. Optimization of Acidothermus Celluloyticus Endoglucanase (E1) Production in Transgenic Tobacco Plants by Transcriptional, Post-transcription and Post-Translational Modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ziyu; Hooker, Brian S.; Quesenberry, Ryan D.

    2005-10-01

    Biochemical characteristics of Acidothermus cellulolyticus endoglucanase (E1) and its physiological effects in transgenic tobacco (Nicotiana tabacum) has been studied previously. In an attempt to obtain a high level of production of intact E1 in transgenic plants, the E1 gene was expressed under the control of strong Mac promoter (a hybrid promoter of manopine synthase promoter and cauliflower mosaic virus 35S promoter enhancer region) or tomato Rubisco small subunit (RbcS-3C) promoter with different 5’ untranslated leader (UTL) sequence and targeted to different subcellular comartmentations with various transit peptides. The expression of E1 protein in transgenic tobacco plants was determined via E1more » activity, protein immunobloting, and RNA gel-blotting analyses. Effects of different transit peptides on E1 protein production and its stability were examined in transgenic tobacco plants carrying one of six transgene expression vectors with the same (Mac) promoter and transcription terminator (Tmas). Transgenic tobacco plants with apoplast transit peptide (Mm-apo) had the highest average E1 activity and protein accumulation , while E1 protein was more stable in transgenic plants with no transit peptide (Mm) than others. The E1 expression under tomato RbcS-3C promoter was higher than that under Mac promoter based on the average E1 activity, E1 protein accumulation, and RNA gel-blotting. The E1 expression was increased more than two fold when the 5’-UTL of alfalfa mosaic virus RNA4 gene replaced the UTL of RbcS-3C promoter, while the UTL of alfalfa mosaic virus RNA4 gene was less effective than the UTL of Mac promoter. The optimal combination of promoter, 5’-UTL, and subcellular compartmentation (transit peptide) for E1 protein production in transgenic tobacco plants are discussed.« less

  3. GC-rich coding sequences reduce transposon-like, small RNA-mediated transgene silencing.

    PubMed

    Sidorenko, Lyudmila V; Lee, Tzuu-Fen; Woosley, Aaron; Moskal, William A; Bevan, Scott A; Merlo, P Ann Owens; Walsh, Terence A; Wang, Xiujuan; Weaver, Staci; Glancy, Todd P; Wang, PoHao; Yang, Xiaozeng; Sriram, Shreedharan; Meyers, Blake C

    2017-11-01

    The molecular basis of transgene susceptibility to silencing is poorly characterized in plants; thus, we evaluated several transgene design parameters as means to reduce heritable transgene silencing. Analyses of Arabidopsis plants with transgenes encoding a microalgal polyunsaturated fatty acid (PUFA) synthase revealed that small RNA (sRNA)-mediated silencing, combined with the use of repetitive regulatory elements, led to aggressive transposon-like silencing of canola-biased PUFA synthase transgenes. Diversifying regulatory sequences and using native microalgal coding sequences (CDSs) with higher GC content improved transgene expression and resulted in a remarkable trans-generational stability via reduced accumulation of sRNAs and DNA methylation. Further experiments in maize with transgenes individually expressing three crystal (Cry) proteins from Bacillus thuringiensis (Bt) tested the impact of CDS recoding using different codon bias tables. Transgenes with higher GC content exhibited increased transcript and protein accumulation. These results demonstrate that the sequence composition of transgene CDSs can directly impact silencing, providing design strategies for increasing transgene expression levels and reducing risks of heritable loss of transgene expression.

  4. Preliminarily study on the maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on gastropods

    NASA Astrophysics Data System (ADS)

    Zhu, Tingbing; Zhang, Lihong; Zhang, Tanglin; Wang, Yaping; Hu, Wei; Olsen, Rolf Eric; Zhu, Zuoyan

    2017-10-01

    The present study preliminarily examined the differences in maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on four gastropods species (Bellamya aeruginosa, Radix auricularia, Parafossarulus sinensis and Alocinma longicornis) under laboratory conditions. In the maximum handling size trial, five fish from each age group (1-year-old and 2-year-old) and each genotype (transgenic and non-transgenic) of common carp were individually allowed to feed on B. aeruginosa with wide shell height range. The results showed that maximum handling size increased linearly with fish length, and there was no significant difference in maximum handling size between the two genotypes. In the size selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on three size groups of B. aeruginosa. The results show that the two genotypes of C. carpio favored the small-sized group over the large-sized group. In the species selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on thin-shelled B. aeruginosa and thick-shelled R. auricularia, and five pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on two gastropods species (P. sinensis and A. longicornis) with similar size and shell strength. The results showed that both genotypes preferred thin-shelled Radix auricularia rather than thick-shelled B. aeruginosa, but there were no significant difference in selectivity between the two genotypes when fed on P. sinensis and A. longicornis. The present study indicates that transgenic and non-transgenic C. carpio show similar selectivity of predation on the size- and species-limited gastropods. While this information may be useful for assessing the environmental risk of transgenic carp, it does not necessarily demonstrate that transgenic common carp might

  5. Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit.

    PubMed

    Rühmann, Susanne; Treutter, Dieter; Fritsche, Steffi; Briviba, Karlis; Szankowski, Iris

    2006-06-28

    A stilbene synthase gene along with the selectable marker gene bar for herbicide resistance was transferred via Agrobacterium tumefaciens mediated transformation into apple (Malus domesticaBorkh.) cvs. 'Elstar' and 'Holsteiner Cox'. The stilbene synthase catalyzes the conversion of 1 molecule of p-coumaroyl-CoA and 3 molecules of malonyl-CoA into 3,4',5-trihydroxystilbene, commonly known as resveratrol. This phytoalexin has implications in both phytopathology and human health. Greenhouse-grown transgenic and nontransformed control plants were grafted onto dwarfing rootstock M27. Flowering and fruiting occurred within the following years, offering the opportunity to analyze transgenic apple fruit and fertility of transgenic plants as well as inheritance of the transgenes into the seedling progeny. Molecular analysis revealed that the stilbene synthase is expressed in transgenic plants and in the skin and flesh of transgenic apple fruit. After formation, resveratrol is modified by the addition of a hexose sugar. The resulting component was characterized as piceid. With the aim of characterizing the influence of the novel biosynthetic pathway on the accumulation of other phenolic compounds naturally present in apple fruit, the amounts of flavanols, flavonols, phloretin derivatives and hydroxycinnamic acids in wild type and transgenic fruit were determined by HPLC. In all investigated transformed lines that accumulated piceid, no negative correlation between levels of piceid and the above-mentioned compounds was observed, except for the flavonol contents, which slightly decreased. Inheritance of the transgenes was confirmed in the seedling progeny, which were obtained after pollination of transgenic plants with nontransgenic pollen and vice versa after pollination of nontransgenic plants with pollen obtained from transgenic plants. The fertility of stilbene synthase transgenic plants was demonstrated. To the authors' knowledge this is the first time that data are

  6. Comparative proteomic analysis of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low temperature.

    PubMed

    Gu, Xianbin; Gao, Zhihong; Zhuang, Weibing; Qiao, Yushan; Wang, Xiuyun; Mi, Lin; Zhang, Zhen; Lin, Zhilin

    2013-05-01

    Low-temperature stress is one of the major abiotic stresses in plants worldwide, and the dehydration responsive element binding protein (DREB) transcription factor induces expression of genes involved in environmental stress tolerance in plants. A proteomic approach based on two-dimensional gel electrophoresis (2-DE) and subsequent mass spectrometric identification was used to study the changes in the leaf proteome profiles of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low-temperature conditions. By comparing the proteomic profiles, we located 21 protein spots that were reproducibly up- or down-regulated by more than twofold between transgenic and non-transgenic strawberries. Eight identified proteins function in energy and metabolism, four in biosynthetic processes, four were stress and defense related, three spots were identified as cold-stress related expressed sequence tags (ESTs), and two were unknown proteins. The change patterns of low-temperature tolerance proteins, including photosynthetic proteins (RuBisCO large subunit and RuBisCO activase), cytoplasmic Cu/Zn-superoxide dismutase (Cu/Zn-SOD), late embryogenesis abundant protein 14-A (Lea14-A), eukaryotic translation initiation factor 5A (eIF5A), and cold-stress related ESTs, were differentially regulated between non-transgenic and rd29A:RdreB1BI transgenic strawberries. They are likely important gene products in the regulatory network of the RdreB1BI gene. Consequently, this study provides the first characterization of the transgenic strawberry proteome and the predicted target proteins of the RdreB1BI gene by using proteomic approaches. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. [Transgenerational transmission of bovine satellite DNA in transgenic mice].

    PubMed

    Slominskaia, N A; Suchkova, I O; Klinskaia, T A; Zabezhinskaia, M A; Patkin, E L

    2006-01-01

    Genetical, cytogenetical and molecular analysis was made for 5 generations of mice transgenic for bovine satellite DNA (Sat). In all cases transgenic mice were generated by crosses of transgenic males and females with normal (CBA x C57B1) mice. No abnormalities in the founder development were noticed. A normal (near 50 %) ratio of transgenic and nontransgenic offsprings was observed in blastocysts. However, profound differences occurred in the rate of transgene bearing offsprings, depending on the sex of grandparents rather than of parents. The grandfather Sat transmission resulted in the appearance of 0-52.4 % transgenic grandchildren, whereas the grandmother transmission ended in the theoretically expected rate. This means that stabilization of transsatellite took place upon the female germ line transmission (a positive grandmother effect). It is essential that in hemizygous transsatellite mice Sat integration led to the occurrence of mammary tumors, inflammation of uterine horns, and infringement of mother care of transgenic females. Simultaneous FISH and G-banding showed Sat to be localized in the internal region of chromosome 12 near Pax 9 and Brms 11 genes. Commonly, these genes are implicated in tumorigenesis as their expression decreases. Thus, a kind of silencing effect of these genes' expression may be supposed.

  8. Transvection Arising from Transgene Interactions in Zebrafish.

    PubMed

    Keefe, Matthew D; Bonkowsky, Joshua L

    2017-02-01

    There has been a rapid expansion in use of transgenic technologies in zebrafish. We report a novel example of transinteractions of genetic elements, or transvection. This interaction led to a novel expression pattern and illustrates a precautionary example regarding use of transgenes in zebrafish.

  9. Effects of TGF-β1 and VEGF-A transgenes on the osteogenic potential of bone marrow stromal cells in vitro and in vivo

    PubMed Central

    Sumner, Dale R; Virdi, Amarjit S

    2012-01-01

    An exogenous supply of growth factors and bioreplaceable scaffolds may help bone regeneration. The aim of this study was to examine the effects of TGF-β1 and VEGF-A transgenes on the osteogenic potential of bone marrow stromal cells. Rat bone marrow stromal cells were transfected with plasmids encoding mouse TGF-β1 and/or VEGF-A complementary DNAs and cultured for up to 28 days. Furthermore, collagen scaffolds carrying combinations of the plasmids-transfected cells were implanted subcutaneously in rats. The transgenes increased alkaline phosphatase activity, enhanced mineralized nodule formation, and elevated osteogenic gene expressions in vitro. In vivo, messenger RNA expression of osteogenic genes such as BMPs and Runx2 elevated higher by the transgenes. The data indicate that exogenous TGF-β1 and VEGF-A acted synergistically and could induce osteoblastic differentiation of bone marrow stromal cells in both cell culture and an animal model. The results may provide valuable information to optimize protocols for transgene-and-cell-based tissue engineering. PMID:22962632

  10. Transgene Expression and Repression in Transgenic Rats Bearing the Phosphoenolpyruvate Carboxykinase-Simian Virus 40 T Antigen or the Phosphoenolpyruvate Carboxykinase-Transforming Growth Factor-α Constructs

    PubMed Central

    Haas, Michael J.; Dragan, Yvonne P.; Hikita, Hiroshi; Shimel, Randee; Takimoto, Koichi; Heath, Susan; Vaughan, Jennifer; Pitot, Henry C.

    1999-01-01

    Transgenic Sprague-Dawley rats expressing either human transforming growth factor-α (TGFα) or simian virus 40 large and small T antigen (TAg), each under the control of the phosphoenolpyruvate carboxykinase (PEPCK) promoter, were developed as an approach to the study of the promotion of hepatocarcinogenesis in the presence of a transgene regulatable by diet and/or hormones. Five lines of PEPCK-TGFα transgenic rats were established, each genetic line containing from one to several copies of the transgene per haploid genome. Two PEPCK-TAg transgenic founder rats were obtained, each with multiple copies of the transgene. Expression of the transgene was undetectable in the TGFα transgenic rats and could not be induced when the animals were placed on a high-protein, low-carbohydrate diet. The transgene was found to be highly methylated in all of these lines. No pathological alterations in the liver and intestine were observed at any time (up to 2 years) during the lives of these rats. One line of transgenic rats expressing the PEPCK-TAg transgene developed pancreatic islet cell hyperplasias and carcinomas, with few normal islets evident in the pancreas. This transgene is integrated as a hypomethylated tandem array of 10 to 12 copies on chromosome 8q11. Expression of large T antigen is highest in pancreatic neoplasms, but is also detectable in the normal brain, kidney, and liver. Mortality is most rapid in males, starting at 5 months of age and reaching 100% by 8 months. Morphologically, islet cell differentiation in the tumors ranges from poor to well differentiated, with regions of necrosis and fibrosis. Spontaneous metastasis of TAg-positive tumor cells to regional lymph nodes was observed. These studies indicate the importance of DNA methylation in the repression of specific transgenes in the rat. However, the expression of the PEPCK-TAg induces neoplastic transformation in islet cells, probably late in neuroendocrine cell differentiation. T antigen expression

  11. Determining the transgene containment level provided by chloroplast transformation

    PubMed Central

    Ruf, Stephanie; Karcher, Daniel; Bock, Ralph

    2007-01-01

    Plastids (chloroplasts) are maternally inherited in most crops. Maternal inheritance excludes plastid genes and transgenes from pollen transmission. Therefore, plastid transformation is considered a superb tool for ensuring transgene containment and improving the biosafety of transgenic plants. Here, we have assessed the strictness of maternal inheritance and the extent to which plastid transformation technology confers an increase in transgene confinement. We describe an experimental system facilitating stringent selection for occasional paternal plastid transmission. In a large screen, we detected low-level paternal inheritance of transgenic plastids in tobacco. Whereas the frequency of transmission into the cotyledons of F1 seedlings was ≈1.58 × 10−5 (on 100% cross-fertilization), transmission into the shoot apical meristem was significantly lower (2.86 × 10−6). Our data demonstrate that plastid transformation provides an effective tool to increase the biosafety of transgenic plants. However, in cases where pollen transmission must be prevented altogether, stacking with other containment methods will be necessary to eliminate the residual outcrossing risk. PMID:17420459

  12. Transgenic cloned sheep overexpressing ovine toll-like receptor 4.

    PubMed

    Deng, Shoulong; Li, Guiguan; Zhang, Jinlong; Zhang, Xiaosheng; Cui, Maosheng; Guo, Yong; Liu, Guoshi; Li, Guangpeng; Feng, Jianzhong; Lian, Zhengxing

    2013-07-01

    An ovine fetal fibroblast cell line highly expressing TLR4 was established by inserting TLR4 into a reconstructive p3S-LoxP plasmid. Transgenic sheep overexpressing TLR4 were produced by transferring TLR4-transfected fetal fibroblasts into metaphase (M)II-stage enucleated oocytes (using SCNT). Because reconstructed embryos derived from MII-stage enucleated oocytes matured in vivo using a delayed-activated method had a higher pregnancy rate (18.52%) than that from MII-stage enucleated oocytes matured in vitro, the former procedure was used. Nine TLR4-transgenic live births were confirmed using polymerase chain reaction and Southern blot analysis. Increased expression of TLR4 at mRNA and protein levels in ear tissues of transgenic lambs were verified using reverse transcription polymerase chain reaction and immunohistochemistry, respectively. More toll-like receptor 4 protein was expressed by peripheral blood monocytes and/or macrophages collected from 3-month-old TLR4-transgenic than nontransgenic lambs at 0, 1, and 4 hours after lipopolysaccharide stimulation. Furthermore, interferon-γ and tumor necrosis factor α secreted by monocytes and/or macrophages of TLR4-transgenic lambs were significantly higher at 1 hour. Therefore, lipopolysaccharide-induced inflammatory responses from monocytes and/or macrophages occurred sooner in TLR4-transgenic lambs, consistent with an enhanced host immune response. In conclusion, transgenic sheep overexpressing TLR4 are a primary model to investigate the role of transgenic animals in disease resistance and have potential for breeding sheep with disease resistance. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Characterization of competitive interactions in the coexistence of Bt-transgenic and conventional rice.

    PubMed

    Liu, Yongbo; Ge, Feng; Liang, Yuyong; Wu, Gang; Li, Junsheng

    2015-04-26

    Transgene flow through pollen and seeds leads to transgenic volunteers and feral populations in the nature, and consumer choice and economic incentives determine whether transgenic crops will be cultivated in the field. Transgenic and non-transgenic plants are likely to coexist in the field and natural habitats, but their competitive interactions are not well understood. Field experiments were conducted in an agricultural ecosystem with insecticide spraying and a natural ecosystem, using Bt-transgenic rice (Oryza sativa) and its non-transgenic counterpart in pure and mixed stands with a replacement series. Insect damage and competition significantly decreased plant growth and reproduction under the coexistence of transgenic and conventional rice. Insect-resistant transgenic rice was not competitively superior to its counterpart under different densities in both agricultural and natural ecosystems, irrespective of insect infection. Fitness cost due to Bt-transgene expression occurred only in an agroecosystem, where the population yield decreased with increasing percentage of transgenic rice. The population yield fluctuated in a natural ecosystem, with slight differences among pure and mixed stands under plant competition or insect pressure. The presence of Chilo suppressalis infection increased the number of non-target insects. Plant growth and reproduction patterns, relative competition ability and population yield indicate that Bt-transgenic and non-transgenic rice can coexist in agroecosystems, whereas in more natural habitats, transgenic rice is likely to outcompete non-transgenic rice.

  14. Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone.

    PubMed

    Martínez, R; Estrada, M P; Berlanga, J; Guillén, I; Hernández, O; Cabrera, E; Pimentel, R; Morales, R; Herrera, F; Morales, A; Piña, J C; Abad, Z; Sánchez, V; Melamed, P; Lleonart, R; de la Fuente, J

    1996-03-01

    The generation of transgenic fish with the transfer of growth hormone (GH) genes has opened new possibilities for the manipulation of growth in economically important fish species. The tilapia growth hormone (tiGH) cDNA was linked to the human cytomegalovirus (CMV) enhancer-promoter and used to generate transgenic tilapia by microinjection into one-cell embryos. Five transgenic tilapia were obtained from 40 injected embryos. A transgenic animal containing one copy of the transgene per cell was selected to establish a transgenic line. The transgene was stably transmitted to F1 and F2 generations in a Mendelian fashion. Ectopic, low-level expression of tiGH was detected in gonad and muscle cells of F1 transgenic tilapia by immunohystochemical analysis of tissue sections. Nine-month-old transgenic F1 progeny were 82% larger than nontransgenic fish at p = .001. These results showed that low-level ectopic expression of tiGH resulted in a growth acceleration in transgenic tilapia. Tilapia GH gene transfer is an alternative for growth acceleration in tilapia.

  15. Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct.

    PubMed

    Lin, Ching-Yi; Ku, Hsin-Mei; Chiang, Yi-Hua; Ho, Hsiu-Yin; Yu, Tsong-Ann; Jan, Fuh-Jyh

    2012-10-01

    Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation. Single or multiple transgene copies randomly inserted into various locations in the genome were confirmed by Southern blot analysis. Transgenic watermelon R(0) plants were individually challenged with CMV, CGMMV or WMV, or with a mixture of these three viruses for resistance evaluation. Two lines were identified to exhibit resistance to CMV, CGMMV, WMV individually, and a mixed inoculation of the three viruses. The R(1) progeny of the two resistant R(0) lines showed resistance to CMV and WMV, but not to CGMMV. Low level accumulation of transgene transcripts in resistant plants and small interfering (si) RNAs specific to CMV and WMV were readily detected in the resistant R(1) plants by northern blot analysis, indicating that the resistance was established via RNA-mediated post-transcriptional gene silencing (PTGS). Loss of the CGMMV CP-transgene fragment in R1 progeny might be the reason for the failure to resistant CGMMV infection, as shown by the absence of a hybridization signal and no detectable siRNA specific to CGMMV in Southern and northern blot analyses. In summary, this study demonstrated that fusion of different viral CP gene fragments in transgenic watermelon contributed to multiple virus resistance via PTGS. The construct and resistant watermelon lines developed in this study could be used in a watermelon breeding program for resistance to multiple viruses.

  16. Studies on the expression of an H-2K/human growth hormone fusion gene in giant transgenic mice.

    PubMed Central

    Morello, D; Moore, G; Salmon, A M; Yaniv, M; Babinet, C

    1986-01-01

    Transgenic mice carrying the H-2K/human growth hormone (hGH) fusion gene were produced by microinjecting into the pronucleus of fertilized eggs DNA molecules containing 2 kb of the 5' flanking sequences (including promoter) of the class I H-2Kb gene joined to the coding sequences of the hGH gene. Thirteen transgenic mice were obtained which all contained detectable levels of hGH hormone in their blood. Nine grew larger than their control litter-mates. Endogenous H-2Kb and exogenous hGH mRNA levels were analysed by S1 nuclease digestion experiments. hGH transcripts were found in all the tissues examined and the pattern of expression paralleled that of endogenous H-2K gene expression, being high in liver and lymphoid organs and low in muscle and brain. Thus 2 kb of the 5' promoter/regulatory region of the H-2K gene are sufficient to ensure regulated expression of hGH in transgenic mice. This promoter may therefore be of use to target the expression of different exogenous genes in most tissues of transgenic mice and to study the biological role of the corresponding proteins in different cellular environments. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3019667

  17. Production cost analysis and use of pesticides in the transgenic and conventional corn crop [Zea mays (L.)] in the valley of San Juan, Tolima.

    PubMed

    Méndez, Kelly Avila; Chaparro Giraldo, Alejandro; Moreno, Giovanni Reyes; Castro, Carlos Silva

    2011-01-01

    A survey of 10 producers of conventional corn (Hybrids PAC 105 and Maximus) and 10 producers of transgenic corn (Pioneer Hybrid 30T17) was carried out in the municipality of Valle de San Juan in the territorial division of Tolima (Colombia), in order to analyze the differences in production costs and environmental impacts of these two agricultural technologies.  The environmental impacts were determined by calculating the field "Environmental Index Quotient" (EIQ). In the production cost analysis, a difference of 15% was found in benefit of the transgenic technology. The structure of costs of the transgenic technology was benefited by the reduced use of pesticides (insecticides and herbicides). In regards to production, the transgenic technology showed a greater yield, 5.22 ton/ha in comparison to 4.25 ton/ha the conventional technology, thus a 22% difference in yield. Finally, the EIQ calculation showed quantitative differences of 196.12 for the conventional technology (EIQ insecticides 165.14 + EIQ herbicides 30.98), while the transgenic technology was of 4.24 (EIQ insecticides 0 + EIQ herbicides 4.24). These results show a minor environmental impact when using the transgenic technology in comparison to the conventional technology, in regards to the use of insecticides and herbicides in a temporal, spatial and genotypical context analysis. :

  18. Epithalon inhibits tumor growth and expression of HER-2/neu oncogene in breast tumors in transgenic mice characterized by accelerated aging.

    PubMed

    Anisimov, V N; Khavinsov, V Kh; Alimova, I N; Provintsiali, M; Manchini, R; Francheski, K

    2002-02-01

    Female transgenic FVB mice carrying breast cancer gene HER-2/neu were monthly injected with Vilon or Epithalon (1 microgram subcutaneously for 5 consecutive days) starting from the 2nd month of life. Epithalon markedly inhibited neoplasm development: the maximum size of breast adenocarcinomas was 33% lower than in the control (p < 0.05). The intensity of HER-2/neu mRNA expression in breast tumors of Epithalon-treated mice was 3.7 times lower than in control animals. These results indicate that Epithalon inhibits breast tumor development in transgenic mice, which is probably related to suppression of HER-2/neu expression.

  19. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat.

    PubMed

    Rong, Wei; Qi, Lin; Wang, Jingfen; Du, Lipu; Xu, Huijun; Wang, Aiyun; Zhang, Zengyan

    2013-08-01

    Take-all, caused by soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), is a devastating root disease of wheat (Triticum aestivum) worldwide. Breeding resistant wheat cultivars is the most promising and reliable approach to protect wheat from take-all. Currently, no resistant wheat germplasm is available to breed cultivars using traditional methods. In this study, gene transformation was carried out using Snakin-1 (SN1) gene isolated from potato (Solanum tuberosum) because the peptide shows broad-spectrum antimicrobial activity in vitro. Purified SN1 peptide also inhibits in vitro the growth of Ggt mycelia. By bombardment-mediated method, the gene SN1 was transformed into Chinese wheat cultivar Yangmai 18 to generate SN1 transgenic wheat lines, which were used to assess the effectiveness of the SN1 peptide in protecting wheat from Ggt. Genomic PCR and Southern blot analyses indicated that the alien gene SN1 was integrated into the genomes of five transgenic wheat lines and heritable from T₀ to T₄ progeny. Reverse transcription-PCR and Western blot analyses showed that the introduced SN1 gene was transcribed and highly expressed in the five transgenic wheat lines. Following challenging with Ggt, disease test results showed that compared to segregants lacking the transgene and untransformed wheat plants, these five transgenic wheat lines expressing SN1 displayed significantly enhanced resistance to take-all. These results suggest that SN1 may be a potentially transgenic tool for improving the take-all resistance of wheat.

  20. Maize transgenes containing zein promoters are regulated by opaque2

    USDA-ARS?s Scientific Manuscript database

    Transgenes have great potential in crop improvement, but relatively little is known about the epistatic interaction of transgenes with the native genes in the genome. Understanding these interactions is critical for predicting the response of transgenes to different genetic backgrounds and environm...

  1. Characterization of a Maize Wip1 Promoter in Transgenic Plants

    PubMed Central

    Zhang, Shengxue; Lian, Yun; Liu, Yan; Wang, Xiaoqing; Liu, Yunjun; Wang, Guoying

    2013-01-01

    The Maize Wip1 gene encodes a wound-induced Bowman-Birk inhibitor (BBI) protein which is a type of serine protease inhibitor, and its expression is induced by wounding or infection, conferring resistance against pathogens and pests. In this study, the maize Wip1 promoter was isolated and its function was analyzed. Different truncated Wip1 promoters were fused upstream of the GUS reporter gene and transformed into Arabidopsis, tobacco and rice plants. We found that (1) several truncated maize Wip1 promoters led to strong GUS activities in both transgenic Arabidopsis and tobacco leaves, whereas low GUS activity was detected in transgenic rice leaves; (2) the Wip1 promoter was not wound-induced in transgenic tobacco leaves, but was induced by wounding in transgenic rice leaves; (3) the truncated Wip1 promoter had different activity in different organs of transgenic tobacco plants; (4) the transgenic plant leaves containing different truncated Wip1 promoters had low GUS transcripts, even though high GUS protein level and GUS activities were observed; (5) there was one transcription start site of Wip1 gene in maize and two transcription start sites of GUS in Wip1::GUS transgenic lines; (6) the adjacent 35S promoter which is present in the transformation vectors enhanced the activity of the truncated Wip1 promoters in transgenic tobacco leaves, but did not influence the disability of truncated Wip1231 promoter to respond to wounding signals. We speculate that an ACAAAA hexamer, several CAA trimers and several elements similar to ACAATTAC octamer in the 5′-untranslated region might contribute to the strong GUS activity in Wip1231 transgenic lines, meanwhile, compared to the 5′-untranslated region from Wip1231 transgenic lines, the additional upstream open reading frames (uORFs) in the 5′-untranslated region from Wip1737 transgenic lines might contribute to the lower level of GUS transcript and GUS activity. PMID:24322445

  2. Comparative analysis of nutritional compositions of transgenic RNAi-mediated virus-resistant bean (event EMB-PV051-1) with its non-transgenic counterpart.

    PubMed

    Carvalho, José L V; de Oliveira Santos, Juliana; Conte, Carmine; Pacheco, Sidney; Nogueira, Elsa O P L; Souza, Thiago L P O; Faria, Josias C; Aragão, Francisco J L

    2015-10-01

    Golden mosaic is among the most economically important diseases that severely reduce bean production in Latin America. In 2011, a transgenic bean event named Embrapa 5.1 (EMB-PV051-1), resistant to bean golden mosaic virus, was approved for commercial release in Brazil. The aim of this study was to measure and evaluate the nutritional components of the beans, as well as the anti-nutrient levels in the primary transgenic line and its derived near-isogenic lines after crosses and backcrosses with two commercial cultivars. Nutritional assessment of transgenic crops used for human consumption is an important aspect of safety evaluations. Results demonstrated that the transgenic bean event, cultivated under field conditions, was substantially equivalent to that of the non-transgenic bean plants. In addition, the amounts of the nutritional components are within the range of values observed for several bean commercial varieties grown across a range of environments and seasons.

  3. Expression of multiple proteins in transgenic plants

    DOEpatents

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  4. Single molecule Raman spectroscopic assay to detect transgene from GM plants.

    PubMed

    Kadam, Ulhas S; Chavhan, Rahul L; Schulz, Burkhard; Irudayaraj, Joseph

    2017-09-01

    Substantial concerns have been raised for the safety of transgenics on human health and environment. Many organizations, consumer groups, and environmental agencies advocate for stringent regulations to avoid transgene products' contamination in food cycle or in nature. Here we demonstrate a novel approach using surface enhanced Raman spectroscopy (SERS) to detect and quantify transgene from GM plants. We show a highly sensitive and accurate quantification of transgene DNA from multiple transgenic lines of Arabidopsis. The assay allows us to detect and quantify the transgenes as low as 0.10 pg without need for PCR-amplification. This technology is relatively cheap, quick, simple, and suitable for detection at low target concentration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Acute acetaminophen toxicity in transgenic mice with elevated hepatic glutathione.

    PubMed

    Rzucidlo, S J; Bounous, D I; Jones, D P; Brackett, B G

    2000-06-01

    Previous studies demonstrated that elevation of hepatic glutathione (GSH) concentrations protect against acetaminophen (APAP) hepatotoxicity in mice. Employing transgenic mice overexpressing glutathione synthetase, this study was conducted to determine if sustained elevation of hepatic GSH concentrations could ameliorate or prevent APAP toxicity. International Cancer Research transgenic mouse males and matched (ie same strain, sex, and age) control nontransgenic mice were pretreated ip with GSH synthetase substrate gamma-glutamylcysteinyl ethyl ester (gamma-GCE) or with saline. After a 16-h fast, mice received a single dose of 500 mg APAP/kg bw in saline ip and were sacrificed 4 h later. Other mice similarly pretreated were killed without APAP challenge. The elevated GSH concentrations in transgenic mice livers did not lessen APAP hepatotoxicity. Instead higher degrees of hepatotoxicity and nephrotoxicity were observed in transgenic mice than in controls as indicated by higher serum alanine aminotransferase activity and more severe histopathological lesions in transgenic mice livers and kidneys. Pretreatment with gamma-GCE did not affect either initial or post-APAP treatment tissue GSH concentrations or observed degrees of toxicity. Detection of a higher level of serum APAP in transgenic mice and the histopathological lesions found in transgenic mice kidneys together with no observable nephrotoxicity in control mice indicated early kidney damage in transgenic mice. Our findings suggest that high levels of GSH-APAP conjugates resulting from increased GSH concentrations in the livers of transgenic mice caused rapid kidney damage. Compromised excretory ability may have caused retention of APAP, which, in effect, elicited higher hepatotoxicity than that observed in nontransgenic mice.

  6. Male mating strategy and the introgression of a growth hormone transgene.

    PubMed

    Valosaari, Kata-Riina; Aikio, Sami; Kaitala, Veijo

    2008-11-01

    Escaped transgenic organisms (GMO's) may threaten the populations of their wild relatives if able to hybridize with each other. The introgression of a growth enhancement transgene into a wild Atlantic salmon population may be affected by the transgene's effects not only on fitness parameters, but also on mating behaviour. Large anadromous GMO males are most preferred in mating, but a transgene can also give the large sneakers a reproductive advantage over the smaller wild individuals. With a simulation model, we studied whether the increase in the proportion and mating success of sneakers in transgenic and hybrid genotypes could facilitate the introgression of a transgene into wild population after the release of GMOs. The model combines population dynamics and Mendelian inheritance of a transgenic trait. We found that the introgression of the transgene is strongly affected by the greater mating preference of large GMO males. Furthermore, the difference in reproductive success between the anadromous versus sneaker strategy defines how much GMO's have to be preferred to be able to invade. These results emphasize the importance of detailed knowledge of reproductive systems and the effect of a transgene on the phenotype and behaviour of GMOs when assessing the consequences of their release or escape to the wild.

  7. Male mating strategy and the introgression of a growth hormone transgene

    PubMed Central

    Valosaari, Kata-Riina; Aikio, Sami; Kaitala, Veijo

    2008-01-01

    Escaped transgenic organisms (GMO's) may threaten the populations of their wild relatives if able to hybridize with each other. The introgression of a growth enhancement transgene into a wild Atlantic salmon population may be affected by the transgene's effects not only on fitness parameters, but also on mating behaviour. Large anadromous GMO males are most preferred in mating, but a transgene can also give the large sneakers a reproductive advantage over the smaller wild individuals. With a simulation model, we studied whether the increase in the proportion and mating success of sneakers in transgenic and hybrid genotypes could facilitate the introgression of a transgene into wild population after the release of GMOs. The model combines population dynamics and Mendelian inheritance of a transgenic trait. We found that the introgression of the transgene is strongly affected by the greater mating preference of large GMO males. Furthermore, the difference in reproductive success between the anadromous versus sneaker strategy defines how much GMO's have to be preferred to be able to invade. These results emphasize the importance of detailed knowledge of reproductive systems and the effect of a transgene on the phenotype and behaviour of GMOs when assessing the consequences of their release or escape to the wild. PMID:25567801

  8. Molecular and functional characterization of cry1Ac transgenic pea lines.

    PubMed

    Teressa Negawo, Alemayehu; Baranek, Linda; Jacobsen, Hans-Jörg; Hassan, Fathi

    2016-10-01

    Transgenic pea lines transformed with the cry1Ac gene were characterized at molecular (PCR, RT-PCR, qRT-PCR and immunostrip assay) and functional levels (leaf paint and insect feeding bioassays). The results showed the presence, expression, inheritance and functionality of the introduced transgene at different progeny levels. Variation in the expression of the cry1Ac gene was observed among the different transgenic lines. In the insect bioassay studies using the larvae of Heliothis virescens, both larval survival and plant damage were highly affected on the different transgenic plants. Up to 100 % larval mortality was observed on the transgenic plants compared to 17.42 % on control plants. Most of the challenged transgenic plants showed very negligible to substantially reduced feeding damage indicating the insect resistance of the developed transgenic lines. Further analysis under field condition will be required to select promising lines for future uses.

  9. Molecular and functional characterization of cry1Ac transgenic pea lines

    PubMed Central

    Teressa Negawo, Alemayehu; Baranek, Linda; Jacobsen, Hans-Jörg; Hassan, Fathi

    2016-01-01

    ABSTRACT Transgenic pea lines transformed with the cry1Ac gene were characterized at molecular (PCR, RT-PCR, qRT-PCR and immunostrip assay) and functional levels (leaf paint and insect feeding bioassays). The results showed the presence, expression, inheritance and functionality of the introduced transgene at different progeny levels. Variation in the expression of the cry1Ac gene was observed among the different transgenic lines. In the insect bioassay studies using the larvae of Heliothis virescens, both larval survival and plant damage were highly affected on the different transgenic plants. Up to 100 % larval mortality was observed on the transgenic plants compared to 17.42 % on control plants. Most of the challenged transgenic plants showed very negligible to substantially reduced feeding damage indicating the insect resistance of the developed transgenic lines. Further analysis under field condition will be required to select promising lines for future uses. PMID:27764552

  10. The use of transgenic parasites in malaria vaccine research.

    PubMed

    Othman, Ahmad Syibli; Marin-Mogollon, Catherin; Salman, Ahmed M; Franke-Fayard, Blandine M; Janse, Chris J; Khan, Shahid M

    2017-07-01

    Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.

  11. Assessing the value of transgenic crops.

    PubMed

    Lacey, Hugh

    2002-10-01

    In the current controversy about the value of transgenic crops, matters open to empirical inquiry are centrally at issue. One such matter is a key premise in a common argument (that I summarize) that transgenic crops should be considered to have universal value. The premise is that there are no alternative forms of agriculture available to enable the production of sufficient food to feed the world. The proponents of agroecology challenge it, claiming that agroecology provides an alternative, and they deny the claim that it is well founded on empirical evidence. It is, therefore, a matter of both social and scientific importance that this premise and the criticisms of it be investigated rigorously and empirically, so that the benefits and disadvantages of transgenic-intensive agriculture and agroecology can be compared in a reliable way. Conducting adequate investigation about the potential contribution of agroecology requires that the cultural conditions of its practice (and, thus, of the practices and movements of small-scale farmers in the "third world") be strengthened--and this puts the interests of investigation into tension with the socio-economic interests driving the development of transgenics. General issues about relationship between ethical argument and empirical (scientific) investigation are raised throughout the article.

  12. Transgenic plants with increased calcium stores

    NASA Technical Reports Server (NTRS)

    Robertson, Dominique (Inventor); Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  13. Metal resistance sequences and transgenic plants

    DOEpatents

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  14. Novel transgenic pigs with enhanced growth and reduced environmental impact

    PubMed Central

    Yang, Huaqiang; Liu, Dewu; Cai, Gengyuan; Li, Guoling; Mo, Jianxin; Wang, Dehua; Zhong, Cuili; Wang, Haoqiang; Sun, Yue; Shi, Junsong; Zheng, Enqin; Meng, Fanming; Zhang, Mao; He, Xiaoyan; Zhou, Rong; Zhang, Jian; Huang, Miaorong; Zhang, Ran; Li, Ning; Fan, Mingzhe; Yang, Jinzeng

    2018-01-01

    In pig production, inefficient feed digestion causes excessive nutrients such as phosphorus and nitrogen to be released to the environment. To address the issue of environmental emissions, we established transgenic pigs harboring a single-copy quad-cistronic transgene and simultaneously expressing three microbial enzymes, β-glucanase, xylanase, and phytase in the salivary glands. All the transgenic enzymes were successfully expressed, and the digestion of non-starch polysaccharides (NSPs) and phytate in the feedstuff was enhanced. Fecal nitrogen and phosphorus outputs in the transgenic pigs were reduced by 23.2–45.8%, and growth rate improved by 23.0% (gilts) and 24.4% (boars) compared with that of age-matched wild-type littermates under the same dietary treatment. The transgenic pigs showed an 11.5–14.5% improvement in feed conversion rate compared with the wild-type pigs. These findings indicate that the transgenic pigs are promising resources for improving feed efficiency and reducing environmental impact. PMID:29784082

  15. Enhancement of Recombinant Protein Production in Transgenic Nicotiana benthamiana Plant Cell Suspension Cultures with Co-Cultivation of Agrobacterium Containing Silencing Suppressors.

    PubMed

    Huang, Ting-Kuo; Falk, Bryce W; Dandekar, Abhaya M; McDonald, Karen A

    2018-05-24

    We have previously demonstrated that the inducible plant viral vector (CMViva) in transgenic plant cell cultures can significantly improve the productivity of extracellular functional recombinant human alpha-1-antiryspin (rAAT) compared with either a common plant constitutive promoter ( Cauliflower mosaic virus (CaMV) 35S) or a chemically inducible promoter (estrogen receptor-based XVE) system. For a transgenic plant host system, however, viral or transgene-induced post-transcriptional gene silencing (PTGS) has been identified as a host response mechanism that may dramatically reduce the expression of a foreign gene. Previous studies have suggested that viral gene silencing suppressors encoded by a virus can block or interfere with the pathways of transgene-induced PTGS in plant cells. In this study, the capability of nine different viral gene silencing suppressors were evaluated for improving the production of rAAT protein in transgenic plant cell cultures (CMViva, XVE or 35S system) using an Agrobacterium -mediated transient expression co-cultivation process in which transgenic plant cells and recombinant Agrobacterium carrying the viral gene silencing suppressor were grown together in suspension cultures. Through the co-cultivation process, the impacts of gene silencing suppressors on the rAAT production were elucidated, and promising gene silencing suppressors were identified. Furthermore, the combinations of gene silencing suppressors were optimized using design of experiments methodology. The results have shown that in transgenic CMViva cell cultures, the functional rAAT as a percentage of total soluble protein is increased 5.7 fold with the expression of P19, and 17.2 fold with the co-expression of CP, P19 and P24.

  16. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, Natasha V.

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  17. Overexpression of host plant urease in transgenic silkworms.

    PubMed

    Jiang, Liang; Huang, Chunlin; Sun, Qiang; Guo, Huizhen; Peng, Zhengwen; Dang, Yinghui; Liu, Weiqiang; Xing, Dongxu; Xu, Guowen; Zhao, Ping; Xia, Qingyou

    2015-06-01

    Bombyx mori and mulberry constitute a model of insect-host plant interactions. Urease hydrolyzes urea to ammonia and is important for the nitrogen metabolism of silkworms because ammonia is assimilated into silk protein. Silkworms do not synthesize urease and acquire it from mulberry leaves. We synthesized the artificial DNA sequence ureas using the codon bias of B. mori to encode the signal peptide and mulberry urease protein. A transgenic vector that overexpresses ure-as under control of the silkworm midgut-specific P2 promoter was constructed. Transgenic silkworms were created via embryo microinjection. RT-PCR results showed that urease was expressed during the larval stage and qPCR revealed the expression only in the midgut of transgenic lines. Urea concentration in the midgut and hemolymph of transgenic silkworms was significantly lower than in a nontransgenic line when silkworms were fed an artificial diet. Analysis of the daily body weight and food conversion efficiency of the fourth and fifth instar larvae and economic characteristics indicated no differences between transgenic silkworms and the nontransgenic line. These results suggested that overexpression of host plant urease promoted nitrogen metabolism in silkworms.

  18. Transgenes sustain epigeal insect biodiversity in diversified vegetable farm systems.

    PubMed

    Leslie, T W; Hoheisel, G A; Biddinger, D J; Rohr, J R; Fleischer, S J

    2007-02-01

    Many ecological studies have focused on the effects of transgenes in field crops, but few have considered multiple transgenes in diversified vegetable systems. We compared the epigeal, or soil surface-dwelling, communities of Coleoptera and Formicidae between transgenic and isoline vegetable systems consisting of sweet corn, potato, and acorn squash, with transgenic cultivars expressing Cry1(A)b, Cry3, or viral coat proteins. Vegetables were grown in replicated split plots over 2 yr with integrated pest management (IPM) standards defining insecticide use patterns. More than 77.6% of 11,925 insects from 1,512 pitfall traps were identified to species, and activity density was used to compare dominance distribution, species richness, and community composition. Measures of epigeal biodiversity were always equal in transgenic vegetables, which required fewer insecticide applications than their near isolines. There were no differences in species richness between transgenic and isoline treatments at the farm system and individual crop level. Dominance distributions were also similar between transgenic and isoline farming systems. Crop type, and not genotype, had a significant influence on Carabidae and Staphylinidae community composition in the first year, but there were no treatment effects in the second year, possibly because of homogenizing effects of crop rotations. Communities were more influenced by crop type, and possibly crop rotation, than by genotype. The heterogeneity of crops and rotations in diversified vegetable farms seems to aid in preserving epigeal biodiversity, which may be supplemented by reductions in insecticide use associated with transgenic cultivars.

