Science.gov

Sample records for cascading trophic interactions

  1. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  2. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions.

    PubMed

    Takekawa, John Y; Ackerman, Joshua T; Brand, L Arriana; Graham, Tanya R; Eagles-Smith, Collin A; Herzog, Mark P; Topping, Brent R; Shellenbarger, Gregory G; Kuwabara, James S; Mruz, Eric; Piotter, Sara L; Athearn, Nicole D

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  3. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions

    USGS Publications Warehouse

    Takekawa, John Y.; Ackerman, Joshua T.; Brand, Arriana; Graham, Tanya R.; Eagles-Smith, Collin A.; Herzog, Mark; Topping, Brent R.; Shellenbarger, Gregory; Kuwabara, James S.; Mruz, Eric; Piotter, Sara L.; Athearn, Nicole D.

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  4. Unintended Consequences of Management Actions in Salt Pond Restoration: Cascading Effects in Trophic Interactions

    PubMed Central

    Takekawa, John Y.; Ackerman, Joshua T.; Brand, L. Arriana; Graham, Tanya R.; Eagles-Smith, Collin A.; Herzog, Mark P.; Topping, Brent R.; Shellenbarger, Gregory G.; Kuwabara, James S.; Mruz, Eric; Piotter, Sara L.; Athearn, Nicole D.

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  5. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest.

    PubMed

    Frelich, Lee E; Peterson, Rolf O; Dovčiak, Martin; Reich, Peter B; Vucetich, John A; Eisenhauer, Nico

    2012-11-01

    As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems. PMID:23007083

  6. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate–boreal forest

    PubMed Central

    Frelich, Lee E.; Peterson, Rolf O.; Dovčiak, Martin; Reich, Peter B.; Vucetich, John A.; Eisenhauer, Nico

    2012-01-01

    As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems. PMID:23007083

  7. A meta-analysis of the freshwater trophic cascade.

    PubMed Central

    Brett, M T; Goldman, C R

    1996-01-01

    The generality of the trophic cascade has been an intensely debated topic among ecologists. We conducted a meta-analysis of 54 separate enclosure and pond experiments that measured the response of the zooplankton and phytoplankton to zooplanktivorous fish treatments. These results provide unequivocal support for the trophic cascade hypothesis in freshwater food webs. Zooplanktivorous fish treatments resulted in reduced zooplankton biomass and increased phytoplankton biomass. The trophic cascade was weakly dampened at the level of the phytoplankton. However, the response of the phytoplankton to the trophic cascade was highly skewed, with very strong responses in slightly more than one-third of the cases and weak responses in the others. PMID:11607694

  8. Trophic cascade alters ecosystem carbon exchange

    PubMed Central

    Strickland, Michael S.; Hawlena, Dror; Reese, Aspen; Bradford, Mark A.; Schmitz, Oswald J.

    2013-01-01

    Trophic cascades—the indirect effects of carnivores on plants mediated by herbivores—are common across ecosystems, but their influence on biogeochemical cycles, particularly the terrestrial carbon cycle, are largely unexplored. Here, using a 13C pulse-chase experiment, we demonstrate how trophic structure influences ecosystem carbon dynamics in a meadow system. By manipulating the presence of herbivores and predators, we show that even without an initial change in total plant or herbivore biomass, the cascading effects of predators in this system begin to affect carbon cycling through enhanced carbon fixation by plants. Prolonged cascading effects on plant biomass lead to slowing of carbon loss via ecosystem respiration and reallocation of carbon among plant aboveground and belowground tissues. Consequently, up to 1.4-fold more carbon is retained in plant biomass when carnivores are present compared with when they are absent, owing primarily to greater carbon storage in grass and belowground plant biomass driven largely by predator nonconsumptive (fear) effects on herbivores. Our data highlight the influence that the mere presence of predators, as opposed to direct consumption of herbivores, can have on carbon uptake, allocation, and retention in terrestrial ecosystems. PMID:23776213

  9. Trophically unique species are vulnerable to cascading extinction.

    PubMed

    Petchey, Owen L; Eklöf, Anna; Borrvall, Charlotte; Ebenman, Bo

    2008-05-01

    Understanding which species might become extinct and the consequences of such loss is critical. One consequence is a cascade of further, secondary extinctions. While a significant amount is known about the types of communities and species that suffer secondary extinctions, little is known about the consequences of secondary extinctions for biodiversity. Here we examine the effect of these secondary extinctions on trophic diversity, the range of trophic roles played by the species in a community. Our analyses of natural and model food webs show that secondary extinctions cause loss of trophic diversity greater than that expected from chance, a result that is robust to variation in food web structure, distribution of interactions strengths, functional response, and adaptive foraging. Greater than expected loss of trophic diversity occurs because more trophically unique species are more vulnerable to secondary extinction. This is not a straightforward consequence of these species having few links with others but is a complex function of how direct and indirect interactions affect species persistence. A positive correlation between a species' extinction probability and the importance of its loss defines high-risk species and should make their conservation a priority. PMID:18419567

  10. Critical assessment and ramifications of a purported marine trophic cascade

    NASA Astrophysics Data System (ADS)

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-02-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  11. Critical assessment and ramifications of a purported marine trophic cascade

    USGS Publications Warehouse

    Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  12. Critical assessment and ramifications of a purported marine trophic cascade.

    PubMed

    Grubbs, R Dean; Carlson, John K; Romine, Jason G; Curtis, Tobey H; McElroy, W David; McCandless, Camilla T; Cotton, Charles F; Musick, John A

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the "Save the Bay, Eat a Ray" fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions. PMID:26876514

  13. Critical assessment and ramifications of a purported marine trophic cascade

    PubMed Central

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions. PMID:26876514

  14. Spider foraging strategy affects trophic cascades under natural and drought conditions

    PubMed Central

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-01-01

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370

  15. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    PubMed

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-01-01

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370

  16. Trophic cascade facilitates coral recruitment in a marine reserve

    PubMed Central

    Mumby, Peter J.; Harborne, Alastair R.; Williams, Jodene; Kappel, Carrie V.; Brumbaugh, Daniel R.; Micheli, Fiorenza; Holmes, Katherine E.; Dahlgren, Craig P.; Paris, Claire B.; Blackwell, Paul G.

    2007-01-01

    Reduced fishing pressure and weak predator–prey interactions within marine reserves can create trophic cascades that increase the number of grazing fishes and reduce the coverage of macroalgae on coral reefs. Here, we show that the impacts of reserves extend beyond trophic cascades and enhance the process of coral recruitment. Increased fish grazing, primarily driven by reduced fishing, was strongly negatively correlated with macroalgal cover and resulted in a 2-fold increase in the density of coral recruits within a Bahamian reef system. Our conclusions are robust because four alternative hypotheses that may generate a spurious correlation between grazing and coral recruitment were tested and rejected. Grazing appears to influence the density and community structure of coral recruits, but no detectable influence was found on the overall size-frequency distribution, community structure, or cover of corals. We interpret this absence of pattern in the adult coral community as symptomatic of the impact of a recent disturbance event that masks the recovery trajectories of individual reefs. Marine reserves are not a panacea for conservation but can facilitate the recovery of corals from disturbance and may help sustain the biodiversity of organisms that depend on a complex three-dimensional coral habitat. PMID:17488824

