Science.gov

Sample records for cartilage repair tissue

  1. Repair and tissue engineering techniques for articular cartilage

    PubMed Central

    Makris, Eleftherios A.; Gomoll, Andreas H.; Malizos, Konstantinos N.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2015-01-01

    Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable surgical intervention. This Review describes current, widely used clinical repair techniques for resurfacing articular cartilage defects; short-term and long-term clinical outcomes of these techniques are discussed. Also reviewed is a developmental pipeline of regenerative biological products that over the next decade could revolutionize joint care by functionally healing articular cartilage. These products include cell-based and cell-free materials such as autologous and allogeneic cell-based approaches and multipotent and pluripotent stem-cell-based techniques. Central to these efforts is the prominent role that tissue engineering has in translating biological technology into clinical products; therefore, concomitant regulatory processes are also discussed. PMID:25247412

  2. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes*

    PubMed Central

    ZHAO, Ming; CHEN, Zhu; LIU, Kang; WAN, Yu-qing; LI, Xu-dong; Luo, Xu-wei; Bai, Yi-guang; Yang, Ze-long; Feng, Gang

    2015-01-01

    Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P<0.05). Conclusions: Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage. PMID:26537209

  3. The Role of Tissue Engineering in Articular Cartilage Repair and Regeneration

    PubMed Central

    Zhang, Lijie; Hu, Jerry; Athanasiou, Kyriacos A.

    2011-01-01

    Articular cartilage repair and regeneration continue to be largely intractable due to the poor regenerative properties of this tissue. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased articular cartilage functionality, has evoked intense interest and holds great potential for improving articular cartilage therapy. This review provides an overall description of the current state and progress in articular cartilage repair and regeneration. Traditional therapies and related problems are introduced. More importantly, a variety of promising cell sources, biocompatible tissue engineered scaffolds, scaffoldless techniques, growth factors, and mechanical stimuli used in current articular cartilage tissue engineering are reviewed. Finally, the technical and regulatory challenges of articular cartilage tissue engineering and possible future directions are discussed. PMID:20201770

  4. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M. A.; Cernohorsky, Paul; de Bruin, Daniel M.; van der Pol, Edwin; Savci-Heijink, Cemile D.; Strackee, Simon D.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-02-01

    Quantification of the OCT signal is an important step toward clinical implementation of a diagnostic tool in cartilage imaging. Discrimination of structural cartilage differences in patients with osteoarthritis is critical, yet challenging. This study assesses the variation in the optical attenuation coefficient (μOCT) between healthy cartilage, repair tissue, bone and layers within repair tissue in a controlled setting. OCT and histology was used to assess goat talus articular surfaces in which central osteochondral defects were created. Exact matches of OCT and histology were selected for research. μOCT measurements were taken from healthy cartilage, repair tissue and bone. Measured μOCT in healthy cartilage was higher compared to both repair tissue and bone tissue. Two possible mechanisms for the difference in attenuation were investigated. We studied morphological parameters in terms of nucleus count, nucleus size and inter-nucleus distance. Collagen content in healthy cartilage and repair tissue was assessed using polarization microscopy. Quantitative analysis of the nuclei did not demonstrate a difference in nucleus size and count between healthy cartilage and repair tissue. In healthy cartilage, cells were spaced farther apart and had a lower variation in local nuclear density compared to repair tissue. Polarization microscopy suggested higher collagen content in healthy cartilage compared to repair tissue. μOCT measurements can distinguish between healthy cartilage, repair tissue and bone. Results suggest that cartilage OCT attenuation measurements could be of great impact in clinical diagnostics of osteoarthritis.

  5. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  6. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair

    PubMed Central

    Yodmuang, Supansa; McNamara, Stephanie L.; Nover, Adam B.; Mandal, Biman B.; Agarwal, Monica; Kelly, Terri-Ann N.; Chao, Pen-hsiu Grace; Hung, Clark; Kaplan, David L.; Vunjak-Novakovic, Gordana

    2014-01-01

    Cartilage tissue lacks an intrinsic capacity for self-regeneration due to slow matrix turnover, a limited supply of mature chondrocytes and insufficient vasculature. Although cartilage tissue engineering has achieved some success using agarose as a scaffolding material, major challenges of agarose-based cartilage repair, including non-degradability, poor tissue–scaffold integration and limited processing capability, have prompted the search for an alternative biomaterial. In this study, silk fiber–hydrogel composites (SF–silk hydrogels) made from silk microfibers and silk hydrogels were investigated for their potential use as a support material for engineered cartilage. We demonstrated the use of 100% silk-based fiber–hydrogel composite scaffolds for the development of cartilage constructs with properties comparable to those made with agarose. Cartilage constructs with an equilibrium modulus in the native tissue range were fabricated by mimicking the collagen fiber and proteoglycan composite architecture of native cartilage using biocompatible, biodegradable silk fibroin from Bombyx mori. Excellent chondrocyte response was observed on SF–silk hydrogels, and fiber reinforcement resulted in the development of more mechanically robust constructs after 42 days in culture compared to silk hydrogels alone. Thus, we demonstrate the versatility of silk fibroin as a composite scaffolding material for use in cartilage tissue repair to create functional cartilage constructs that overcome the limitations of agarose biomaterials, and provide a much-needed alternative to the agarose standard. PMID:25281788

  7. Proteoglycans and cartilage repair.

    PubMed

    Ouzzine, Mohamed; Venkatesan, Narayanan; Fournel-Gigleux, Sylvie

    2012-01-01

    Repair of damaged articular cartilage in osteoarthritis (OA) is a clinical challenge. Because cartilage is an avascular and aneural tissue, normal mechanisms of tissue repair through recruitment of cells to the site of tissue destruction are not feasible. Proteoglycan (PG) depletion induced by the proinflammatory cytokine interleukin-1β, a principal mediator in OA, is a major factor in the onset and progression of joint destruction. Current symptomatic treatments of OA by anti-inflammatory drugs do not alter the progression of the disease. Various therapeutic strategies have been developed to antagonize the effect of proinflammatory cytokines. However, relatively few studies were conducted to stimulate anabolic activity, in an attempt to enhance cartilage repair. To this aim, a nonviral gene transfer strategy of glycosyltransferases responsible for PG synthesis has been developed and tested for its capacity to promote cartilage PG synthesis and deposition. Transfection of chondrocytes or cartilage explants by the expression vector for the glycosyltransferase β-1,3-glucuronosyltransferase-I (GlcAT-I) enhanced PG synthesis and deposition in the ECM by promoting the synthesis of chondroitin sulfate GAG chains of the cartilage matrix. This indicates that therapy mediated through GT gene delivery may constitute a new strategy for the treatment of OA. PMID:22252645

  8. New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review

    PubMed Central

    Musumeci, Giuseppe; Castrogiovanni, Paola; Leonardi, Rosalia; Trovato, Francesca Maria; Szychlinska, Marta Anna; Di Giunta, Angelo; Loreto, Carla; Castorina, Sergio

    2014-01-01

    In this paper review we describe benefits and disadvantages of the established methods of cartilage regeneration that seem to have a better long-term effectiveness. We illustrated the anatomical aspect of the knee joint cartilage, the current state of cartilage tissue engineering, through mesenchymal stem cells and biomaterials, and in conclusion we provide a short overview on the rehabilitation after articular cartilage repair procedures. Adult articular cartilage has low capacity to repair itself, and thus even minor injuries may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. Numerous efforts have been made to develop tissue-engineered grafts or patches to repair focal chondral and osteochondral defects, and to date several researchers aim to implement clinical application of cell-based therapies for cartilage repair. A literature review was conducted on PubMed, Scopus and Google Scholar using appropriate keywords, examining the current literature on the well-known tissue engineering methods for the treatment of knee osteoarthritis. PMID:24829869

  9. A Stereological Method for the Quantitative Evaluation of Cartilage Repair Tissue

    PubMed Central

    Nyengaard, Jens Randel; Lind, Martin; Spector, Myron

    2015-01-01

    Objective To implement stereological principles to develop an easy applicable algorithm for unbiased and quantitative evaluation of cartilage repair. Design Design-unbiased sampling was performed by systematically sectioning the defect perpendicular to the joint surface in parallel planes providing 7 to 10 hematoxylin–eosin stained histological sections. Counting windows were systematically selected and converted into image files (40-50 per defect). The quantification was performed by two-step point counting: (1) calculation of defect volume and (2) quantitative analysis of tissue composition. Step 2 was performed by assigning each point to one of the following categories based on validated and easy distinguishable morphological characteristics: (1) hyaline cartilage (rounded cells in lacunae in hyaline matrix), (2) fibrocartilage (rounded cells in lacunae in fibrous matrix), (3) fibrous tissue (elongated cells in fibrous tissue), (4) bone, (5) scaffold material, and (6) others. The ability to discriminate between the tissue types was determined using conventional or polarized light microscopy, and the interobserver variability was evaluated. Results We describe the application of the stereological method. In the example, we assessed the defect repair tissue volume to be 4.4 mm3 (CE = 0.01). The tissue fractions were subsequently evaluated. Polarized light illumination of the slides improved discrimination between hyaline cartilage and fibrocartilage and increased the interobserver agreement compared with conventional transmitted light. Conclusion We have applied a design-unbiased method for quantitative evaluation of cartilage repair, and we propose this algorithm as a natural supplement to existing descriptive semiquantitative scoring systems. We also propose that polarized light is effective for discrimination between hyaline cartilage and fibrocartilage. PMID:26069715

  10. Immune Modulation to Improve Tissue Engineering Outcomes for Cartilage Repair in the Osteoarthritic Joint

    PubMed Central

    Fahy, Niamh; Farrell, Eric; Ritter, Thomas; Ryan, Aideen E.

    2015-01-01

    Osteoarthritis (OA), the most common form of arthritis, is a disabling degenerative joint disease affecting synovial joints and is associated with cartilage destruction, inflammation of the synovial membrane, and subchondral bone remodeling. Inflammation of the synovial membrane may arise secondary to degenerative processes in articular cartilage (AC), or may be a primary occurrence in OA pathogenesis. However, synovial inflammation plays a key role in the pathogenesis and disease progression of OA through the production of pro-inflammatory mediators, and is associated with cartilage destruction and pain. The triggers that initiate activation of the immune response in OA are unknown, but crosstalk between osteoarthritic chondrocytes, cartilage degradation products, and the synovium may act to perpetuate this response. Increasing evidence has emerged highlighting an important role for pro-inflammatory mediators and infiltrating inflammatory cell populations in the progression of the disease. Tissue engineering strategies hold great potential for the repair of damaged AC in an osteoarthritic joint. However, an in-depth understanding of how OA-associated inflammation impacts chondrocyte and progenitor cell behavior is required to achieve efficient cartilage regeneration in a catabolic osteoarthritic environment. In this review, we will discuss the role of inflammation in OA, and investigate novel immune modulation strategies that may prevent disease progression and facilitate successful cartilage regeneration for the treatment of OA. PMID:24950588

  11. Anti-Inflammatory Strategies in Cartilage Repair

    PubMed Central

    Zhang, Ying; Pizzute, Tyler

    2014-01-01

    Cartilage defects are normally concomitant with posttraumatic inflammation and pose a major challenge in cartilage repair. Due to the avascular nature of cartilage and its inability to surmount an inflammatory response, the cartilage is easily attacked by proinflammatory factors and oxidative stress; if left untreated, osteoarthritis may develop. Suppression of inflammation has always been a crux for cartilage repair. Pharmacological drugs have been successfully applied in cartilage repair; however, they cannot optimally work alone. This review article will summarize current pharmacological drugs and their application in cartilage repair. The development of extracellular matrix-based scaffolds and preconditioned tissue-specific stem cells will be emphasized because both of these tissue engineering components could contribute to an enhanced ability not only for cartilage regeneration but also for anti-inflammation. These strategies could be combined to boost cartilage repair under inflammatory conditions. PMID:24846478

  12. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage.

    PubMed

    Huang, Brian J; Hu, Jerry C; Athanasiou, Kyriacos A

    2016-08-01

    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. PMID:27177218

  13. The vascularized periosteum flap as novel tissue engineering model for repair of cartilage defects.

    PubMed

    Harhaus, Leila; Huang, Jung-Ju; Kao, Shu-Wei; Wu, Yen-Lin; Mackert, Gina Alicia; Höner, Bernd; Cheng, Ming-Huei; Kneser, Ulrich; Cheng, Chao-Min

    2015-06-01

    Periosteum is a promising tissue engineering scaffold in research of cartilage repair; so far however, periosteum transfers have not been realized successfully because of insufficient nourishment of the graft. In a translational approach we, for the first time, designed a vascularized periosteum flap as 'independent' biomaterial with its own blood supply to address this problem and to reconstruct circumscript cartilage defects. In six 3-month-old New Zealand rabbits, a critical size cartilage defect of the medial femur condyle was created and covered by a vascularized periosteum flap pedicled on the saphenous vessels. After 28 days, formation of newly built cartilage was assessed macroscopically, histologically and qualitatively via biomechanical compression testing, as well as on molecular biological level via immunohistochemistry. All wounds healed completely, all joints were stable and had full range of motion. All flaps survived and were perfused through their pulsating pedicles. They showed a stable attachment to the bone, although partially incomplete adherence. Hyaline cartilage with typical columnar cell distribution and positive Collagen II staining was formed in the transferred flaps. Biomechanical testing revealed a significantly higher maximum load than the positive control, but a low elasticity. This study proved that vascularization of the periosteum flap is the essential step for flap survival and enables the flap to transform into cartilage. Reconstruction of circumscript cartilage defects seems to be possible. Although these are the first results out of a pilot project, this technique, we believe, can have a wide range of potential applications and high relevance in the clinical field. PMID:25754287

  14. Imaging of cartilage repair procedures

    PubMed Central

    Sanghvi, Darshana; Munshi, Mihir; Pardiwala, Dinshaw

    2014-01-01

    The rationale for cartilage repair is to prevent precocious osteoarthritis in untreated focal cartilage injuries in the young and middle-aged population. The gamut of surgical techniques, normal postoperative radiological appearances, and possible complications have been described. An objective method of recording the quality of repair tissue is with the magnetic resonance observation of cartilage repair tissue (MOCART) score. This scoring system evaluates nine parameters that include the extent of defect filling, border zone integration, signal intensity, quality of structure and surface, subchondral bone, subchondral lamina, and records presence or absence of synovitis and adhesions. The five common techniques of cartilage repair currently offered include bone marrow stimulation (microfracture or drilling), mosaicplasty, synthetic resorbable scaffold grafts, osteochondral allograft transplants, and autologous chondrocyte implantation (ACI). Complications of cartilage repair procedures that may be demonstrated on magnetic resonance imaging (MRI) include plug loosening, graft protuberance, graft depression, and collapse in mosaicplasty, graft hypertrophy in ACI, and immune response leading to graft rejection, which is more common with synthetic grafts and cadaveric allografts. PMID:25114387

  15. Cartilage Repair in the Inflamed Joint: Considerations for Biological Augmentation Toward Tissue Regeneration.

    PubMed

    Scotti, Celeste; Gobbi, Alberto; Karnatzikos, Georgios; Martin, Ivan; Shimomura, Kazunori; Lane, John G; Peretti, Giuseppe Michele; Nakamura, Norimasa

    2016-04-01

    Cartilage repair/regeneration procedures (e.g., microfracture, autologous chondrocyte implantation [ACI]) typically result in a satisfactory outcome in selected patients. However, the vast majority of patients with chronic symptoms and, in general, a more diseased joint, do not benefit from these surgical techniques. The aims of this work were to (1) review factors negatively influencing the joint environment; (2) review current adjuvant therapies that can be used to improve results of cartilage repair/regeneration procedures in patients with more diseased joints, (3) outline future lines of research and promising experimental approaches. Chronicity of symptoms and advancing patient age appear to be the most relevant factors negatively affecting clinical outcome of cartilage repair/regeneration. Preliminary experience with hyaluronic acid, platelet-rich plasma, and mesenchymal stem cell has been positive but there is no strong evidence supporting the use of these products and this requires further assessment with high-quality, prospective clinical trials. The use of a Tissue Therapy strategy, based on more mature engineered tissues, holds promise to tackle limitations of standard ACI procedures. Current research has highlighted the need for more targeted therapies, and (1) induction of tolerance with granulocyte colony-stimulating factor (G-CSF) or by preventing IL-6 downregulation; (2) combined IL-4 and IL-10 local release; and (3) selective activation of the prostaglandin E2 (PGE2) signaling appear to be the most promising innovative strategies. For older patients and for those with chronic symptoms, adjuvant therapies are needed in combination with microfracture and ACI. PMID:26467024

  16. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  17. Animal models of cartilage repair

    PubMed Central

    Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P.

    2014-01-01

    Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94. PMID:24695750

  18. Concepts in Gene Therapy for Cartilage Repair

    PubMed Central

    Steinert, Andre F.; Nöth, Ulrich; Tuan, Rocky S.

    2009-01-01

    Summary Once articular cartilage is injured, it has a very limited capacity for self-repair. Although current surgical therapeutic procedures to cartilage repair are clinically useful, they cannot restore a normal articular surface. Current research offers a growing number of bioactive reagents, including proteins and nucleic acids, that may be used to augment different aspects of the repair process. As these agents are difficult to administer effectively, gene transfer approaches are being developed to provide their sustained synthesis at sites of repair. To augment regeneration of articular cartilage, therapeutic genes can be delivered to the synovium, or directly to the cartilage lesion. Gene delivery to the cells of the synovial lining is generally considered more suitable for chondroprotective approaches, based on the expression of anti-inflammatory mediators. Gene transfer targeted to cartilage defects can be achieved by either direct vector administration to cells located at or surrounding the defects, or by transplantation of genetically modified chondrogenic cells into the defect. Several studies have shown that exogenous cDNAs encoding growth factors can be delivered locally to sites of cartilage damage, where they are expressed at therapeutically relevant levels. Furthermore, data is beginning to emerge indicating, that efficient delivery and expression of these genes is capable of influencing a repair response toward the synthesis of a more hyaline cartilage repair tissue in vivo. This review presents the current status of gene therapy for cartilage healing and highlights some of the remaining challenges. PMID:18313477

  19. Supporting Biomaterials for Articular Cartilage Repair

    PubMed Central

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  20. Evaluation of cartilage, synovium and adipose tissue as cellular sources for osteochondral repair.

    PubMed

    Innes, J F; Gordon, C; Vaughan-Thomas, A; Rhodes, N P; Clegg, P D

    2013-09-01

    Osteochondral lesions are a major cause of pain and disability in several species including dogs, horses and human beings. The objective of this study was to assess three potential sources of canine cells for their osteochondral regenerative potential. Cartilage, synovium and adipose tissue cells were grown in pellet culture in chondrogenic or osteogenic media. Cartilage-derived pellets displayed the best chondrogenic differentiation as indicated by significantly higher COL2A1 and SOX9 mRNA expression, greater glycosaminoglycan content, and higher retention of Safranin-O stain compared to the synovium and adipose-derived cells. Following application of the osteogenic media, all three cell sources exhibited small areas of positive alizarin red staining. Poor intracellular alkaline phosphatase activity was found in all three cell types when stimulated although osteocalcin and RUNX2 expression were significantly increased. Cells isolated and cultured from canine articular cartilage retained their specific chondrocytic phenotype. Furthermore, canine adipocytes and synovial cells did not undergo chondrogenic differentiation and did not exhibit evidence of multipotency. Although osteogenic differentiation was initiated at a genomic level, phenotypic osteoblastic differentiation was not observed. The findings of this study suggest that cells isolated from canine adipose tissue and synovium are sub-optimal substitutes for chondrocytes when engineering articular cartilage in vitro. PMID:23886701

  1. Signaling Pathways in Cartilage Repair

    PubMed Central

    Mariani, Erminia; Pulsatelli, Lia; Facchini, Andrea

    2014-01-01

    In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair. PMID:24837833

  2. In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds.

    PubMed

    Kang, Hongjun; Peng, Jiang; Lu, Shibi; Liu, Shuyun; Zhang, Li; Huang, Jingxiang; Sui, Xiang; Zhao, Bin; Wang, Aiyuan; Xu, Wenjing; Luo, Zhijie; Guo, Quanyi

    2014-06-01

    We have previously reported a natural, human cartilage ECM (extracellular matrix)-derived three-dimensional (3D) porous acellular scaffold for in vivo cartilage tissue engineering in nude mice. However, the in vivo repair effects of this scaffold are still unknown. The aim of this study was to further explore the feasibility of application of cell-loaded scaffolds, using autologous adipose-derived stem cells (ADSCs), for cartilage defect repair in rabbits. A defect 4 mm in diameter was created on the patellar groove of the femur in both knees, and was repaired with the chondrogenically induced ADSC-scaffold constructs (group A) or the scaffold alone (group B); defects without treatment were used as controls (group C). The results showed that in group A all defects were fully filled with repair tissue and at 6 months post-surgery most of the repair site was filled with hyaline cartilage. In contrast, in group B all defects were partially filled with repair tissue, but only half of the repair tissue was hyaline cartilage. Defects were only filled with fibrotic tissue in group C. Indeed, histological grading score analysis revealed that an average score in group A was higher than in groups B and C. GAG and type II collagen content and biomechanical property detection showed that the group A levels approached those of normal cartilage. In conclusion, ADSC-loaded cartilage ECM scaffolds induced cartilage repair tissue comparable to native cartilage in terms of mechanical properties and biochemical components. PMID:22674864

  3. Computational analysis of cartilage implants based on an interpenetrated polymer network for tissue repairing.

    PubMed

    Manzano, Sara; Poveda-Reyes, Sara; Ferrer, Gloria Gallego; Ochoa, Ignacio; Hamdy Doweidar, Mohamed

    2014-10-01

    distribution in healthy cartilage tissue. The obtained results show how the model predicts the permeability of the PEA-PHEA hydrogels and simulates the internal behaviour of the samples and shows the distribution and quantification of fluid flux. PMID:24997064

  4. A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair.

    PubMed

    Ainola, Mari; Tomaszewski, Waclaw; Ostrowska, Barbara; Wesolowska, Ewa; Wagner, H Daniel; Swieszkowski, Wojciech; Sillat, Tarvo; Peltola, Emilia; Konttinen, Yrjö T

    2016-01-01

    The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration. PMID:26341661

  5. In-situ crosslinkable and self-assembling elastin-like polypeptide block copolymers for cartilage tissue repair

    NASA Astrophysics Data System (ADS)

    Lim, Dong Woo

    This work describes the development of genetically engineered elastin-like polypeptide (ELP) block copolymers as in-situ gelling scaffolds for cartilage tissue repair. The central hypothesis underlying this work is that ELP based biopolymers can be exploited as injectable biomaterials by rapid chemical crosslinking. To prove this, gene libraries encoding ELP having different molecular weights and amino acid sequences, and ELP block copolymers composed of various ELP blocks having diverse amino acid composition, length, and phase transition behavior were synthesized by recursive directional ligation, expressed in E. Coli and purified by inverse transition cycling. Mannich-type condensation of hydroxymethylphosphines (HMPs) with primary- and secondary-amines of amino acids was developed as a new crosslinking method of polypeptides. Chemically crosslinked ELP hydrogels were formed rapidly in an aqueous solution by reaction of ELPs containing periodic lysine residues with HMPs. The crosslinking density and mechanical property of the ELP hydrogels were controlled at the sequence level by varying the Lys density in ELPs composed of mono-block as well as by segregation of the Lys residues within specific blocks of tri-block architectures. Fibroblasts embedded in ELP hydrogels survived the crosslinking process and were viable after in vitro culture for at least 3 days. The DNA content of fibroblasts within the tri-block gels was significantly higher than that in the mono-block gels at day 3. These results suggest that the HMP crosslinked ELP block copolymer hydrogels show finely tuned mechanical properties and different microenvironments for cell viability as well as potential as in-situ crosslinkable biopolymers for tissue repair applications with load-bearing environments. As an alternative, rheological behavior of the ELP block copolymers and ELP-grafted hyaluronic acids (HAs) as artificial extracellular matrices (ECMs) showed that they were thermally aggregated into

  6. Persisting High Levels of Synovial Fluid Markers after Cartilage Repair

    PubMed Central

    Konttinen, Yrjö T.; Peterson, Lars; Lindahl, Anders; Kiviranta, Ilkka

    2008-01-01

    Local attempts to repair a cartilage lesion could cause increased levels of anabolic and catabolic factors in the synovial fluid. After repair with regenerated cartilage, the homeostasis of the cartilage ideally would return to normal. In this pilot study, we first hypothesized levels of synovial fluid markers would be higher in patients with cartilage lesions than in patients with no cartilage lesions, and then we hypothesized the levels of synovial fluid markers would decrease after cartilage repair. We collected synovial fluid samples from 10 patients before autologous chondrocyte transplantation of the knee. One year later, a second set of samples was collected and arthroscopic evaluation of the repair site was performed. Fifteen patients undergoing knee arthroscopy for various symptoms but with no apparent cartilage lesions served as control subjects. We measured synovial fluid matrix metalloproteinase-3 (MMP-3) and insulinlike growth factor-I (IGF-I) concentrations with specific activity and enzyme-linked immunosorbent assays, respectively. The levels of MMP-3 and IGF-I were higher in patients having cartilage lesions than in control subjects with no cartilage lesions. One year after cartilage repair, the lesions were filled with repair tissue, but the levels of MMP-3 and IGF-I remained elevated, indicating either graft remodeling or early degeneration. Level of Evidence: Level III, prognostic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18709427

  7. Cartilage repair: 2013 Asian update.

    PubMed

    Hui, James H P; Goyal, Deepak; Nakamura, Norimasa; Ochi, Mitsuo

    2013-12-01

    Despite financial and regulatory hurdles, Asian scientists and clinicians have made important contributions in the area of cartilage repair. Because it is impossible to include observations on all the published articles in one review, our attempt is to highlight Asian progress in this area during recent years (2005 to the present), reviewing research development and clinical studies. In the former, our discussion of in vitro studies focuses on (1) potential sources of stem cells--such as mesenchymal stem cells (MSCs) from marrow, cord blood, synovium, and mobilized peripheral blood--which are capable of enhancing cartilage repair and (2) the use of growth factors and scaffolds with and without cells. Our discussion of animal studies attempts to summarize activities in evaluating surgical procedures and determining the route of cell administration, as well as studies on matrices and scaffolds. It ranges from the use of small animals such as rats and rabbits to larger animals like pigs and dogs. The local adherent technique, enhancement of microfracture with poly(l-lactic-co-glycolic acid) scaffold, adenovirus-mediated bone morphogenic protein (BMP) genes, and MSCs--whether they are magnetically labeled, suspended in hyaluronic acid, or immobilized with transforming growth factor-β (TGF-β)--have all been able to engineer a repair of the osteochondral defect. Although published Asian reports of clinical studies on cartilage repair are few, the findings of relevant trials are summarized in our discussion of these investigations. There has been a long history of use of laboratory-derived MSCs for cartilage repair. Recent progress has suggested the potential utility of cord blood and mobilized peripheral blood in this area, as well as more injectable bone marrow (BM)-derived stem cells. Finally, we make a few suggestions on the direction of research and development activities and the need for collaborative approaches by regulatory agencies. PMID:24286798

  8. Use of a biological reactor and platelet-rich plasma for the construction of tissue-engineered bone to repair articular cartilage defects

    PubMed Central

    Li, Huibo; Sun, Shui; Liu, Haili; Chen, Hua; Rong, Xin; Lou, Jigang; Yang, Yunbei; Yang, Yi; Liu, Hao

    2016-01-01

    Articular cartilage defects are a major clinical burden worldwide. Current methods to repair bone defects include bone autografts, allografts and external fixation. In recent years, the repair of bone defects by tissue engineering has emerged as a promising approach. The present study aimed to assess a novel method using a biological reactor with platelet-rich plasma to construct tissue-engineered bone. Beagle bone marrow mesenchymal stem cells (BMSCs) were isolated and differentiated into osteoblasts and chondroblasts using platelet-rich plasma and tricalcium phosphate scaffolds cultured in a bioreactor for 3 weeks. The cell scaffold composites were examined by scanning electron microscopy (SEM) and implanted into beagles with articular cartilage defects. The expression of osteogenic markers, alkaline phosphatase and bone γ-carboxyglutamate protein (BGLAP) were assessed using polymerase chain reaction after 3 months. Articular cartilage specimens were observed histologically. Adhesion and distribution of BMSCs on the β-tricalcium phosphate (β-TCP) scaffold were confirmed by SEM. Histological examination revealed that in vivo bone defects were largely repaired 12 weeks following implantation. The expression levels of alkaline phosphatase (ALP) and BGLAP in the experimental groups were significantly elevated compared with the negative controls. BMSCs may be optimum seed cells for tissue engineering in bone repair. Platelet-rich plasma (PRP) provides a rich source of cytokines to promote BMSC function. The β-TCP scaffold is advantageous for tissue engineering due to its biocompatibility and 3D structure that promotes cell adhesion, growth and differentiation. The tissue-engineered bone was constructed in a bioreactor using BMSCs, β-TCP scaffolds and PRP and displayed appropriate morphology and biological function. The present study provides an efficient method for the generation of tissue-engineered bone for cartilage repair, compared with previously used

  9. Magnetic Resonance Imaging of Cartilage Repair: A Review.

    PubMed

    Trattnig, Siegfried; Winalski, Carl S; Marlovits, Stephan; Jurvelin, Jukka S; Welsch, Goetz H; Potter, Hollis G

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  10. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    PubMed Central

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  11. Cartilage tissue engineering for degenerative joint disease.

    PubMed

    Nesic, Dobrila; Whiteside, Robert; Brittberg, Mats; Wendt, David; Martin, Ivan; Mainil-Varlet, Pierre

    2006-05-20

    Pain in the joint is often due to cartilage degeneration and represents a serious medical problem affecting people of all ages. Although many, mostly surgical techniques, are currently employed to treat cartilage lesions, none has given satisfactory results in the long term. Recent advances in biology and material science have brought tissue engineering to the forefront of new cartilage repair techniques. The combination of autologous cells, specifically designed scaffolds, bioreactors, mechanical stimulations and growth factors together with the knowledge that underlies the principles of cell biology offers promising avenues for cartilage tissue regeneration. The present review explores basic biology mechanisms for cartilage reconstruction and summarizes the advances in the tissue engineering approaches. Furthermore, the limits of the new methods and their potential application in the osteoarthritic conditions are discussed. PMID:16574268

  12. Next Generation Mesenchymal Stem Cell (MSC)–Based Cartilage Repair Using Scaffold-Free Tissue Engineered Constructs Generated with Synovial Mesenchymal Stem Cells

    PubMed Central

    Shimomura, Kazunori; Ando, Wataru; Moriguchi, Yu; Sugita, Norihiko; Yasui, Yukihiko; Koizumi, Kota; Fujie, Hiromichi; Hart, David A.; Yoshikawa, Hideki

    2015-01-01

    Because of its limited healing capacity, treatments for articular cartilage injuries are still challenging. Since the first report by Brittberg, autologous chondrocyte implantation has been extensively studied. Recently, as an alternative for chondrocyte-based therapy, mesenchymal stem cell–based therapy has received considerable research attention because of the relative ease in handling for tissue harvest, and subsequent cell expansion and differentiation. This review summarizes latest development of stem cell therapies in cartilage repair with special attention to scaffold-free approaches. PMID:27340513

  13. Marine Collagen Scaffolds for Nasal Cartilage Repair: Prevention of Nasal Septal Perforations in a New Orthotopic Rat Model Using Tissue Engineering Techniques

    PubMed Central

    Bermueller, Christian; Elsaesser, Alexander F.; Sewing, Judith; Baur, Nina; von Bomhard, Achim; Scheithauer, Marc; Notbohm, Holger; Rotter, Nicole

    2013-01-01

    Autologous grafts are frequently needed for nasal septum reconstruction. Because they are only available in limited amounts, there is a need for new cartilage replacement strategies. Tissue engineering based on the use of autologous chondrocytes and resorbable matrices might be a suitable option. So far, an optimal material for nasal septum reconstruction has not been identified. The aim of our study was to provide the first evaluation of marine collagen for use in nasal cartilage repair. First, we studied the suitability of marine collagen as a cartilage replacement matrix in the context of in vitro three dimensional cultures by analyzing cell migration, cytotoxicity, and extracellular matrix formation using human and rat nasal septal chondrocytes. Second, we worked toward developing a suitable orthotopic animal model for nasal septum repair, while simultaneously evaluating the biocompatibility of marine collagen. Seeded and unseeded scaffolds were transplanted into nasal septum defects in an orthotopic rat model for 1, 4, and 12 weeks. Explanted scaffolds were histologically and immunohistochemically evaluated. Scaffolds did not induce any cytotoxic reactions in vitro. Chondrocytes were able to adhere to marine collagen and produce cartilaginous matrix proteins, such as collagen type II. Treating septal cartilage defects in vivo with seeded and unseeded scaffolds led to a significant reduction in the number of nasal septum perforations compared to no replacement. In summary, we demonstrated that marine collagen matrices provide excellent properties for cartilage tissue engineering. Marine collagen scaffolds are able to prevent septal perforations in an autologous, orthotopic rat model. This newly described experimental surgical procedure is a suitable way to evaluate new scaffold materials for their applicability in the context of nasal cartilage repair. PMID:23621795

  14. Biomaterial scaffolds in cartilage-subchondral bone defects influencing the repair of autologous articular cartilage transplants.