  19. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo

    PubMed Central

    Bidlack, Felicitas B.; Xia, Yan; Pugach, Megan K.

    2017-01-01

    Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05). The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most abundant splice

  20. Bean Yellow Dwarf Virus replicons for high-level transgene expression in transgenic plants and cell cultures.

    PubMed

    Zhang, Xiuren; Mason, Hugh

    2006-02-05

    A novel stable transgenic plant expression system was developed using elements of the replication machinery of Bean Yellow Dwarf Virus (BeYDV). The system contains two transgenes: 1) The BeYDV replicon vector with an expression cassette flanked by cis-acting DNA elements of BeYDV, and 2) The viral replication initiator protein (Rep) controlled by an alcohol-inducible promoter. When Rep expression was triggered by treatment with ethanol, it induced release of the BeYDV replicon from stably integrated T-DNA and episomal replication to high copy number. Replicon amplification resulted in substantially increased transgene mRNA levels (up to 80-fold) and translation products (up to 10-fold) after induction of Rep expression by ethanol treatment in tobacco NT1 cells and leaves of whole potato plants. Thus, the BeYDV stable transformant replicon system is a powerful tool for plant-based production of recombinant proteins. (c) 2005 Wiley Periodicals, Inc.

  1. Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis.

    PubMed

    Nam, Y K; Noh, J K; Cho, Y S; Cho, H J; Cho, K N; Kim, C G; Kim, D S

    2001-08-01

    Transgenic mud loaches (Misgurnus mizolepis), in which the entire transgene originated from the same species, have been generated by microinjecting the mud loach growth hormone (mlGH) gene fused to the mud loach beta-actin promoter. Out of 4,100 eggs injected, 7.5% fish derived from the injected eggs showed dramatically accelerated growth, with a maximum of 35-fold faster growth than their non-transgenic siblings. Many fast-growing transgenic individuals showed extraordinary gigantism: their body weight and total length (largest fish attained to 413 g and 41.5 cm) were larger and longer than even those of 12-year-old normal broodstock (maximum size reached to 89 g and 28 cm). Of 46 transgenic founders tested, 30 individuals transmitted the transgene to next generation with a wide range of germ-line transmission frequencies ranging from 2% to 33%. The growth performance of the subsequent generation (F1) was also dramatically accelerated up to 35-fold, although the levels of enhanced growth were variable among transgenic lines. Three transgenic germ-lines up to F4 were established, showing the expected Mendelian inheritance of the transgene. Expression of GH mRNA in many tissues was detected by RT-PCR analyses. The time required to attain marketable size (10 g) in these transgenic lines was only 30-50 days after fertilization, while at least 6 months in non-transgenic fish. Besides growth enhancement, significantly improved feed-conversion efficiency up to 1.9-fold was also observed.

  2. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression.

    PubMed

    Nocarova, Eva; Fischer, Lukas

    2009-04-22

    Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with

  3. Characterization of Papaya ringspot virus isolates infecting transgenic papaya 'Huanong No.1' in South China.

    PubMed

    Wu, Zilin; Mo, Cuiping; Zhang, Shuguang; Li, Huaping

    2018-05-29

    In 2006, the release and cultivation of the genetically modified papaya cultivar 'Huanong No.1' successfully controlled the destructive papaya ringspot disease caused by Papaya ringspot virus (PRSV) in South China. However, some transgenic papaya plants from Guangdong and Hainan are found infected by PRSV. In this study, Field investigation was carried out and susceptible transgenic papaya samples were collected during 2012-2016. Twenty representative isolates were artificially inoculated into Cucurbita pepo and commercialised 'Huanong No.1' papaya, and results indicated that the plants showed obvious disease symptoms. Phylogenetic analysis of CP genes of 120 PRSV-infected isolates showed that PRSV can be divided into three groups. Isolates from Guangdong and Hainan belong to Group III, which is further divided into two subgroups. The isolates collected in this study have greatly diverged from the previously reported dominant strains Ys, Vb and Sm in South China, indicating that they belong to a new lineage. Further analysis showed a highly genetic differentiation between isolates, and 27.1% of the isolates were identified as recombinants on the basis of CP nucleotide sequences. These results indicate that the genetic variation of PRSV and the formation of the new virus lineage may explain the loss of transgenic papaya resistance in South China.

  4. Growth factor transgenes interactively regulate articular chondrocytes.

    PubMed

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.

  5. Field performance of transgenic citrus trees: assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics.

    PubMed

    Pons, Elsa; Peris, Josep E; Peña, Leandro

    2012-07-15

    The future of genetic transformation as a tool for the improvement of fruit trees depends on the development of proper systems for the assessment of unintended effects in field-grown GM lines. In this study, we used eight transgenic lines of two different citrus types (sweet orange and citrange) transformed with the marker genes β-glucuronidase (uidA) and neomycin phosphotransferase II (nptII) as model systems to study for the first time in citrus the long-term stability of transgene expression and whether transgene-derived pleiotropic effects occur with regard to the morphology, development and fruit quality of orchard-grown GM citrus trees. The stability of the integration and expression of the transgenes was confirmed in 7-year-old, orchard-grown transgenic lines by Southern blot analysis and enzymatic assays (GUS and ELISA NPTII), respectively. Little seasonal variation was detected in the expression levels between plants of the same transgenic line in different organs and over the 3 years of analysis, confirming the absence of rearrangements and/or silencing of the transgenes after transferring the plants to field conditions. Comparisons between the GM citrus lines with their non-GM counterparts across the study years showed that the expression of these transgenes did not cause alterations of the main phenotypic and agronomic plant and fruit characteristics. However, when comparisons were performed between diploid and tetraploid transgenic citrange trees and/or between juvenile and mature transgenic sweet orange trees, significant and consistent differences were detected, indicating that factors other than their transgenic nature induced a much higher phenotypic variability. Our results indicate that transgene expression in GM citrus remains stable during long-term agricultural cultivation, without causing unexpected effects on crop characteristics. This study also shows that the transgenic citrus trees expressing the selectable marker genes that are most

  6. Field performance of transgenic citrus trees: Assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics

    PubMed Central

    2012-01-01

    Background The future of genetic transformation as a tool for the improvement of fruit trees depends on the development of proper systems for the assessment of unintended effects in field-grown GM lines. In this study, we used eight transgenic lines of two different citrus types (sweet orange and citrange) transformed with the marker genes β-glucuronidase (uidA) and neomycin phosphotransferase II (nptII) as model systems to study for the first time in citrus the long-term stability of transgene expression and whether transgene-derived pleiotropic effects occur with regard to the morphology, development and fruit quality of orchard-grown GM citrus trees. Results The stability of the integration and expression of the transgenes was confirmed in 7-year-old, orchard-grown transgenic lines by Southern blot analysis and enzymatic assays (GUS and ELISA NPTII), respectively. Little seasonal variation was detected in the expression levels between plants of the same transgenic line in different organs and over the 3 years of analysis, confirming the absence of rearrangements and/or silencing of the transgenes after transferring the plants to field conditions. Comparisons between the GM citrus lines with their non-GM counterparts across the study years showed that the expression of these transgenes did not cause alterations of the main phenotypic and agronomic plant and fruit characteristics. However, when comparisons were performed between diploid and tetraploid transgenic citrange trees and/or between juvenile and mature transgenic sweet orange trees, significant and consistent differences were detected, indicating that factors other than their transgenic nature induced a much higher phenotypic variability. Conclusions Our results indicate that transgene expression in GM citrus remains stable during long-term agricultural cultivation, without causing unexpected effects on crop characteristics. This study also shows that the transgenic citrus trees expressing the

  7. Generation and Characterization of Human Heme Oxygenase-1 Transgenic Pigs

    PubMed Central

    Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J.; Kim, Hyunil; Surh, Charles D.; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation. PMID:23071605

  8. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    PubMed

    Yeom, Hye-Jung; Koo, Ok Jae; Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J; Kim, Hyunil; Surh, Charles D; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  9. Preservation and Faithful Expression of Transgene via Artificial Seeds in Alfalfa

    PubMed Central

    Liu, Wenting; Liang, Zongsuo; Wang, Xinhua; Sibbald, Susan; Hunter, David; Tian, Lining

    2013-01-01

    Proper preservation of transgenes and transgenic materials is important for wider use of transgenic technology in plants. Here, we report stable preservation and faithful expression of a transgene via artificial seed technology in alfalfa. DNA constructs containing the uid reporter gene coding for β-glucuronidase (GUS) driven by a 35S promoter or a tCUP promoter were introduced into alfalfa via Agrobacterium-mediated genetic transformation. Somatic embryos were subsequently induced from transgenic alfalfa plants via in vitro technology. These embryos were treated with abscisic acid to induce desiccation tolerance and were subjected to a water loss process. After the desiccation procedure, the water content in dried embryos, or called artificial seeds, was about 12–15% which was equivalent to that in true seeds. Upon water rehydration, the dried somatic embryos showed high degrees of viability and exhibited normal germination. Full plants were subsequently developed and recovered in a greenhouse. The progeny plants developed from artificial seeds showed GUS enzyme activity and the GUS expression level was comparable to that of plants developed from somatic embryos without the desiccation process. Polymerase chain reaction analysis indicated that the transgene was well retained in the plants and Southern blot analysis showed that the transgene was stably integrated in plant genome. The research showed that the transgene and the new trait can be well preserved in artificial seeds and the progeny developed. The research provides a new method for transgenic germplasm preservation in different plant species. PMID:23690914

  10. Amino Acids Regulate Transgene Expression in MDCK Cells

    PubMed Central

    Torrente, Marta; Guetg, Adriano; Sass, Jörn Oliver; Arps, Lisa; Ruckstuhl, Lisa; Camargo, Simone M. R.; Verrey, François

    2014-01-01

    Gene expression and cell growth rely on the intracellular concentration of amino acids, which in metazoans depends on extracellular amino acid availability and transmembrane transport. To investigate the impact of extracellular amino acid concentrations on the expression of a concentrative amino acid transporter, we overexpressed the main kidney proximal tubule luminal neutral amino acid transporter B0AT1-collectrin (SLC6A19-TMEM27) in MDCK cell epithelia. Exogenously expressed proteins co-localized at the luminal membrane and mediated neutral amino acid uptake. However, the transgenes were lost over few cell culture passages. In contrast, the expression of a control transgene remained stable. To test whether this loss was due to inappropriately high amino acid uptake, freshly transduced MDCK cell lines were cultivated either with physiological amounts of amino acids or with the high concentration found in standard cell culture media. Expression of exogenous transporters was unaffected by physiological amino acid concentration in the media. Interestingly, mycoplasma infection resulted in a significant increase in transgene expression and correlated with the rapid metabolism of L-arginine. However, L-arginine metabolites were shown to play no role in transgene expression. In contrast, activation of the GCN2 pathway revealed by an increase in eIF2α phosphorylation may trigger transgene derepression. Taken together, high extracellular amino acid concentration provided by cell culture media appears to inhibit the constitutive expression of concentrative amino acid transporters whereas L-arginine depletion by mycoplasma induces the expression of transgenes possibly via stimulation of the GCN2 pathway. PMID:24797296

  11. Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan.

    PubMed

    Aono, Mitsuko; Wakiyama, Seiji; Nagatsu, Masato; Nakajima, Nobuyoshi; Tamaoki, Masanori; Kubo, Akihiro; Saji, Hikaru

    2006-01-01

    Repeated monitoring for escaped transgenic crop plants is sometimes necessary, especially in cases when the crop has not been approved for release into the environment. Transgenic oilseed rape (Brassica napus) was detected along roadsides in central Japan in a previous study. The goal of the current study was to monitor the distribution of transgenic oilseed rape and occurrence of hybridization of transgenic B. napus with feral populations of its closely related species (B. rapa and B. juncea) in the west of Japan in 2005. The progenies of 50 B. napus, 82 B. rapa and 283 B. juncea maternal plants from 95 sampling sites in seven port areas were screened for herbicide-resistance. Transgenic herbicide-resistant seeds were detected from 12 B. napus maternal plants growing at seven sampling sites in two port areas. A portion of the progeny from two transgenic B. napus plants had both glyphosate-resistance and glufosinate-resistance transgenes. Therefore, two types of transgenic B. napus plants are likely to have outcrossed with each other, since the double-herbicide-resistant transgenic strain of oilseed rape has not been developed intentionally for commercial purposes. As found in the previous study, no transgenic seeds were detected from B. rapa or B. juncea, and more extensive sampling is needed to determine whether introgression into these wild species has occurred.

  12. Simultaneous detection of transgenic DNA by surface plasmon resonance imaging with potential application to gene doping detection.

    PubMed

    Scarano, Simona; Ermini, Maria Laura; Spiriti, Maria Michela; Mascini, Marco; Bogani, Patrizia; Minunni, Maria

    2011-08-15

    Surface plasmon resonance imaging (SPRi) was used as the transduction principle for the development of optical-based sensing for transgenes detection in human cell lines. The objective was to develop a multianalyte, label-free, and real-time approach for DNA sequences that are identified as markers of transgenosis events. The strategy exploits SPRi sensing to detect the transgenic event by targeting selected marker sequences, which are present on shuttle vector backbone used to carry out the transfection of human embryonic kidney (HEK) cell lines. Here, we identified DNA sequences belonging to the Cytomegalovirus promoter and the Enhanced Green Fluorescent Protein gene. System development is discussed in terms of probe efficiency and influence of secondary structures on biorecognition reaction on sensor; moreover, optimization of PCR samples pretreatment was carried out to allow hybridization on biosensor, together with an approach to increase SPRi signals by in situ mass enhancement. Real-time PCR was also employed as reference technique for marker sequences detection on human HEK cells. We can foresee that the developed system may have potential applications in the field of antidoping research focused on the so-called gene doping.

  13. A heterologous hormone response element enhances expression of rat beta-casein promoter-driven chloramphenicol acetyltransferase fusion genes in the mammary gland of transgenic mice.

    PubMed

    Greenberg, N M; Reding, T V; Duffy, T; Rosen, J M

    1991-10-01

    Previous studies have demonstrated that the entire rat beta-casein (R beta C) gene and a -524/+490 R beta C fragment-chloramphenicol acetyltransferase (CAT) fusion gene are expressed preferentially in the mammary gland of transgenic mice in a developmentally regulated fashion. However, transgene expression was infrequent, less than 1% of that observed for the endogenous gene, and varied as much as 500-fold, presumably due to the site of chromosomal integration. To determine whether a heterologous hormone-responsive enhancer could be used to increase both the level and frequency of expression in the mammary gland, a fragment derived from the mouse mammary tumor virus long terminal repeat containing four hormone response elements (HREs) was inserted into the R beta C promoter at a site not known to contain transcriptional regulatory elements. Transgenic mice generated which carried HRE-enhanced R beta C-CAT fusion genes expressed CAT activity in the mammary glands of all founder lines examined at levels that were on average 13-fold greater than for lines generated with similar constructs not carrying HREs. In the highest expressing line, the level of HRE-enhanced transgene expression was found to be developmentally regulated, increasing 14-fold in the mammary gland from virgin to day 10 of lactation. In this line, expression was also observed in the thymus and spleen; however, the level of CAT activity was 4-fold lower than in the mammary gland and was not developmentally regulated. In adrenalectomized mice, the administration of dexamethasone stimulated CAT expression in the mammary gland but not in the thymus and spleen. These studies demonstrate that in the context of the R beta C promoter, the HRE functions in the mammary gland to increase both the frequency and level of transgene expression.

  14. [Methods of hygromycin B phosphotransferase activity assay in transgenic plant].

    PubMed

    Zhuo, Qin; Yang, Xiaoguang

    2004-07-01

    Hygromycin B phosphotransferase (HPT) is a widely used selectable marker protein of transgenic plant. Detection of its activity is critical to studies on the development of various transgenic plants, silence of inserted gene, marker-free system development and safety assessment of transgenic food. In this paper, several methods for detecting the activity of this enzyme were reviewed.

  15. Cardiac phenotype induced by a dysfunctional α1C transgene

    PubMed Central

    Lao, Qi Zong; Ravindran, Arippa; Herbert, Ron; Canuto, Holly C

    2011-01-01

    Based on stable integration of recombinant DNA into a host genome, transgenic technology has become an important genetic engineering methodology. An organism whose genetic characteristics have been altered by the insertion of foreign DNA is supposed to exhibit a new phenotype associated with the function of the transgene. However, successful insertion may not be sufficient to achieve specific modification of function. In this study we describe a strain of transgenic mouse, G7-882, generated by incorporation into the mouse genome of human Cav1.2 α1C cDNA deprived of 3′-UTR to exclude transcription. We found that, in response to chronic infusion of isoproterenol, G7-882 develops dilated cardiomyopathy, a misleading “transgenic artifact” compatible with the expected function of the incorporated “correct” transgene. Specifically, using magnetic resonance imaging (MRI), we found that chronic β-adrenergic stimulation of G7-882 mice caused left ventricular hypertrophy and aggravated development of dilated cardiomyopathy, although no significant changes in the kinetics, density and voltage dependence of the calcium current were observed in G7-882 cardiomyocytes as compared to cells from wild type mice. This result illustrates the possibility that even when a functional transgene is expressed, an observed change in phenotype may be due to the artifact of “incidental incorporation” leading to misleading conclusions. To exclude this possibility and thus provide a robust tool for exploring biological function, the new transgenic phenotype must be replicated in several independently generated transgenic strains. PMID:21224729

  16. Mono-allelic expression of variegating transgene locus in the mouse.

    PubMed

    Opsahl, Margaret L; Springbett, Anthea; Lathe, Richard; Colman, Alan; McClenaghan, Margaret; Whitelaw, C Bruce A

    2003-12-01

    We have generated transgenic mice which express an ovine beta-lactoglobulin transgene during lactation. In two transgenic lines, BLG/7 and BLG/45, beta-lactoglobulin protein levels vary between siblings, reflected at the cellular level by a mosaic transgene expression pattern in the mammary tissue that is reminiscent of position effect variegation. To investigate whether this variegating expression profile can be affected by the introduction of an identical variegating locus on the homologous chromosome, we compared the beta-lactoglobulin expression profiles in mice hemizygous or homozygous for the transgene locus. In BLG/45 mice, milk protein analysis revealed that transgene expression was effectively doubled in homozygous compared to hemizygous mice. In contrast, beta-lactoglobulin protein in hemizygous and homozygous BLG/7 mice displayed a similar range; although minimum expression levels were doubled in the homozygous population, the maximum level of expression was indistinguishable between the two populations. Fluorescent in situ hybridisation (FISH) for transgene mRNA indicated that for a given protein level, the extent of cellular expression is similar in both BLG/7 populations. In homozygous mice genomic DNA and nuclear RNA FISH demonstrated that only one of the two BLG/7 loci is active in expressing cells, while two transcription foci were present in BLG/45 homozygous mice. This mono-allelic transgene expression pattern is not inherited through the germline, as hemizygous mice bred from homozygous parents expressed at the expected hemizygous population level. We discuss these observations in the context of known epigenetic events such as imprinting and trans-inactivation.

  17. An evaluation of new and established methods to determine T‐DNA copy number and homozygosity in transgenic plants.

    PubMed Central

    Głowacka, Katarzyna; Kromdijk, Johannes; Leonelli, Lauriebeth; Niyogi, Krishna K.; Clemente, Tom E.

    2016-01-01

    Abstract Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL‐)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T‐DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL‐PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T‐DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T‐DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided. PMID:26670088

  18. Taking transgenic rice drought screening to the field.

    PubMed

    Gaudin, Amélie C M; Henry, Amelia; Sparks, Adam H; Slamet-Loedin, Inez H

    2013-01-01

    Numerous transgenes have been reported to increase rice drought resistance, mostly in small-scale experiments under vegetative-stage drought stress, but few studies have included grain yield or field evaluations. Different definitions of drought resistance are currently in use for field-based and laboratory evaluations of transgenics, the former emphasizing plant responses that may not be linked to yield under drought. Although those fundamental studies use efficient protocols to uncover and validate gene functions, screening conditions differ greatly from field drought environments where the onset of drought stress symptoms is slow (2-3 weeks). Simplified screening methods, including severely stressed survival studies, are therefore not likely to identify transgenic events with better yield performance under drought in the target environment. As biosafety regulations are becoming established to allow field trials in some rice-producing countries, there is a need to develop relevant screening procedures that scale from preliminary event selection to greenhouse and field trials. Multilocation testing in a range of drought environments may reveal that different transgenes are necessary for different types of drought-prone field conditions. We describe here a pipeline to improve the selection efficiency and reproducibility of results across drought treatments and test the potential of transgenic rice for the development of drought-resistant material for agricultural purposes.

  19. An efficient and rapid transgenic pollen screening and detection method using flow cytometry.

    PubMed

    Moon, Hong S; Eda, Shigetoshi; Saxton, Arnold M; Ow, David W; Stewart, C Neal

    2011-01-01

    Assaying for transgenic pollen, a major vector of transgene flow, provides valuable information and essential data for the study of gene flow and assessing the effectiveness of transgene containment. Most studies have employed microscopic screening methods or progeny analyses to estimate the frequency of transgenic pollen. However, these methods are time-consuming and laborious when large numbers of pollen grains must be analyzed to look for rare transgenic pollen grains. Thus, there is an urgent need for the development of a simple, rapid, and high throughput analysis method for transgenic pollen analysis. In this study, our objective was to determine the accuracy of using flow cytometry technology for transgenic pollen quantification in practical application where transgenic pollen is not frequent. A suspension of non-transgenic tobacco pollen was spiked with a known amount of verified transgenic tobacco pollen synthesizing low or high amounts of green fluorescent protein (GFP). The flow cytometric method detected approximately 75% and 100% of pollen grains synthesizing low and high amounts of GFP, respectively. The method is rapid, as it is able to count 5000 pollen grains per minute-long run. Our data indicate that this flow cytometric method is useful to study gene flow and assessment of transgene containment.

  20. Complex genomic rearrangement in CCS-LacZ transgenic mice.

    PubMed

    Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I

    2007-02-01

    The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line. (c) 2007 Wiley-Liss, Inc.

  1. Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests

    PubMed Central

    Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao

    2008-01-01

    Background Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which ~21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Results Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. Conclusion In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high

  2. Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests.

    PubMed

    Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao

    2008-10-14

    Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which approximately 21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high entomotoxic

  3. A pre-breeding screening program for transgenic boars based on fluorescence in situ hybridization assay.

    PubMed

    Bou, Gerelchimeg; Sun, Mingju; Lv, Ming; Zhu, Jiang; Li, Hui; Wang, Juan; Li, Lu; Liu, Zhongfeng; Zheng, Zhong; He, Wenteng; Kong, Qingran; Liu, Zhonghua

    2014-08-01

    For efficient transgenic herd expansion, only the transgenic animals that possess the ability to transmit transgene into next generation are considered for breeding. However, for transgenic pig, practically lacking a pre-breeding screening program, time, labor and money is always wasted to maintain non-transgenic pigs, low or null transgenic transmission pigs and the related fruitless gestations. Developing a pre-breeding screening program would make the transgenic herd expansion more economical and efficient. In this technical report, we proposed a three-step pre-breeding screening program for transgenic boars simply through combining the fluorescence in situ hybridization (FISH) assay with the common pre-breeding screening workflow. In the first step of screening, combined with general transgenic phenotype analysis, FISH is used to identify transgenic boars. In the second step of screening, combined with conventional semen test, FISH is used to detect transgenic sperm, thus to identify the individuals producing high quality semen and transgenic sperm. In the third step of screening, FISH is used to assess the in vitro fertilization embryos, thus finally to identify the individuals with the ability to produce transgenic embryos. By this three-step screening, the non-transgenic boars and boars with no ability to produce transgenic sperm or transgenic embryos would be eliminated; therefore only those boars could produce transgenic offspring are maintained and used for breeding and herd expansion. It is the first time a systematic pre-breeding screening program is proposed for transgenic pigs. This program might also be applied in other transgenic large animals, and provide an economical and efficient strategy for herd expansion.

  4. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo.

    PubMed

    Bidlack, Felicitas B; Xia, Yan; Pugach, Megan K

    2017-01-01

    Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes ( Tg ) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180 Tg , CTRNC Tg and LRAP Tg mice to generate M180 Tg and CTRNC Tg double transgene and M180 Tg , CTRNC Tg , LRAP Tg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene ( p < 0.05). The presence of the LRAP Tg did not improve the phenotype of M180 Tg /CTRNC Tg /KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the

  5. Gene flow from transgenic common beans expressing the bar gene.

    PubMed

    Faria, Josias C; Carneiro, Geraldo E S; Aragão, Francisco J L

    2010-01-01

    Gene flow is a common phenomenon even in self-pollinated plant species. With the advent of genetically modified plants this subject has become of the utmost importance due to the need for controlling the spread of transgenes. This study was conducted to determine the occurrence and intensity of outcrossing in transgenic common beans. In order to evaluate the outcross rates, four experiments were conducted in Santo Antonio de Goiás (GO, Brazil) and one in Londrina (PR, Brazil), using transgenic cultivars resistant to the herbicide glufosinate ammonium and their conventional counterparts as recipients of the transgene. Experiments with cv. Olathe Pinto and the transgenic line Olathe M1/4 were conducted in a completely randomized design with ten replications for three years in one location, whereas the experiments with cv. Pérola and the transgenic line Pérola M1/4 were conducted at two locations for one year, with the transgenic cultivar surrounded on all sides by the conventional counterpart. The outcross occurred at a negligible rate of 0.00741% in cv. Pérola, while none was observed (0.0%) in cv. Olathe Pinto. The frequency of gene flow was cultivar dependent and most of the observed outcross was within 2.5 m from the edge of the pollen source. Index terms: Phaseolus vulgaris, outcross, glufosinate ammonium.

  6. Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids.

    PubMed

    Yao, Jianhong; Pang, Yongzhen; Qi, Huaxiong; Wan, Bingliang; Zhao, Xiuyun; Kong, Weiwen; Sun, Xiaofen; Tang, Kexuan

    2003-12-01

    Tobacco leaf discs were transformed with a plasmid, pBIPTA, containing the selectable marker neomycin phosphotransferase gene (nptII) and Pinellia ternata agglutinin gene (pta) via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic tobacco plants were regenerated. PCR and Southern blot analyses confirmed that the pta gene had integrated into the plant genome and northern blot analysis revealed transgene expression at various levels in transgenic plants. Genetic analysis confirmed Mendelian segregation of the transgene in T1 progeny. Insect bioassays showed that transgenic plants expressing PTA inhibited significantly the growth of peach potato aphid (Myzus persicae Sulzer). This is the first report that transgenic plants expressing pta confer enhanced resistance to aphids. Our study indicates that the pta gene can be used as a supplement to the snowdrop (Galanthus nivalis) lectin gene (gna) in the control of aphids, a sap-sucking insect pest causing significant yield losses of crops.

  7. Radiation arteriopathy in the transgenic arteriovenous fistula model.

    PubMed

    Lawton, Michael T; Arnold, Christine M; Kim, Yung J; Bogarin, Ernesto A; Stewart, Campbell L; Wulfstat, Amanda A; Derugin, Nikita; Deen, Dennis; Young, William L

    2008-05-01

    The transgenic arteriovenous fistula model, surgically constructed with transgenic mouse aorta interposed in common carotid artery-to-external jugular vein fistulae in nude rats, has a 4-month experimental window because patency and transgenic phenotype are lost over time. We adapted this model to investigate occlusive arteriopathy in brain arteriovenous malformations after radiosurgery by radiating grafted aorta before insertion in the fistula. We hypothesized that high-dose radiation would reproduce the arteriopathy observed clinically within the experimental time window and that deletions of endoglin (ENG) and endothelial nitric oxide synthase (eNOS) genes would modify the radiation response. Radiation arteriopathy in the common carotid arteries of 171 wild-type mice was examined with doses of 25, 80, 120, or 200 Gy (Experiment 1). Radiation arteriopathy in 68 wild-type arteriovenous fistulae was examined histologically and morphometrically with preoperative radiation doses of 0, 25, or 200 Gy (Experiment 2). Radiation arteriopathy in 51 transgenic arteriovenous fistulae (36 ENG and 15 eNOS knock-out fistulae) was examined using preoperative radiation doses of 0, 25, or 200 Gy (Experiment 3). High-dose radiation (200 Gy) of mouse common carotid arteries induced only mild arteriopathy (mean score, 0.66) without intimal hyperplasia and with high mortality (68%). Radiation arteriopathy in wild-type arteriovenous fistulae was severe (mean score, 3.5 at 200 Gy), with intimal hyperplasia and medial disruption at 3 months, decreasing luminal areas with increasing dose, and no mortality. Arteriopathy was robust in transgenic arteriovenous fistulae with ENG +/- and with eNOS +/-, with thick intimal hyperplasia in the former and distinct smooth muscle cell proliferation in the latter. The transgenic arteriovenous fistula model can be adapted to rapidly reproduce radiation arteriopathy observed in resected brain arteriovenous malformations after radiosurgery. High

  8. Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds.

    PubMed

    Cunha, Nicolau B; Murad, André M; Ramos, Gustavo L; Maranhão, Andréia Q; Brígido, Marcelo M; Araújo, Ana Cláudia G; Lacorte, Cristiano; Aragão, Francisco J L; Covas, Dimas T; Fontes, Aparecida M; Souza, Gustavo H M F; Vianna, Giovanni R; Rech, Elíbio L

    2011-08-01

    The seed-based production of recombinant proteins is an efficient strategy to achieve the accumulation, correct folding, and increased stability of these recombinant proteins. Among potential plant molecular farming systems, soybean [Glycine max (L.) Merrill] is a viable option for the production of recombinant proteins due to its high protein content, known regulatory sequences, efficient gene transfer protocols, and a scalable production system under greenhouse conditions. We report here the expression and stable accumulation of human coagulation factor IX (hFIX) in transgenic soybean seeds. A biolistic process was utilised to co-introduce a plasmid carrying the hFIX gene under the transcriptional control of the α' subunit of a β-conglycinin seed-specific promoter and an α-Coixin signal peptide in soybean embryonic axes from mature seeds. The 56-kDa hFIX protein was expressed in the transgenic seeds at levels of up to 0.23% (0.8 g kg(-1) seed) of the total soluble seed protein as determined by an enzyme-linked immunosorbent assay (ELISA) and western blot. Ultrastructural immunocytochemistry assays indicated that the recombinant hFIX in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Mass spectrometry characterisation confirmed the presence of the hFIX recombinant protein sequence. Protein extracts from transgenic seeds showed a blood-clotting activity of up to 1.4% of normal plasma. Our results demonstrate the correct processing and stable accumulation of functional hFIX in soybean seeds stored for 6 years under room temperature conditions (22 ± 2°C).

  9. Germline transmission in transgenic Huntington's disease monkeys.

    PubMed

    Moran, Sean; Chi, Tim; Prucha, Melinda S; Ahn, Kwang Sung; Connor-Stroud, Fawn; Jean, Sherrie; Gould, Kenneth; Chan, Anthony W S

    2015-07-15

    Transgenic nonhuman primate models are an increasingly popular model for neurologic and neurodegenerative disease because their brain functions and neural anatomies closely resemble those of humans. Transgenic Huntington's disease monkeys (HD monkeys) developed clinical features similar to those seen in HD patients, making the monkeys suitable for a preclinical study of HD. However, until HD monkey colonies can be readily expanded, their use in preclinical studies will be limited. In the present study, we confirmed germline transmission of the mutant huntingtin (mHTT) transgene in both embryonic stem cells generated from three male HD monkey founders (F0) and in second-generation offspring (F1) produced via artificial insemination by using intrauterine insemination technique. A total of five offspring were produced from 15 females that were inseminated by intrauterine insemination using semen collected from the three HD founders (5 of 15, 33%). Thus far, sperm collected from the HD founder (rHD8) has led to two F1 transgenic HD monkeys with germline transmission rate at 100% (2 of 2). mHTT expression was confirmed by quantitative real-time polymerase chain reaction using skin fibroblasts from the F1 HD monkeys and induced pluripotent stem cells established from one of the F1 HD monkeys (rHD8-2). Here, we report the stable germline transmission and expression of the mHTT transgene in HD monkeys, which suggest possible expansion of HD monkey colonies for preclinical and biomedical research studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. [Detection of transgenic crop with gene chip].

    PubMed

    Huang, Ying-Chun; Sun, Chun-Yun; Feng, Hong; Hu, Xiao-Dong; Yin, Hai-Bin

    2003-05-01

    Some selected available sequences of reporter genes,resistant genes, promoters and terminators are amplified by PCR for the probes of transgenic crop detection gene chip. These probes are arrayed at definite density and printed on the surface of amino-slides by bioRobot MicroGrid II. Results showed that gene chip worked quickly and correctly, when transgenic rice, pawpaw,maize and soybean were applied.

  11. Cardiac compartment-specific overexpression of a modified retinoic acid receptor produces dilated cardiomyopathy and congestive heart failure in transgenic mice.

    PubMed

    Colbert, M C; Hall, D G; Kimball, T R; Witt, S A; Lorenz, J N; Kirby, M L; Hewett, T E; Klevitsky, R; Robbins, J

    1997-10-15

    Retinoids play a critical role in cardiac morphogenesis. To examine the effects of excessive retinoid signaling on myocardial development, transgenic mice that overexpress a constitutively active retinoic acid receptor (RAR) controlled by either the alpha- or beta-myosin heavy chain (MyHC) promoter were generated. Animals carrying the alpha-MyHC-RAR transgene expressed RARs in embryonic atria and in adult atria and ventricles, but developed no signs of either malformations or disease. In contrast, beta-MyHC-RAR animals, where expression was activated in fetal ventricles, developed a dilated cardiomyopathy that varied in severity with transgene copy number. Characteristic postmortem lesions included biventricular chamber dilation and left atrial thrombosis; the incidence and severity of these lesions increased with increasing copy number. Transcript analyses showed that molecular markers of hypertrophy, alpha-skeletal actin, atrial natriuretic factor and beta-MyHC, were upregulated. Cardiac performance of transgenic hearts was evaluated using the isolated perfused working heart model as well as in vivo, by transthoracic M-mode echocardiography. Both analyses showed moderate to severe impairment of left ventricular function and reduced cardiac contractility. Thus, expression of a constitutively active RAR in developing atria and/ or in postnatal ventricles is relatively benign, while ventricular expression during gestation can lead to significant cardiac dysfunction.

  12. Cardiac compartment-specific overexpression of a modified retinoic acid receptor produces dilated cardiomyopathy and congestive heart failure in transgenic mice.

    PubMed Central

    Colbert, M C; Hall, D G; Kimball, T R; Witt, S A; Lorenz, J N; Kirby, M L; Hewett, T E; Klevitsky, R; Robbins, J

    1997-01-01

    Retinoids play a critical role in cardiac morphogenesis. To examine the effects of excessive retinoid signaling on myocardial development, transgenic mice that overexpress a constitutively active retinoic acid receptor (RAR) controlled by either the alpha- or beta-myosin heavy chain (MyHC) promoter were generated. Animals carrying the alpha-MyHC-RAR transgene expressed RARs in embryonic atria and in adult atria and ventricles, but developed no signs of either malformations or disease. In contrast, beta-MyHC-RAR animals, where expression was activated in fetal ventricles, developed a dilated cardiomyopathy that varied in severity with transgene copy number. Characteristic postmortem lesions included biventricular chamber dilation and left atrial thrombosis; the incidence and severity of these lesions increased with increasing copy number. Transcript analyses showed that molecular markers of hypertrophy, alpha-skeletal actin, atrial natriuretic factor and beta-MyHC, were upregulated. Cardiac performance of transgenic hearts was evaluated using the isolated perfused working heart model as well as in vivo, by transthoracic M-mode echocardiography. Both analyses showed moderate to severe impairment of left ventricular function and reduced cardiac contractility. Thus, expression of a constitutively active RAR in developing atria and/ or in postnatal ventricles is relatively benign, while ventricular expression during gestation can lead to significant cardiac dysfunction. PMID:9329959

  13. The distribution of cotransformed transgenes in particle bombardment-mediated transformed wheat

    USDA-ARS?s Scientific Manuscript database

    Although particle bombardment is the predominant method of foreign DNA direct transfer, whether transgene is integrated randomly into the genome has not been determined. In this study, we identified the distribution of transgene loci in 45 transgenic wheat (Triticum aestivum L.) lines containing c...

  14. Salicylate and catechol levels are maintained in nahG transgenic poplar

    Treesearch

    Alison M. Morse; Timothy J. Tschaplinski; Christopher Dervinis; Paula M. Pijut; Eric A. Schmelz; Wendy Day; John M. Davis

    2007-01-01

    Metabolic profiling was used to investigate the molecular phenotypes of a transgenic Populus tremula × P. alba hybrid expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reduce...

  15. Recent advances in development of marker-free transgenic plants: regulation and biosafety concern.

    PubMed

    Tuteja, Narendra; Verma, Shiv; Sahoo, Ranjan Kumar; Raveendar, Sebastian; Reddy, I N Bheema Lingeshwara

    2012-03-01

    During the efficient genetic transformation of plants with the gene of interest, some selectable marker genes are also used in order to identify the transgenic plant cells or tissues. Usually, antibiotic- or herbicide-selective agents and their corresponding resistance genes are used to introduce economically valuable genes into crop plants. From the biosafety authority and consumer viewpoints, the presence of selectable marker genes in released transgenic crops may be transferred to weeds or pathogenic microorganisms in the gastrointestinal tract or soil, making them resistant to treatment with herbicides or antibiotics, respectively. Sexual crossing also raises the problem of transgene expression because redundancy of transgenes in the genome may trigger homology-dependent gene silencing. The future potential of transgenic technologies for crop improvement depends greatly on our abilities to engineer stable expression of multiple transgenic traits in a predictable fashion and to prevent the transfer of undesirable transgenic material to non-transgenic crops and related species. Therefore, it is now essential to develop an efficient marker-free transgenic system. These considerations underline the development of various approaches designed to facilitate timely elimination of transgenes when their function is no longer needed. Due to the limiting number of available selectable marker genes, in future the stacking of transgenes will be increasingly desirable. The production of marker-free transgenic plants is now a critical requisite for their commercial deployment and also for engineering multiple and complex trait. Here we describe the current technologies to eliminate the selectable marker genes (SMG) in order to develop marker-free transgenic plants and also discuss the regulation and biosafety concern of genetically modified (GM) crops.

  16. A comprehensive glycome profiling of Huntington's disease transgenic mice.

    PubMed

    Gizaw, Solomon T; Koda, Toshiaki; Amano, Maho; Kamimura, Keiko; Ohashi, Tetsu; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2015-09-01

    Huntington's disease (HD) is an autosomal, dominantly inherited and progressive neurodegenerative disease, nosologically classified as the presence of intranuclear inclusion bodies and the loss of GABA-containing neurons in the neostriatum and subsequently in the cerebellar cortex. Abnormal processing of neuronal proteins can result in the misfolding of proteins and altered post-translational modification of newly synthesized proteins. Total glycomics, namely, N-glycomics, O-glycomics, and glycosphingolipidomics (GSL-omics) of HD transgenic mice would be a hallmark for central nervous system disorders in order to discover disease specific biomarkers. Glycoblotting method, a high throughput glycomic protocol, and matrix-assisted laser desorption ionization-time of flight/mass spectrometry (MALDI-TOF/MS) were used to study the total glycome expression levels in the brain tissue (3 mice of each sex) and sera (5 mice of each sex) of HD transgenic and control mice. All experiments were performed twice and differences in the expression levels of major glycoforms were compared between HD transgenic and control mice. We estimated the structure and expression levels of 87 and 58N-glycans in brain tissue and sera, respectively, of HD transgenic and control mice. The present results clearly indicated that the brain glycome and their expression levels are significantly gender specific when compared with those of other tissues and serum. Core-fucosylated and bisecting-GlcNAc types of N-glycans were found in increased levels in the brain tissue HD transgenic mice. Accordingly, core-fucosylated and sialic acid (particularly N-glycolylneuraminic acid, NeuGc) for biantennary type glycans were found in increased amounts in the sera of HD transgenic mice compared to that of control mice. Core 3 type O-glycans were found in increased levels in male and in decreased levels in both the striatum and cortexes of female HD transgenic mice. Furthermore, serum levels of core 1 type O

  17. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  18. Selection of growth-related genes and dominant genotypes in transgenic Yellow River carp Cyprinus carpio L.

    PubMed

    Luo, Lifei; Huang, Rong; Zhang, Aidi; Yang, Cheng; Chen, Liangming; Zhu, Denghui; Li, Yongming; He, Libo; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2018-07-01

    Transgenic Yellow River carp is characterized by rapid growth rate and high feed-conversion efficiency and exhibits a great application prospect. However, there is still a significant separation of growth traits in the transgenic Yellow River carp family; as such, growth-related genotypes must be screened for molecular marker-assisted selection. In this study, 23 growth-related candidate genes containing 48 SNP markers were screened through bulked segregant analysis (BSA) among transgenic Yellow River carp family members showing significant separation of growth traits. Then, two growth-related genes (Nos. 17 and 14 genes) were identified through combined genome-wide association study (GWAS) of candidate genes and validation of the full-sibling family approach. Nos. 17 and 14 genes encode BR serine/threonine-protein kinase 2 (BRSK2) and eukaryotic translation-initiation factor 2-alpha kinase 3 (Eif2ak3), respectively. The average body weight of three subgroups carrying the genotypes 17GG, 17GG + 14CC, and 17GG + 14TT of these two genes increased by 27.96, 38.28, and 33.72%, respectively, compared with the controls. The proportion of individuals with body weight > 500 g in these subgroups increased by 19.22, 26.82, and 30.92%, respectively. The results showed that appropriate genotype carriers can be selected from the progeny population through BSA sequencing combined with simplified GWAS analysis. Hence, basic population for breeding can be constructed and transgenic Yellow River carp strains with stable production performance and uniform phenotypic properties can be bred.