  17. Trophic Cascades by Large Carnivores: A Case for Strong Inference and Mechanism.

    PubMed

    Ford, Adam T; Goheen, Jacob R

    2015-12-01

    Studies on trophic cascades involving large carnivores typically are limited by a lack of replication and control, giving rise to a spirited debate over the ecological role of these iconic species. We argue that much of this debate can be resolved by decomposing the trophic cascade hypothesis into three constituent interactions, quantifying each interaction individually, and accommodating alternative hypotheses. We advocate for a novel approach that couples the rigor characterizing foundational work on trophic cascades (i.e., from studies carried out in mesocosm and whole lake systems) with the conservation relevance of large carnivore-dominated food webs. Because of their iconic status, it is crucial that inferences about the ecological role of large carnivores rise to meet the same rigorous standards to which other studies in community ecology are held. PMID:26498385

  18. Understanding patterns and processes in models of trophic cascades

    PubMed Central

    Heath, Michael R; Speirs, Douglas C; Steele, John H; Lafferty, Kevin

    2014-01-01

    Climate fluctuations and human exploitation are causing global changes in nutrient enrichment of terrestrial and aquatic ecosystems and declining abundances of apex predators. The resulting trophic cascades have had profound effects on food webs, leading to significant economic and societal consequences. However, the strength of cascades–that is the extent to which a disturbance is diminished as it propagates through a food web–varies widely between ecosystems, and there is no formal theory as to why this should be so. Some food chain models reproduce cascade effects seen in nature, but to what extent is this dependent on their formulation? We show that inclusion of processes represented mathematically as density-dependent regulation of either consumer uptake or mortality rates is necessary for the generation of realistic ‘top-down’ cascades in simple food chain models. Realistically modelled ‘bottom-up’ cascades, caused by changing nutrient input, are also dependent on the inclusion of density dependence, but especially on mortality regulation as a caricature of, e.g. disease and parasite dynamics or intraguild predation. We show that our conclusions, based on simple food chains, transfer to a more complex marine food web model in which cascades are induced by varying river nutrient inputs or fish harvesting rates. PMID:24165353

  19. Charismatic microfauna alter cyanobacterial production through a trophic cascade

    NASA Astrophysics Data System (ADS)

    Geange, S. W.; Stier, A. C.

    2010-06-01

    The trophic ecology of cyanobacterial blooms is poorly understood on coral reefs. Blooms of toxic cyanobacteria, Lyngbya majuscula, can quickly form large mats. The herbivorous sea hare, Stylocheilus striatus, and the predatory nudibranch, Gymnodoris ceylonica, often associate with these blooms, forming a linear food chain: nudibranch—sea hare—cyanobacteria. Using laboratory studies, this study quantified (1) the functional response of nudibranchs, (2) the effect of sea hare size on predation rates, and (3) the strength of the indirect effect of sea hare predation on cyanobacteria (i.e., a trophic cascade). Nudibranchs consumed on average 2.4 sea hares d-1, with the consumption of small sea hares 22 times greater than the consumption of large sea hares. Predation of sea hares reduced herbivory. Cyanobacterial biomass was 1.5 times greater when nudibranchs were present relative to when nudibranchs were absent. Although sea hare grazing can substantially reduce cyanobacterial biomass, predation of sea hares may mitigate grazing pressure, and therefore increase the abundance of cyanobacteria.

  20. Influence of Carbonate Crusts on Trophic Cascades in Big Sur Streams.

    NASA Astrophysics Data System (ADS)

    Rundio, D.; Lindley, S.

    2005-05-01

    Top-down effects of fish predation in streams are influenced by habitat conditions and traits of intermediate consumers. Along the Big Sur coast, seasonal carbonate crusts form in many streams, and appear to alter insect communities. We conducted a small-scale field experiment in two adjacent tributaries (crusted and crust-free) to determine the effects of predation by juvenile steelhead (Oncorhynchus mykiss) on invertebrates and algae in these different stream types. We hypothesized that a trophic cascade would be more likely in the crusted stream, which was dominated by an herbivore vulnerable to steelhead predation (Baetis), than in the crust-free stream, which was dominated by a less vulnerable herbivore (Agapetus). However, excluding steelhead from paving bricks had no effect on algae or Baetis in the crusted stream. Algal abundance was low, suggesting possible bottom-up control. In the crust-free stream, steelhead predation did not affect Agapetus, but nevertheless produced a trophic cascade by causing Baetis to increase by 85%, which in turn depressed algae by 25%. These results suggest that trophic interactions may differ between crust forming and non-crust forming streams, which we plan to test with additional sampling and experiments replicated across stream types.

  1. Seasonal Trophic Niche Shift and Cascading Effect of a Generalist Predator Fish

    PubMed Central

    Gong, Zhijun; Zhang, Min; Xie, Ping; Hansson, Lars-Anders

    2012-01-01

    Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs. PMID:23251347

  2. Dynamics of a Subterranean Trophic Cascade in Space and Time

    PubMed Central

    Ram, Karthik; Gruner, Daniel S.; McLaughlin, John P.; Preisser, Evan L.; Strong, Donald R.

    2008-01-01

    Trophic cascades, whereby predators indirectly benefit plant biomass by reducing herbivore pressure, form the mechanistic basis for classical biological control of pest insects. Entomopathogenic nematodes (EPN) are lethal to a variety of insect hosts with soil-dwelling stages, making them promising biocontrol agents. EPN biological control programs, however, typically fail because nematodes do not establish, persist and/or recycle over multiple host generations in the field. A variety of factors such as local abiotic conditions, host quantity and quality, and rates of movement affect the probability of persistence. Here, we review results from 13 years of study on the biology and ecology of an endemic population of Heterorhabditis marelatus (Rhabditida: Heterorhabditidae) in a California coastal prairie. In a highly seasonal abiotic environment with intrinsic variation in soils, vegetation structure, and host availability, natural populations of H. marelatus persisted at high incidence at some but not all sites within our study area. Through a set of field and lab experiments, we describe mechanisms and hypotheses to understand the persistence of H. marelatus. We suggest that further ecological study of naturally occurring EPN populations can yield significant insight to improve the practice and management of biological control of soil-dwelling insect pests. PMID:19259524

  3. Trophic cascades linking wolves (Canis lupus), coyotes (Canis latrans), and small mammals

    USGS Publications Warehouse

    Miller, B.J.; Harlow, H.J.; Harlow, T.S.; Biggins, D.; Ripple, W.J.

    2012-01-01

    When large carnivores are extirpated from ecosystems that evolved with apex predators, these systems can change at the herbivore and plant trophic levels. Such changes across trophic levels are called cascading effects and they are very important to conservation. Studies on the effects of reintroduced wolves in Yellowstone National Park have examined the interaction pathway of wolves (Canis lupus L., 1758) to ungulates to plants. This study examines the interaction effects of wolves to coyotes to rodents (reversing mesopredator release in the absence of wolves). Coyotes (Canis latrans Say, 1823) generally avoided areas near a wolf den. However, when in the proximity of a den, they used woody habitats (pine or sage) compared with herbaceous habitats (grass or forb or sedge)- when they were away from the wolf den. Our data suggested a significant increase in rodent numbers, particularly voles (genus Microtus Schrank, 1798), during the 3-year study on plots that were within 3 km of the wolf den, but we did not detect a significant change in rodent numbers over time for more distant plots. Predation by coyotes may have depressed numbers of small mammals in areas away from the wolf den. These factors indicate a top-down effect by wolves on coyotes and subsequently on the rodents of the area. Restoration of wolves could be a powerful tool for regulating predation at lower trophic levels.