    PubMed

    Fan, Wei; Wu, Chengtie; Miao, Xigeng; Liu, Gang; Saifzadeh, Siamak; Sugiyama, Sadahiro; Afara, Isaac; Crawford, Ross; Xiao, Yin

    2013-05-01

    The repair of articular cartilage typically involves the repair of cartilage-subchondral bone tissue defects. Although various bioactive materials have been used to repair bone defects, how these bioactive materials in subchondral bone defects influence the repair of autologous cartilage transplant remains unclear. The aim of this study was to investigate the effects of different subchondral biomaterial scaffolds on the repair of autologous cartilage transplant in a sheep model. Cylindrical cartilage-subchondral bone defects were created in the right femoral knee joint of each sheep. The subchondral bone defects were implanted with hydroxyapatite-β-tricalcium phosphate (HA-TCP), poly lactic-glycolic acid (PLGA)-HA-TCP dual-layered composite scaffolds (PLGA/HA-TCP scaffolds), or autologous bone chips. The autologous cartilage layer was placed on top of the subchondral materials. After 3 months, the effect of different subchondral scaffolds on the repair of autologous cartilage transplant was systematically studied by investigating the mechanical strength, structural integration, and histological responses. The results showed that the transplanted cartilage layer supported by HA-TCP scaffolds had better structural integration and higher mechanical strength than that supported by PLGA/HA-TCP scaffolds. Furthermore, HA-TCP-supported cartilage showed higher expression of acid mucosubstances and glycol-amino-glycan contents than that supported by PLGA/HA-TCP scaffolds. Our results suggested that the physicochemical properties, including the inherent mechanical strength and material chemistry of the scaffolds, play important roles in influencing the repair of autologous cartilage transplants. The study may provide useful information for the design and selection of proper subchondral biomaterials to support the repair of both subchondral bone and cartilage defects. PMID:22684516

  15. Comparison of international guidelines for regenerative medicine: Knee cartilage repair and replacement using human-derived cells and tissues.

    PubMed

    Itoh, Kuni; Kano, Shingo

    2016-07-01

    Regenerative medicine (RM) is an emerging field using human-derived cells and tissues (HCT). Due to the complexity and diversity of HCT products, each country has its own regulations for authorization and no common method has been applied to date. Individual regulations were previously clarified at the level of statutes but no direct comparison has been reported at the level of guidelines. Here, we generated a new analytical framework that allows comparison of guidelines independent from local definitions of RM, using 2 indicators, product type and information type. The guidelines for products for repair and replacement of knee cartilage in Japan, the United States of America, and Europe were compared and differences were detected in both product type and information type by the proposed analytical framework. Those findings will be critical not only for the product developers to determine the region to initiate the clinical trials but also for the regulators to assess and build their regulations. This analytical framework is potentially expandable to other RM guidelines to identify gaps, leading to trigger discussion of global harmonization in RM regulations. PMID:27156144

  16. Effects of In Vitro Low Oxygen Tension Preconditioning of Adipose Stromal Cells on Their In Vivo Chondrogenic Potential: Application in Cartilage Tissue Repair

    PubMed Central

    Gauthier, Olivier; Lesoeur, Julie; Sourice, Sophie; Masson, Martial; Fellah, Borhane Hakim; Geffroy, Olivier; Lallemand, Elodie; Weiss, Pierre

    2013-01-01

    Purpose Multipotent stromal cell (MSC)-based regenerative strategy has shown promise for the repair of cartilage, an avascular tissue in which cells experience hypoxia. Hypoxia is known to promote the early chondrogenic differentiation of MSC. The aim of our study was therefore to determine whether low oxygen tension could be used to enhance the regenerative potential of MSC for cartilage repair. Methods MSC from rabbit or human adipose stromal cells (ASC) were preconditioned in vitro in control or chondrogenic (ITS and TGF-β) medium and in 21 or 5% O2. Chondrogenic commitment was monitored by measuring COL2A1 and ACAN expression (real-time PCR). Preconditioned rabbit and human ASC were then incorporated into an Si-HPMC hydrogel and injected (i) into rabbit articular cartilage defects for 18 weeks or (ii) subcutaneously into nude mice for five weeks. The newly formed tissue was qualitatively and quantitatively evaluated by cartilage-specific immunohistological staining and scoring. The phenotype of ASC cultured in a monolayer or within Si-HPMC in control or chondrogenic medium and in 21 or 5% O2 was finally evaluated using real-time PCR. Results/Conclusions 5% O2 increased the in vitro expression of chondrogenic markers in ASC cultured in induction medium. Cells implanted within Si-HPMC hydrogel and preconditioned in chondrogenic medium formed a cartilaginous tissue, regardless of the level of oxygen. In addition, the 3D in vitro culture of ASC within Si-HPMC hydrogel was found to reinforce the pro-chondrogenic effects of the induction medium and 5% O2. These data together indicate that although 5% O2 enhances the in vitro chondrogenic differentiation of ASC, it does not enhance their in vivo chondrogenesis. These results also highlight the in vivo chondrogenic potential of ASC and their potential value in cartilage repair. PMID:23638053

  17. Proteomic Analysis Profile of Engineered Articular Cartilage with Chondrogenic Differentiated Adipose Tissue-Derived Stem Cells Loaded Polyglycolic Acid Mesh for Weight-Bearing Area Defect Repair

    PubMed Central

    Gong, Lunli; Zhou, Xiao; Wu, Yaohao; Zhang, Yun; Wang, Chen; Zhou, Heng; Guo, Fangfang

    2014-01-01

    The present study was designed to investigate the possibility of full-thickness defects repair in porcine articular cartilage (AC) weight-bearing area using chondrogenic differentiated autologous adipose-derived stem cells (ASCs) with a follow-up of 3 and 6 months, which is successive to our previous study on nonweight-bearing area. The isolated ASCs were seeded onto the phosphoglycerate/polylactic acid (PGA/PLA) with chondrogenic induction in vitro for 2 weeks as the experimental group prior to implantation in porcine AC defects (8 mm in diameter, deep to subchondral bone), with PGA/PLA only as control. With follow-up time being 3 and 6 months, both neo-cartilages of postimplantation integrated well with the neighboring normal cartilage and subchondral bone histologically in experimental group, whereas only fibrous tissue in control group. Immunohistochemical and toluidine blue staining confirmed similar distribution of COL II and glycosaminoglycan in the regenerated cartilage to the native one. A vivid remolding process with repair time was also witnessed in the neo-cartilage as the compressive modulus significantly increased from 70% of the normal cartilage at 3 months to nearly 90% at 6 months, which is similar to our former research. Nevertheless, differences of the regenerated cartilages still could be detected from the native one. Meanwhile, the exact mechanism involved in chondrogenic differentiation from ASCs seeded on PGA/PLA is still unknown. Therefore, proteome is resorted leading to 43 proteins differentially identified from 20 chosen two-dimensional spots, which do help us further our research on some committed factors. In conclusion, the comparison via proteome provided a thorough understanding of mechanisms implicating ASC differentiation toward chondrocytes, which is further substantiated by the present study as a perfect supplement to the former one in nonweight-bearing area. PMID:24044689

  18. Tissue repair

    PubMed Central

    2010-01-01

    As living beings that encounter every kind of traumatic event from paper cut to myocardial infarction, we must possess ways to heal damaged tissues. While some animals are able to regrow complete body parts following injury (such as the earthworm who grows a new head following bisection), humans are sadly incapable of such feats. Our means of recovery following tissue damage consists largely of repair rather than pure regeneration. Thousands of times in our lives, a meticulously scripted but unseen wound healing drama plays, with cells serving as actors, extracellular matrix as the setting and growth factors as the means of communication. This article briefly reviews the cells involved in tissue repair, their signaling and proliferation mechanisms and the function of the extracellular matrix, then presents the actors and script for the three acts of the tissue repair drama. PMID:21220961

  19. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    PubMed

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair. PMID:26559963

  20. Cartilage Repair and Subchondral Bone Remodeling in Response to Focal Lesions in a Mini-Pig Model: Implications for Tissue Engineering

    PubMed Central

    Fisher, Matthew B.; Belkin, Nicole S.; Milby, Andrew H.; Henning, Elizabeth A.; Bostrom, Marc; Kim, Minwook; Pfeifer, Christian; Meloni, Gregory; Dodge, George R.; Burdick, Jason A.; Schaer, Thomas P.; Steinberg, David R.

    2015-01-01

    Objective: Preclinical large animal models are essential for evaluating new tissue engineering (TE) technologies and refining surgical approaches for cartilage repair. Some preclinical animal studies, including the commonly used minipig model, have noted marked remodeling of the subchondral bone. However, the mechanisms underlying this response have not been well characterized. Thus, our objective was to compare in-vivo outcomes of chondral defects with varied injury depths and treatments. Design: Trochlear chondral defects were created in 11 Yucatan minipigs (6 months old). Groups included an untreated partial-thickness defect (PTD), an untreated full-thickness defect (FTD), and FTDs treated with microfracture, autologous cartilage transfer (FTD-ACT), or an acellular hyaluronic acid hydrogel. Six weeks after surgery, micro-computed tomography (μCT) was used to quantitatively assess defect fill and subchondral bone remodeling. The quality of cartilage repair was assessed using the ICRS-II histological scoring system and immunohistochemistry for type II collagen. A finite element model (FEM) was developed to assess load transmission. Results: Using μCT, substantial bone remodeling was observed for all FTDs, but not for the PTD group. The best overall histological scores and greatest type II collagen staining was found for the FTD-ACT and PTD groups. The FEM confirmed that only the FTD-ACT group could initially restore appropriate transfer of compressive loads to the underlying bone. Conclusions: The bony remodeling observed in this model system appears to be a biological phenomena and not a result of altered mechanical loading, with the depth of the focal chondral defect (partial vs. full thickness) dictating the bony remodeling response. The type of cartilage injury should be carefully controlled in studies utilizing this model to evaluate TE approaches for cartilage repair. PMID:25318414

  1. Cellular and Acellular Approaches for Cartilage Repair

    PubMed Central

    2015-01-01

    There are several choices of cells to use for cartilage repair. Cells are used as internal or external sources and sometimes in combination. In this article, an analysis of the different cell choices and their use and potential is provided. Embryonic cartilage formation is of importance when finding more about how to be able to perfect cartilage repair. Some suggestions for near future research based on up-to-date knowledge on chondrogenic cells are given to hopefully stimulate more studies on the final goal of cartilage regeneration. PMID:27340516

  2. Stem Cells and Gene Therapy for Cartilage Repair

    PubMed Central

    Longo, Umile Giuseppe; Petrillo, Stefano; Franceschetti, Edoardo; Berton, Alessandra; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, surgeons try to promote a natural fibrocartilaginous response by using marrow stimulating techniques, such as microfracture, abrasion arthroplasty, and Pridie drilling, with the aim of reducing swelling and pain and improving joint function of the patients. These procedures have demonstrated to be clinically useful and are usually considered as first-line treatment for focal cartilage defects. However, fibrocartilage presents inferior mechanical and biochemical properties compared to normal hyaline articular cartilage, characterized by poor organization, significant amounts of collagen type I, and an increased susceptibility to injury, which ultimately leads to premature osteoarthritis (OA). Therefore, the aim of future therapeutic strategies for articular cartilage regeneration is to obtain a hyaline-like cartilage repair tissue by transplantation of tissues or cells. Further studies are required to clarify the role of gene therapy and mesenchimal stem cells for management of cartilage lesions. PMID:22481959

  3. Regulatory Challenges for Cartilage Repair Technologies.

    PubMed

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible. PMID:26069647

  4. Direct human cartilage repair using three-dimensional bioprinting technology.

    PubMed

    Cui, Xiaofeng; Breitenkamp, Kurt; Finn, M G; Lotz, Martin; D'Lima, Darryl D

    2012-06-01

    Current cartilage tissue engineering strategies cannot as yet fabricate new tissue that is indistinguishable from native cartilage with respect to zonal organization, extracellular matrix composition, and mechanical properties. Integration of implants with surrounding native tissues is crucial for long-term stability and enhanced functionality. In this study, we developed a bioprinting system with simultaneous photopolymerization capable for three-dimensional (3D) cartilage tissue engineering. Poly(ethylene glycol) dimethacrylate (PEGDMA) with human chondrocytes were printed to repair defects in osteochondral plugs (3D biopaper) in layer-by-layer assembly. Compressive modulus of printed PEGDMA was 395.73±80.40 kPa, which was close to the range of the properties of native human articular cartilage. Printed human chondrocytes maintained the initially deposited positions due to simultaneous photopolymerization of surrounded biomaterial scaffold, which is ideal in precise cell distribution for anatomic cartilage engineering. Viability of printed human chondrocytes increased 26% in simultaneous polymerization than polymerized after printing. Printed cartilage implant attached firmly with surrounding tissue and greater proteoglycan deposition was observed at the interface of implant and native cartilage in Safranin-O staining. This is consistent with the enhanced interface failure strength during the culture assessed by push-out testing. Printed cartilage in 3D biopaper had elevated glycosaminoglycan (GAG) content comparing to that without biopaper when normalized to DNA. These observations were consistent with gene expression results. This study indicates the importance of direct cartilage repair and promising anatomic cartilage engineering using 3D bioprinting technology. PMID:22394017

  5. Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology

    PubMed Central

    Cui, Xiaofeng; Breitenkamp, Kurt; Finn, M.G.; Lotz, Martin

    2012-01-01

    Current cartilage tissue engineering strategies cannot as yet fabricate new tissue that is indistinguishable from native cartilage with respect to zonal organization, extracellular matrix composition, and mechanical properties. Integration of implants with surrounding native tissues is crucial for long-term stability and enhanced functionality. In this study, we developed a bioprinting system with simultaneous photopolymerization capable for three-dimensional (3D) cartilage tissue engineering. Poly(ethylene glycol) dimethacrylate (PEGDMA) with human chondrocytes were printed to repair defects in osteochondral plugs (3D biopaper) in layer-by-layer assembly. Compressive modulus of printed PEGDMA was 395.73±80.40 kPa, which was close to the range of the properties of native human articular cartilage. Printed human chondrocytes maintained the initially deposited positions due to simultaneous photopolymerization of surrounded biomaterial scaffold, which is ideal in precise cell distribution for anatomic cartilage engineering. Viability of printed human chondrocytes increased 26% in simultaneous polymerization than polymerized after printing. Printed cartilage implant attached firmly with surrounding tissue and greater proteoglycan deposition was observed at the interface of implant and native cartilage in Safranin-O staining. This is consistent with the enhanced interface failure strength during the culture assessed by push-out testing. Printed cartilage in 3D biopaper had elevated glycosaminoglycan (GAG) content comparing to that without biopaper when normalized to DNA. These observations were consistent with gene expression results. This study indicates the importance of direct cartilage repair and promising anatomic cartilage engineering using 3D bioprinting technology. PMID:22394017

  6. Hydrogels for the Repair of Articular Cartilage Defects

    PubMed Central

    Maher, Suzanne A.; Lowman, Anthony M.

    2011-01-01

    The repair of articular cartilage defects remains a significant challenge in orthopedic medicine. Hydrogels, three-dimensional polymer networks swollen in water, offer a unique opportunity to generate a functional cartilage substitute. Hydrogels can exhibit similar mechanical, swelling, and lubricating behavior to articular cartilage, and promote the chondrogenic phenotype by encapsulated cells. Hydrogels have been prepared from naturally derived and synthetic polymers, as cell-free implants and as tissue engineering scaffolds, and with controlled degradation profiles and release of stimulatory growth factors. Using hydrogels, cartilage tissue has been engineered in vitro that has similar mechanical properties to native cartilage. This review summarizes the advancements that have been made in determining the potential of hydrogels to replace damaged cartilage or support new tissue formation as a function of specific design parameters, such as the type of polymer, degradation profile, mechanical properties and loading regimen, source of cells, cell-seeding density, controlled release of growth factors, and strategies to cause integration with surrounding tissue. Some key challenges for clinical translation remain, including limited information on the mechanical properties of hydrogel implants or engineered tissue that are necessary to restore joint function, and the lack of emphasis on the ability of an implant to integrate in a stable way with the surrounding tissue. Future studies should address the factors that affect these issues, while using clinically relevant cell sources and rigorous models of repair. PMID:21510824

  7. Human cartilage repair with a photoreactive adhesive-hydrogel composite.

    PubMed

    Sharma, Blanka; Fermanian, Sara; Gibson, Matthew; Unterman, Shimon; Herzka, Daniel A; Cascio, Brett; Coburn, Jeannine; Hui, Alexander Y; Marcus, Norman; Gold, Garry E; Elisseeff, Jennifer H

    2013-01-01

    Surgical options for cartilage resurfacing may be significantly improved by advances and application of biomaterials that direct tissue repair. A poly(ethylene glycol) diacrylate (PEGDA) hydrogel was designed to support cartilage matrix production, with easy surgical application. A model in vitro system demonstrated deposition of cartilage-specific extracellular matrix in the hydrogel biomaterial and stimulation of adjacent cartilage tissue development by mesenchymal stem cells. For translation to the joint environment, a chondroitin sulfate adhesive was applied to covalently bond and adhere the hydrogel to cartilage and bone tissue in articular defects. After preclinical testing in a caprine model, a pilot clinical study was initiated where the biomaterials system was combined with standard microfracture surgery in 15 patients with focal cartilage defects on the medial femoral condyle. Control patients were treated with microfracture alone. Magnetic resonance imaging showed that treated patients achieved significantly higher levels of tissue fill compared to controls. Magnetic resonance spin-spin relaxation times (T(2)) showed decreasing water content and increased tissue organization over time. Treated patients had less pain compared with controls, whereas knee function [International Knee Documentation Committee (IKDC)] scores increased to similar levels between the groups over the 6 months evaluated. No major adverse events were observed over the study period. With further clinical testing, this practical biomaterials strategy has the potential to improve the treatment of articular cartilage defects. PMID:23303605

  8. Anti-inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Sesia, Sergio B; Duhr, Ralph; Medeiros da Cunha, Carolina; Todorov, Atanas; Schaeren, Stefan; Padovan, Elisabetta; Spagnoli, Giulio; Martin, Ivan; Barbero, Andrea

    2015-06-01

    Macrophages are key players in healing processes. However, little is known on their capacity to modulate the differentiation potential of mesenchymal stem/stromal cells (MSC). Here we investigated whether macrophages (Mf) with, respectively, pro-inflammatory and tissue-remodeling traits differentially modulate chondrogenesis of bone marrow derived-MSC (BM-MSC). We demonstrated that coculture in collagen scaffolds of BM-MSC with Mf derived from monocytes polarized with M-CSF (M-Mf), but not with GM-CSF (GM-Mf) resulted in significantly higher glycosaminoglycan (GAG) content than what would be expected from an equal number of BM-MSC alone (defined as chondro-induction). Moreover, type II collagen was expressed at significantly higher levels in BM-MSC/M-Mf as compared to BM-MSC/GM-Mf constructs, while type X collagen expression was unaffected. In order to understand the possible cellular mechanism accounting for chondro-induction, developing monoculture and coculture tissues were digested and the properties of the isolated BM-MSC analysed. We observed that as compared to monocultures, in coculture with M-Mf, BM-MSC decreased less markedly in number and exhibited higher clonogenic and chondrogenic capacity. Despite their chondro-inductive effect in vitro, M-Mf did not modulate the cartilage tissue maturation in subcutaneous pockets of nude mice, as evidenced by similar accumulation of type X collagen and calcified tissue. Our results demonstrate that coculture of BM-MSC with M-Mf results in synergistic cartilage tissue formation in vitro. Such effect seems to result from the survival of BM-MSC with high chondrogenic capacity. Studies in an orthotopic in vivo model are necessary to assess the clinical relevance of our findings in the context of cartilage repair. PMID:25413299

  9. Evaluation of cartilage repair and osteoarthritis with sodium MRI.

    PubMed

    Zbýň, Štefan; Mlynárik, Vladimír; Juras, Vladimir; Szomolanyi, Pavol; Trattnig, Siegfried

    2016-02-01

    The growing need for early diagnosis and higher specificity than that which can be achieved with morphological MRI is a driving force in the application of methods capable of probing the biochemical composition of cartilage tissue, such as sodium imaging. Unlike morphological imaging, sodium MRI is sensitive to even small changes in cartilage glycosaminoglycan content, which plays a key role in cartilage homeostasis. Recent advances in high- and ultrahigh-field MR systems, gradient technology, phase-array radiofrequency coils, parallel imaging approaches, MRI acquisition strategies and post-processing developments have resulted in many clinical in vivo sodium MRI studies of cartilage, even at 3 T. Sodium MRI has great promise as a non-invasive tool for cartilage evaluation. However, further hardware and software improvements are necessary to complete the translation of sodium MRI into a clinically feasible method for 3-T systems. This review is divided into three parts: (i) cartilage composition, pathology and treatment; (ii) sodium MRI; and (iii) clinical sodium MRI studies of cartilage with a focus on the evaluation of cartilage repair tissue and osteoarthritis. PMID:25810325

  10. Extracellular matrix production in vitro in cartilage tissue engineering

    PubMed Central

    2014-01-01

    Cartilage tissue engineering is arising as a technique for the repair of cartilage lesions in clinical applications. However, fibrocartilage formation weakened the mechanical functions of the articular, which compromises the clinical outcomes. Due to the low proliferation ability, dedifferentiation property and low production of cartilage-specific extracellular matrix (ECM) of the chondrocytes, the cartilage synthesis in vitro has been one of the major limitations for obtaining high-quality engineered cartilage constructs. This review discusses cells, biomaterial scaffolds and stimulating factors that can facilitate the cartilage-specific ECM production and accumulation in the in vitro culture system. Special emphasis has been put on the factors that affect the production of ECM macromolecules such as collagen type II and proteoglycans in the review, aiming at providing new strategies to improve the quality of tissue-engineered cartilage. PMID:24708713

  11. Photoactivated methods for enabling cartilage-to-cartilage tissue fixation

    NASA Astrophysics Data System (ADS)

    Sitterle, Valerie B.; Roberts, David W.

    2003-06-01

    The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.

  12. Stem Cell-assisted Approaches for Cartilage Tissue Engineering

    PubMed Central

    Park, In-Kyu; Cho, Chong-Su

    2010-01-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When designing materials for cartilage tissue engineering, biodegradability and biocompatibility are the key factors in selecting material candidates, for either synthetic or natural polymers. The unique environment of cartilage makes it suitable to use a hydrogel with high water content in the cross-linked or thermosensitive (injectable) form. Moreover, design of composite scaffolds from two polymers with complementary physicochemical and biological properties has been explored to provide residing chondrocytes with a combination of the merits that each component contributes. PMID:24855547

  13. Polymer Formulations for Cartilage Repair

    SciTech Connect

    Gutowska, Anna; Jasionowski, Marek; Morris, J. E.; Chrisler, William B.; An, Yuehuei H.; Mironov, V.

    2001-05-15

    Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained with the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site. Techniques are currently being developed to harvest a small number of cells and propagate them in vitro. It is a challenging task, however, due to the fact that ordinarily, in a cell culture on flat surfaces, chondrocytes do not maintain their in vivo phenotype and irreversibly diminish or cease the synthesis of aggregating proteoglycans. Therefore, the research is continuing to develop culture conditions for chondrocytes with the preserved phenotype.

  14. Induced pluripotent stem cells in cartilage repair.

    PubMed

    Lietman, Steven A

    2016-03-18

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  15. Induced pluripotent stem cells in cartilage repair

    PubMed Central

    Lietman, Steven A

    2016-01-01

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  16. Strategies for Controlled Delivery of Biologics for Cartilage Repair

    PubMed Central

    Lam, Johnny; Lu, Steven; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    The delivery of biologics is an important component in the treatment of osteoarthritis and the functional restoration of articular cartilage. Numerous factors have been implicated in the cartilage repair process, but the uncontrolled delivery of these factors may not only reduce their full reparative potential and can also cause unwanted morphological effects. It is therefore imperative to consider the type of biologic to be delivered, the method of delivery, and the temporal as well as spatial presentation of the biologic to achieve the desired effect in cartilage repair. Additionally, the delivery of a single factor may not be sufficient in guiding neo-tissue formation, motivating recent research towards the delivery of multiple factors. This review will discuss the roles of various biologics involved in cartilage repair and the different methods of delivery for appropriate healing responses. A number of spatiotemporal strategies will then be emphasized for the controlled delivery of single and multiple bioactive factors in both in vitro and in vivo cartilage tissue engineering applications. PMID:24993610

  17. Tissue Engineering of Articular Cartilage with Biomimetic Zones

    PubMed Central

    Klein, Travis J.; Malda, Jos; Sah, Robert L.

    2009-01-01

    Articular cartilage damage is a persistent and increasing problem with the aging population, and treatments to achieve biological repair or restoration remain a challenge. Cartilage tissue engineering approaches have been investigated for over 20 years, but have yet to achieve the consistency and effectiveness for widespread clinical use. One of the potential reasons for this is that the engineered tissues do not have or establish the normal zonal organization of cells and extracellular matrix that appears critical for normal tissue function. A number of approaches are being taken currently to engineer tissue that more closely mimics the organization of native articular cartilage. This review focuses on the zonal organization of native articular cartilage, strategies being used to develop such organization, the reorganization that occurs after culture or implantation, and future prospects for the tissue engineering of articular cartilage with biomimetic zones. PMID:19203206

  18. Engineering Superficial Zone Features in Tissue Engineered Cartilage

    PubMed Central

    Chen, Tony; Hilton, Matthew J.; Brown, Edward B.; Zuscik, Michael J.; Awad, Hani A.

    2013-01-01

    A major challenge in cartilage tissue engineering is the need to recreate the native tissue's anisotropic extracellular matrix structure. This anisotropy has important mechanical and biological consequences and could be crucial for integrative repair. Here we report that hydrodynamic conditions that mimic the motion-induced flow fields in between the articular surfaces in the synovial joint induce the formation of a distinct superficial layer in tissue engineered cartilage hydrogels, with enhanced production of cartilage matrix proteoglycan and type II collagen. Moreover, the flow stimulation at the surface induces the production of the surface zone protein Proteoglycan 4 (aka PRG4 or lubricin). Analysis of second harmonic generation signature of collagen in this superficial layer reveals a highly aligned fibrillar matrix that resembles the alignment pattern in native tissue's surface zone, suggesting that mimicking synovial fluid flow at the cartilage surface in hydrodynamic bioreactors could be key to creating engineered cartilage with superficial zone features. PMID:23239161

  19. Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model.

    PubMed

    Ebihara, Goro; Sato, Masato; Yamato, Masayuki; Mitani, Genya; Kutsuna, Toshiharu; Nagai, Toshihiro; Ito, Satoshi; Ukai, Taku; Kobayashi, Miyuki; Kokubo, Mami; Okano, Teruo; Mochida, Joji

    2012-05-01

    Lacking a blood supply and having a low cellular density, articular cartilage has a minimal ability for self-repair. Therefore, wide-ranging cartilage damage rarely resolves spontaneously. Cartilage damage is typically treated by chondrocyte transplantation, mosaicplasty or microfracture. Recent advances in tissue engineering have prompted research on techniques to repair articular cartilage damage using a variety of transplanted cells. We studied the repair and regeneration of cartilage damage using layered chondrocyte sheets prepared on a temperature-responsive culture dish. We previously reported achieving robust tissue repair when covering only the surface layer with layered chondrocyte sheets when researching partial-thickness defects in the articular cartilage of domestic rabbits. The present study was an experiment on the repair and regeneration of articular cartilage in a minipig model of full-thickness defects. Good safranin-O staining and integration with surrounding tissues was achieved in animals transplanted with layered chondrocyte sheets. However, tissue having poor safranin-O staining-not noted in the domestic rabbit experiments-was identified in some of the animals, and the subchondral bone was poorly repaired in these. Thus, although layered chondrocyte sheets facilitate articular cartilage repair, further investigations into appropriate animal models and culture and transplant conditions are required. PMID:22369960

  20. International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials

    PubMed Central

    Hoemann, Caroline; Kandel, Rita; Roberts, Sally; Saris, Daniel B.F.; Creemers, Laura; Mainil-Varlet, Pierre; Méthot, Stephane; Hollander, Anthony P.; Buschmann, Michael D.

    2011-01-01

    Cartilage repair strategies aim to resurface a lesion with osteochondral tissue resembling native cartilage, but a variety of repair tissues are usually observed. Histology is an important structural outcome that could serve as an interim measure of efficacy in randomized controlled clinical studies. The purpose of this article is to propose guidelines for standardized histoprocessing and unbiased evaluation of animal tissues and human biopsies. Methods were compiled from a literature review, and illustrative data were added. In animal models, treatments are usually administered to acute defects created in healthy tissues, and the entire joint can be analyzed at multiple postoperative time points. In human clinical therapy, treatments are applied to developed lesions, and biopsies are obtained, usually from a subset of patients, at a specific time point. In striving to standardize evaluation of structural endpoints in cartilage repair studies, 5 variables should be controlled: 1) location of biopsy/sample section, 2) timing of biopsy/sample recovery, 3) histoprocessing, 4) staining, and 5) blinded evaluation with a proper control group. Histological scores, quantitative histomorphometry of repair tissue thickness, percentage of tissue staining for collagens and glycosaminoglycan, polarized light microscopy for collagen fibril organization, and subchondral bone integration/structure are all relevant outcome measures that can be collected and used to assess the efficacy of novel therapeutics. Standardized histology methods could improve statistical analyses, help interpret and validate noninvasive imaging outcomes, and permit cross-comparison between studies. Currently, there are no suitable substitutes for histology in evaluating repair tissue quality and cartilaginous character. PMID:26069577

  1. Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering

    PubMed Central

    Li, Siwei; Glynne-Jones, Peter; Andriotis, Orestis G.; Ching, Kuan Y.; Jonnalagadda, Umesh S.; Oreffo, Richard O. C.; Hill, Martyn

    2014-01-01

    Cartilage grafts generated using conventional static tissue engineering strategies are characterised by low cell viability, suboptimal hyaline cartilage formation and, critically, inferior mechanical competency, which limit their application for resurfacing articular cartilage defects. To address the limitations of conventional static cartilage bioengineering strategies and generate robust, scaffold-free neocartilage grafts of human articular chondrocytes, the present study utilised custom-built microfluidic perfusion bioreactors with integrated ultrasound standing wave traps. The system employed sweeping acoustic drive frequencies over the range of 890 to 910 kHz and continuous perfusion of the chondrogenic culture medium at a low-shear flow rate to promote the generation of three-dimensional agglomerates of human articular chondrocytes, and enhance cartilage formation by cells of the agglomerates via improved mechanical stimulation and mass transfer rates. Histological examination and assessment of micromechanical properties using indentation-type atomic force microscopy confirmed that the neocartilage grafts were analogous to native hyaline cartilage. Furthermore, in the ex vivo organ culture partial thickness cartilage defect model, implantation of the neocartilage grafts into defects for 16 weeks resulted in the formation of hyaline cartilage-like repair tissue that adhered to the host cartilage and contributed to significant improvements to the tissue architecture within the defects, compared to the empty defects. The study has demonstrated the first successful application of the acoustofluidic perfusion bioreactors to bioengineer scaffold-free neocartilage grafts of human articular chondrocytes that have the potential for subsequent use in second generation autologous chondrocyte implantation procedures for the repair of partial thickness cartilage defects. PMID:25272195

  2. The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants

    SciTech Connect

    Kawabe, N.; Yoshinao, M. )

    1991-07-01

    Growth plate cartilage cultivated in vitro was attached with a fibrin clot to a full-thickness articular cartilage defect on knee joints in allogeneic New Zealand rabbits. The healing of the defects was assessed by gross examination, light microscopy, and immunologic analysis for 24 weeks. Immunologic assessment of cell-mediated immunity, cytotoxicity of a humoral antibody by a 51 chromium release assay, and immunofluorescence studies were carried out. During the first two weeks following grafting, healing was excellent in 11 of the 17 defects. From three to 24 weeks, 11 of 42 defects examined had good results. Host lymphocytes had accumulated around the allograft at two to 12 weeks. Most of the implanted cartilage grown in vitro died and was replaced by fibrous tissue. The immunologic studies suggested that the implanted cartilage began to degenerate two to three weeks after implantation partially because of a humoral immune response but more importantly because of cell-mediated cytotoxicity.

  3. Stem cells for tissue engineering of articular cartilage.

    PubMed

    Gao, J; Yao, J Q; Caplan, A I

    2007-07-01

    Articular cartilage injuries are one of the most common disorders in the musculo-skeletal system. Injured cartilage tissue cannot spontaneously heal and, if not treated, can lead to osteoarthritis of the affected joints. Although a variety of procedures are being employed to repair cartilage damage, methods that result in consistent durable repair tissue are not yet available. Tissue engineering is a recently developed science that merges the fields of cell biology, engineering, material science, and surgery to regenerate new functional tissue. Three critical components in tissue engineering of cartilage are as follows: first, sufficient cell numbers within the defect, such as chondrocytes or multipotent stem cells capable of differentiating into chondrocytes; second, access to growth and differentiation factors that modulate these cells to differentiate through the chondrogenic lineage; third, a cell carrier or matrix that fills the defect, delivers the appropriate cells, and supports cell proliferation and differentiation. Stem cells that exist in the embyro or in adult somatic tissues are able to renew themselves through cell division without changing their phenotype and are able to differentiate into multiple lineages including the chondrogenic lineage under certain physiological or experimental conditions. Here the application of stem cells as a cell source for cartilage tissue engineering is reviewed. PMID:17822146

  4. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration

    NASA Astrophysics Data System (ADS)

    Wang, Dong-An; Varghese, Shyni; Sharma, Blanka; Strehin, Iossif; Fermanian, Sara; Gorham, Justin; Fairbrother, D. Howard; Cascio, Brett; Elisseeff, Jennifer H.