  19. Wheat Chloroplast Targeted sHSP26 Promoter Confers Heat and Abiotic Stress Inducible Expression in Transgenic Arabidopsis Plants

    PubMed Central

    Khurana, Neetika; Chauhan, Harsh; Khurana, Paramjit

    2013-01-01

    The small heat shock proteins (sHSPs) have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the hloroplast targeted sHSP26 promoter in detail, deletion analysis of the promoter is carried out and analysed via transgenics in Arabidopsis. In the present study, complete assessment of the importance of CCAAT-box elements along with Heat shock elements (HSEs) in the promoter of sHSP26 was performed. Moreover, the importance of 5′ untranslated region (UTR) has also been established in the promoter via Arabidopsis transgenics. An intense GUS expression was observed after heat stress in the transgenics harbouring a full-length promoter, confirming the heat-stress inducibility of the promoter. Transgenic plants without UTR showed reduced GUS expression when compared to transgenic plants with UTR as was confirmed at the RNA and protein levels by qRT-PCR and GUS histochemical assays, thus suggesting the possible involvement of some regulatory elements present in the UTR in heat-stress inducibility of the promoter. Promoter activity was also checked under different abiotic stresses and revealed differential expression in different deletion constructs. Promoter analysis based on histochemical assay, real-time qPCR and fluorimetric analysis revealed that HSEs alone could not transcribe GUS gene significantly in sHSP26 promoter and CCAAT box elements contribute synergistically to the transcription. Our results also provide insight into the importance of 5`UTR of sHsp26 promoter thus emphasizing the probable role of imperfect CCAAT-box element or some novel cis-element with respect to heat stress. PMID:23349883

  20. Laboratory evaluation of transgenic Populus davidiana×Populus bolleana expressing Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3 genes against gypsy moth and fall webworm.

    PubMed

    Ding, Liping; Chen, Yajuan; Wei, Xiaoli; Ni, Mi; Zhang, Jiewei; Wang, Hongzhi; Zhu, Zhen; Wei, Jianhua

    2017-01-01

    Transgenic poplar lines 'Shanxin' (Populus davidiana×Populus bolleana) were generated via Agrobacterium-mediated transformation. The transgenic lines carried the expression cassettes of Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3, respectively. The expression levels of the exogenous insect resistance genes in the transgenic lines were determined by Q-PCR and Western blot. Leaves of the transgenic lines were used for insect feeding bioassays on first instar larvae of the gypsy moth (Lymantria dispar) and fall webworm (Hyphantria cunea). At 5 d of feeding, the mean mortalities of larvae feeding on Cry1Ac + SCK and Cry1Ah3 transgenic poplars leaves were 97% and 91%, while mortality on Cry9Aa3 transgenic lines was about 49%. All gypsy moth and fall webworm larvae were killed in 7-9 days after feeding on leaves from Cry1Ac + SCK or Cry1Ah3 transgenic poplars, while all the fall webworm larvae were killed in 11 days and about 80% of gypsy moth larvae were dead in 14 days after feeding on those from Cry9Aa3 transgenic lines. It was concluded that the transgenic lines of Cry1Ac + SCK and Cry1Ah3 were highly toxic to larvae of both insect species while lines with Cry9Aa3 had lower toxicity,and H. cunea larvae are more sensitive to the insecticidal proteins compared to L. dispar. Transgenic poplar lines toxic to L. dispar and H. cunea could be used to provide Lepidoptera pest resistance to selected strains of poplar trees.

  1. Identification and quantification of anthocyanins in transgenic purple tomato.

    PubMed

    Su, Xiaoyu; Xu, Jianteng; Rhodes, Davina; Shen, Yanting; Song, Weixing; Katz, Benjamin; Tomich, John; Wang, Weiqun

    2016-07-01

    Anthocyanins are natural pigments derived from the phenylpropanoid pathway. Most tomatoes produce little anthocyanins, but the transgenic purple tomato biosynthesizes a high level of anthocyanins due to expression of two transcription factors (Del and Ros1). This study was to identify and quantify anthocyanins in this transgenic tomato line. Seven anthocyanins, including two new anthocyanins [malvidin-3-(p-coumaroyl)-rutinoside-5-glucoside and malvidin-3-(feruloyl)-rutinoside-5-glucoside], were identified by LC-MS/MS. Petunidin-3-(trans-coumaroyl)-rutinoside-5-glucoside and delphinidin-3-(trans-coumaroyl)-rutinoside-5-glucoside were the most abundant anthocyanins, making up 86% of the total anthocyanins. Compared to undetectable anthocyanins in the wild type, the contents of anthocyanins in the whole fruit, peel, and flesh of the Del/Ros1-transgenic tomato were 5.2±0.5, 5.1±0.5, and 5.8±0.3g/kg dry matter, respectively. Anthocyanins were undetectable in the seeds of both wide-type and transgenic tomato lines. Such novel and high levels of anthocyanins obtained in this transgenic tomato may provide unique functional products with potential health benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Bacteroides fragilis mobilizable transposon Tn5520 requires a 71 base pair origin of transfer sequence and a single mobilization protein for relaxosome formation during conjugation.

    PubMed

    Vedantam, Gayatri; Knopf, Sarah; Hecht, David W

    2006-01-01

    Tn5520 is the smallest known bacterial mobilizable transposon and was isolated from an antibiotic resistant Bacteroides fragilis clinical isolate. When a conjugation apparatus is provided in trans, Tn5520 is mobilized (transferred) efficiently within, and from, both Bacteroides spp. and Escherichia coli. Only two genes are present on Tn5520; one encodes an integrase, and the other a multifunctional mobilization (Mob) protein BmpH. BmpH is essential for Tn5520 mobility. The focus of this study was to identify the Tn5520 origin of conjugative transfer (oriT) and to study BmpH-oriT binding. We delimited the functional Tn5520 oriT to a 71 bp sequence upstream of the bmpH gene. A plasmid vector harbouring this minimal 71 bp oriT was mobilized at the same frequency as that of intact Tn5520. The minimal oriT contains one 17 bp inverted repeat (IR) sequence. We constructed and tested multiple IR mutants and showed that the IR was essential in its entirety for mobilization. A nick site sequence (5'-GCTAC-3') was also identified within the minimal oriT; this sequence resembled nick sites found in plasmids of Gram positive origin. We further showed that mutation of a highly conserved GC dinucleotide in the nick site sequence completely abolished mobilization. We also purified BmpH and showed that it specifically bound a Tn5520 oriT fragment in electrophoretic mobility shift assays. We also identified non-nick site sequences within the minimal oriT that were essential for mobilization. We hypothesize that transposon-based single Mob protein systems may contribute to efficient gene dissemination from Bacteroides spp., because fewer DNA processing proteins are required for relaxosome formation.

  3. Ectopic transgene expression in the retina of four transgenic mouse lines

    PubMed Central

    Gábriel, Robert; Erdélyi, Ferenc; Szabó, Gábor; Lawrence, J. Josh

    2017-01-01

    Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/ Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/ CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR-and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/ CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression. PMID:26563404

  4. Influence of Phytase Transgenic Corn on the Intestinal Microflora and the Fate of Transgenic DNA and Protein in Digesta and Tissues of Broilers

    PubMed Central

    Li, Sufen; Li, Ang; Zhang, Liyang; Liu, Zhenhua; Luo, Xugang

    2015-01-01

    An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers. PMID:26599444

  5. Flanking sequence determination and specific PCR identification of transgenic wheat B102-1-2.

    PubMed

    Cao, Jijuan; Xu, Junyi; Zhao, Tongtong; Cao, Dongmei; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2014-01-01

    The exogenous fragment sequence and flanking sequence between the exogenous fragment and recombinant chromosome of transgenic wheat B102-1-2 were successfully acquired using genome walking technology. The newly acquired exogenous fragment encoded the full-length sequence of transformed genes with transformed plasmid and corresponding functional genes including ubi, vector pBANF-bar, vector pUbiGUSPlus, vector HSP, reporter vector pUbiGUSPlus, promoter ubiquitin, and coli DH1. A specific polymerase chain reaction (PCR) identification method for transgenic wheat B102-1-2 was established on the basis of designed primers according to flanking sequence. This established specific PCR strategy was validated by using transgenic wheat, transgenic corn, transgenic soybean, transgenic rice, and non-transgenic wheat. A specifically amplified target band was observed only in transgenic wheat B102-1-2. Therefore, this method is characterized by high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of transgenic wheat B102-1-2.

  6. ZyFISH: A Simple, Rapid and Reliable Zygosity Assay for Transgenic Mice

    PubMed Central

    McHugh, Donal; O’Connor, Tracy; Bremer, Juliane; Aguzzi, Adriano

    2012-01-01

    Microinjection of DNA constructs into fertilized mouse oocytes typically results in random transgene integration at a single genomic locus. The resulting transgenic founders can be used to establish hemizygous transgenic mouse lines. However, practical and experimental reasons often require that such lines be bred to homozygosity. Transgene zygosity can be determined by progeny testing assays which are expensive and time-consuming, by quantitative Southern blotting which is labor-intensive, or by quantitative PCR (qPCR) which requires transgene-specific design. Here, we describe a zygosity assessment procedure based on fluorescent in situ hybridization (zyFISH). The zyFISH protocol entails the detection of transgenic loci by FISH and the concomitant assignment of homozygosity using a concise and unbiased scoring system. The method requires small volumes of blood, is scalable to at least 40 determinations per assay, and produces results entirely consistent with the progeny testing assay. This combination of reliability, simplicity and cost-effectiveness makes zyFISH a method of choice for transgenic mouse zygosity determinations. PMID:22666404

  7. Destiny of a transgene escape from Brassica napus into Brassica rapa.

    PubMed

    Lu, M.; Kato, M.; Kakihara, F.

    2002-07-01

    Transgenic Brassica napus can be easily crossed with wild Brassica rapa. The spread of the transgene to wild species has aroused the general concern about its effect on ecological and agricultural systems. This paper was designated, by means of population genetics, to study the fate of a transgene escape from B. napus to B. rapa. Three models were proposed to survey the change in gene frequency during successive backcross processes by considering selection pressures against aneuploids, against herbicide-susceptible individuals, and by considering A-C intergenomic recombination and the effect of genetic drift. The transmission rate of an A-chromosome gene through an individual to the next generation was 50%, irrespective of the chromosome number; while that of a C-chromosome transgene varied from 8.7% to 39.9%, depending on the chromosome number of the individual used in the backcross. Without spraying herbicide, the frequency of an A-chromosome gene was 50% in the BC(1) generation, and decreased by 50% with the advance of each backcross generation; that of a C-chromosome gene was around 39.9% in BC(1), 7.7% in BC(2), 1.2% in BC(3) and 0.1% in the BC(4) generation. Under the selection pressure against herbicide-susceptible individuals, the frequency of a transgene reached a stable value of about 5.5% within six generations of successive backcrossings. The effect of genetic drift and intergenomic exchange on gene transmission rate was discussed. It is suggested that the transgene integrated on a C-chromosome (or better on a cytoplasm genome) is safer than that on an A-chromosome. The transgenic cultivars should be cultivated rotationally by year(s) with other non-transgenic varieties in order to reduce the transfer of the transgene to wild B. rapa species.

  8. D409H GBA1 mutation accelerates the progression of pathology in A53T α-synuclein transgenic mouse model.

    PubMed

    Kim, Donghoon; Hwang, Heehong; Choi, Seulah; Kwon, Sang Ho; Lee, Suhyun; Park, Jae Hong; Kim, SangMin; Ko, Han Seok

    2018-04-27

    Heterozygous mutations in glucocerebrosidase 1 (GBA1) are a major genetic risk factor for Parkinson's disease and Dementia with Lewy bodies. Mutations in GBA1 leads to GBA1 enzyme deficiency, and GBA1-associated parkinsonism has an earlier age of onset and more progressive parkinsonism. To investigate a potential influence of GBA1 deficiency caused by mutations in GBA1 on the disease progression of PD, GBA1 mice carrying D409H knock-in mutation were crossbred with the human A53T (hA53T) α-synuclein transgenic mice. Here, we show that GBA1 enzyme activity plays a significant role in the hA53T α-synuclein induced α-synucleinopathy. The expression of D409H GBA1 markedly shortens the lifespan of hA53T α-synuclein transgenic mice. Moreover, D409H GBA1 expression exacerbates the formation of insoluble aggregates of α-synuclein, glial activation, neuronal degeneration, and motor abnormalities in the hA53T α-synuclein transgenic mice. Interestingly, the expression of D409H GBA1 results in the loss of dopaminergic neurons in the substantia nigra pars compacta of hA53T transgenic mice. Taken together, these results indicate that GBA1 deficiency due to D409H mutation affects the disease onset and course in hA53T α-synuclein transgenic mice. Therefore, strategies aimed to maintain GBA1 enzyme activity could be employed to develop an effective novel therapy for GBA1 linked-PD and related α-synucleinopathies.

  9. Modulation of inflammation in transgenic models of Alzheimer’s disease

    PubMed Central

    2014-01-01

    Over the past decade the process of inflammation has been a focus of increasing interest in the Alzheimer’s disease (AD) field, not only for its potential role in neuronal degeneration but also as a promising therapeutic target. However, recent research in this field has provided divergent outcomes, largely due to the use of different models and different stages of the disease when the investigations have been carried out. It is now accepted that microglia, and possibly astrocytes, change their activation phenotype during ageing and the stage of the disease, and therefore these are important factors to have in mind to define the function of different inflammatory components as well as potential therapies. Modulating inflammation using animal models of AD has offered the possibility to investigate inflammatory components individually and manipulate inflammatory genes in amyloid precursor protein and tau transgenics independently. This has also offered some hints on the mechanisms by which these factors may affect AD pathology. In this review we examine the different transgenic approaches and treatments that have been reported to modulate inflammation using animal models of AD. These studies have provided evidence that enhancing inflammation is linked with increases in amyloid-beta (Aβ) generation, Aβ aggregation and tau phosphorylation. However, the alterations on tau phosphorylation can be independent of changes in Aβ levels by these inflammatory mediators. PMID:24490742

  10. Polycythemia in transgenic mice expressing the human erythropoietin gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenza, G.L.; Traystman, M.D.; Gearhart, J.D.

    1989-04-01

    Erythropoietin is a glycoprotein hormone that regulates mammalian erythropoiesis. To study the expression of the human erythropoietin gene, EPO, 4 kilobases of DNA encompassing the gene with 0.4 kilobase of 5{prime} flanking sequence and 0.7 kilobase of 3{prime} flanking sequence was microinjected into fertilized mouse eggs. Transgenic mice were generated that are polycythemic, with increased erythrocytic indices in peripheral blood, increased numbers of erythroid precursors in hematopoietic tissue, and increased serum erythropoietin levels. Transgenic homozygotes show a greater degree of polycythemia than do heterozygotes as well as striking extramedullary erythropoiesis. Human erythropoietin RNA was found not only in fetal liver,more » adult liver, and kidney but also in all other transgenic tissues analyzed. Anemia induced increased human erythropoietin RNA levels in liver but not kidney. These transgenic mice represent a unique model of polycythemia due to increased erythropoietin levels.« less

  11. Transgenic plants expressing GLK1 and CCA1 having increased nitrogen assimilation capacity

    DOEpatents

    Coruzzi, Gloria [New York, NY; Gutierrez, Rodrigo A [Santiago, CL; Nero, Damion C [Woodside, NY

    2012-04-10

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  12. Transgene manipulation in zebrafish by using recombinases.

    PubMed

    Dong, Jie; Stuart, Gary W

    2004-01-01

    Although much remains to be done, our results to date suggest that efficient and precise genome engineering in zebrafish will be possible in the future by using Cre recombinase and SB transposase in combination with their respective target sites. In this study, we provide the first evidence that Cre recombinase can mediate effective site-specific deletion of transgenes in zebrafish. We found that the efficiency of target site utilization could approach 100%, independent of whether the target site was provided transiently by injection or stably within an integrated transgene. Microinjection of Cre mRNA appeared to be slightly more effective for this purpose than microinjection of Cre-expressing plasmid DNA. Our work has not yet progressed to the point where SB-mediated mobilization of our transgene constructs would be observed. However, a recent report has demonstrated that SB can enhance transgenesis rates sixfold over conventional methods by efficiently mediating multiple single-copy insertion of transgenes into the zebrafish genome (Davidson et al., 2003). Therefore, it seems likely that a combined system should eventually allow both SB-mediated transgene mobilization and Cre-mediated transgene modification. Our goal is to validate methods for the precise reengineering of the zebrafish genome by using a combination of Cre-loxP and SB transposon systems. These methods can be used to delete, replace, or mobilize large pieces of DNA or to modify the genome only when and where required by the investigator. For example, it should be possible to deliver particular RNAi genes to well-expressed chromosomal loci and then exchange them easily with alternative RNAi genes for the specific suppression of alternative targets. As a nonviral vector for gene therapy, the transposon component allows for the possibility of highly efficient integration, whereas the Cre-loxP component can target the integration and/or exchange of foreign DNA into specific sites within the genome. The

  13. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation

  14. Enhancing lignan biosynthesis by over-expressing pinoresinol lariciresinol reductase in transgenic wheat.

    PubMed

    Ayella, Allan K; Trick, Harold N; Wang, Weiqun

    2007-12-01

    Lignans are phenylpropane dimers that are biosynthesized via the phenylpropanoid pathway, in which pinoresinol lariciresinol reductase (PLR) catalyzes the last steps of lignan production. Our previous studies demonstrated that the contents of lignans in various wheat cultivars were significantly associated with anti-tumor activities in APC(Min) mice. To enhance lignan biosynthesis, this study was conducted to transform wheat cultivars ('Bobwhite', 'Madison', and 'Fielder', respectively) with the Forsythia intermedia PLR gene under the regulatory control of maize ubiquitin promoter. Of 24 putative transgenic wheat lines, we successfully obtained 3 transformants with the inserted ubiquitin-PLR gene as screened by PCR. Southern blot analysis further demonstrated that different copies of the PLR gene up to 5 were carried out in their genomes. Furthermore, a real-time PCR indicated approximately 17% increase of PLR gene expression over the control in 2 of the 3 positive transformants at T(0) generation. The levels of secoisolariciresinol diglucoside, a prominent lignan in wheat as determined by HPLC-MS, were found to be 2.2-times higher in one of the three positive transgenic sub-lines at T(2 )than that in the wild-type (117.9 +/- 4.5 vs. 52.9 +/- 19.8 mug/g, p <0.005). To the best of our knowledge, this is the first study that elevated lignan levels in a transgenic wheat line has been successfully achieved through genetic engineering of over-expressed PLR gene. Although future studies are needed for a stably expression and more efficient transformants, the new wheat line with significantly higher SDG contents obtained from this study may have potential application in providing additive health benefits for cancer prevention.

  15. The Competence of Maize Shoot Meristems for Integrative Transformation and Inherited Expression of Transgenes.

    PubMed Central

    Zhong, H.; Sun, B.; Warkentin, D.; Zhang, S.; Wu, R.; Wu, T.; Sticklen, M. B.

    1996-01-01

    We have developed a novel and reproducible system for recovery of fertile transgenic maize (Zea mays L.) plants. The transformation was performed using microprojectile bombardment of cultured shoot apices of maize with a plasmid carrying two linked genes, the Streptomyces hygroscopicus phosphinothricin acetyltransferase gene (bar) and the potato proteinase inhibitor II gene, either alone or in combination with another plasmid containing the 5[prime] region of the rice actin 1 gene fused to the Escherichia coli [beta]-glucuronidase gene (gus). Bombarded shoot apices were subsequently multiplied and selected under 3 to 5 mg/L glufosinate ammonium. Co-transformation frequency was 100% (146/146) for linked genes and 80% (41/51) for unlinked genes. Co-expression frequency of the bar and gus genes was 57% (29/51). The co-integration, co-inheritance, and co-expression of bar, the potato proteinase inhibitor II gene, and gus in transgenic R0, R1, and R2 plants were confirmed. Localized expression of the actin 1-GUS protein in the R0 and R1 plants was extensively analyzed by histochemical and fluorometric assays. PMID:12226244

  16. Transgenic Wheat, Barley and Oats: Future Prospects

    NASA Astrophysics Data System (ADS)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  17. Bioavailability of transgenic microRNAs in genetically modified plants

    USDA-ARS?s Scientific Manuscript database

    Transgenic expression of small RNAs is a prevalent approach in agrobiotechnology for the global enhancement of plant foods. Meanwhile, emerging studies have, on the one hand, emphasized the potential of transgenic microRNAs (miRNAs) as novel dietary therapeutics and, on the other, suggested potentia...

  18. Toxins for Transgenic Resistance to Hemipteran Pests

    PubMed Central

    Chougule, Nanasaheb P.; Bonning, Bryony C.

    2012-01-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests. PMID:22822455

  19. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase.

    PubMed

    Ruiz, Oscar N; Alvarez, Derry; Gonzalez-Ruiz, Gloriene; Torres, Cesar

    2011-08-12

    The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria. The high accumulation of

  20. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    PubMed Central

    2011-01-01

    Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria

  1. Generation of transgenic monkeys with human inherited genetic disease.

    PubMed

    Chan, Anthony W S; Yang, Shang-Hsun

    2009-09-01

    Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington's disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington's disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species.

  2. The a“MAZE”ing World of Lung-Specific Transgenic Mice

    PubMed Central

    Rawlins, Emma L.

    2012-01-01

    The purpose of this review is to give a comprehensive overview of transgenic mouse lines suitable for studying gene function and cellular lineage relationships in lung development, homeostasis, injury, and repair. Many of the mouse strains reviewed in this Perspective have been widely shared within the lung research community, and new strains are continuously being developed. There are many transgenic lines that target subsets of lung cells, but it remains a challenge for investigators to select the correct transgenic modules for their experiment. This review covers the tetracycline- and tamoxifen-inducible systems and focuses on conditional lines that target the epithelial cells. We point out the limitations of each strain so investigators can choose the system that will work best for their scientific question. Current mesenchymal and endothelial lines are limited by the fact that they are not lung specific. These lines are summarized in a brief overview. In addition, useful transgenic reporter mice for studying lineage relationships, promoter activity, and signaling pathways will complete our lung-specific conditional transgenic mouse shopping list. PMID:22180870

  3. Development and application of transgenic technologies in cassava.

    PubMed

    Taylor, Nigel; Chavarriaga, Paul; Raemakers, Krit; Siritunga, Dimuth; Zhang, Peng

    2004-11-01

    The capacity to integrate transgenes into the tropical root crop cassava (Manihot esculenta Crantz) is now established and being utilized to generate plants expressing traits of agronomic interest. The tissue culture and gene transfer systems currently employed to produce these transgenic cassava have improved significantly over the past 5 years and are assessed and compared in this review. Programs are underway to develop cassava with enhanced resistance to viral diseases and insects pests, improved nutritional content, modified and increased starch metabolism and reduced cyanogenic content of processed roots. Each of these is described individually for the underlying biology the molecular strategies being employed and progress achieved towards the desired product. Important advances have occurred, with transgenic plants from several laboratories being prepared for field trails.

  4. Detection of a Common and Persistent tet(L)-Carrying Plasmid in Chicken-Waste-Impacted Farm Soil

    PubMed Central

    Hilpert, Markus; Ward, Mandy J.

    2012-01-01

    The connection between farm-generated animal waste and the dissemination of antibiotic resistance in soil microbial communities, via mobile genetic elements, remains obscure. In this study, electromagnetic induction (EMI) surveying of a broiler chicken farm assisted soil sampling from a chicken-waste-impacted site and a marginally affected site. Consistent with the EMI survey, a disparity existed between the two sites with regard to soil pH, tetracycline resistance (Tcr) levels among culturable soil bacteria, and the incidence and prevalence of several tet and erm genes in the soils. No significant difference was observed in these aspects between the marginally affected site and several sites in a relatively pristine regional forest. When the farm was in operation, tet(L), tet(M), tet(O), erm(A), erm(B), and erm(C) genes were detected in the waste-affected soil. Two years after all waste was removed from the farm, tet(L), tet(M), tet(O), and erm(C) genes were still detected. The abundances of tet(L), tet(O), and erm(B) were measured using quantitative PCR, and the copy numbers of each were normalized to eubacterial 16S rRNA gene copy numbers. tet(L) was the most prevalent gene, whereas tet(O) was the most persistent, although all declined over the 2-year period. A mobilizable plasmid carrying tet(L) was identified in seven of 14 Tcr soil isolates. The plasmid's hosts were identified as species of Bhargavaea, Sporosarcina, and Bacillus. The plasmid's mobilization (mob) gene was quantified to estimate its prevalence in the soil, and the ratio of tet(L) to mob was shown to have changed from 34:1 to 1:1 over the 2-year sampling period. PMID:22389375

  5. Principles and application of transgenic technology in marine organisms

    USDA-ARS?s Scientific Manuscript database

    Marine organisms into which a foreign gene or noncoding DNA fragment is artificially introduced and stably integrated in their genomes are termed transgenic marine organisms. Since the first report in 1985, a wide range of transgenic fish and marine bivalve mollusks have been produced by microinjec...

  6. Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation

    PubMed Central

    Lavitrano, Marialuisa; Bacci, Maria Laura; Forni, Monica; Lazzereschi, Davide; Di Stefano, Carla; Fioretti, Daniela; Giancotti, Paola; Marfé, Gabriella; Pucci, Loredana; Renzi, Luigina; Wang, Hongjun; Stoppacciaro, Antonella; Stassi, Giorgio; Sargiacomo, Massimo; Sinibaldi, Paola; Turchi, Valeria; Giovannoni, Roberto; Della Casa, Giacinto; Seren, Eraldo; Rossi, Giancarlo

    2002-01-01

    A large number of hDAF transgenic pigs to be used for xenotransplantation research were generated by using sperm-mediated gene transfer (SMGT). The efficiency of transgenesis obtained with SMGT was much greater than with any other method. In the experiments reported, up to 80% of pigs had the transgene integrated into the genome. Most of the pigs carrying the hDAF gene transcribed it in a stable manner (64%). The great majority of pigs that transcribed the gene expressed the protein (83%). The hDAF gene was transmitted to progeny. Expression was stable and found in caveolae as it is in human cells. The expressed gene was functional based on in vitro experiments performed on peripheral blood mononuclear cells. These results show that our SMGT approach to transgenesis provides an efficient procedure for studies involving large animal models. PMID:12393815

  7. Transgenic Plants as Sensors of Environmental Pollution Genotoxicity

    PubMed Central

    Kovalchuk, Igor; Kovalchuk, Olga

    2008-01-01

    Rapid technological development is inevitably associated with many environmental problems which primarily include pollution of soil, water and air. In many cases, the presence of contamination is difficult to assess. It is even more difficult to evaluate its potential danger to the environment and humans. Despite the existence of several whole organism-based and cell-based models of sensing pollution and evaluation of toxicity and mutagenicity, there is no ideal system that allows one to make a quick and cheap assessment. In this respect, transgenic organisms that can be intentionally altered to be more sensitive to particular pollutants are especially promising. Transgenic plants represent an ideal system, since they can be grown at the site of pollution or potentially dangerous sites. Plants are ethically more acceptable and esthetically more appealing than animals as sensors of environmental pollution. In this review, we will discuss various transgenic plant-based models that have been successfully used for biomonitoring genotoxic pollutants. We will also discuss the benefits and potential drawbacks of these systems and describe some novel ideas for the future generation of efficient transgenic phytosensors. PMID:27879779

  8. Comparison of Model Predictions and Laboratory Observations of Transgene Frequencies in Continuously-Breeding Mosquito Populations

    PubMed Central

    Valerio, Laura; North, Ace; Collins, C. Matilda; Mumford, John D.; Facchinelli, Luca; Spaccapelo, Roberta; Benedict, Mark Q.

    2016-01-01

    The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither apparent nor included as model parameters. In order to assess the correlation between predictions and observations, models were constructed to estimate the frequency of a transgene causing male sexual sterility in simulated populations of a malaria mosquito Anopheles gambiae that were seeded with transgenic females at various proportions. Concurrently, overlapping-generation laboratory populations similar to those being modeled were initialized with various starting transgene proportions, and the subsequent proportions of transgenic individuals in populations were determined weekly until the transgene disappeared. The specific transgene being tested contained a homing endonuclease gene expressed in testes, I-PpoI, that cleaves the ribosomal DNA and results in complete male sexual sterility with no effect on female fertility. The transgene was observed to disappear more rapidly than the model predicted in all cases. The period before ovipositions that contained no transgenic progeny ranged from as little as three weeks after cage initiation to as long as 11 weeks. PMID:27669312

  9. [Ecological fitness of transgenic GAFP cotton and its effects on the field insect community.

    PubMed

    Luo, Jun Yu; Zhang, Shuai; Zhu, Xiang Zhen; Lu, Li Min; Wang, Chun Yi; Li, Chun Hua; Zhang, Li Juan; Wang, Li; Cui, Jin Jie

    2016-11-18

    The ecological fitness of transgenic cotton and its effects on the insect communities in cotton fields is one of the key aspects of the evaluation of the environmental safety of transgenic cotton. New transgenic GAFP (Gastrodia anti-fungal protein) cotton and its parental varieties were used in this study to explore their ecological fitness and their effects on insect community infield in Anyang, Henan Province in 2013 and 2014. The results showed that there was no significant difference in dry mass for transgenic cotton leaves compared to that of parental cotton. Specific leaf areas of transgenic cotton were lowered obviously at seedling stage, while enhanced significantly at budding, flowering and bolling stages relative to parental cotton. The plant height of transgenic cotton was lowered only at seedling stage, and no significant difference was showed between the two cultivars at budding, flowering and bolling stages. No significant differences were discovered on plant branch numbers, bud numbers and falling numbers between the transgenic cotton and control material in any of the four key stages during the cotton growth. However, the number of bolls per plant for transgenic cotton was lower than that of the control cotton at the bolling stage. In the 2nd, 3rd, and 4th generation of cotton bollworm (Helicoverpa armigera), the mortality rate of cotton bollworm and beet armyworm (Spodoptera exigua) of transgenic cotton had no significant difference with parental cotton. Compared to parental cotton, total individuals of insect community, pest sub-communities and enemy sub-communities in transgenic cotton field didn't show any significant difference. The above results showed that after the GAFP gene was imported into cotton, the cotton growth was enhanced significantly, while the whole yield component traits and the insect community in the field were not significantly changed. Our study on the competition of new transgenic cotton and survival of transgenic cotton

  10. Phytodegradation of organophosphorus compounds by transgenic plants expressing a bacterial organophosphorus hydrolase.

    PubMed

    Wang, Xiaoxue; Wu, Ningfeng; Guo, Jun; Chu, Xiaoyu; Tian, Jian; Yao, Bin; Fan, Yunliu

    2008-01-18

    Organophosphorus (OP) compounds are widely used as pesticides in agriculture but cause broad-area environmental pollution. In this work, we have expressed a bacterial organophosphorus hydrolase (OPH) gene in tobacco plants. An assay of enzyme activity showed that transgenic plants could secrete OPH into the growth medium. The transgenic plants were resistant to methyl parathion (Mep), an OP pesticide, as evidenced by a toxicity test showing that the transgenic plants produced greater shoot and root biomass than did the wild-type plants. Furthermore, at 0.02% (v/v) Mep, the transgenic plants degraded more than 99% of Mep after 14 days of growth. Our work indicates that transgenic plants expressing an OPH gene may provide a new strategy for decontaminating OP pollutants.

  11. Increasing anthraquinone production by overexpression of 1-deoxy-D: -xylulose-5-phosphate synthase in transgenic cell suspension cultures of Morinda citrifolia.

    PubMed

    Quevedo, Carla; Perassolo, María; Alechine, Eugenia; Corach, Daniel; Giulietti, Ana María; Talou, Julián Rodriguez

    2010-07-01

    A Morinda citrifolia cell line was obtained by overexpresion of 1-deoxy-D: -xylulose 5-phosphate synthase (DXS) from Catharanthus roseus, a key enzyme of the metabolic pathway of anthraquinones (AQs). This cell line increased AQs production by about 24% compared to the control cell line. This transgenic cell line which carries dxs cDNA isolated from Catharanthus roseus, was achieved by direct transformation of cell suspension cultures of M. citrifolia using a hypervirulent Agrobacterium tumefaciens strain. The effects of the overexpression of the dxs gene also resulted in increased levels of dxs mRNA transcripts and DXS activity compared to the control cell line. In addition, total phenolics and phenylalanine ammonia-lyase activity were evaluated and were significantly higher in the transgenic line than in controls.

  12. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    PubMed

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  13. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4.

    PubMed

    Dale, James; James, Anthony; Paul, Jean-Yves; Khanna, Harjeet; Smith, Mark; Peraza-Echeverria, Santy; Garcia-Bastidas, Fernando; Kema, Gert; Waterhouse, Peter; Mengersen, Kerrie; Harding, Robert

    2017-11-14

    Banana (Musa spp.) is a staple food for more than 400 million people. Over 40% of world production and virtually all the export trade is based on Cavendish banana. However, Cavendish banana is under threat from a virulent fungus, Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) for which no acceptable resistant replacement has been identified. Here we report the identification of transgenic Cavendish with resistance to TR4. In our 3-year field trial, two lines of transgenic Cavendish, one transformed with RGA2, a gene isolated from a TR4-resistant diploid banana, and the other with a nematode-derived gene, Ced9, remain disease free. Transgene expression in the RGA2 lines is strongly correlated with resistance. Endogenous RGA2 homologs are also present in Cavendish but are expressed tenfold lower than that in our most resistant transgenic line. The expression of these homologs can potentially be elevated through gene editing, to provide non-transgenic resistance.

  14. Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kwang Sung; Won, Ji Young; Park, Jin-Ki

    Research highlights: {yields} Human CD59 (hCD59) gene was introduced into porcine embryonic germ (EG) cells. {yields} hCD59-transgenic EG cells were resistant to hyperacute rejection in cytolytic assay. {yields} hCD59-transgenic pigs were produced by EG cell nuclear transfer. -- Abstract: This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to producemore » transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.« less

  15. Real-Time PCR for the Detection of Precise Transgene Copy Number in Wheat.

    PubMed

    Giancaspro, Angelica; Gadaleta, Agata; Blanco, Antonio

    2017-01-01

    Despite the unceasing advances in genetic transformation techniques, the success of common delivery methods still lies on the behavior of the integrated transgenes in the host genome. Stability and expression of the introduced genes are influenced by several factors such as chromosomal location, transgene copy number and interaction with the host genotype. Such factors are traditionally characterized by Southern blot analysis, which can be time-consuming, laborious, and often unable to detect the exact copy number of rearranged transgenes. Recent research in crop field suggests real-time PCR as an effective and reliable tool for the precise quantification and characterization of transgene loci. This technique overcomes most problems linked to phenotypic segregation analysis and can analyze hundreds of samples in a day, making it an efficient method for estimating a gene copy number integrated in a transgenic line. This protocol describes the use of real-time PCR for the detection of transgene copy number in durum wheat transgenic lines by means of two different chemistries (SYBR ® Green I dye and TaqMan ® probes).

  16. Comparison of the physiological characteristics of transgenic insect-resistant cotton and conventional lines.

    PubMed

    Li, Xiaogang; Ding, Changfeng; Wang, Xingxiang; Liu, Biao

    2015-03-04

    The introduction of transgenic insect-resistant cotton into agricultural ecosystems has raised concerns regarding its ecological effects. Many studies have been conducted to compare the differences in characteristics between transgenic cotton and conventional counterparts. However, few studies have focused on the different responses of transgenic cotton to stress conditions, especially to the challenges of pathogens. The aim of this work is to determine the extent of variation in physiological characteristics between transgenic insect-resistant cotton and the conventional counterpart infected by cotton soil-borne pathogens. The results showed that the difference in genetic backgrounds is the main factor responsible for the effects on biochemical characteristics of transgenic cotton when incubating with cotton Fusarium oxysporum. However, genetic modification had a significantly greater influence on the stomatal structure of transgenic cotton than the effects of cotton genotypes. Our results highlight that the differences in genetic background and/or genetic modifications may introduce variations in physiological characteristics and should be considered to explore the potential unexpected ecological effects of transgenic cotton.

  17. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, N.V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon. .

  18. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, Natasha V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  19. Antisense expression of the peptide transport gene AtPTR2-B delays flowering and arrests seed development in transgenic Arabidopsis plants.

    PubMed Central

    Song, W; Koh, S; Czako, M; Marton, L; Drenkard, E; Becker, J M; Stacey, G

    1997-01-01

    Previously, we identified a peptide transport gene, AtPTR2-B, from Arabidopsis thaliana that was constitutively expressed in all plant organs, suggesting an important physiological role in plant growth and development. To evaluate the function of this transporter, transgenic Arabidopsis plants were constructed expressing antisense or sense AtPTR2-B. Genomic Southern analysis indicated that four independent antisense and three independent sense AtPTR2-B transgenic lines were obtained, which was confirmed by analysis of the segregation of the kanamycin resistance gene carried on the T-DNA. RNA blot data showed that the endogenous AtPTR2-B mRNA levels were significantly reduced in transgenic leaves and flowers, but not in transgenic roots. Consistent with this reduction in endogenous AtPTR2-B mRNA levels, all four antisense lines and one sense line exhibited significant phenotypic changes, including late flowering and arrested seed development. These phenotypic changes could be explained by a defect in nitrogen nutrition due to the reduced peptide transport activity conferred by AtPTR2-B. These results suggest that AtPTR2-B may play a general role in plant nutrition. The AtPTR2-B gene was mapped to chromosome 2, which is closely linked to the restriction fragment length polymorphism marker m246. PMID:9232875

  20. Single-Event Transgene Product Levels Predict Levels in Genetically Modified Breeding Stacks.

    PubMed

    Gampala, Satyalinga Srinivas; Fast, Brandon J; Richey, Kimberly A; Gao, Zhifang; Hill, Ryan; Wulfkuhle, Bryant; Shan, Guomin; Bradfisch, Greg A; Herman, Rod A

    2017-09-13

    The concentration of transgene products (proteins and double-stranded RNA) in genetically modified (GM) crop tissues is measured to support food, feed, and environmental risk assessments. Measurement of transgene product concentrations in breeding stacks of previously assessed and approved GM events is required by many regulatory authorities to evaluate unexpected transgene interactions that might affect expression. Research was conducted to determine how well concentrations of transgene products in single GM events predict levels in breeding stacks composed of these events. The concentrations of transgene products were compared between GM maize, soybean, and cotton breeding stacks (MON-87427 × MON-89034 × DAS-Ø15Ø7-1 × MON-87411 × DAS-59122-7 × DAS-40278-9 corn, DAS-81419-2 × DAS-44406-6 soybean, and DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 × MON-88913-8 × DAS-81910-7 cotton) and their component single events (MON-87427, MON-89034, DAS-Ø15Ø7-1, MON-87411, DAS-59122-7, and DAS-40278-9 corn, DAS-81419-2, and DAS-44406-6 soybean, and DAS-21023-5, DAS-24236-5, SYN-IR102-7, MON-88913-8, and DAS-81910-7 cotton). Comparisons were made within a crop and transgene product across plant tissue types and were also made across transgene products in each breeding stack for grain/seed. Scatter plots were generated comparing expression in the stacks to their component events, and the percent of variability accounted for by the line of identity (y = x) was calculated (coefficient of identity, I 2 ). Results support transgene concentrations in single events predicting similar concentrations in breeding stacks containing the single events. Therefore, food, feed, and environmental risk assessments based on concentrations of transgene products in single GM events are generally applicable to breeding stacks composed of these events.

  1. Production of diabetic offspring using cryopreserved epididymal sperm by in vitro fertilization and intrafallopian insemination techniques in transgenic pigs.

    PubMed

    Umeyama, Kazuhiro; Honda, Kasumi; Matsunari, Hitomi; Nakano, Kazuaki; Hidaka, Tatsuro; Sekiguchi, Keito; Mochizuki, Hironori; Takeuchi, Yasuhiro; Fujiwara, Tsukasa; Watanabe, Masahito; Nagaya, Masaki; Nagashima, Hiroshi

    2013-12-17

    Somatic cell nuclear transfer (SCNT) is a useful technique for creating pig strains that model human diseases. However, production of numerous cloned disease model pigs by SCNT for large-scale experiments is impractical due to its complexity and inefficiency. In the present study, we aimed to establish an efficient procedure for proliferating the diabetes model pig carrying the mutant human hepatocyte nuclear factor-1α gene. A founder diabetes transgenic cloned pig was generated by SCNT and treated with insulin to allow for normal growth to maturity, at which point epididymal sperm could be collected for cryopreservation. In vitro fertilization and intrafallopian insemination using the cryopreserved epididymal sperm resulted in diabetes model transgenic offspring. These results suggest that artificial reproductive technology using cryopreserved epididymal sperm could be a practical option for proliferation of genetically modified disease model pigs.

  2. Production of Diabetic Offspring Using Cryopreserved Epididymal Sperm by In Vitro Fertilization and Intrafallopian Insemination Techniques in Transgenic Pigs

    PubMed Central

    UMEYAMA, Kazuhiro; HONDA, Kasumi; MATSUNARI, Hitomi; NAKANO, Kazuaki; HIDAKA, Tatsuro; SEKIGUCHI, Keito; MOCHIZUKI, Hironori; TAKEUCHI, Yasuhiro; FUJIWARA, Tsukasa; WATANABE, Masahito; NAGAYA, Masaki; NAGASHIMA, Hiroshi

    2013-01-01

    Abstract Somatic cell nuclear transfer (SCNT) is a useful technique for creating pig strains that model human diseases. However, production of numerous cloned disease model pigs by SCNT for large-scale experiments is impractical due to its complexity and inefficiency. In the present study, we aimed to establish an efficient procedure for proliferating the diabetes model pig carrying the mutant human hepatocyte nuclear factor-1α gene. A founder diabetes transgenic cloned pig was generated by SCNT and treated with insulin to allow for normal growth to maturity, at which point epididymal sperm could be collected for cryopreservation. In vitro fertilization and intrafallopian insemination using the cryopreserved epididymal sperm resulted in diabetes model transgenic offspring. These results suggest that artificial reproductive technology using cryopreserved epididymal sperm could be a practical option for proliferation of genetically modified disease model pigs. PMID:23979397

  3. Expression of hepatitis B surface antigen in transgenic plants.

    PubMed Central

    Mason, H S; Lam, D M; Arntzen, C J

    1992-01-01

    Tobacco plants were genetically transformed with the gene encoding hepatitis B surface antigen (HBsAg) linked to a nominally constitutive promoter. Enzyme-linked immunoassays using a monoclonal antibody directed against human serum-derived HBsAg revealed the presence of HBsAg in extracts of transformed leaves at levels that correlated with mRNA abundance. This suggests that there were no major inherent limitations of transcription or translation of this foreign gene in plants. Recombinant HBsAg was purified from transgenic plants by immunoaffinity chromatography and examined by electron microscopy. Spherical particles with an average diameter of 22 nm were observed in negatively stained preparations. Sedimentation of transgenic plant extracts in sucrose and cesium chloride density gradients showed that the recombinant HBsAg and human serum-derived HBsAg had similar physical properties. Because the HBsAg produced in transgenic plants is antigenically and physically similar to the HBsAg particles derived from human serum and recombinant yeast, which are used as vaccines, we conclude that transgenic plants hold promise as low-cost vaccine production systems. Images PMID:1465391

  4. Auxin Synthesis-Encoding Transgene Enhances Grape Fecundity1[OA

    PubMed Central

    Costantini, Elisa; Landi, Lucia; Silvestroni, Oriana; Pandolfini, Tiziana; Spena, Angelo; Mezzetti, Bruno

    2007-01-01

    Grape (Vitis vinifera) yield is largely dependent on the fecundity of the cultivar. The average number of inflorescences per shoot (i.e. shoot fruitfulness) is a trait related to fecundity of each grapevine. Berry number and weight per bunch are other features affecting grape yield. An ovule-specific auxin-synthesizing (DefH9-iaaM) transgene that increases the indole-3-acetic acid content of grape transgenic berries was transformed into cultivars Silcora and Thompson Seedless, which differ in the average number of inflorescences per shoots. Thompson Seedless naturally has very low shoot fruitfulness, whereas Silcora has medium shoot fruitfulness. The average number of inflorescences per shoot in DefH9-iaaM Thompson Seedless was doubled compared to its wild-type control. Berry number per bunch was increased in both transgenic cultivars. The quality and nutritional value of transgenic berries were substantially equivalent to their control fruits. The data presented indicate that auxin enhances fecundity in grapes, thus enabling to increase yield with lower production costs. PMID:17337528

  5. RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea.

    PubMed

    Kumar, Sanjeev; Tanti, Bhaben; Patil, Basavaprabhu L; Mukherjee, Sunil Kumar; Sahoo, Lingaraj

    2017-01-01

    Cowpea is an important grain legume crop of Africa, Latin America, and Southeast Asia. Leaf curl and golden mosaic diseases caused by Mungbean yellow mosaic India virus (MYMIV) have emerged as most devastating viral diseases of cowpea in Southeast Asia. In this study, we employed RNA interference (RNAi) strategy to control cowpea-infecting MYMIV. For this, we generated transgenic cowpea plants harbouring three different intron hairpin RNAi constructs, containing the AC2, AC4 and fusion of AC2 and AC4 (AC2+AC4) of seven cowpea-infecting begomoviruses. The T0 and T1 transgenic cowpea lines of all the three constructs accumulated transgene-specific siRNAs. Transgenic plants were further assayed up to T1 generations, for resistance to MYMIV using agro-infectious clones. Nearly 100% resistance against MYMIV infection was observed in transgenic lines, expressing AC2-hp and AC2+AC4-hp RNA, when compared with untransformed controls and plants transformed with empty vectors, which developed severe viral disease symptoms within 3 weeks. The AC4-hp RNA expressing lines displayed appearance of milder symptoms after 5 weeks of MYMIV-inoculation. Northern blots revealed a positive correlation between the level of transgene-specific siRNAs accumulation and virus resistance. The MYMIV-resistant transgenic lines accumulated nearly zero or very low titres of viral DNA. The transgenic cowpea plants had normal phenotype with no yield penalty in greenhouse conditions. This is the first demonstration of RNAi-derived resistance to MYMIV in cowpea.