  4. Wolves trigger a trophic cascade to berries as alternative food for grizzly bears.

    PubMed

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2015-05-01

    This is a Forum article in response to: Barber-Meyer, S. (2015) Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods? Journal of Animal Ecology, 83, doi: 10.1111/1365-2656.12338. We used multiple data sets and study areas as well as several lines of evidence to investigate potential trophic linkages in Yellowstone National Park. Our results suggest that a trophic cascade from wolves to elk to berry production to berry consumption by grizzly bears may now be underway in the Park. PMID:25732407

  5. Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems

    PubMed Central

    Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise

    2015-01-01

    In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.

  6. Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade.

    PubMed

    Ford, Adam T; Goheen, Jacob R; Augustine, David J; Kinnaird, Margaret F; O'Brien, Timothy G; Palmer, Todd M; Pringle, Robert M; Woodroffe, Rosie

    2015-10-01

    Increasingly, the restoration of large carnivores is proposed as a means through which to restore community structure and ecosystem function via trophic cascades. After a decades-long absence, African wild dogs (Lycaon pictus) recolonized the Laikipia Plateau in central Kenya, which we hypothesized would trigger a trophic cascade via suppression of their primary prey (dik-dik, Madoqua guentheri) and the subsequent relaxation of browsing pressure on trees. We tested the trophic-cascade hypothesis using (1) a 14-year time series of wild dog abundance; (2) surveys of dik-dik population densities conducted before and after wild dog recovery; and (3) two separate, replicated, herbivore-exclusion experiments initiated before and after wild dog recovery. The dik-dik population declined by 33% following wild dog recovery, which is best explained by wild dog predation. Dik-dik browsing suppressed tree abundance, but the strength of suppression did not differ between before and after wild dog recovery. Despite strong, top-down limitation between adjacent trophic levels (carnivore-herbivore and herbivore-plant), a trophic cascade did not occur, possibly because of a time lag in indirect effects, variation in rainfall, and foraging by herbivores other than dik-dik. Our ability to reject the trophic-cascade hypothesis required two important approaches: (1) temporally replicated herbivore exclusions, separately established before and after wild dog recovery; and (2) evaluating multiple drivers of variation in the abundance of dik-dik and trees. While the restoration of large carnivores is often a conservation priority, our results suggest that indirect effects are mediated by ecological context, and that trophic cascades are not a foregone conclusion of such recoveries. PMID:26649391

  7. Trophic cascades from wolves to grizzly bears in Yellowstone.

    PubMed

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2014-01-01

    We explored multiple linkages among grey wolves (Canis lupus), elk (Cervus elaphus), berry-producing shrubs and grizzly bears (Ursus arctos) in Yellowstone National Park. We hypothesized competition between elk and grizzly bears whereby, in the absence of wolves, increases in elk numbers would increase browsing on berry-producing shrubs and decrease fruit availability to grizzly bears. After wolves were reintroduced and with a reduced elk population, we hypothesized there would be an increase in the establishment of berry-producing shrubs, such as serviceberry (Amelanchier alnifolia), which is a major berry-producing plant. We also hypothesized that the percentage fruit in the grizzly bear diet would be greater after than before wolf reintroduction. We compared the frequency of fruit in grizzly bear scats to elk densities prior to wolf reintroduction during a time of increasing elk densities (1968-1987). For a period after wolf reintroduction, we calculated the percentage fruit in grizzly bear scat by month based on scats collected in 2007-2009 (n = 778 scats) and compared these results to scat data collected before wolf reintroduction. Additionally, we developed an age structure for serviceberry showing the origination year of stems in a northern range study area. We found that over a 19-year period, the percentage frequency of fruit in the grizzly diet (6231 scats) was inversely correlated (P < 0·001) with elk population size. The average percentage fruit in grizzly bear scats was higher after wolf reintroduction in July (0·3% vs. 5·9%) and August (7·8% vs. 14·6%) than before. All measured serviceberry stems accessible to ungulates originated since wolf reintroduction, while protected serviceberry growing in a nearby ungulate exclosure originated both before and after wolf reintroduction. Moreover, in recent years, browsing of serviceberry outside of the exclosure decreased while their heights increased. Overall, these results are consistent with a trophic

  8. Evolutionary trade-offs in plants mediate the strength of trophic cascades.

    PubMed

    Mooney, Kailen A; Halitschke, Rayko; Kessler, Andre; Agrawal, Anurag A

    2010-03-26

    Predators determine herbivore and plant biomass via so-called trophic cascades, and the strength of such effects is influenced by ecosystem productivity. To determine whether evolutionary trade-offs among plant traits influence patterns of trophic control, we manipulated predators and soil fertility and measured impacts of a major herbivore (the aphid Aphis nerii) on 16 milkweed species (Asclepias spp.) in a phylogenetic field experiment. Herbivore density was determined by variation in predation and trade-offs between herbivore resistance and plant growth strategy. Neither herbivore density nor predator effects on herbivores predicted the cascading effects of predators on plant biomass. Instead, cascade strength was strongly and positively associated with milkweed response to soil fertility. Accordingly, contemporary patterns of trophic control are driven by evolutionary convergent trade-offs faced by plants. PMID:20339073

  9. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts

    PubMed Central

    Daskalov, Georgi M.; Grishin, Alexander N.; Rodionov, Sergei; Mihneva, Vesselina

    2007-01-01

    Large-scale transitions between alternative states in ecosystems are known as regime shifts. Once described as healthy and dominated by various marine predators, the Black Sea ecosystem by the late 20th century had experienced anthropogenic impacts such as heavy fishing, cultural eutrophication, and invasions by alien species. We studied changes related to these “natural experiments” to reveal the mechanisms of regime shifts. Two major shifts were detected, the first related to a depletion of marine predators and the second to an outburst of the alien comb jelly Mnemiopsis leidyi; both shifts were triggered by intense fishing resulting in system-wide trophic cascades. The complex nature of ecosystem responses to human activities calls for more elaborate approaches than currently provided by traditional environmental and fisheries management. This implies challenging existing practices and implementing explanatory models of ecosystem interactions that can better reconcile conservation and ecosystem management ideals. PMID:17548831

  10. Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods?

    USGS Publications Warehouse

    Barber-Meyer, Shannon M.

    2015-01-01

    This is a Forum article commenting on: Ripple, W. J., Beschta, R. L., Fortin, J. K., & Robbins, C. T. (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. Journal of Animal Ecology, 83, 223–233. Comparisons Ripple et al. (2014) used to demonstrate increased fruit availability and consumption by grizzly bears post-wolf reintroduction are flawed and tenuous at best. Importantly, a more parsimonious (than trophic cascades) hypothesis, not sufficiently considered by Ripple et al., exists and is better supported by available data I review.

  11. Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods?