    2007-05-01

    A biologically active, high-strength tissue adhesive is needed for numerous medical applications in tissue engineering and regenerative medicine. Integration of biomaterials or implants with surrounding native tissue is crucial for both immediate functionality and long-term performance of the tissue. Here, we use the biopolymer chondroitin sulphate (CS), one of the major components of cartilage extracellular matrix, to develop a novel bioadhesive that is readily applied and acts quickly. CS was chemically functionalized with methacrylate and aldehyde groups on the polysaccharide backbone to chemically bridge biomaterials and tissue proteins via a twofold covalent link. Three-dimensional hydrogels (with and without cells) bonded to articular cartilage defects. In in vitro and in vivo functional studies this approach led to mechanical stability of the hydrogel and tissue repair in cartilage defects.

  5. Multimodal evaluation of tissue-engineered cartilage.

    PubMed

    Mansour, Joseph M; Welter, Jean F

    2013-02-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products. PMID:23606823

  6. Strategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair

    PubMed Central

    Izadifar, Zohreh; Chen, Xiongbiao; Kulyk, William

    2012-01-01

    Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted. PMID:24955748

  7. Bone Cysts After Osteochondral Allograft Repair of Cartilage Defects in Goats Suggest Abnormal Interaction Between Subchondral Bone and Overlying Synovial Joint Tissues

    PubMed Central

    Pallante-Kichura, Andrea L.; Cory, Esther; Bugbee, William D.; Sah, Robert L.

    2013-01-01

    The efficacy of osteochondral allografts (OCA) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12 months in vivo. The objectives of this study were to further analyze OCA and contralateral non-operated (Non-Op) CONTROLS from the medial femoral condyle to (1) determine the effect of OCA storage on local subchondral (ScB) and trabecular (TB) bone structure, (2) characterize the location and structure of bone cysts and channels, and (3) assess the relationship between cartilage and bone properties. (1) Overall bone structure after OCA was altered compared to Non-Op, with OCA samples displaying bone cysts, ScB channels, and ScB roughening. ScB BV/TV in FROZEN OCA was lower than Non-Op and other OCA. TB BV/TV in FRESH, 4°C/14d, and 4°C/28d OCA did not vary compared to Non-Op, but BS/TV was lower. (2) OCA contained “basal” cysts, localized to deeper regions, some “subchondral” cysts, localized near the bone-cartilage interface, and some ScB channels. TB surrounding basal cysts exhibited higher BV/TV than Non-Op. (3) Basal cysts occurred (a) in isolation, (b) with subchondral cysts and ScB channels, (c) with ScB channels, or (d) with subchondral cysts, ScB channels, and ScB erosion. Deterioration of cartilage gross morphology was strongly associated with abnormal μCT bone structure. Evidence of cartilage-bone communication following OCA repair may favor fluid intrusion as a mechanism for subchondral cyst formation, while bone resorption at the graft-host interface without affecting overall bone and cartilage structure may favor bony contusion mechanism for basal cyst formation. These

  8. The Functions of BMP3 in Rabbit Articular Cartilage Repair

    PubMed Central

    Zhang, Zhe; Yang, Wenyu; Cao, Yiting; Shi, Yanping; Lei, Chen; Du, Bo; Li, Xuemin; Zhang, Qiqing

    2015-01-01

    Bone morphogenetic proteins (BMPs) play important roles in skeletal development and repair. Previously, we found fibroblast growth factor 2 (FGF2) induced up-regulation of BMP2, 3, 4 in the process of rabbit articular cartilage repair, which resulted in satisfactory repair effects. As BMP2/4 show a clearly positive effect for cartilage repair, we investigated the functions of BMP3 in rabbit articular cartilage repair. In this paper, we find that BMP3 inhibits the repair of partial-thickness defect of articular cartilage in rabbit by inducing the degradation of extracellular matrix, interfering with the survival of chondrocytes surrounding the defect, and directly inhibiting the expression of BMP2 and BMP4. Meanwhile BMP3 suppress the repair of full-thickness cartilage defect by destroying the subchondral bone through modulating the proliferation and differentiation of bone marrow stem cells (BMSCs), and directly increasing the expression of BMP4. Although BMP3 has different functions in the repair of partial and full-thickness defects of articular cartilage in rabbit, the regulation of BMP expression is involved in both of them. Together with our previous findings, we suggest the regulation of the BMP signaling pathway by BMP3 is essential in articular cartilage repair. PMID:26528966

  9. The Functions of BMP3 in Rabbit Articular Cartilage Repair.

    PubMed

    Zhang, Zhe; Yang, Wenyu; Cao, Yiting; Shi, Yanping; Lei, Chen; Du, Bo; Li, Xuemin; Zhang, Qiqing

    2015-01-01

    Bone morphogenetic proteins (BMPs) play important roles in skeletal development and repair. Previously, we found fibroblast growth factor 2 (FGF2) induced up-regulation of BMP2, 3, 4 in the process of rabbit articular cartilage repair, which resulted in satisfactory repair effects. As BMP2/4 show a clearly positive effect for cartilage repair, we investigated the functions of BMP3 in rabbit articular cartilage repair. In this paper, we find that BMP3 inhibits the repair of partial-thickness defect of articular cartilage in rabbit by inducing the degradation of extracellular matrix, interfering with the survival of chondrocytes surrounding the defect, and directly inhibiting the expression of BMP2 and BMP4. Meanwhile BMP3 suppress the repair of full-thickness cartilage defect by destroying the subchondral bone through modulating the proliferation and differentiation of bone marrow stem cells (BMSCs), and directly increasing the expression of BMP4. Although BMP3 has different functions in the repair of partial and full-thickness defects of articular cartilage in rabbit, the regulation of BMP expression is involved in both of them. Together with our previous findings, we suggest the regulation of the BMP signaling pathway by BMP3 is essential in articular cartilage repair. PMID:26528966

  10. Current perspectives in stem cell research for knee cartilage repair

    PubMed Central

    Orth, Patrick; Rey-Rico, Ana; Venkatesan, Jagadeesh K; Madry, Henning; Cucchiarini, Magali

    2014-01-01

    Protocols based on the delivery of stem cells are currently applied in patients, showing encouraging results for the treatment of articular cartilage lesions (focal defects, osteoarthritis). Yet, restoration of a fully functional cartilage surface (native structural organization and mechanical functions) especially in the knee joint has not been reported to date, showing the need for improved designs of clinical trials. Various sources of progenitor cells are now available, originating from adult tissues but also from embryonic or reprogrammed tissues, most of which have already been evaluated for their chondrogenic potential in culture and for their reparative properties in vivo upon implantation in relevant animal models of cartilage lesions. Nevertheless, particular attention will be needed regarding their safe clinical use and their potential to form a cartilaginous repair tissue of proper quality and functionality in the patient. Possible improvements may reside in the use of biological supplements in accordance with regulations, while some challenges remain in establishing standardized, effective procedures in the clinics. PMID:24520197

  11. Contrast-Enhanced Micro–Computed Tomography in Evaluation of Spontaneous Repair of Equine Cartilage

    PubMed Central

    Pulkkinen, H.J.; Rieppo, L.; Tiitu, V.; Kiviranta, I.; Brünott, A.; Brommer, H.; van Weeren, R.; Brama, P.A.J.; Mikkola, M.T.; Korhonen, R.K.; Jurvelin, J.S.; Töyräs, J.

    2012-01-01

    Objective: Contrast-enhanced computed tomography (CECT) has been introduced for the evaluation of cartilage integrity. Furthermore, CECT enables imaging of the structure and density of subchondral bone. In this laboratory study, we investigate the potential of microCECT to simultaneously image cartilage and subchondral bone for the evaluation of tissue healing. Design: Osteochondral lesions (Ø = 6 mm) were surgically created in equine intercarpal joints (n = 7). After spontaneous healing for 12 months, the horses were sacrificed and osteochondral plugs (Ø = 14 mm), including the repair cartilage and adjacent intact tissue, were harvested. The nonfibrillar and fibrillar moduli and the permeability of cartilage were determined using indentation testing. Contrast agent diffusion into the samples was imaged for 36 hours using high-resolution CT. Results from CECT, mechanical testing, and microscopic analyses were compared and correlated. Results: The contrast agent diffusion coefficient showed a significant (P < 0.05) difference between the repair and adjacent intact tissue. MicroCECT revealed altered (P < 0.05) bone volume fraction, mineral density, and microstructure of subchondral bone at the repair site. The contrast agent diffusion coefficient correlated with the moduli of the nonfibrillar matrix (R = −0.662, P = 0.010), collagen fibril parallelism index (R = −0.588, P = 0.035), and glycosaminoglycan content (R = −0.503, P = 0.067). The repair cartilage was mechanically and structurally different from adjacent intact tissue (P < 0.05). Conclusions: MicroCECT enabled simultaneous quantitative evaluation of subchondral bone and monitoring of cartilage repair, distinguishing quantitatively the repair site from the adjacent intact tissue. As the only technique able to simultaneously image cartilage and determine subchondral bone mineral density and microstructure, CECT has potential clinical value. PMID:26069636

  12. A High Throughput Mechanical Screening Device for Cartilage Tissue Engineering

    PubMed Central

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Greg R.; Cosgrove, Brian D.; Dodge, George R.; Mauck, Robert L.

    2014-01-01

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying ‘hits’, or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. PMID:24275442

  13. Cartilage-Repair Innovation at a Standstill: Methodologic and Regulatory Pathways to Breaking Free.

    PubMed

    Lyman, Stephen; Nakamura, Norimasa; Cole, Brian J; Erggelet, Christoph; Gomoll, Andreas H; Farr, Jack

    2016-08-01

    Articular cartilage defects strongly predispose patients to developing early joint degeneration and osteoarthritis, but for more than 15 years, no new cartilage-repair technologies that we know of have been approved by the U.S. Food and Drug Administration. Many studies examining novel approaches to cartilage repair, including cell, tissue, or matrix-based techniques, have shown great promise, but completing randomized controlled trials (RCTs) to establish safety and efficacy has been challenging, providing a major barrier to bringing these innovations into clinical use. In this article, we review reasons that surgical innovations are not well-suited for testing through RCTs. We also discuss how analytical methods for reducing bias, such as propensity scoring, make prospective observational studies a potentially viable alternative for testing the safety and efficacy of cartilage-repair and other novel therapies, offering the real possibility of therapeutic innovation. PMID:27489325

  14. Crosslinkable Hydrogels Derived from Cartilage, Meniscus, and Tendon Tissue

    PubMed Central

    Visser, Jetze; Levett, Peter A.; te Moller, Nikae C.R.; Besems, Jeremy; Boere, Kristel W.M.; van Rijen, Mattie H.P.; de Grauw, Janny C.; Dhert, Wouter J.A.; van Weeren, P. René

    2015-01-01

    Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels. PMID:25557049

  15. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue.

    PubMed

    Visser, Jetze; Levett, Peter A; te Moller, Nikae C R; Besems, Jeremy; Boere, Kristel W M; van Rijen, Mattie H P; de Grauw, Janny C; Dhert, Wouter J A; van Weeren, P René; Malda, Jos

    2015-04-01

    Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels. PMID:25557049

  16. Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair

    PubMed Central

    Little, Christopher B.; Meeker, Clare T.; Golub, Suzanne B.; Lawlor, Kate E.; Farmer, Pamela J.; Smith, Susan M.; Fosang, Amanda J.

    2007-01-01

    Aggrecan loss from cartilage in arthritis is mediated by aggrecanases. Aggrecanases cleave aggrecan preferentially in the chondroitin sulfate–2 (CS-2) domain and secondarily at the E373↓374A bond in the interglobular domain (IGD). However, IGD cleavage may be more deleterious for cartilage biomechanics because it releases the entire CS-containing portion of aggrecan. Recent studies identifying aggrecanase-2 (ADAMTS-5) as the predominant aggrecanase in mouse cartilage have not distinguished aggrecanolysis in the IGD from aggrecanolysis in the CS-2 domain. We generated aggrecan knockin mice with a mutation that rendered only the IGD resistant to aggrecanases in order to assess the contribution of this specific cleavage to cartilage pathology. The knockin mice were viable and fertile. Aggrecanase cleavage in the aggrecan IGD was not detected in knockin mouse cartilage in situ nor following digestion with ADAMTS-5 or treatment of cartilage explant cultures with IL-1α. Blocking cleavage in the IGD not only diminished aggrecan loss and cartilage erosion in surgically induced osteoarthritis and a model of inflammatory arthritis, but appeared to stimulate cartilage repair following acute inflammation. We conclude that blocking aggrecanolysis in the aggrecan IGD alone protects against cartilage erosion and may potentiate cartilage repair. PMID:17510707

  17. Articular cartilage: from formation to tissue engineering.

    PubMed

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue. PMID:26923076

  18. Nanofibrous poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair.

    PubMed

    Ching, Kuan Y; Andriotis, Orestis G; Li, Siwei; Basnett, Pooja; Su, Bo; Roy, Ipsita; Tare, Rahul S; Sengers, Bram G; Stolz, Martin

    2016-07-01

    Articular cartilage defects, when repaired ineffectively, often lead to further deterioration of the tissue, secondary osteoarthritis and, ultimately, joint replacement. Unfortunately, current surgical procedures are unable to restore normal cartilage function. Tissue engineering of cartilage provides promising strategies for the regeneration of damaged articular cartilage. As yet, there are still significant challenges that need to be overcome to match the long-term mechanical stability and durability of native cartilage. Using electrospinning of different blends of biodegradable poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate), we produced polymer scaffolds and optimised their structure, stiffness, degradation rates and biocompatibility. Scaffolds with a poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) ratio of 1:0.25 exhibit randomly oriented fibres that closely mimic the collagen fibrillar meshwork of native cartilage and match the stiffness of native articular cartilage. Degradation of the scaffolds into products that could be easily removed from the body was indicated by changes in fibre structure, loss of molecular weight and a decrease in scaffold stiffness after one and four months. Histological and immunohistochemical analysis after three weeks of culture with human articular chondrocytes revealed a hyaline-like cartilage matrix. The ability to fine tune the ultrastructure and mechanical properties using different blends of poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) allows to produce a cartilage repair kit for clinical use to reduce the risk of developing secondary osteoarthritis. We further suggest the development of a toolbox with tailor-made scaffolds for the repair of other tissues that require a 'guiding' structure to support the body's self-healing process. PMID:27013217

  19. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments.

    PubMed

    Vinatier, C; Guicheux, J

    2016-06-01

    Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis. PMID:27079583

  20. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair.

    PubMed

    Neves, Sara C; Moreira Teixeira, Liliana S; Moroni, Lorenzo; Reis, Rui L; Van Blitterswijk, Clemens A; Alves, Natália M; Karperien, Marcel; Mano, João F

    2011-02-01

    Chitosan (CHT)/poly(ɛ-caprolactone) (PCL) blend 3D fiber-mesh scaffolds were studied as possible support structures for articular cartilage tissue (ACT) repair. Micro-fibers were obtained by wet-spinning of three different polymeric solutions: 100:0 (100CHT), 75:25 (75CHT) and 50:50 (50CHT) wt.% CHT/PCL, using a common solvent solution of 100 vol.% of formic acid. Scanning electron microscopy (SEM) analysis showed a homogeneous surface distribution of PCL. PCL was well dispersed throughout the CHT phase as analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. The fibers were folded into cylindrical moulds and underwent a thermal treatment to obtain the scaffolds. μCT analysis revealed an adequate porosity, pore size and interconnectivity for tissue engineering applications. The PCL component led to a higher fiber surface roughness, decreased the scaffolds swelling ratio and increased their compressive mechanical properties. Biological assays were performed after culturing bovine articular chondrocytes up to 21 days. SEM analysis, live-dead and metabolic activity assays showed that cells attached, proliferated, and were metabolically active over all scaffolds formulations. Cartilaginous extracellular matrix (ECM) formation was observed in all formulations. The 75CHT scaffolds supported the most neo-cartilage formation, as demonstrated by an increase in glycosaminoglycan production. In contrast to 100CHT scaffolds, ECM was homogenously deposited on the 75CHT and 50CHT scaffolds. Although mechanical properties of the 50CHT scaffold were better, the 75CHT scaffold facilitated better neo-cartilage formation. PMID:20980050

  1. Increased Production of Clusterin in Biopsies of Repair Tissue following Autologous Chondrocyte Implantation

    PubMed Central

    Malda, Jos; Richardson, James B.; Roberts, Sally

    2013-01-01

    Objective. To characterize the immunolocalization of clusterin in the repair cartilage of patients having undergone autologous chondrocyte implantation (ACI) and evaluate correlation to clinical outcome. Design. Full-depth core biopsies of repair tissue were obtained from 38 patients who had undergone ACI at an average of 18 ± 13 months previously (range 8-67 months). The biopsies were snap frozen, cryosectioned, and clusterin production immunolocalized using a specific monoclonal clusterin antibody and compared with normal and osteoarthritic cartilage. Clinical outcome was assessed from patients preoperatively, at the time of biopsy, and annually postoperatively. Results. Intensity of immunostaining for clusterin decreased with age in healthy cartilage tissue. Clusterin was detected to a variable degree in 37 of the 38 ACI cartilage biopsies, in single and clustered chondrocytes, in the pericellular capsule and the cartilage extracellular matrix, as well as the osteocytes and osteoid within the bone. Chondrocytes in hyaline repair tissue were significantly more immunopositive than those in fibrocartilage repair tissue. Clinical outcome improved significantly post-ACI, but did not correlate with the presence of clusterin in the repair tissue. Conclusions. These results demonstrate the presence of clusterin in actively repairing human cartilage and indicate a different distribution of clusterin in this tissue compared to normal cartilage. Variability in clusterin staining in the repair tissue could indicate different states of chondrogenic differentiation. The clinical significance of clusterin within repair tissue is difficult to assess, although the ideal functioning repair tissue morphology should resemble that of healthy adult cartilage. PMID:26069669

  2. Adult human neural crest-derived cells for articular cartilage repair.

    PubMed

    Pelttari, Karoliina; Pippenger, Benjamin; Mumme, Marcus; Feliciano, Sandra; Scotti, Celeste; Mainil-Varlet, Pierre; Procino, Alfredo; von Rechenberg, Brigitte; Schwamborn, Thomas; Jakob, Marcel; Cillo, Clemente; Barbero, Andrea; Martin, Ivan

    2014-08-27

    In embryonic models and stem cell systems, mesenchymal cells derived from the neuroectoderm can be distinguished from mesoderm-derived cells by their Hox-negative profile--a phenotype associated with enhanced capacity of tissue regeneration. We investigated whether developmental origin and Hox negativity correlated with self-renewal and environmental plasticity also in differentiated cells from adults. Using hyaline cartilage as a model, we showed that adult human neuroectoderm-derived nasal chondrocytes (NCs) can be constitutively distinguished from mesoderm-derived articular chondrocytes (ACs) by lack of expression of specific HOX genes, including HOXC4 and HOXD8. In contrast to ACs, serially cloned NCs could be continuously reverted from differentiated to dedifferentiated states, conserving the ability to form cartilage tissue in vitro and in vivo. NCs could also be reprogrammed to stably express Hox genes typical of ACs upon implantation into goat articular cartilage defects, directly contributing to cartilage repair. Our findings identify previously unrecognized regenerative properties of HOX-negative differentiated neuroectoderm cells in adults, implying a role for NCs in the unmet clinical challenge of articular cartilage repair. An ongoing phase 1 clinical trial preliminarily indicated the safety and feasibility of autologous NC-based engineered tissues for the treatment of traumatic articular cartilage lesions. PMID:25163479

  3. Microstructural Remodeling of Articular Cartilage Following Defect Repair by Osteochondral Autograft Transfer

    PubMed Central

    Raub, CB; Hsu, SC; Chan, EF; Shirazi, R; Chen, AC; Chnari, E; Semler, EJ; Sah, RL

    2013-01-01

    Objective To assess collagen network alterations occurring with flow and other abnormalities of articular cartilage at medial femoral condyle (MFC) sites repaired with osteochondral autograft (OATS) after 6 and 12 months, using quantitative polarized light microscopy (qPLM) and other histopathological methods Design The collagen network structure of articular cartilage of OATS-repaired defects and non-operated contralateral control sites were compared by qPLM analysis of parallelism index (PI), orientation angle (α) relative to the local tissue axes, and retardance (Γ) as a function of depth. qPLM parameter maps were also compared to ICRS and Modified O’Driscoll grades, and cell and matrix sub-scores, for sections stained with H&E and Safranin-O, and for Collagen-I and II Results Relative to non-operated normal cartilage, OATS-repaired regions exhibited structural deterioration, with low PI and more horizontal α, and unique structural alteration in adjacent host cartilage: more aligned superficial zone, and reoriented deep zone lateral to the graft, and matrix disorganization in cartilage overhanging the graft. Shifts in α and PI from normal site-specific values were correlated with histochemical abnormalities and co-localized with changes in cell organization/orientation, cloning, or loss, indicative of cartilage flow, remodeling, and deterioration, respectively Conclusions qPLM reveals a number of unique localized alterations of the collagen network in both adjacent host and implanted cartilage in OATS-repaired defects, associated with abnormal chondrocyte organization. These alterations are consistent with mechanobiological processes and the direction and magnitude of cartilage strain. PMID:23528954

  4. Biodegradable CSMA/PECA/Graphene Porous Hybrid Scaffold for Cartilage Tissue Engineering

    PubMed Central

    Liao, JinFeng; Qu, Ying; Chu, BingYang; Zhang, XiaoNing; Qian, ZhiYong

    2015-01-01

    Owing to the limited repair capacity of articular cartilage, it is essential to develop tissue-engineered cartilage for patients suffering from joint disease and trauma. Herein, we prepared a novel hybrid scaffold composed of methacrylated chondroitin sulfate (CSMA), poly(ethylene glycol) methyl ether-ε-caprolactone-acryloyl chloride (MPEG-PCL-AC, PECA was used as abbreviation for MPEG-PCL-AC) and graphene oxide (GO) and evaluated its potential application in cartilage tissue engineering. To mimic the natural extracellular matrix (ECM) of cartilage, the scaffold had an adequate pore size, porosity, swelling ability, compression modulus and conductivity. Cartilage cells contacted with the scaffold remained viable and showed growth potential. Furthermore, CSMA/PECA/GO scaffold was biocompatible and had a favorable degradation rate. In the cartilage tissue repair of rabbit, Micro-CT and histology observation showed the group of CSMA/PECA/GO scaffold with cellular supplementation had better chondrocyte morphology, integration, continuous subchondral bone, and much thicker newly formed cartilage compared with scaffold group and control group. Our results show that the CSMA/PECA/GO hybrid porous scaffold can be applied in articular cartilage tissue engineering and may have great potential to in other types of tissue engineering applications. PMID:25961959

  5. Biodegradable CSMA/PECA/Graphene Porous Hybrid Scaffold for Cartilage Tissue Engineering.

    PubMed

    Liao, JinFeng; Qu, Ying; Chu, BingYang; Zhang, XiaoNing; Qian, ZhiYong

    2015-01-01

    Owing to the limited repair capacity of articular cartilage, it is essential to develop tissue-engineered cartilage for patients suffering from joint disease and trauma. Herein, we prepared a novel hybrid scaffold composed of methacrylated chondroitin sulfate (CSMA), poly(ethylene glycol) methyl ether-ε-caprolactone-acryloyl chloride (MPEG-PCL-AC, PECA was used as abbreviation for MPEG-PCL-AC) and graphene oxide (GO) and evaluated its potential application in cartilage tissue engineering. To mimic the natural extracellular matrix (ECM) of cartilage, the scaffold had an adequate pore size, porosity, swelling ability, compression modulus and conductivity. Cartilage cells contacted with the scaffold remained viable and showed growth potential. Furthermore, CSMA/PECA/GO scaffold was biocompatible and had a favorable degradation rate. In the cartilage tissue repair of rabbit, Micro-CT and histology observation showed the group of CSMA/PECA/GO scaffold with cellular supplementation had better chondrocyte morphology, integration, continuous subchondral bone, and much thicker newly formed cartilage compared with scaffold group and control group. Our results show that the CSMA/PECA/GO hybrid porous scaffold can be applied in articular cartilage tissue engineering and may have great potential to in other types of tissue engineering applications. PMID:25961959

  6. Nanostructured Capsules for Cartilage Tissue Engineering.

    PubMed

    Correia, Clara R; Reis, Rui L; Mano, João F

    2015-01-01

    Polymeric multilayered capsules (PMCs) have found great applicability in bioencapsulation, an evolving branch of tissue engineering and regenerative medicine. Here, we describe the production of hierarchical PMCs composed by an external multilayered membrane by layer-by-layer assembly of poly(L-lysine), alginate, and chitosan. The core of the PMCs is liquified and encapsulates human adipose stem cells and surface-functionalized collagen II-TGF-β3 poly(L-lactic acid) microparticles for cartilage tissue engineering. PMID:26445839

  7. Differences in Cartilage Repair between Loading and Unloading Environments in the Rat Knee

    PubMed Central

    Matsuzaki, Taro; Yoshida, Shinya; Kitade, Ippei; Hoso, Masahiro

    2014-01-01

    We investigated the histopathological and immunohistochemical effects of loading on cartilage repair in rat full-thickness articular cartilage defects. A total of 40 male 9-week-old Wistar rats were studied. Full-thickness articular cartilage defects were created over the capsule at the loading portion in the medial condyle of the femur. Twenty rats were randomly allocated into each of the 2 groups: a loading group and a unloading group. Twenty rats from these 2 groups were later randomly allocated to each of the 2 groups for evaluation at 1 and 2 weeks after surgery. At the end of each period, knee joints were examined histopathologically and immunohistochemically. In both groups at 1 and 2 weeks, the defects were filled with a mixture of granulation tissue and some remnants of hyaline cartilage. The repair tissue was not stained with toluidine blue in both groups. Strong staining of type I collagen was observed in the repair tissue of both groups. The area stained with type I collagen was smaller in the unloading group than in the loading groups, and the stained area was smaller at 2 weeks than at 1 week. In the staining for type II collagen, apparent staining of type II collagen was observed in the repair tissue of both groups at 1 week. At 2 weeks, there was a tendency toward a higher degree of apparent staining in the loading group than in the unloading group. Accordingly, these results indicated that loading and unloading in the early phase of cartilage repair have both merits and demerits. PMID:25792905

  8. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration?

    PubMed

    Bernhard, Jonathan C; Vunjak-Novakovic, Gordana

    2016-01-01

    For a long time, cartilage has been a major focus of the whole field of tissue engineering, both because of the constantly growing need for more effective options for joint repair and the expectation that this apparently simple tissue will be easy to engineer. After several decades, cartilage regeneration has proven to be anything but easy. With gratifying progress in our understanding of the factors governing cartilage development and function, and cell therapy being successfully used for several decades, there is still a lot to do. We lack reliable methods to generate durable articular cartilage that would resemble the original tissue lost to injury or disease. The question posed here is whether the answer would come from the methods using cells, biomaterials, or tissue engineering. We present a concise review of some of the most meritorious efforts in each area, and propose that the solution will most likely emerge from the ongoing attempts to recapitulate certain aspects of native cartilage development. While an ideal recipe for cartilage regeneration is yet to be formulated, we believe that it will contain cell, biomaterial, and tissue engineering approaches, blended into an effective method for seamless repair of articular cartilage. PMID:27089917

  9. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    PubMed Central

    Baugé, Catherine; Boumédiene, Karim

    2015-01-01

    Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells. PMID:26246809

  10. Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair

    NASA Astrophysics Data System (ADS)

    Erickson, Isaac E.

    2011-12-01

    Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 k

  11. In Vivo Evaluation of a Novel Oriented Scaffold-BMSC Construct for Enhancing Full-Thickness Articular Cartilage Repair in a Rabbit Model

    PubMed Central

    Pan, Weimin; Liu, Jian; Sun, Wei

    2015-01-01

    Tissue engineering (TE) has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS) technology, we have fabricated an oriented cartilage extracellular matrix (ECM)-derived scaffold with a Young's modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC)-scaffold constructs (cell-oriented and random) in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen) and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties. PMID:26695629

  12. Does Low-intensity pulsed ultrasound treatment repair articular cartilage injury? A rabbit model study

    PubMed Central

    2014-01-01

    Background Low-intensity pulsed ultrasound (LIPUS) regiment has been used to treat fractures with non-union and to promote bone union in general. The effect of LIPUS on articular cartilage metabolism has been characterized. Yet, the effect of LIPUS to repair articular cartilage injury remains unclear in vivo. Methods We designed a study to investigate the effect of LIPUS on articular cartilage repairing in a rabbit severe cartilage injury model. Eighteen rabbits were divided into three groups: Sham-operated group, operated group without-LIPUS-treatment, operated group with-LIPUS-treatment (a daily 20-minute treatment for 3 months). Full-thickness cartilage defects were surgically created on the right side distal femoral condyle without intending to penetrate into the subchondral bone, which mimicked severe chondral injury. MR images for experimental joints, morphology grading scale, and histopathological Mankin score were evaluated. Results The preliminary results showed that the operated groups with-LIPUS-treatment and without-LIPUS-treatment had significantly higher Mankin score and morphological grading scale compared with the sham-operated group. However, there was no significant difference between the with-LIPUS-treatment and without-LIPUS-treatment groups. Cartilage defects filled with proliferative tissue were observed in the with-LIPUS-treatment group grossly and under MR images, however which presented less up-take under Alcian blue stain. Furthermore, no new deposition of type II collagen or proliferation of chondrocyte was observed over the cartilage defect after LIPUS treatment. Conclusion LIPUS has no significant therapeutic potential in treating severe articular cartilage injury in our animal study. PMID:24507771

  13. A Novel Biodegradable Polyurethane Matrix for Auricular Cartilage Repair: An In Vitro and In Vivo Study.

    PubMed

    Iyer, Kartik; Dearman, Bronwyn L; Wagstaff, Marcus J D; Greenwood, John E

    2016-01-01

    Auricular reconstruction poses a challenge for reconstructive and burns surgeons. Techniques involving cartilage tissue engineering have shown potential in recent years. A biodegradable polyurethane matrix developed for dermal reconstruction offers an alternative to autologous, allogeneic, or xenogeneic biologicals for cartilage reconstruction. This study assesses such a polyurethane matrix for this indication in vivo and in vitro. To evaluate intrinsic cartilage repair, three pigs underwent auricular surgery to create excisional cartilage ± perichondrial defects, measuring 2 × 3 cm in each ear, into which acellular polyurethane matrices were implanted. Biopsies were taken at day 28 for histological assessment. Porcine chondrocytes ± perichondrocytes were cultured and seeded in vitro onto 1 × 1 cm polyurethane scaffolds. The total culture period was 42 days; confocal, histological, and immunohistochemical analyses of scaffold cultures were performed on days 14, 28, and 42. In vivo, the polyurethane matrices integrated with granulation tissue filling all biopsy samples. Minimal neocartilage invasion was observed marginally on some samples. Tissue composition was identical between ears whether perichondrium was left intact, or not. In vitro, the polyurethane matrix was biocompatible with chondrocytes ± perichondrocytes and supported production of extracellular matrix and Type II collagen. No difference was observed between chondrocyte culture alone and chondrocyte/perichondrocyte scaffold coculture. The polyurethane matrix successfully integrated into the auricular defect and was a suitable scaffold in vitro for cartilage tissue engineering, demonstrating its potential application in auricular reconstruction. PMID:26284639

  14. Bioprinted Scaffolds for Cartilage Tissue Engineering.

    PubMed

    Kang, Hyun-Wook; Yoo, James J; Atala, Anthony

    2015-01-01

    Researchers are focusing on bioprinting technology as a viable option to overcome current difficulties in cartilage tissue engineering. Bioprinting enables a three-dimensional (3-D), free-form, computer-designed structure using biomaterials, biomolecules, and/or cells. The inner and outer shape of a scaffold can be controlled by this technology with great precision. Here, we introduce a hybrid bioprinting technology that is a co-printing process of multiple materials including high-strength synthetic polymer and cell-laden hydrogel. The synthetic polymer provides mechanical support for shape maintenance and load bearing, while the hydrogel provides the biological environment for artificial cartilage regeneration. This chapter introduces the procedures for printing of a 3-D scaffold using our hybrid bioprinting technology and includes the source materials for preparation of 3-D printing. PMID:26445837

  15. Extracorporeal shockwave therapy promotes chondrogenesis in cartilage tissue engineering: A hypothesis based on previous evidence.