  6. RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea

    PubMed Central

    Kumar, Sanjeev; Tanti, Bhaben; Patil, Basavaprabhu L.; Mukherjee, Sunil Kumar

    2017-01-01

    Cowpea is an important grain legume crop of Africa, Latin America, and Southeast Asia. Leaf curl and golden mosaic diseases caused by Mungbean yellow mosaic India virus (MYMIV) have emerged as most devastating viral diseases of cowpea in Southeast Asia. In this study, we employed RNA interference (RNAi) strategy to control cowpea-infecting MYMIV. For this, we generated transgenic cowpea plants harbouring three different intron hairpin RNAi constructs, containing the AC2, AC4 and fusion of AC2 and AC4 (AC2+AC4) of seven cowpea-infecting begomoviruses. The T0 and T1 transgenic cowpea lines of all the three constructs accumulated transgene-specific siRNAs. Transgenic plants were further assayed up to T1 generations, for resistance to MYMIV using agro-infectious clones. Nearly 100% resistance against MYMIV infection was observed in transgenic lines, expressing AC2-hp and AC2+AC4-hp RNA, when compared with untransformed controls and plants transformed with empty vectors, which developed severe viral disease symptoms within 3 weeks. The AC4-hp RNA expressing lines displayed appearance of milder symptoms after 5 weeks of MYMIV-inoculation. Northern blots revealed a positive correlation between the level of transgene-specific siRNAs accumulation and virus resistance. The MYMIV-resistant transgenic lines accumulated nearly zero or very low titres of viral DNA. The transgenic cowpea plants had normal phenotype with no yield penalty in greenhouse conditions. This is the first demonstration of RNAi-derived resistance to MYMIV in cowpea. PMID:29077738

  7. Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions

    PubMed Central

    2012-01-01

    Background Striga species are noxious root hemi-parasitic weeds that debilitate cereal production in sub-Saharan Africa (SSA). Control options for Striga are limited and developing Striga resistant crop germplasm is regarded as the best and most sustainable control measure. Efforts to improve germplasm for Striga resistance by a non-Genetic Modification (GM) approach, for example by exploiting natural resistance, or by a GM approach are constrained by limited information on the biological processes underpinning host-parasite associations. Additionaly, a GM approach is stymied by lack of availability of candidate resistance genes for introduction into hosts and robust transformation methods to validate gene functions. Indeed, a majority of Striga hosts, the world’s most cultivated cereals, are recalcitrant to genetic transformation. In maize, the existing protocols for transformation and regeneration are tedious, lengthy, and highly genotype-specific with low efficiency of transformation. Results We used Agrobacterium rhizogenes strain K599 carrying a reporter gene construct, Green Fluorescent Protein (GFP), to generate transgenic composite maize plants that were challenged with the parasitic plant Striga hermonthica. Eighty five percent of maize plants produced transgenic hairy roots expressing GFP. Consistent with most hairy roots produced in other species, transformed maize roots exhibited a hairy root phenotype, the hallmark of A. rhizogenes mediated transformation. Transgenic hairy roots resulting from A. rhizogenes transformation were readily infected by S. hermonthica. There were no significant differences in the number and size of S. hermonthica individuals recovered from either transgenic or wild type roots. Conclusions This rapid, high throughput, transformation technique will advance our understanding of gene function in parasitic plant-host interactions. PMID:22720750

  8. Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004).

    PubMed

    Ortiz-García, S; Ezcurra, E; Schoel, B; Acevedo, F; Soberón, J; Snow, A A

    2005-08-30

    In 2000, transgenes were detected in local maize varieties (landraces) in the mountains of Oaxaca, Mexico [Quist, D. & Chapela, I. H. (2001) Nature 414, 541-543]. This region is part of the Mesoamerican center of origin for maize (Zea mays L.), and the genetic diversity that is maintained in open-pollinated landraces is recognized as an important genetic resource of great cultural value. The presence of transgenes in landraces was significant because transgenic maize has never been approved for cultivation in Mexico. Here we provide a systematic survey of the frequency of transgenes in currently grown landraces. We sampled maize seeds from 870 plants in 125 fields and 18 localities in the state of Oaxaca during 2003 and 2004. We then screened 153,746 sampled seeds for the presence of two transgene elements from the 35S promoter of the cauliflower mosaic virus and the nopaline synthase gene (nopaline synthase terminator) from Agrobacterium tumefaciens. One or both of these transgene elements are present in all transgenic commercial varieties of maize. No transgenic sequences were detected with highly sensitive PCR-based markers, appropriate positive and negative controls, and duplicate samples for DNA extraction. We conclude that transgenic maize seeds were absent or extremely rare in the sampled fields. This study provides a much-needed preliminary baseline for understanding the biological, socioeconomic, and ethical implications of the inadvertent dispersal of transgenes from the United States and elsewhere to local landraces of maize in Mexico.

  9. A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis

    PubMed Central

    Lu, Hejun; Kirungu, Joy Nyangasi; Wei, Yangyang; Dong, Qi; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Kunbo; Liu, Fang

    2018-01-01

    Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 (TOM1), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum, 9 in Gossypium arboreum, and 11 in Gossypium raimondii. The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H2O2. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton cultivars

  10. A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis.

    PubMed

    Lu, Pu; Magwanga, Richard Odongo; Lu, Hejun; Kirungu, Joy Nyangasi; Wei, Yangyang; Dong, Qi; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Kunbo; Liu, Fang

    2018-04-12

    Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 ( TOM1 ), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum , 9 in Gossypium arboreum , and 11 in Gossypium raimondii . The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H₂O₂. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton

  11. Accurate measure of transgene copy number in crop plants using droplet digital PCR

    USDA-ARS?s Scientific Manuscript database

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy numb...

  12. Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation.

    PubMed

    Gong, Chun Yan; Li, Qi; Yu, Hua Tao; Wang, Zizhang; Wang, Tai

    2012-05-04

    The potential of unintended effects caused by transgenic events is a key issue in the commercialization of genetically modified (GM) crops. To investigate whether transgenic events cause unintended effects, we used comparative proteomics approaches to evaluate proteome differences in seeds from 2 sets of GM indica rice, herbicide-resistant Bar68-1 carrying bar and insect-resistant 2036-1a carrying cry1Ac/sck, and their respective controls D68 and MH86, as well as indica variety MH63, a parental line for breeding MH86, and japonica variety ZH10. This experimental design allowed for comparing proteome difference caused by transgenes, conventional genetic breeding, and natural genetic variation. Proteomics analysis revealed the maximum numbers of differentially expressed proteins between indica and japonica cultivars, second among indica varieties with relative small difference between MH86 and MH63, and the minimum between GM rice and respective control, thus indicating GM events do not substantially alter proteome profiles as compared with conventional genetic breeding and natural genetic variation. Mass spectrometry analysis revealed 234 proteins differentially expressed in the 6 materials, and these proteins were involved in different cellular and metabolic processes with a prominent skew toward metabolism (31.2%), protein synthesis and destination (25.2%), and defense response (22.4%). In these seed proteomes, proteins implicated in the 3 prominent biological processes showed significantly different composite expression patterns and were major factors differentiating japonica and indica cultivars, as well as indica varieties. Thus, metabolism, protein synthesis and destination, and defense response in seeds are important in differentiating rice cultivars and varieties.

  13. Overexpression of the A-FABP gene facilitates intermuscular fat deposition in transgenic mice.

    PubMed

    Liu, Z W; Fan, H L; Liu, X F; Ding, X B; Wang, T; Sui, G N; Li, G P; Guo, H

    2015-03-31

    Adipocyte fatty acid-binding protein (A-FABP), the most abundant FABP in adipocytes, controls fatty acid uptake, transport, and metabolism in fat cells. We constructed a transgenic mice model that overexpressed the cattle A-FABP gene to investigate the relationship between A-FABP expression and intermuscular fat deposition. There was no significant difference in body weight and serum biochemical indexes between transgenic and wild-type mice. Further, there were no significant differences in intermuscular triglyceride content and A-FABP expression levels over three generations of transgenic mice. However, abdominal adipose rate, A-FABP protein content, and intermuscular triglyceride levels of transgenic mice were significantly higher than those of wild-type mice. In addition, triglycerides were remarkably higher in the skeletal muscle but lower in the myocardium of transgenic mice. Thus, overexpression of cattle A-FABP gene promoted fat deposition in the skeletal muscle of transgenic mice.

  14. A bicistronic transgene system for genetic modification of Parthenium argentatum

    USDA-ARS?s Scientific Manuscript database

    Parthenium argentatum (guayule) was transformed with a bicistronic transgene containing a viral 2A cleavage sequence. The transgene includes the coding sequences of two key enzymes of the mevalonate pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and farnesyl pyrophosphate synthase (FPPS), ...

  15. Overview on the investigations of transgenic plums in Romania

    USDA-ARS?s Scientific Manuscript database

    Transgenic plums of Prunus domestica L. transformed with the Plum pox virus coat protein gene (PPV-CP) were the subjects of three experiments undertaken in Romania. In the first experiment, PPV-CP transgenic clones C2, C3, C4, C5, C6, PT3 and PT5 were evaluated for Sharka resistance under high natu...

  16. Overview of the investigation of transgenic plums in Romania

    USDA-ARS?s Scientific Manuscript database

    Transgenic plums of Prunus domestica L. transformed with the Plum pox virus coat protein gene (PPV-CP) were the subjects of three experiments undertaken in Romania. In the first experiment, PPV-CP transgenic clones C2, C3, C4, C5, C6 and PT3 were evaluated for Sharka resistance under high natural i...

  17. Transgenic Crops and Sustainable Agriculture in the European Context

    ERIC Educational Resources Information Center

    Ponti, Luigi

    2005-01-01

    The rapid adoption of transgenic crops in the United States, Argentina, and Canada stands in strong contrast to the situation in the European Union (EU), where a de facto moratorium has been in place since 1998. This article reviews recent scientific literature relevant to the problematic introduction of transgenic crops in the EU to assess if…

  18. Generation of a transgenic cashmere goat using the piggyBac transposition system.

    PubMed

    Bai, Ding-Ping; Yang, Ming-Ming; Qu, Lei; Chen, Yu-Lin

    2017-04-15

    The development of transgenic technologies in the Cashmere goat (Capra hircus) has the potential to improve the quality of the meat and wool. The piggyBac (PB) transposon system is highly efficient and can be used to transpose specific target genes into the genome. Here, we developed a PB transposon system to produce transgenic Cashmere goat fetal fibroblasts (GFFs) with the enhanced green fluorescent protein (EGFP). We then used the genetically modified GFFs as nuclear donors to generate transgenic embryos by somatic cell nuclear transfer (SCNT). The embryos (n = 40) were implanted into female goats (n = 20). One transgenic kid that expressed EGFP throughout the surface features of its body was born. This result demonstrated the usefulness of PB transposon system in generating transgenic Cashmere goats. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    PubMed

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  20. [Efficient packaging retrovirus and construction of transgenic chicken technical platform].

    PubMed

    Man, Chaolai; Zhang, Qing; Chen, Yan; Zhu, Dahai

    2007-10-01

    Transgenic chicken and oviduct bioreactor are growing to be one of the hotspot of scientific study in the field of biology. The most successful method of producing transgenic chicken is pseudotyped retrovirus vector system, but no one has reported the production of transgenic chicken by retrovirus system recently in our country. In order to accelerate our study in this field, we introduced the relevant technical methods such as packaging retrovirus and vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped retrovirus, optimizing the conditions of packaging retrovirus, concentrating VSV-G pseudotyped retrovirus, helper virus assays, and microinjection of retrovirus. Furthermore, we successfully conducted in vivo study for detecting the marker gene EGFP of chicken embryo as well as in vitro study for detecting that gene of chicken embryo myoblast (CFM), thus we have provided an applied technical platform for studies of transgenic chicken in the future.

  1. Transcriptional insulation of the human keratin 18 gene in transgenic mice.

    PubMed Central

    Neznanov, N; Thorey, I S; Ceceña, G; Oshima, R G

    1993-01-01

    Expression of the 10-kb human keratin 18 (K18) gene in transgenic mice results in efficient and appropriate tissue-specific expression in a variety of internal epithelial organs, including liver, lung, intestine, kidney, and the ependymal epithelium of brain, but not in spleen, heart, or skeletal muscle. Expression at the RNA level is directly proportional to the number of integrated K18 transgenes. These results indicate that the K18 gene is able to insulate itself both from the commonly observed cis-acting effects of the sites of integration and from the potential complications of duplicated copies of the gene arranged in head-to-tail fashion. To begin to identify the K18 gene sequences responsible for this property of transcriptional insulation, additional transgenic mouse lines containing deletions of either the 5' or 3' distal end of the K18 gene have been characterized. Deletion of 1.5 kb of the distal 5' flanking sequence has no effect upon either the tissue specificity or the copy number-dependent behavior of the transgene. In contrast, deletion of the 3.5-kb 3' flanking sequence of the gene results in the loss of the copy number-dependent behavior of the gene in liver and intestine. However, expression in kidney, lung, and brain remains efficient and copy number dependent in these transgenic mice. Furthermore, herpes simplex virus thymidine kinase gene expression is copy number dependent in transgenic mice when the gene is located between the distal 5'- and 3'-flanking sequences of the K18 gene. Each adult transgenic male expressed the thymidine kinase gene in testes and brain and proportionally to the number of integrated transgenes. We conclude that the characteristic of copy number-dependent expression of the K18 gene is tissue specific because the sequence requirements for transcriptional insulation in adult liver and intestine are different from those for lung and kidney. In addition, the behavior of the transgenic thymidine kinase gene in testes and

  2. Dehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants

    PubMed Central

    Halder, Tanmoy; Upadhyaya, Gouranga; Basak, Chandra; Das, Arup; Chakraborty, Chandrima; Ray, Sudipta

    2018-01-01

    Environmental stresses generate reactive oxygen species (ROS) which might be detrimental to the plants when produced in an uncontrolled way. However, the plants ameliorate such stresses by synthesizing antioxidants and enzymes responsible for the dismutation of ROS. Additionally, the dehydrins were also able to protect the inactivation of the enzyme lactate dehydrogenase against hydroxyl radicals (OH⋅) generated during Fenton’s reaction. SbDhn1 and SbDhn2 overexpressing transgenic tobacco plants were able to protect against oxidative damage. Transgenic tobacco lines showed better photosynthetic efficiency along with high chlorophyll content, soluble sugar and proline. However, the malonyl dialdehyde (MDA) content was significantly lower in transgenic lines. Experimental evidence demonstrates the protective effect of dehydrins on electron transport chain in isolated chloroplast upon methyl viologen (MV) treatment. The transgenic tobacco plants showed significantly lower superoxide radical generation () upon MV treatment. The accumulation of the H2O2 was also lower in the transgenic plants. Furthermore, in the transgenic plants the expression of ROS scavenging enzymes was higher compared to non-transformed (NT) or vector transformed (VT) plants. Taken together these data, during oxidative stress dehydrins function by scavenging the () directly and also by rendering protection to the enzymes responsible for the dismutation of () thereby significantly reducing the amount of hydrogen peroxides formed. Increase in proline content along with other antioxidants might also play a significant role in stress amelioration. Dehydrins thus function co-operatively with other protective mechanisms under oxidative stress conditions rendering protection in stress environment. PMID:29491874

  3. Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate agent for rAd5-FMDV vaccines in cattle

    USDA-ARS?s Scientific Manuscript database

    Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...

  4. Mendel: a simple excel workbook to compare the observed and expected distributions of genotypes/phenotypes in transgenic and knockout mouse crosses involving up to three unlinked loci by means of a χ2 test.

    PubMed

    Montoliu, Lluís

    2012-06-01

    The analysis of transgenic and knockout mice always involves the establishment of matings with individuals carrying different loci, segregating independently, whose presence is expected among the progeny, according to a Mendelian distribution. The appearance of distorted inheritance ratios suggests the existence of unexpected lethal or sub-lethal phenotypes associated with some genotypes. These situations are common in a number of cases, including: testing transgenic founder mice for germ-line transmission of their transgenes; setting up heterozygous crosses to obtain homozygous individuals, both for transgenic and knockout mice; establishing matings between floxed mouse lines and suitable cre transgenic mouse lines, etc. The Pearson's χ(2) test can be used to assess the significance of the observed frequencies of genotypes/phenotypes in relation to the expected values, in order to determine whether the observed cases fit the expected distribution. Here, I describe a simple Excel workbook to compare the observed and expected distributions of genotypes/phenotypes in transgenic and knockout mouse crosses involving up to three unlinked loci by means of a χ(2) test. The file is freely available for download from my laboratory's web page at: http://www.cnb.csic.es/~montoliu/Mendel.xls .

  5. 2013 North Dakota Transgenic Barley Research and FHB Nursery Report

    USDA-ARS?s Scientific Manuscript database

    Research continues to develop and test new transgenic plants using genes provided by collaborators. As lines are developed in Golden Promise, they are crossed to Conlon for field testing. Transgenic lines developed in Conlon are being crossed to resistant lines developed by the breeding programs. ...

  6. Production of recombinant albumin by a herd of cloned transgenic cattle.

    PubMed

    Echelard, Yann; Williams, Jennifer L; Destrempes, Margaret M; Koster, Julie A; Overton, Susan A; Pollock, Daniel P; Rapiejko, Karen T; Behboodi, Esmail; Masiello, Nicholas C; Gavin, William G; Pommer, Jerry; Van Patten, Scott M; Faber, David C; Cibelli, Jose B; Meade, Harry M

    2009-06-01

    Purified plasma derived human albumin has been available as a therapeutic product since World War II. However, cost effective recombinant production of albumin has been challenging due to the amount needed and the complex folding pattern of the protein. In an effort to provide an abundant source of recombinant albumin, a herd of transgenic cows expressing high levels of rhA in their milk was generated. Expression cassettes efficiently targeting the secretion of human albumin to the lactating mammary gland were obtained and tested in transgenic mice. A high expressing transgene was transfected in primary bovine cell lines to produce karyoplasts for use in a somatic cell nuclear transfer program. Founder transgenic cows were produced from four independent cell lines. Expression levels varying from 1-2 g/l to more than 40 g/l of correctly folded albumin were observed. The animals expressing the highest levels of rhA exhibited shortened lactation whereas cows yielding 1-2 g/l had normal milk production. This herd of transgenic cattle is an easily scalable and well characterized source of rhA for biomedical uses.

  7. Arsenic biotransformation and volatilization in transgenic rice

    PubMed Central

    Meng, Xiang-Yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P.; Zhu, Yong-Guan

    2011-01-01

    Summary Biotransformation of arsenic includes oxidation, reduction, methylation and conversion to more complex organic arsenicals. Members of the class of arsenite [As(III)] S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di- and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants. Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica rice (Oryza sativa L.) cultivar Nipponbare, and the transgenic rice produced methylated arsenic species, which were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Both monomethylarsenate [MAs(V)] and dimethylarsenate [DMAs(V)] were detected in the root and shoot of transgenic rice. After 12-d exposure to As(III), the transgenic rice gave off 10-fold more volatile arsenicals. The present study demonstrates that expression of an arsM gene in rice induces arsenic methylation and volatilization, providing a potential stratagem for phytoremediation theoretically. PMID:21517874

  8. Production of cloned transgenic cow expressing omega-3 fatty acids.

    PubMed

    Wu, Xia; Ouyang, Hongsheng; Duan, Biao; Pang, Daxin; Zhang, Li; Yuan, Ting; Xue, Lian; Ni, Daibang; Cheng, Lei; Dong, Shuhua; Wei, Zhuying; Li, Lin; Yu, Ming; Sun, Qing-Yuan; Chen, Da-Yuan; Lai, Liangxue; Dai, Yifan; Li, Guang-Peng

    2012-06-01

    n-3 Polyunsaturated fatty acids (n-3 PUFA) are important for human health. Alternative resources of n-3 PUAFs created by transgenic domestic animals would be an economic approach. In this study, we generated a mfat-1 transgenic cattle expressed a Caenorhabditis elegans gene, mfat-1, encoding an n-3 fatty acid desaturase. Fatty acids analysis of tissue and milk showed that all of the examined n-3 PUAFs were greatly increased and simultaneously the n-6 PUAFs decreased in the transgenic cow. A significantly reduction of n-6/n-3 ratios (P<0.05) in both tissue and milk were observed.

  9. Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice

    PubMed Central

    Balic, Anamaria; Mina, Mina

    2011-01-01

    Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts. PMID:21172466

  10. Bacterial magnetic particles improve testes-mediated transgene efficiency in mice.

    PubMed

    Wang, Chao; Sun, Guanghong; Wang, Ye; Kong, Nana; Chi, Yafei; Yang, Leilei; Xin, Qiliang; Teng, Zhen; Wang, Xu; Wen, Yujun; Li, Ying; Xia, Guoliang

    2017-11-01

    Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p < 0.05). Interestingly, the motility of sperms recovered from epididymis of the founder mice from BPD group were significantly improved, as compared with the control (p < 0.01). Based on classic breeding, the ratio of transgene mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p < 0.05). TMGT in this study did not produce visible histological changes in the testis. In conclusion, nano-scaled BPDs could be an alternative strategy for efficiently producing transgene mice in vivo.

  11. Nutritional composition analysis of meat from human lactoferrin transgenic bulls.

    PubMed

    Zhao, Jie; Xu, Jianxiang; Wang, Jianwu; Li, Ning

    2013-01-01

    Transgenic technology has many potential advantages in food production. However, the transgenic technology process may influence the composition of food products derived from genetically engineered (GE) animals, which may be adverse to human health. Therefore, it is very important to research the compositions of GE animal products. Here, we analyzed the compositions of meat from the offspring of human lactoferrin (hLF) transgenic cows, which can express human lactoferrin proteins in their mammary gland. Six hLF transgenic bulls and three wide-type (WT) bulls, 10 months of age, were slaughtered for meat composition analysis. To determine the comparative health of hLF bulls for meat analysis, hematological analyses, organ/body weight analyses and pathology analyses were conducted. Results of the meat analysis show that there were no significant differences in the hematological parameters, organ/body weight ratios of hLF and WT bulls (P>0.05), and histopathological examination of the main organs of hLF bulls revealed no abnormalities. Nutrient parameters of meat compositions of hLF and WT bulls did not show any significant differences (P>0.05). All of these results suggest that the hLF transgene did not have an impact on the meat nutrient compositions of hLF bulls.

  12. A Site-Specific Recombinase-Based Method to Produce Antibiotic Selectable Marker Free Transgenic Cattle

    PubMed Central

    Tong, Qi; Liu, Xu; Su, Feng; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2013-01-01

    Antibiotic selectable marker genes have been widely used to generate transgenic animals. Once transgenic animals have been obtained, the selectable marker is no longer necessary but raises public concerns regarding biological safety. The aim of this study was to prepare competent antibiotic selectable marker free transgenic cells for somatic cell nuclear transfer (SCNT). PhiC31 intergrase was used to insert a transgene cassette into a “safe harbor” in the bovine genome. Then, Cre recombinase was employed to excise the selectable marker under the monitoring of a fluorescent double reporter. By visually tracking the phenotypic switch from red to green fluorescence, antibiotic selectable marker free cells were easily detected and sorted by fluorescence-activated cell sorting. For safety, we used phiC31 mRNA and cell-permeant Cre protein in this study. When used as donor nuclei for SCNT, these safe harbor integrated marker-free transgenic cells supported a similar developmental competence of SCNT embryos compared with that of non-transgenic cells. After embryo transfer, antibiotic selectable marker free transgenic cattle were generated and anti-bacterial recombinant human β-defensin-3 in milk was detected during their lactation period. Thus, this approach offers a rapid and safe alternative to produce antibiotic selectable marker free transgenic farm animals, thereby making it a valuable tool to promote the healthy development and welfare of transgenic farm animals. PMID:23658729

  13. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution.

    PubMed

    Nagata, Takeshi; Morita, Hirofumi; Akizawa, Toshifumi; Pan-Hou, Hidemitsu

    2010-06-01

    To develop the potential of plant for phytoremediation of methylmercury pollution, a genetically engineered tobacco plant that coexpresses organomercurial lyase (MerB) with the ppk-specified polyphosphate (polyP) and merT-encoding mercury transporter was constructed by integrating a bacterial merB gene into ppk/merT-transgenic tobacco. A large number of independent transgenic tobaccos was obtained, in some of which the merB gene was stably integrated in the plant genome and substantially translated to the expected MerB enzyme in the transgenic tobacco. The ppk/merT/merB-transgenic tobacco callus showed more resistance to methylmercury (CH3Hg+) and accumulated more mercury from CH3Hg+-containing medium than the ppk/merT-transgenic and wild-type progenitors. These results suggest that the MerB enzyme encoded by merB degraded the incorporated CH3Hg+ to Hg2+, which then accumulated as a less toxic Hg-polyP complex in the tobacco cells. Phytoremediation of CH3Hg+ and Hg2+ in the environment with this engineered ppk/merT/merB-transgenic plant, which prevents the release mercury vapor (Hg0) into the atmosphere in addition to generating potentially recyclable mercury-rich plant residues, is believed to be more acceptable to the public than other competing technologies, including phytovolatilization.

  14. Tumorigenic potential of pituitary tumor transforming gene (PTTG) in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/-) transgenic mice.

    PubMed

    Fong, Miranda Y; Farghaly, Hanan; Kakar, Sham S

    2012-11-20

    Pituitary tumor-transforming gene (PTTG) is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. PTTG transgenic offspring (TgPTTG) were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells. Tumorigenesis is a multi-step process, often requiring

  15. Transgenic manipulation of the metabolism of polyamines in poplar cells

    Treesearch

    Pratiksha Bhatnagar; Bernadette M. Glasheen; Suneet K. Bains; Stephanie L. Long; Rakesh Minocha; Christian Walter; Subhash C. Minocha

    2001-01-01

    The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra 3 maximowiczii) expressing a...

  16. Quaternization enhances the transgene expression efficacy of aminoglycoside-derived polymers.

    PubMed

    Miryala, Bhavani; Feng, Yunpeng; Omer, Ala; Potta, Thrimoorthy; Rege, Kaushal

    2015-07-15

    The objective of the present study was to synthesize and investigate the transgene expression efficacy of quaternized derivatives of aminoglycoside polymers in different cancer cell lines. A series of glycidyltrimethylammonium chloride (GTMAC) derivatives of aminoglycoside polymers (GTMAC-AM polymers), containing varying degrees of quaternization (13-45%), were synthesized. The structures and properties of GTMAC-AM polymers were investigated using FT-IR and (1)H NMR spectroscopy. Physicochemical factors that influence transgene expression efficacy including DNA binding, hydrodynamic size, zeta potential and cytotoxicity, were determined. Formation of polymer-plasmid DNA complexes was also visualized using atomic force microscopy. GTMAC-AM polymers demonstrated higher transgene expression efficacies compared to their parent polymers, 25 kDa poly(ethyleneimine), as well as Lipofectamine-3000. Our results indicate that quaternization enhances the transgene expression efficacy and reduces the cytotoxicity of aminoglycoside-derived polymers, making it an attractive strategy for nucleic acid delivery with these new materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. [Virus resistance in transgenic watermelon plants containing a WMV-2 coat protein gene].

    PubMed

    Wang, Hui-Zhong; Zhao, Pei-Jie; Xu, Ji-Chen; Zhao, Huai; Zhang, Hong-Sheng

    2003-01-01

    Virus disease is a major cause that affects the quality and output of watermelon which is an important fruit in summer. So it is really urgent to develop disease resistance plants. But it takes a long time to breed such plants in conventional ways, and it is very difficult to get ideal result. With the development of plant genetic engineering, new ways have been found to breed plants with disease resistance. By using plant transgenic technique, much progress was been made in plant improvement. There are many successful cases of transgenic plants against corresponding virus disease through transferring coat protein gene. This paper reports the results of inheritance, segregation, expression of WMV-2 coat protein gene in inbred transgenic watermelon and its resistance to virus. Through PCR analysis of inbred plants, we found WMV-2 coat protein gene in the genome of progeny R1 separated with 3:1. After successive selection and identification of 4 generations, 8 transgenic pure lines with almost the same agronomic traits were obtained from 3 independent transformants of T7, T11 and T32. The result of Western blotting shows all 3 different transgenic lines of R4T7-1, R4T11-3 and R4T32-7 can produce coat protein. Disease resistance experiment on transgenic plants with WMV-2 shows that, compared with the control groups, transgenic plants can delay the disease infection and reduce the incidence and the symptoms of virus disease. And the transgenic line R4T32-7 expressed high resistance to infection by WMV-2, which lays a foundation for breeding of disease resistant varieties through plant transgenic technique.

  18. Oviduct-Specific Expression of Human Neutrophil Defensin 4 in Lentivirally Generated Transgenic Chickens

    PubMed Central

    Liu, Tongxin; Wu, Hanyu; Cao, Dainan; Li, Qingyuan; Zhang, Yaqiong; Li, Ning; Hu, Xiaoxiang

    2015-01-01

    The expression of oviduct-specific recombinant proteins in transgenic chickens is a promising technology for the production of therapeutic biologics in eggs. In this study, we constructed a lentiviral vector encoding an expression cassette for human neutrophil defensin 4 (HNP4), a compound that displays high activity against Escherichia coli, and produced transgenic chickens that expressed the recombinant HNP4 protein in egg whites. After the antimicrobial activity of the recombinant HNP4 protein was tested at the cellular level, a 2.8-kb ovalbumin promoter was used to drive HNP4 expression specifically in oviduct tissues. From 669 injected eggs, 218 chickens were successfully hatched. Ten G0 roosters, with semens identified as positive for the transgene, were mated with wild-type hens to generate G1 chickens. From 1,274 total offspring, fifteen G1 transgenic chickens were positive for the transgene, which was confirmed by PCR and Southern blotting. The results of the Southern blotting and genome walking indicated that a single copy of the HNP4 gene was integrated into chromosomes 1, 2, 3, 4, 6 and 24 of the chickens. As expected, HNP4 expression was restricted to the oviduct tissues, and the levels of both transcriptional and translational HNP4 expression varied greatly in transgenic chickens with different transgene insertion sites. The amount of HNP4 protein expressed in the eggs of G1 and G2 heterozygous transgenic chickens ranged from 1.65 μg/ml to 10.18 μg/ml. These results indicated that the production of transgenic chickens that expressed HNP4 protein in egg whites was successful. PMID:26020529

  19. Profiling of anthocyanins in transgenic purple-fleshed sweet potatoes by HPLC-MS/MS.

    PubMed

    Ge, Jingqiu; Hu, Yijie; Wang, Hongxia; Huang, Yuanshe; Zhang, Peng; Liao, Zhihua; Chen, Min

    2017-11-01

    Anthocyanins in purple-fleshed sweet potato (PSP) are beneficial to human health. The leaf color (Lc) gene is a transcription factor involved in regulating anthocyanin biosynthesis. The anthocyanin profiles of wild-type PSP of Ayamurasaki and its three Lc-transgenic lines were investigated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). In vitro antioxidant activities of wild-type and Lc-transgenic lines, including reducing power activity, DPPH radical scavenging activity, hydroxyl radical scavenging activity, linoleic acid autoxidation inhibition activity, ABTS free radical scavenging activity and oxygen radical absorbance capacity activity, were measured. The results showed that the total anthocyanin contents increased 1.5-1.9 times in three transgenic lines compared with that in wild-type PSP. Seventeen anthocyanins were found in wild-type PSP, while 19 in Lc-transgenic lines including cyanidin-based, peonidin-based and pelargonidin-based anthocyanins. Three pelargonidin-based anthocyanins were detected in three Lc-transgenic lines. Among them, the relative contents of cyanidin-based and pelargonidin-based anthocyanins increased 1.9-2.0 and 3.4-4.5 times respectively, while peonidin-based anthocyanins decreased 1.8-1.9 times in Lc-transgenic lines, compared with wild-type PSP. PSP from wild-type Ayamurasaki and three Lc-transgenic lines exhibited potent antioxidant activities, whereas there was no distinct difference among them. The transgene Lc significantly increased the content of total anthocyanins and remarkably changed the anthocyanin profiles in Ayamurasaki. Such novel and high content of anthocyanins obtained in the Lc-transgenic lines with potent antioxidant activities may provide unique functional products with potential helpful for human health. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. [Development of a hepatitis B virus carrier transgenic mice model].

    PubMed

    Caner, Müge; Arat, Sezen; Bircan, Rifat

    2008-01-01

    The studies for the development of transgenic mice models which provide important profits for the studies concerning immunopathogenesis of hepatitis B virus (HBV) infections are in progress since 20 years. For this purpose different lineages bearing whole HBV genome or selected viral genes have been developed and their usage in clarifying the HBV replication and pathogenesis mechanisms have been emphasized. The aim of this study was to develop and breed a HBV carrier mice model. In the study the full HBV genome has been transferred to mouse embryos by microinjection procedure. Following transgenic manipulation, the HBV carriers among the daughter mice have been detected by molecular methods in which HBV-DNA replication and expression have been shown. The manipulations for transgene transfers have been performed in TUBITAK Marmara Research Center Transgene Laboratory, Gebze, Istanbul. The HBV-DNA carrier mice have been demonstrated by polymerase chain reaction (PCR) using the DNA samples obtained from tail tissues and also by dot-blot hybridization of the mice sera. Integrated HBV-DNA has been detected by applying in-situ hybridization to the liver tissue sections. HBV-DNA expression has been shown by reverse transcriptase PCR method with total RNA molecules that have been isolated from the liver tissues of the HBV-DNA carrier mice. HBsAg has been detected in the liver by immunohistochemical method, and HBsAg and HBeAg have additionally been demonstrated by ELISA. HBV genome, expression of the genome and the expression products have been determined in approximately 10% of the mice of which HBV-DNA have been transferred. By inbreeding heterozygote carrier mice, homozygote HBV transgenic mice line have been obtained. These HBV transgenic mice are the first lineages developed in our country. It is hopefully thought that this HBV carrier transgenic mouse model may contribute to the studies on the pathogenesis of HBV infections which are important health problems in the

  1. Overexpression of an endo-1,4-β-glucanase V gene (EGV) from Trichoderma reesei leads to the accumulation of cellulase activity in transgenic rice.

    PubMed

    Li, X Y; Liu, F; Hu, Y F; Xia, M; Cheng, B J; Zhu, S W; Ma, Q

    2015-12-21

    The ectopic expression of cellulase in biomass can reduce the cost of biofuel conversion. This trait modification technique is highly beneficial for biofuel production. In this study, we isolated an endo-1,4-beta-glucanase gene (EGV) from Trichoderma reesei and inserted this gene downstream of a fragment encoding the signal peptide Apo-SP in a modified pCAMBIA1301 vector to obtain an Apo-SP and AsRed fusion protein. Transient expression of this fusion protein in onion epidermal cells showed that the Apo-SP signal was localized to the plastids. EGV transgenic rice plants that did not carry screening marker genes were obtained through overexpression of the pDTB double T-DNA vector. Western blotting showed that EGV was expressed in the dry straw of T0 generation transgenic rice plants and in fresh leaves of the T1 generation. More importantly, our results also showed that the peptide product of EGV in the transgenic plants folded correctly and was capable of digesting the cellulase substrate CMC. Additionally, cellulase activity remained stable in the straw that had been dried at room temperature for three months. This study presents an important technical approach for the development of transgenic rice straw that has stable cellulase activity and can be used for biofuel conversion.

  2. Optimisation of tomato Micro-tom regeneration and selection on glufosinate/Basta and dependency of gene silencing on transgene copy number.

    PubMed

    Khuong, Thi Thu Huong; Crété, Patrice; Robaglia, Christophe; Caffarri, Stefano

    2013-09-01

    An efficient protocol of transformation and selection of transgenic lines of Micro-tom, a widespread model cultivar for tomato, is reported. RNA interference silencing efficiency and stability have been investigated and correlated with the number of insertions. Given its small size and ease of cultivation, the tomato (Solanum lycopersicon) cultivar Micro-tom is of widespread use as a model tomato plant. To create and screen transgenic plants, different selectable markers are commonly used. The bar marker carrying the resistance to the herbicide glufosinate/Basta, has many advantages, but it has been little utilised and with low efficiency for identification of tomato transgenic plants. Here we describe a procedure for accurate selection of transgenic Micro-tom both in vitro and in soil. Immunoblot, Southern blot and phenotypic analyses showed that 100 % of herbicide-resistant plants were transgenic. In addition, regeneration improvement has been obtained by using 2 mg/l Gibberellic acid in the shoot elongation medium; rooting optimisation on medium containing 1 mg/l IAA allowed up to 97 % of shoots developing strong and very healthy roots after only 10 days. Stable transformation frequency by infection of leaf explants with Agrobacterium reached 12 %. Shoots have been induced by combination of 1 mg/l zeatin-trans and 0.1 mg/l IAA. Somatic embryogenesis of cotyledon on medium containing 1 mg/l zeatin + 2 mg/l IAA is described in Micro-tom. The photosynthetic psbS gene has been used as reporter gene for RNA silencing studies. The efficiency of gene silencing has been found equivalent using three different target gene fragments of 519, 398 and 328 bp. Interestingly, silencing efficiency decreased from T0 to the T3 generation in plants containing multiple copies of the inserted T-DNA, while it was stable in plants containing a single insertion.

  3. Anxiety-like behavior in transgenic mice with brain expression of neuropeptide Y.

    PubMed

    Inui, A; Okita, M; Nakajima, M; Momose, K; Ueno, N; Teranishi, A; Miura, M; Hirosue, Y; Sano, K; Sato, M; Watanabe, M; Sakai, T; Watanabe, T; Ishida, K; Silver, J; Baba, S; Kasuga, M

    1998-01-01

    Neuropeptide Y (NPY), one of the most abundant peptide transmitters in the mammalian brain, is assumed to play an important role in behavior and its disorders. To understand the long-term modulation of neuronal functions by NPY, we raised transgenic mice created with a novel central nervous system (CNS) neuron-specific expression vector of human Thy- gene fragment linked to mouse NPY cDNA. In situ hybridization analysis demonstrated transgene-derived NPY expression in neurons (e.g., in the hippocampus, cerebral cortex, and the arcuate nucleus of the hypothalamus) in the transgenic mice. The modest increase of NPY protein in the brain was demonstrated by semiquantitative immunohistochemical analysis and by radioreceptor assay (115% in transgenic mice compared to control littermates). Double-staining experiments indicated colocalization of the transgene-derived NPY message and NPY protein in the same neurons, such as in the arcuate nucleus. The transgenic mice displayed behavioral signs of anxiety and hypertrophy of adrenal zona fasciculata cells, but no change in food intake was observed. The anxiety-like behavior of transgenic mice was reversed, at least in part, by administration of corticotropin-releasing factor (CRF) antagonists, alpha-helical CRF9-41, into the third cerebral ventricle. These results suggest that NPY has a role in anxiety and behavioral responses to stress partly via the CRF neuronal system. This genetic model may provide a unique opportunity to study human anxiety and emotional disorders.

  4. Recombinant Human Factor IX Produced from Transgenic Porcine Milk

    PubMed Central

    Lee, Meng-Hwan; Lin, Yin-Shen; Tu, Ching-Fu; Yen, Chon-Ho

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitation step to remove casein. The purified protein had high specific activity and a low ratio of the active form (FIXa). The purified rhFIX had 11.9 γ-carboxyglutamic acid (Gla) residues/mol protein, which approached full occupancy of the 12 potential sites in the Gla domain. The rhFIX was shown to have a higher isoelectric point and lower sialic acid content than plasma-derived FIX (pdFIX). The rhFIX had the same N-glycosylation sites and phosphorylation sites as pdFIX, but had a higher specific activity. These results suggest that rhFIX produced from porcine milk is physiologically active and they support the use of transgenic animals as bioreactors for industrial scale production in milk. PMID:24955355

  5. Embryonic fate map of first pharyngeal arch structures in the sox10: kaede zebrafish transgenic model.

    PubMed

    Dougherty, Max; Kamel, George; Shubinets, Valeriy; Hickey, Graham; Grimaldi, Michael; Liao, Eric C

    2012-09-01

    Cranial neural crest cells follow stereotypic patterns of migration to form craniofacial structures. The zebrafish is a powerful vertebrate genetic model where transgenics with reporter proteins under the transcriptional regulation of lineage-specific promoters can be generated. Numerous studies demonstrate that the zebrafish ethmoid plate is embryologically analogous to the mammalian palate. A fate map correlating embryonic cranial neural crest to defined jaw structures would provide a useful context for the morphogenetic analysis of craniofacial development. To that end, the sox10:kaede transgenic was generated, where sox10 provides lineage restriction to the neural crest. Specific regions of neural crest were labeled at the 10-somite stage by photoconversion of the kaede reporter protein. Lineage analysis was carried out during pharyngeal development in wild-type animals, after miR140 injection, and after estradiol treatment. At the 10-somite stage, cranial neural crest cells anterior of the eye contributed to the median ethmoid plate, whereas cells medial to the eye formed the lateral ethmoid plate and trabeculae and a posterior population formed the mandible. miR-140 overexpression and estradiol inhibition of Hedgehog signaling resulted in cleft development, with failed migration of the anterior cell population to form the median ethmoid plate. The sox10:kaede transgenic line provides a useful tool for neural crest lineage analysis. These studies illustrate the advantages of the zebrafish model for application in morphogenetic studies of vertebrate craniofacial development.