    PubMed

    Barber-Meyer, Shannon M

    2015-05-01

    This is a Forum article commenting on: Ripple, W. J., Beschta, R. L., Fortin, J. K., & Robbins, C. T. (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. Journal of Animal Ecology, 83, 223-233. Comparisons Ripple et al. (2014) used to demonstrate increased fruit availability and consumption by grizzly bears post-wolf reintroduction are flawed and tenuous at best. Importantly, a more parsimonious (than trophic cascades) hypothesis, not sufficiently considered by Ripple et al., exists and is better supported by available data I review. PMID:25732302

  12. Bacterial community response to changes in a tri-trophic cascade during a whole-lake fish manipulation.

    PubMed

    Saarenheimo, J; Aalto, S L; Syväranta, J; Devlin, S P; Tiirola, M; Jones, R I

    2016-03-01

    Microbial communities play a key role in biogeochemical processes by degrading organic material and recycling nutrients, but can also be important food sources for upper trophic levels. Trophic cascades might modify microbial communities either directly via grazing or indirectly by inducing changes.in other biotic or in abiotic factors (e.g., nutrients). We studied the effects of a tri-trophic cascade on microbial communities during a whole-lake manipulation in which European perch (Perca fluviatilis) were added to a naturally fishless lake divided experimentally into two basins. We measured environmental parameters (oxygen, temperature, and nutrients) and zooplankton biomass and studied the changes in the bacterial community using next generation sequencing of 16S rRNA genes and cell counting. Introduction of fish reduced the biomass of zooplankton, mainly Daphnia, which partly altered the bacterial community composition and affected the bacterial cell abundances. However, the microbial community composition was mainly governed by stratification patterns and associated vertical oxygen concentration. Slowly growing green sulfur bacteria (Chlorobium) dominated the anoxic water layers together with bacteria of the candidate division ODI. We conclude that alterations in trophic interactions can affect microbial abundance, but that abiotic factors seem to be more significant controls of microbial community composition in sheltered boreal lakes. PMID:27197395

  13. Long-term effects of a trophic cascade in a large lake ecosystem

    PubMed Central

    Ellis, Bonnie K.; Stanford, Jack A.; Goodman, Daniel; Stafford, Craig P.; Gustafson, Daniel L.; Beauchamp, David A.; Chess, Dale W.; Craft, James A.; Deleray, Mark A.; Hansen, Barry S.

    2011-01-01

    Introductions or invasions of nonnative organisms can mediate major changes in the trophic structure of aquatic ecosystems. Here we document multitrophic level impacts in a spatially extensive system that played out over more than a century. Positive interactions among exotic vertebrate and invertebrate predators caused a substantial and abrupt shift in community composition resulting in a trophic cascade that extended to primary producers and to a nonaquatic species, the bald eagle. The opossum shrimp, Mysis diluviana, invaded Flathead Lake, Montana, the largest freshwater lake in the western United States. Lake trout had been introduced 80 y prior but remained at low densities until nonnative Mysis became established. The bottom-dwelling mysids eliminated a recruitment bottleneck for lake trout by providing a deep water source of food where little was available previously. Lake trout subsequently flourished on mysids and this voracious piscivore now dominates the lake fishery; formerly abundant kokanee were extirpated, and native bull and westslope cutthroat trout are imperiled. Predation by Mysis shifted zooplankton and phytoplankton community size structure. Bayesian change point analysis of primary productivity (27-y time series) showed a significant step increase of 55 mg C m−2 d−1 (i.e., 21% rise) concurrent with the mysid invasion, but little trend before or after despite increasing nutrient loading. Mysis facilitated predation by lake trout and indirectly caused the collapse of kokanee, redirecting energy flow through the ecosystem that would otherwise have been available to other top predators (bald eagles). PMID:21199944

  14. Long-term effects of a trophic cascade in a large lake ecosystem.

    PubMed

    Ellis, Bonnie K; Stanford, Jack A; Goodman, Daniel; Stafford, Craig P; Gustafson, Daniel L; Beauchamp, David A; Chess, Dale W; Craft, James A; Deleray, Mark A; Hansen, Barry S

    2011-01-18

    Introductions or invasions of nonnative organisms can mediate major changes in the trophic structure of aquatic ecosystems. Here we document multitrophic level impacts in a spatially extensive system that played out over more than a century. Positive interactions among exotic vertebrate and invertebrate predators caused a substantial and abrupt shift in community composition resulting in a trophic cascade that extended to primary producers and to a nonaquatic species, the bald eagle. The opossum shrimp, Mysis diluviana, invaded Flathead Lake, Montana, the largest freshwater lake in the western United States. Lake trout had been introduced 80 y prior but remained at low densities until nonnative Mysis became established. The bottom-dwelling mysids eliminated a recruitment bottleneck for lake trout by providing a deep water source of food where little was available previously. Lake trout subsequently flourished on mysids and this voracious piscivore now dominates the lake fishery; formerly abundant kokanee were extirpated, and native bull and westslope cutthroat trout are imperiled. Predation by Mysis shifted zooplankton and phytoplankton community size structure. Bayesian change point analysis of primary productivity (27-y time series) showed a significant step increase of 55 mg C m(-2) d(-1) (i.e., 21% rise) concurrent with the mysid invasion, but little trend before or after despite increasing nutrient loading. Mysis facilitated predation by lake trout and indirectly caused the collapse of kokanee, redirecting energy flow through the ecosystem that would otherwise have been available to other top predators (bald eagles). PMID:21199944

  15. Trophic and Non-Trophic Interactions in a Biodiversity Experiment Assessed by Next-Generation Sequencing

    PubMed Central

    Tiede, Julia; Wemheuer, Bernd; Traugott, Michael; Daniel, Rolf; Tscharntke, Teja; Ebeling, Anne; Scherber, Christoph

    2016-01-01

    Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research. PMID:26859146

  16. Trophic and Non-Trophic Interactions in a Biodiversity Experiment Assessed by Next-Generation Sequencing.

    PubMed

    Tiede, Julia; Wemheuer, Bernd; Traugott, Michael; Daniel, Rolf; Tscharntke, Teja; Ebeling, Anne; Scherber, Christoph

    2016-01-01

    Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research. PMID:26859146

  17. Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large carnivores can powerfully shape ecosystems by directly suppressing herbivores, thereby indirectly benefitting plants in a process known as a trophic cascade. In 2002, after a 20-year absence, African wild dogs (Lycaon pictus) recolonized the Laikipia Plateau in central Kenya. We hypothesized t...

  18. Trophic cascades induced by lobster fishing are not ubiquitous in southern California kelp forests.

    PubMed

    Guenther, Carla M; Lenihan, Hunter S; Grant, Laura E; Lopez-Carr, David; Reed, Daniel C

    2012-01-01

    Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and

  19. Trophic cascades in the bryosphere: the impact of global change factors on top-down control of cyanobacterial N2 -fixation.

    PubMed

    Kardol, Paul; Spitzer, Clydecia M; Gundale, Michael J; Nilsson, Marie-Charlotte; Wardle, David A

    2016-08-01

    Trophic cascades in which predators regulate densities of organisms at lower trophic levels are important drivers of population dynamics, but effects of trophic cascades on ecosystem-level fluxes and processes, and the conditions under which top-down control is important, remain unresolved. We manipulated the structure of a food web in boreal feather mosses and found that moss-inhabiting microfauna exerted top-down control of N2 -fixation by moss-associated cyanobacteria. However, the presence of higher trophic levels alleviated this top-down control, likely through feeding on bacterivorous microfauna. These effects of food-web structure on cyanobacterial N2 -fixation were dependent on global change factors and strongly suppressed under N fertilisation. Our findings illustrate how food web interactions and trophic cascades can regulate N cycling in boreal ecosystems, where carbon uptake is generally strongly N-limited, and shifting trophic control of N cycling under global change is therefore likely to impact ecosystem functioning. PMID:27320725

  20. Human-induced trophic cascades along the fecal detritus pathway.

    PubMed

    Nichols, Elizabeth; Uriarte, María; Peres, Carlos A; Louzada, Julio; Braga, Rodrigo Fagundes; Schiffler, Gustavo; Endo, Whaldener; Spector, Sacha H

    2013-01-01

    Human presence and activity in tropical forest is thought to exert top-down regulation over the various 'green-world' pathways of plant-based foodwebs. However, these effects have never been explored for the 'brown-world' pathways of fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e. dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across detritivore groups defined by species' traits. We found smaller-bodied dung beetles were at higher risk of local decline in areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both species' traits and habitat type. Further research will be required to determine the conditions under which these cascade effects influence fecal-detritus web function. PMID:24146780

  1. Human-Induced Trophic Cascades along the Fecal Detritus Pathway

    PubMed Central

    Nichols, Elizabeth; Uriarte, María; Peres, Carlos A.; Louzada, Julio; Braga, Rodrigo Fagundes; Schiffler, Gustavo; Endo, Whaldener; Spector, Sacha H.