    PubMed

    Ji, Qiaodan; He, Chengqi

    2016-06-01

    The dearth of intrinsic regenerative capacity of articular cartilage makes it a challenge to deal with the cartilage defects. Among all the recommended clinical options, cartilage tissue engineering (CTE) which is highlighted of dominant features and less drawbacks for functional cartilage restoration, has been emphasized recently. Shock waves, a mode of therapeutic mechanical forces, utilized in extracorporeal shockwave therapy (ESWT), is hypothesized to enhance proliferation, chondrogenic differentiation, and cartilage extracellular matrix production of target cells seeded on bioactive scaffolds. The hypothesis is firstly based on cellular mechanotransduction by which cells convent the shockwave mechanical signals into biochemical responses via integrins, iron channels, cytoskeletal filaments, growth factor receptors and nuclei. Secondly, by modulating gene expression and up-regulating the release of various growth factors which are of vital importance in three-dimensional cartilage culture environment, ESWT holds a promising potential to favor the cell sources (e.g. chondrocytes and stem cells) to mimic the optimal functional cartilage. In all, on the basis of cellular mechanotransduction and previous evidence, the hypothesis is developed to support the beneficial effects of ESWT on chondrogenesis in CTE. If this hypothesis is confirmed, shockwaves may allow a better success in combination with other stimulating factors for cartilage repair. There is a paucity of studies investigating the assistant role of shockwave stimulation in CTE. Further research is required to elucidate the mechanisms, and explore effectiveness and appropriate protocols of this novel stimulative factor in cartilage tissue engineering. PMID:27142133

  16. Mesenchymal stromal cells for cartilage repair in osteoarthritis.

    PubMed

    Mamidi, M K; Das, A K; Zakaria, Z; Bhonde, R

    2016-08-01

    Treatment for articular cartilage damage is quite challenging as it shows limited repair and regeneration following injury. Non-operative and classical surgical techniques are inefficient in restoring normal anatomy and function of cartilage in osteoarthritis (OA). Thus, investigating new and effective strategies for OA are necessary to establish feasible therapeutic solutions. The emergence of the new discipline of regenerative medicine, having cell-based therapy as its primary focus, may enable us to achieve repair and restore the damaged articular cartilage. This review describes progress and development of employing mesenchymal stromal cell (MSC)-based therapy as a promising alternative for OA treatment. The objective of this review is to first, discuss how in vitro MSC chondrogenic differentiation mimics in vivo embryonic cartilage development, secondly, to describe various chondrogenic differentiation strategies followed by pre-clinical and clinical studies demonstrating their feasibility and efficacy. However, several challenges need to be tackled before this research can be translated to the clinics. In particular, better understanding of the post-transplanted cell behaviour and learning to enhance their potency in the disease microenvironment is essential. Final objective is to underscore the importance of isolation, storage, cell shipment, route of administration, optimum dosage and control batch to batch variations to realise the full potential of MSCs in OA clinical trials. PMID:26973328

  17. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.

    PubMed

    Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2016-03-01

    Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage. PMID:26650856

  18. Stem Cell Therapies for Knee Cartilage Repair: The Current Status of Preclinical and Clinical Studies

    PubMed Central

    Anderson, John A.; Little, Dianne; Toth, Alison P.; Moorman, Claude T.; Tucker, Bradford S.; Ciccotti, Michael G.; Guilak, Farshid

    2014-01-01

    Background Articular cartilage damage of the knee is common, causing significant morbidity worldwide. Many adult tissues contain cells that are able to differentiate into multiple cell types, including chondrocytes. These stem cells have gained significant attention over the past decade and may become frontline management for cartilage defects in the very near future. Purpose The role of stem cells in the treatment of knee osteochondral defects was reviewed. Recent animal and clinical studies were reviewed to determine the benefits and potential outcomes of using stem cells for cartilage defects. Study Design Literature review. Methods A PubMed search was undertaken. The key phrase “stem cells and knee” was used. The search included reviews and original articles over an unlimited time period. From this search, articles outlining animal and clinical trials were selected. A search of current clinical trials in progress was performed on the clinicaltrials.gov website, and “stem cells and knee” was used as the search phrase. Results Stem cells have been used in many recent in vitro and animal studies. A number of cell-based approaches for cartilage repair have progressed from preclinical animal studies into clinical trials. Conclusion The use of stem cells for the treatment of cartilage defects is increasing in animal and clinical studies. Methods of delivery of stem cells to the knee’s cartilage vary from direct injection to implantation with scaffolds. While these approaches are highly promising, there is currently limited evidence of a direct clinical benefit, and further research is required to assess the overall outcome of stem cell therapies for knee cartilage repair. PMID:24220016

  19. Bone and cartilage repair by transplantation of induced pluripotent stem cells in murine joint defect model.

    PubMed

    Uto, Sakura; Nishizawa, Satoru; Takasawa, Yutaka; Asawa, Yukiyo; Fujihara, Yuko; Takato, Tsuyoshi; Hoshi, Kazuto

    2013-01-01

    The establishment of cartilage regenerative medicine has been an important issue in the clinical field, because cartilage has the poor ability of self-repair. Currently, tissue engineering using autologous chondrocytes has risen, but we should investigate more appropriate cell sources that can be obtained without any quantitative limitation. In this study, we focused on induced pluripotent stem (iPS) cells, in which the ethical hurdle does not seem higher than that of embryonic stem cells. Mouse iPS cells were transplanted into the mouse joint defect model of the knee. Strains of the transplants and hosts were arranged to be either closest (homology 75% in genetic background) or identical (100%). For transplantation, we embedded the iPS cells within the collagen hydrogel in order to obtain the effective administration of the cells into defects, which induced the differentiation of the iPS cells. At 8 weeks of transplantation, although the iPS cells with a 75% homology to the host in the genetic background tended to form teratoma, those of 100% showed a joint regeneration. GFP immunohistochemistry proved that the transplanted iPS cells were responsible for the bone and cartilage repair. Taking these results together, the iPS cells are regarded as a promising cell source for the cartilage tissue engineering. PMID:24389404

  20. Cartilage Tissue Engineering: What Have We Learned in Practice?

    PubMed

    Doran, Pauline M

    2015-01-01

    Many technologies that underpin tissue engineering as a research field were developed with the aim of producing functional human cartilage in vitro. Much of our practical experience with three-dimensional cultures, tissue bioreactors, scaffold materials, stem cells, and differentiation protocols was gained using cartilage as a model system. Despite these advances, however, generation of engineered cartilage matrix with the composition, structure, and mechanical properties of mature articular cartilage has not yet been achieved. Currently, the major obstacles to synthesis of clinically useful cartilage constructs are our inability to control differentiation to the extent needed, and the failure of engineered and host tissues to integrate after construct implantation. The aim of this chapter is to distil from the large available body of literature the seminal approaches and experimental techniques developed for cartilage tissue engineering and to identify those specific areas requiring further research effort. PMID:26445827

  1. Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair.

    PubMed

    Fermor, Hazel L; Russell, Serena L; Williams, Sophie; Fisher, John; Ingham, Eileen

    2015-05-01

    It is proposed that an acellular natural osteochondral scaffold will provide a successful repair material for the early intervention treatment of cartilage lesions, to prevent or slow the progression of cartilage deterioration to osteoarthritis. Here, we investigated the efficacy of methods for the decellularisation of bovine osteochondral plugs. The plugs were subject to four freeze/thaw cycles followed by two cycles of washes in hypotonic solution and low concentration (0.1% w/v) sodium dodecyl sulphate with protease inhibitors. Plugs were treated with nuclease (DNase and RNase) treatment followed by sterilization in peracetic acid. Full tissue decellularisation was achieved as confirmed by histological analysis and DNA quantification, however the resultant acellular matrix had reduced glycosaminoglycan content which led to an increased percent deformation of cartilage. Furthermore, the acellular scaffold was not reproducibly biocompatible. Additional terminal washes were included in the process to improve biocompatibility, however, this led to visible structural damage to the cartilage. This damage was found to be minimised by reducing the cut edge to cartilage area ratio through decellularisation of larger cuts of osteochondral tissue. PMID:25893393

  2. Cartilage repair: A review of Stanmore experience in the treatment of osteochondral defects in the knee with various surgical techniques

    PubMed Central

    Vijayan, S; Bentley, G; Briggs, TWR; Skinner, JA; Carrington, RWJ; Pollock, R; Flanagan, AM

    2010-01-01

    Articular cartilage damage in the young adult knee, if left untreated, it may proceed to degenerative osteoarthritis and is a serious cause of disability and loss of function. Surgical cartilage repair of an osteochondral defect can give the patient significant relief from symptoms and preserve the functional life of the joint. Several techniques including bone marrow stimulation, cartilage tissue based therapy, cartilage cell seeded therapies and osteotomies have been described in the literature with varying results. Established techniques rely mainly on the formation of fibro-cartilage, which has been shown to degenerate over time due to shear forces. The implantation of autologous cultured chondrocytes into an osteochondral defect, may replace damaged cartilage with hyaline or hyaline-like cartilage. This clinical review assesses current surgical techniques and makes recommendations on the most appropriate method of cartilage repair when managing symptomatic osteochondral defects of the knee. We also discuss the experience with the technique of autologous chondrocyte implantation at our institution over the past 11 years. PMID:20697474

  3. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage

    NASA Astrophysics Data System (ADS)

    Moutos, Franklin T.; Freed, Lisa E.; Guilak, Farshid

    2007-02-01

    Tissue engineering seeks to repair or regenerate tissues through combinations of implanted cells, biomaterial scaffolds and biologically active molecules. The rapid restoration of tissue biomechanical function remains an important challenge, emphasizing the need to replicate structural and mechanical properties using novel scaffold designs. Here we present a microscale 3D weaving technique to generate anisotropic 3D woven structures as the basis for novel composite scaffolds that are consolidated with a chondrocyte-hydrogel mixture into cartilage tissue constructs. Composite scaffolds show mechanical properties of the same order of magnitude as values for native articular cartilage, as measured by compressive, tensile and shear testing. Moreover, our findings showed that porous composite scaffolds could be engineered with initial properties that reproduce the anisotropy, viscoelasticity and tension-compression nonlinearity of native articular cartilage. Such scaffolds uniquely combine the potential for load-bearing immediately after implantation in vivo with biological support for cell-based tissue regeneration without requiring cultivation in vitro.

  4. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    PubMed

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context. PMID:23448091

  5. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function.

    PubMed

    Schwarz, Silke; Elsaesser, Alexander F; Koerber, Ludwig; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Bermueller, Christian; Dürselen, Lutz; Ignatius, Anita; Breiter, Roman; Rotter, Nicole

    2015-12-01

    One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region. PMID:23193064

  6. A stem cell-based approach to cartilage repair.

    PubMed

    Johnson, Kristen; Zhu, Shoutian; Tremblay, Matthew S; Payette, Joshua N; Wang, Jianing; Bouchez, Laure C; Meeusen, Shelly; Althage, Alana; Cho, Charles Y; Wu, Xu; Schultz, Peter G

    2012-05-11

    Osteoarthritis (OA) is a degenerative joint disease that involves the destruction of articular cartilage and eventually leads to disability. Molecules that promote the selective differentiation of multipotent mesenchymal stem cells (MSCs) into chondrocytes may stimulate the repair of damaged cartilage. Using an image-based high-throughput screen, we identified the small molecule kartogenin, which promotes chondrocyte differentiation (median effective concentration = 100 nM), shows chondroprotective effects in vitro, and is efficacious in two OA animal models. Kartogenin binds filamin A, disrupts its interaction with the transcription factor core-binding factor β subunit (CBFβ), and induces chondrogenesis by regulating the CBFβ-RUNX1 transcriptional program. This work provides new insights into the control of chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoarthritis. PMID:22491093

  7. Engineering cell attachments to scaffolds in cartilage tissue engineering

    NASA Astrophysics Data System (ADS)

    Steward, Andrew J.; Liu, Yongxing; Wagner, Diane R.

    2011-04-01

    One of the challenges of tissue engineering, a promising cell-based treatment for damaged or diseased cartilage, is designing the scaffold that provides structure while the tissue regenerates. In addition to the scaffold material's biocompatibility, mechanical properties, and ease of manufacturing, scaffold interactions with the cells must also be considered. In cartilage tissue engineering, a range of scaffolds with various degrees of cell attachment have been proposed, but the attachment density and type have yet to be optimized. Several techniques have been developed to modulate cell adhesion to the scaffold. These studies suggest that the need for cell attachment in cartilage tissue engineering may vary with cell type, stage of differentiation, culture condition, and scaffold material. Further studies will elucidate the role of cell attachment in cartilage regeneration and enhance efforts to engineer cell-based cartilage therapies.

  8. FT-IR Imaging of Native and Tissue-Engineered Bone and Cartilage

    PubMed Central

    Boskey, Adele; Camacho, Nancy Pleshko

    2007-01-01

    Fourier transform Infrared (FT-IR) imaging and microspectroscopy have been extensively applied to the analyses of tissues in health and disease. Spatially resolved mid-infrared data has provided insights into molecular changes that occur in diseases of connective or collagen-based tissues, including osteoarthritis, osteoporosis, osteogenesis imperfecta, osteopetrosis and pathologic calcifications. These techniques have also been used to probe chemical changes associated with load, disuse, and micro-damage in bone, and with degradation and repair in cartilage. This review summarizes the applications of FT-IR microscopy and imaging for analyses of bone and cartilage in healthy and diseased tissues, and illustrates the application of these techniques for the characterization of tissue engineered bone and cartilage. PMID:17175021

  9. Repair of articular cartilage and meniscal tears by photoactive dyes: in-vivo study

    NASA Astrophysics Data System (ADS)

    Judy, Millard M.; Jackson, Robert W.; Nosir, Hany R.; Matthews, James Lester; Lewis, David E.; Utecht, Ronald E.; Yuan, Dongwu

    1996-12-01

    We describe healing results of our 6 month study of a repair procedure which evokes the healing response in meniscal tears and partial thickness defects in articular cartilage by a non-thermal tissue sparing photochemical weld using 1,8-naphthalimide dyes. Welds of incisional flaps in adult sheep meniscus and femoral articular cartilage were made using the dye MBM Gold 012011012 at 12 mM in PBS, 457.9nm Argon ion laser radiation at 800 mW/cm2, 7.5 minutes with approximately 1 kg/cm2 externally applied pressure. Gross appearance of tissues in all welded knees appeared normal. Hematoxylin and eosin stained sections disclosed close bonding of welded areas and continuing healing response as cellular recruitment.

  10. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage

    PubMed Central

    Zorzi, Alessandro R.; Amstalden, Eliane M. I.; Plepis, Ana Maria G.; Martins, Virginia C. A.; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S. S.; Luzo, Angela C. M.; Miranda, João B.

    2015-01-01

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model. PMID:26569221

  11. Stem cells and cartilage development: complexities of a simple tissue.

    PubMed

    Hollander, Anthony P; Dickinson, Sally C; Kafienah, Wael

    2010-11-01

    Cartilage is considered to be a simple tissue that should be easy to engineer because it is avascular and contains just one cell type, the chondrocyte. Despite this apparent simplicity, regenerating cartilage in a form that can function effectively after implantation in the joint has proven difficult. This may be because we have not fully appreciated the importance of different structural regions of articular cartilage or of understanding the origins of chondrocytes and how this cell population is maintained in the normal tissue. This review considers what is known about different regions of cartilage and the types of stem cells in articulating joints and emphasizes the potential importance of regeneration of the lamina splendens at the joint surface and calcified cartilage at the junction with bone for long-term survival of regenerated tissue in vivo. PMID:20882533

  12. Stem Cells and Cartilage Development: Complexities of a Simple Tissue

    PubMed Central

    Hollander, Anthony P; Dickinson, Sally C; Kafienah, Wael

    2010-01-01

    Cartilage is considered to be a simple tissue that should be easy to engineer because it is avascular and contains just one cell type, the chondrocyte. Despite this apparent simplicity, regenerating cartilage in a form that can function effectively after implantation in the joint has proven difficult. This may be because we have not fully appreciated the importance of different structural regions of articular cartilage or of understanding the origins of chondrocytes and how this cell population is maintained in the normal tissue. This review considers what is known about different regions of cartilage and the types of stem cells in articulating joints and emphasizes the potential importance of regeneration of the lamina splendens at the joint surface and calcified cartilage at the junction with bone for long-term survival of regenerated tissue in vivo. Stem Cells 2010;28:1992–1996 PMID:20882533

  13. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation. PMID:25766036

  14. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology

    PubMed Central

    Roberts, Sally; McCall, Iain W; Darby, Alan J; Menage, Janis; Evans, Helena; Harrison, Paul E; Richardson, James B

    2003-01-01

    Autologous chondrocyte implantation is being used increasingly for the treatment of cartilage defects. In spite of this, there has been a paucity of objective, standardised assessment of the outcome and quality of repair tissue formed. We have investigated patients treated with autologous chondrocyte implantation (ACI), some in conjunction with mosaicplasty, and developed objective, semiquantitative scoring schemes to monitor the repair tissue using MRI and histology. Results indicate repair tissue to be on average 2.5 mm thick. It was of varying morphology ranging from predominantly hyaline in 22% of biopsy specimens, mixed in 48%, through to predominantly fibrocartilage, in 30%, apparently improving with increasing time postgraft. Repair tissue was well integrated with the host tissue in all aspects viewed. MRI scans provide a useful assessment of properties of the whole graft area and adjacent tissue and is a noninvasive technique for long-term follow-up. It correlated with histology (P = 0.02) in patients treated with ACI alone. PMID:12716454

  15. FTIR-I Compositional Mapping of the Cartilage-to-Bone Interface as a Function of Tissue Region and Age

    PubMed Central

    Khanarian, Nora T; Boushell, Margaret K; Spalazzi, Jeffrey P; Pleshko, Nancy; Boskey, Adele L; Lu, Helen H

    2016-01-01

    Soft tissue-to-bone transitions, such as the osteochondral interface, are complex junctions that connect multiple tissue types and are critical for musculoskeletal function. The osteochondral interface enables pressurization of articular cartilage, facilitates load transfer between cartilage and bone, and serves as a barrier between these two distinct tissues. Presently, there is a lack of quantitative understanding of the matrix and mineral distribution across this multitissue transition. Moreover, age-related changes at the interface with the onset of skeletal maturity are also not well understood. Therefore, the objective of this study is to characterize the cartilage-to-bone transition as a function of age, using Fourier transform infrared spectroscopic imaging (FTIR-I) analysis to map region-dependent changes in collagen, proteoglycan, and mineral distribution, as well as collagen organization. Both tissue-dependent and age-related changes were observed, underscoring the role of postnatal physiological loading in matrix remodeling. It was observed that the relative collagen content increased continuously from cartilage to bone, whereas proteoglycan peaked within the deep zone of cartilage. With age, collagen content across the interface increased, accompanied by a higher degree of collagen alignment in both the surface and deep zone cartilage. Interestingly, regardless of age, mineral content increased exponentially across the calcified cartilage interface. These observations reveal new insights into both region- and age-dependent changes across the cartilage-to-bone junction and will serve as critical benchmark parameters for current efforts in integrative cartilage repair. PMID:24839262

  16. Improved quality of cartilage repair by bone marrow mesenchymal stem cells for treatment of an osteochondral defect in a cynomolgus macaque model

    PubMed Central

    Araki, Susumu; Imai, Shinji; Ishigaki, Hirohito; Mimura, Tomohiro; Nishizawa, Kazuya; Ueba, Hiroaki; Kumagai, Kousuke; Kubo, Mitsuhiko; Mori, Kanji; Ogasawara, Kazumasa; Matsusue, Yoshitaka

    2015-01-01

    Background and purpose Integration of repaired cartilage with surrounding native cartilage is a major challenge for successful tissue-engineering strategies of cartilage repair. We investigated whether incorporation of mesenchymal stem cells (MSCs) into the collagen scaffold improves integration and repair of cartilage defects in a cynomolgus macaque model. Methods Cynomolgus macaque bone marrow-derived MSCs were isolated and incorporated into type-I collagen gel. Full-thickness osteochondral defects (3 mm in diameter, 5 mm in depth) were created in the patellar groove of 36 knees of 18 macaques and were either left untreated (null group, n = 12), had collagen gel alone inserted (gel group, n = 12), or had collagen gel incorporating MSCs inserted (MSC group, n = 12). After 6, 12, and 24 weeks, the cartilage integration and tissue response were evaluated macroscopically and histologically (4 null, 4 gel, and 4 MSC knees at each time point). Results The gel group showed most cartilage-rich reparative tissue covering the defect, owing to formation of excessive cartilage extruding though the insufficient subchondral bone. Despite the fact that a lower amount of new cartilage was produced, the MSC group had better-quality cartilage with regular surface, seamless integration with neighboring naïve cartilage, and reconstruction of trabecular subchondral bone. Interpretation Even with intensive investigation, MSC-based cell therapy has not yet been established in experimental cartilage repair. Our model using cynomolgus macaques had optimized conditions, and the method using MSCs is superior to other experimental settings, allowing the possibility that the procedure might be introduced to future clinical practice. PMID:25175660

  17. Scalp repair using tissue expanders.

    PubMed

    Mangubat, E Antonio

    2013-08-01

    Repair of scalp defects is often challenging, because without careful planning, excision of the defect may leave unsatisfactory cosmesis. Contemporary techniques in hair restoration surgery allow creation of natural and undetectable results, but these techniques are often unsuitable for repairing large scarred areas of hair loss. However, by using older techniques of scalp reduction and tissue expansion, excision of many large scarring defects can be accomplished. Combining older methods with modern hair restoration surgery permits the satisfactory treatment of many previously untreatable conditions. This article focuses on tissue expansion as an adjunct to repairing large scalp defects. PMID:24017990

  18. The Challenge and the Promise of Bone Marrow Cells for Human Cartilage Repair

    PubMed Central

    2015-01-01

    The cartilage repair potential of bone marrow–derived stem cells has been well described. Harnessing this potential for human articular cartilage repair remains challenging. Accessing bone marrow repair cells through marrow stimulation techniques such as microfracture is readily achieved with generally good but inconsistent results. Animal and human studies show feasibility for ex vivo processing of bone marrow to isolate, concentrate, and culture mesenchymal stem cells. Nevertheless, it has been difficult to show consistent and clinically meaningful improvement using bone marrow cell preparations above what has been achieved with microfracture. Consequently, microfracture continues to be the simplest and most commonly used method to enhance repair of focal articular cartilage defects. Emerging preclinical work in the equine model suggests a role for enhancing marrow-stimulation techniques through the use of natural scaffolds such as autologous platelet enriched fibrin as well as optimization of joint biology through localized gene therapy to support cartilage repair. In contrast to joint replacement where inert materials of known mechanical properties are used, host biology determines the relative success, failure, and durability of cartilage repair. As such, development of personalized strategies to improve the quality and durability of bone marrow cell–based articular cartilage repair represent exciting new areas of inquiry. Continued advances in stem cell biology, scaffold technologies, and methods to delineate and enhance host biology, both systemically and within the joint, hold promise for harnessing the full power of bone marrow cells to facilitate cartilage repair and regeneration.

  19. Calcium/Cobalt Alginate Beads as Functional Scaffolds for Cartilage Tissue Engineering

    PubMed Central

    Focaroli, Stefano; Teti, Gabriella; Salvatore, Viviana; Orienti, Isabella; Falconi, Mirella

    2016-01-01

    Articular cartilage is a highly organized tissue with complex biomechanical properties. However, injuries to the cartilage usually lead to numerous health concerns and often culminate in disabling symptoms, due to the poor intrinsic capacity of this tissue for self-healing. Although various approaches are proposed for the regeneration of cartilage, its repair still represents an enormous challenge for orthopedic surgeons. The field of tissue engineering currently offers some of the most promising strategies for cartilage restoration, in which assorted biomaterials and cell-based therapies are combined to develop new therapeutic regimens for tissue replacement. The current study describes the in vitro behavior of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated within calcium/cobalt (Ca/Co) alginate beads. These novel chondrogenesis-promoting scaffolds take advantage of the synergy between the alginate matrix and Co+2 ions, without employing costly growth factors (e.g., transforming growth factor betas (TGF-βs) or bone morphogenetic proteins (BMPs)) to direct hADSC differentiation into cartilage-producing chondrocytes. PMID:27057167

  20. Repair of massively defected hemi-joints using demineralized osteoarticular allografts with protected cartilage.

    PubMed

    Li, Siming; Yang, Xiaohong; Tang, Shenghui; Zhang, Xunmeng; Feng, Zhencheng; Cui, Shuliang

    2015-08-01

    Surgical replacement of massively defected joints necessarily relies on osteochondral grafts effective to both of bone and cartilage. Demineralized bone matrix (DBM) retains the osteoconductivity but destroys viable chondrocytes in the cartilage portion essential for successful restoration of defected joints. This study prepared osteochondral grafts of DBM with protected cartilage. Protected cartilage portions was characterized by cellular and molecular biology and the grafts were allogenically used for grafting. Protected cartilage showed similar histomorphological structure and protected proteins estimated by total proteins and cartilage specific proteins as in those of fresh controls when DBMs were generated in bone portions. Such grafts were successfully used for simultaneously repair of bone and cartilage in massively defected osteoarticular joints within 16 weeks post-surgery. These results present an allograft with clinical potential for simultaneous restoration of bone and cartilage in defected joints. PMID:26319778

  1. URIC ACID AND TISSUE REPAIR

    PubMed Central

    NERY, Rodrigo Araldi; KAHLOW, Barbara Stadler; SKARE, Thelma L; TABUSHI, Fernando Issamu; CASTRO, Adham do Amaral e

    2015-01-01

    Uric acid, a metabolic product of purines, may exert a role in tissue healing. In this review we will explore its role as an alarm initiating the inflammatory process that is necessary for tissue repair, as a scavenger of oxygen free radicals, as a mobilizer of progenitor endothelial cells and as supporter of adaptive immune system. PMID:26734804

  2. Improvement of PHBV Scaffolds with Bioglass for Cartilage Tissue Engineering

    PubMed Central

    Li, Haiyan; Sun, Junying; Liu, Kai

    2013-01-01

    Polymer scaffold systems consisting of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) have proven to be possible matrices for the three-dimensional growth of chondrocyte cultures. However, the engineered cartilage grown on these PHBV scaffolds is currently unsatisfactory for clinical applications due to PHBV’s poor hydrophilicity, resulting in inadequate thickness and poor biomechanical properties of the engineered cartilage. It has been reported that the incorporation of Bioglass (BG) into PHBV can improve the hydrophilicity of the composites. In this study, we compared the effects of PHBV scaffolds and PHBV/BG composite scaffolds on the properties of engineered cartilage in vivo. Rabbit articular chondrocytes were seeded into PHBV scaffolds and PHBV/BG scaffolds. Short-term in vitro culture followed by long-term in vivo transplantation was performed to evaluate the difference in cartilage regeneration between the cartilage layers grown on PHBV and PHBV/BG scaffolds. The results show that the incorporation of BG into PHBV efficiently improved both the hydrophilicity of the composites and the percentage of adhered cells and promoted cell migration into the inner part the constructs. With prolonged incubation time in vivo, the chondrocyte-scaffold constructs in the PHBV/BG group formed thicker cartilage-like tissue with better biomechanical properties and a higher cartilage matrix content than the constructs in the PHBV/BG group. These results indicate that PHBV/BG scaffolds can be used to prepare better engineered cartilage than pure PHBV. PMID:23951190

  3. Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair

    PubMed Central

    Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats

    2011-01-01

    Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for the design, reporting, and interpretation of studies in this field. Results: Current literature reflects the methodological limitations of the scientific evidence available for articular cartilage repair. However, clinical trial databases of ongoing trials document a trend suggesting improved study designs and clinical evaluation methodology. Based on the current scientific information and standards of clinical care, detailed methodological recommendations were developed for the statistical study design, patient recruitment, control group considerations, study endpoint definition, documentation of results, use of validated patient-reported outcome instruments, and inclusion and exclusion criteria for the design and conduct of scientifically sound cartilage repair study protocols. A consensus statement among the International Cartilage Repair Society (ICRS) and contributing authors experienced in clinical trial design and implementation was achieved. Conclusions: High-quality clinical research methodology is critical for the optimal evaluation of current and new cartilage repair technologies. In addition to generally applicable principles for orthopedic study design, specific criteria and considerations apply to cartilage repair studies. Systematic application of these criteria and considerations can facilitate study designs that are scientifically rigorous, ethical, practical, and appropriate for the question(s) being addressed in any given cartilage repair research project

  4. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model.

    PubMed

    Dahlin, Rebecca L; Kinard, Lucas A; Lam, Johnny; Needham, Clark J; Lu, Steven; Kasper, F Kurtis; Mikos, Antonios G

    2014-08-01

    This work investigated the ability of co-cultures of articular chondrocytes and mesenchymal stem cells (MSCs) to repair articular cartilage in osteochondral defects. Bovine articular chondrocytes and rat MSCs were seeded in isolation or in co-culture onto electrospun poly(ɛ-caprolactone) (PCL) scaffolds and implanted into an osteochondral defect in the trochlear groove of 12-week old Lewis rats. Additionally, a blank PCL scaffold and untreated defect were investigated. After 12 weeks, the extent of cartilage repair was analyzed through histological analysis, and the extent of bone healing was assessed by quantifying the total volume of mineralized bone in the defect through microcomputed tomography. Histological analysis revealed that the articular chondrocytes and co-cultures led to repair tissue that consisted of more hyaline-like cartilage tissue that was thicker and possessed more intense Safranin O staining. The MSC, blank PCL scaffold, and empty treatment groups generally led to the formation of fibrocartilage repair tissue. Microcomputed tomography revealed that while there was an equivalent amount of mineralized bone formation in the MSC, blank PCL, and empty treatment groups, the defects treated with chondrocytes or co-cultures had negligible mineralized bone formation. Overall, even with a reduced number of chondrocytes, co-cultures led to an equal level of cartilage repair compared to the chondrocyte samples, thus demonstrating the potential for the use of co-cultures of articular chondrocytes and MSCs for the in vivo repair of cartilage defects. PMID:24927682

  5. Scaffold-Free, Tissue Engineered Cartilage Implants for Laryngotracheal Reconstruction

    PubMed Central

    Gilpin, David A.; Weidenbecher, Mark S.; Dennis, James E.

    2016-01-01

    Objectives/Hypothesis Donor site morbidity, including pneumothorax, can be a considerable problem when harvesting cartilage grafts for laryngotracheal reconstruction (LTR). Tissue engineered cartilage may offer a solution to this problem. This study investigated the feasibility of using autologous chondrocytes to tissue engineer scaffold free cartilage grafts for LTR in rabbits in order to avoid degradation that often arises from an inflammatory reaction to the scaffold carrier matrix. Study Design Animal study. Methods Auricular cartilage was harvested from 7 New Zealand white rabbits, the chondrocytes expanded, and loaded onto a custom made bioreactor for 7–8 weeks to fabricate autologous scaffold free cartilage sheets. The sheets were cut to size and used for LTR, and the rabbits were sacrificed 4, 8, and 12 weeks after the LTR and prepared for histology. Results None of the 7 rabbits showed signs of respiratory distress. A smooth, noninflammatory scar was visible intraluminally; the remainder of the tracheal lumen was unremarkable. Histologically, the grafts showed no signs of degradation or inflammatory reaction, were covered with mucosal epithelium, but did show signs of mechanical failure at the implantation site. Conclusions These results show that autologous chondrocytes can be used to fabricate an implantable sheet of cartilage that retains a cartilage phenotype, becomes integrated, and does not produce a significant inflammatory reaction. These findings suggest that with the design of stronger implants, these implants can be successfully used as a graft for LTR. PMID:20058322

  6. Articular Cartilage Repair Using Marrow Stimulation Augmented with a Viable Chondral Allograft: 9-Month Postoperative Histological Evaluation

    PubMed Central

    Hoffman, James K.; Geraghty, Sandra; Protzman, Nicole M.

    2015-01-01

    Marrow stimulation is frequently employed to treat focal chondral defects of the knee. However, marrow stimulation typically results in fibrocartilage repair tissue rather than healthy hyaline cartilage, which, over time, predisposes the repair to failure. Recently, a cryopreserved viable chondral allograft was developed to augment marrow stimulation. The chondral allograft is comprised of native viable chondrocytes, chondrogenic growth factors, and extracellular matrix proteins within the superficial, transitional, and radial zones of hyaline cartilage. Therefore, host mesenchymal stem cells that infiltrate the graft from the underlying bone marrow following marrow stimulation are provided with the optimal microenvironment to undergo chondrogenesis. The present report describes treatment of a trochlear defect with marrow stimulation augmented with this novel chondral allograft, along with nine month postoperative histological results. At nine months, the patient demonstrated complete resolution of pain and improvement in function, and the repair tissue consisted of 85% hyaline cartilage. For comparison, a biopsy obtained from a patient 8.2 months after treatment with marrow stimulation alone contained only 5% hyaline cartilage. These outcomes suggest that augmenting marrow stimulation with the viable chondral allograft can eliminate pain and improve outcomes, compared with marrow stimulation alone. PMID:25628907

  7. Articular cartilage repair using marrow stimulation augmented with a viable chondral allograft: 9-month postoperative histological evaluation.

    PubMed

    Hoffman, James K; Geraghty, Sandra; Protzman, Nicole M

    2015-01-01

    Marrow stimulation is frequently employed to treat focal chondral defects of the knee. However, marrow stimulation typically results in fibrocartilage repair tissue rather than healthy hyaline cartilage, which, over time, predisposes the repair to failure. Recently, a cryopreserved viable chondral allograft was developed to augment marrow stimulation. The chondral allograft is comprised of native viable chondrocytes, chondrogenic growth factors, and extracellular matrix proteins within the superficial, transitional, and radial zones of hyaline cartilage. Therefore, host mesenchymal stem cells that infiltrate the graft from the underlying bone marrow following marrow stimulation are provided with the optimal microenvironment to undergo chondrogenesis. The present report describes treatment of a trochlear defect with marrow stimulation augmented with this novel chondral allograft, along with nine month postoperative histological results. At nine months, the patient demonstrated complete resolution of pain and improvement in function, and the repair tissue consisted of 85% hyaline cartilage. For comparison, a biopsy obtained from a patient 8.2 months after treatment with marrow stimulation alone contained only 5% hyaline cartilage. These outcomes suggest that augmenting marrow stimulation with the viable chondral allograft can eliminate pain and improve outcomes, compared with marrow stimulation alone. PMID:25628907

  8. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study.