  6. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean.

    PubMed

    Weber, Ricardo Luís Mayer; Wiebke-Strohm, Beatriz; Bredemeier, Christian; Margis-Pinheiro, Márcia; de Brito, Giovani Greigh; Rechenmacher, Ciliana; Bertagnolli, Paulo Fernando; de Sá, Maria Eugênia Lisei; Campos, Magnólia de Araújo; de Amorim, Regina Maria Santos; Beneventi, Magda Aparecida; Margis, Rogério; Grossi-de-Sa, Maria Fátima; Bodanese-Zanettini, Maria Helena

    2014-12-10

    Drought is by far the most important environmental factor contributing to yield losses in crops, including soybeans [Glycine max (L.) Merr.]. To address this problem, a gene that encodes an osmotin-like protein isolated from Solanum nigrum var. americanum (SnOLP) driven by the UBQ3 promoter from Arabidopsis thaliana was transferred into the soybean genome by particle bombardment. Two independently transformed soybean lines expressing SnOLP were produced. Segregation analyses indicated single-locus insertions for both lines. qPCR analysis suggested a single insertion of SnOLP in the genomes of both transgenic lines, but one copy of the hpt gene was inserted in the first line and two in the second line. Transgenic plants exhibited no remarkable phenotypic alterations in the seven analyzed generations. When subjected to water deficit, transgenic plants performed better than the control ones. Leaf physiological measurements revealed that transgenic soybean plants maintained higher leaf water potential at predawn, higher net CO2 assimilation rate, higher stomatal conductance and higher transpiration rate than non-transgenic plants. Grain production and 100-grain weight were affected by water supply. Decrease in grain productivity and 100-grain weight were observed for both transgenic and non-transgenic plants under water deficit; however, it was more pronounced for non-transgenic plants. Moreover, transgenic lines showed significantly higher 100-grain weight than non-transgenic plants under water shortage. This is the first report showing that expression of SnOLP in transgenic soybeans improved physiological responses and yield components of plants when subjected to water deficit, highlighting the potential of this gene for biotechnological applications.

  7. Handmade Cloned Transgenic Sheep Rich in Omega-3 Fatty Acids

    PubMed Central

    Dou, Hongwei; Chen, Lei; Chen, Longxin; Lin, Lin; Tan, Pingping; Vajta, Gabor; Gao, Jianfeng; Du, Yutao; Ma, Runlin Z.

    2013-01-01

    Technology of somatic cell nuclear transfer (SCNT) has been adapted worldwide to generate transgenic animals, although the traditional procedure relies largely on instrumental micromanipulation. In this study, we used the modified handmade cloning (HMC) established in cattle and pig to produce transgenic sheep with elevated levels of omega-3 (n−3) fatty acids. Codon-optimized nematode mfat-1 was inserted into a eukaryotic expression vector and was transferred into the genome of primary ovine fibroblast cells from a male Chinese merino sheep. Reverse transcriptase PCR, gas chromatography, and chromosome analyses were performed to select nuclear donor cells capable of converting omega-6 (n−6) into n−3 fatty acids. Blastocysts developed after 7 days of in vitro culture were surgically transplanted into the uterus of female ovine recipients of a local sheep breed in Xinjiang. For the HMC, approximately 8.9% (n  = 925) of reconstructed embryos developed to the blastocyst stage. Four recipients became pregnant after 53 blastocysts were transplanted into 29 naturally cycling females, and a total of 3 live transgenic lambs were produced. Detailed analyses on one of the transgenic lambs revealed a single integration of the modified nematode mfat-1 gene at sheep chromosome 5. The transgenic sheep expressed functional n−3 fatty acid desaturase, accompanied by more than 2-folds reduction of n−6/n−3 ratio in the muscle (p<0.01) and other major organs/tissues (p<0.05). To our knowledge, this is the first report of transgenic sheep produced by the HMC. Compared to the traditional SCNT method, HMC showed an equivalent efficiency but proved cheaper and easier in operation. PMID:23437077

  8. Endothelial function in pigs transgenic for human complement regulating factor.

    PubMed

    Warnecke, Gregor; Severson, Sandra R; Ugurlu, Mustafa M; Taner, Cemal B; Logan, John S; Diamond, Lisa E; Miller, Virginia M; McGregor, Christopher G A

    2002-04-15

    Expression of human complement regulating factor (hCRF) in porcine organs prevents hyperacute rejection of these organs after xenotransplantation to nonhuman primates. Experiments were designed to characterize endothelial and smooth muscle function of arteries from pigs transgenic for hCD46. Arterial blood from outbred pigs transgenic for hCD46 expression and nontransgenic animals of the same lineage was analyzed for angiotensin-converting enzyme (ACE), C-type natriuretic peptide (CNP), and nitric oxide. Aortic endothelial cells were prepared for measurement of mRNA or activity for nitric oxide synthase (NOS). Rings cut from femoral and pulmonary arteries were suspended in organ chambers for measurement of isometric tension. CNP was significantly greater, ACE was similar, and nitric oxide was significantly less in plasma from transgenic compared with nontransgenic pigs. Neither mRNA nor activity of NOS differed between the groups. Endothelium-dependent relaxations to bradykinin and acetylcholine but not the calcium ionophore were shifted significantly to the left in femoral and pulmonary arteries from hCD46 transgenic pigs compared with nontransgenic pigs. The ACE-inhibitor captopril augmented relaxations similarly in both groups, but NG-monomethyl-L-arginine (L-NMMA) did not inhibit relaxations in rings from transgenic pigs. Data suggest that expression of hCD46 on endothelium of pigs selectively augments endothelium-dependent relaxations to bradykinin by increased release of endothelium-derived factors other than nitric oxide. There does not seem to be any change in activity of ACE or NOS with expression of the human protein. Increased relaxations to bradykinin may be beneficial in lowering vascular resistance when transgenic organs are used for xenotransplantation.

  9. Reproductive performance of alternative male phenotypes of growth hormone transgenic Atlantic salmon (Salmo salar)

    PubMed Central

    Moreau, Darek T R; Conway, Corinne; Fleming, Ian A

    2011-01-01

    Growth hormone (GH) transgenic Atlantic salmon (Salmo salar) is one of the first transgenic animals being considered for commercial farming, yet ecological and genetic concerns remain should they enter the wild and interact reproductively with wild fish. Here, we provide the first empirical data reporting on the breeding performance of GH transgenic Atlantic salmon males, including that of an alternative male reproductive phenotype (i.e. small, precocially mature parr), in pair-wise competitive trials within a naturalised stream mesocosm. Wild anadromous (i.e. large, migratory) males outperformed captively reared transgenic counterparts in terms of nest fidelity, quivering frequency and spawn participation. Similarly, despite displaying less aggression, captively reared nontransgenic mature parr were superior competitors to their transgenic counterparts in terms of nest fidelity and spawn participation. Moreover, nontransgenic parr had higher overall fertilisation success than transgenic parr, and their offspring were represented in more spawning trials. Although transgenic males displayed reduced breeding performance relative to nontransgenics, both male reproductive phenotypes demonstrated the ability to participate in natural spawning events and thus have the potential to contribute genes to subsequent generations. PMID:25568019

  10. Transgene-free human induced pluripotent stem cell line (HS5-SV.hiPS) generated from cesarean scar-derived fibroblasts.

    PubMed

    Rungsiwiwut, Ruttachuk; Pavarajarn, Wipawee; Numchaisrika, Pranee; Virutamasen, Pramuan; Pruksananonda, Kamthorn

    2016-01-01

    Transgene-free human HS5-SV.hiPS line was generated from human cesarean scar-derived fibroblasts using temperature-sensitive Sendai virus vectors carrying Oct4, Sox2, cMyc and Klf4 exogenous transcriptional factors. The viral constructs were eliminated from HS5-SV.hiPS line through heat treatment. Transgene-free HS5-SV.hiPS cells expressed pluripotent associated transcription factors Oct4, Nanog, Sox2, Rex1 and surface markers SSEA-4, TRA-1-60 and OCT4. HS5-SV.hiPS cells formed embryoid bodies and differentiated into three embryonic germ layers in vivo. HS5-SV.hiPS cells maintained their normal karyotype (46, XX) after culture for extended period. HS5-SV.hiPS displayed the similar pattern of DNA fingerprinting to the parenteral scar-derived fibroblasts. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles.

    PubMed

    Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu

    2016-01-01

    We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Transgenics in crops

    NASA Technical Reports Server (NTRS)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  13. Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice.

    PubMed

    Joshi, Molishree; Keith Pittman, H; Haisch, Carl; Verbanac, Kathryn

    2008-09-01

    Quantitative real-time PCR (qPCR) is a sensitive technique for the detection and quantitation of specific DNA sequences. Here we describe a Taqman qPCR assay for quantification of tissue-localized, adoptively transferred enhanced green fluorescent protein (EGFP)-transgenic cells. A standard curve constructed from serial dilutions of a plasmid containing the EGFP transgene was (i) highly reproducible, (ii) detected as few as two copies, and (iii) was included in each qPCR assay. qPCR analysis of genomic DNA was used to determine transgene copy number in several mouse strains. Fluorescent microscopy of tissue sections showed that adoptively transferred vascular endothelial cells (VEC) from EGFP-transgenic mice specifically localized to tissue with metastatic tumors in syngeneic recipients. VEC microscopic enumeration of liver metastases strongly correlated with qPCR analysis of identical sections (Pearson correlation 0.81). EGFP was undetectable in tissue from control mice by qPCR. In another study using intra-tumor EGFP-VEC delivery to subcutaneous tumors, manual cell count and qPCR analysis of alternating sections also strongly correlated (Pearson correlation 0.82). Confocal microscopy of the subcutaneous tumor sections determined that visual fluorescent signals were frequently tissue artifacts. This qPCR methodology offers specific, objective, and rapid quantitation, uncomplicated by tissue autofluorescence, and should be readily transferable to other in vivo models to quantitate the biolocalization of transplanted cells.

  14. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult.

    PubMed

    Rodgers, Shaefali P; Born, Heather A; Das, Pritam; Jankowsky, Joanna L

    2012-06-18

    Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. We show that overexpression of the Alzheimer's-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer's disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.

  15. Brain selective transgene expression in zebrafish using an NRSE derived motif

    PubMed Central

    Bergeron, Sadie A.; Hannan, Markus C.; Codore, Hiba; Fero, Kandice; Li, Grace H.; Moak, Zachary; Yokogawa, Tohei; Burgess, Harold A.

    2012-01-01

    Transgenic technologies enable the manipulation and observation of circuits controlling behavior by permitting expression of genetically encoded reporter genes in neurons. Frequently though, neuronal expression is accompanied by transgene expression in non-neuronal tissues, which may preclude key experimental manipulations, including assessment of the contribution of neurons to behavior by ablation. To better restrict transgene expression to the nervous system in zebrafish larvae, we have used DNA sequences derived from the neuron-restrictive silencing element (NRSE). We find that one such sequence, REx2, when used in conjunction with several basal promoters, robustly suppresses transgene expression in non-neuronal tissues. Both in transient transgenic experiments and in stable enhancer trap lines, suppression is achieved without compromising expression within the nervous system. Furthermore, in REx2 enhancer trap lines non-neuronal expression can be de-repressed by knocking down expression of the NRSE binding protein RE1-silencing transcription factor (Rest). In one line, we show that the resulting pattern of reporter gene expression coincides with that of the adjacent endogenous gene, hapln3. We demonstrate that three common basal promoters are susceptible to the effects of the REx2 element, suggesting that this method may be useful for confining expression from many other promoters to the nervous system. This technique enables neural specific targeting of reporter genes and thus will facilitate the use of transgenic methods to manipulate circuit function in freely behaving larvae. PMID:23293587

  16. Detection of feral GT73 transgenic oilseed rape (Brassica napus) along railway lines on entry routes to oilseed factories in Switzerland.

    PubMed

    Hecht, Mirco; Oehen, Bernadette; Schulze, Jürg; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    To obtain a reference status prior to cultivation of genetically modified oilseed rape (OSR, Brassica napus L.) in Switzerland, the occurrence of feral OSR was monitored along transportation routes and at processing sites. The focus was set on the detection of (transgenic) OSR along railway lines from the Swiss borders with Italy and France to the respective oilseed processing factories in Southern and Northern Switzerland (Ticino and region of Basel). A monitoring concept was developed to identify sites of largest risk of escape of genetically modified plants into the environment in Switzerland. Transport spillage of OSR seeds from railway goods cars particularly at risk hot spots such as switch yards and (un)loading points but also incidental and continuous spillage were considered. All OSR plants, including their hybridization partners which were collected at the respective monitoring sites were analyzed for the presence of transgenes by real-time PCR. On sampling lengths each of 4.2 and 5.7 km, respectively, 461 and 1,574 plants were sampled in Ticino and the region of Basel. OSR plants were found most frequently along the routes to the oilseed facilities, and in larger amounts on risk hot spots compared to sites of random sampling. At three locations in both monitored regions, transgenic B. napus line GT73 carrying the glyphosate resistance transgenes gox and CP4 epsps were detected (Ticino, 22 plants; in the region of Basel, 159).

  17. Memory impairment in transgenic Alzheimer mice requires cellular prion protein.

    PubMed

    Gimbel, David A; Nygaard, Haakon B; Coffey, Erin E; Gunther, Erik C; Laurén, Juha; Gimbel, Zachary A; Strittmatter, Stephen M

    2010-05-05

    Soluble oligomers of the amyloid-beta (Abeta) peptide are thought to play a key role in the pathophysiology of Alzheimer's disease (AD). Recently, we reported that synthetic Abeta oligomers bind to cellular prion protein (PrP(C)) and that this interaction is required for suppression of synaptic plasticity in hippocampal slices by oligomeric Abeta peptide. We hypothesized that PrP(C) is essential for the ability of brain-derived Abeta to suppress cognitive function. Here, we crossed familial AD transgenes encoding APPswe and PSen1DeltaE9 into Prnp-/- mice to examine the necessity of PrP(C) for AD-related phenotypes. Neither APP expression nor Abeta level is altered by PrP(C) absence in this transgenic AD model, and astrogliosis is unchanged. However, deletion of PrP(C) expression rescues 5-HT axonal degeneration, loss of synaptic markers, and early death in APPswe/PSen1DeltaE9 transgenic mice. The AD transgenic mice with intact PrP(C) expression exhibit deficits in spatial learning and memory. Mice lacking PrP(C), but containing Abeta plaque derived from APPswe/PSen1DeltaE9 transgenes, show no detectable impairment of spatial learning and memory. Thus, deletion of PrP(C) expression dissociates Abeta accumulation from behavioral impairment in these AD mice, with the cognitive deficits selectively requiring PrP(C).

  18. Memory Impairment in Transgenic Alzheimer Mice Requires Cellular Prion Protein

    PubMed Central

    Gimbel, David A.; Nygaard, Haakon B.; Coffey, Erin E.; Gunther, Erik C.; Laurén, Juha; Gimbel, Zachary A.; Strittmatter, Stephen M.

    2012-01-01

    Soluble oligomers of the amyloid-β (Aβ) peptide are thought to play a key role in the pathophysiology of Alzheimer’s disease (AD). Recently, we reported that synthetic Aβ oligomers bind to cellular prion protein (PrPC) and that this interaction is required for suppression of synaptic plasticity in hippocampal slices by oligomeric Aβ peptide. We hypothesized that PrPC is essential for the ability of brain-derived Aβ to suppress cognitive function. Here, we crossed familial AD transgenes encoding APPswe and PSen1ΔE9 into Prnp−/− mice to examine the necessity of PrPC for AD-related phenotypes. Neither APP expression nor Aβ level is altered by PrPC absence in this transgenic AD model, and astrogliosis is unchanged. However, deletion of PrPC expression rescues 5-HT axonal degeneration, loss of synaptic markers, and early death in APPswe/PSen1ΔE9 transgenic mice. The AD transgenic mice with intact PrPC expression exhibit deficits in spatial learning and memory. Mice lacking PrPC, but containing Aβ plaque derived from APPswe/PSen1ΔE9 transgenes, show no detectable impairment of spatial learning and memory. Thus, deletion of PrPC expression dissociates Aβ accumulation from behavioral impairment in these AD mice, with the cognitive deficits selectively requiring PrPC. PMID:20445063

  19. Handmade Cloned Transgenic Piglets Expressing the Nematode Fat-1 Gene

    PubMed Central

    Zhang, Peng; Zhang, Yidi; Dou, Hongwei; Yin, Jingdong; Chen, Yu; Pang, Xinzhi; Vajta, Gabor; Bolund, Lars

    2012-01-01

    Abstract Production of transgenic animals via somatic cell nuclear transfer (SCNT) has been adapted worldwide, but this application is somewhat limited by its relatively low efficiency. In this study, we used handmade cloning (HMC) established previously to produce transgenic pigs that express the functional nematode fat-1 gene. Codon-optimized mfat-1 was inserted into eukaryotic expression vectors, which were transferred into primary swine donor cells. Reverse transcriptase PCR (RT-PCR), gas chromatography, and chromosome analyses were performed to select donor clones capable of converting n-6 into n-3 fatty acids. Blastocysts derived from the clones that lowered the n-6/n-3 ratio to approximately 1:1 were transferred surgically into the uteri of recipients for transgenic piglets. By HMC, 37% (n=558) of reconstructed embryos developed to the blastocyst stage after 7 days of culture in vitro, with an average cell number of 81±36 (n=14). Three recipients became pregnant after 408 day-6 blastocysts were transferred into four naturally cycling females, and a total of 14 live offspring were produced. The nematode mfat-1 effectively lowered the n-6/n-3 ratio in muscle and major organs of the transgenic pig. Our results will help to establish a reliable procedure and an efficient option in the production of transgenic animals. PMID:22686479

  20. Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003–2004)

    PubMed Central

    Ortiz-García, S.; Ezcurra, E.; Schoel, B.; Acevedo, F.; Soberón, J.; Snow, A. A.

    2005-01-01

    In 2000, transgenes were detected in local maize varieties (landraces) in the mountains of Oaxaca, Mexico [Quist, D. & Chapela, I. H. (2001) Nature 414, 541–543]. This region is part of the Mesoamerican center of origin for maize (Zea mays L.), and the genetic diversity that is maintained in open-pollinated landraces is recognized as an important genetic resource of great cultural value. The presence of transgenes in landraces was significant because transgenic maize has never been approved for cultivation in Mexico. Here we provide a systematic survey of the frequency of transgenes in currently grown landraces. We sampled maize seeds from 870 plants in 125 fields and 18 localities in the state of Oaxaca during 2003 and 2004. We then screened 153,746 sampled seeds for the presence of two transgene elements from the 35S promoter of the cauliflower mosaic virus and the nopaline synthase gene (nopaline synthase terminator) from Agrobacterium tumefaciens. One or both of these transgene elements are present in all transgenic commercial varieties of maize. No transgenic sequences were detected with highly sensitive PCR-based markers, appropriate positive and negative controls, and duplicate samples for DNA extraction. We conclude that transgenic maize seeds were absent or extremely rare in the sampled fields. This study provides a much-needed preliminary baseline for understanding the biological, socioeconomic, and ethical implications of the inadvertent dispersal of transgenes from the United States and elsewhere to local landraces of maize in Mexico. PMID:16093316

  1. Biglycan Overexpression on Tooth Enamel Formation in Transgenic Mice

    PubMed Central

    Wen, Xin; Zou, YanMing; Luo, Wen; Goldberg, Michel; Moats, Rex; Conti, Peter S.; Snead, Malcolm L.; Paine, Michael L.

    2008-01-01

    Previously it was shown that the volume of forming enamel of molar teeth in biglycan-null mice was greater than in genetically matched wild-type mice. This phenotypic change appeared to result from an increase in amelogenin expression, implying that biglycan directly influences amelogenin synthesis. To determine whether biglycan over-expression resulted in decreased amelogenin expression, we engineered transgenic mice to over-express biglycan in the enamel organ epithelium. Biglycan over-expression did not significantly affect the amelogenin expression in incisor and molar teeth in 3-day transgenic mice. In the transgenic animals we observed that the immature and mature enamel appeared normal. These results suggested that increasing the biglycan expression, in the cells that synthesize the precursor protein matrix for enamel, has a negligible influence on amelogenesis. PMID:18727043

  2. Studies on the Expression of Sesquiterpene Synthases Using Promoter-β-Glucuronidase Fusions in Transgenic Artemisia annua L

    PubMed Central

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E.

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production. PMID:24278301

  3. A Built-In Strategy to Mitigate Transgene Spreading from Genetically Modified Corn

    PubMed Central

    Li, Jing; Yu, Hui; Zhang, Fengzhen; Lin, Chaoyang; Gao, Jianhua; Fang, Jun; Ding, Xiahui; Shen, Zhicheng; Xu, Xiaoli

    2013-01-01

    Transgene spreading is a major concern in cultivating genetically modified (GM) corn. Cross-pollination may cause the spread of transgenes from GM cornfields to conventional fields. Occasionally, seed lot contamination, volunteers, mixing during sowing, harvest, and trade can also lead to transgene escape. Obviously, new biological confinement technologies are highly desired to mitigate transgene spreading in addition to physical separation and isolation methods. In this study, we report the development of a built-in containment method to mitigate transgene spreading in corn. In this method, an RNAi cassette for suppressing the expression of the nicosulfuron detoxifying enzyme CYP81A9 and an expression cassette for the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene G10 were constructed and transformed into corn via Agrobacterium-mediated transformation. The GM corn plants that were generated were found to be sensitive to nicosulfuron but resistant to glyphosate, which is exactly the opposite of conventional corn. Field tests demonstrated that GM corn plants with silenced CYP81A9 could be killed by applying nicosulfuron at 40 g/ha, which is the recommended dose for weed control in cornfields. This study suggests that this built-in containment method for controlling the spread of corn transgenes is effective and easy to implement. PMID:24324711

  4. Generation of Transgenic Mouse Fluorescent Reporter Lines for Studying Hematopoietic Development

    PubMed Central

    Vacaru, Andrei M.; Vitale, Joseph; Nieves, Johnathan; Baron, Margaret H.

    2015-01-01

    During the development of the hematopoietic system, at least 8 distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal. PMID:25064110

  5. Transgenic Learning for STEAM Subjects and Virtual Containers for OER

    ERIC Educational Resources Information Center

    Burgos, Daniel; Corbí, Alberto

    2018-01-01

    Transgenic learning is a disruptive approach in education. It encourages modification of moving parts of the educational chain. This article provides a view of transgenic learning focused on the delivery of enriched learning contents in STEAM areas. It discusses the mutagenic role that the virtual containers may play in current distance education.…

  6. Evaluating the potential ecological effects of transgene escape and persistence in constructed plant communities

    EPA Science Inventory

    To date, published studies with herbicide tolerant transgenic crops have failed to demonstrate that transgene escape to wild relatives results in more competitive hybrids. However, it is important to consider transgene escape in the context of the types of traits, which will lik...

  7. Field Evaluation of Transgenic Switchgrass Plants Overexpressing PvMYB4 for Reduced Biomass Recalcitrance

    DOE PAGES

    Baxter, Holly L.; Poovaiah, Charleson R.; Yee, Kelsey L.; ...

    2015-01-07

    High biomass yields and minimal agronomic input requirements have made switchgrass, Panicum virgatum L., a leading candidate lignocellulosic bioenergy crop. Large-scale lignocellulosic biofuel production from such crops is limited by the difficulty to deconstruct cell walls into fermentable sugars: the recalcitrance problem. In this study, we assessed the field performance of switchgrass plants overexpressing the switchgrass MYB 4 ( PvMYB4) transcription factor gene. PvMYB 4 transgenic switchgrass can have great lignin reduction, which commensurately increases sugar release and biofuel production. Our results over two growing seasons showed that one transgenic event (out of eight) had important gains in both biofuelmore » (32% more) and biomass (63% more) at the end of the second growing season relative to non-transgenic controls. These gains represent a doubling of biofuel production per hectare, which is the highest gain reported from any field-grown modified feedstock. In contrast to this transgenic event, which had relatively low ectopic overexpression of the transgene, five of the eight transgenic events planted did not survive the first field winter. The dead plants were all high-overexpressing events that performed well in the earlier greenhouse studies. Disease susceptibility was not compromised in any transgenic events over the field experiments. These results demonstrate the power of modifying the expression of an endogenous transcription factor to improve biofuel and biomass simultaneously, and also highlight the importance of field studies for "sorting" transgenic events. In conclusion, further research is needed to develop strategies for fine-tuning temporal-spatial transgene expression in feedstocks to optimize desired phenotypes.« less

  8. Field Evaluation of Transgenic Switchgrass Plants Overexpressing PvMYB4 for Reduced Biomass Recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Holly L.; Poovaiah, Charleson R.; Yee, Kelsey L.

    High biomass yields and minimal agronomic input requirements have made switchgrass, Panicum virgatum L., a leading candidate lignocellulosic bioenergy crop. Large-scale lignocellulosic biofuel production from such crops is limited by the difficulty to deconstruct cell walls into fermentable sugars: the recalcitrance problem. In this study, we assessed the field performance of switchgrass plants overexpressing the switchgrass MYB 4 ( PvMYB4) transcription factor gene. PvMYB 4 transgenic switchgrass can have great lignin reduction, which commensurately increases sugar release and biofuel production. Our results over two growing seasons showed that one transgenic event (out of eight) had important gains in both biofuelmore » (32% more) and biomass (63% more) at the end of the second growing season relative to non-transgenic controls. These gains represent a doubling of biofuel production per hectare, which is the highest gain reported from any field-grown modified feedstock. In contrast to this transgenic event, which had relatively low ectopic overexpression of the transgene, five of the eight transgenic events planted did not survive the first field winter. The dead plants were all high-overexpressing events that performed well in the earlier greenhouse studies. Disease susceptibility was not compromised in any transgenic events over the field experiments. These results demonstrate the power of modifying the expression of an endogenous transcription factor to improve biofuel and biomass simultaneously, and also highlight the importance of field studies for "sorting" transgenic events. In conclusion, further research is needed to develop strategies for fine-tuning temporal-spatial transgene expression in feedstocks to optimize desired phenotypes.« less

  9. Transgenic Expression of the piRNA-Resistant Masculinizer Gene Induces Female-Specific Lethality and Partial Female-to-Male Sex Reversal in the Silkworm, Bombyx mori.

    PubMed

    Sakai, Hiroki; Sumitani, Megumi; Chikami, Yasuhiko; Yahata, Kensuke; Uchino, Keiro; Kiuchi, Takashi; Katsuma, Susumu; Aoki, Fugaku; Sezutsu, Hideki; Suzuki, Masataka G

    2016-08-01

    In Bombyx mori (B. mori), Fem piRNA originates from the W chromosome and is responsible for femaleness. The Fem piRNA-PIWI complex targets and cleaves mRNAs transcribed from the Masc gene. Masc encodes a novel CCCH type zinc-finger protein and is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. In the present study, several silkworm strains carrying a transgene, which encodes a Fem piRNA-resistant Masc mRNA (Masc-R), were generated. Forced expression of the Masc-R transgene caused female-specific lethality during the larval stages. One of the Masc-R strains weakly expressed Masc-R in various tissues. Females heterozygous for the transgene expressed male-specific isoform of the Bombyx homolog of insulin-like growth factor II mRNA-binding protein (ImpM) and Bmdsx. All examined females showed a lower inducibility of vitellogenin synthesis and exhibited abnormalities in the ovaries. Testis-like tissues were observed in abnormal ovaries and, notably, the tissues contained considerable numbers of sperm bundles. Homozygous expression of the transgene resulted in formation of the male-specific abdominal segment in adult females and caused partial male differentiation in female genitalia. These results strongly suggest that Masc is an important regulatory gene of maleness in B. mori.

  10. Enhanced and complete removal of phenylurea herbicides by combinational transgenic plant-microbial remediation.

    PubMed

    Yan, Xin; Huang, Jun-Wei; Xu, Xi-Hui; Chen, Dian; Xie, Xiang-Ting; Tao, Qing; He, Jian; Jiang, Jian-Dong

    2018-05-11

    The synergistic relationships between plants and their rhizospheric microbes can be used to develop a combinational bioremediation method, overcoming the constraints of individual phytoremediation or bioaugmentation method. Here, we provide a combinational transgenic plant-microbial remediation system for a more efficient removal of phenylurea herbicides (PHs) from contaminated-sites. The transgenic Arabidopsis thaliana synthesizing the bacterial N -demethylase PdmAB in the chloroplast was developed. The constructed transgenic Arabidopsis exhibited significant tolerance to isoproturon (IPU), a typical PH, and it took up the IPU through roots and transported to leaves, where the majority of the IPU was demethylated to 3-(4-isopropylphenyl)-1-methylurea (MDIPU). The produced intermediate was released outside of roots and further metabolized by the combinationally inoculated MDIPU-mineralizing bacterium Sphingobium sp. strain 1017-1 in the rhizosphere, resulting in an enhanced and complete removal of IPU from soil. Mutual benefits were built for both transgenic Arabidopsis and strain 1017-1. The transgenic Arabidopsis offered strain 1017-1 a suitable accommodation and in return, the latter protected the plant from the phytotoxicity of MDIPU. The biomass of the transgenic Arabidopsis and the residence of the inoculated degrading microbes in the combinational treatment increased significantly compared to that in their respective individual transgenic plant treatment or bioaugmentation treatment. The influence of the structure of bacterial community by combinational treatment was between that of the two individual treatments. Overall, the combination of two approaches, phytoremediation by transgenic plants and bioaugmentation with intermediate-mineralizing microbes in the rhizosphere, represents an innovative strategy for the enhanced and complete remediation of pollutant-contaminated sites. IMPORTANCE Phytoremediation of organic pollutant-contaminated sites using

  11. Influence of human lactoferrin expression on iron homeostasis, flavonoids, and antioxidants in transgenic tobacco.

    PubMed

    Kumar, Vinay; Gill, Tejpal; Grover, Sunita; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2013-02-01

    This study was aimed at to check the influence of human lactoferrin (hLF) expression on iron homeostasis, flavonoids, and antioxidants in transgenic tobacco. Transgenic tobacco expressing hLF cDNA under the control of a CaMV 35S promoter was produced. The iron content as well as chlorophyll content of transgenic tobacco was lower compared to mock and untransformed wild plants. Interestingly, hLF transgenic tobacco showed higher level of transcript expression for genes related to iron content regulation like iron transporter and metal transporter. While expression of genes related to iron storage such as ferritin 1 and ferritin 2 was downregulated. The transcript expression of genes encoding antioxidant enzymes such as glutathione reductase, glutathione-S-transferase, ascorbate peroxidase, and catalase was downregulated in hLF transgenic tobacco compared to controls. Further, the transcript expression of two important genes encoding dihydroflavonol reductase (DFR) and phenylalanine ammonia lyase regulatory enzymes of flavonoid biosynthesis pathway was analyzed. The expression of DFR was found to be downregulated, while PAL expression was upregulated in hLF transgenic tobacco compared to mock and untransformed wild plant. Total phenolics, flavonoids, and proanthocyanidins contents were found to be higher in hLF transgenic tobacco than the mock and untransformed wild plant. Results suggest that hLF expression in transgenic tobacco leads to iron deficiency, downregulation of antioxidant enzymes, and increase in total flavonoids.

  12. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis PlantsW⃞

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Deuerlein, Stephan; Griepink, Frans; de Kogel, Willem-Jan; Verstappen, Francel W. A.; Verhoeven, Harrie A.; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2003-01-01

    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. PMID:14630967

  13. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans.

    PubMed

    Grishok, Alla; Sinskey, Jina L; Sharp, Phillip A

    2005-03-15

    The silencing of transgene expression at the level of transcription in the soma of Caenorhabditis elegans through an RNAi-dependent pathway has not been previously characterized. Most gene silencing due to RNAi in C. elegans occurs at the post-transcriptional level. We observed transcriptional silencing when worms containing the elt-2::gfp/LacZ transgene were fed RNA produced from the commonly used L4440 vector. The transgene and the vector share plasmid backbone sequences. This transgene silencing depends on multiple RNAi pathway genes, including dcr-1, rde-1, rde-4, and rrf-1. Unlike post-transcriptional gene silencing in worms, elt-2::gfp/LacZ silencing is dependent on the PAZ-PIWI protein Alg-1 and on the HP1 homolog Hpl-2. The latter is a chromatin silencing factor, and expression of the transgene is inhibited at the level of intron-containing precursor mRNA. This inhibition is accompanied by a decrease in the acetylation of histones associated with the transgene. This transcriptional silencing in the soma can be distinguished from transgene silencing in the germline by its inability to be transmitted across generations and its dependence on the rde-1 gene. We therefore define this type of silencing as RNAi-induced Transcriptional Gene Silencing (RNAi-TGS). Additional chromatin-modifying components affecting RNAi-TGS were identified in a candidate RNAi screen.

  14. Analysis of hairpin RNA transgene-induced gene silencing in Fusarium oxysporum

    PubMed Central

    2013-01-01

    Background Hairpin RNA (hpRNA) transgenes can be effective at inducing RNA silencing and have been exploited as a powerful tool for gene function analysis in many organisms. However, in fungi, expression of hairpin RNA transcripts can induce post-transcriptional gene silencing, but in some species can also lead to transcriptional gene silencing, suggesting a more complex interplay of the two pathways at least in some fungi. Because many fungal species are important pathogens, RNA silencing is a powerful technique to understand gene function, particularly when gene knockouts are difficult to obtain. We investigated whether the plant pathogenic fungus Fusarium oxysporum possesses a functional gene silencing machinery and whether hairpin RNA transcripts can be employed to effectively induce gene silencing. Results Here we show that, in the phytopathogenic fungus F. oxysporum, hpRNA transgenes targeting either a β-glucuronidase (Gus) reporter transgene (hpGus) or the endogenous gene Frp1 (hpFrp) did not induce significant silencing of the target genes. Expression analysis suggested that the hpRNA transgenes are prone to transcriptional inactivation, resulting in low levels of hpRNA and siRNA production. However, the hpGus RNA can be efficiently transcribed by promoters acquired either by recombination with a pre-existing, actively transcribed Gus transgene or by fortuitous integration near an endogenous gene promoter allowing siRNA production. These siRNAs effectively induced silencing of a target Gus transgene, which in turn appeared to also induce secondary siRNA production. Furthermore, our results suggested that hpRNA transcripts without poly(A) tails are efficiently processed into siRNAs to induce gene silencing. A convergent promoter transgene, designed to express poly(A)-minus sense and antisense Gus RNAs, without an inverted-repeat DNA structure, induced consistent Gus silencing in F. oxysporum. Conclusions These results indicate that F. oxysporum possesses

  15. Physicochemical and biochemical characterization of transgenic papaya modified for protection against Papaya ringspot virus.

    PubMed

    Roberts, Madeen; Minott, Donna A; Pinnock, Simone; Tennant, Paula F; Jackson, Jose C

    2014-03-30

    Papaya, a nutritious tropical fruit, is consumed both in its fresh form and as a processed product worldwide. Major quality indices which include firmness, acidity, pH, colour and size, are cultivar dependent. Transgenic papayas engineered for resistance to Papaya ringspot virus were evaluated over the ripening period to address physicochemical quality attributes and food safety concerns. With the exception of one transgenic line, no significant differences (P > 0.05) were observed in firmness, acidity and pH. Lightness (L*) and redness (a*) of the pulps of non-transgenic and transgenic papaya were similar but varied over the ripening period (P < 0.05). Fruit mass, though non-uniform (P < 0.05) for some lines, was within the range reported for similar papaya cultivars, as were shape indices of female fruits. Transgene proteins, CP and NPTII, were not detected in fruit pulp at the table-ready stage. The findings suggest that transformation did not produce any major unintended alterations in the physicochemical attributes of the transgenic papayas. Transgene proteins in the edible fruit pulp were low or undetectable. © 2013 Society of Chemical Industry.

  16. Immunogenicity of recombinant LT-B delivered orally to humans in transgenic corn.

    PubMed

    Tacket, Carol O; Pasetti, Marcela F; Edelman, Robert; Howard, John A; Streatfield, Stephen

    2004-10-22

    Previous clinical studies have demonstrated the feasibility of using edible transgenic plants to deliver protective antigens as new oral vaccines. Transgenic corn is particularly attractive for this purpose since the recombinant antigen is stable and homogeneous, and corn can be formulated in several edible forms without destroying the cloned antigen. Transgenic corn expressing 1 mg of LT-B of Escherichia coli without buffer was fed to adult volunteers in three doses, each consisting of 2.1 g of plant material. Seven (78%) of nine volunteers developed rises in both serum IgG anti-LT and numbers of specific antibody secreting cells after vaccination. Four (44%) of nine volunteers also developed stool IgA. Transgenic plants represent a new vector for oral vaccine antigens.

  17. Molecular breeding of transgenic rice plants expressing a bacterial chlorocatechol dioxygenase gene.

    PubMed

    Shimizu, Masami; Kimura, Tetsuya; Koyama, Takayoshi; Suzuki, Katsuhisa; Ogawa, Naoto; Miyashita, Kiyotaka; Sakka, Kazuo; Ohmiya, Kunio

    2002-08-01

    The cbnA gene encoding the chlorocatechol dioxygenase gene from Ralstonia eutropha NH9 was introduced into rice plants. The cbnA gene was expressed in transgenic rice plants under the control of a modified cauliflower mosaic virus 35S promoter. Western blot analysis using anti-CbnA protein indicated that the cbnA gene was expressed in leaf tissue, roots, culms, and seeds. Transgenic rice calluses expressing the cbnA gene converted 3-chlorocatechol to 2-chloromucote efficiently. Growth and morphology of the transgenic rice plants expressing the cbnA gene were not distinguished from those of control rice plants harboring only a Ti binary vector. It is thus possible to breed transgenic plants that degrade chloroaromatic compounds in soil and surface water.

  18. Human HLA-Ev (147) Expression in Transgenic Animals.

    PubMed

    Matsuura, R; Maeda, A; Sakai, R; Eguchi, H; Lo, P-C; Hasuwa, H; Ikawa, M; Nakahata, K; Zenitani, M; Yamamichi, T; Umeda, S; Deguchi, K; Okuyama, H; Miyagawa, S

    2016-05-01

    In our previous study, we reported on the development of substituting S147C for HLA-E as a useful gene tool for xenotransplantation. In this study we exchanged the codon of HLA-Ev (147), checked its function, and established a line of transgenic mice. A new construct, a codon exchanging human HLA-Ev (147) + IRES + human beta 2-microgloblin, was established. The construct was subcloned into pCXN2 (the chick beta-actin promoter and cytomegalovirus enhancer) vector. Natural killer cell- and macrophage-mediated cytotoxicities were performed using the established the pig endothelial cell (PEC) line with the new gene. Transgenic mice with it were next produced using a micro-injection method. The expression of the molecule on PECs was confirmed by the transfection of the plasmid. The established molecules on PECs functioned well in regulating natural killer cell-mediated cytotoxicity and macrophage-mediated cytotoxicity. We have also successfully generated several lines of transgenic mice with this plasmid. The expression of HLA-Ev (147) in each mouse organ was confirmed by assessing the mRNA. The chick beta-actin promoter and cytomegalovirus enhancer resulted in a relatively broad expression of the gene in each organ, and a strong expression in the cases of the heart and lung. A synthetic HLA-Ev (147) gene with a codon usage optimized to a mammalian system represents a critical factor in the development of transgenic animals for xenotransplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Regulation of expression of transgenes in developing fish.

    PubMed

    Moav, B; Liu, Z; Caldovic, L D; Gross, M L; Faras, A J; Hackett, P B

    1993-05-01

    The transcriptional regulatory elements of the beta-actin gene of carp (Cyprinus carpio) have been examined in zebrafish and goldfish harbouring transgenes. The high sequence conservation of the putative regulatory elements in the beta-actin genes of animals suggested that their function would be conserved, so that transgenic constructs with the same transcriptional control elements would promote similar levels of transgene expression in different species of transgenic animals. To test this assumption, we analysed the temporal expression of a reporter gene under the control of transcriptional control sequences from the carp beta-actin gene in zebrafish (Brachydanio rerio) and goldfish (Carrasius auratus). Our results indicated that, contrary to expectations, combinations of different transcriptional control elements affected the level, duration, and onset of gene expression differently in developing zebrafish and goldfish. The major differences in expression of beta-actin/CAT (chloramphenicol acetyltransferase) constructs in zebrafish and goldfish were: (1) overall expression was almost 100-fold higher in goldfish than in zebrafish embryos, (2) the first intron had an enhancing effect on gene expression in zebrafish but not in goldfish, and (3) the serum-responsive/CArG-containing regulatory element in the proximal promoter was not always required for maximal CAT activity in goldfish, but was required in zebrafish. These results suggest that in the zebrafish, but not in the goldfish, there may be interactions between motifs in the proximal promoter and the first intron which appear to be required for maximal enhancement of transcription.

  20. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects.

    PubMed

    Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F; Bahieldin, Ahmed

    2015-07-22

    Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. Transgenic wheat plants had improved resistance to Sitophilus granarius.

  1. Dispersal of Transgenes through Maize Seed Systems in Mexico

    PubMed Central

    Dyer, George A.; Serratos-Hernández, J. Antonio; Perales, Hugo R.; Gepts, Paul; Piñeyro-Nelson, Alma; Chávez, Angeles; Salinas-Arreortua, Noé; Yúnez-Naude, Antonio; Taylor, J. Edward; Alvarez-Buylla, Elena R.

    2009-01-01

    Objectives Current models of transgene dispersal focus on gene flow via pollen while neglecting seed, a vital vehicle for gene flow in centers of crop origin and diversity. We analyze the dispersal of maize transgenes via seeds in Mexico, the crop's cradle. Methods We use immunoassays (ELISA) to screen for the activity of recombinant proteins in a nationwide sample of farmer seed stocks. We estimate critical parameters of seed population dynamics using household survey data and combine these estimates with analytical results to examine presumed sources and mechanisms of dispersal. Results Recombinant proteins Cry1Ab/Ac and CP4/EPSPS were found in 3.1% and 1.8% of samples, respectively. They are most abundant in southeast Mexico but also present in the west-central region. Diffusion of seed and grain imported from the United States might explain the frequency and distribution of transgenes in west-central Mexico but not in the southeast. Conclusions Understanding the potential for transgene survival and dispersal should help design methods to regulate the diffusion of germplasm into local seed stocks. Further research is needed on the interactions between formal and informal seed systems and grain markets in centers of crop origin and diversification. PMID:19503610

  2. Epithalon decelerates aging and suppresses development of breast adenocarcinomas in transgenic her-2/neu mice.

    PubMed

    Anisimov, V N; Khavinson, V Kh; Alimova, I N; Semchenko, A V; Yashin, A I

    2002-08-01

    Female transgenic FVB/N mice carrying the breast cancer gene HER-2/neu received epithalon (Ala-Glu-Asp-Gly) in a dose of 1 mg subcutaneously 5 times a week to from the 2nd month of life to death. Epithalon prolonged the average and maximum lifetimes of mice by 13.5 (p<0.05) and 13.9%, respectively. The peptide prolonged the average lifetime of animals without neoplasms (by 34.2%, p<0.05). Epithalon decelerated the development of age-related disturbances in reproductive activity and suppressed the formation of neoplasms. The peptide decreased the incidence of breast adenocarcinomas, lungs metastases (by 1.6 times, p<0.05), and multiple tumors (by 2 times). Epithalon 3.7-fold increased the number of mice without breast tumors (p<0.05), while the number of animals with 6 or more breast tumors decreased by 3 times (p<0.05). Epithalon prolonged the lifetime of mice with breast tumors by 1.4 times (p<0.05). These results indicate that Epithalon possesses geroprotective activity and inhibits breast carcinogenesis in transgenic mice, which is probably related to suppression of HER-2/neu expression.