    2013-01-01

    Human presence and activity in tropical forest is thought to exert top-down regulation over the various ‘green-world’ pathways of plant-based foodwebs. However, these effects have never been explored for the ‘brown-world’ pathways of fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e. dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across detritivore groups defined by species' traits. We found smaller-bodied dung beetles were at higher risk of local decline in areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both species' traits and habitat type. Further research will be required to determine the conditions under which these cascade effects influence fecal-detritus web function. PMID:24146780

  2. Fear of large carnivores causes a trophic cascade.

    PubMed

    Suraci, Justin P; Clinchy, Michael; Dill, Lawrence M; Roberts, Devin; Zanette, Liana Y

    2016-01-01

    The fear large carnivores inspire, independent of their direct killing of prey, may itself cause cascading effects down food webs potentially critical for conserving ecosystem function, particularly by affecting large herbivores and mesocarnivores. However, the evidence of this has been repeatedly challenged because it remains experimentally untested. Here we show that experimentally manipulating fear itself in free-living mesocarnivore (raccoon) populations using month-long playbacks of large carnivore vocalizations caused just such cascading effects, reducing mesocarnivore foraging to the benefit of the mesocarnivore's prey, which in turn affected a competitor and prey of the mesocarnivore's prey. We further report that by experimentally restoring the fear of large carnivores in our study system, where most large carnivores have been extirpated, we succeeded in reversing this mesocarnivore's impacts. We suggest that our results reinforce the need to conserve large carnivores given the significant "ecosystem service" the fear of them provides. PMID:26906881

  3. Fear of large carnivores causes a trophic cascade

    PubMed Central

    Suraci, Justin P.; Clinchy, Michael; Dill, Lawrence M.; Roberts, Devin; Zanette, Liana Y.

    2016-01-01

    The fear large carnivores inspire, independent of their direct killing of prey, may itself cause cascading effects down food webs potentially critical for conserving ecosystem function, particularly by affecting large herbivores and mesocarnivores. However, the evidence of this has been repeatedly challenged because it remains experimentally untested. Here we show that experimentally manipulating fear itself in free-living mesocarnivore (raccoon) populations using month-long playbacks of large carnivore vocalizations caused just such cascading effects, reducing mesocarnivore foraging to the benefit of the mesocarnivore's prey, which in turn affected a competitor and prey of the mesocarnivore's prey. We further report that by experimentally restoring the fear of large carnivores in our study system, where most large carnivores have been extirpated, we succeeded in reversing this mesocarnivore's impacts. We suggest that our results reinforce the need to conserve large carnivores given the significant “ecosystem service” the fear of them provides. PMID:26906881

  4. Predator transitory spillover induces trophic cascades in ecological sinks.

    PubMed

    Casini, Michele; Blenckner, Thorsten; Möllmann, Christian; Gårdmark, Anna; Lindegren, Martin; Llope, Marcos; Kornilovs, Georgs; Plikshs, Maris; Stenseth, Nils Christian

    2012-05-22

    Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross-system fluxes on a whole marine ecosystem structure have not yet been presented. Here we show, using 35 y of multitrophic data series from the Baltic Sea, that transitory spillover of the top-predator cod from its main distribution area produces cascading effects in the whole food web of an adjacent and semi-isolated ecosystem. At varying population size, cod expand/contract their distribution range and invade/retreat from the neighboring Gulf of Riga, thereby affecting the local prey population of herring and, indirectly, zooplankton and phytoplankton via top-down control. The Gulf of Riga can be considered for cod a "true sink" habitat, where in the absence of immigration from the source areas of the central Baltic Sea the cod population goes extinct due to the absence of suitable spawning grounds. Our results add a metaecosystem perspective to the ongoing intense scientific debate on the key role of top predators in structuring natural systems. The integration of regional and local processes is central to predict species and ecosystem responses to future climate changes and ongoing anthropogenic disturbances. PMID:22505739

  5. Weak Interactions and Instability Cascades.

    PubMed

    Kadoya, Taku; McCann, Kevin S

    2015-01-01

    Food web theory states that a weak interactor which is positioned in the food web such that it tends to deflect, or mute, energy away from a potentially oscillating consumer-resource interaction often enhances community persistence and stability. Here we examine how adding other weak interactions (predation/harvesting) on the stabilizing weak interactor alters the stability of food web using a set of well-established food web models/modules. We show that such "weak on weak" interaction chains drive an indirect dynamic cascade that can rapidly ignite a distant consumer-resource oscillator. Nonetheless, we also show that the "weak on weak" interactions are still more stable than the food web without them, and so weak interactions still generally act to stabilize food webs. Rather, these results are best interpreted to say that the degree of the stabilizing effect of a given important weak interaction can be severely compromised by other weak interactions (including weak harvesting). PMID:26219561

  6. Trait-mediated trophic cascade creates enemy-free space for nesting hummingbirds

    PubMed Central

    Greeney, Harold F.; Meneses, M. Rocio; Hamilton, Chris E.; Lichter-Marck, Eli; Mannan, R. William; Snyder, Noel; Snyder, Helen; Wethington, Susan M.; Dyer, Lee A.

    2015-01-01

    The indirect effects of predators on nonadjacent trophic levels, mediated through traits of intervening species, are collectively known as trait-mediated trophic cascades. Although birds are important predators in terrestrial ecosystems, clear examples of trait-mediated indirect effects involving bird predators have almost never been documented. Such indirect effects are important for structuring ecological communities and are likely to be negatively impacted by habitat fragmentation, climate change, and other factors that reduce abundance of top predators. We demonstrate that hummingbirds in Arizona realize increased breeding success when nesting in association with hawks. An enemy-free nesting space is created when jays, an important source of mortality for hummingbird nests, alter their foraging behavior in the presence of their hawk predators. PMID:26601258

  7. Trait-mediated trophic cascade creates enemy-free space for nesting hummingbirds.

    PubMed

    Greeney, Harold F; Meneses, M Rocio; Hamilton, Chris E; Lichter-Marck, Eli; Mannan, R William; Snyder, Noel; Snyder, Helen; Wethington, Susan M; Dyer, Lee A

    2015-09-01

    The indirect effects of predators on nonadjacent trophic levels, mediated through traits of intervening species, are collectively known as trait-mediated trophic cascades. Although birds are important predators in terrestrial ecosystems, clear examples of trait-mediated indirect effects involving bird predators have almost never been documented. Such indirect effects are important for structuring ecological communities and are likely to be negatively impacted by habitat fragmentation, climate change, and other factors that reduce abundance of top predators. We demonstrate that hummingbirds in Arizona realize increased breeding success when nesting in association with hawks. An enemy-free nesting space is created when jays, an important source of mortality for hummingbird nests, alter their foraging behavior in the presence of their hawk predators. PMID:26601258