    PubMed

    Muhonen, Virpi; Salonius, Eve; Haaparanta, Anne-Marie; Järvinen, Elina; Paatela, Teemu; Meller, Anna; Hannula, Markus; Björkman, Mimmi; Pyhältö, Tuomo; Ellä, Ville; Vasara, Anna; Töyräs, Juha; Kellomäki, Minna; Kiviranta, Ilkka

    2016-05-01

    The purpose of this study was to investigate the potential of a novel recombinant human type II collagen/polylactide scaffold (rhCo-PLA) in the repair of full-thickness cartilage lesions with autologous chondrocyte implantation technique (ACI). The forming repair tissue was compared to spontaneous healing (spontaneous) and repair with a commercial porcine type I/III collagen membrane (pCo). Domestic pigs (4-month-old, n = 20) were randomized into three study groups and a circular full-thickness chondral lesion with a diameter of 8 mm was created in the right medial femoral condyle. After 3 weeks, the chondral lesions were repaired with either rhCo-PLA or pCo together with autologous chondrocytes, or the lesion was only debrided and left untreated for spontaneous repair. The repair tissue was evaluated 4 months after the second operation. Hyaline cartilage formed most frequently in the rhCo-PLA treatment group. Biomechanically, there was a trend that both treatment groups resulted in better repair tissue than spontaneous healing. Adverse subchondral bone reactions developed less frequently in the spontaneous group (40%) and the rhCo-PLA treated group (50%) than in the pCo control group (100%). However, no statistically significant differences were found between the groups. The novel rhCo-PLA biomaterial showed promising results in this proof-of-concept study, but further studies will be needed in order to determine its effectiveness in articular cartilage repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:745-753, 2016. PMID:26573959

  9. An Articular Cartilage Repair Model in Common C57Bl/6 Mice

    PubMed Central

    Matsuoka, Masatake; Sasazawa, Fumio; Momma, Daisuke; Baba, Rikiya; Hontani, Kazutoshi; Iwasaki, Norimasa

    2015-01-01

    To analyze the genetic and biomolecular mechanisms underlying cartilage repair, an optimized mouse model of osteochondral repair is required. Although several models of articular cartilage injury in mice have recently been established, the articular surface in adult C57Bl/6 mice heals poorly. Since C57Bl/6 mice are the most popular strain of genetically manipulated mice, an articular cartilage repair model using C57Bl/6 mice would be helpful for analysis of the mechanisms of cartilage repair. The purpose of this study was to establish a cartilage repair model in C57Bl/6 mice using immature animals. To achieve this goal, full-thickness injuries were generated in 3-week-old (young), 4-week-old (juvenile), and 8-week-old (adult) C57Bl/6 mice. To investigate the reproducibility and consistency of full-thickness injuries, mice were sacrificed immediately after operation, and cartilage thickness at the patellar groove, depth of the cartilage injury, cross-sectional width, and cross-sectional area were compared among the three age groups. The depth of cartilage injury/cartilage thickness ratio (%depth) and the coefficient of variation (CV) for each parameter were also calculated. At 8 weeks postoperatively, articular cartilage repair was assessed using a histological scoring system. With respect to the reproducibility and consistency of full-thickness injuries, cartilage thickness, depth of cartilage injury, and cross-sectional area were significantly larger in young and juvenile mice than in adult mice, whereas cross-sectional width and %depth were almost equal among the three age groups. CVs of %depths were less than 10% in all groups. With respect to articular cartilage repair, young and juvenile mice showed superior results. In conclusion, we established a novel cartilage repair model in C57Bl/6 mice. This model will be valuable in achieving mechanistic insights into the healing process of the joint surface, as it will facilitate the use of genetically modified mice

  10. Tissue-Engineered Articular Cartilage Exhibits Tension-Compression Nonlinearity Reminiscent of the Native Cartilage

    PubMed Central

    Kelly, Terri-Ann N.; Roach, Brendan L.; Weidner, Zachary D.; Mackenzie-Smith, Charles R.; O'Connell, Grace D.; Lima, Eric G.; Stoker, Aaron M.; Cook, James L.; Ateshian, Gerard A.; Hung, Clark T.

    2013-01-01

    The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83 kPa for FS and 678±473 kPa for DL) and compressive (161±33 kPa for FS and 348±203 kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties. PMID:23791084

  11. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties

    PubMed Central

    Glass, Katherine A.; Link, Jarrett M.; Brunger, Jonathan M.; Moutos, Franklin T.; Gersbach, Charles A.; Guilak, Farshid

    2014-01-01

    The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis. PMID:24767790

  12. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties.

    PubMed

    Glass, Katherine A; Link, Jarrett M; Brunger, Jonathan M; Moutos, Franklin T; Gersbach, Charles A; Guilak, Farshid

    2014-07-01

    The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis. PMID:24767790

  13. Transient Hypoxia Improves Matrix Properties in Tissue Engineered Cartilage

    PubMed Central

    Yodmuang, Supansa; Gadjanski, Ivana; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Adult articular cartilage is a hypoxic tissue, with oxygen tension ranging from <10% at the cartilage surface to <1% in the deepest layers. In addition to spatial gradients, cartilage development is also associated with temporal changes in oxygen tension. However, a vast majority of cartilage tissue engineering protocols involves cultivation of chondrocytes or their progenitors under ambient oxygen concentration (21% O2), that is, significantly above physiological levels in either developing or adult cartilage. Our study was designed to test the hypothesis that transient hypoxia followed by normoxic conditions results in improved quality of engineered cartilaginous ECM. To this end, we systematically compared the effects of normoxia (21% O2 for 28 days), hypoxia (5% O2 for 28 days) and transient hypoxia—reoxygenation (5% O2 for 7 days and 21% O2 for 21 days) on the matrix composition and expression of the chondrogenic genes in cartilage constructs engineered in vitro. We demonstrated that reoxygenation had the most effect on the expression of cartilaginous genes including COL2A1, ACAN, and SOX9 and increased tissue concentrations of amounts of glycosaminoglycans and type II collagen. The equilibrium Young’s moduli of tissues grown under transient hypoxia (510.01 ± 28.15 kPa) and under normoxic conditions (417.60 ± 68.46 kPa) were significantly higher than those measured under hypoxic conditions (279.61 ± 20.52 kPa). These data suggest that the cultivation protocols utilizing transient hypoxia with reoxygenation have high potential for efficient cartilage tissue engineering, but need further optimization in order to achieve higher mechanical functionality of engineered constructs. PMID:23203946

  14. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair

    PubMed Central

    Scarfì, Sonia

    2016-01-01

    The extracellular matrix-associated bone morphogenetic proteins (BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell (MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted cell-type lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair. PMID:26839636

  15. Expandable Scaffold Improves Integration of Tissue-Engineered Cartilage: An In Vivo Study in a Rabbit Model.

    PubMed

    Wang, Chen-Chie; Yang, Kai-Chiang; Lin, Keng-Hui; Liu, Yen-Liang; Yang, Ya-Ting; Kuo, Tzong-Fu; Chen, Ing-Ho

    2016-06-01

    One of the major limitations of tissue-engineered cartilage is poor integration of chondrocytes and scaffold structures with recipient tissue. To overcome this limitation, an expandable scaffold with a honeycomb-like structure has been developed using microfluidic technology. In this study, we evaluated the performance of this expandable gelatin scaffold seeded with rabbit chondrocytes in vivo. The chondrocyte/scaffold constructs were implanted into regions of surgically introduced cylindrical osteochondral defects in rabbit femoral condyles. At 2, 4, and 6 months postsurgery, the implanted constructs were evaluated by gross and histological examinations. As expected, the osteochondral defects, which were untreated or transplanted with blank scaffolds, showed no signs of repair, whereas the defects transplanted with chondrocyte/scaffold constructs showed significant cartilage regeneration. Furthermore, the expandable scaffolds seeded with chondrocytes had more regenerated cartilage tissue and better integration with the recipient tissue than autologous chondrocyte implantation. Biomechanical tests revealed that the chondrocyte/scaffold group had the highest compressive strength among all groups at all three time points and endured a similar compressive force to normal cartilage after 6 months of implantation. Histological examinations revealed that the chondrocytes were distributed uniformly within the scaffolds, maintained a normal phenotype, and secreted functional components of the extracellular matrix. Histomorphometric assessment showed a remarkable total interface of up to 87% integration of the expandable scaffolds with the host tissue at 6 months postoperation. In conclusion, the expandable scaffolds improved chondrocyte/scaffold construct integration with the host tissue and were beneficial for cartilage repair. PMID:27193498

  16. Computational model for the analysis of cartilage and cartilage tissue constructs.

    PubMed

    Smith, David W; Gardiner, Bruce S; Davidson, John B; Grodzinsky, Alan J

    2016-04-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23784936

  17. Computational model for the analysis of cartilage and cartilage tissue constructs

    PubMed Central

    Smith, David W.; Gardiner, Bruce S.; Davidson, John B.; Grodzinsky, Alan J.

    2013-01-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. PMID:23784936

  18. Cartilage Repair and Subchondral Bone Migration Using 3D Printing Osteochondral Composites: A One-Year-Period Study in Rabbit Trochlea

    PubMed Central

    Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; He, Jiankang; Jin, Zhongmin

    2014-01-01

    Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a “flow like” manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a “flow like” manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application. PMID:25177697

  19. Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage.

    PubMed

    Virén, T; Huang, Y P; Saarakkala, S; Pulkkinen, H; Tiitu, V; Linjama, A; Kiviranta, I; Lammi, M J; Brünott, A; Brommer, H; Van Weeren, R; Brama, P A J; Zheng, Y P; Jurvelin, J S; Töyräs, J

    2012-04-01

    The aim of this study was to compare sensitivity of ultrasound and optical coherence tomography (OCT) techniques for the evaluation of the integrity of spontaneously repaired horse cartilage. Articular surfaces of horse intercarpal joints, featuring both intact tissue and spontaneously healed chondral or osteochondral defects, were imaged ex vivo with arthroscopic ultrasound and laboratory OCT devices. Quantitative ultrasound (integrated reflection coefficient (IRC), apparent integrated backscattering coefficient (AIB) and ultrasound roughness index (URI)) and optical parameters (optical reflection coefficient (ORC), optical roughness index (ORI) and optical backscattering (OBS)) were determined and compared with histological integrity and mechanical properties of the tissue. Spontaneously healed tissue could be quantitatively discerned from the intact tissue with ultrasound and OCT techniques. Furthermore, several significant correlations (p < 0.05) were detected between ultrasound and OCT parameters. Superior resolution of OCT provided a more accurate measurement of cartilage surface roughness, while the ultrasound backscattering from the inner structures of the cartilage matched better with the histological findings. Since the techniques were found to be complementary to each other, dual modality imaging techniques could provide a useful tool for the arthroscopic evaluation of the integrity of articular cartilage. PMID:22439802

  20. Local Morphological Response of the Distal Femoral Articular–Epiphyseal Cartilage Complex of Young Foals to Surgical Stab Incision and Potential Relevance to Cartilage Injury and Repair in Children

    PubMed Central

    Hendrickson, Eli H.S.; Ekman, Stina; Carlson, Cathy S.; Dolvik, Nils I.

    2013-01-01

    Objective: Describe the local morphological response of the articular–epiphyseal cartilage complex to surgical stab incision in the distal femur of foals, with emphasis on the relationship between growth cartilage injury, enchondral ossification, and repair. Design: Nine foals were induced into general anesthesia at the age of 13 to 15 days. Four full-thickness stab incision defects were created in the cartilage on the lateral aspect of the lateral trochlear ridge of the left distal femur. Follow-up examination was carried out from 1 to 49 days postoperatively, including examination of intact bones, sawed slabs, and histological sections. Results: Incision defects filled with cells displaying fibroblast-, chondrocyte-, and osteoblast-like characteristics, potentially validating the rationale behind the drilling of stable juvenile osteochondritis dissecans lesions in children. Incisions induced necrosis within the cartilage on the margins at all depths of the defects. Sharp dissection may therefore be contraindicated in cartilage repair in young individuals. Incisions caused a focal delay in enchondral ossification in 2 foals, apparently related to the orientation of the incision defect relative to the direction of ossification. Defects became progressively surrounded by subchondral bone, in which granulation tissue containing clasts and foci of osteoblast-like cells was observed. Continued enchondral ossification was therefore likely to result in healing of uncomplicated defects to morphologically normal bone. Conclusions: Epiphyseal growth cartilage injury had the potential to exert a negative effect on enchondral ossification. Enchondral ossification exerted a beneficial effect on repair. This relationship warrants consideration in future studies of cartilage injury and repair within the articular–epiphyseal cartilage complex of all species. PMID:26069670

  1. Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan.

    PubMed

    Zhang, Kunxi; Zhang, Yun; Yan, Shifeng; Gong, Lunli; Wang, Jia; Chen, Xuesi; Cui, Lei; Yin, Jingbo

    2013-07-01

    As a synthetic polypeptide water-soluble poly(l-glutamic acid) (PLGA) was designed to fabricate scaffolds for cartilage tissue engineering. Chitosan (CHI) has been employed as a physical cross-linking component in the construction of scaffolds. PLGA/CHI scaffolds act as sponges with a swelling ratio of 760±45% (mass%), showing promising biocompatibility and biodegradation. Autologous adipose-derived stem cells (ASCs) were expanded and seeded on PLGA/CHI scaffolds, ASC/scaffold constructs were then subjected to chondrogenic induction in vitro for 2weeks. The results showed that PLGA/CHI scaffolds could effectively support ASC adherence, proliferation and chondrogenic differentiation. The ASCs/scaffold constructs were then transplanted to repair full thickness articular cartilage defects (4mm in diameter, to the depth of subchondral bone) created in rabbit femur trochlea. Histological observations found that articular defects were covered with newly formed cartilage 6weeks post-implantation. After 12weeks the regenerated cartilage had integrated well with the surrounding native cartilage and subchondral bone. Toluidine blue and immunohistochemical staining confirmed similar accumulation of glycosaminoglycans and type II collagen in engineered cartilage as in native cartilage 12weeks post-implantation. The result was further supported by quantitative analysis of extracellular matrix deposition. The compressive modulus of the engineered cartilage increased significantly from 30% of that of normal cartilage at 6weeks to 83% at 12weeks. Cyto-nanoindentation also showed analogous biomechanical behavior of the engineered cartilage to that of native cartilage. The results of the present study thus demonstrate the potentiality of PLGA/CHI scaffolds in cartilage tissue engineering. PMID:23535234

  2. Establishing proof of concept: Platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus

    PubMed Central

    Smyth, Niall A; Murawski, Christopher D; Haleem, Amgad M; Hannon, Charles P; Savage-Elliott, Ian; Kennedy, John G

    2012-01-01

    Osteochondral lesions of the talus are common injuries in the athletic patient. They present a challenging clinical problem as cartilage has a poor potential for healing. Current surgical treatments consist of reparative (microfracture) or replacement (autologous osteochondral graft) strategies and demonstrate good clinical outcomes at the short and medium term follow-up. Radiological findings and second-look arthroscopy however, indicate possible poor cartilage repair with evidence of fibrous infill and fissuring of the regenerative tissue following microfracture. Longer-term follow-up echoes these findings as it demonstrates a decline in clinical outcome. The nature of the cartilage repair that occurs for an osteochondral graft to become integrated with the native surround tissue is also of concern. Studies have shown evidence of poor cartilage integration, with chondrocyte death at the periphery of the graft, possibly causing cyst formation due to synovial fluid ingress. Biological adjuncts, in the form of platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC), have been investigated with regard to their potential in improving cartilage repair in both in vitro and in vitro settings. The in vitro literature indicates that these biological adjuncts may increase chondrocyte proliferation as well as synthetic capability, while limiting the catabolic effects of an inflammatory joint environment. These findings have been extrapolated to in vitro animal models, with results showing that both PRP and BMAC improve cartilage repair. The basic science literature therefore establishes the proof of concept that biological adjuncts may improve cartilage repair when used in conjunction with reparative and replacement treatment strategies for osteochondral lesions of the talus. PMID:22816065

  3. Kartogenin induces cartilage-like tissue formation in tendon–bone junction

    PubMed Central

    Zhang, Jianying; Wang, James H-C

    2014-01-01

    Tendon–bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs. PMID:25419468

  4. Kartogenin induces cartilage-like tissue formation in tendon-bone junction.

    PubMed

    Zhang, Jianying; Wang, James H-C

    2014-01-01

    Tendon-bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs. PMID:25419468

  5. Hyaluronic Acid Enhances the Mechanical Properties of Tissue-Engineered Cartilage Constructs

    PubMed Central

    Levett, Peter A.; Hutmacher, Dietmar W.; Malda, Jos; Klein, Travis J.

    2014-01-01

    There is a need for materials that are well suited for cartilage tissue engineering. Hydrogels have emerged as promising biomaterials for cartilage repair, since, like cartilage, they have high water content, and they allow cells to be encapsulated within the material in a genuinely three-dimensional microenvironment. In this study, we investigated the mechanical properties of tissue-engineered cartilage constructs using in vitro culture models incorporating human chondrocytes from osteoarthritis patients. We evaluated hydrogels formed from mixtures of photocrosslinkable gelatin-methacrylamide (Gel-MA) and varying concentrations (0–2%) of hyaluronic acid methacrylate (HA-MA). Initially, only small differences in the stiffness of each hydrogel existed. After 4 weeks of culture, and to a greater extent 8 weeks of culture, HA-MA had striking and concentration dependent impact on the changes in mechanical properties. For example, the initial compressive moduli of cell-laden constructs with 0 and 1% HA-MA were 29 and 41 kPa, respectively. After 8 weeks of culture, the moduli of these constructs had increased to 66 and 147 kPa respectively, representing a net improvement of 69 kPa for gels with 1% HA-MA. Similarly the equilibrium modulus, dynamic modulus, failure strength and failure strain were all improved in constructs containing HA-MA. Differences in mechanical properties did not correlate with glycosaminoglycan content, which did not vary greatly between groups, yet there were clear differences in aggrecan intensity and distribution as assessed using immunostaining. Based on the functional development with time in culture using human chondrocytes, mixtures of Gel-MA and HA-MA are promising candidates for cartilage tissue-engineering applications. PMID:25438040

  6. Second harmonic generation imaging in tissue engineering and cartilage pathologies

    NASA Astrophysics Data System (ADS)

    Lilledahl, Magnus; Olderøy, Magnus; Finnøy, Andreas; Olstad, Kristin; Brinchman, Jan E.

    2015-03-01

    The second harmonic generation from collagen is highly sensitive to what extent collagen molecules are ordered into fibrils as the SHG signal is approximately proportional to the square of the fibril thickness. This can be problematic when interpreting SHG images as thick fibers are much brighter than thinner fibers such that quantification of the amount of collagen present is difficult. On the other hand SHG is therefore also a very sensitive probe to determine whether collagen have assembled into fibrils or are still dissolved as individual collagen molecules. This information is not available from standard histology or immunohistochemical techniques. The degree for fibrillation is an essential component for proper tissue function. We will present the usefulness of SHG imaging in tissue engineering of cartilage as well as cartilage related pathologies. When engineering cartilage it is essential to have the appropriate culturing conditions which cause the collagen molecules to assemble into fibrils. By employing SHG imaging we have studied how cell seeding densities affect the fibrillation of collagen molecules. Furthermore we have used SHG to study pathologies in developing cartilage in a porcine model. In both cases SHG reveals information which is not visible in conventional histology or immunohistochemistry

  7. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    PubMed

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. PMID:23042088

  8. Image-Guided Techniques Improve the Short-Term Outcome of Autologous Osteochondral Cartilage Repair Surgeries

    PubMed Central

    Devlin, Steven M.; Hurtig, Mark B.; Waldman, Stephen D.; Rudan, John F.; Bardana, Davide D.; Stewart, A. James

    2013-01-01

    Objective: Autologous osteochondral cartilage repair is a valuable reconstruction option for cartilage defects, but the accuracy to harvest and deliver osteochondral grafts remains problematic. We investigated whether image-guided methods (optically guided and template guided) can improve the outcome of these procedures. Design: Fifteen sheep were operated to create traumatic chondral injuries in each knee. After 4 months, the chondral defect in one knee was repaired using (a) conventional approach, (b) optically guided method, or (c) template-guided method. For both image-guided groups, harvest and delivery sites were preoperatively planned using custom-made software. During optically guided surgery, instrument position and orientation were tracked and superimposed onto the surgical plan. For the template-guided group, plastic templates were manufactured to allow an exact fit between template and the joint anatomy. Cylindrical holes within the template guided surgical tools according to the plan. Three months postsurgery, both knees were harvested and computed tomography scans were used to compare the reconstructed versus the native pre-injury joint surfaces. For each repaired defect, macroscopic (International Cartilage Repair Society [ICRS]) and histological repair (ICRS II) scores were assessed. Results: Three months after repair surgery, both image-guided surgical approaches resulted in significantly better histology scores compared with the conventional approach (improvement by 55%, P < 0.02). Interestingly, there were no significant differences found in cartilage surface reconstruction and macroscopic scores between the image-guided and the conventional surgeries. PMID:26069658

  9. Noninvasive Assessment of Glycosaminoglycan Production in Injectable Tissue-Engineered Cartilage Constructs Using Magnetic Resonance Imaging

    PubMed Central

    Ramaswamy, Sharan; Uluer, Mehmet C.; Leen, Stephanie; Bajaj, Preeti; Fishbein, Kenneth W.

    2008-01-01

    Abstract The glycosaminoglycan (GAG) content of engineered cartilage is a determinant of biochemical and mechanical quality. The ability to measure the degree to which GAG content is maintained or increases in an implant is therefore of importance in cartilage repair procedures. The gadolinium exclusion magnetic resonance imaging (MRI) method for estimating matrix fixed charge density (FCD) is ideally suited to this. One promising approach to cartilage repair is use of seeded injectable hydrogels. Accordingly, we assess the reliability of measuring GAG content in such a system ex vivo using MRI. Samples of the photo-polymerizable hydrogel, poly(ethylene oxide) diacrylate, were seeded with bovine chondrocytes (∼2.4 million cells/sample). The FCD of the constructs was determined using MRI after 9, 16, 29, 36, 43, and 50 days of incubation. Values were correlated with the results of biochemical determination of GAG from the same samples. FCD and GAG were found to be statistically significantly correlated (R2 = 0.91, p <0.01). We conclude that MRI-derived FCD measurements of FCD in injectable hydrogels reflect tissue GAG content and that this methodology therefore has potential for in vivo monitoring of such constructs. PMID:18620483

  10. Epigenetic regulation in chondrocyte phenotype maintenance for cell-based cartilage repair

    PubMed Central

    Duan, Li; Liang, Yujie; Ma, Bin; Zhu, Weimin; Wang, Daping

    2015-01-01

    Loss of hyaline chondrocyte phenotype during the monolayer culture in vitro is a major obstacle for cell-based articular cartilage repair. Increasing evidence implicates an important role of the epigenetic regulation in maintaining the chondrocyte phenotype. DNA methylation, histone modifications and microRNAs have all been shown to contribute to chondrocyte dedifferentiation and hypertrophy. Moreover, the interplay among epigenetic regulators forms a complicated epigenetic network in regulating chondrocyte dedifferentiation. This review provides a detailed overview of the epigenetic regulation in maintaining the chondrocyte phenotype for chondrocyte-based cartilage repair. PMID:26807163

  11. Streamlined bioreactor-based production of human cartilage tissues.

    PubMed

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-01-01

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines. PMID:27232665

  12. Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold.

    PubMed

    Shin, Yoo Seob; Choi, Jae Won; Park, Ju-Kyeong; Kim, Yoo Suk; Yang, Soon Sim; Min, Byoung-Hyun; Kim, Chul-Ho

    2015-04-01

    Tissue engineering using a biocompatible scaffold with various cells might be a solution for tracheal reconstruction. We investigated the plausibility of using mesenchymal stem cells (MSCs) seeded on a porcine cartilage powder (PCP) scaffold for tracheal defect repair. PCP made with minced and decellularized porcine articular cartilage was molded into a 5 × 12 mm (height × diameter) scaffold. MSCs from young rabbit bone marrow were expanded and cultured with the PCP scaffold. After 7 weeks culture, the tracheal implants were transplanted on a 5 × 10 mm tracheal defect in six rabbits. 6 and 10 weeks postoperatively, the implanted area was evaluated. None of the six rabbits showed any sign of respiratory distress. Endoscopic examination revealed that respiratory epithelium completely covered the regenerated trachea and there were no signs of collapse or blockage. A patent luminal contour of the trachea was observed on the computed tomography scan in all six rabbits and the reconstructed areas were not narrow compared to normal adjacent trachea. Histologic examination showed that neo-cartilage was successfully produced with minimal inflammation or granulation tissue. Ciliary beating frequency of the regenerated epithelium was not significantly different from the normal adjacent mucosa. MSCs cultured with a PCP scaffold successfully restored not only the shape but also the function of the trachea without any graft rejection. PMID:25253469

  13. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering.

    PubMed

    Kim, Hwan D; Heo, Jiseung; Hwang, Yongsung; Kwak, Seon-Yeong; Park, Ok Kyu; Kim, Hyunbum; Varghese, Shyni; Hwang, Nathaniel S

    2015-02-01

    Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application. PMID:25266634

  14. Repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation

    SciTech Connect

    Grande, D.A.; Pitman, M.I.; Peterson, L.; Menche, D.; Klein, M.

    1989-01-01

    Using the knee joints of New Zealand White rabbits, a baseline study was made to determine the intrinsic capability of cartilage for healing defects that do not fracture the subchondral plate. A second experiment examined the effect of autologous chondrocytes grown in vitro on the healing rate of these defects. To determine whether any of the reconstituted cartilage resulted from the chondrocyte graft, a third experiment was conducted involving grafts with chondrocytes that had been labeled prior to grafting with a nuclear tracer. Results were evaluated using both qualitative and quantitative light microscopy. Macroscopic results from grafted specimens displayed a marked decrease in synovitis and other degenerative changes. In defects that had received transplants, a significant amount of cartilage was reconstituted (82%) compared to ungrafted controls (18%). Autoradiography on reconstituted cartilage showed that there were labeled cells incorporated into the repair matrix.

  15. Single-step scaffold-based cartilage repair in the knee: A systematic review.

    PubMed

    Fischer, Stefan; Kisser, Agnes

    2016-12-01

    Chondral lesions are difficult-to-treat entities that often affect young and active people. Moreover, cartilage has limited intrinsic healing potential. The purpose of this systematic literature review was to analyse whether the single-step scaffold-based cartilage repair in combination with microfracturing (MFx) is more effective and safe in comparison to MFx alone. From the three identified studies, it seems that the single-step scaffold-assisted cartilage repair in combination with MFx leads to similar short- to medium-term (up to five years follow-up) results, compared to MFx alone. All of the studies have shown improvements regarding joint functionality, pain and partly quality of life. PMID:27408497

  16. Pilot Study of Cartilage Repair in the Knee Joint with Multiply Incised Chondral Allograft

    PubMed Central

    Vancsodi, Jozsef; Farkas, Boglarka; Fazekas, Adam; Nagy, Szilvia Anett; Bogner, Peter; Vermes, Csaba; Than, Peter

    2015-01-01

    Background Focal cartilage lesions in the knee joint have limited capacity to heal. Current animal experiments show that incisions of the deep zone of a cartilage allograft allow acceptable integration for the graft. Questions/Purposes We performed this clinical study to determine (1) if the multiply incised cartilage graft is surgically applicable for focal cartilage lesions, (2) whether this allograft has a potential to integrate to the repair site, and (3) if patients show clinical improvement. Patients and Methods Seven patients with 8 chondral lesions were enrolled into the study. Symptomatic lesions between 2 and 8 cm2 were accepted. Additional injuries were allowed but were addressed simultaneously. Grafts were tailored to match and the deep zone of the cartilage was multiply incised to augment the basal integration before securing in place. Rigorous postoperative physiotherapy followed. At 12 and 24 months the patients’ satisfaction were measured and serial magnetic resonance imaging (MRI) was performed in 6 patients. Results Following the implantations no adverse reaction occurred. MRI evaluation postoperatively showed the graft in place in 5 out of 6 patients. In 1 patient, MRI suggested partial delamination at 1 year and graft degeneration at 2 years. Short Form–36 health survey and the Lysholm knee score demonstrated a significant improvement in the first year; however, by 2 years there was a noticeable drop in the scores. Conclusions. Multiply incised pure chondral allograft used for cartilage repair appears to be a relatively safe method. Further studies are necessary to assess its potential in cartilage repair before its clinical use. PMID:26069710

  17. Use of NASA Bioreactor in Engineering Tissue for Bone Repair

    NASA Technical Reports Server (NTRS)

    Duke, Pauline

    1998-01-01

    This study was proposed in search for a new alternative for bone replacement or repair. Because the systems commonly used in repair of bony defects form bone by going through a cartilaginous phase, implantation of a piece of cartilage could enhance the healing process by having a more advanced starting point. However, cartilage has seldom been used to replace bone due, in part, to the limitations in conventional culture systems that did not allow production of enough tissue for implants. The NASA-developed bioreactors known as STLV (Slow Turning Lateral Vessel) provide homogeneous distribution of cells, nutrients, and waste products, with less damaging turbulence and shear forces than conventional systems. Cultures under these conditions have higher growth rates, viability, and longevity, allowing larger "tissue-like" aggregates to form, thus opening the possibilities of producing enough tissue for implantation, along with the inherent advantages of in vitro manipulations. To assure large numbers of cells and to eliminate the use of timed embryos, we proposed to use an immortalized mouse limb bud cell line as the source of cells.

  18. Chondrocyte Generation of Cartilage-Like Tissue Following Photoencapsulation in Methacrylated Polysaccharide Solution Blends.

    PubMed

    Hayami, James W S; Waldman, Stephen D; Amsden, Brian G

    2016-07-01

    Chondrocyte-seeded, photo-cross-linked hydrogels prepared from solutions containing 50% mass fractions of methacrylated glycol chitosan or methacrylated hyaluronic acid (MHA) with methacrylated chondroitin sulfate (MCS) are cultured in vitro under static conditions over 35 d to assess their suitability for load-bearing soft tissue repair. The photo-cross-linked hydrogels have initial equilibrium moduli between 100 and 300 kPa, but only the MHAMCS hydrogels retain an approximately constant modulus (264 ± 5 kPa) throughout the culture period. Visually, the seeded chondrocytes in the MHAMCS hydrogels are well distributed with an apparent constant viability in culture. Multicellular aggregates are surrounded by cartilaginous matrix, which contain aggrecan and collagen II. Thus, co-cross-linked MCS and MHA hydrogels may be suited for use in an articular cartilage or nucleus pulposus repair applications. PMID:27061241

  19. Mesenchymal Stem Cells in Tissue Growth and Repair

    PubMed Central

    Kalinina, N.I.; Sysoeva, V.Yu.; Rubina, K.A.; Parfenova, Ye.V.; Tkachuk, V.A.

    2011-01-01

    It has been established in the recent several decades that stem cells play a crucial role in tissue renewal and regeneration. Mesenchymal stem cells (MSCs) are part of the most important population of adult stem cells. These cells have hereby been identified for the very first time and subsequently isolated from bone marrow stroma. Bone marrow-derived MSCs have been believed to play the role of a source of cells for the renewal and repair of connective tissues, including bone, cartilage and adipose tissues. Cells similar to bone marrow-derived MSCs have now been identified in all postnatal tissues. Data on the distribution and function of MSCsin vivocollected using novel approaches pertaining to the identification of MSCsin situ, to their isolation from tissues, and finally to the determination of their biological properties have enabled successful revision of the role of MSCs in various organs and tissues. This review summarizes our own, as well as others’, data concerning the role of MSCs in the regulation processes of tissue repair and regeneration. In our opinion, MSCs provide the connection between the blood-vascular, immune, endocrine, and nervous systems and tissue-specific stem cells in the body. PMID:22649702

  20. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate.

    PubMed

    Levett, Peter A; Melchels, Ferry P W; Schrobback, Karsten; Hutmacher, Dietmar W; Malda, Jos; Klein, Travis J

    2014-01-01

    The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in Gel-MA-based hydrogels, and show that with the incorporation of small quantities of photocrosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesized extracellular matrix (ECM) throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 114 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications. PMID:24140603

  1. Tissue responses against tissue-engineered cartilage consisting of chondrocytes encapsulated within non-absorbable hydrogel.