  3. Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators

    PubMed Central

    Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Li, Zhen; Shelton, Anthony M.; Luo, Junyu; Cui, Jinjie; Zhang, Qingwen; Liu, Xiaoxia

    2015-01-01

    With the large-scale release of genetically modified (GM) crops, there are ecological concerns on transgene movement from GM crops to non-GM counterparts and wild relatives. In this research, we conducted greenhouse experiments to measure pollen-mediated gene flow (PGF) in the absence and presence of pollinators (Bombus ignitus, Apis mellifera and Pieris rapae) in one GM cotton (resistant to the insect Helicoverpa armigera and the herbicide glyphosate) and two non-GM lines (Shiyuan321 and Hai7124) during 2012 and 2013. Our results revealed that: (1) PGF varied depending on the pollinator species, and was highest with B. ignitus (10.83%) and lowest with P. rapae (2.71%); (2) PGF with B. ignitus depended on the distance between GM and non-GM cottons; (3) total PGF to Shiyuan321 (8.61%) was higher than to Hai7124 (4.10%). To confirm gene flow, we tested hybrids carrying transgenes for their resistance to glyphosate and H. armigera, and most hybrids showed strong resistance to the herbicide and insect. Our research confirmed that PGF depended on pollinator species, distance between plants and the receptor plant. PMID:26525573

  4. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice

    PubMed Central

    Khare, Sanjay D.; Sarosi, Ildiko; Xia, Xing-Zhong; McCabe, Susan; Miner, Kent; Solovyev, Irina; Hawkins, Nessa; Kelley, Michael; Chang, David; Van, Gwyneth; Ross, Larry; Delaney, John; Wang, Ling; Lacey, David; Boyle, William J.; Hsu, Hailing

    2000-01-01

    TALL-1/Blys/BAFF is a member of the tumor necrosis factor (TNF) ligand superfamily that is functionally involved in B cell proliferation. Here, we describe B cell hyperplasia and autoimmune lupus-like changes in transgenic mice expressing TALL-1 under the control of a β-actin promoter. The TALL-1 transgenic mice showed severe enlargement of spleen, lymph nodes, and Peyer's patches because of an increased number of B220+ cells. The transgenic mice also had hypergammaglobulinemia contributed by elevations of serum IgM, IgG, IgA, and IgE. In addition, a phenotype similar to autoimmune lupus-like disease was also seen in TALL-1 transgenic mice, characterized by the presence of autoantibodies to nuclear antigens and immune complex deposits in the kidney. Prolonged survival and hyperactivity of transgenic B cells may contribute to the autoimmune lupus-like phenotype in these animals. Our studies further confirm TALL-1 as a stimulator of B cells that affect Ig production. Thus, TALL-1 may be a primary mediator in B cell-associated autoimmune diseases. PMID:10716715

  5. Transgenic upregulation of the condensed tannin pathway in poplar leads to a dramatic shift in leaf palatability for two tree-feeding Lepidoptera.

    PubMed

    Boeckler, G Andreas; Towns, Megan; Unsicker, Sybille B; Mellway, Robin D; Yip, Lynn; Hilke, Ines; Gershenzon, Jonathan; Constabel, C Peter

    2014-02-01

    Transgenic hybrid aspen (Populus tremula x tremuloides) overexpressing the MYB134 tannin regulatory gene show dramatically enhanced condensed tannin (proanthocyanidin) levels, as well as shifts in other phenolic metabolites. A series of insect bioassays with forest tent caterpillars (Malacosoma disstria) and gypsy moth (Lymantria dispar) caterpillars was carried out to determine how this metabolic shift affects food preference and performance of generalist tree-feeding lepidopterans. Both species showed a distinct preference for the high-tannin MYB134 overexpressor plants, and L. dispar performance was enhanced relative to controls. L. dispar reached greater pupal weight and showed reduced time to pupation when reared on the MYB134 overexpressing poplar. These results were unexpected since enhanced condensed tannin levels were predicted to act as feeding deterrents. However, the data may be explained by the observed decrease in the salicinoids (phenolic glycosides) salicortin and tremulacin that accompanied the upregulation of the condensed tannins in the transgenics. We conclude that for these two lepidopteran species, condensed tannin levels are unlikely to be a major determinant of caterpillar food preference or performance. However, our experiments show that overexpression of a single regulatory gene in transgenic aspen can have a significant impact on herbivorous insects.

  6. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    PubMed

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. Utilization of next generation sequencing for analyzing transgenic insertions in plum

    USDA-ARS?s Scientific Manuscript database

    When utilizing transgenic plants, it is useful to know how many copies of the genes were inserted and the locations of these insertions in the genome. This information can provide important insights for the interpretation of transgene expression and the resulting phenotype. Traditionally, these qu...

  8. Tissue-specific expression of human CD4 in transgenic mice.

    PubMed Central

    Gillespie, F P; Doros, L; Vitale, J; Blackwell, C; Gosselin, J; Snyder, B W; Wadsworth, S C

    1993-01-01

    The gene for the human CD4 glycoprotein, which serves as the receptor for human immunodeficiency virus type 1, along with approximately 23 kb of sequence upstream of the translational start site, was cloned. The ability of 5' flanking sequences to direct tissue-specific expression was tested in cell culture and in transgenic mice. A 5' flanking region of 6 kb was able to direct transcription of the CD4 gene in NIH 3T3 cells but did not result in detectable expression in the murine T-cell line EL4 or in four lines of transgenic mice. A larger 5' flanking region of approximately 23 kb directed high-level CD4 transcription in the murine T-cell line EL4 and in three independent lines of transgenic mice. Human CD4 expression in all tissues analyzed was tightly correlated with murine CD4 expression; the highest levels of human CD4 RNA expression were found in the thymus and spleen, with relatively low levels detected in other tissues. Expression of human CD4 protein in peripheral blood mononuclear cells was examined by flow cytometry in these transgenic animals and found to be restricted to the murine CD4+ subset of lymphocytes. Human CD4 protein, detected with an anti-human CD4 monoclonal antibody, was present on the surface of 45 to 50% of the peripheral blood mononuclear cells from all transgenic lines. Images PMID:8474453

  9. Purification and Characterization of Recombinant Human Lysozyme from Eggs of Transgenic Chickens.

    PubMed

    Wu, Hanyu; Cao, Dainan; Liu, Tongxin; Zhao, Jianmin; Hu, Xiaoxiang; Li, Ning

    2015-01-01

    Transgenic chickens as bioreactors have several advantages, such as the simple establishment procedure, correct glycosylation profile of expressed proteins, etc. Lysozyme is widely used in food industry, livestock farming, and medical field as a replacement of antibiotics because of its antibacterial and complement system-modulating activity. In this study, we used RT-PCR, Western blot, and immunofluorescence to detect the expression of recombinant human lysozyme (rhLY) in the transgenic chicken. We demonstrated that the transgene of rhLY was genetically stable across different generations. We next optimized the purification procedure of rhLY from the transgenic eggs by utilizing two steps of cation-exchange chromatography and one gel-filtration chromatography. About 6 mg rhLY with the purity exceeding 90% was obtained from ten eggs, and the purification efficiency was about 75%. The purified rhLY had similar physicochemical and biological properties in molecular mass and antibacterial activity compared to the commercial human lysozyme. Additionally, both of them exhibited thermal stability at 60°C and tolerated an extensive pH range of 2 to 11. In conclusion, our study proved that the transgenic chickens we have previously generated were genetically stable and suitable for the production of active rhLY. We also provided a pipeline for purifying the recombinant proteins from transgenic eggs, which could be useful for other studies.

  10. Purification and Characterization of Recombinant Human Lysozyme from Eggs of Transgenic Chickens

    PubMed Central

    Wu, Hanyu; Cao, Dainan; Liu, Tongxin; Zhao, Jianmin; Hu, Xiaoxiang; Li, Ning

    2015-01-01

    Transgenic chickens as bioreactors have several advantages, such as the simple establishment procedure, correct glycosylation profile of expressed proteins, etc. Lysozyme is widely used in food industry, livestock farming, and medical field as a replacement of antibiotics because of its antibacterial and complement system-modulating activity. In this study, we used RT-PCR, Western blot, and immunofluorescence to detect the expression of recombinant human lysozyme (rhLY) in the transgenic chicken. We demonstrated that the transgene of rhLY was genetically stable across different generations. We next optimized the purification procedure of rhLY from the transgenic eggs by utilizing two steps of cation-exchange chromatography and one gel-filtration chromatography. About 6 mg rhLY with the purity exceeding 90% was obtained from ten eggs, and the purification efficiency was about 75%. The purified rhLY had similar physicochemical and biological properties in molecular mass and antibacterial activity compared to the commercial human lysozyme. Additionally, both of them exhibited thermal stability at 60°C and tolerated an extensive pH range of 2 to 11. In conclusion, our study proved that the transgenic chickens we have previously generated were genetically stable and suitable for the production of active rhLY. We also provided a pipeline for purifying the recombinant proteins from transgenic eggs, which could be useful for other studies. PMID:26713728

  11. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield.

    PubMed

    Guo, Mei; Rupe, Mary A; Wei, Jun; Winkler, Chris; Goncalves-Butruille, Marymar; Weers, Ben P; Cerwick, Sharon F; Dieter, Jo Ann; Duncan, Keith E; Howard, Richard J; Hou, Zhenglin; Löffler, Carlos M; Cooper, Mark; Simmons, Carl R

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer's modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer's female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance.

  12. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield

    PubMed Central

    Guo, Mei

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays ARGOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer’s modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer’s female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance. PMID:24218327

  13. Transgenic chickens expressing human urokinase-type plasminogen activator.

    PubMed

    Lee, Sung Ho; Gupta, Mukesh Kumar; Ho, Young Tae; Kim, Teoan; Lee, Hoon Taek

    2013-09-01

    Urokinase-type plasminogen activator is a serine protease that is clinically used in humans for the treatment of thrombolytic disorders and vascular diseases such as acute ischemic stroke and acute peripheral arterial occlusion. This study explored the feasibility of using chickens as a bioreactor for producing human urokinase-type plasminogen activator (huPA). Recombinant huPA gene, under the control of a ubiquitous Rous sarcoma virus promoter, was injected into the subgerminal cavity of freshly laid chicken eggs at stage X using the replication-defective Moloney murine leukemia virus (MoMLV)-based retrovirus vectors encapsidated with VSV-G (vesicular stomatitis virus G) glycoprotein. A total of 38 chicks, out of 573 virus-injected eggs, hatched and contained the huPA gene in their various body parts. The mRNA transcript of the huPA gene was present in various organs, including blood and egg, and was germ-line transmitted to the next generation. The level of active huPA protein was 16-fold higher in the blood of the transgenic chicken than in the nontransgenic chicken (P < 0.05). The expression of huPA protein in eggs increased from 7.82 IU/egg in the G0 generation to 17.02 IU/egg in the G1 generation. However, huPA-expressing embryos had reduced survival and hatchability at d 18 and 21 of incubation, respectively, and the blood clotting time was significantly higher in transgenic chickens than their nontransgenic counterparts (P < 0.05). Furthermore, adult transgenic rooster showed reduced (P < 0.05) fertility, as revealed by reduced volume of semen ejaculate, sperm concentration, and sperm viability. Taken together, our data suggest that huPA transgenic chickens could be successfully produced by the retroviral vector system. Transgenic chickens, expressing the huPA under the control of a ubiquitous promoter, may not only be used as a bioreactor for pharming of the huPA drug but also be useful for studying huPA-induced bleeding and other disorders.

  14. Safety Evaluation of Neo Transgenic Pigs by Studying Changes in Gut Microbiota Using High-Throughput Sequencing Technology

    PubMed Central

    Jiang, Shengwang; Cai, Chunbo; Ma, Dezun; Gao, Pengfei; Li, Hegang; Jiang, Ke; Tang, Maoxue; Hou, Jian; Liu, Jie; Cui, Wentao

    2016-01-01

    The neo (neomycin phosphotransferase) gene is widely used as a selection marker in the production of genetically engineered animals and plants. Recent attention has been focused on safety concerns regarding neo transgene expression. In this study, neo transgenic and non-transgenic piglets were randomly assigned into Group A and Group B to evaluate effects of neo transgene by studying changes in gut microbiota using high-throughput sequencing. Group A pigs were fed a standard diet supplemented with antibiotic neomycin; Group B pigs were fed a standard diet. We examined horizontal transfer of exogenous neo gene using multiplex PCR; and investigated if the presence of secreted NPT II (neo expression product) in the intestine could lead to some protection against neomycin in transgenic pigs by monitoring different patterns of changes in gut microbiota in Group A animals. The unintended effects of neo transgene on gut microbiota were studied in Group B animals. Horizontal gene transfer was not detected in gut microbiota of any transgenic pigs. In Group A, a significant difference was observed between transgenic pigs and non-transgenic pigs in pattern of changes in Proteobacteria populations in fecal samples during and post neomycin feeding. In Group B, there were significant differences in the relative abundance of phyla Firmicutes, Bacteroidetes and Proteobacteria, and genera Lactobacillus and Escherichia-Shigella-Hafnia between transgenic pigs and non-transgenic pigs. We speculate that the secretion of NPT II from transgenic tissues/cells into gut microbiota results in the inhibition of neomycin activity and the different patterns of changes in bacterial populations. Furthermore, the neo gene also leads to unintended effects on gut microbiota in transgenic pigs that were fed with basic diet (not supplemented with neomycin). Thus, our data in this study caution that wide use of the neo transgene in genetically engineered animals should be carefully considered and fully

  15. Positive and Negative Selection in Transgenic Mice Expressing a T-Cell Receptor Specific for Influenza Nucleoprotein and Endogenous Superantigen

    PubMed Central

    Mamalaki, Clio; Elliott, James; Norton, Trisha; Yannoutsos, Nicholas; Townsend, Alain R.; Chandler, Phillip; Simpson, Elizabeth

    1993-01-01

    A transgenic mouse was generated expressing on most (>80%) of thymocytes and peripheral T cells a T-cell receptor isolated from a cytotoxic T-cell clone (F5). This clone is CD8+ and recognizes αα366-374 of the nucleoprotein (NP 366-374) of influenza virus (A/NT/60/68), in the context of Class ,MHC Db (Townsend et al., 1986). The receptor utilizes the Vβ11 and Vα4 gene segments for the β chain and α chain, respectively (Palmer et al., 1989). The usage of Vβ11 makes this TcR reactive to Class II IE molecules and an endogenous ligand recently identified as a product of the endogenous mammary tumour viruses (Mtv) 8, 9, and 11 (Dyson et al., 1991). Here we report the development of F5 transgenic T cells and their function in mice of the appropriate MHC (C57BL/10 H-2b, IE-) or in mice expressing Class II MHC IE (e.g., CBA/Ca H-2k and BALB/c H-2d) and the endogenous Mtv ligands. Positive selection of CD8+ T cells expressing the Vβ11 is seen in C57BL/10 transgenic mice (H-2b). Peripheral T cells from these mice are capable of killing target cells in an antigen-dependent manner after a period of in vitro culture with IL-2. In the presence of Class II MHC IE molecules and the endogenous Mtv ligand, most of the single-positive cells carrying the transgenic T-cell receptor are absent in the thymus. Unexpectedly, CD8+ peripheral T-cells in these (H-2k or H-2d) F5 mice are predominantly Vβ11 positive and also have the capacity to kill targets in an antigen-dependent manner. This is true even following backcrossing of the F5 TcR transgene to H-2d scid/scid mice, in which functional rearrangement of endogenous TcR alpha- and beta-chain genes is impaired. PMID:8281031

  16. A double built-in containment strategy for production of recombinant proteins in transgenic rice.

    PubMed

    Zhang, Xianwen; Wang, Dongfang; Zhao, Sinan; Shen, Zhicheng

    2014-01-01

    Using transgenic rice as a bioreactor for mass production of pharmaceutical proteins could potentially reduce the cost of production significantly. However, a major concern over the bioreactor transgenic rice is the risk of its unintended spreading into environment and into food or feed supplies. Here we report a mitigating method to prevent unwanted transgenic rice spreading by a double built-in containment strategy, which sets a selectively termination method and a visual tag technology in the T-DNA for transformation. We created transgenic rice with an inserted T-DNA that harbors a human proinsulin gene fused with the far-red fluorescent protein gene mKate_S158A, an RNAi cassette suppressing the expression of the rice bentazon detoxification enzyme CYP81A6, and an EPSPS gene as the selection marker for transformation. Herbicide spray tests indicated that such transgenic rice plants can be killed selectively by a spray of bentazon at regular field application dosage for rice weed control. Moreover, the transgenic rice seeds were bright red in color due to the fused far-red fluorescent protein, and could be easily visualized under daylight by naked eyes. Thus, the transgenic rice plants reported in this study could be selectively killed by a commonly used herbicide during their growth stage, and their seeds may be detected visually during processing and consumption after harvest. This double built-in containment strategy may greatly enhance the confinement of the transgenic rice.

  17. Long-term health and germline transmission in transgenic cattle following transposon-mediated gene transfer.

    PubMed

    Yum, Soo-Young; Lee, Song-Jeon; Park, Sin-Gi; Shin, In-Gang; Hahn, Sang-Eun; Choi, Woo-Jae; Kim, Hee-Soo; Kim, Hyeong-Jong; Bae, Seong-Hun; Lee, Je-Hyeong; Moon, Joo-Yeong; Lee, Woo-Sung; Lee, Ji-Hyun; Lee, Choong-Il; Kim, Seong-Jin; Jang, Goo

    2018-05-23

    Transposon-mediated, non-viral gene delivery is a powerful tool for generating stable cell lines and transgenic animals. However, as multi-copy insertion is the preferred integration pattern, there is the potential for uncontrolled changes in endogenous gene expression and detrimental effects in cells or animals. Our group has previously reported on the generation of several transgenic cattle by using microinjection of the Sleeping Beauty (SB) and PiggyBac (PB) transposons and seeks to explore the long-term effects of this technology on cattle. Transgenic cattle, one female (SNU-SB-1) and one male (SNU-PB-1), reached over 36 months of age with no significant health issues and normal blood parameters. The detection of transgene integration and fluorescent signal in oocytes and sperm suggested the capacity for germline transmission in both of the founder animals. After natural breeding, the founder transgenic cow delivered a male calf and secreted milk containing fluorescent transgenic proteins. The calf expressed green fluorescent protein in primary cells from ear skin, with no significant change in overall genomic stability and blood parameters. Three sites of transgene integration were identified by next-generation sequencing of the calf's genome. Overall, these data demonstrate that transposon-mediated transgenesis can be applied to cattle without being detrimental to their long-term genomic stability or general health. We further suggest that this technology may be usefully applied in other fields, such as the generation of transgenic animal models.

  18. Xenopus tropicalis transgenic lines and their use in the study of embryonic induction.

    PubMed

    Hirsch, Nicolas; Zimmerman, Lyle B; Gray, Jessica; Chae, Jeiwook; Curran, Kristen L; Fisher, Marilyn; Ogino, Hajime; Grainger, Robert M

    2002-12-01

    For over a century, amphibian embryos have been a source of significant insight into developmental mechanisms, including fundamental discoveries about the process of induction. The recently developed transgenesis for Xenopus offers new approaches to these poorly understood processes, particularly when undertaken in the quickly maturing species Xenopus tropicalis, which greatly facilitates establishment of permanent transgenic lines. Several X. tropicalis transgenic lines have now been generated, and experiments demonstrating the value of these lines to study induction in embryonic tissue recombinants and explants are presented here. A revised protocol for transgenesis in X. tropicalis resulting in a significant increase in the percentage of transgenic animals that reach adulthood is presented, as well as improvements in tadpole and froglet husbandry, which have facilitated the raising of large numbers of adults. Working transgenic populations have been rapidly expanded, and some transgenes have been bred to homozygosity. Established lines include those bearing the promoter regions of Pax-6, Otx-2, Rx, and EF1alpha coupled to fluorescent reporter genes. Multireporter lines combining, in a single animal, up to three gene promoters coupled to different fluorescent reporters have also been established. The value of X. tropicalis transgenic lines for the study of induction is demonstrated by showing activation of Pax-6 by noggin treatment of Pax-6/GFP transgenic animal caps, illustrating how reporter lines allow a rapid, in vivo assay for an inductive response. An experiment showing lens induction in gamma-crystallin/GFP transgenic lens ectoderm when it is recombined with mouse optic vesicle demonstrates conservation of inducing signals from amphibians and mammals. It also shows how the warmer culture temperatures tolerated by X. tropicalis embryos can be used in assays of factors produced by mammalian cells and tissues. The many applications of transgenic reporter

  19. Human health and transgenic crops

    USDA-ARS?s Scientific Manuscript database

    Under the joint auspices of the Agrochemical and the Agricultural and Food Chemistry Divisions of the American Chemical Society, we organized a short symposium on “Human Health and Transgenic Crops” at the 244th ACS national meeting, held August 19-23, 2012 in Philadelphia, PA, to examine an array o...

  20. Fitness components and ecological risk of transgenic release: a model using Japanese medaka (Oryzias latipes).

    PubMed

    Muir, W M; Howard, R D

    2001-07-01

    Any release of transgenic organisms into nature is a concern because ecological relationships between genetically engineered organisms and other organisms (including their wild-type conspecifics) are unknown. To address this concern, we developed a method to evaluate risk in which we input estimates of fitness parameters from a founder population into a recurrence model to predict changes in transgene frequency after a simulated transgenic release. With this method, we grouped various aspects of an organism's life cycle into six net fitness components: juvenile viability, adult viability, age at sexual maturity, female fecundity, male fertility, and mating advantage. We estimated these components for wild-type and transgenic individuals using the fish, Japanese medaka (Oryzias latipes). We generalized our model's predictions using various combinations of fitness component values in addition to our experimentally derived estimates. Our model predicted that, for a wide range of parameter values, transgenes could spread in populations despite high juvenile viability costs if transgenes also have sufficiently high positive effects on other fitness components. Sensitivity analyses indicated that transgene effects on age at sexual maturity should have the greatest impact on transgene frequency, followed by juvenile viability, mating advantage, female fecundity, and male fertility, with changes in adult viability, resulting in the least impact.

  1. Genomic localization of the Z/EG transgene in the mouse genome.

    PubMed

    Colombo, Sophie; Kumasaka, Mayuko; Lobe, Corrinne; Larue, Lionel

    2010-02-01

    The Z/EG transgenic mouse line, produced by Novak et al., displays tissue-specific EGFP expression after Cre-mediated recombination. The autofluorescence of EGFP allows the visualization of cells of interest displaying Cre recombination. The initial construct was designed such that cells without Cre recombination express the beta-galactosidase marker, facilitating counterselection. We used inverse PCR to identify the site of integration of the Z/EG transgene, to improve the efficiency of homozygous Z/EG mouse production. Recombined cells produced large amounts of EGFP protein, resulting in higher levels of fluorescence and therefore greater contrast with nonrecombined cells. We mapped the transgene to the G1 region of chromosome 5. This random insertion was found to have occurred 230-bp upstream from the start codon of the Rasa4 gene. The insertion of the Z/EG transgene in the C57BL/6 genetic background had no effect on Rasa4 expression. Homozygous Z/EG mice therefore had no obvious phenotype. (c) 2009 Wiley-Liss, Inc.

  2. ESTABLISHMENT OF TRANSGENIC CREEPING BENTGRASS (AGROSTIS STOLONIFERA L.) IN NON-AGRONOMIC HABITATS

    EPA Science Inventory

    Concerns about genetically modified crops include transgene flow to compatible wild species and potential unintended ecological consequences associated with transgene introgression. To date, there has been little empirical documentation of the relative frequency of establishment...

  3. Transgenic cells with increased plastoquinone levels and methods of use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, Richard T.; Subramanian, Sowmya; Cahoon, Edgar

    Disclosed herein are transgenic cells expressing a heterologous nucleic acid encoding a prephenate dehydrogenase (PDH) protein, a heterologous nucleic acid encoding a homogentisate solanesyl transferase (HST) protein, a heterologous nucleic acid encoding a deoxyxylulose phosphate synthase (DXS) protein, or a combination of two or more thereof. In particular examples, the disclosed transgenic cells have increased plastoquinone levels. Also disclosed are methods of increasing cell growth rates or production of biomass by cultivating transgenic cells expressing a heterologous nucleic acid encoding a PDH protein, a heterologous nucleic acid encoding an HST protein, a heterologous nucleic acid encoding a DXS protein, ormore » a combination of two or more thereof under conditions sufficient to produce cell growth or biomass.« less

  4. Transformation of pecan and regeneration of transgenic plants.

    PubMed

    McGranahan, G H; Leslie, C A; Dandekar, A M; Uratsu, S L; Yates, I E

    1993-09-01

    A gene transfer system developed for walnut (Juglans regia L.) was successfully applied to pecan (Carya illinoensis [Wang] K. Koch). Repetitively embryogenic somatic embryos derived from open-pollinated seed of 'Elliott', 'Wichita', and 'Schley' were co-cultivated with Agrobacterium strain EHA 101/pCGN 7001, which contains marker genes for beta-glucuronidase activity and resistance to kanamycin. Several modifications of the standard walnut transformation techniques were tested, including a lower concentration of kanamycin and a modified induction medium, but these treatments had no measurable effect on efficiency of transformation. Nineteen of the 764 viable inoculated embryos produced transgenic subclones; 13 of these were from the line 'Elliott'6, 3 from 'Schley'5/3, and 3 from 'Wichita'9. Transgenic embryos of 'Wichita'9 germinated most readily and three subclones were successfully micropropagated. Three transgenic plants of one of these subclones were obtained by grafting the tissue cultured shoots to seedling pecan rootstock in the greenhouse. Gene insertion, initially detected by GUS activity, was confirmed by detection of integrated T-DNA sequences using Southern analysis.

  5. Bean alpha-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae.

    PubMed

    de Sousa-Majer, Maria José; Hardie, Darryl C; Turner, Neil C; Higgins, Thomas J V

    2007-08-01

    This glasshouse study used an improved larval measurement procedure to evaluate the impact of transgenic pea, Pisum sativum L., seeds expressing a-amylase inhibitor (AI)-1 or -2 proteins on pea weevil, Bruchus pisorum L. Seeds of transgenic 'Laura' and 'Greenfeast' peas expressing alpha-(AI)-1 reduced pea weevil survival by 93-98%. Larval mortality occurred at an early instar. Conversely, in nontransgenic cultivars, approximately 98-99% of the pea weevils emerged as adults. By measuring the head capsule size, we determined that larvae died at the first to early third instar in alpha-(AI)-1 transgenic peas, indicating that this inhibitor is highly effective in controlling this insect. By contrast, transgenic Laura and 'Dundale' expressing alpha-(AI)-2 did not affect pea weevil survival, but they did delay larval development. After 77 d of development, the head capsule size indicated that the larvae were still at the third instar stage in transgenic alpha-(AI)-2 peas, whereas adult bruchids had developed in the nontransgenic peas.

  6. AN APPROACH TO TRANSGENIC CROP MONITORING

    EPA Science Inventory

    Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal crop distribution in the landscape. Genetically engineered crops containing bacterial gene(s) that express an insecticidal protein from Bacillus thuringiensis (Bt) are regulated...

  7. Comparative statistical component analysis of transgenic, cyanophycin-producing potatoes in greenhouse and field trials.

    PubMed

    Schmidt, Kerstin; Schmidtke, Jörg; Mast, Yvonne; Waldvogel, Eva; Wohlleben, Wolfgang; Klemke, Friederike; Lockau, Wolfgang; Hausmann, Tina; Hühns, Maja; Broer, Inge

    2017-08-01

    Potatoes are a promising system for industrial production of the biopolymer cyanophycin as a second compound in addition to starch. To assess the efficiency in the field, we analysed the stability of the system, specifically its sensitivity to environmental factors. Field and greenhouse trials with transgenic potatoes (two independent events) were carried out for three years. The influence of environmental factors was measured and target compounds in the transgenic plants (cyanophycin, amino acids) were analysed for differences to control plants. Furthermore, non-target parameters (starch content, number, weight and size of tubers) were analysed for equivalence with control plants. The huge amount of data received was handled using modern statistical approaches to model the correlation between influencing environmental factors (year of cultivation, nitrogen fertilization, origin of plants, greenhouse or field cultivation) and key components (starch, amino acids, cyanophycin) and agronomic characteristics. General linear models were used for modelling, and standard effect sizes were applied to compare conventional and genetically modified plants. Altogether, the field trials prove that significant cyanophycin production is possible without reduction of starch content. Non-target compound composition seems to be equivalent under varying environmental conditions. Additionally, a quick test to measure cyanophycin content gives similar results compared to the extensive enzymatic test. This work facilitates the commercial cultivation of cyanophycin potatoes.

  8. [Transgenic plants as medicine production systems].

    PubMed

    Okada, Y

    1997-10-01

    Transgenic plants are emerging as an important system for the expression of many recombinant proteins, especially those intended for therapeutic purpose. The production of foreign proteins in plants has several advantages. In terms of required equipment and cost, mass production in plants is far easier to achieve than techniques involving animal cells. Successful production of several proteins in plants, including human serum albumin, haemoglobin, monoclonal antibodies, viral antigens (vaccines), enkephalin, and trichosanthin, has been reported. Particularly, the demonstration that vaccine antigens can be produced in plants in their native, immunogenic forms opens exciting possibilities for the "bio-farming" of vaccines. If the antigens are orally active, food-based "edible vaccines" could allow economical production. In this review, I will discuss the progress that has been made by several groups in what is now an expanding area of medicine research that utilizes transgenic plants.

  9. Large-Scale Mass Spectrometry Imaging Investigation of Consequences of Cortical Spreading Depression in a Transgenic Mouse Model of Migraine

    NASA Astrophysics Data System (ADS)

    Carreira, Ricardo J.; Shyti, Reinald; Balluff, Benjamin; Abdelmoula, Walid M.; van Heiningen, Sandra H.; van Zeijl, Rene J.; Dijkstra, Jouke; Ferrari, Michel D.; Tolner, Else A.; McDonnell, Liam A.; van den Maagdenberg, Arn M. J. M.

    2015-06-01

    Cortical spreading depression (CSD) is the electrophysiological correlate of migraine aura. Transgenic mice carrying the R192Q missense mutation in the Cacna1a gene, which in patients causes familial hemiplegic migraine type 1 (FHM1), exhibit increased propensity to CSD. Herein, mass spectrometry imaging (MSI) was applied for the first time to an animal cohort of transgenic and wild type mice to study the biomolecular changes following CSD in the brain. Ninety-six coronal brain sections from 32 mice were analyzed by MALDI-MSI. All MSI datasets were registered to the Allen Brain Atlas reference atlas of the mouse brain so that the molecular signatures of distinct brain regions could be compared. A number of metabolites and peptides showed substantial changes in the brain associated with CSD. Among those, different mass spectral features showed significant ( t-test, P < 0.05) changes in the cortex, 146 and 377 Da, and in the thalamus, 1820 and 1834 Da, of the CSD-affected hemisphere of FHM1 R192Q mice. Our findings reveal CSD- and genotype-specific molecular changes in the brain of FHM1 transgenic mice that may further our understanding about the role of CSD in migraine pathophysiology. The results also demonstrate the utility of aligning MSI datasets to a common reference atlas for large-scale MSI investigations.

  10. Characterization of diabetic nephropathy in CaM kinase IIalpha (Thr286Asp) transgenic mice.

    PubMed

    Suzuki, Hikari; Kato, Ichiro; Usui, Isao; Takasaki, Ichiro; Tabuchi, Yoshiaki; Oya, Takeshi; Tsuneyama, Koichi; Kawaguchi, Hiroshi; Hiraga, Koichi; Takasawa, Shin; Okamoto, Hiroshi; Tobe, Kazuyuki; Sasahara, Masakiyo

    2009-01-30

    Detailed studies were performed on diabetic kidneys derived from transgenic mice overexpressing the mutant form (Thr286Asp) of Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaM kinase IIalpha) in pancreatic beta-cells. Kidney weight/body weight ratio, urinary albumin/creatinine ratio, serum BUN level, and mesangial/glomerular area ratio were all significantly higher in transgenic mice than in wild-type mice. cDNA microarray analysis revealed 17 up-regulated genes and 12 down-regulated genes in transgenic kidney. Among up-regulated genes, cyclin D2 (6.70-fold) and osteopontin (2.35-fold) were thought to play important roles in the progression of diabetic nephropathy. Transgenic glomeruli and tubular epithelial cells were strongly stained for osteopontin, a molecule which induces immune response. In quantitative real-time RT-PCR analyses, expressions of not only M1 macrophage marker genes but also M2 macrophage marker genes were elevated in renal cortex of transgenic mice. Overall results indicate that CaM kinase IIalpha (Thr286Asp) transgenic mice serve as an excellent model for diabetic nephropathy.

  11. Transformation of plum plants with a cytosolic ascorbate peroxidase transgene leads to enhanced water stress tolerance

    PubMed Central

    Diaz-Vivancos, Pedro; Faize, Lydia; Nicolás, Emilio; Clemente-Moreno, Maria José; Bru-Martinez, Roque; Burgos, Lorenzo; Hernández, José Antonio

    2016-01-01

    Background and Aims Water deficit is the most serious environmental factor limiting agricultural production. In this work, the tolerance to water stress (WS) of transgenic plum lines harbouring transgenes encoding cytosolic antioxidant enzymes was studied, with the aim of achieving the durable resistance of commercial plum trees. Methods The acclimatization process was successful for two transgenic lines: line C3-1, co-expressing superoxide dismutase (two copies) and ascorbate peroxidase (one copy) transgenes simultaneously; and line J8-1, harbouring four copies of the cytosolic ascorbate peroxidase gene (cytapx). Plant water relations, chlorophyll fluorescence and the levels of antioxidant enzymes were analysed in both lines submitted to moderate (7 d) and severe (15 d) WS conditions. Additionally, in line J8-1, showing the best response in terms of stress tolerance, a proteomic analysis and determination of the relative gene expression of two stress-responsive genes were carried out. Key Results Line J8-1 exhibited an enhanced stress tolerance that correlated with better photosynthetic performance and a tighter control of water-use efficiency. Furthermore, this WS tolerance also correlated with a higher enzymatic antioxidant capacity than wild-type (WT) and line C3-1 plum plants. On the other hand, line C3-1 displayed an intermediate phenotype between WT plants and line J8-1 in terms of WS tolerance. Under severe WS, the tolerance displayed by J8-1 plants could be due to an enhanced capacity to cope with drought-induced oxidative stress. Moreover, proteomic analysis revealed differences between WT and J8-1 plants, mainly in terms of the abundance of proteins related to carbohydrate metabolism, photosynthesis, antioxidant defences and protein fate. Conclusions The transformation of plum plants with cytapx has a profound effect at the physiological, biochemical, proteomic and genetic levels, enhancing WS tolerance. Although further experiments under field

  12. Post-mortem re-cloning of a transgenic red fluorescent protein dog.

    PubMed

    Hong, So Gun; Koo, Ok Jae; Oh, Hyun Ju; Park, Jung Eun; Kim, Minjung; Kim, Geon-A; Park, Eun Jung; Jang, Goo; Lee, Byeong-Chun

    2011-12-01

    Recently, the world's first transgenic dogs were produced by somatic cell nuclear transfer. However, cellular senescence is a major limiting factor for producing more advanced transgenic dogs. To overcome this obstacle, we rejuvenated transgenic cells using a re-cloning technique. Fibroblasts from post-mortem red fluorescent protein (RFP) dog were reconstructed with in vivo matured oocytes and transferred into 10 surrogate dogs. One puppy was produced and confirmed as a re-cloned dog. Although the puppy was lost during birth, we successfully established a rejuvenated fibroblast cell line from this animal. The cell line was found to stably express RFP and is ready for additional genetic modification.

  13. Post-mortem re-cloning of a transgenic red fluorescent protein dog

    PubMed Central

    Hong, So Gun; Koo, Ok Jae; Oh, Hyun Ju; Park, Jung Eun; Kim, Minjung; Kim, Geon-A; Park, Eun Jung; Jang, Goo

    2011-01-01

    Recently, the world's first transgenic dogs were produced by somatic cell nuclear transfer. However, cellular senescence is a major limiting factor for producing more advanced transgenic dogs. To overcome this obstacle, we rejuvenated transgenic cells using a re-cloning technique. Fibroblasts from post-mortem red fluorescent protein (RFP) dog were reconstructed with in vivo matured oocytes and transferred into 10 surrogate dogs. One puppy was produced and confirmed as a re-cloned dog. Although the puppy was lost during birth, we successfully established a rejuvenated fibroblast cell line from this animal. The cell line was found to stably express RFP and is ready for additional genetic modification. PMID:22122908

  14. Development and Characterization of Transgenic Sugarcane with Insect Resistance and Herbicide Tolerance

    PubMed Central

    Wang, Wen Zhi; Yang, Ben Peng; Feng, Xiao Yan; Cao, Zheng Ying; Feng, Cui Lian; Wang, Jun Gang; Xiong, Guo Ru; Shen, Lin Bo; Zeng, Jun; Zhao, Ting Ting; Zhang, Shu Zhen

    2017-01-01

    Genetically modified crops which had been commercial applied extensively majorly are the insect resistance and herbicide tolerance events. In this study, the Bt insecticidal gene Cry1Ab, the glyphosate-tolerant gene EPSPS, and the selection marker gene PMI were combined into a single transferred DNA fragment and introduced into sugarcane by Agrobacterium-mediated transformation. Thirty-three resistant plantlets were obtained after selection using a PMI/mannose selection system. Thirty of these resistant plantlets were PCR positive for the three target genes. Southern blot assay revealed that the copy number of the integrated fragment in the transformed plantlets varied from 1 to 7. ELISA analysis showed that 23 of the 33 resistant plantlets expressed Cry1Ab and EPSPS protein. Five single-copy and ELISA-positive transgenic lines were tested under laboratory and field conditions to determine their resistance to insects and herbicides, and also evaluated their agronomic characteristics and industrial traits. Results showed that larvae fed with fodder mixture containing stem tissues from single-copy transgenic lines were weak and small, moreover, pupation and eclosion were delayed significantly during voluntary feeding bioassays. None of transgenic sugarcane was destroyed by cane borer while more than 30% of wild type sugarcane was destroyed by cane borer. For herbicide resistance, the transgenic plantlets grew healthy even when treated with up to 0.5% roundup while wild type plantlets would die off when treated with 0.1% roundup. Thus demonstrate that these transgenic lines showed strong insect resistance and glyphosate tolerance under both laboratory and field conditions. But in the field most of the transgenic plants were shorter and more slender than non-transformed control plants. So they presented poor agronomic characteristics and industrial traits than non-transformed control plants. Thus, a considerable number of embryogenic calli should be infected to obtain

  15. Development and Characterization of Transgenic Sugarcane with Insect Resistance and Herbicide Tolerance.

    PubMed

    Wang, Wen Zhi; Yang, Ben Peng; Feng, Xiao Yan; Cao, Zheng Ying; Feng, Cui Lian; Wang, Jun Gang; Xiong, Guo Ru; Shen, Lin Bo; Zeng, Jun; Zhao, Ting Ting; Zhang, Shu Zhen

    2017-01-01

    Genetically modified crops which had been commercial applied extensively majorly are the insect resistance and herbicide tolerance events. In this study, the Bt insecticidal gene Cry1Ab, the glyphosate-tolerant gene EPSPS, and the selection marker gene PMI were combined into a single transferred DNA fragment and introduced into sugarcane by Agrobacterium -mediated transformation. Thirty-three resistant plantlets were obtained after selection using a PMI/mannose selection system. Thirty of these resistant plantlets were PCR positive for the three target genes. Southern blot assay revealed that the copy number of the integrated fragment in the transformed plantlets varied from 1 to 7. ELISA analysis showed that 23 of the 33 resistant plantlets expressed Cry1Ab and EPSPS protein. Five single-copy and ELISA-positive transgenic lines were tested under laboratory and field conditions to determine their resistance to insects and herbicides, and also evaluated their agronomic characteristics and industrial traits. Results showed that larvae fed with fodder mixture containing stem tissues from single-copy transgenic lines were weak and small, moreover, pupation and eclosion were delayed significantly during voluntary feeding bioassays. None of transgenic sugarcane was destroyed by cane borer while more than 30% of wild type sugarcane was destroyed by cane borer. For herbicide resistance, the transgenic plantlets grew healthy even when treated with up to 0.5% roundup while wild type plantlets would die off when treated with 0.1% roundup. Thus demonstrate that these transgenic lines showed strong insect resistance and glyphosate tolerance under both laboratory and field conditions. But in the field most of the transgenic plants were shorter and more slender than non-transformed control plants. So they presented poor agronomic characteristics and industrial traits than non-transformed control plants. Thus, a considerable number of embryogenic calli should be infected to obtain

  16. Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System.

    PubMed

    Dong, Zhanqi; Dong, Feifan; Yu, Xinbo; Huang, Liang; Jiang, Yaming; Hu, Zhigang; Chen, Peng; Lu, Cheng; Pan, Minhui

    2018-01-01

    The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 ( ie-1 ) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-)/sgRNA(-), Cas9(+)/sgRNA(-), Cas9(-)/sgRNA(+), and Cas9(+)/sgRNA(+). We demonstrated that the Cas9(+)/sgRNA(+) transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+)/sgRNA(+) transgenic lines shows that the median lethal dose (LD50) is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+)/sgRNA(+) transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment.

  17. Can we stop transgenes from taking a walk on the wild side?

    PubMed

    Dlugosch, Katrina M; Whitton, Jeannette

    2008-03-01

    Whether the potential costs associated with broad-scale use of genetically modified organisms (GMOs) outweigh possible benefits is highly contentious, including within the scientific community. Even among those generally in favour of commercialization of GM crops, there is nonetheless broad recognition that transgene escape into the wild should be minimized. But is it possible to achieve containment of engineered genetic elements in the context of large scale agricultural production? In a previous study, Warwick et al. (2003) documented transgene escape via gene flow from herbicide resistant (HR) canola (Brassica napus) into neighbouring weedy B. rapa populations (Fig. 1) in two agricultural fields in Quebec, Canada. In a follow-up study in this issue of Molecular Ecology, Warwick et al. (2008) show that the transgene has persisted and spread within the weedy population in the absence of selection for herbicide resistance. Certainly a trait like herbicide resistance is expected to spread when selected through the use of the herbicide, despite potentially negative epistatic effects on fitness. However, Warwick et al.'s findings suggest that direct selection favouring the transgene is not required for its persistence. So is there any hope of preventing transgene escape into the wild?