  8. Trophic cascades on the edge: fostering seagrass resilience via a novel pathway.

    PubMed

    Hughes, Brent B; Hammerstrom, Kamille K; Grant, Nora E; Hoshijima, Umi; Eby, Ron; Wasson, Kerstin

    2016-09-01

    Despite widespread degradation, some coastal ecosystems display remarkable resilience. For seagrasses, a century-old paradigm has implicated macroalgal blooms stimulated by anthropogenic nutrient, loading as a primary driver of seagrass decline, yet relatively little attention has been given to drivers of seagrass resilience. In Elkhorn Slough, CA, an estuarine system characterized by extreme anthropogenic nutrient loading and macroalgal (Ulva spp.) blooms, seagrass (Zostera marina) beds have recovered concurrent with colonization of the estuary by top predators, sea otters (Enhydra lutris). Here, we follow up on the results of a previous experiment at the seagrass interior, showing how sea otters can generate a trophic cascade that promotes seagrass. We conducted an experiment and constructed structural equation models to determine how sea otters, through a trophic cascade, might affect the edge of seagrass beds where expansion occurs. We found that at the edge, sea otters promoted both seagrass and ephemeral macroalgae, with the latter contributing beneficial grazers to the seagrass. The surprising results that sea otters promote two potentially competing vegetation types, and a grazer assemblage at their boundary provides a mechanism by which seagrasses can expand in eutrophic environments, and contributes to a growing body of literature demonstrating that ephemeral macroalgae are not always negatively associated with seagrass. Our results highlight the potential for top predator recovery to enhance ecosystem resilience to anthropogenic alterations through several cascading mechanisms. PMID:27167224

  9. Evidence for a trophic cascade on rocky reefs following sea star mass mortality in British Columbia

    PubMed Central

    Cloutier, Ryan N.; Côté, Isabelle M.

    2016-01-01

    Echinoderm population collapses, driven by disease outbreaks and climatic events, may be important drivers of population dynamics, ecological shifts and biodiversity. The northeast Pacific recently experienced a mass mortality of sea stars. In Howe Sound, British Columbia, the sunflower star Pycnopodia helianthoides—a previously abundant predator of bottom-dwelling invertebrates—began to show signs of a wasting syndrome in early September 2013, and dense aggregations disappeared from many sites in a matter of weeks. Here, we assess changes in subtidal community composition by comparing the abundance of fish, invertebrates and macroalgae at 20 sites in Howe Sound before and after the 2013 sea star mortality to evaluate evidence for a trophic cascade. We observed changes in the abundance of several species after the sea star mortality, most notably a four-fold increase in the number of green sea urchins, Strongylocentrotus droebachiensis, and a significant decline in kelp cover, which are together consistent with a trophic cascade. Qualitative data on the abundance of sunflower stars and green urchins from a citizen science database show that the patterns of echinoderm abundance detected at our study sites reflected wider local trends. The trophic cascade evident at the scale of Howe Sound was observed at half of the study sites. It remains unclear whether the urchin response was triggered directly, via a reduction in urchin mortality, or indirectly, via a shift in urchin distribution into areas previously occupied by the predatory sea stars. Understanding the ecological implications of sudden and extreme population declines may further elucidate the role of echinoderms in temperate seas, and provide insight into the resilience of marine ecosystems to biological disturbances. PMID:27168988

  10. Trophic cascade effects of avian predation on a willow in an urban wetland.

    PubMed

    Wu, Pei-Chen; Shaner, Pei-Jen L

    2016-01-01

    Trophic cascades play a crucial role in ecosystem functioning. In this study, we tested the effects of avian predation on willows (Salix warburgii) and associated arthropods in an urban wetland. We excluded birds by netting around willow branches for 20 months from September-November 2010 to June 2012. We compared the leaf count, leaf area, leaf biomass, bud count, catkin (flower) count and herbivory from pairs of bird-exclusion and no-exclusion branches on 11 trees. Simultaneously, we compared herbivorous and predatory arthropod abundances associated with bird-exclusion and no-exclusion branches. Another nine trees were used as reference branches to assess whether the bird exclusion impacted other branches of the same trees (i.e., no-exclusion branches). Bird exclusion resulted in increased herbivory 1 year after the treatment, followed by a reduced leaf count, leaf area, leaf biomass, bud count and catkin count in the second year. The bird-exclusion branches exhibited greater spider abundance than the no-exclusion branches. However, herbivorous arthropod abundances were similar between the branch types. The reference branches had similar values in all plant traits and for all arthropod abundances to those of the no-exclusion branches. This study demonstrated the branch-level effects of trophic cascades on willows via the exclusion of birds and a resulting reduction in herbivory. However, whether and how the arthropods mediate such effects require further investigation. This study adds to the limited empirical data demonstrating the effects of trophic cascades on plant reproduction. Our findings highlight the importance of bird conservation in urban wetlands. PMID:26391382

  11. Evidence for a trophic cascade on rocky reefs following sea star mass mortality in British Columbia.

    PubMed

    Schultz, Jessica A; Cloutier, Ryan N; Côté, Isabelle M

    2016-01-01

    Echinoderm population collapses, driven by disease outbreaks and climatic events, may be important drivers of population dynamics, ecological shifts and biodiversity. The northeast Pacific recently experienced a mass mortality of sea stars. In Howe Sound, British Columbia, the sunflower star Pycnopodia helianthoides-a previously abundant predator of bottom-dwelling invertebrates-began to show signs of a wasting syndrome in early September 2013, and dense aggregations disappeared from many sites in a matter of weeks. Here, we assess changes in subtidal community composition by comparing the abundance of fish, invertebrates and macroalgae at 20 sites in Howe Sound before and after the 2013 sea star mortality to evaluate evidence for a trophic cascade. We observed changes in the abundance of several species after the sea star mortality, most notably a four-fold increase in the number of green sea urchins, Strongylocentrotus droebachiensis, and a significant decline in kelp cover, which are together consistent with a trophic cascade. Qualitative data on the abundance of sunflower stars and green urchins from a citizen science database show that the patterns of echinoderm abundance detected at our study sites reflected wider local trends. The trophic cascade evident at the scale of Howe Sound was observed at half of the study sites. It remains unclear whether the urchin response was triggered directly, via a reduction in urchin mortality, or indirectly, via a shift in urchin distribution into areas previously occupied by the predatory sea stars. Understanding the ecological implications of sudden and extreme population declines may further elucidate the role of echinoderms in temperate seas, and provide insight into the resilience of marine ecosystems to biological disturbances. PMID:27168988

  12. Testing the generality of a trophic-cascade model for plague

    USGS Publications Warehouse

    Collinge, S.K.; Johnson, W.C.; Ray, C.; Matchett, R.; Grensten, J.; Cully, J.F., Jr.; Gage, K.L.; Kosoy, M.Y.; Loye, J.E.; Martin, A.P.