    PubMed

    Kanazawa, Sanshiro; Fujihara, Yuko; Sakamoto, Tomoaki; Asawa, Yukiyo; Komura, Makoto; Nagata, Satoru; Takato, Tsuyoshi; Hoshi, Kazuto

    2013-01-01

    To disclose the influence of foreign body responses raised against a non-absorbable hydrogel consisting of tissue-engineered cartilage, we embedded human/canine chondrocytes within agarose and transplanted them into subcutaneous pockets in nude mice and donor beagles. One month after transplantation, cartilage formation was observed in the experiments using human chondrocytes in nude mice. No significant invasion of blood cells was noted in the areas where the cartilage was newly formed. Around the tissue-engineered cartilage, agarose fragments, a dense fibrous connective tissue and many macrophages were observed. On the other hand, no cartilage tissue was detected in the autologous transplantation of canine chondrocytes. Few surviving chondrocytes were observed in the agarose and no accumulation of blood cells was observed in the inner parts of the transplants. Localizations of IgG and complements were noted in areas of agarose, and also in the devitalized cells embedded within the agarose. Even if we had inhibited the proximity of the blood cells to the transplanted cells, the survival of the cells could not be secured. We suggest that these cytotoxic mechanisms seem to be associated not only with macrophages but also with soluble factors, including antibodies and complements. PMID:21916014

  2. Biology of platelet-rich plasma and its clinical application in cartilage repair

    PubMed Central

    2014-01-01

    Platelet-rich plasma (PRP) is an autologous concentrated cocktail of growth factors and inflammatory mediators, and has been considered to be potentially effective for cartilage repair. In addition, the fibrinogen in PRP may be activated to form a fibrin matrix to fill cartilage lesions, fulfilling the initial requirements of physiological wound healing. The anabolic, anti-inflammatory and scaffolding effects of PRP based on laboratory investigations, animal studies, and clinical trials are reviewed here. In vitro, PRP is found to stimulate cell proliferation and cartilaginous matrix production by chondrocytes and adult mesenchymal stem cells (MSCs), enhance matrix secretion by synoviocytes, mitigate IL-1β-induced inflammation, and provide a favorable substrate for MSCs. In preclinical studies, PRP has been used either as a gel to fill cartilage defects with variable results, or to slow the progression of arthritis in animal models with positive outcomes. Findings from current clinical trials suggest that PRP may have the potential to fill cartilage defects to enhance cartilage repair, attenuate symptoms of osteoarthritis and improve joint function, with an acceptable safety profile. Although current evidence appears to favor PRP over hyaluronan for the treatment of osteoarthritis, the efficacy of PRP therapy remains unpredictable owing to the highly heterogeneous nature of reported studies and the variable composition of the PRP preparations. Future studies are critical to elucidate the functional activity of individual PRP components in modulating specific pathogenic mechanisms. PMID:25164150

  3. Xenotransplantation of pig chondrocytes: therapeutic potential and barriers for cartilage repair.

    PubMed

    Sommaggio, R; Uribe-Herranz, M; Marquina, M; Costa, C

    2016-01-01

    Transplantation may be the best option for the repair of many cartilage lesions including early osteoarthritis. Currently, autologous and allogeneic chondrocytes are grafted into cartilage defects to treat selected patients with moderate clinical success. However, their limited use justifies exploring novel therapies for cartilage repair. Xenotransplantation could become a solution by offering high cell availability, quality and genetic engineering capabilities. The rejection process of xenogeneic cartilage is thus being elucidated in order to develop counteractive strategies. Initial studies determined that pig cartilage xenografts are rejected by a slow process comprising humoral and cellular responses in which the galactose α1,3-galactose antigen participates. Since then, our group has identified key mechanisms of the human response to pig chondrocytes (PCs). In particular, human antibody and complement contribute to PC rejection by inducing a pro-inflammatory milieu. Furthermore, PCs express and up-regulate molecules which are functionally relevant for a variety of cellular immune responses (SLA-I, the potent co-stimulatory molecule CD86, and adhesion molecules VCAM-1 and ICAM-1). These participate by triggering a T cell response, as well as supporting a prominent role of the innate immune responses led by natural killer (NK) cells and monocytes/macrophages. Human NK cells lyse PCs by using selected NK activating receptors, whereas human monocytes are activated by PCs to secrete cytokines and chemokines. All this knowledge sets the bases for the development of genetic engineering approaches designed to avert rejection of xenogeneic chondrocytes and leads the way to developing new clinical applications for cartilage repair. PMID:27377665

  4. The benefits and limitations of animal models for translational research in cartilage repair.

    PubMed

    Moran, Conor J; Ramesh, Ashwanth; Brama, Pieter A J; O'Byrne, John M; O'Brien, Fergal J; Levingstone, Tanya J

    2016-12-01

    Much research is currently ongoing into new therapies for cartilage defect repair with new biomaterials frequently appearing which purport to have significant regenerative capacity. These biomaterials may be classified as medical devices, and as such must undergo rigorous testing before they are implanted in humans. A large part of this testing involves in vitro trials and biomechanical testing. However, in order to bridge the gap between the lab and the clinic, in vivo preclinical trials are required, and usually demanded by regulatory approval bodies. This review examines the in vivo models in current use for cartilage defect repair testing and the relevance of each in the context of generated results and applicability to bringing the device to clinical practice. Some of the preclinical models currently used include murine, leporine, ovine, caprine, porcine, canine, and equine models. Each of these has advantages and disadvantages in terms of animal husbandry, cartilage thickness, joint biomechanics and ethical and licencing issues. This review will examine the strengths and weaknesses of the various animal models currently in use in preclinical studies of cartilage repair. PMID:26915001

  5. Adult stem cells in bone and cartilage tissue engineering.

    PubMed

    Salgado, António J; Oliveira, João T; Pedro, Adriano J; Reis, Rui L

    2006-09-01

    The progressive increase in life expectancy within the last century has led to the appearance of novel health related problems, some of those within the musculoskeletal field. Among the latter, one can find diseases such as osteoporosis, rheumatoid arthritis and bone cancer, just to mention some of the most relevant. Other related problems are those that arise from serious injuries, often leading to non-recoverable critical size defects. The therapies currently used to treat this type of diseases/injuries are based on the use of pharmaceutical agents, auto/allotransplant and synthetic materials. However, such solutions present a number of inconveniences and therefore, there is a constant search for novel therapeutic solutions. The appearance of a novel field of science called Tissue engineering brought some hope for the solution of the above mentioned problems. In this field, it is believed that by combining a 3D porous template--scaffold--with an adequate cell population, with osteo or chondrogenic potential, it will be possible to develop bone and cartilage tissue equivalents that when implanted in vivo, could lead to the total regeneration of the affected area. This ideal cell population should have a series of properties, namely a high osteo and chondrogenic potential and at the same time, should be easily expandable and maintained in cultures for long periods of time. Due to its natural and intrinsic properties, stem cells are one of the best available cell types. However, after this sentence, the readers may ask, "Which Stem Cells?". During the last 10/15 years, the scientific community witnessed and reported the appearance of several sources of stem cells with both osteo and chondrogenic potential. Therefore, the present review intends to make an overview of data reported on different sources of adult stem cells (bone marrow, periosteum, adipose tissue, skeletal muscle and umbilical cord) for bone and cartilage regenerative medicine, namely those focusing on

  6. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in three-dimensional biomimetic hydrogels.

    PubMed

    Smeriglio, Piera; Lai, Janice H; Dhulipala, Lakshmi; Behn, Anthony W; Goodman, Stuart B; Smith, Robert L; Maloney, William J; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Regeneration of human articular cartilage is inherently limited and extensive efforts have focused on engineering the cartilage tissue. Various cellular sources have been studied for cartilage tissue engineering including adult chondrocytes, and embryonic or adult stem cells. Juvenile chondrocytes (from donors below 13 years of age) have recently been reported to be a promising cell source for cartilage regeneration. Previous studies have compared the potential of adult and juvenile chondrocytes or adult and osteoarthritic (OA) chondrocytes. To comprehensively characterize the comparative potential of young, old, and diseased chondrocytes, here we examined cartilage formation by juvenile, adult, and OA chondrocytes in three-dimensional (3D) biomimetic hydrogels composed of poly(ethylene glycol) and chondroitin sulfate. All three human articular chondrocytes were encapsulated in the 3D biomimetic hydrogels and cultured for 3 or 6 weeks to allow maturation and extracellular matrix formation. Outcomes were analyzed using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. After 3 and 6 weeks, juvenile chondrocytes showed a greater upregulation of chondrogenic gene expression than adult chondrocytes, while OA chondrocytes showed a downregulation. Aggrecan and type II collagen deposition and glycosaminoglycan accumulation were high for juvenile and adult chondrocytes but not for OA chondrocytes. Similar trend was observed in the compressive moduli of the cartilage constructs generated by the three different chondrocytes. In conclusion, the juvenile, adult and OA chondrocytes showed differential responses in the 3D biomimetic hydrogels. The 3D culture model described here may also provide a useful tool to further study the molecular differences among chondrocytes from different stages, which can help elucidate the mechanisms for age-related decline in the intrinsic capacity for cartilage repair. PMID:25054343

  7. Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs.

    PubMed

    Alves da Silva, M L; Martins, A; Costa-Pinto, A R; Costa, P; Faria, S; Gomes, M; Reis, R L; Neves, N M

    2010-12-13

    Mesenchymal stem cells (MSCs) have been recognized for their ability to differentiate into cells of different tissues such as bone, cartilage, or adipose tissue, and therefore are of great interest for potential therapeutic strategies. Adherent, colony-forming, fibroblastic cells were isolated from human bone marrow aspirates, from patients undergoing knee arthroplasties, and the MSCs phenotype characterized by flow cytometry. Afterward, cells were seeded onto electrospun polycaprolactone nanofiber meshes and cultured in a multichamber flow perfusion bioreactor to determine their ability to produce cartilagineous extracellular matrix. Results indicate that the flow perfusion bioreactor increased the chondrogenic differentiation of hBM-MSCs, as confirmed either by morphological and RT-PCR analysis. Cartilage-related genes such as aggrecan, collagen type II, and Sox9 were expressed. ECM deposition was also detected by histological procedures. Collagen type II was present in the samples, as well as collagen type I. Despite no statistically significant values being obtained for gene expression, the other results support the choice of the bioreactor for this type of culture. PMID:21105638

  8. Time-dependent processes in stem cell-based tissue engineering of articular cartilage

    PubMed Central

    Gadjanski, Ivana; Spiller, Kara; Vunjak-Novakovic, Gordana

    2012-01-01

    Articular cartilage (AC), situated in diarthrodial joints at the end of the long bones, is composed of a single cell type (chondrocytes) embedded in dense extracellular matrix comprised of collagens and proteoglycans. AC is avascular and alymphatic and is not innervated. At first glance, such a seemingly simple tissue appears to be an easy target for the rapidly developing field of tissue engineering. However, cartilage engineering has proven to be very challenging. We focus on time-dependent processes associated with the development of native cartilage starting from stem cells, and the modalities for utilizing these processes for tissue engineering of articular cartilage. PMID:22016073

  9. Cartilage repair techniques of the talus: An update

    PubMed Central

    Baums, Mike H; Schultz, Wolfgang; Kostuj, Tanja; Klinger, Hans-Michael

    2014-01-01

    Symptomatic chondral or osteochondral defects of the talus reduce the quality of life of many patients. Although their pathomechanism is well understood, it is well known that different aetiologic factors play a role in their origin. Additionally, it is well recognised that the talar articular cartilage strongly differs from that in the knee. Despite this fact, many recommendations for the management of talar cartilage defects are based on approaches that were developed for the knee. Conservative treatment seems to work best in paediatric and adolescent patients with osteochondritis dissecans. However, depending on the size of the lesions, surgical approaches are necessary to treat many of these defects. Bone marrow stimulation techniques may achieve good results in small lesions. Large lesions may be treated by open procedures such as osteochondral autograft transfer or allograft transplantation. Autologous chondrocyte transplantation, as a restorative procedure, is well investigated in the knee and has been applied in the talus with increasing popularity and promising results but the evidence to date is poor. The goals of the current article are to summarise the different options for treating chondral and osteochondral defects of the talus and review the available literature. PMID:25035819

  10. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    PubMed

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies. PMID:27566509

  11. Production of three-dimensional tissue-engineered cartilage through mutual fusion of chondrocyte pellets.

    PubMed

    Hoshi, K; Fujihara, Y; Mori, Y; Asawa, Y; Kanazawa, S; Nishizawa, S; Misawa, M; Numano, T; Inoue, H; Sakamoto, T; Watanabe, M; Komura, M; Takato, T

    2016-09-01

    In this study, the mutual fusion of chondrocyte pellets was promoted in order to produce large-sized tissue-engineered cartilage with a three-dimensional (3D) shape. Five pellets of human auricular chondrocytes were first prepared, which were then incubated in an agarose mold. After 3 weeks of culture in matrix production-promoting medium under 5.78g/cm(2) compression, the tissue-engineered cartilage showed a sufficient mechanical strength. To confirm the usefulness of these methods, a transplantation experiment was performed using beagles. Tissue-engineered cartilage prepared with 50 pellets of beagle chondrocytes was transplanted subcutaneously into the cell-donor dog for 2 months. The tissue-engineered cartilage of the beagles maintained a rod-like shape, even after harvest. Histology showed fair cartilage regeneration. Furthermore, 20 pellets were made and placed on a beta-tricalcium phosphate prism, and this was then incubated within the agarose mold for 3 weeks. The construct was transplanted into a bone/cartilage defect in the cell-donor beagle. After 2 months, bone and cartilage regeneration was identified on micro-computed tomography and magnetic resonance imaging. This approach involving the fusion of small pellets into a large structure enabled the production of 3D tissue-engineered cartilage that was close to physiological cartilage tissue in property, without conventional polyper scaffolds. PMID:27173826

  12. Conserving Cartilage In Microtia Repair: The Modular Component Assembly Approach To Rebuilding A Human Ear

    PubMed Central

    Gandy, Jessica R.; Lemieux, Bryan; Foulad, Allen; Wong, Brian J.F.

    2016-01-01

    Objectives Current methods of microtia repair include carving an auricular framework from the costal synchondrosis. This requires considerable skill and may create a substantial donor site defect. Here, we present a modular component assembly (MCA) approach that minimizes the procedural difficulty and reduces the amount of cartilage to a single rib. Study Design Ex vivo study and survey Methods A single porcine rib was sectioned into multiple slices using a cartilage guillotine, cut into components outlined by 3D-printed templates, and assembled into an auricular scaffold. Electromechanical reshaping (EMR) was used to bend cartilage slices for creation of the helical rim. Chondrocyte viability was confirmed using confocal imaging. Ten surgeons reviewed the scaffold constructed with the MCA approach to evaluate aesthetics, relative stability, and clinical feasibility. Results An auricular framework with projection and curvature was fashioned from one rib. Surgeons found the MCA scaffold to meet minimal aesthetic and anatomic acceptability. When embedded under a covering, the region of the helix and anti-helix of the scaffold scored significantly higher on the assessment survey than that of an embedded alloplast implant (t-value=0.01). Otherwise, no difference was found between the embedded MCA and alloplast implants (t-value >0.05). EMR treated cartilage was found to be viable. Conclusion This study demonstrates that one rib can be used to create an aesthetic and durable framework for microtia repair. Precise assembly and the ability to obtain thin, uniform slices of cartilage were essential. This cartilage-sparing MCA approach may be an alternative to classic techniques. PMID:26720326

  13. New techniques in articular cartilage imaging.

    PubMed

    Potter, Hollis G; Black, Brandon R; Chong, Le Roy

    2009-01-01

    Standardized magnetic resonance imaging (MRI) pulse sequences provide an accurate, reproducible assessment of cartilage morphology. Three-dimensional (3D) modeling techniques enable semiautomated models of the joint surface and thickness measurements, which may eventually prove essential in templating before partial or total joint resurfacing as well as focal cartilage repair. Quantitative MRI techniques, such as T2 mapping, T1 rho, and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), provide noninvasive information about cartilage and repair tissue biochemistry. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) demonstrate information regarding the regional anisotropic variation of cartilage ultrastructure. Further research strengthening the association between quantitative MRI and cartilage material properties may predict the functional capacity of native and repaired tissue. MRI provides an essential objective assessment of cartilage regenerative procedures. PMID:19064167

  14. Cartilage Tissue Engineering Application of Injectable Gelatin Hydrogel with In Situ Visible-Light-Activated Gelation Capability in Both Air and Aqueous Solution

    PubMed Central

    Lin, Hang; Cheng, Anthony Wai-Ming; Alexander, Peter G.; Beck, Angela M.

    2014-01-01

    Chondroprogenitor cells encapsulated in a chondrogenically supportive, three-dimensional hydrogel scaffold represents a promising, regenerative approach to articular cartilage repair. In this study, we have developed an injectable, biodegradable methacrylated gelatin (mGL)–based hydrogel capable of rapid gelation via visible light (VL)–activated crosslinking in air or aqueous solution. The mild photocrosslinking conditions permitted the incorporation of cells during the gelation process. Encapsulated human-bone-marrow-derived mesenchymal stem cells (hBMSCs) showed high, long-term viability (up to 90 days) throughout the scaffold. To assess the applicability of the mGL hydrogel for cartilage tissue engineering, we have evaluated the efficacy of chondrogenesis of the encapsulated hBMSCs, using hBMSCs seeded in agarose as control. The ability of hBMSC-laden mGL constructs to integrate with host tissues after implantation was further investigated utilizing an in vitro cartilage repair model. The results showed that the mGL hydrogel, which could be photopolymerized in air and aqueous solution, supports hBMSC growth and TGF-β3-induced chondrogenesis. Compared with agarose, mGL constructs laden with hBMSCs are mechanically stronger with time, and integrate well with native cartilage tissue upon implantation based on push-out mechanical testing. VL-photocrosslinked mGL scaffold thus represents a promising scaffold for cell-based repair and resurfacing of articular cartilage defects. PMID:24575844

  15. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  16. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  17. Adult stem cells and tissue repair.

    PubMed

    Körbling, M; Estrov, Z; Champlin, R

    2003-08-01

    Recently, adult stem cells originating from bone marrow or peripheral blood have been suggested to contribute to repair and genesis of cells specific for liver, cardiac and skeletal muscle, gut, and brain tissue. The mechanism involved has been termed transdifferentiation, although other explanations including cell fusion have been postulated. Using adult stem cells to generate or repair solid organ tissue obviates the immunologic, ethical, and teratogenic issues that accompany embryonic stem cells. PMID:12931235

  18. Use of chondral fragments for one stage cartilage repair: A systematic review

    PubMed Central

    Bonasia, Davide Edoardo; Marmotti, Antongiulio; Rosso, Federica; Collo, Gianluca; Rossi, Roberto

    2015-01-01

    AIM: To investigate the state of the art regarding Cartilage Autograft Implantation System (CAIS) or Particulated Juvenile Allograft Cartilage (PJAC). METHODS: The authors searched the English literature regarding CAIS and PJAC. The search strategy was: (particulated cartilage) OR autologous cartilage fragments. All basic science articles were included. Clinical articles with less than 10 patients treated and less than 6 mo of follow-up were excluded. With these criteria, a total of 17 articles were available for the present review. RESULTS: PJAC and CAIS are relatively novel techniques for cartilage repair. Good basic science evidence was described to support the concept. Although the preliminary clinical reports show encouraging results, clinical data are still limited, especially for CAIS. The indications for both techniques need to be precisely defined (age of the patients, size of the lesion, and involvement of the subchondral bone), together with other debated issues. CONCLUSION: In conclusion, the authors can state that encouraging preliminary results are available for both techniques. However, further studies are necessary to precisely determine the indications, surgical techniques, and long term outcomes for PJAC and CAIS. PMID:26716098

  19. Implantation of rAAV5-IGF-I transduced autologous chondrocytes improves cartilage repair in full-thickness defects in the equine model.

    PubMed

    Ortved, Kyla F; Begum, Laila; Mohammed, Hussni O; Nixon, Alan J

    2015-02-01

    Cartilage injury often precipitates osteoarthritis which has driven research to bolster repair in cartilage impact damage. Autologous chondrocytes transduced with rAAV5-IGF-I were evaluated in chondral defects in a well-established large animal model. Cartilage was harvested from the talus of 24 horses; chondrocytes were isolated and stored frozen. Twenty million cells were cultured and transduced with 10(5) AAV vg/cell prior to implantation. Chondrocytes from eight horses were transduced with rAAV5-IGF-I, chondrocytes from eight horses with rAAV5-GFP, and chondrocytes from eight horses were not transduced. A 15 mm full-thickness chondral defect was created arthroscopically in the lateral trochlear ridge of the femur in both femoropatellar joints. Treated defects were filled with naive or gene-enhanced chondrocytes, in fibrin vehicle. Control defects in the opposite limb received fibrin alone. rAAV5-IGF-I transduced chondrocytes resulted in significantly better healing at 8 week arthroscopy and 8 month necropsy examination when compared to controls. At 8 months, defects implanted with cells expressing IGF-I had better histological scores compared to control defects and defects repaired with naive chondrocytes. This included increased chondrocyte predominance and collagen type II, both features of hyaline-like repair tissue. The equine model closely approximates human cartilage healing, indicating AAV-mediated genetic modification of chondrocytes may be clinically beneficial to humans. PMID:25311491

  20. A 5-Year Follow-Up After Cartilage Repair in the Knee Using a Platelet-Rich Plasma-Immersed Polymer-Based Implant

    PubMed Central

    Siclari, Alberto; Mascaro, Gennaro; Kaps, Christian; Boux, Eugenio

    2014-01-01

    The aim of our study was to analyze the clinical outcome after repair of cartilage defects of the knee with subchondral drilling and resorbable polymer-based implants immersed with autologous platelet-rich plasma (PRP). Fifty-two patients with focal chondral defects were treated with subchondral drilling, followed by covering with a polyglycolic acid - hyaluronan (PGA-HA) implant (chondrotissue®) immersed with autologous PRP. At 5-year follow-up, patients’ situation was assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and compared to the pre-operative situation. The KOOS showed clinically meaningful and significant (p < 0.05) improvement in all subcategories compared to baseline. Subgroup analysis showed that there were no differences in the clinical outcome regarding defect size and localization as well as degenerative condition of the knee. Cartilage repair was complete in 20 out of 21 patients at 4-year follow-up as shown by magnetic resonance observation of cartilage repair tissue (MOCART) scoring. Covering of focal cartilage defects with the PGA-HA implant and PRP after bone marrow stimulation leads to a lasting improvement of the patients’ situation. PMID:25352927

  1. Recurrence rate of repaired hard palate oronasal fistula with conchal cartilage graft

    PubMed Central

    Abdali, Hosein; Hadilou, Mansour; Feizi, Awat; Omranifard, Mahmood; Ardakani, Mehdi Rasti; Emami, Abolhasan

    2014-01-01

    Background: After cleft palate repair, oronasal fistula (ONF) formation is one of the considerable and troublesome complications. Conchal cartilage graft is one option that can be used in recurrent fistula correction. The aim of the current study is investigating the recurrence rate of the hard palate ONF or ONF at the junction of hard and soft palate after utilizing conchal cartilage graft and comparing this rate with other methods. Materials and Methods: In this observational prospective study, 29 patients suffering from ONF with small, medium and large sizes who were referring to Alzahra university hospital, Isfahan, Iran and Fateme Zahra university hospital, Tehran, Iran between November 2011 and November 2012 were enrolled. All patients had midline cleft palate, 29.6% of them had cleft lip too that was repaired previously. All patients were followed-up for 2 years (every 2 months) after repair. Results: The mean (range) age of studied samples was 10.7 (2-23) years. 16 patients (55.7%) were female, and reminders were male. During 2 years followup, we detected recurrence of ONF in 6 patients (20.68%) and the success rate was 79.32%. The recurrence rate, after applying the current approach, among who experienced the several times of recurrence was significantly higher than among those who experienced first time of recurrence (33.3% vs. 7.1%; P < 0.001). The mean [±SD] age of failed and successfully repaired patients were 11.3 (±4.5) and 8.4 (±5.25) years, respectively (P > 0.1). Conclusion: Using of conchal cartilage graft for recurrent ONF with ≤1 cm was safe and efficacious, in ONF >1 cm conchal cartilage graft can be used as a primary method and if recurrence occurred chooses other complex procedure. PMID:25538779

  2. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.

    PubMed

    Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-01-01

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo. PMID:26151846

  3. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration

    PubMed Central

    Rosenzweig, Derek H.; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-01-01

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo. PMID:26151846

  4. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    PubMed

    Wang, Pengzhen; Zhang, Fengjie; He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  5. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair

    PubMed Central

    He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10−6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  6. Osteochondral allograft transplantation in cartilage repair: Graft storage paradigm, translational models, and clinical applications.

    PubMed

    Bugbee, William D; Pallante-Kichura, Andrea L; Görtz, Simon; Amiel, David; Sah, Robert

    2016-01-01

    The treatment of articular cartilage injury and disease has become an increasingly relevant part of orthopaedic care. Articular cartilage transplantation, in the form of osteochondral allografting, is one of the most established techniques for restoration of articular cartilage. Our research efforts over the last two decades have supported the transformation of this procedure from experimental "niche" status to a cornerstone of orthopaedic practice. In this Kappa Delta paper, we describe our translational and clinical science contributions to this transformation: (1) to enhance the ability of tissue banks to process and deliver viable tissue to surgeons and patients, (2) to improve the biological understanding of in vivo cartilage and bone remodeling following osteochondral allograft (OCA) transplantation in an animal model system, (3) to define effective surgical techniques and pitfalls, and (4) to identify and clarify clinical indications and outcomes. The combination of coordinated basic and clinical studies is part of our continuing comprehensive academic OCA transplant program. Taken together, the results have led to the current standards for OCA processing and storage prior to implantation and also novel observations and mechanisms of the biological and clinical behavior of OCA transplants in vivo. Thus, OCA transplantation is now a successful and increasingly available treatment for patients with disabling osteoarticular cartilage pathology. PMID:26234194

  7. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.

    PubMed

    Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui

    2016-03-01

    Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering. PMID:26774563

  8. Characterization of Chondrocyte Scaffold Carriers for Cell-based Gene Therapy in Articular Cartilage Repair

    PubMed Central

    Shui, Wei; Yin, Liangjun; Luo, Jeffrey; Li, Ruidong; Zhang, Wenwen; Zhang, Jiye; Huang, Wei; Hu, Ning; Liang, Xi; Deng, Zhong-Liang; Hu, Zhenming; Shi, Lewis; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan; Ho, Sherwin

    2014-01-01

    Articular cartilage lesions in the knee are common injuries. Chondrocyte transplant represents a promising therapeutic modality for articular cartilage injuries. Here, we characterize the viability and transgene expression of articular chondrocytes cultured in 3-D scaffolds provided by four types of carriers. Articular chondrocytes are isolated from rabbit knees and cultured in four types of scaffolds: type I collagen sponge, fibrin glue, hyaluronan, and Open-cell PolyLactic Acid (OPLA). The cultured cells are transduced with adenovirus expressing green fluorescence protein (AdGFP) and luciferase (AdGL3-Luc). The viability and gene expression in the chondrocytes are determined with fluorescence microscopy and luciferase assay. Cartilage matrix production is assessed by Alcian blue staining. Rabbit articular chondrocytes are effectively infected by AdGFP and exhibited sustained GFP expression. All tested scaffolds support the survival and gene expression of the infected chondrocytes. However, the highest transgene expression is observed in the OPLA carrier. At four weeks, Alcian blue-positive matrix materials are readily detected in OPLA cultures. Thus, our results indicate that, while all tested carriers can support the survival of chondrocytes, OPLA supports the highest transgene expression and is the most conductive scaffold for matrix production, suggesting that OPLA may be a suitable scaffold for cell-based gene therapy of articular cartilage repairs. PMID:23629940

  9. Novel nano-rough polymers for cartilage tissue engineering

    PubMed Central

    Balasundaram, Ganesan; Storey, Daniel M; Webster, Thomas J

    2014-01-01

    This study presents an innovative method for creating a highly porous surface with nanoscale roughness on biologically relevant polymers, specifically polyurethane (PU) and polycaprolactone (PCL). Nanoembossed polyurethane (NPU) and nanoembossed polycaprolactone (NPCL) were produced by the casting of PU and PCL over a plasma-deposited, spiky nanofeatured crystalline titanium (Ti) surface. The variables used in the process of making the spiky Ti surface can be altered to change the physical properties of the spiky particles, and thus, the cast polymer substrate surface can be altered. The spiky Ti surface is reusable to produce additional nanopolymer castings. In this study, control plain PU and PCL polymers were produced by casting the polymers over a plain Ti surface (without spikes). All polymer surface morphologies were characterized using both scanning electron microscopy and atomic force microscopy, and their surface energies were measured using liquid contact angle measurements. The results revealed that both NPU and NPCL possessed a higher degree of nanometer surface roughness and higher surface energy compared with their respective unaltered polymers. Further, an in vitro study was carried out to determine chondrocyte (cartilage-producing cells) functions on NPU and NPCL compared with on control plain polymers. Results of this study provided evidence of increased chondrocyte numbers on NPU and NPCL compared with their respective plain polymers after periods of up to 7 days. Moreover, the results provide evidence of greater intracellular protein production and collagen secretion by chondrocytes cultured on NPU and NPCL compared with control plain polymers. In summary, the present in vitro results of increased chondrocyte functions on NPU and NPCL suggest these materials may be suitable for numerous polymer-based cartilage tissue-engineering applications and, thus, deserve further investigation. PMID:24790427

  10. Cartilage Engineering and Microgravity

    NASA Astrophysics Data System (ADS)

    Toffanin, R.; Bader, A.; Cogoli, A.; Carda, C.; Fantazzini, P.; Garrido, L.; Gomez, S.; Hall, L.; Martin, I.; Murano, E.; Poncelet, D.; Pörtner, R.; Hoffmann, F.; Roekaerts, D.; Ronney, P.; Triebel, W.; Tummers, M.

    2005-06-01

    The complex effects of mechanical forces and growth factors on articular cartilage development still need to be investigated in order to identify optimal conditions for articular cartilage repair. Strictly controlled in vitro studies under modelled or space microgravity conditions can improve our understanding of the fundamental role of gravity in articular cartilage development. The main objective of this Topical Team is to use modelled microgravity as a tool to elucidate the fundamental science of cartilage regeneration. Particular attention is, therefore, given to the effects of physical forces under altered gravitational conditions, applied using controlled bioreactor systems, on cell metabolism, cell differentiation and tissue development. Specific attention is also directed toward the potential advantages of using magnetic resonance methods for the non-destructive characterisation of scaffolds, chondrocytes-polymer constructs and tissue engineered cartilage.

  11. Effects of microcurrent stimulation on Hyaline cartilage repair in immature male rats (Rattus norvegicus)

    PubMed Central

    2013-01-01

    Background In this study, we investigate the effects of microcurrent stimulation on the repair process of xiphoid cartilage in 45-days-old rats. Methods Twenty male rats were divided into a control group and a treated group. A 3-mm defect was then created with a punch in anesthetized animals. In the treated group, animals were submitted to daily applications of a biphasic square pulse microgalvanic continuous electrical current during 5 min. In each application, it was used a frequency of 0.3 Hz and intensity of 20 μA. The animals were sacrificed at 7, 21 and 35 days after injury for structural analysis. Results Basophilia increased gradually in control animals during the experimental period. In treated animals, newly formed cartilage was observed on days 21 and 35. No statistically significant differences in birefringent collagen fibers were seen between groups at any of the time points. Treated animals presented a statistically larger number of chondroblasts. Calcification points were observed in treated animals on day 35. Ultrastructural analysis revealed differences in cell and matrix characteristics between the two groups. Chondrocyte-like cells were seen in control animals only after 35 days, whereas they were present in treated animals as early as by day 21. The number of cuprolinic blue-stained proteoglycans was statistically higher in treated animals on days 21 and 35. Conclusion We conclude that microcurrent stimulation accelerates the cartilage repair in non-articular site from prepuberal animals. PMID:23331612

  12. A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study

    PubMed Central

    Peck, Yvonne; He, Pengfei; Chilla, Geetha Soujanya V. N.; Poh, Chueh Loo; Wang, Dong-An

    2015-01-01

    In this pilot study, an autologous synthetic scaffold-free construct with hyaline quality, termed living hyaline cartilaginous graft (LhCG), was applied for treating cartilage lesions. Implantation of autologous LhCG was done at load-bearing regions of the knees in skeletally mature mini-pigs for 6 months. Over the course of this study, significant radiographical improvement in LhCG treated sites was observed via magnetic resonance imaging. Furthermore, macroscopic repair was effected by LhCG at endpoint. Microscopic inspection revealed that LhCG engraftment restored cartilage thickness, promoted integration with surrounding native cartilage, produced abundant cartilage-specific matrix molecules, and re-established an intact superficial tangential zone. Importantly, the repair efficacy of LhCG was quantitatively shown to be comparable to native, unaffected cartilage in terms of biochemical composition and biomechanical properties. There were no complications related to the donor site of cartilage biopsy. Collectively, these results imply that LhCG engraftment may be a viable approach for articular cartilage repair. PMID:26549401

  13. BST-CarGel® Treatment Maintains Cartilage Repair Superiority over Microfracture at 5 Years in a Multicenter Randomized Controlled Trial

    PubMed Central

    Stanish, William D.; McCormack, Robert; Forriol, Francisco; Mohtadi, Nicholas; Pelet, Stéphane; Desnoyers, Jacques; Méthot, Stéphane; Vehik, Kendra; Restrepo, Alberto

    2015-01-01

    Objective The efficacy and safety of BST-CarGel®, a chitosan scaffold for cartilage repair was compared with microfracture alone at 1 year during a multicenter randomized controlled trial in the knee. This report was undertaken to investigate 5-year structural and clinical outcomes. Design The international randomized controlled trial enrolled 80 patients, aged 18 to 55 years, with grade III or IV focal lesions on the femoral condyles. Patients were randomized to receive BST-CarGel® treatment or microfracture alone, and followed standardized 12-week rehabilitation. Co-primary endpoints of repair tissue quantity and quality were evaluated by 3-dimensional MRI quantification of the degree of lesion filling (%) and T2 relaxation times. Secondary endpoints were clinical benefit measured with WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaires and safety. General estimating equations were used for longitudinal statistical analysis of repeated measures. Results Blinded MRI analysis demonstrated that BST-CarGel®-treated patients showed a significantly greater treatment effect for lesion filling (P = 0.017) over 5 years compared with microfracture alone. A significantly greater treatment effect for BST-CarGel® was also found for repair tissue T2 relaxation times (P = 0.026), which were closer to native cartilage compared to the microfracture group. BST-CarGel® and microfracture groups showed highly significant improvement at 5 years from pretreatment baseline for each WOMAC subscale (P < 0.0001), and there were no differences between the treatment groups. Safety was comparable for both groups. Conclusions BST-CarGel® was shown to be an effective mid-term cartilage repair treatment. At 5 years, BST-CarGel® treatment resulted in sustained and significantly superior repair tissue quantity and quality over microfracture alone. Clinical benefit following BST-CarGel® and microfracture treatment were highly significant over baseline

  14. Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair.