  18. Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System

    PubMed Central

    Dong, Zhanqi; Dong, Feifan; Yu, Xinbo; Huang, Liang; Jiang, Yaming; Hu, Zhigang; Chen, Peng; Lu, Cheng; Pan, Minhui

    2018-01-01

    The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 (ie-1) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-)/sgRNA(-), Cas9(+)/sgRNA(-), Cas9(-)/sgRNA(+), and Cas9(+)/sgRNA(+). We demonstrated that the Cas9(+)/sgRNA(+) transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+)/sgRNA(+) transgenic lines shows that the median lethal dose (LD50) is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+)/sgRNA(+) transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment. PMID:29503634

  19. Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations

    PubMed Central

    PIÑEYRO-NELSON, A; VAN HEERWAARDEN, J; PERALES, H R; SERRATOS-HERNÁNDEZ, J A; RANGEL, A; HUFFORD, M B; GEPTS, P; GARAY-ARROYO, A; RIVERA-BUSTAMANTE, R; ÁLVAREZ-BUYLLA, E R

    2009-01-01

    A possible consequence of planting genetically modified organisms (GMOs) in centres of crop origin is unintended gene flow into traditional landraces. In 2001, a study reported the presence of the transgenic 35S promoter in maize landraces sampled in 2000 from the Sierra Juarez of Oaxaca, Mexico. Analysis of a large sample taken from the same region in 2003 and 2004 could not confirm the existence of transgenes, thereby casting doubt on the earlier results. These two studies were based on different sampling and analytical procedures and are thus hard to compare. Here, we present new molecular data for this region that confirm the presence of transgenes in three of 23 localities sampled in 2001. Transgene sequences were not detected in samples taken in 2002 from nine localities, while directed samples taken in 2004 from two of the positive 2001 localities were again found to contain transgenic sequences. These findings suggest the persistence or re-introduction of transgenes up until 2004 in this area. We address variability in recombinant sequence detection by analyzing the consistency of current molecular assays. We also present theoretical results on the limitations of estimating the probability of transgene detection in samples taken from landraces. The inclusion of a limited number of female gametes and, more importantly, aggregated transgene distributions may significantly lower detection probabilities. Our analytical and sampling considerations help explain discrepancies among different detection efforts, including the one presented here, and provide considerations for the establishment of monitoring protocols to detect the presence of transgenes among structured populations of landraces. PMID:19143938

  20. Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations.

    PubMed

    Piñeyro-Nelson, A; Van Heerwaarden, J; Perales, H R; Serratos-Hernández, J A; Rangel, A; Hufford, M B; Gepts, P; Garay-Arroyo, A; Rivera-Bustamante, R; Alvarez-Buylla, E R

    2009-02-01

    A possible consequence of planting genetically modified organisms (GMOs) in centres of crop origin is unintended gene flow into traditional landraces. In 2001, a study reported the presence of the transgenic 35S promoter in maize landraces sampled in 2000 from the Sierra Juarez of Oaxaca, Mexico. Analysis of a large sample taken from the same region in 2003 and 2004 could not confirm the existence of transgenes, thereby casting doubt on the earlier results. These two studies were based on different sampling and analytical procedures and are thus hard to compare. Here, we present new molecular data for this region that confirm the presence of transgenes in three of 23 localities sampled in 2001. Transgene sequences were not detected in samples taken in 2002 from nine localities, while directed samples taken in 2004 from two of the positive 2001 localities were again found to contain transgenic sequences. These findings suggest the persistence or re-introduction of transgenes up until 2004 in this area. We address variability in recombinant sequence detection by analyzing the consistency of current molecular assays. We also present theoretical results on the limitations of estimating the probability of transgene detection in samples taken from landraces. The inclusion of a limited number of female gametes and, more importantly, aggregated transgene distributions may significantly lower detection probabilities. Our analytical and sampling considerations help explain discrepancies among different detection efforts, including the one presented here, and provide considerations for the establishment of monitoring protocols to detect the presence of transgenes among structured populations of landraces.

  1. Disease resistance and health parameters of growth-hormone transgenic and wild-type coho salmon, Oncorhynchus kisutch.

    PubMed

    Kim, Jin-Hyoung; Balfry, Shannon; Devlin, Robert H

    2013-06-01

    To extend previous findings regarding fish health and disease susceptibility of growth-enhanced fish, hematological and immunological parameters have been compared between growth hormone (GH) transgenic and wild-type non-transgenic coho salmon (Oncorhynchus kisutch). Compared to non-transgenic coho salmon, transgenic fish had significantly higher hematocrit (Hct), hemoglobin (Hb), mean cellular hemoglobin (MCH), mean cellular volume (MCV), and erythrocyte numbers, and lower white cell numbers. In addition, resistance to the bacterial pathogen Aeromonas salmonicida (causal agent of furunculosis) has been assessed between the strains. Higher susceptibility of transgenic fish to this disease challenge was observed in two separate year classes of fish. The present findings provide fundamental knowledge of the disease resistance on GH enhanced transgenic coho salmon, which is of importance for assessing the fitness of transgenic strains for environmental risk assessments, and for improving our understanding effects of growth modification on basic immune functions. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Evaluation of pollen dispersal and cross pollination using transgenic grapevine plants.

    PubMed

    Harst, Margit; Cobanov, Beatrix-Axinja; Hausmann, Ludger; Eibach, Rudolf; Töpfer, Reinhard

    2009-01-01

    Public debate about the possible risk of genetically modified plants often concerns putative effects of pollen dispersal and out-crossing into conventional fields in the neighborhood of transgenic plants. Though Vitis vinifera (grapevine) is generally considered to be self-pollinating, it cannot be excluded that vertical gene transfer might occur. For monitoring pollen flow and out-crossing events, transgenic plants of Vitis vinifera cv. 'Dornfelder' harboring the gus-int gene were planted in the center of a field experiment in Southwest Germany in 1999. The rate of pollen dispersal was determined by pollen traps placed at radial distances of 5-150 m from the pollen-donor plants, at 1.00 and 1.80 m above ground. Transgenic pollen was evaluated by GUS staining, and could clearly be distinguished from pollen originating from non-transgenic grapevine plants. Transgenic pollen was observed up to 150 m from the pollen donors. The rate of out-crossing was determined by sampling seeds of selected grapevines at a distance of 10 m to the pollen source, and of a sector at 20 m distance, respectively, followed by GUS analysis of seedlings. The average cross-pollination rate during the experiment (2002-2004) was 2.7% at a distance of 20 m. The results of this first pilot study present a good base for further assessment under the conditions of normal viticulture practice.

  3. Feral rice from introgression of weedy rice genes into transgenic herbicide-resistant hybrid-rice progeny.

    PubMed

    Zhang, Jingxu; Kang, Ye; Valverde, Bernal E; Dai, Weimin; Song, Xiaoling; Qiang, Sheng

    2018-06-05

    Pollen-mediated herbicide-resistance transgene flow occurs bidirectionally between transgenic cultivated rice and weedy rice. The potential risk of weedy traits introgressing into hybrid rice is underestimated and poorly understood. Two of each glufosinate-resistant transgenic rice varieties and hybrid rice (F1) and their succeeding generations (F2-F4) were planted for three years in weedy-rice-free field plots adjacent to experimental weedy-rice fields. Weedy-rice-like (feral) plants, both glufosinate-resistant and with red-pericarp seed, were initially found only among the F3 generations of the two glufosinate-resistant transgenic hybrid rice. The composite fitness (an index based on eight productivity and weediness traits) of the feral progeny was significantly higher than that of glufosinate-resistant transgenic hybrid rice (the original female parent of feral progeny) under common monoculture garden conditions. Hybrid rice progeny segregated into individuals of variable height and extended flowering. Hybrid rice F2 generations had higher outcrossing rates by pollen reception (0.96%-1.65%) than their progenitors (0.07%-0.98%). Herbicide-resistant weedy rice can rapidly arise by pollen-mediated gene flow from weedy to transgenic hybrid rice. Their segregating pollen-receptive progeny pose greater agro-ecological risk than transgenic varieties. The safety assessment and management regulations for transgenic hybrid rice should take into account the risk of bidirectional gene flow.

  4. Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice.

    PubMed

    Omar, Ahmad A; Murata, Mayara M; El-Shamy, Hesham A; Graham, James H; Grosser, Jude W

    2018-04-01

    Genetic engineering approaches offer an alternative method to the conventional breeding of Citrus sp. 'W. Murcott' mandarin (a hybrid of 'Murcott' and an unknown pollen parent) is one of the most commercially important cultivars grown in many regions around the world. Transformation of 'W. Murcott' mandarin was achieved by direct DNA uptake using a protoplast transformation system. DNA construct (pAO3), encoding Green Fluorescent Protein (GFP) and the cDNA of Xa21, a Xanthomonas resistance gene from rice, was used to transform protoplasts of 'W. Murcott' mandarin. Following citrus protoplast culture and regeneration, transformed micro calli were microscopically designated via GFP expression, physically isolated from non-transformed tissue, and cultured on somatic embryogenesis induction medium. More than 150 transgenic embryos were recovered and from them, ten transgenic lines were regenerated and cultured on rooting medium for shoot elongation. Transgenic shoots were micrografted and established in the greenhouse with 3-5 replicates per line. The insertion of Xa21 and GFP was confirmed by PCR and southern blot analysis. GFP expression was verified by fluorescence microscopy and western blot analysis revealed expression of Xa21 although it was variable among transgenic lines, as shown by RT-qPCR. Transgenic plants challenged with the citrus canker pathogen by syringe inoculation showed a reduction in lesion number and bacterial populations within lesions compared to non-transgenic control plants. Transgenic 'W. Murcott' mandarin lines with improved canker resistance via protoplast transformation from embryogenic callus with the Xa21 gene from rice are being evaluated under field conditions to validate the level of resistance.

  5. Misregulated progesterone secretion and impaired pregnancy in Cyp11a1 transgenic mice.

    PubMed

    Chien, Yu; Cheng, Wei-Cheng; Wu, Menq-Rong; Jiang, Si-Tse; Shen, Che-Kun James; Chung, Bon-chu

    2013-10-01

    Normal pregnancy is supported by increased levels of progesterone (P4), which is secreted from ovarian luteal cells via enzymatic steps catalyzed by P450scc (CYP11A1) and HSD3B. The development and maintenance of corpora lutea during pregnancy, however, are less well understood. Here we used Cyp11a1 transgenic mice to delineate the steps of luteal cell differentiation during pregnancy. Cyp11a1 in a bacterial artificial chromosome was injected into mouse embryos to generate transgenic mice with transgene expression that recapitulated endogenous Cyp11a1 expression. Cyp11a1 transgenic females displayed reduced pregnancy rate, impaired implantation and placentation, and decreased litter size in utero, although they produced comparable numbers of blastocysts. The differentiation of transgenic luteal cells was delayed during early pregnancy as shown by the delayed activation of genes involved in steroidogenesis and cholesterol availability. Luteal cell mitochondria were elongated, and their numbers were reduced, with morphology and numbers similar to those observed in granulosa cells. Transgenic luteal cells accumulated lipid droplets and secreted less progesterone during early pregnancy. The progesterone level returned to normal on gestation day 9 but was not properly withdrawn at term, leading to delayed stillbirth. P4 supplementation rescued the implantation rates but not the ovarian defects. Thus, overexpression of Cyp11a1 disrupts normal development of the corpus luteum, leading to progesterone insufficiency during early pregnancy. Misregulation of the progesterone production in Cyp11a1 transgenic mice during pregnancy resulted in aberrant implantation, anomalous placentation, and delayed parturition.

  6. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.

    PubMed

    Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A

    2017-02-01

    Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T 3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

  7. Horizontal gene transfer does not occur between sFat-1 transgenic pigs and nontransgenic pigs.

    PubMed

    Tang, M X; Zheng, X M; Hou, J; Qian, L L; Jiang, S W; Cui, W T; Li, K

    2013-03-01

    We previously generated and characterized synthesized fatty acid desaturase-1 (sFat-1) transgenic pigs that had increased concentrations of ω-3 unsaturated fatty acid in their meat. The objective was to assess whether the inserted foreign gene in sFat-1 transgenic pigs was able to transfer and integrate into the genome of nontransgenic pigs by suckling or mating. Tests for suckling-mediated horizontal gene transfer (HGT) included sFat-1 transgenic sows nursing nontransgenic piglets and sFat-1 transgenic piglets suckling nontransgenic sows. Tests for mating-mediated HGT were performed by male sFat-1 transgenic pigs mated with nontransgenic females and female sFat-1 transgenic pigs mated with nontransgenic males. Polymerase chain reaction was used to detect the sFat-1 gene fragment in various tissues sampled from nontransgenic pigs. The foreign target gene sFat-1 was not detected in the genomic DNA of various tissues and organs sampled from nontransgenic pigs. Therefore, we concluded that HGT from transgenic pigs to wild type pigs via suckling or mating was unlikely. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Cholera toxin B protein in transgenic tomato fruit induces systemic immune response in mice.

    PubMed

    Jiang, Xiao-Ling; He, Zhu-Mei; Peng, Zhi-Qiang; Qi, Yu; Chen, Qing; Yu, Shou-Yi

    2007-04-01

    Cholera toxin B (CTB) subunit is a well-characterized antigen against cholera. Transgenic plants can offer an inexpensive and safe source of edible CTB vaccine and may be one of the best candidates for the production of plant vaccines. The present study aimed to develop transgenic tomato expressing CTB protein, especially in the ripening tomato fruit under the control of the tomato fruit-specific E8 promoter by using Agrobacterium-mediated transformation. Transgenic plants were selected using PCR and Southern blot analysis. Exogenous protein extracted from leaf, stem, and fruit tissues of transgenic plants was detected by ELISA and Western blot analysis, showing specific expression in the ripening fruit, with the highest amount of CTB protein being 0.081% of total soluble protein. Gavage of mice with ripe transgenic tomato fruits induced both serum and mucosal CTB specific antibodies. These results demonstrate the immunogenicity of the CTB protein in transgenic tomato and provide a considerable basis for exploring the utilization of CTB in the development of tomato-based edible vaccine against cholera. The rCTB antigen resulted in much lower antibody titers than an equal amount of exogenous CTB in transgenic fruits, suggesting the protective effect of the fibrous tissue of the fruit to the exogenous CTB protein against the degradation of protease in the digestive tracts of mice.

  9. [Nuclear transfer of goat somatic cells transgenic for human lactoferrin].

    PubMed

    Li, Lan; Shen, Wei; Pan, Qing-Yu; Min, Ling-Jiang; Sun, Yu-Jiang; Fang, Yong-Wei; Deng, Ji-Xian; Pan, Qing-Jie

    2006-12-01

    Transgenic animal mammary gland bioreactors are being used to produce recombinant proteins with appropriate post-translational modifications, and nuclear transfer of transgenic somatic cells is a more powerful method to produce mammary gland bioreactor. Here we describe efficient gene transfer and nuclear transfer in goat somatic cells. Gene targeting vector pGBC2LF was constructed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene, and the endogenous start condon was replaced by that of human LF gene. Goat fetal fibroblasts were transfected with linearized pGBC2LF and 14 cell lines were positive according to PCR and Southern blot. The transgenic cells were used as donor cells of nuclear transfer, and some of reconstructed embryos could develop to blastocyst in vitro.

  10. Transgenic animal models of neurodegeneration based on human genetic studies

    PubMed Central

    Richie, Christopher T.; Hoffer, Barry J.; Airavaara, Mikko

    2011-01-01

    The identification of genes linked to neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) has led to the development of animal models for studying mechanism and evaluating potential therapies. None of the transgenic models developed based on disease-associated genes have been able to fully recapitulate the behavioral and pathological features of the corresponding disease. However, there has been enormous progress made in identifying potential therapeutic targets and understanding some of the common mechanisms of neurodegeneration. In this review, we will discuss transgenic animal models for AD, ALS, HD and PD that are based on human genetic studies. All of the diseases discussed have active or complete clinical trials for experimental treatments that benefited from transgenic models of the disease. PMID:20931247

  11. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

    PubMed Central

    Wahnschaffe, U; Bitsch, A; Kielhorn, J; Mangelsdorf, I

    2005-01-01

    As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects. PMID:15655069

  12. Ca2+-binding allergens from olive pollen exhibit biochemical and immunological activity when expressed in stable transgenic Arabidopsis.

    PubMed

    Ledesma, Amalia; Moral, Verónica; Villalba, Mayte; Salinas, Julio; Rodríguez, Rosalía

    2006-10-01

    Employing transgenic plants as alternative systems to the conventional Escherichia coli, Pichia pastoris or baculovirus hosts to produce recombinant allergens may offer the possibility of having available edible vaccines in the near future. In this study, two EF-hand-type Ca2+-binding allergens from olive pollen, Ole e 3 and Ole e 8, were produced in transgenic Arabidopsis thaliana plants. The corresponding cDNAs, under the control of the constitutive CaMV 35S promoter, were stably incorporated into the Arabidopsis genome and encoded recombinant proteins, AtOle e 3 and AtOle e 8, which exhibited the molecular properties (i.e. MS analyses and CD spectra) of their olive and/or E. coli counterparts. Calcium-binding assays, which were carried out to assess the biochemical activity of AtOle e 3 and AtOle e 8, gave positive results. In addition, their mobilities on SDS/PAGE were according to the conformational changes derived from their Ca2+-binding capability. The immunological behaviour of Arabidopsis-expressed proteins was equivalent to that of the natural- and/or E. coli-derived allergens, as shown by their ability to bind allergen-specific rabbit IgG antiserum and IgE from sensitized patients. These results indicate that transgenic plants constitute a valid alternative to obtain allergens with structural and immunological integrity not only for scaling up production, but also to develop new kind of vaccines for human utilization.

  13. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen.

    PubMed

    Lee, H J; Lee, S B; Chung, J S; Han, S U; Han, O; Guh, J O; Jeon, J S; An, G; Back, K

    2000-06-01

    Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed.

  14. Caudal dysgenesis in islet-1 transgenic mice

    PubMed Central

    Muller, Yunhua Li; Yueh, Yir Gloria; Yaworsky, Paul J.; Salbaum, J. Michael; Kappen, Claudia

    2014-01-01

    Maternal diabetes during pregnancy is responsible for the occurrence of diabetic embryopathy, a spectrum of birth defects that includes heart abnormalities, neural tube defects, and caudal dysgenesis syndromes. Here, we report that mice transgenic for the homeodomain transcription factor Isl-1 develop profound caudal growth defects that resemble human sacral/caudal agenesis. Isl-1 is normally expressed in the pancreas and is required for pancreas development and endocrine cell differentiation. Aberrant regulation of this pancreatic transcription factor causes increased mesodermal cell death, and the severity of defects is dependent on transgene dosage. Together with the finding that mutation of the pancreatic transcription factor HLXB9 causes sacral agenesis, our results implicate pancreatic transcription factors in the pathogenesis of birth defects associated with diabetes. PMID:12738808

  15. Enhanced transgene expression in rice following selection controlled by weak promoters.

    PubMed

    Zhou, Jie; Yang, Yong; Wang, Xuming; Yu, Feibo; Yu, Chulang; Chen, Juan; Cheng, Ye; Yan, Chenqi; Chen, Jianping

    2013-03-27

    Techniques that enable high levels of transgene expression in plants are attractive for the commercial production of plant-made recombinant pharmaceutical proteins or other gene transfer related strategies. The conventional way to increase the yield of desired transgenic products is to use strong promoters to control the expression of the transgene. Although many such promoters have been identified and characterized, the increase obtainable from a single promoter is ultimately limited to a certain extent. In this study, we report a method to magnify the effect of a single promoter by using a weak promoter-based selection system in transgenic rice. tCUP1, a fragment derived from the tobacco cryptic promoter (tCUP), was tested for its activity in rice by fusion to both a β-glucuronidase (GUS) reporter and a hygromycin phosphotransferase (HPT) selectable marker. The tCUP1 promoter allowed the recovery of transformed rice plants and conferred tissue specific expression of the GUS reporter, but was much weaker than the CaMV 35S promoter in driving a selectable marker for growth of resistant calli. However, in the resistant calli and regenerated transgenic plants selected by the use of tCUP1, the constitutive expression of green fluorescent protein (GFP) was dramatically increased as a result of the additive effect of multiple T-DNA insertions. The correlation between attenuated selection by a weak promoter and elevation of copy number and foreign gene expression was confirmed by using another relatively weak promoter from nopaline synthase (Nos). The use of weak promoter derived selectable markers leads to a high T-DNA copy number and then greatly increases the expression of the foreign gene. The method described here provides an effective approach to robustly enhance the expression of heterogenous transgenes through copy number manipulation in rice.

  16. Quantitative analysis of lentiviral transgene expression in mice over seven generations.

    PubMed

    Wang, Yong; Song, Yong-tao; Liu, Qin; Liu, Cang'e; Wang, Lu-lu; Liu, Yu; Zhou, Xiao-yang; Wu, Jun; Wei, Hong

    2010-10-01

    Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken

  17. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.

  18. Characterization of Four Multidrug Resistance Plasmids Captured from the Sediments of an Urban Coastal Wetland

    PubMed Central

    Botts, Ryan T.; Apffel, Brooke A.; Walters, C. J.; Davidson, Kelly E.; Echols, Ryan S.; Geiger, Michael R.; Guzman, Victoria L.; Haase, Victoria S.; Montana, Michal A.; La Chat, Chip A.; Mielke, Jenna A.; Mullen, Kelly L.; Virtue, Cierra C.; Brown, Celeste J.; Top, Eva M.; Cummings, David E.

    2017-01-01

    Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches. Plasmid genomes, sequenced with either Illumina or PacBio platforms, revealed representatives of incompatibility groups IncP-6, IncR, IncN3, and IncF. The plasmids ranged in size from 36 to 144 kb and encoded known resistance genes for most of the major classes of antibiotics used to treat Gram-negative infections (tetracyclines, sulfonamides, β-lactams, fluoroquinolones, aminoglycosides, and amphenicols). The mobilizable IncP-6 plasmid pLNU-11 was discovered in a strain of Citrobacter freundii enriched from the wetland sediments with tetracycline and nalidixic acid, and encodes a novel AmpC-like β-lactamase (blaWDC-1), which shares less than 62% amino acid sequence identity with the PDC class of β-lactamases found in Pseudomonas aeruginosa. Although the IncR plasmid pTRE-1611 was captured by mating wetland bacteria with P. putida KT2440 as recipient, it was found to be mobilizable rather than self-transmissible. Two self-transmissible multidrug-resistance plasmids were also captured: the small (48 kb) IncN3 plasmid pTRE-131 was captured by mating wetland bacteria with Escherichia coli HY842 where it is seemed to be maintained at nearly 240 copies per cell, while the large (144 kb) IncF plasmid pTRE-2011, which was isolated from a cefotaxime-resistant environmental strain of E. coli ST744, exists at just a single copy per cell. Furthermore, pTRE-2011 bears the globally epidemic blaCTX-M-55 extended-spectrum β-lactamase downstream of ISEcp1. Our

  19. Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra

    Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less

  20. Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits

    DOE PAGES

    Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra; ...

    2016-01-21

    Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less

  1. Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle.

    PubMed

    Mi, Xiaoxiao; Ji, Xiangzhuo; Yang, Jiangwei; Liang, Lina; Si, Huaijun; Wu, Jiahe; Zhang, Ning; Wang, Di

    2015-07-01

    The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. UV exposure, genetic targets in melanocytic tumors and transgenic mouse models.

    PubMed

    de Gruijl, Frank R; van Kranen, Henk J; van Schanke, Arne

    2005-01-01

    The genetic changes and corruption of kinase activity in melanomas appear to revolve around a central axis: mitogenic signaling along the RAS pathway down to transcription regulation by pRB. Epidemiological studies point to the importance of ultraviolet (UV) radiation in the etiology of melanoma, but where and how UV radiation is targeted to contribute to the oncogenic signaling remains obscure. Animal models of melanoma genesis could serve to clarify this issue, but many of these models are not responsive to UV exposure. Most interesting advances have been made by using transgenic mice that carry genetic defects that are known to be relevant to human melanoma: specifically, dysfunction in the tumor suppressive action of p16INK4a or a receptor tyrosine kinase/RAS pathway, that is constitutively activated in melanocytes. The latter types of mice appear to be most responsive to (neonatal) UV exposure. Whether this is due to a general increase in target cells by melanocytosis and a paucity or complete lack of pigment, or a possible UV-induced response of the promoter-enhancer of the transgene or a genuinely independent and additional genetic alteration caused by UV exposure needs to be established. Importantly, the full effect of UV radiation needs to be ascertained in mice with different pigmentation by varying the wavelengths, UV-B versus UV-A1, and the exposure schedules, i.e. neonatal versus adult and chronic versus intermittent overexposure. Intermittent UV-B overexposure deserves special attention because it most strongly evokes proliferative responses in melanocytes.

  3. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant.

    PubMed

    Duan, X; Li, X; Xue, Q; Abo-el-Saad, M; Xu, D; Wu, R

    1996-04-01

    We introduced the potato proteinase inhibitor II (PINII) gene (pin2) into several Japonica rice varieties, and regenerated a large number of transgenic rice plants. Wound-inducible expression of the pin2 gene driven by its own promoter, together with the first intron of the rice actin 1 gene (act1), resulted in high-level accumulation of the PINII protein in the transgenic plants. The introduced pin2 gene was stably inherited in the second, third, and fourth generations, as shown by molecular analyses. Based on data from the molecular analyses, several homozygous transgenic lines were obtained. Bioassay for insect resistance with the fifth-generation transgenic rice plants showed that transgenic rice plants had increased resistance to a major rice insect pest, pink stem borer (Sesamia inferens). Thus, introduction of an insecticidal proteinase inhibitor gene into cereal plants can be used as a general strategy for control of insect pests.

  4. A New Transgenic Mouse Model for Studying the Neurotoxicity of Spermine Oxidase Dosage in the Response to Excitotoxic Injury

    PubMed Central

    Cervelli, Manuela; Bellavia, Gabriella; D'Amelio, Marcello; Cavallucci, Virve; Moreno, Sandra; Berger, Joachim; Nardacci, Roberta; Marcoli, Manuela; Maura, Guido; Piacentini, Mauro; Amendola, Roberto; Cecconi, Francesco; Mariottini, Paolo

    2013-01-01

    Spermine oxidase is a FAD-containing enzyme involved in polyamines catabolism, selectively oxidizing spermine to produce H2O2, spermidine, and 3-aminopropanal. Spermine oxidase is highly expressed in the mouse brain and plays a key role in regulating the levels of spermine, which is involved in protein synthesis, cell division and cell growth. Spermine is normally released by neurons at synaptic sites where it exerts a neuromodulatory function, by specifically interacting with different types of ion channels, and with ionotropic glutamate receptors. In order to get an insight into the neurobiological roles of spermine oxidase and spermine, we have deregulated spermine oxidase gene expression producing and characterizing the transgenic mouse model JoSMOrec, conditionally overexpressing the enzyme in the neocortex. We have investigated the effects of spermine oxidase overexpression in the mouse neocortex by transcript accumulation, immunohistochemical analysis, enzymatic assays and polyamine content in young and aged animals. Transgenic JoSMOrec mice showed in the neocortex a higher H2O2 production in respect to Wild-Type controls, indicating an increase of oxidative stress due to SMO overexpression. Moreover, the response of transgenic mice to excitotoxic brain injury, induced by kainic acid injection, was evaluated by analysing the behavioural phenotype, the immunodistribution of neural cell populations, and the ultrastructural features of neocortical neurons. Spermine oxidase overexpression and the consequently altered polyamine levels in the neocortex affects the cytoarchitecture in the adult and aging brain, as well as after neurotoxic insult. It resulted that the transgenic JoSMOrec mouse line is more sensitive to KA than Wild-Type mice, indicating an important role of spermine oxidase during excitotoxicity. These results provide novel evidences of the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. PMID

  5. Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins.

    PubMed

    Li, Chengwen; Xiao, Pingjie; Gray, Steven James; Weinberg, Marc Scott; Samulski, R Jude

    2011-08-23

    Molecular knockdown of disease proteins and restoration of wild-type activity represent a promising but challenging strategy for the treatment of diseases that result from the accumulation of misfolded proteins (i.e., Huntington disease, amyotrophic lateral sclerosis, and α-1 antitrypsin deficiency). In this study we used alpha-1 antitrypsin (AAT) deficiency with the piZZ mutant phenotype as a model system to evaluate the efficiency of gene-delivery approaches that both silence the piZZ transcript (e.g., shRNA) and restore circulating wild-type AAT expression from resistant codon-optimized AAT (AAT-opt) transgene cassette using adeno-associated virus (AAV) vector delivery. After systemic injection of a self-complimentary AAV serotype 8 (scAAV8) vector encoding shRNA in piZZ transgenic mice, both mutant AAT mRNA in the liver and defected serum protein level were inhibited by 95%, whereas liver pathology, as monitored by dPAS and fibrosis staining, reversed. To restore blood AAT levels in AAV8/shRNA-treated mice, several strategies to restore functional AAT levels were tested, including using AAV AAT-opt transgene cassettes targeted to muscle and liver, or combination vectors carrying piZZ shRNA and AAT-opt transgenes separately, or a single bicistronic AAV vector. With these molecular approaches, we observed over 90% knockdown of mutant AAT with a 13- to 30-fold increase of circulating wild-type AAT protein from the shRNA-resistant AAT-opt cassette. The molecular approaches applied in this study can simultaneously prevent liver pathology and restore blood AAT concentration in AAT deficiencies. Based on these observations, similar gene-therapy strategies could be considered for any diseases caused by accumulation of misfolded proteins.

  6. Osteogenic capacity of transgenic flax scaffolds.

    PubMed

    Gredes, Tomasz; Wróbel-Kwiatkowska, Magdalena; Dominiak, Marzena; Gedrange, Tomasz; Kunert-Keil, Christiane

    2012-01-19

    The modification of flax fibers to create biologically active dressings is of undoubted scientific and practical interest. Flax fibers, derived from transgenic flax expressing three bacterial genes for the synthesis of poly-3-hydroxybutyric acid (PHB), have better mechanical properties than unmodified flax fibers; do not show any inflammation response after subcutaneous insertion; and have a good in vitro and in vivo biocompatibility. The aim of this study was to examine the applicability of composites containing flax fibers of genetically modified (M50) or non-modified (wt-Nike) flax within a polylactide (PLA) matrix for bone regeneration. For this, the mRNA expression of genes coding for growth factors (insulin-like growth factor IGF1, IGF2, vascular endothelial growth factor), for osteogenic differentiation (alkaline phosphatase, osteocalcin, Runx2, Phex, type 1 and type 2 collagen), and for bone resorption markers [matrix metalloproteinase 8 (MMP8), acid phosphatase type 5] were analyzed using quantitative real-time polymerase chain reaction. We found a significant elevated mRNA expression of IGF1 with PLA and PLA-wt-Nike composites. The mRNA amount of MMP8 and osteocalcin was significantly decreased in all biocomposite-treated cranial tissue samples compared to controls, whereas the expression of all other tested transcripts did not show any differences. It is assumed that both flax composites are able to stimulate bone regeneration, but composites from transgenic flax plants producing PHB showed faster bone regeneration than composites of non-transgenic flax plants. The application of these linen membranes for bone tissue engineering should be proved in further studies.

  7. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  8. Dietary salt loading increases nitric oxide synthesis in transgenic mice overexpressing sodium-proton exchanger.

    PubMed

    Kiraku, J; Nakamura, T; Sugiyama, T; Takahashi, N; Kuro-o, M; Fujii, J; Nagai, R

    1999-06-01

    We studied the role of nitric oxide (NO) synthesis in amelioration of blood pressure elevation during dietary salt loading in transgenic mice overexpressing sodium proton exchanger. Systolic blood pressure rose after starting salt loading only in the high-salt group of transgenic mice. However, this elevation of blood pressure was not continued. Urinary excretion of inorganic nitrite and nitrate in the high-salt group of transgenic mice was significantly higher than in the high-salt group of control mice. These results suggest that increased NO synthesis in response to salt loading is one of the anti-hypertensive mechanisms in transgenic mice overexpressing sodium proton exchanger.

  9. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches.

    PubMed

    Liu, Yongbo; Liu, Fang; Wang, Chao; Quan, Zhanjun; Li, Junsheng

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Overexpression of monoubiquitin improves photosynthesis in transgenic tobacco plants following high temperature stress.

    PubMed

    Tian, Fengxia; Gong, Jiangfeng; Zhang, Jin; Feng, Yanan; Wang, Guokun; Guo, Qifang; Wang, Wei

    2014-09-01

    The ubiquitin/26S proteasome system (Ub/26S) is implicated in abiotic stress responses in plants. In this paper, transgenic tobacco plants overexpressing Ta-Ub2 from wheat were used to study the functions of Ub in the improvement of photosynthesis under high temperature (45°C) stress. We observed higher levels of Ub conjugates in transgenic plants under high temperature stress conditions compared to wild type (WT) as a result of the constitutive overexpression of Ta-Ub2, suggesting increased protein degradation by the 26S proteasome system under high temperature stress. Overexpressing Ub increased the photosynthetic rate (Pn) of transgenic tobacco plants, consistent with the improved ATPase activity in the thylakoid membrane and enhanced efficiency of PSII photochemistry. The higher D1 protein levels following high temperature stress in transgenic plants than WT were also observed. These findings imply that Ub may be involved in tolerance of photosynthesis to high temperature stress in plants. Compared with WT, the transgenic plants showed lower protein carbonylation and malondialdehyde (MDA) levels, less reactive oxygen species (ROS) accumulation, but higher antioxidant enzyme activity under high temperature stress. These findings suggest that the improved antioxidant capacity of transgenic plants may be one of the most important mechanisms underlying Ub-regulated high temperature tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data.

    PubMed

    Park, Doori; Park, Su-Hyun; Ban, Yong Wook; Kim, Youn Shic; Park, Kyoung-Cheul; Kim, Nam-Soo; Kim, Ju-Kon; Choi, Ik-Young

    2017-08-15

    Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9-5, SNU-Bt9-30, and SNU-Bt9-109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost- and time-effective methods for assessing the safety of transgenic plants.

  12. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene

    PubMed Central

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-01-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  13. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    PubMed

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-01-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.

  14. Population-level effects of fitness costs associated with repressible female-lethal transgene insertions in two pest insects

    PubMed Central

    Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke

    2014-01-01

    Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing ‘uncoupled’ gene drive system components in the field. PMID:24944572

  15. Population-level effects of fitness costs associated with repressible female-lethal transgene insertions in two pest insects.

    PubMed

    Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke

    2014-05-01

    Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing 'uncoupled' gene drive system components in the field.

  16. Next-generation transcriptome analysis in transgenic birch overexpressing and suppressing APETALA1 sheds lights in reproduction development and diterpenoid biosynthesis.

    PubMed

    Huang, Haijiao; Chen, Su; Li, Huiyu; Jiang, Jing

    2015-09-01

    Overexpression of BpAP1 could cause early flowering in birch. BpAP1 affected the expression of many flowering-related unigenes and diterpenoid biosynthesis in transgenic birch, and BpPI was a putative target gene of BpAP1. APETALA1 (AP1) is an MADS-box transcription factor that is involved in the flowering process in plants and has been a focus of genetic studies examining flower development. Here, we carried out transcriptome analysis of birch (Betula platyphylla Suk.), including BpAP1 overexpression lines, BpAP1 suppression lines, and non-transgenic line (NT). Compared with NT, we detected 8302 and 7813 differentially expressed unigenes in 35S::BpAP1 and 35S::BpAP1RNAi transgenic lines, respectively. Overexpression and suppression of BpAP1 in birch affected diterpenoid biosynthesis and altered expression of many flowering-related unigenes. Moreover, combining information from the RNA-seq database and the birch genome, we predicted downstream target genes of BpAP1. Among the 166 putative target genes of BpAP1, there was a positive correlation between BpAP1 and BpPI. These results provide references for further examining the relationship between BpAP1 and its target genes, and reveal that BpAP1 functions as a transcription regulator in birch.

  17. Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM

    PubMed Central

    Ma, Dan; Shield, Julian P.H.; Dean, Wendy; Leclerc, Isabelle; Knauf, Claude; Burcelin, Rémy; Rutter, Guy A.; Kelsey, Gavin

    2004-01-01

    Transient neonatal diabetes mellitus (TNDM) is a rare inherited diabetic syndrome apparent in the first weeks of life and again during early adulthood. The relative contributions of reduced islet β cell number and impaired β cell function to the observed hypoinsulinemia are unclear. The inheritance pattern of this imprinted disorder implicates overexpression of one or both genes within the TNDM locus: ZAC, which encodes a proapoptotic zinc finger protein, and HYMAI, which encodes an untranslated mRNA. To investigate the consequences for pancreatic function, we have developed a high-copy transgenic mouse line, TNDM29, carrying the human TNDM locus. TNDM29 neonates display hyperglycemia, and older adults, impaired glucose tolerance. Neonatal hyperglycemia occurs only on paternal transmission, analogous to paternal dependence of TNDM in humans. Embryonic pancreata of TNDM29 mice showed reductions in expression of endocrine differentiation factors and numbers of insulin-staining structures. By contrast, β cell mass was normal or elevated at all postnatal stages, whereas pancreatic insulin content in neonates and peak serum insulin levels after glucose infusion in adults were reduced. Expression of human ZAC and HYMAI in these transgenic mice thus recapitulates key features of TNDM and implicates impaired development of the endocrine pancreas and β cell function in disease pathogenesis. PMID:15286800

  18. Analyzing notochord segmentation and intervertebral disc formation using the twhh:gfp transgenic zebrafish model.

    PubMed

    Haga, Yutaka; Dominique, Vincent J; Du, Shao Jun

    2009-10-01

    To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.

  19. Protective effect of Geraniol on the transgenic Drosophila model of Parkinson's disease.

    PubMed

    Siddique, Yasir Hasan; Naz, Falaq; Jyoti, Smita; Ali, Fahad; Fatima, Ambreen; Rahul; Khanam, Saba

    2016-04-01

    The role of Geraniol was studied on the transgenic Drosophila model flies expressing normal human alpha synuclein (h-αS) in the neurons. Geraniol at final concentration of 10, 20 and 40μM were mixed in the diet and the flies were allowed to feed on it for 24 days. The effect of geraniol was studied on the climbing ability, activity pattern, lipid peroxidation, protein carbonyl, glutathione, dopamine content, and glutathione-S-transferase activity in the brains of transgenic Drosophila. The exposure of PD model flies to 10, 20 and 40μM of geraniol results in a significant delay in the loss of climbing ability (p<0.05), improved activity pattern reduced the oxidative stress (p<0.05) in the brains of transgenic Drosophila as compared to unexposed PD model flies. The results suggest that geraniol is potent in reducing the PD symptoms in transgenic Drosophila model of Parkinson's disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Localization of human coagulation factor VIII (hFVIII) in transgenic rabbit by FISH-TSA: identification of transgene copy number and transmission to the next generation.

    PubMed

    Krylov, V; Tlapáková, T; Mácha, J; Curlej, J; Ryban, L; Chrenek, P

    2008-01-01

    For chromosomal localization of the hFVIII human transgene in F2 and F3 generation of transgenic rabbits, FISH-TSA was applied. A short cDNA probe (1250 bp) targeted chromosomes 3, 7, 8, 9 and 18 of an F2 male (animal 1-3-8). Two transgenic offspring (F3) revealed signal positions in chromosome 3 and chromosomes 3 and 7, respectively. Sequencing and structure analysis of the rabbit orthologous gene revealed high similarity to its human counterpart. Part of the sequenced cDNA (1310 bp) served as a probe for FISH-TSA analysis. The rabbit gene was localized in the q arm terminus of the X chromosome. This result is in agreement with reciprocal chromosome painting between the rabbit and the human. The presented FISH-TSA method provides strong signals without any interspecies reactivity.

  1. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters.

    PubMed

    Javaid, Shaista; Amin, Imran; Jander, Georg; Mukhtar, Zahid; Saeed, Nasir A; Mansoor, Shahid

    2016-10-06

    The first generation transgenic crops used strong constitutive promoters for transgene expression. However, tissue-specific expression is desirable for more precise targeting of transgenes. Moreover, piercing/sucking insects, which are generally resistant to insecticidal Bacillus thuringiensis (Bt) proteins, have emerged as a major pests since the introduction of transgenic crops expressing these toxins. Phloem-specific promoters isolated from Banana bunchy top virus (BBTV) were used for the expression of two insecticidal proteins, Hadronyche versuta (Blue Mountains funnel-web spider) neurotoxin (Hvt) and onion leaf lectin, in tobacco (Nicotiana tabacum). Here we demonstrate that transgenic plants expressing Hvt alone or in combination with onion leaf lectin are resistant to Phenacoccus solenopsis (cotton mealybug), Myzus persicae (green peach aphids) and Bemisia tabaci (silver leaf whitefly). The expression of both proteins under different phloem-specific promoters resulted in close to 100% mortality and provided more rapid protection than Hvt alone. Our results suggest the employment of the Hvt and onion leaf lectin transgenic constructs at the commercial level will reduce the use of chemical pesticides for control of hemipteran insect pests.

  2. Tongue Epithelium Cells from shRNA Mediated Transgenic Goat Show High Resistance to Foot and Mouth Disease Virus

    PubMed Central

    Li, Wenting; Wang, Kejun; Kang, Shimeng; Deng, Shoulong; Han, Hongbing; Lian, Ling; Lian, Zhengxing

    2015-01-01

    Foot and mouth disease induced by foot and mouth disease virus (FMDV) is severe threat to cloven-hoofed domestic animals. The gene 3Dpol in FMDV genome encodes the viral RNA polymerase, a vital element for FMDV replication. In this study, a conserved 3D-7414shRNA targeting FMDV-3Dpol gene was designed and injected into pronuclear embryos to produce the transgenic goats. Sixty-one goats were produced, of which, seven goats positively integrated 3D-7414shRNA. Loss of function assay demonstrated that siRNA effectively knockdown 3Dpol gene in skin epithelium cells of transgenic goats. Subsequently, the tongue epithelium cells from transgenic and non-transgenic goats were infected with FMDV O/YS/CHA/05 strain. A significant decrease of virus titres and virus copy number was observed in cells of transgenic goats compared with that of non-transgenic goats, which indicated that 3D-7414siRNA inhibited FMDV replication by interfering FMDV-3Dpol gene. Furthermore, we found that expression of TLR7, RIG-I and TRAF6 was lower in FMDV infected cells from transgenic goats compared to that from non-transgenic goats, which might result from lower virus copy number in transgenic goats’ cells. In conclusion, we successfully produced transgenic goats highly expressing 3D-7414siRNA targeting 3Dpol gene, and the tongue epithelium cells from the transgenic goats showed effective resistance to FMDV. PMID:26671568

  3. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane

    PubMed Central

    2014-01-01

    Background Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene. Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. Results The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences. Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures. Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes. In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. Conclusions We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred

  4. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane.