    2005-01-01

    Climate may affect the dynamics of infectious diseases by shifting pathogen, vector, or host species abundance, population dynamics, or community interactions. Black-tailed prairie dogs (Cynomys ludovicianus) are highly susceptible to plague, yet little is known about factors that influence the dynamics of plague epizootics in prairie dogs. We investigated temporal patterns of plague occurrence in black-tailed prairie dogs to assess the generality of links between climate and plague occurrence found in previous analyses of human plague cases. We examined long-term data on climate and plague occurrence in prairie dog colonies within two study areas. Multiple regression analyses revealed that plague occurrence in prairie dogs was not associated with climatic variables in our Colorado study area. In contrast, plague occurrence was strongly associated with climatic variables in our Montana study area. The models with most support included a positive association with precipitation in April-July of the previous year, in addition to a positive association with the number of "warm" days and a negative association with the number of "hot" days in the same year as reported plague events. We conclude that the timing and magnitude of precipitation and temperature may affect plague occurrence in some geographic areas. The best climatic predictors of plague occurrence in prairie dogs within our Montana study area are quite similar to the best climatic predictors of human plague cases in the southwestern United States. This correspondence across regions and species suggests support for a (temperature-modulated) trophic-cascade model for plague, including climatic effects on rodent abundance, flea abundance, and pathogen transmission, at least in regions that experience strong climatic signals. ?? 2005 EcoHealth Journal Consortium.

  13. Animal water balance drives top-down effects in a riparian forest-implications for terrestrial trophic cascades.

    PubMed

    McCluney, Kevin E; Sabo, John L

    2016-08-17

    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems. PMID:27534953

  14. Coyotes, deer, and wildflowers: diverse evidence points to a trophic cascade

    NASA Astrophysics Data System (ADS)

    Waser, Nickolas M.; Price, Mary V.; Blumstein, Daniel T.; Arózqueta, S. Reneé; Escobar, Betsabé D. Castro; Pickens, Richard; Pistoia, Alessandra

    2014-05-01

    Spatial gradients in human activity, coyote activity, deer activity, and deer herbivory provide an unusual type of evidence for a trophic cascade. Activity of coyotes, which eat young mule deer (fawns), decreased with proximity to a remote biological field station, indicating that these predators avoided an area of high human activity. In contrast, activity of adult female deer (does) and intensity of herbivory on palatable plant species both increased with proximity to the station and were positively correlated with each other. The gradient in deer activity was not explained by availabilities of preferred habitats or plant species because these did not vary with distance from the station. Does spent less time feeding when they encountered coyote urine next to a feed block, indicating that increased vigilance may contribute, along with avoidance of areas with coyotes, to lower herbivory away from the station. Judging from two palatable wildflower species whose seed crop and seedling recruitment were greatly reduced near the field station, the coyote-deer-wildflower trophic cascade has the potential to influence plant community composition. Our study illustrates the value of a case-history approach, in which different forms of ecological data about a single system are used to develop conceptual models of complex ecological phenomena. Such an iterative model-building process is a common, but underappreciated, way of understanding how ecological systems work.

  15. Coyotes, deer, and wildflowers: diverse evidence points to a trophic cascade.

    PubMed

    Waser, Nickolas M; Price, Mary V; Blumstein, Daniel T; Arózqueta, S Reneé; Escobar, Betsabé D Castro; Pickens, Richard; Pistoia, Alessandra

    2014-05-01

    Spatial gradients in human activity, coyote activity, deer activity, and deer herbivory provide an unusual type of evidence for a trophic cascade. Activity of coyotes, which eat young mule deer (fawns), decreased with proximity to a remote biological field station, indicating that these predators avoided an area of high human activity. In contrast, activity of adult female deer (does) and intensity of herbivory on palatable plant species both increased with proximity to the station and were positively correlated with each other. The gradient in deer activity was not explained by availabilities of preferred habitats or plant species because these did not vary with distance from the station. Does spent less time feeding when they encountered coyote urine next to a feed block, indicating that increased vigilance may contribute, along with avoidance of areas with coyotes, to lower herbivory away from the station. Judging from two palatable wildflower species whose seed crop and seedling recruitment were greatly reduced near the field station, the coyote-deer-wildflower trophic cascade has the potential to influence plant community composition. Our study illustrates the value of a case-history approach, in which different forms of ecological data about a single system are used to develop conceptual models of complex ecological phenomena. Such an iterative model-building process is a common, but underappreciated, way of understanding how ecological systems work. PMID:24728614

  16. Predation risk, elk, and aspen: tests of a behaviorally mediated trophic cascade in the Greater Yellowstone Ecosystem.

    PubMed

    Winnie, John A

    2012-12-01

    Aspen in the Greater Yellowstone Ecosystem are hypothesized to be recovering from decades of heavy browsing by elk due to a behaviorally mediated trophic cascade (BMTC). Several authors have suggested that wolves interact with certain terrain features, creating places of high predation risk at fine spatial scales, and that elk avoid these places, which creates refugia for plants. This hypothesized BMTC could release aspen from elk browsing pressure, leading to a patchy recovery in places of high risk. I tested whether four specific, hypothesized fine-scale risk factors are correlated with changes in current elk browsing pressure on aspen, or with aspen recruitment since wolf reintroduction, in the Daly Creek drainage in Yellowstone National Park, and near two aspen enclosures outside of the park boundary. Aspen were not responding to hypothesized fine-scale risk factors in ways consistent with the current BMTC hypothesis. PMID:23431591

  17. Recovering aspen follow changing elk dynamics in Yellowstone: evidence of a trophic cascade?

    PubMed

    Painter, Luke E; Beschta, Robert L; Larsen, Eric J; Ripple, William J

    2015-01-01

    To investigate the extent and causes of recent quaking aspen (Populus tremuloides) recruitment in northern Yellowstone National Park, we measured browsing intensity and height of young aspen in 87 randomly selected aspen stands in 2012, and compared our results to similar data collected in 1997-1998. We also examined the relationship between aspen recovery and the distribution of Rocky Mountain elk (Cervus elaphus) and bison (Bison bison) on the Yellowstone northern ungulate winter range, using ungulate fecal pile densities and annual elk count data. In 1998, 90% of young aspen were browsed and none were taller-than 200 cm, the height at which aspen begin to escape from elk browsing. In 2012, only 37% in the east and 63% in the west portions of the winter range were browsed, and 65% of stands in the east had young aspen taller than 200 cm. Heights of young aspen were inversely related to browsing intensity, with the least browsing and greatest heights in the eastern portion of the range, corresponding with recent changes in elk density and distribution. In contrast with historical elk distribution (1930s-1990s), the greatest densities of elk recently (2006-2012) have been north of the park boundary (approximately 5 elk/km2), and in the western part of the range (2-4 elk/km2), with relatively few elk in the eastern portion of the range (<2 elk/km2), even in mild winters. This redistribution of elk and decrease in density inside the park, and overall reduction in elk numbers, explain why many aspen stands have begun to recover. Increased predation pressure following the reintroduction of gray wolves (Canis lupius) in 1995-1996 played a role in these changing elk population dynamics, interacting with other influences including increased predation by bears (Ursus spp.), competition with an expanding bison population, and shifting patterns of human land use and hunting outside the park. The resulting new aspen recruitment is evidence of a landscape-scale trophic cascade

  18. Colonisation rate and adaptive foraging control the emergence of trophic cascades.

    PubMed

    Fahimipour, Ashkaan K; Anderson, Kurt E

    2015-08-01

    Ecological communities are assembled and sustained by colonisation. At the same time, predators make foraging decisions based on the local availabilities of potential resources, which reflects colonisation. We combined field and laboratory experiments with mathematical models to demonstrate that a feedback between these two processes determines emergent patterns in community structure. Namely, our results show that prey colonisation rate determines the strength of trophic cascades - a feature of virtually all ecosystems - by prompting behavioural shifts in adaptively foraging omnivorous fish predators. Communities experiencing higher colonisation rates were characterised by higher invertebrate prey and lower producer biomasses. Consequently, fish functioned as predators when colonisation rate was high, but as herbivores when colonisation rate was low. Human land use is changing habitat connectivity worldwide. A deeper quantitative understanding of how spatial processes modify individual behaviour, and how this scales to the community level, will be required to predict ecosystem responses to these changes. PMID:26096758

  19. Are wolves saving Yellowstone's aspen? A landscape-level test of a behaviorally mediated trophic cascade

    USGS Publications Warehouse

    Kauffman, Matthew J.; Brodie, Jedediah F.; Jules, Erik S.