    PubMed

    Giannoni, Paolo; Lazzarini, Erica; Ceseracciu, Luca; Barone, Alberto C; Quarto, Rodolfo; Scaglione, Silvia

    2015-10-01

    Treatment of full-thickness cartilage defects relies on osteochondral bilayer grafts, which mimic the microenvironment and structure of the two affected tissues: articular cartilage and subchondral bone. However, the integrity and stability of the grafts are hampered by the presence of a weak interphase, generated by the layering processes of scaffold manufacturing. We describe here the design and development of a bilayer monolithic osteochondral graft, avoiding delamination of the two distinct layers but preserving the cues for selective generation of cartilage and bone. A highly porous polycaprolactone-based graft was obtained by combining solvent casting/particulate leaching techniques. Pore structure and interconnections were designed to favour in vivo vascularization only at the bony layer. Hydroxyapatite granules were added as bioactive signals at the site of bone regeneration. Unconfined compressive tests displayed optimal elastic properties and low residual deformation of the graft after unloading (< 3%). The structural integrity of the graft was successfully validated by tension fracture tests, revealing high resistance to delamination, since fractures were never displayed at the interface of the layers (n = 8). Ectopic implantation of grafts in nude mice, after seeding with bovine trabecular bone-derived mesenchymal stem cells and bovine articular chondrocytes, resulted in thick areas of mature bone surrounding ceramic granules within the bony layer, and a cartilaginous alcianophilic matrix in the chondral layer. Vascularization was mostly observed in the bony layer, with a statistically significant higher blood vessel density and mean area. Thus, the easily generated osteochondral scaffolds, since they are mechanically and biologically functional, are suitable for tissue-engineering applications for cartilage repair. PMID:23172816

  15. Demineralized Bone Matrix Combined Bone Marrow Mesenchymal Stem Cells, Bone Morphogenetic Protein-2 and Transforming Growth Factor-β3 Gene Promoted Pig Cartilage Defect Repair

    PubMed Central

    Wang, Xin; Li, Yanlin; Han, Rui; He, Chuan; Wang, Guoliang; Wang, Jianwei; Zheng, Jiali; Pei, Mei; Wei, Lei

    2014-01-01

    Objectives To investigate whether a combination of demineralized bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) infected with adenovirus-mediated- bone morphogenetic protein (Ad-BMP-2) and transforming growth factor-β3 (Ad-TGF-β3) promotes the repair of the full-thickness cartilage lesions in pig model. Methods BMSCs isolated from pig were cultured and infected with Ad-BMP-2(B group), Ad-TGF-β3 (T group), Ad-BMP-2 + Ad-TGF-β3(BT group), cells infected with empty Ad served as a negative group(N group), the expression of the BMP-2 and TGF-β3 were confirmed by immunofluorescence, PCR, and ELISA, the expression of SOX-9, type II collagen(COL-2A), aggrecan (ACAN) in each group were evaluated by real-time PCR at 1w, 2w, 3w, respectively. The chondrogenic differentiation of BMSCs was evaluated by type II collagen at 21d with immunohistochemical staining. The third-passage BMSCs infected with Ad-BMP-2 and Ad-TGF-β3 were suspended and cultured with DBM for 6 days to construct a new type of tissue engineering scaffold to repair full-thickness cartilage lesions in the femur condyles of pig knee, the regenerated tissue was evaluated at 1,2 and 3 months after surgery by gross appearance, H&E, safranin O staining and O'driscoll score. Results Ad-BMP-2 and Ad-TGF-β3 (BT group) infected cells acquired strong type II collagen staining compared with Ad-BMP-2 (B group) and Ad-TGF-β3 (T group) along. The Ad-BMP-2 and Ad-TGF-β3 infected BMSCs adhered and propagated well in DBM and the new type of tissue engineering scaffold produced hyaline cartilage morphology containing a stronger type II collagen and safranin O staining, the O'driscoll score was higher than other groups. Conclusions The DBM compound with Ad-BMP-2 and Ad-TGF-β3 infected BMSCs scaffold has a good biocompatibility and could well induce cartilage regeneration to repair the defects of joint cartilage. This technology may be efficiently employed for cartilage lesions repair in vivo. PMID

  16. Emergence of Scaffold-free Approaches for Tissue Engineering Musculoskeletal Cartilages

    PubMed Central

    DuRaine, Grayson D.; Brown, Wendy E.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    This review explores scaffold-free methods as an additional paradigm for tissue engineering. Musculoskeletal cartilages –for example articular cartilage, meniscus, temporomandibular joint disc, and intervertebral disc – are characterized by low vascularity and cellularity, and are amenable to scaffold-free tissue engineering approaches. Scaffold-free approaches, particularly the self-assembling process, mimic elements of developmental processes underlying these tissues. Discussed are various scaffold-free approaches for musculoskeletal cartilage tissue engineering, such as cell sheet engineering, aggregation, and the self-assembling process, as well as the availability and variety of cells used. Immunological considerations are of particular importance as engineered tissues are frequently of allogeneic, if not xenogeneic, origin. Factors that enhance the matrix production and mechanical properties of these engineered cartilages are also reviewed, as the fabrication of biomimetically suitable tissues is necessary to replicate function and ensure graft survival in vivo. The concept of combining scaffold-free and scaffold-based tissue engineering methods to address clinical needs is also discussed. Inasmuch as scaffold-based musculoskeletal tissue engineering approaches have been employed as a paradigm to generate engineered cartilages with appropriate functional properties, scaffold-free approaches are emerging as promising elements of a translational pathway not only for musculoskeletal cartilages but for other tissues as well. PMID:25331099

  17. Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries.

    PubMed

    Trzeciak, Tomasz; Richter, Magdalena; Suchorska, Wiktoria; Augustyniak, Ewelina; Lach, Michał; Kaczmarek, Małgorzata; Kaczmarczyk, Jacek

    2016-03-01

    Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated. PMID:26762517

  18. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction

    PubMed Central

    Mastbergen, Simon C; Jones, Elena; Calder, Stuart J; Lafeber, Floris P J G; McGonagle, Dennis

    2016-01-01

    Objectives Knee joint distraction (KJD) is a novel, but poorly understood, treatment for osteoarthritis (OA) associated with remarkable ‘spontaneous’ cartilage repair in which resident synovial fluid (SF) multipotential mesenchymal stromal cells (MSCs) may play a role. We hypothesised that SF hyaluronic acid (HA) inhibited the initial interaction between MSCs and cartilage, a key first step to integration, and postulate that KJD environment favoured MSC/cartilage interactions. Methods Attachment of dual-labelled SF-MSCs were assessed in a novel in vitro human cartilage model using OA and rheumatoid arthritic (RA) SF. SF was digested with hyaluronidase (hyase) and its effect on adhesion was observed using confocal microscopy. MRI and microscopy were used to image autologous dual-labelled MSCs in an in vivo canine model of KJD. SF-HA was investigated using gel electrophoresis and densitometry. Results Osteoarthritic-synovial fluid (OA-SF) and purified high molecular weight (MW) HA inhibited SF-MSC adhesion to plastic, while hyase treatment of OA-SF but not RA-SF significantly increased MSC adhesion to cartilage (3.7-fold, p<0.05) These differences were linked to the SF mediated HA-coat which was larger in OA-SF than in RA-SF. OA-SF contained >9 MDa HA and this correlated with increases in adhesion (r=0.880). In the canine KJD model, MSC adhesion to cartilage was evident and also dependent on HA MW. Conclusions These findings highlight an unappreciated role of SF-HA on MSC interactions and provide proof of concept that endogenous SF-MSCs are capable of adhering to cartilage in a favourable biochemical and biomechanical environment in OA distracted joints, offering novel one-stage strategies towards joint repair. PMID:25948596

  19. Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage.

    PubMed

    Visscher, Dafydd O; Bos, Ernst J; Peeters, Mirte; Kuzmin, Nikolay V; Groot, Marie Louise; Helder, Marco N; van Zuijlen, Paul P M

    2016-06-01

    Scaffold contraction is a common but underestimated problem in the field of tissue engineering. It becomes particularly problematic when creating anatomically complex shapes such as the ear. The aim of this study was to develop a contraction-free biocompatible scaffold construct for ear cartilage tissue engineering. To address this aim, we used three constructs: (i) a fibrin/hyaluronic acid (FB/HA) hydrogel, (ii) a FB/HA hydrogel combined with a collagen I/III scaffold, and (iii) a cage construct containing (ii) surrounded by a 3D-printed poly-ɛ-caprolactone mold. A wide range of different cell types were tested within these constructs, including chondrocytes, perichondrocytes, adipose-derived mesenchymal stem cells, and their combinations. After in vitro culturing for 1, 14, and 28 days, all constructs were analyzed. Macroscopic observation showed severe contraction of the cell-seeded hydrogel (i). This could be prevented, in part, by combining the hydrogel with the collagen scaffold (ii) and prevented in total using the 3D-printed cage construct (iii). (Immuno)histological analysis, multiphoton laser scanning microscopy, and biomechanical analysis showed extracellular matrix deposition and increased Young's modulus and thereby the feasibility of ear cartilage engineering. These results demonstrated that the 3D-printed cage construct is an adequate model for contraction-free ear cartilage engineering using a range of cell combinations. PMID:27089896

  20. Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering.

    PubMed

    Griffin, M F; Premakumar, Y; Seifalian, A M; Szarko, M; Butler, P E M

    2016-01-01

    Nasal reconstruction is currently performed using autologous grafts provides but is limited by donor site morbidity, tissue availability and potentially graft failure. Additionally, current alternative alloplastic materials are limited by their high extrusion and infection rates. Matching mechanical properties of synthetic materials to the native tissue they are replacing has shown to be important in the biocompatibility of implants. To date the mechanical properties of the human nasal cartilages has not been studied in depth to be able to create tissue-engineered replacements with similar mechanical properties to native tissue. The young's modulus was characterized in compression on fresh-frozen human cadaveric septal, alar, and lateral cartilage. Due to the functional differences experienced by the various aspects of the septal cartilage, 16 regions were evaluated with an average elastic modulus of 2.72 ± 0.63 MPa. Furthermore, the posterior septum was found to be significantly stiffer than the anterior septum (p < 0.01). The medial and lateral alar cartilages were tested at four points with an elastic modulus ranging from 2.09 ± 0.81 MPa, with no significant difference between the cartilages (p < 0.78). The lateral cartilage was tested once in all cadavers with an average elastic modulus of 0.98 ± 0.29 MPa. In conclusion, this study provides new information on the compressive mechanical properties of the human nasal cartilage, allowing surgeons to have a better understanding of the difference between the mechanical properties of the individual nasal cartilages. This study has provided a reference, by which tissue-engineered should be developed for effective cartilage replacements for nasal reconstruction. PMID:26676857

  1. Nanocomposite Scaffold for Chondrocyte Growth and Cartilage Tissue Engineering: Effects of Carbon Nanotube Surface Functionalization

    PubMed Central

    Collette, Nicole M.; Thomas, Cynthia B.; Genetos, Damian C.; Loots, Gabriela G.

    2014-01-01

    functionalization may promote ECM expression in this culture system. The results of this study indicate that SWNTs exhibit a unique potential for cartilage tissue engineering, where functionalization with bioactive molecules may provide an improved substrate for stimulation of cellular growth and repair. PMID:24593020

  2. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization.

    PubMed

    Chahine, Nadeen O; Collette, Nicole M; Thomas, Cynthia B; Genetos, Damian C; Loots, Gabriela G

    2014-09-01

    functionalization may promote ECM expression in this culture system. The results of this study indicate that SWNTs exhibit a unique potential for cartilage tissue engineering, where functionalization with bioactive molecules may provide an improved substrate for stimulation of cellular growth and repair. PMID:24593020

  3. An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering.

    PubMed

    Simson, Jacob A; Strehin, Iossif A; Lu, Qiaozhi; Uy, Manuel O; Elisseeff, Jennifer H

    2013-03-11

    A chondroitin sulfate-bone marrow (CS-BM) adhesive hydrogel was used to localize rhBMP-2 to enhance articular cartilage tissue formation. Chondrocyte pellet culture revealed that 0.1 and 1 μg/mL of rhBMP-2 enhanced sulfated-GAG content. rhBMP-2 localization within the hydrogels was investigated, and it was found that BM, CS-NHS, and rhBMP-2 levels and time affected rhBMP-2 retention. Retention was modulated from 82 to 99% over a 3-week period for the material formulations investigated. To evaluate carrier efficacy, rhBMP-2 and bovine articular chondrocytes were encapsulated within CS-BM, and biochemical evaluation revealed significant increases in total collagen production with rhBMP-2. Histological analysis revealed more robust tissue formation and greater type-II collagen production with encapsulated rhBMP-2. Subsequently, a subcutaneous culture of hydrogels revealed increased total collagen, type-II to type-I collagen ratio, and sulfated GAG in samples carrying rhBMP-2. These findings indicate the development of a multifunctional system capable of localizing rhBMP-2 to enhance repair tissue quality. PMID:23320412

  4. Repair of articular cartilage in rabbit osteochondral defects promoted by extracorporeal shock wave therapy

    NASA Astrophysics Data System (ADS)

    Chu, C.-H.; Yen, Y.-S.; Chen, P.-L.; Wen, C.-Y.

    2015-03-01

    This study investigated the stimulative effect of extracorporeal shock wave therapy (ESWT) on the articular cartilage regeneration in the rabbit osteochondral defect model for the first time. An osteochondral defect, 3 mm in diameter and 3 mm in depth, was drilled in the patellar groove at the distal end of each femur in 24 mature New Zealand rabbits. The right patellar defects received 500 impulses of shock waves of (at 14 kV) at 1 week after surgery and were designated as the experimental samples; the left patellar defects served as control. At 4, 8, and 12 weeks after ESWT, cartilage repair was evaluated macroscopically and histologically using a semiquantitative grading scale. The total scores of the macroscopic evaluation at 4, 8, and 12 weeks in the experimental group were superior to those in the control group (statistical significance level ). As to the total scores of the histologic evaluation, the experimental group showed a tendency toward a better recovery than the control group at 4 weeks (). At 8 and 12 weeks the differences between the experimental and control groups became mild and had no significance on statistical analysis. These findings suggested that regeneration of articular cartilage defects might be promoted by ESWT, especially at the early stage. The easy and safe ESWT is potentially viable for clinical application.

  5. [Tissue engineered skin and regenerative wound repair].

    PubMed

    Han, Chun-mao; Wang, Xin-gang

    2013-04-01

    Various skin defects resulting from mechanical injury, burns, chronic ulcers, and resection of tumor etc. are very common in clinic. The traditional treatment measure, such as grafting of autologous split-thickness skin remains the gold standard. However, its limitations are obvious, such as shortage of donor sites, creation of new injury, and scar formation. To realize regenerative or scarless repair of tissue defects has always been the dream of human being. The advent of tissue engineered skin (TES) provides an ideal access to tissue regeneration. After decades of development, several kinds of TES products have been developed and used in clinic, with promising effects. However, a large number of basic scientific problems regarding TES, as well as difficulties in translation of basic research to bedside should be taken into serious consideration. This article presents a comprehensive overview of strategies of construction of TES, the role of TES in regenerative wound repair, and its opportunities and challenges. PMID:23985197

  6. Native Tissue Prolapse Repairs: Comparative Effectiveness Trials.

    PubMed

    Siff, Lauren N; Barber, Matthew D

    2016-03-01

    This report reviews the success rates and complications of native tissue (nonmesh) vaginal reconstruction of pelvic organ prolapse by compartment. For apical prolapse, both uterosacral ligament suspensions and sacrospinous ligament fixations are effective and provided similar outcomes in anatomy and function with few adverse events. In the anterior compartment, traditional colporrhaphy technique is no different than ultralateral suturing. In the posterior compartment, transvaginal rectocele repair is superior to transanal repair. For uterine preservation, sacrospinous hysteropexy is not inferior to vaginal hysterectomy with uterosacral ligament suspension for treatment of apical uterovaginal prolapse. PMID:26880509

  7. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering

    PubMed Central

    Green, Jordan D.; Tollemar, Viktor; Dougherty, Mark; Yan, Zhengjian; Yin, Liangjun; Ye, Jixing; Collier, Zachary; Mohammed, Maryam K.; Haydon, Rex C.; Luu, Hue H.; Kang, Richard; Lee, Michael J.; Ho, Sherwin H.; He, Tong-Chuan; Shi, Lewis L.; Athiviraham, Aravind

    2015-01-01

    Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering. PMID:26835506

  8. A new heterologous fibrin sealant as a scaffold to cartilage repair-Experimental study and preliminary results.

    PubMed

    de Barros, Caio Nunes; Miluzzi Yamada, Ana Lúcia; Junior, Rui Seabra F; Barraviera, Benedito; Hussni, Carlos Alberto; de Souza, Jaqueline Brandão; Watanabe, Marcos Jun; Rodrigues, Celso Antônio; Garcia Alves, Ana Liz

    2016-07-01

    Autologous fibrin gel is commonly used as a scaffold for filling defects in articular cartilage. This biomaterial can also be used as a sealant to control small hemorrhages and is especially helpful in situations where tissue reparation capacity is limited. In particular, fibrin can act as a scaffold for various cell types because it can accommodate cell migration, differentiation, and proliferation. Despite knowledge of the advantages of this biomaterial and mastery of the techniques required for its application, the durability of several types of sealant at the site of injury remains questionable. Due to the importance of such data for evaluating the quality and efficiency of fibrin gel formulations on its use as a scaffold, this study sought to analyze the heterologous fibrin sealant developed from the venom of Crotalus durissus terrificus using studies in ovine experimental models. The fibrin gel developed from the venom of this snake was shown to act as a safe, stable, and durable scaffold for up to seven days, without causing adverse side effects. Fibrin gel produced from the venom of the Crotalus durissus terrificus snake possesses many clinical and surgical uses. It presents the potential to be used as a biomaterial to help repair skin lesions or control bleeding, and it may also be used as a scaffold when applied together with various cell types. The intralesional use of the fibrin gel from the venom of this snake may improve surgical and clinical treatments in addition to being inexpensive and adequately consistent, durable, and stable. The new heterologous fibrin sealant is a scaffold candidate to cartilage repair in this study. PMID:26264444

  9. Proteomic analysis of engineered cartilage

    PubMed Central

    Pu, Xinzhu; Oxford, Julia Thom

    2016-01-01

    Summary Tissue engineering holds promise for the treatment of damaged and diseased tissues, especially for those tissues that do not undergo repair and regeneration readily in situ. Many techniques are available for cell and tissue culturing and differentiation of chondrocytes using a variety of cell types, differentiation methods, and scaffolds. In each case, it is critical to demonstrate the cellular phenotype and tissue composition, with particular attention to the extracellular matrix molecules that play a structural role and that contribute to the mechanical properties of the resulting tissue construct. Mass spectrometry provides an ideal analytical method with which to characterize the full spectrum of proteins produced by tissue engineered cartilage. Using normal cartilage tissue as a standard, tissue engineered cartilage can be optimized according to the entire proteome. Proteomic analysis is a complementary approach to biochemical, immunohistochemical, and mechanical testing of cartilage constructs. Proteomics is applicable as an analysis approach to most cartilage constructs generated from a variety of cellular sources including primary chondrocytes, mesenchymal stem cells from bone marrow, adipose tissue, induced pluripotent stem cells, and embryonic stem cells. Additionally, proteomics can be used to optimize novel scaffolds and bioreactor applications, yielding cartilage tissue with the proteomic profile of natural cartilage. PMID:26445845

  10. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering.

    PubMed

    Ren, Kaixuan; He, Chaoliang; Xiao, Chunsheng; Li, Gao; Chen, Xuesi

    2015-05-01

    Glycopolypeptides are an emerging class of bioinspired polymers that mimic naturally occurring glycopeptides or glycoproteins, and therefore are expected to exhibit great potential for biomedical applications. In this study, a glycopolypeptide was synthesized by conjugation of poly(γ-propargyl-l-glutamate) (PPLG) with azido-modified mannose and 3-(4-hydroxyphenyl) propanamide (HPPA), via click chemistry. Injectable hydrogels based on the glycopolypeptide were developed through enzymatic crosslinking reaction in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The physicochemical properties of the hydrogels, such as gelation time, storage modulus, swelling and degradation time, could be controlled by varying the concentrations of HRP and H2O2. The glycopolypetide copolymer as well as the extracts of the glycopolypetide hydrogels displayed good cytocompatibility in vitro. After subcutaneous injection into rats, the glycopolypeptide hydrogels were rapidly formed in situ, and exhibited acceptable biocompatibility accompanying the degradation of the hydrogels in vivo. The rabbit chondrocytes inside the glycopolypeptide hydrogels showed spherical morphology with high viability during the incubation period of 3 weeks in vitro, and exhibited a higher proliferation rate than within the hydrogel counterparts of PPLG grafted with 2-(2-(2-methoxyethoxy)ethoxy)ethane (MEO3) and HPPA. Biochemical analysis demonstrated that the production of glycosaminoglycans (GAG) and type II collagen were significantly enhanced after incubation for 2 and 3 weeks in vitro. Moreover, the chondrocyte-containing glycopolypeptide hydrogels in subcutaneous model of nude mice maintained chondrocyte phenotype and produced the cartilaginous specific matrix. These results indicated that the biomimetic glycopolypeptide-based hydrogels hold potential as three-dimensional scaffolds for cartilage tissue engineering. PMID:25771014

  11. Myocardial tissue engineering for cardiac repair.

    PubMed

    Pecha, Simon; Eschenhagen, Thomas; Reichenspurner, Hermann

    2016-03-01

    The number of patients with heart failure is increasing in the aging population. Heart transplantation remains the only curative treatment option for patients with end-stage heart failure. Because of an organ donor shortage, new organ-independent treatment options are necessary. Different approaches to cardiac repair therapies have been developed and optimized in recent years. One of these promising approaches is myocardial tissue engineering, which refers to the creation of 3-dimensional engineered heart tissue in vitro. This perspective provides an overview of different approaches to tissue engineering, including essentials to improve tissue quality and choice of ideal cell source, as well as an overview of in vitro and in vivo studies. Several hurdles that have to be overcome before clinical application of engineered heart tissue might become a realistic scenario are also addressed. PMID:26856673

  12. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair

    PubMed Central

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing

    2014-01-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair. PMID:25154784

  13. A method to screen and evaluate tissue adhesives for joint repair applications

    PubMed Central

    2012-01-01

    Background Tissue adhesives are useful means for various medical procedures. Since varying requirements cause that a single adhesive cannot meet all needs, bond strength testing remains one of the key applications used to screen for new products and study the influence of experimental variables. This study was conducted to develop an easy to use method to screen and evaluate tissue adhesives for tissue engineering applications. Method Tissue grips were designed to facilitate the reproducible production of substrate tissue and adhesive strength measurements in universal testing machines. Porcine femoral condyles were used to generate osteochondral test tissue cylinders (substrates) of different shapes. Viability of substrates was tested using PI/FDA staining. Self-bonding properties were determined to examine reusability of substrates (n = 3). Serial measurements (n = 5) in different operation modes (OM) were performed to analyze the bonding strength of tissue adhesives in bone (OM-1) and cartilage tissue either in isolation (OM-2) or under specific requirements in joint repair such as filling cartilage defects with clinical applied fibrin/PLGA-cell-transplants (OM-3) or tissues (OM-4). The efficiency of the method was determined on the basis of adhesive properties of fibrin glue for different assembly times (30 s, 60 s). Seven randomly generated collagen formulations were analyzed to examine the potential of method to identify new tissue adhesives. Results Viability analysis of test tissue cylinders revealed vital cells (>80%) in cartilage components even 48 h post preparation. Reuse (n = 10) of test substrate did not significantly change adhesive characteristics. Adhesive strength of fibrin varied in different test settings (OM-1: 7.1 kPa, OM-2: 2.6 kPa, OM-3: 32.7 kPa, OM-4: 30.1 kPa) and was increasing with assembly time on average (2.4-fold). The screening of the different collagen formulations revealed a substance with significant higher adhesive

  14. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.

    PubMed

    Lulich, Steven M; Arsikere, Harish

    2015-06-01

    This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed. PMID:26093432

  15. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model.

    PubMed

    Mak, J; Jablonski, C L; Leonard, C A; Dunn, J F; Raharjo, E; Matyas, J R; Biernaskie, J; Krawetz, R J

    2016-01-01

    Controversy remains whether articular cartilage has an endogenous stem/progenitor cell population, since its poor healing capacity after injury can lead to diseases such as osteoarthritis. In the joint environment there are mesenchymal stem/progenitor cells (MSCs) in the synovial membrane and synovial fluid that can differentiate into cartilage, but it is still under debate if these cells contribute to cartilage repair in vivo. In this study, we isolated a Sca-1 positive, chondrogenesis capable population of mouse synovial MSCs from C57BL6 and MRL/MpJ "super-healer" strains. Intra-articular injection of Sca-1 + GFP + synovial cells from C57BL6 or MRL/MpJ into C57BL6 mice following cartilage injury led to increased cartilage repair by 4 weeks after injury. GFP expression was detected in the injury site at 2 weeks, but not 4 weeks after injury. These results suggest that synovial stem/progenitor cells, regardless of strain background, have beneficial effects when injected into an injured joint. MSCs derived from MRL/MpJ mice did not promote an increased repair capacity compared to MSCs derived from non-healing C57BL6 controls; however, MRL/MpJ MSCs were observed within the defect area at the time points examined, while C57BL6 MSCs were not. PMID:26983696

  16. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model

    PubMed Central

    Mak, J.; Jablonski, C. L.; Leonard, C. A.; Dunn, J. F.; Raharjo, E.; Matyas, J. R.; Biernaskie, J.; Krawetz, R. J.

    2016-01-01

    Controversy remains whether articular cartilage has an endogenous stem/progenitor cell population, since its poor healing capacity after injury can lead to diseases such as osteoarthritis. In the joint environment there are mesenchymal stem/progenitor cells (MSCs) in the synovial membrane and synovial fluid that can differentiate into cartilage, but it is still under debate if these cells contribute to cartilage repair in vivo. In this study, we isolated a Sca-1 positive, chondrogenesis capable population of mouse synovial MSCs from C57BL6 and MRL/MpJ “super-healer” strains. Intra-articular injection of Sca-1 + GFP + synovial cells from C57BL6 or MRL/MpJ into C57BL6 mice following cartilage injury led to increased cartilage repair by 4 weeks after injury. GFP expression was detected in the injury site at 2 weeks, but not 4 weeks after injury. These results suggest that synovial stem/progenitor cells, regardless of strain background, have beneficial effects when injected into an injured joint. MSCs derived from MRL/MpJ mice did not promote an increased repair capacity compared to MSCs derived from non-healing C57BL6 controls; however, MRL/MpJ MSCs were observed within the defect area at the time points examined, while C57BL6 MSCs were not. PMID:26983696

  17. Determinants of microstructural load transfer in cartilage tissue from chondrocyte culture

    NASA Astrophysics Data System (ADS)

    Fedewa, Michelle Marie

    2000-10-01

    The goals of this research were to (i) develop a tissue model system for studying the microstructure of matrix produced by chondrocytes, (ii) characterize the biochemical and mechanical properties of the chondrocyte culture tissue, (iii) evaluate the response of the chondrocyte culture tissue to various stimulants (retinoic acid, interleukin-1beta, and xyloside), (iv) investigate the roles of proteoglycan and collagen in the tearing and tensile properties of a chondrocyte culture tissue, and (v) develop a finite element model of the chondrocyte culture tissue microstructure to study its tensile pre-failure properties. The roles of proteoglycan and collagen were explored by experimentation using a cultured cartilage tissue, and by development of a theoretical finite element model which related the cartilage tissue microstructure to its macroscopic properties. Tear and tensile testing was performed. Failure testing is valuable because it is known that cracks exist and propagate from the cartilage surface in osteoarthritic joints. It was found that collagen was important for providing the material stiffness of the cultured tissue, and that both collagen and proteoglycan were important for providing the tear toughness of the tissue. It was also found that as the collagen density or collagen material stiffness increased, the material stiffness of the cultured tissue increased, and as the proteoglycan or collagen densities increased, the tear toughness of the tissue increased. A three-dimensional finite element microstructural model of cartilage was developed, consisting of linear elastic collagen fibrils embedded in a linear viscoelastic proteoglycan solid matrix. Fluid flow in the cartilage matrix was not included in this model. Viscoelastic time dependent behavior was an appropriate model for the cartilage. The results of this model were comparable to the experimental results, as well as to past continuum models of cartilage. Collagen and proteoglycan material moduli

  18. Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering

    PubMed Central

    Chen, Ying-Chen; Chen, Ray-Neng; Jhan, Hua-Jing; Liu, Der-Zen; Ho, Hsiu-O; Mao, Yong; Kohn, Joachim

    2015-01-01

    Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair. PMID:25919905

  19. Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering.

    PubMed

    Chen, Ying-Chen; Chen, Ray-Neng; Jhan, Hua-Jing; Liu, Der-Zen; Ho, Hsiu-O; Mao, Yong; Kohn, Joachim; Sheu, Ming-Thau

    2015-09-01

    Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair. PMID:25919905

  20. Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering.

    PubMed

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Weder, Christoph; Foster, E Johan

    2016-01-01

    Articular cartilage serves as a low-friction cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature and the low cell density, the tissue has a limited ability to regenerate, and damage due to injury, wear and tear, or disease usually requires surgical intervention. While articular cartilage had been predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Here we report the fabrication of multi-layer polymer nanocomposite scaffolds that mimic the structural design, chemical cues, and mechanical characteristics of mature articular cartilage. These scaffolds guide the morphology, orientation, and phenotypic state of cultured chondrocytes in a spatially controlled manner, support the growth of tissue with features that are reminiscent of the natural analogue, and promote localized hydroxyapatite formation to permit integration with the subchondral bone. PMID:26447554

  1. Cartilage, bone, and intermandibular connective tissue in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).

    PubMed

    Kemp, Anne

    2013-10-01

    The connective tissue that links the bones of the mandible in the Australian lungfish, Neoceratodus forsteri, has been described as an intermandibular cartilage, and as such has been considered important for phylogenetic analyses among lower vertebrates. However, light and electron microscopy of developing lungfish jaws demonstrates that the intermandibular tissue, like the connective tissue that links the bones of the upper jaw, contains fibroblasts and numerous bundles of collagen fibrils, extending from the trabeculae of the bones supporting the tooth plates. It differs significantly in structure and in staining reactions from the cartilage and the bone found in this species. In common with the cladistian Polypterus and with actinopterygians and some amphibians, lungfish have no intermandibular cartilage. The connective tissue linking the mandibular bones has no phylogenetic significance for systematic grouping of lungfish, as it is present in a range of different groups among lower vertebrates. PMID:23801584

  2. Inhibition of Wnt/β-catenin pathway promotes regenerative repair of cutaneous and cartilage injury.

    PubMed

    Bastakoty, Dikshya; Saraswati, Sarika; Cates, Justin; Lee, Ethan; Nanney, Lillian B; Young, Pampee P

    2015-12-01

    Wound healing in mammals is a fibrotic process. The mechanisms driving fibrotic (as opposed to regenerative) repair are poorly understood. Herein we report that therapeutic Wnt inhibition with topical application of small-molecule Wnt inhibitors can reduce fibrosis and promote regenerative cutaneous wound repair. In the naturally stented model of ear punch injury, we found that Wnt/β-catenin pathway is activated most notably in the dermis of the wound bed early (d 2) after injury and subsides to baseline levels by d10. Topical application of either of 2 mechanistically distinct small-molecule Wnt pathway inhibitors (a tankyrase inhibitor, XAV-939, and the U.S. Food and Drug Administration-approved casein kinase activator, pyrvinium) in C57Bl/6J mice resulted in significantly increased rates of wound closure (72.3 ± 14.7% with XAV-939; and 52.1 ± 20.9% with pyrvinium) compared with contralateral controls (38.1 ± 23.0 and 40.4.± 16.7%, respectively). Histologically, Wnt inhibition reduced fibrosis as measured by α-smooth muscle actin positive myofibroblasts and collagen type I α1 synthesis. Wnt inhibition also restored skin architecture including adnexal structures in ear wounds and dermal-epidermal junction with rete pegs in excisional wounds. Additionally, in ear punch injury Wnt inhibitor treatment enabled regeneration of auricular cartilage. Our study shows that pharmacologic Wnt inhibition holds therapeutic utility for regenerative repair of cutaneous wounds. PMID:26268926

  3. Monitoring Cartilage Tissue Engineering Using Magnetic Resonance Spectroscopy, Imaging, and Elastography

    PubMed Central

    Klatt, Dieter; Magin, Richard L.