    PubMed

    Chou, Ting-Chun; Moyle, Richard L

    2014-04-08

    Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene.Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences.Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures.Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes.In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred by existing and newly isolated

  5. Migratory Bee Hive Transportation Contributes Insignificantly to Transgenic Pollen Movement Between Spatially Isolated Alfalfa Seed Fields.

    PubMed

    Boyle, Natalie K; Kesoju, Sandya R; Greene, Stephanie L; Martin, Ruth C; Walsh, Douglas B

    2017-02-01

    Contracted commercial beekeeping operations provide an essential pollination service to many agricultural systems worldwide. Increased use of genetically engineered crops in agriculture has raised concerns over pollinator-mediated gene flow between transgenic and conventional agricultural varieties. This study evaluated whether contracted migratory beekeeping practices influence transgenic pollen flow among spatially isolated alfalfa fields. Twelve honey bee (Apis mellifera L.) colonies were permitted to forage on transgenic alfalfa blossoms for 1 wk in Touchet, WA. The hives were then transported 112 km to caged conventional alfalfa plots following one and two nights of isolation (8 and 32 h, respectively) from the transgenic source. Alfalfa seed harvested from the conventional plots was assessed for the presence of the transgene using a new seedling germination assay. We found that 8 h of isolation from a transgenic alfalfa source virtually eliminated the incidence of cross-pollination between the two varieties.

  6. Nondestructive determination of transgenic Bacillus thuringiensis rice seeds (Oryza sativa L.) using multispectral imaging and chemometric methods.

    PubMed

    Liu, Changhong; Liu, Wei; Lu, Xuzhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2014-06-15

    Crop-to-crop transgene flow may affect the seed purity of non-transgenic rice varieties, resulting in unwanted biosafety consequences. The feasibility of a rapid and nondestructive determination of transgenic rice seeds from its non-transgenic counterparts was examined by using multispectral imaging system combined with chemometric data analysis. Principal component analysis (PCA), partial least squares discriminant analysis (PLSDA), least squares-support vector machines (LS-SVM), and PCA-back propagation neural network (PCA-BPNN) methods were applied to classify rice seeds according to their genetic origins. The results demonstrated that clear differences between non-transgenic and transgenic rice seeds could be easily visualized with the nondestructive determination method developed through this study and an excellent classification (up to 100% with LS-SVM model) can be achieved. It is concluded that multispectral imaging together with chemometric data analysis is a promising technique to identify transgenic rice seeds with high efficiency, providing bright prospects for future applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Regulation of P-element transposase activity in Drosophila melanogaster by hobo transgenes that contain KP elements.

    PubMed Central

    Simmons, Michael J; Haley, Kevin J; Grimes, Craig D; Raymond, John D; Fong, Joseph C L

    2002-01-01

    Fusions between the Drosophila hsp70 promoter and three different incomplete P elements, KP, SP, and BP1, were inserted into the Drosophila genome by means of hobo transformation vectors and the resulting transgenic stocks were tested for repression of P-element transposase activity. Only the H(hsp/KP) transgenes repressed transposase activity, and the degree of repression was comparable to that of a naturally occurring KP element. The KP transgenes repressed transposase activity both with and without heat-shock treatments. Both the KP element and H(hsp/KP) transgenes repressed the transposase activity encoded by the modified P element in the P(ry(+), Delta2-3)99B transgene more effectively than that encoded by the complete P element in the H(hsp/CP)2 transgene even though the P(ry(+), Delta2-3)99B transgene was the stronger transposase source. Repression of both transposase sources appeared to be due to a zygotic effect of the KP element or transgene. There was no evidence for repression by a strictly maternal effect; nor was there any evidence for enhancement of KP repression by the joint maternal transmission of H(hsp/KP) and H(hsp/CP) transgenes. These results are consistent with the idea that KP-mediated repression of P-element activity involves a KP-repressor polypeptide that is not maternally transmitted and that KP-mediated repression is not strengthened by the 66-kD repressor produced by complete P elements through alternate splicing of their RNA. PMID:12019235

  8. Degeneration of oxidative muscle fibers in HTLV-1 tax transgenic mice.

    PubMed

    Nerenberg, M I; Wiley, C A

    1989-12-01

    The HTLV-1 tax gene under control of the HTLV-1 long terminal repeat (LTR) was introduced into transgenic mice. Previously tax protein expression in the muscle and peripheral nerves of three independent mouse lines was reported. Here the localization of this transgenic protein at a cellular and subcellular level is described. Tax protein was expressed in oxidative muscle fibers that developed severe progressive atrophy. It localized to the cytoplasma where it was associated with structures resembling degenerating Z bands. This pattern of muscle fiber involvement is similar to that observed in human retroviral associated myopathy. This transgenic mouse model suggests that preferential expression of the HTLV-1 viral promoter in oxidative muscle fibers may explain the productive infection of these fibers in HTLV-1 myopathy.

  9. Diabetes-associated dry eye syndrome in a new humanized transgenic model of type 1 diabetes.

    PubMed

    Imam, Shahnawaz; Elagin, Raya B; Jaume, Juan Carlos

    2013-01-01

    Patients with Type 1 Diabetes (T1D) are at high risk of developing lacrimal gland dysfunction. We have developed a new model of human T1D using double-transgenic mice carrying HLA-DQ8 diabetes-susceptibility haplotype instead of mouse MHC-class II and expressing the human beta cell autoantigen Glutamic Acid Decarboxylase in pancreatic beta cells. We report here the development of dry eye syndrome (DES) after diabetes induction in our humanized transgenic model. Double-transgenic mice were immunized with DNA encoding human GAD65, either naked or in adenoviral vectors, to induce T1D. Mice monitored for development of diabetes developed lacrimal gland dysfunction. Animals developed lacrimal gland disease (classically associated with diabetes in Non Obese Diabetic [NOD] mice and with T1D in humans) as they developed glucose intolerance and diabetes. Animals manifested obvious clinical signs of dry eye syndrome (DES), from corneal erosions to severe keratitis. Histological studies of peri-bulbar areas revealed lymphocytic infiltration of glandular structures. Indeed, infiltrative lesions were observed in lacrimal/Harderian glands within weeks following development of glucose intolerance. Lesions ranged from focal lymphocytic infiltration to complete acinar destruction. We observed a correlation between the severity of the pancreatic infiltration and the severity of the ocular disease. Our results demonstrate development of DES in association with antigen-specific insulitis and diabetes following immunization with clinically relevant human autoantigen concomitantly expressed in pancreatic beta cells of diabetes-susceptible mice. As in the NOD mouse model and as in human T1D, our animals developed diabetes-associated DES. This specific finding stresses the relevance of our model for studying these human diseases. We believe our model will facilitate studies to prevent/treat diabetes-associated DES as well as human diabetes.

  10. Construction of a system for single-cell transgene induction in Caenorhabditis elegans using a pulsed infrared laser

    PubMed Central

    Churgin, Matthew A.; He, Liping; Murray, John I.; Fang-Yen, Christopher

    2014-01-01

    The spatial and temporal control of transgene expression is an important tool in C. elegans biology. We previously described a method for evoking gene expression in arbitrary cells by using a focused pulsed infrared laser to induce a heat shock response (Churgin et al 2013). Here we describe detailed methods for building and testing a system for performing single-cell heat shock. Steps include setting up the laser and associated components, coupling the laser beam to a microscope, and testing heat shock protocols. All steps can be carried out using readily available off-the-shelf components. PMID:24835576

  11. Generation of transgenic goats by pronuclear microinjection: a retrospective analysis of a commercial operation (1995-2012).

    PubMed

    Gavin, W; Blash, S; Buzzell, N; Pollock, D; Chen, L; Hawkins, N; Howe, J; Miner, K; Pollock, J; Porter, C; Schofield, M; Echelard, Y; Meade, H

    2018-02-01

    Production of transgenic founder goats involves introducing and stably integrating an engineered piece of DNA into the genome of the animal. At LFB USA, the ultimate use of these transgenic goats is for the production of recombinant human protein therapeutics in the milk of these dairy animals. The transgene or construct typically links a milk protein specific promoter sequence, the coding sequence for the gene of interest, and the necessary downstream regulatory sequences thereby directing expression of the recombinant protein in the milk during the lactation period. Over the time period indicated (1995-2012), pronuclear microinjection was used in a number of programs to insert transgenes into 18,120, 1- or 2- cell stage fertilized embryos. These embryos were transferred into 4180 synchronized recipient females with 1934 (47%) recipients becoming pregnant, 2594 offspring generated, and a 109 (4.2%) of those offspring determined to be transgenic. Even with new and improving genome editing tools now available, pronuclear microinjection is still the predominant and proven technology used in this commercial setting supporting regulatory filings and market authorizations when producing founder transgenic animals with large transgenes (> 10 kb) such as those necessary for directing monoclonal antibody production in milk.

  12. The Relationship between Insect Resistance and Tree Age of Transgenic Triploid Populus tomentosa Plants.

    PubMed

    Ren, Yachao; Zhang, Jun; Wang, Guiying; Liu, Xiaojie; Li, Li; Wang, Jinmao; Yang, Minsheng

    2018-01-01

    To explore the stability of insect resistance during the development of transgenic insect-resistant trees, this study investigated how insect resistance changes as transgenic trees age. We selected 19 transgenic insect-resistant triploid Populus tomentosa lines as plant material. The presence of exogenous genes and Cry1Ac protein expression were verified using polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) analyses. The toxicity for Clostera anachoreta and Lymantria dispar was evaluated by feeding fresh leaves to first instar larvae after the trees were planted in the field for 2 years and after the sixth year. Results of PCR showed that the exogenous genes had a long-term presence in the poplar genome. ELISA analyses showed significant differences existed on the 6-year-old transgenic lines. The insect-feeding experiment demonstrated significant differences in the mortality rates of C. anachoreta and L. dispar among different transgenic lines. The average corrected mortality rates of C. anachoreta and L. dispar ranged from 5.6-98.7% to 35.4-7.2% respectively. The larval mortality rates differed significantly between the lines at different ages. Up to 52.6% of 1-year-old transgenic lines and 42.1% of 2-year-old transgenic lines caused C. anachoreta larval mortality rates to exceed 80%, whereas only 26.3% of the 6-year-old transgenic lines. The mortality rates of L. dispar exhibited the same trend: 89.5% of 1-year-old transgenic lines and 84.2% of 2-year-old transgenic lines caused L. dispar larval mortality rates to exceed 80%; this number decreased to 63.2% for the 6-year-old plants. The proportion of 6-year-old trees with over 80% larval mortality rates was clearly lower than that of the younger trees. The death distribution of C. anachoreta in different developmental stages also showed the larvae that fed on the leaves of 1-year-old trees were killed mostly during L 1 and L 2 stages, whereas the proportion of larvae that died in L 3

  13. Antibody-induced albuminuria and accelerated focal glomerulosclerosis in the Thy-1.1 transgenic mouse.

    PubMed

    Assmann, Karel J M; van Son, Jacco P H F; Dïjkman, Henry B P M; Mentzel, Stef; Wetzels, Jack F M

    2002-07-01

    Podocytes play an important role in the development of proteinuria and focal glomerulosclerosis. Previously we have demonstrated that a combination of two monoclonal antibodies (mAb) against aminopeptidase A (APA), an enzyme present on podocytes, induces a massive acute albuminuria in mice. The present study examined the relationship between the acute antibody-induced albuminuria and the development of focal glomerulosclerosis in the Thy-1.1 transgenic mouse. This mouse expresses a hybrid human-mouse Thy-1.1 antigen on the podocytes, and slowly but spontaneously develops albuminuria and focal glomerulosclerosis. Five-week-old non-albuminuric Thy-1.1 transgenic and non-transgenic control mice were injected with anti-APA and anti-Thy-1.1 mAb or saline. Albuminuria was measured at days 1, 7, 14 and 21. At day 21 kidneys were processed for light microscopy, immunofluorescence, and electron microscopy. Injection of anti-APA and anti-Thy1.1 mAb in Thy-1.1 transgenic mice induced an albuminuria at day 1 that persisted at day 21. The acute albuminuria after injection of anti-APA mAb was more prominent but transient in non-transgenic mice. In non-trangenic mice no albuminuria could be induced with anti-Thy 1.1 mAb. Light microscopy revealed normal glomeruli at day 1 in all transgenic mice, however, at day 21 advanced glomerulosclerotic lesions were seen in mice injected with either anti-APA mAb (37+/-19% of glomeruli affected) or anti-Thy-1.1 mAb (71+/-5%). Non-transgenic mice did not reveal sclerotic lesions at any time investigated. In the transgenic mice the percentage of focal glomerulosclerosis at day 21 did not correlate with albuminuria at day 21. However, we found a highly significant correlation between percentage of focal glomerulosclerosis and the time-averaged albuminuria over the three-week study period (P < 0.001). Injection of a combination of anti-APA or anti-Thy-1.1 mAb into one mo old, non-albuminuric Thy-1.1 transgenic mice induces an acute albuminuria at

  14. [Transgenic rice breeding for abiotic stress tolerance--present and future].

    PubMed

    Zhao, Feng-Yun; Zhang, Hui

    2007-01-01

    Environmental stresses and the continuing deterioration of arable land, along with an explosive increase in world population, pose serious threats to global agricultural production and food security. Improving the tolerance of the major crop plants to abiotic stresses has been a main goal in agriculture for a long time. As rice is considered one of the major crops, the development of new cultivars with enhanced abiotic stress-tolerance will undoubtedly have an important effect on global food production. The transgenic approach offers an attractive alternative to conventional techniques for the genetic improvement of rice cultivars. In recent years, an array of stress-related genes has already been transferred to rice to improve its resistance against abiotic stresses. Many transgenic rice plants with enhanced abiotic stress-tolerance have been obtained. This article focuses on the progress in the study of abiotic stress tolerance in transgenic rice breeding.

  15. The database on transgenic luminescent microorganisms as an instrument of studying a microbial component of closed ecosystems

    NASA Astrophysics Data System (ADS)

    Boyandin, A. N.; Lankin, Y. P.; Kargatova, T. V.; Popova, L. Y.; Pechurkin, N. S.

    Luminescent transgenic microorganisms are widely used for study of microbial communities' functioning including closed ones. Bioluminescence is of high sensitive to effects of different environmental factors. Integration of lux-genes into different metabolic ways allows studying many aspects of microorganisms' life permitting to carry out measurements in situ. There is much information about applications of bioluminescent bacteria in different researches. But for effective using these data their summarizing and accumulation in common source is required. Therefore an information system on characteristics of transgenic microorganisms with cloned lux-genes was created. The database and client software related were developed. A database structure includes information on common characteristics of cloned lux-genes, their sources and properties, on regulation of gene expression in bacterial cells, on dependence of bioluminescence manifestation on biotic, abiotic and anthropogenic environmental factors. The database also can store description of changes in bacterial populations depending on environmental changes. The database created allows storing and using bibliographic information and also links to web sites of world collections of microorganisms. Internet publishing software permitting to open access to the database through the Internet is developed.

  16. Mouse genetic corneal disease resulting from transgenic insertional mutagenesis

    PubMed Central

    Ramalho, J S; Gregory-Evans, K; Huxley, C; Seabra, M C

    2004-01-01

    Background/aims: To report the generation of a new mouse model for a genetically determined corneal abnormality that occurred in transgenesis experiments. Methods: Transgenic mice expressing mutant forms of Rab27a, a GTPase that has been implicated in the pathogenesis of choroideremia, were generated. Results: Only one transgenic line (T27aT15) exhibited an unexpected eye phenotype. T27aT15 mice developed corneal opacities, usually unilateral, and cataracts, resulting in some cases in phthisical eyes. Histologically, the corneal stroma was thickened and vacuolated, and both epithelium and endothelium were thinned. The posterior segment of the eye was also affected with abnormal pigmentation, vessel narrowing, and abnormal leakage of dye upon angiography but was histologically normal. Conclusion: Eye abnormality in T27aT15 mice results from random insertional mutagenesis of the transgene as it was only observed in one line. The corneal lesion observed in T27aT15 mice most closely resembles posterior polymorphous corneal dystrophy and might result from the disruption of the equivalent mouse locus. PMID:14977782

  17. Transgene × Environment Interactions in Genetically Modified Wheat

    PubMed Central

    Zeller, Simon L.; Kalinina, Olena; Brunner, Susanne; Keller, Beat; Schmid, Bernhard

    2010-01-01

    Background The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. Methods and Findings We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. Conclusions Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology. PMID:20635001

  18. Transgene x environment interactions in genetically modified wheat.

    PubMed

    Zeller, Simon L; Kalinina, Olena; Brunner, Susanne; Keller, Beat; Schmid, Bernhard

    2010-07-12

    The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.

  19. Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster

    PubMed Central

    Lin, Chun-Chieh; Potter, Christopher J.

    2016-01-01

    Gene conversions occur when genomic double-strand DNA breaks (DSBs) trigger unidirectional transfer of genetic material from a homologous template sequence. Exogenous or mutated sequence can be introduced through this homology-directed repair (HDR). We leveraged gene conversion to develop a method for genomic editing of existing transgenic insertions in Drosophila melanogaster. The clustered regularly-interspaced palindromic repeats (CRISPR)/Cas9 system is used in the homology assisted CRISPR knock-in (HACK) method to induce DSBs in a GAL4 transgene, which is repaired by a single-genomic transgenic construct containing GAL4 homologous sequences flanking a T2A-QF2 cassette. With two crosses, this technique converts existing GAL4 lines, including enhancer traps, into functional QF2 expressing lines. We used HACK to convert the most commonly-used GAL4 lines (labeling tissues such as neurons, fat, glia, muscle, and hemocytes) to QF2 lines. We also identified regions of the genome that exhibited differential efficiencies of HDR. The HACK technique is robust and readily adaptable for targeting and replacement of other genomic sequences, and could be a useful approach to repurpose existing transgenes as new genetic reagents become available. PMID:27334272

  20. Transient development of ovotestes in XX Sox9 transgenic mice.

    PubMed

    Gregoire, Elodie P; Lavery, Rowena; Chassot, Anne-Amandine; Akiyama, Haruhiko; Treier, Mathias; Behringer, Richard R; Chaboissier, Marie-Christine

    2011-01-01

    The sex of an individual results from the paternal transmission of the SRY gene located on the Y chromosome. In turn, SRY initiates Sox9 expression, a transcription factor required for testicular differentiation. Ectopic activation of SOX9 in XX Wt1:Sox9 transgenic mice induces female-to-male sex reversal in adult mice. Here we show that complete sex reversal is preceded by a transient phase of ovotestis differentiation with XX Wt1:Sox9 transgenic gonads containing a testicular central region and one or both ovarian poles indicating that Wt1:Sox9 is not as efficient as Sry to induce male development. In XX Wt1:Sox9(Tg/+) gonads, transgenic Sox9 is expressed earlier than Sox9 in XY gonads and is able to induce the expression of EGFP, knocked into the 3' UTR of Sox9 indicating that SOX9 is involved in the initiation and maintenance of its own expression. However, the delayed onset of expression of endogenous Sox9-EGFP suggests that this activation requires other factors, whose expression depends on SOX9. In the testicular regions of the XX Wt1:Sox9 ovotestes, proliferation of the XX fetal germ cells is hampered and they differentiate as pro-spermatogonia. This indicates that XX germ cells are not competent to respond to proliferative signals released from a testicular environment. In the ovarian regions, despite the continuous mRNA expression of the WT1:Sox9 transgene, the SOX9 protein does not accumulate suggesting that regulation of this gene in ovarian cells involves post-transcriptional mechanisms. Finally, ovarian cells of the XX Wt1:Sox9 ovotestis undergo apoptosis during late embryogenesis leading to complete female-to-male sex reversal of the transgenic mice at birth. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Transient development of ovotestes in XX Sox9 transgenic mice

    PubMed Central

    Gregoire, Elodie P.; Lavery, Rowena; Chassot, Anne-Amandine; Akiyama, Haruhiko; Treier, Mathias; Behringer, Richard R.; Chaboissier, Marie-Christine

    2010-01-01

    The sex of an individual results from the paternal transmission of the SRY gene located on the Y chromosome. In turn, SRY initiates Sox9 expression, a transcription factor required for testicular differentiation. Ectopic activation of SOX9 in XX Wt1:Sox9 transgenic mice, induces female-to-male sex reversal in adult mice. Here we show that complete sex reversal is preceded by a transient phase of ovotestis differentiation with XX Wt1:Sox9 transgenic gonads containing a testicular central region and one or both ovarian poles indicating that Wt1:Sox9 is not as efficient as Sry to induce male development. In XX Wt1:Sox9Tg/+ gonads, transgenic Sox9 is expressed earlier than Sox9 in XY gonads, and is able to induce the expression of EGFP, knocked into the 3′ UTR of Sox9 indicating that SOX9 is involved in the initiation and maintenance of its own expression. However, the delayed onset of expression of endogenous Sox9-EGFP suggests that this activation requires other factors, whose expression depends on SOX9. In the testicular regions of the XX Wt1:Sox9 ovotestes, proliferation of the XX foetal germ cells is hampered and they differentiate as pro-spermatogonia. This indicates that XX germ cells are not competent to respond to proliferative signals released from a testicular environment. In the ovarian regions, despite the continuous mRNA expression of the WT1:Sox9 transgene, the SOX9 protein does not accumulate suggesting that regulation of this gene in ovarian cells involves post-transcriptional mechanisms. Finally, ovarian cells of the XX Wt1:Sox9 ovotestis undergo apoptosis during late embryogenesis leading to complete female-to-male sex reversal of the transgenic mice at birth. PMID:20965161

  2. Transgenic tobacco plants expressing atzA exhibit resistance and strong ability to degrade atrazine.

    PubMed

    Wang, Huizhuan; Chen, Xiwen; Xing, Xuguang; Hao, Xiaohua; Chen, Defu

    2010-12-01

    Atrazine chlorohydrolase (AtzA) catalyzes hydrolytic dechlorination and can be used in detoxification of atrazine, a herbicide widely employed in the control of broadleaf weeds. In this study, to investigate the potential use of transgenic tobacco plants for phytoremediation of atrazine, atzA genes from Pseudomonas sp. strain ADP and Arthrobacter strain AD1 were transferred into tobacco. Three and four transgenic lines, expressing atzA-ADP and atzA-AD1, respectively, were produced by Agrobacterium-mediated transformation. Molecular characterization including PCR, RT-PCR and Southern blot revealed that atzA was inserted into the tobacco genome and stably inherited by and expressed in the progenies. Seeds of the T(1) transgenic lines had a higher germination percentage and longer roots than the untransformed plants in the presence of 40-150 mg/l atrazine. The T(2) transgenic lines grew taller, gained more dry biomass, and had higher total chlorophyll content than the untransformed plants after growing in soil containing 1 or 2 mg/kg atrazine for 90 days. No atrazine residue remained in the soil in which the T(2) transgenic lines were grown (except 401), while, in the case of the untransformed plants, 0.91 mg (81.3%) and 1.66 mg (74.1%) of the atrazine still remained in the soil containing 1 and 2 mg/kg of atrazine, respectively, indicating that the transgenic lines could degrade atrazine effectively. The transgenic tobacco lines developed could be useful for phytoremediation of atrazine-contaminated soil and water.

  3. A cellulose binding domain protein restores female fertility when expressed in transgenic Bintje potato.

    PubMed

    Jones, Richard W; Perez, Frances G

    2016-03-18

    Expression of a gene encoding the family 1 cellulose binding domain protein CBD1, identified in the cellulosic cell wall of the potato late blight pathogen Phytophthora infestans, was tested in transgenic potato to determine if it had an influence on plant cell walls and resistance to late blight. Multiple regenerants of potato (cv. Bintje) were developed and selected for high expression of CBD 1 transcripts. Tests with detached leaflets showed no evidence of increased or decreased resistance to P. infestans, in comparison with the blight susceptible Bintje controls, however, changes in plant morphology were evident in CBD 1 transgenics. Plant height increases were evident, and most importantly, the ability to produce seed berries from a previously sterile cultivar. Immunolocalization of CBD 1 in seed berries revealed the presence throughout the tissue. While Bintje control plants are male and female sterile, CBD 1 transgenics were female fertile. Crosses made using pollen from the late blight resistant Sarpo Mira and transgenic CBD1 Bintje as the female parent demonstrated the ability to introgress P. infestans targeted resistance genes, as well as genes responsible for color and tuber shape, into Bintje germplasm. A family 1 cellulose-binding domain (CBD 1) encoding gene from the potato late blight pathogen P. infestans was used to develop transgenic Bintje potato plants. Transgenic plants became female fertile, allowing for a previously sterile cultivar to be used in breeding improvement. Selection for the absence of the CBD transgene in progeny should allow for immediate use of a genetically enhanced material. Potential for use in other Solanaceous crops is proposed.

  4. Gene flow from transgenic rice to red rice (Oryza sativa L.) in the field.

    PubMed

    Busconi, M; Baldi, G; Lorenzoni, C; Fogher, C

    2014-01-01

    In this study, we simulate a transgenic rice crop highly infested with red rice to examine transgene transfer from a transgenic line (A2504) resistant to glufosinate ammonium to cohabitant red rice. The red rice was sown along with the transgenic line at the highest density found in naturally infested crops in the region. Agricultural practices similar to those used to control red rice infestation in northern Italy rice fields were used to reproduce the local rice production system. During the first 2 years, the field was treated with herbicide at the appropriate time; in the first year the dosage of herbicide was three times the recommended amount. In this first year, detectable red rice plants that escaped herbicide treatment were manually removed. Nevertheless, two herbicide-resistant hybrid plants (named 101 and 104) were identified in the experimental field during the second year of cultivation. Phenotypic and molecular characterisation suggests the hybrid nature of these two plants, deriving from crossing events involving A2504, respectively, with red rice (plant 101) and the buffer cultivar Gladio (plant 104). The progeny of two subsequent generations of the two plants were examined and the presence of the transgene detected, indicating stable transfer of the transgene across generations. In conclusion, despite control methods, red rice progeny tolerant to the herbicide can be expected following use of transgenic rice and, consequently, difficulties in controlling this weed with chemicals will emerge in a relatively short time. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Pollen-mediated gene flow from transgenic perennial creeping bentgrass and hybridization at the landscape level

    PubMed Central

    Mallory-Smith, Carol Ann

    2017-01-01

    The planting of 162 ha of transgenic glyphosate-resistant creeping bentgrass (Agrostis stolonifera) near Madras, OR, USA, allowed a unique opportunity to study gene flow over time from a perennial outcrossing species at the landscape level. While conducting a four year in situ survey, we collected panicles and leaf tissue samples from creeping bentgrass and its sexually compatible species. Seeds from the panicles were planted, and seedlings were tested in the greenhouse for expression of the transgene. Gene flow via pollen was found in all four years, at frequencies of 0.004 to 2.805%. Chloroplast markers, in combination with internal transcribed spacer nuclear sequence analysis, were used to aid in identification of transgenic interspecific and intergeneric hybrid seedlings found during the testing and of established plants that could not be positively identified in the field. Interspecific transgenic hybrids produced on redtop (Agrostis gigantea) plants in situ were identified three of the four years and one intergeneric transgenic creeping bentgrass x rabbitfoot grass (Polypogon monspeliensis) hybrid was identified in 2005. In addition, we confirmed a non-transgenic creeping bentgrass x redtop hybrid in situ, demonstrating that interspecific hybrids have established in the environment outside production fields. Results of this study should be considered for deregulation of transgenic events, studies of population dynamics, and prediction of gene flow in the environment. PMID:28257488

  6. Pollen-mediated gene flow from transgenic perennial creeping bentgrass and hybridization at the landscape level.

    PubMed

    Zapiola, María Luz; Mallory-Smith, Carol Ann

    2017-01-01

    The planting of 162 ha of transgenic glyphosate-resistant creeping bentgrass (Agrostis stolonifera) near Madras, OR, USA, allowed a unique opportunity to study gene flow over time from a perennial outcrossing species at the landscape level. While conducting a four year in situ survey, we collected panicles and leaf tissue samples from creeping bentgrass and its sexually compatible species. Seeds from the panicles were planted, and seedlings were tested in the greenhouse for expression of the transgene. Gene flow via pollen was found in all four years, at frequencies of 0.004 to 2.805%. Chloroplast markers, in combination with internal transcribed spacer nuclear sequence analysis, were used to aid in identification of transgenic interspecific and intergeneric hybrid seedlings found during the testing and of established plants that could not be positively identified in the field. Interspecific transgenic hybrids produced on redtop (Agrostis gigantea) plants in situ were identified three of the four years and one intergeneric transgenic creeping bentgrass x rabbitfoot grass (Polypogon monspeliensis) hybrid was identified in 2005. In addition, we confirmed a non-transgenic creeping bentgrass x redtop hybrid in situ, demonstrating that interspecific hybrids have established in the environment outside production fields. Results of this study should be considered for deregulation of transgenic events, studies of population dynamics, and prediction of gene flow in the environment.

  7. Development of transgenic pigeonpea (Cajanus cajan. L Millsp) overexpressing citrate synthase gene for high phosphorus uptake.

    PubMed

    Aftab Hussain, Aftab; Pavithra, I S; Sreevathsa, Rohini; Nataraja, K N; Babu, Naveen

    2016-08-01

    Plants have developed several adaptive strategies to enhance the availability and uptake of phosphorus (P) from the soil under conditions of P deficiency. Exudation of organic acids like citrate is one of the important strategies. In this study, we developed transgenic pigeonpea (Cajanus cajan) over-expressing Dacus carota citrate synthase (DcCs) gene to increase the synthesis and exudation of citrate. Transgenic plants were generated through agro bacterium mediated in-planta transformation technique. Integration and expression of the transgene was confirmed by genomic Southern and RT-PCR analysis. We observed that the transgenic lines had more tissue P and chlorophyll content, and also citrate synthase content higher in the roots. Further, transgenic lines had more vigorous root system both under P sufficient and deficient conditions with more lateral roots and root hairs under P deficient conditions. We conclude that the transgenic pigeonpea plants have the capacity to acquire more P under P deficient conditions.

  8. Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase.

    PubMed

    Lallemand, Y; Luria, V; Haffner-Krausz, R; Lonai, P

    1998-03-01

    A transgenic mouse strain with early and uniform expression of the Cre site-specific recombinase is described. In this strain, PGK-Crem, Cre is driven by the early acting PGK-1 promoter, but, probably due to cis effects at the integration site, the recombinase is under dominant maternal control. When Cre is transmitted by PGK-Crem females mated to males that carry a reporter transgene flanked by loxP sites, even offspring that do not inherit PGK-Cre delete the target gene. It follows that in the PGK-Crem female Cre activity commences in the diploid phase of oogenesis. In PGK-Crem crosses complete recombination was observed in all organs, including testis and ovary. We prepared a mouse stock that is homozygous for PGK-Crem and at the albino (c) locus. This strain will be useful for the early and uniform induction of ectopic and dominant negative mutations, for the in vivo removal of selective elements from targeted mutations and in connection with the manipulation of targeted loci in 'knock in' and related technologies.

  9. Arabidopsis and Brachypodium distachyon Transgenic Plants Expressing Aspergillus nidulans Acetylesterases Have Decreased Degree of Polysaccharide Acetylation and Increased Resistance to Pathogens1[C][W][OA

    PubMed Central

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M.; Qi, Mingsheng; Whitham, Steven A.; Bogdanove, Adam J.; Bellincampi, Daniela; Zabotina, Olga A.

    2013-01-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens. PMID:23463782

  10. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase.

    PubMed

    Jung, Sunyo; Back, Kyoungwhan

    2005-05-01

    We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria.

  11. Transgenic Monkey Model of the Polyglutamine Diseases Recapitulating Progressive Neurological Symptoms

    PubMed Central

    Ishibashi, Hidetoshi; Minakawa, Eiko N.; Motohashi, Hideyuki H.; Takayama, Osamu; Popiel, H. Akiko; Puentes, Sandra; Owari, Kensuke; Nakatani, Terumi; Nogami, Naotake; Yamamoto, Kazuhiro; Yonekawa, Takahiro; Tanaka, Yoko; Fujita, Naoko; Suzuki, Hikaru; Aizawa, Shu; Nagano, Seiichi; Yamada, Daisuke; Wada, Keiji; Kohsaka, Shinichi

    2017-01-01

    Abstract Age-associated neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and the polyglutamine (polyQ) diseases, are becoming prevalent as a consequence of elongation of the human lifespan. Although various rodent models have been developed to study and overcome these diseases, they have limitations in their translational research utility owing to differences from humans in brain structure and function and in drug metabolism. Here, we generated a transgenic marmoset model of the polyQ diseases, showing progressive neurological symptoms including motor impairment. Seven transgenic marmosets were produced by lentiviral introduction of the human ataxin 3 gene with 120 CAG repeats encoding an expanded polyQ stretch. Although all offspring showed no neurological symptoms at birth, three marmosets with higher transgene expression developed neurological symptoms of varying degrees at 3–4 months after birth, followed by gradual decreases in body weight gain, spontaneous activity, and grip strength, indicating time-dependent disease progression. Pathological examinations revealed neurodegeneration and intranuclear polyQ protein inclusions accompanied by gliosis, which recapitulate the neuropathological features of polyQ disease patients. Consistent with neuronal loss in the cerebellum, brain MRI analyses in one living symptomatic marmoset detected enlargement of the fourth ventricle, which suggests cerebellar atrophy. Notably, successful germline transgene transmission was confirmed in the second-generation offspring derived from the symptomatic transgenic marmoset gamete. Because the accumulation of abnormal proteins is a shared pathomechanism among various neurodegenerative diseases, we suggest that this new marmoset model will contribute toward elucidating the pathomechanisms of and developing clinically applicable therapies for neurodegenerative diseases. PMID:28374014

  12. Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa.

    PubMed

    Halfhill, Matthew D; Millwood, Reginald J; Raymer, Paul L; Stewart, C Neal

    2002-10-01

    The movement of transgenes from crops to weeds and the resulting consequences are concerns of modern agriculture. The possible generation of "superweeds" from the escape of fitness-enhancing transgenes into wild populations is a risk that is often discussed, but rarely studied. Oilseed rape, Brassica napus (L.), is a crop with sexually compatible weedy relatives, such as birdseed rape (Brassica rapa (L.)). Hybridization of this crop with weedy relatives is an extant risk and an excellent interspecific gene flow model system. In laboratory crosses, T3 lines of seven independent transformation events of Bacillus thuringiensis (Bt) oilseed rape were hybridized with two weedy accessions of B. rapa. Transgenic hybrids were generated from six of these oilseed rape lines, and the hybrids exhibited an intermediate morphology between the parental species. The Bt transgene was present in the hybrids, and the protein was synthesized at similar levels to the corresponding independent oilseed rape lines. Insect bioassays were performed and confirmed that the hybrid material was insecticidal. The hybrids were backcrossed with the weedy parent, and only half the oilseed rape lines were able to produce transgenic backcrosses. After two backcrosses, the ploidy level and morphology of the resultant plants were indistinguishable from B. rapa. Hybridization was monitored under field conditions (Tifton, GA, USA) with four independent lines of Bt oilseed rape with a crop to wild relative ratio of 1200:1. When B. rapa was used as the female parent, hybridization frequency varied among oilseed rape lines and ranged from 16.9% to 0.7%.

  13. How to grow transgenic Arabidopsis in the field.

    PubMed

    Jänkänpää, Hanna Johansson; Jansson, Stefan

    2012-01-01

    Arabidopsis is naturally adapted to habitats in which both biotic variables (e.g., light, wind, and humidity) and abiotic variables (e.g., competition, herbivory, and pathogen densities) strongly fluctuate. Hence, conditions in controlled growth chambers (in which Arabidopsis is typically grown for scientific experiments) differ substantially from those in natural environments. In order to mimic more closely natural conditions, we grow Arabidopsis outdoors under "semi-natural" field conditions. Performing experiments on transgenic Arabidopsis grown in the field that are sufficiently reliable for publication is challenging. In this chapter, we present some of our experiences based on 10 years of field experimentation, which may be of use to researchers seeking to perform field experiments using transgenic Arabidopsis.

  14. Accurate measurement of transgene copy number in crop plants using droplet digital PCR

    USDA-ARS?s Scientific Manuscript database

    Technical abstract: Genetic transformation is a powerful means for the improvement of crop plants, but requires labor and resource intensive methods. An efficient method for identifying single copy transgene insertion events from a population of independent transgenic lines is desirable. Currently ...

  15. Optical modulation of transgene expression in retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Lavinsky, D.; Chalberg, T.; Mandel, Y.; Huie, P.; Dalal, R.; Marmor, M.

    2013-03-01

    Over a million people in US alone are visually impaired due to the neovascular form of age-related macular degeneration (AMD). The current treatment is monthly intravitreal injections of a protein which inhibits Vascular Endothelial Growth Factor, thereby slowing progression of the disease. The immense financial and logistical burden of millions of intravitreal injections signifies an urgent need to develop more long-lasting and cost-effective treatments for this and other retinal diseases. Viral transfection of ocular cells allows creation of a "biofactory" that secretes therapeutic proteins. This technique has been proven successful in non-human primates, and is now being evaluated in clinical trials for wet AMD. However, there is a critical need to down-regulate gene expression in the case of total resolution of retinal condition, or if patient has adverse reaction to the trans-gene products. The site for genetic therapy of AMD and many other retinal diseases is the retinal pigment epithelium (RPE). We developed and tested in pigmented rabbits, an optical method to down-regulate transgene expression in RPE following vector delivery, without retinal damage. Microsecond exposures produced by a rapidly scanning laser vaporize melanosomes and destroy a predetermined fraction of the RPE cells selectively. RPE continuity is restored within days by migration and proliferation of adjacent RPE, but since the transgene is not integrated into the nucleus it is not replicated. Thus, the decrease in transgene expression can be precisely determined by the laser pattern density and further reduced by repeated treatment without affecting retinal structure and function.

  16. Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs

    PubMed Central

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2014-01-01

    Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489

  17. Development of transgenic crops based on photo-biotechnology.

    PubMed

    Ganesan, Markkandan; Lee, Hyo-Yeon; Kim, Jeong-Il; Song, Pill-Soon

    2017-11-01

    The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses. © 2016 John Wiley & Sons Ltd.

  18. Field trials to evaluate effects of continuously planted transgenic insect-resistant cottons on soil invertebrates.

    PubMed

    Li, Xiaogang; Liu, Biao; Wang, Xingxiang; Han, Zhengmin; Cui, Jinjie; Luo, Junyu

    2012-03-01

    Impacts on soil invertebrates are an important aspect of environmental risk assessment and post-release monitoring of transgenic insect-resistant plants. The purpose of this study was to research and survey the effects of transgenic insect-resistant cottons that had been planted over 10 years on the abundance and community structure of soil invertebrates under field conditions. During 3 consecutive years (2006-2008), eight common taxa (orders) of soil invertebrates belonging to the phylum Arthropoda were investigated in two different transgenic cotton fields and one non-transgenic cotton field (control). Each year, soil samples were taken at four different growth stages of cotton (seedling, budding, boll forming and boll opening). Animals were extracted from the samples using the improved Tullgren method, counted and determined to the order level. The diversity of the soil fauna communities in the different fields was compared using the Simpson's, Shannon's diversity indices and evenness index. The results showed a significant sampling time variation in the abundance of soil invertebrates monitored in the different fields. However, no difference in soil invertebrate abundance was found between the transgenic cotton fields and the control field. Both sampling time and cotton treatment had a significant effect on the Simpson's, Shannon's diversity indices and evenness index. They were higher in the transgenic fields than the control field at the growth stages of cotton. Long-term cultivation of transgenic insect-resistant cottons had no significant effect on the abundance of soil invertebrates. Collembola, Acarina and Araneae could act as the indicators of soil invertebrate in this region to monitor the environmental impacts of transgenic plants in the future. This journal is © The Royal Society of Chemistry 2012

  19. Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes.

    PubMed

    Kwon, Dae-Jin; Kim, Dong-Hwan; Hwang, In-Sul; Kim, Dong-Ern; Kim, Hyung-Joo; Kim, Jang-Seong; Lee, Kichoon; Im, Gi-Sun; Lee, Jeong-Woong; Hwang, Seongsoo

    2017-02-01

    Recent progress in genetic manipulation of pigs designated for xenotransplantation ha6s shown considerable promise on xenograft survival in primates. However, genetic modification of multiple genes in donor pigs by knock-out and knock-in technologies, aiming to enhance immunological tolerance against transplanted organs in the recipients, has not been evaluated for health issues of donor pigs. We produced transgenic Massachusetts General Hospital piglets by knocking-out the α-1,3-galactosyltransferase (GT) gene and by simultaneously knocking-in an expression cassette containing five different human genes including, DAF, CD39, TFPI, C1 inhibitor (C1-INH), and TNFAIP3 (A20) [GT -(DAF/CD39/TFPI/C1-INH/TNFAIP3)/+ ] that are connected by 2A peptide cleavage sequences to release individual proteins from a single translational product. All five individual protein products were successfully produced as determined by western blotting of umbilical cords from the newborn transgenic pigs. Although gross observation and histological examination revealed no significant pathological abnormality in transgenic piglets, hematological examination found that the transgenic piglets had abnormally low numbers of platelets and WBCs, including neutrophils, eosinophils, basophils, and lymphocytes. However, transgenic piglets had similar numbers of RBC and values of parameters related to RBC compared to the control littermate piglets. These data suggest that transgenic expression of those human genes in pigs impaired hematopoiesis except for erythropoiesis. In conclusion, our data suggest that transgenic expression of up to five different genes can be efficiently achieved and provide the basis for determining optimal dosages of transgene expression and combinations of the transgenes to warrant production of transgenic donor pigs without health issues.

  20. Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus.

    PubMed

    Kung, Yi-Jung; Bau, Huey-Jiunn; Wu, Yi-Ling; Huang, Chiung-Huei; Chen, Tsui-Miao; Yeh, Shyi-Dong

    2009-11-01

    During the field tests of coat protein (CP)-transgenic papaya lines resistant to Papaya ringspot virus (PRSV), another Potyvirus sp., Papaya leaf-distortion mosaic virus (PLDMV), appeared as an emerging threat to the transgenic papaya. In this investigation, an untranslatable chimeric construct containing the truncated CP coding region of the PLDMV P-TW-WF isolate and the truncated CP coding region with the complete 3' untranslated region of PRSV YK isolate was transferred into papaya (Carica papaya cv. Thailand) via Agrobacterium-mediated transformation to generate transgenic plants with resistance to PLDMV and PRSV. Seventy-five transgenic lines were obtained and challenged with PRSV YK or PLDMV P-TW-WF by mechanical inoculation under greenhouse conditions. Thirty-eight transgenic lines showing no symptoms 1 month after inoculation were regarded as highly resistant lines. Southern and Northern analyses revealed that four weakly resistant lines have one or two inserts of the construct and accumulate detectable amounts of transgene transcript, whereas nine resistant lines contain two or three inserts without significant accumulation of transgene transcript. The results indicated that double virus resistance in transgenic lines resulted from double or more copies of the insert through the mechanism of RNA-mediated posttranscriptional gene silencing. Furthermore, three of nine resistant lines showed high levels of resistance to heterologous PRSV strains originating from Hawaii, Thailand, and Mexico. Our transgenic lines have great potential for controlling a number of PRSV strains and PLDMV in Taiwan and elsewhere.