    2013-01-01

    A key technical challenge in cartilage tissue engineering is the development of a noninvasive method for monitoring the composition, structure, and function of the tissue at different growth stages. Due to its noninvasive, three-dimensional imaging capabilities and the breadth of available contrast mechanisms, magnetic resonance imaging (MRI) techniques can be expected to play a leading role in assessing engineered cartilage. In this review, we describe the new MR-based tools (spectroscopy, imaging, and elastography) that can provide quantitative biomarkers for cartilage tissue development both in vitro and in vivo. Magnetic resonance spectroscopy can identify the changing molecular structure and alternations in the conformation of major macromolecules (collagen and proteoglycans) using parameters such as chemical shift, relaxation rates, and magnetic spin couplings. MRI provides high-resolution images whose contrast reflects developing tissue microstructure and porosity through changes in local relaxation times and the apparent diffusion coefficient. Magnetic resonance elastography uses low-frequency mechanical vibrations in conjunction with MRI to measure soft tissue mechanical properties (shear modulus and viscosity). When combined, these three techniques provide a noninvasive, multiscale window for characterizing cartilage tissue growth at all stages of tissue development, from the initial cell seeding of scaffolds to the development of the extracellular matrix during construct incubation, and finally, to the postimplantation assessment of tissue integration in animals and patients. PMID:23574498

  4. Evaluation of the implant type tissue-engineered cartilage by scanning acoustic microscopy.

    PubMed

    Tanaka, Yoko; Saijo, Yoshifumi; Fujihara, Yuko; Yamaoka, Hisayo; Nishizawa, Satoru; Nagata, Satoru; Ogasawara, Toru; Asawa, Yukiyo; Takato, Tsuyoshi; Hoshi, Kazuto

    2012-02-01

    The tissue-engineered cartilages after implantation were nonuniform tissues which were mingling with biodegradable polymers, regeneration cartilage and others. It is a hard task to evaluate the biodegradation of polymers or the maturation of regenerated tissues in the transplants by the conventional examination. Otherwise, scanning acoustic microscopy (SAM) system specially developed to measure the tissue acoustic properties at a microscopic level. In this study, we examined acoustic properties of the tissue-engineered cartilage using SAM, and discuss the usefulness of this devise in the field of tissue engineering. We administered chondrocytes/atelocollagen mixture into the scaffolds of various polymers, and transplanted the constructs in the subcutaneous areas of nude mice for 2 months. We harvested them and examined the sound speed and the attenuation in the section of each construct by the SAM. As the results, images mapping the sound speed exhibited homogenous patterns mainly colored in blue, in all the tissue-engineered cartilage constructs. Contrarily, the images of the attenuation by SAM showed the variation of color ranged between blue and red. The low attenuation area colored in red, which meant hard materials, were corresponding to the polymer remnant in the toluidine blue images. The localizations of blue were almost similar with the metachromatic areas in the histology. In conclusion, the SAM is regarded as a useful tool to provide the information on acoustic properties and their localizations in the transplants that consist of heterogeneous tissues with various components. PMID:22138383

  5. Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering

    PubMed Central

    Sutherland, Amanda J.; Beck, Emily C.; Dennis, S. Connor; Converse, Gabriel L.; Hopkins, Richard A.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM)-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured in cell pellets containing cells only (control), chondrogenic differentiation medium (TGF-β), chemically decellularized cartilage particles (DCC), or physically devitalized cartilage particles (DVC). The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG) within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the ‘raw material’ building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration. PMID:25965981

  6. Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage.

    PubMed

    Raisin, Sophie; Belamie, Emmanuel; Morille, Marie

    2016-10-01

    Recent regenerative medicine and tissue engineering strategies for bone and cartilage repair have led to fascinating progress of translation from basic research to clinical applications. In this context, the use of gene therapy is increasingly being considered as an important therapeutic modality and regenerative technique. Indeed, in the last 20 years, nucleic acids (plasmid DNA, interferent RNA) have emerged as credible alternative or complement to proteins, which exhibited major issues including short half-life, loss of bioactivity in pathologic environment leading to high dose requirement and therefore high production costs. The relevance of gene therapy strategies in combination with a scaffold, following a so-called "Gene-Activated Matrix (GAM)" approach, is to achieve a direct, local and sustained delivery of nucleic acids from a scaffold to ensure efficient and durable cell transfection. Among interesting cells sources, Mesenchymal Stem Cells (MSC) are promising for a rational use in gene/cell therapy with more than 1700 clinical trials approved during the last decade. The aim of the present review article is to provide a comprehensive overview of recent and ongoing work in non-viral genetic engineering of MSC combined with scaffolds. More specifically, we will show how this inductive strategy can be applied to orient stem cells fate for bone and cartilage repair. PMID:27467418

  7. Mesothelial cells in tissue repair and fibrosis

    PubMed Central

    Mutsaers, Steven E.; Birnie, Kimberly; Lansley, Sally; Herrick, Sarah E.; Lim, Chuan-Bian; Prêle, Cecilia M.

    2015-01-01

    Mesothelial cells are fundamental to the maintenance of serosal integrity and homeostasis and play a critical role in normal serosal repair following injury. However, when normal repair mechanisms breakdown, mesothelial cells take on a profibrotic role, secreting inflammatory, and profibrotic mediators, differentiating and migrating into the injured tissues where they contribute to fibrogenesis. The development of new molecular and cell tracking techniques has made it possible to examine the origin of fibrotic cells within damaged tissues and to elucidate the roles they play in inflammation and fibrosis. In addition to secreting proinflammatory mediators and contributing to both coagulation and fibrinolysis, mesothelial cells undergo mesothelial-to-mesenchymal transition, a process analogous to epithelial-to-mesenchymal transition, and become fibrogenic cells. Fibrogenic mesothelial cells have now been identified in tissues where they have not previously been thought to occur, such as within the parenchyma of the fibrotic lung. These findings show a direct role for mesothelial cells in fibrogenesis and open therapeutic strategies to prevent or reverse the fibrotic process. PMID:26106328

  8. Consequences of metabolic and oxidative modifications of cartilage tissue

    PubMed Central

    Hardin, John A.; Cobelli, Neil; Santambrogio, Laura

    2016-01-01

    A hallmark of chronic metabolic diseases, such as diabetes and metabolic syndrome, and oxidative stress, as occurs in chronic inflammatory and degenerative conditions, is the presence of extensive protein post-translational modifications, including glycation, glycoxidation, carbonylation and nitrosylation. These modifications have been detected on structural cartilage proteins in joints and intervertebral discs, where they are known to affect protein folding, induce protein aggregation and, ultimately, generate microanatomical changes in the proteoglycan–collagen network that surrounds chondrocytes. Many of these modifications have also been shown to promote oxidative cleavage as well as enzymatically-mediated matrix degradation. Overall, a general picture starts to emerge indicating that biochemical changes in proteins constitute an early event that compromises the anatomical organization and viscoelasticity of cartilage, thereby affecting its ability to sustain pressure and, ultimately, impeding its overall bio-performance. PMID:26034834

  9. Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering.

    PubMed

    Jessop, Zita M; Javed, Muhammad; Otto, Iris A; Combellack, Emman J; Morgan, Siân; Breugem, Corstiaan C; Archer, Charles W; Khan, Ilyas M; Lineaweaver, William C; Kon, Moshe; Malda, Jos; Whitaker, Iain S

    2016-01-01

    Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites. PMID:26822227

  10. Mechanical properties and structure-function relationships in articular cartilage repaired using IGF-I gene-enhanced chondrocytes.

    PubMed

    Griffin, Darvin J; Ortved, Kyla F; Nixon, Alan J; Bonassar, Lawrence J

    2016-01-01

    Several studies have demonstrated the benefits of IGF-I gene therapy in enhancing the histologic and biochemical content of cartilage repaired by chondrocyte transplantation. However, there is little to no data on the mechanical performance of IGF-I augmented cartilage grafts. This study evaluated the compressive properties of full-thickness chondral defects in the equine femur repaired with and without IGF-I gene therapy. Animals were randomly assigned to one of three study cohorts based on chondrocyte treatment provided in each defect: (i) IGF-I gene delivered by recombinant adeno-associated virus (rAAV)-5; (ii) AAV-5 delivering GFP as a reporter; (iii) naïve cells without virus. In each case, the opposite limb was implanted with a fibrin carrier without cells. Samples were prepared for confined compression testing to measure the aggregate modulus and hydraulic permeability. All treatment groups, regardless of cell content or transduction, had mechanical properties inferior to native cartilage. Overexpression of IGF-I increased modulus and lowered permeability relative to other treatments. Investigation of structure-property relationships revealed that Ha and k were linearly correlated with GAG content but logarithmically correlated with collagen content. This provides evidence that IGF-I gene therapy can improve healing of articular cartilage and can greatly increase the mechanical properties of repaired grafts. PMID:26308948

  11. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering

    PubMed Central

    Recha-Sancho, Lourdes; Semino, Carlos E.

    2016-01-01

    Cartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field. In the present study, we report the development of two novel biomaterials for cartilage tissue engineering (CTE) with bioactive motifs, aiming to emulate the native cartilage extracellular matrix (ECM). We employed a simple mixture of the self-assembling peptide RAD16-I with either Chondroitin Sulfate (CS) or Decorin molecules, taking advantage of the versatility of RAD16-I. After evaluating the structural stability of the bi-component scaffolds at a physiological pH, we characterized these materials using two different in vitro assessments: re-differentiation of human articular chondrocytes (AC) and induction of human adipose derived stem cells (ADSC) to a chondrogenic commitment. Interestingly, differences in cellular morphology and viability were observed between cell types and culture conditions (control and chondrogenic). In addition, both cell types underwent a chondrogenic commitment under inductive media conditions, and this did not occur under control conditions. Remarkably, the synthesis of important ECM constituents of mature cartilage, such as type II collagen and proteoglycans, was confirmed by gene and protein expression analyses and toluidine blue staining. Furthermore, the viscoelastic behavior of ADSC constructs after 4 weeks of culture was more similar to that of native articular cartilage than to that of AC constructs. Altogether, this comparative study between two cell types demonstrates the versatility of our novel biomaterials and suggests a potential 3D culture system suitable for promoting chondrogenic differentiation. PMID:27315119

  12. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering.

    PubMed

    Recha-Sancho, Lourdes; Semino, Carlos E

    2016-01-01

    Cartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field. In the present study, we report the development of two novel biomaterials for cartilage tissue engineering (CTE) with bioactive motifs, aiming to emulate the native cartilage extracellular matrix (ECM). We employed a simple mixture of the self-assembling peptide RAD16-I with either Chondroitin Sulfate (CS) or Decorin molecules, taking advantage of the versatility of RAD16-I. After evaluating the structural stability of the bi-component scaffolds at a physiological pH, we characterized these materials using two different in vitro assessments: re-differentiation of human articular chondrocytes (AC) and induction of human adipose derived stem cells (ADSC) to a chondrogenic commitment. Interestingly, differences in cellular morphology and viability were observed between cell types and culture conditions (control and chondrogenic). In addition, both cell types underwent a chondrogenic commitment under inductive media conditions, and this did not occur under control conditions. Remarkably, the synthesis of important ECM constituents of mature cartilage, such as type II collagen and proteoglycans, was confirmed by gene and protein expression analyses and toluidine blue staining. Furthermore, the viscoelastic behavior of ADSC constructs after 4 weeks of culture was more similar to that of native articular cartilage than to that of AC constructs. Altogether, this comparative study between two cell types demonstrates the versatility of our novel biomaterials and suggests a potential 3D culture system suitable for promoting chondrogenic differentiation. PMID:27315119

  13. Development of bone and cartilage in tissue-engineered human middle phalanx models.

    PubMed

    Wada, Yoshitaka; Enjo, Mitsuhiro; Isogai, Noritaka; Jacquet, Robin; Lowder, Elizabeth; Landis, William J

    2009-12-01

    Human middle phalanges were tissue-engineered with midshaft scaffolds of poly(L-lactide-epsilon-caprolactone) [P(LA-CL)], hydroxyapatite-P(LA-CL), or beta-tricalcium phosphate-P(LA-CL) and end plate scaffolds of bovine chondrocyte-seeded polyglycolic acid. Midshafts were either wrapped with bovine periosteum or left uncovered. Constructs implanted in nude mice for up to 20 weeks were examined for cartilage and bone development as well as gene expression and protein secretion, which are important in extracellular matrix (ECM) formation and mineralization. Harvested 10- and 20-week constructs without periosteum maintained end plate cartilage but no growth plate formation. They also consisted of chondrocytes secreting type II collagen and proteoglycan, and they were composed of midshaft regions devoid of bone. In all periosteum-wrapped constructs at like times, end plate scaffolds held chondrocytes elaborating type II collagen and proteoglycan and cartilage growth plates resembling normal tissue. Chondrocyte gene expression of type II collagen, aggrecan, and bone sialoprotein varied depending on midshaft composition, presence of periosteum, and length of implantation time. Periosteum produced additional cells, ECM, and mineral formation within the different midshaft scaffolds. Periosteum thus induces midshaft development and mediates chondrocyte gene expression and growth plate formation in cartilage regions of phalanges. This work is important for understanding developmental principles of tissue-engineered phalanges and by extension those of normal growth plate cartilage and bone. PMID:19527181

  14. Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage.

    PubMed

    Chung, Chen-Yuan; Heebner, Joseph; Baskaran, Harihara; Welter, Jean F; Mansour, Joseph M

    2015-12-01

    Tissue-engineered (TE) cartilage constructs tend to develop inhomogeneously, thus, to predict the mechanical performance of the tissue, conventional biomechanical testing, which yields average material properties, is of limited value. Rather, techniques for evaluating regional and depth-dependent properties of TE cartilage, preferably non-destructively, are required. The purpose of this study was to build upon our previous results and to investigate the feasibility of using ultrasound elastography to non-destructively assess the depth-dependent biomechanical characteristics of TE cartilage while in a sterile bioreactor. As a proof-of-concept, and to standardize an assessment protocol, a well-characterized three-layered hydrogel construct was used as a surrogate for TE cartilage, and was studied under controlled incremental compressions. The strain field of the construct predicted by elastography was then validated by comparison with a poroelastic finite-element analysis (FEA). On average, the differences between the strains predicted by elastography and the FEA were within 10%. Subsequently engineered cartilage tissue was evaluated in the same test fixture. Results from these examinations showed internal regions where the local strain was 1-2 orders of magnitude greater than that near the surface. These studies document the feasibility of using ultrasound to evaluate the mechanical behaviors of maturing TE constructs in a sterile environment. PMID:26077987

  15. Development of Bone and Cartilage in Tissue-Engineered Human Middle Phalanx Models

    PubMed Central

    Wada, Yoshitaka; Enjo, Mitsuhiro; Isogai, Noritaka; Jacquet, Robin; Lowder, Elizabeth

    2009-01-01

    Human middle phalanges were tissue-engineered with midshaft scaffolds of poly(L-lactide-ɛ-caprolactone) [P(LA-CL)], hydroxyapatite-P(LA-CL), or β-tricalcium phosphate-P(LA-CL) and end plate scaffolds of bovine chondrocyte-seeded polyglycolic acid. Midshafts were either wrapped with bovine periosteum or left uncovered. Constructs implanted in nude mice for up to 20 weeks were examined for cartilage and bone development as well as gene expression and protein secretion, which are important in extracellular matrix (ECM) formation and mineralization. Harvested 10- and 20-week constructs without periosteum maintained end plate cartilage but no growth plate formation. They also consisted of chondrocytes secreting type II collagen and proteoglycan, and they were composed of midshaft regions devoid of bone. In all periosteum-wrapped constructs at like times, end plate scaffolds held chondrocytes elaborating type II collagen and proteoglycan and cartilage growth plates resembling normal tissue. Chondrocyte gene expression of type II collagen, aggrecan, and bone sialoprotein varied depending on midshaft composition, presence of periosteum, and length of implantation time. Periosteum produced additional cells, ECM, and mineral formation within the different midshaft scaffolds. Periosteum thus induces midshaft development and mediates chondrocyte gene expression and growth plate formation in cartilage regions of phalanges. This work is important for understanding developmental principles of tissue-engineered phalanges and by extension those of normal growth plate cartilage and bone. PMID:19527181

  16. Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering.

    PubMed

    Kim, In Gul; Ko, Jaehoon; Lee, Hye Rim; Do, Sun Hee; Park, Kwideok

    2016-04-01

    Mesenchymal cells condensation is crucial in chondrogenic development. However current tissue-engineered scaffolds for chondrogenesis pay little attention to this phenomenon. In this study, we fabricate poly(l-lactide-co-glycolide) (PLGA)/poly(l-lactide) (PLLA) microfiber scaffolds and coat them with human fibroblast-derived matrix (hFDM) that is a decellularized extracellular matrix (ECM) obtained from in vitro cultured human lung fibroblasts (WI-38). Those scaffolds were then conjugated with heparin via EDC chemistry and subsequently immobilized with transforming growth factor (TGF)-β1. The amount of TGF-β1 was quantitatively measured and the release profile showed a continuous release of TGF-β1 for 4 weeks. Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) were seeded in four different scaffolds; control, fibronectin (FN)-coated, hFDM-coated, hFDM/TGF-β1 and subjected to chondrogenic differentiation in vitro for up to 28 days. Both hFDM and hFDM/TGF-β1 groups exhibited significantly more synthesis of glycosaminoglycan (GAG) and much better upregulation of chondrogenic markers expression. Interestingly, MSCs condensation that led to cell aggregates was clearly observed with time in the two hFDM-coated groups and the quantitative difference was obvious compared to the control and FN group. A mechanistic study in gene and protein level indicated that focal adhesion kinase (FAK) was involved at the early stage of cell adhesion and cell-cell contact-related markers, N-cadherin and neural cell adhesion molecule (NCAM), were highly up-regulated at later time point. In addition histological analysis proved that hFDM/TGF-β1 group was the most effective in forming neocartilage tissue in a rabbit articular cartilage defect model. Taken together, this study demonstrates not only the positive effect of hFDM on chondrogenesis of MSCs and cartilage repair but also provides an important insight toward the significance of in vitro mesenchymal

  17. Guidelines for managing data and processes in bone and cartilage tissue engineering

    PubMed Central

    2014-01-01

    Background In the last decades, a wide number of researchers/clinicians involved in tissue engineering field published several works about the possibility to induce a tissue regeneration guided by the use of biomaterials. To this aim, different scaffolds have been proposed, and their effectiveness tested through in vitro and/or in vivo experiments. In this context, integration and meta-analysis approaches are gaining importance for analyses and reuse of data as, for example, those concerning the bone and cartilage biomarkers, the biomolecular factors intervening in cell differentiation and growth, the morphology and the biomechanical performance of a neo-formed tissue, and, in general, the scaffolds' ability to promote tissue regeneration. Therefore standards and ontologies are becoming crucial, to provide a unifying knowledge framework for annotating data and supporting the semantic integration and the unambiguous interpretation of novel experimental results. Results In this paper a conceptual framework has been designed for bone/cartilage tissue engineering domain, by now completely lacking standardized methods. A set of guidelines has been provided, defining the minimum information set necessary for describing an experimental study involved in bone and cartilage regenerative medicine field. In addition, a Bone/Cartilage Tissue Engineering Ontology (BCTEO) has been developed to provide a representation of the domain's concepts, specifically oriented to cells, and chemical composition, morphology, physical characterization of biomaterials involved in bone/cartilage tissue engineering research. Conclusions Considering that tissue engineering is a discipline that traverses different semantic fields and employs many data types, the proposed instruments represent a first attempt to standardize the domain knowledge and can provide a suitable means to integrate data across the field. PMID:24564199

  18. [Great Scandinavian Jahre Prize 1993. Studies of cartilage and bone yields new knowledge of tissue homeostasis].

    PubMed

    Heinegård, D

    1994-01-01

    Increased knowledge of connective tissue, such as cartilage and bone, has improved our understanding of tissue replenishment under normal and pathological conditions. Although developments in this field are still at an early stage, it is already possible to discern avenues for future development leading to new diagnostic and therapeutic methods in connective tissue diseases. In this article, Dick Heinegård, the second recipient of the Jahre Prize for 1993, gives an account of his research. PMID:8121785

  19. Effect of tenascin-C on the repair of full-thickness osteochondral defects of articular cartilage in rabbits.

    PubMed

    Ikemura, Shigeto; Hasegawa, Masahiro; Iino, Takahiro; Miyamoto, Keiichi; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Sudo, Akihiro

    2015-04-01

    The purpose of this study was to examine the effect of tenascin-C (TNC) on the repair of full-thickness osteochondral defects of articular cartilage in vivo. We used a gellan-gellan-sulfate sponge (Gellan-GS) to maintain a TNC-rich environment in the cartilage defects. We implanted Gellan-GS soaked in PBS only (Group 1), Gellan-GS soaked in 10 µg/ml of TNC (Group 2), and Gellan-GS soaked in 100 µg/ml of TNC (Group 3) into a full-thickness osteochondral defect of the patellar groove of rabbits. The defect area was examined grossly and histologically 4-12 weeks after surgery. Sections of synovium were also immunohistochemically investigated. Histologically as well as macroscopically, the defects in Group 2 showed better repair than the other groups at 8 and 12 weeks after surgery. Inflammation of the synovium tended to diminish over time in all groups, and the degree of synovitis was the same for all three groups at each time point. In conclusion, Gellan-GS soaked in TNC can be used as a novel scaffold for the repair of articular cartilage defects. This study also indicates that TNC promotes the repair of full-thickness osteochondral defects in vivo. PMID:25428773

  20. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

    PubMed Central

    2011-01-01

    Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN) hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N, N'-Dimetyl acrylamide), at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration. PMID:21955995

  1. Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing

    PubMed Central

    Moutos, Franklin T.; Glass, Katherine A.; Compton, Sarah A.; Ross, Alison K.; Gersbach, Charles A.; Estes, Bradley T.

    2016-01-01

    Biological resurfacing of entire articular surfaces represents an important but challenging strategy for treatment of cartilage degeneration that occurs in osteoarthritis. Not only does this approach require anatomically sized and functional engineered cartilage, but the inflammatory environment within an arthritic joint may also inhibit chondrogenesis and induce degradation of native and engineered cartilage. The goal of this study was to use adult stem cells to engineer anatomically shaped, functional cartilage constructs capable of tunable and inducible expression of antiinflammatory molecules, specifically IL-1 receptor antagonist (IL-1Ra). Large (22-mm-diameter) hemispherical scaffolds were fabricated from 3D woven poly(ε-caprolactone) (PCL) fibers into two different configurations and seeded with human adipose-derived stem cells (ASCs). Doxycycline (dox)-inducible lentiviral vectors containing eGFP or IL-1Ra transgenes were immobilized to the PCL to transduce ASCs upon seeding, and constructs were cultured in chondrogenic conditions for 28 d. Constructs showed biomimetic cartilage properties and uniform tissue growth while maintaining their anatomic shape throughout culture. IL-1Ra–expressing constructs produced nearly 1 µg/mL of IL-1Ra upon controlled induction with dox. Treatment with IL-1 significantly increased matrix metalloprotease activity in the conditioned media of eGFP-expressing constructs but not in IL-1Ra–expressing constructs. Our findings show that advanced textile manufacturing combined with scaffold-mediated gene delivery can be used to tissue engineer large anatomically shaped cartilage constructs that possess controlled delivery of anticytokine therapy. Importantly, these cartilage constructs have the potential to provide mechanical functionality immediately upon implantation, as they will need to replace a majority, if not the entire joint surface to restore function. PMID:27432980

  2. Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing.

    PubMed

    Moutos, Franklin T; Glass, Katherine A; Compton, Sarah A; Ross, Alison K; Gersbach, Charles A; Guilak, Farshid; Estes, Bradley T

    2016-08-01

    Biological resurfacing of entire articular surfaces represents an important but challenging strategy for treatment of cartilage degeneration that occurs in osteoarthritis. Not only does this approach require anatomically sized and functional engineered cartilage, but the inflammatory environment within an arthritic joint may also inhibit chondrogenesis and induce degradation of native and engineered cartilage. The goal of this study was to use adult stem cells to engineer anatomically shaped, functional cartilage constructs capable of tunable and inducible expression of antiinflammatory molecules, specifically IL-1 receptor antagonist (IL-1Ra). Large (22-mm-diameter) hemispherical scaffolds were fabricated from 3D woven poly(ε-caprolactone) (PCL) fibers into two different configurations and seeded with human adipose-derived stem cells (ASCs). Doxycycline (dox)-inducible lentiviral vectors containing eGFP or IL-1Ra transgenes were immobilized to the PCL to transduce ASCs upon seeding, and constructs were cultured in chondrogenic conditions for 28 d. Constructs showed biomimetic cartilage properties and uniform tissue growth while maintaining their anatomic shape throughout culture. IL-1Ra-expressing constructs produced nearly 1 µg/mL of IL-1Ra upon controlled induction with dox. Treatment with IL-1 significantly increased matrix metalloprotease activity in the conditioned media of eGFP-expressing constructs but not in IL-1Ra-expressing constructs. Our findings show that advanced textile manufacturing combined with scaffold-mediated gene delivery can be used to tissue engineer large anatomically shaped cartilage constructs that possess controlled delivery of anticytokine therapy. Importantly, these cartilage constructs have the potential to provide mechanical functionality immediately upon implantation, as they will need to replace a majority, if not the entire joint surface to restore function. PMID:27432980

  3. Mechanical characterization of tissue-engineered cartilage using microscopic magnetic resonance elastography.

    PubMed

    Yin, Ziying; Schmid, Thomas M; Yasar, Temel K; Liu, Yifei; Royston, Thomas J; Magin, Richard L

    2014-08-01

    Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R(2)=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395

  4. Incorporation of aggrecan in interpenetrating network hydrogels to improve cellular performance for cartilage tissue engineering.

    PubMed

    Ingavle, Ganesh C; Frei, Anthony W; Gehrke, Stevin H; Detamore, Michael S

    2013-06-01

    Interpenetrating network (IPN) hydrogels were recently introduced to the cartilage tissue engineering literature, with the approach of encapsulating cells in thermally gelling agarose that is then soaked in a poly(ethylene glycol) diacrylate (PEGDA) solution, which is then photopolymerized. These IPNs possess significantly enhanced mechanical performance desirable for cartilage regeneration, potentially allowing patients to return to weight-bearing activities quickly after surgical implantation. In an effort to improve cell viability and performance, inspiration was drawn from previous studies that have elicited positive chondrogenic responses to aggrecan, the proteoglycan largely responsible for the compressive stiffness of cartilage. Aggrecan was incorporated into the IPNs in conservative concentrations (40 μg/mL), and its effect was contrasted with the incorporation of chondroitin sulfate (CS), the primary glycosaminoglycan associated with aggrecan. Aggrecan was incorporated by physical entrapment within agarose and methacrylated CS was incorporated by copolymerization with PEGDA. The IPNs incorporating aggrecan or CS exhibited over 50% viability with encapsulated chondrocytes after 6 weeks. Both aggrecan and CS improved cell viability by 15.6% and 20%, respectively, relative to pure IPNs at 6 weeks culture time. In summary, we have introduced the novel approach of including a raw material from cartilage, namely aggrecan, to serve as a bioactive signal to cells encapsulated in IPN hydrogels for cartilage tissue engineering, which led to improved performance of encapsulated chondrocytes. PMID:23379843

  5. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    PubMed

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-01

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process. PMID:26855751

  6. Multilayered Short Peptide-Alginate Blends as New Materials for Potential Applications in Cartilage Tissue Regeneration.

    PubMed

    Knoll, Grant A; Romanelli, Steven M; Brown, Alexandra M; Sortino, Rachel M; Banerjee, Ipsita A

    2016-03-01

    Peptide based nanomaterials have been gaining increased prominence due to their ability to form permeable scaffolds that promote growth and regeneration of new tissue. In this work for the first time a short hexapeptide motif VQIVYK, derived from the Tau protein family was conjugated with an organic polyamine linker, putrescine and utilized as a template for developing new materials for cartilage tissue regeneration. Our results showed that the conjugate formed extensive nanofibrous assemblies upon self-assembly under aqueous conditions. We then employed the layer-by-layer (LBL) approach to design the scaffold by first incorporating a short segment of the dentin sialophosphoprotein motif GDASYNSDESK followed by integration with the peptide sequence GSGAGAGSGAGAGSGAGA. This sequence mimics Ala, Gly, Ser repeats seen in the spider silk protein. We then incorporated the polysaccharide alginate which served as a hydrogel. To further enhance binding interactions with chondrocytes, and promote the formation of cartilage in vitro, the bionanocomposites were then attached to the chondrocyte binding peptide sequence HDSQLEALIKFM. The thermal properties as well as biodegradability of the scaffold was examined. To confirm biocompatibility, we examined cell viability, attachment and morphology in the presence of bovine chondrocytes. The cells were found to efficiently adhere to the scaffolds which formed an intricate mesh mimicking the extracellular matrix of cartilage tissue. To evaluate if differentiation occurred in the presence of the scaffolds, we examined in vitro deposition of proteoglycans. Thus, we have developed a new family of nanoscale scaffolds that may be utilized for cartilage tissue regeneration. PMID:27455656

  7. Maximizing cartilage formation and integration via a trajectory-based tissue engineering approach

    PubMed Central

    Fisher, Matthew B.; Henning, Elizabeth A.; Söegaard, Nicole B.; Dodge, George R.; Steinberg, David R.; Mauck, Robert L.

    2014-01-01

    Given the limitations of current surgical approaches to treat articular cartilage injuries, tissue engineering (TE) approaches have been aggressively pursued. Despite reproduction of key mechanical attributes of native tissue, the ability of TE cartilage constructs to integrate with native tissue must also be optimized for clinical success. In this paper, we propose a “trajectory-based” tissue engineering (TB-TE) approach, based on a hypothesis that time-dependent increases in construct maturation in-vitro prior to implantation (i.e. positive rates) may provide a reliable predictor of in-vivo success. As an example TE system, we utilized hyaluronic acid hydrogels laden with mesenchymal stem cells. We first modeled the maturation of these constructs in-vitro to capture time-dependent changes. We then performed a sensitivity analysis of the model to optimize the timing and amount of data collection. Finally, we showed that integration to cartilage in-vitro is not correlated to the maturation state of TE constructs, but rather their maturation rate, providing a proof-of-concept for the use of TB-TE to enhance treatment outcomes following cartilage injury. This new approach challenges the traditional TE paradigm of matching only native state parameters of maturity and emphasizes the importance of also establishing an in-vitro trajectory in constructs in order to improve the chance of in-vivo success. PMID:24314553

  8. Apparatus for enhancing tissue repair in mammals

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2007-01-01

    An apparatus is disclosed for enhancing tissue repair in mammals, with the apparatus comprising: a sleeve for encircling a portion of a mammalian body part, said sleeve comprising an electrically conductive coil capable of generating an electromagnetic field when an electrical current is applied thereto, means for supporting the sleeve on the mammalian body part; and means for supplying the electrically conductive coil with a square wave time varying electrical current sufficient to create a time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss within the interior of the coil in order that when the sleeve is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss is generated on the mammalian body part for an extended period of time, tissue regeneration within the mammalian body part is increased to a rate in excess of the normal tissue regeneration rate that would occur without application of the time varying electromagnetic force.

  9. Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering.

    PubMed

    Guo, Yan; Yuan, Tun; Xiao, Zhanwen; Tang, Pingping; Xiao, Yumei; Fan, Yujiang; Zhang, Xingdong

    2012-09-01

    The network structure of a three-dimensional hydrogel scaffold dominates its performance such as mechanical strength, mass transport capacity, degradation rate and subsequent cellular behavior. The hydrogels scaffolds with interpenetrating polymeric network (IPN) structure have an advantage over the individual component gels and could simulate partly the structure of native extracellular matrix of cartilage tissue. In this study, to develop perfect cartilage tissue engineering scaffolds, IPN hydrogels of collagen/chondroitin sulfate/hyaluronan were prepared via two simultaneous processes of collagen self-assembly and cross linking polymerization of chondroitin sulfate-methacrylate (CSMA) and hyaluronic acid-methacrylate. The degradation rate, swelling performance and compressive modulus of IPN hydrogels could be adjusted by varying the degree of methacrylation of CSMA. The results of proliferation and fluorescence staining of rabbit articular chondrocytes in vitro culture demonstrated that the IPN hydrogels possessed good cytocompatibility. Furthermore, the IPN hydrogels could upregulate cartilage-specific gene expression and promote the chondrocytes secreting glycosaminoglycan and collagen II. These results suggested that IPN hydrogels might serve as promising hydrogel scaffolds for cartilage tissue engineering. PMID:22639153

  10. Influence of tissue- and cell-scale extracellular matrix distribution on the mechanical properties of tissue-engineered cartilage.

    PubMed

    Khoshgoftar, Mehdi; Wilson, Wouter; Ito, Keita; van Donkelaar, Corrinus C

    2013-10-01

    The insufficient load-bearing capacity of today's tissue- engineered (TE) cartilage limits its clinical application. Generally, cartilage TE studies aim to increase the extracellular matrix (ECM) content, as this is thought to determine the load-bearing properties of the cartilage. However, there are apparent inconsistencies in the literature regarding the correlation between ECM content and mechanical properties of TE constructs. In addition to the amount of ECM, the spatial inhomogeneities in ECM distribution at the tissue scale as well as at the cell scale may affect the mechanical properties of TE cartilage. The relative importance of such structural inhomogeneities on mechanical behavior of TE cartilage is unknown. The aim of the present study was, therefore, to theoretically elucidate the influence of these inhomogeneities on the mechanical behavior of chondrocyte-agarose TE constructs. A validated non-linear fiber-reinforced poro-elastic swelling cartilage model that can accommodate for effects of collagen reinforcement and swelling by proteoglycans was used. At the tissue scale, ECM was gradually varied from predominantly localized in the periphery of the TE construct toward an ECM-rich inner core. The effect of these inhomogeneities in relation to the total amount of ECM was also evaluated. At the cell scale, ECM was gradually varied from localized in the pericellular area, toward equally distributed throughout the interterritorial area. Results from the tissue-scale model indicated that localization of ECM in either the construct periphery or in the inner core may reduce construct stiffness compared with that of constructs with homogeneous ECM. Such effects are more significant at high ECM amounts. At the cell scale, localization of ECM around the cells significantly reduced the overall stiffness, even at low ECM amounts. The compressive stiffness gradually increased when ECM distribution became more homogeneous and the osmotic swelling pressure in the