    2010-01-01

    Behaviorally mediated trophic cascades (BMTCs) occur when the fear of predation among herbivores enhances plant productivity. Based primarily on systems involving small-bodied predators, BMTCs have been proposed as both strong and ubiquitous in natural ecosystems. Recently, however, synthetic work has suggested that the existence of BMTCs may be mediated by predator hunting mode, whereby passive (sit-and-wait) predators have much stronger effects than active (coursing) predators. One BMTC that has been proposed for a wide-ranging active predator system involves the reintroduction of wolves (Canis lupus) to Yellowstone National Park, USA, which is thought to be leading to a recovery of trembling aspen (Populus tremuloides) by causing elk (Cervus elaphus) to avoid foraging in risky areas. Although this BMTC has been generally accepted and highly popularized, it has never been adequately tested. We assessed whether wolves influence aspen by obtaining detailed demographic data on aspen stands using tree rings and by monitoring browsing levels in experimental elk exclosures arrayed across a gradient of predation risk for three years. Our study demonstrates that the historical failure of aspen to regenerate varied widely among stands (last recruitment year ranged from 1892 to 1956), and our data do not indicate an abrupt cessation of recruitment. This pattern of recruitment failure appears more consistent with a gradual increase in elk numbers rather than a rapid behavioral shift in elk foraging following wolf extirpation. In addition, our estimates of relative survivorship of young browsable aspen indicate that aspen are not currently recovering in Yellowstone, even in the presence of a large wolf population. Finally, in an experimental test of the BMTC hypothesis we found that the impacts of elk browsing on aspen demography are not diminished in sites where elk are at higher risk of predation by wolves. These findings suggest the need to further evaluate how trophic

  20. A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C

    PubMed Central

    Holdo, Ricardo M.; Sinclair, Anthony R. E.; Dobson, Andrew P.; Metzger, Kristine L.; Bolker, Benjamin M.; Ritchie, Mark E.; Holt, Robert D.

    2009-01-01

    Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-space model to show that the wildebeest population irruption that followed disease (rinderpest) eradication in the Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks for C may be fundamentally linked to the control of disease outbreaks and poaching. PMID:19787022

  1. Restricting Prey Dispersal Can Overestimate the Importance of Predation in Trophic Cascades

    PubMed Central

    Geraldi, Nathan R.; Macreadie, Peter I.

    2013-01-01

    Predators can affect prey populations and, via trophic cascades, predators can indirectly impact resource populations (2 trophic levels below the predator) through consumption of prey (density-mediated indirect effects; DMIEs) and by inducing predator-avoidance behavior in prey (trait-mediated indirect effects; TMIEs). Prey often employ multiple predator-avoidance behaviors, such as dispersal or reduced foraging activity, but estimates of TMIEs are usually on individual behaviors. We assessed direct and indirect predator effects in a mesocosm experiment using a marine food chain consisting of a predator (toadfish – Opsanus tau), prey (mud crab - Panopeus herbstii) and resource (ribbed mussel – Geukensia demissa). We measured dispersal and foraging activity of prey separately by manipulating both the presence and absence of the predator, and whether prey could or could not disperse into a predator-free area. Consumption of prey was 9 times greater when prey could not disperse, probably because mesocosm boundaries increased predator capture success. Although predator presence did not significantly affect the number of crabs that emigrated, the presence of a predator decreased resource consumption by prey, which resulted in fewer resources consumed for each prey that emigrated in the presence of a predator, and reduced the overall TMIE. When prey were unable to disperse, TMIEs on mussel survival were 3 times higher than the DMIEs. When prey were allowed to disperse, the TMIEs on resource survival increased to 11-times the DMIEs. We found that restricting the ability of prey to disperse, or focusing on only one predator-avoidance behavior, may be underestimating TMIEs. Our results indicate that the relative contribution of behavior and consumption in food chain dynamics will depend on which predator-avoidance behaviors are allowed to occur and measured. PMID:23408957

  2. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants.

    PubMed

    Mooney, Kailen A; Gruner, Daniel S; Barber, Nicholas A; Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell

    2010-04-20

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities. PMID:20368418

  3. Trait-mediated trophic interactions: is foraging theory keeping up?

    PubMed

    Railsback, Steven F; Harvey, Bret C

    2013-02-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can address feedbacks but does not provide foraging theory for unique individuals in variable environments. 'State- and prediction-based theory' (SPT) is a new approach that combines existing trade-off methods with routine updating: individuals regularly predict future food availability and risk from current conditions to optimize a fitness measure. SPT can reproduce a variety of realistic foraging behaviors and trait-mediated trophic interactions with feedbacks, even when the environment is unpredictable. PMID:22995894

  4. Nationwide trophic cascades: changes in avian community structure driven by ungulates.

    PubMed

    Palmer, Georgina; Stephens, Philip A; Ward, Alastair I; Willis, Stephen G

    2015-01-01

    In recent decades, many ungulate populations have changed dramatically in abundance, resulting in cascading effects across ecosystems. However, studies of such effects are often limited in their spatial and temporal scope. Here, we contrast multi-species composite population trends of deer-sensitive and deer-tolerant woodland birds at a national scale, across Britain. We highlight the divergent fates of these two groups between 1994 and 2011, and show a striking association between the calculated divergence and a composite population trend of woodland deer. Our results demonstrate the link between changes in deer populations and changes in bird communities. In a period when composite population trends for deer increased by 46%, the community population trend across deer-sensitive birds (those dependent on understory vegetation) declined much more than the community trend for deer-tolerant birds. Our findings suggest that ongoing changes in the populations of herbivorous ungulates in many countries worldwide may help explain patterns of community restructuring at other trophic levels. Ungulate impacts on other taxa may require more consideration by conservation practitioners than they currently receive. PMID:26499183

  5. Nationwide trophic cascades: changes in avian community structure driven by ungulates

    NASA Astrophysics Data System (ADS)

    Palmer, Georgina; Stephens, Philip A.; Ward, Alastair I.; Willis, Stephen G.

    2015-10-01

    In recent decades, many ungulate populations have changed dramatically in abundance, resulting in cascading effects across ecosystems. However, studies of such effects are often limited in their spatial and temporal scope. Here, we contrast multi-species composite population trends of deer-sensitive and deer-tolerant woodland birds at a national scale, across Britain. We highlight the divergent fates of these two groups between 1994 and 2011, and show a striking association between the calculated divergence and a composite population trend of woodland deer. Our results demonstrate the link between changes in deer populations and changes in bird communities. In a period when composite population trends for deer increased by 46%, the community population trend across deer-sensitive birds (those dependent on understory vegetation) declined much more than the community trend for deer-tolerant birds. Our findings suggest that ongoing changes in the populations of herbivorous ungulates in many countries worldwide may help explain patterns of community restructuring at other trophic levels. Ungulate impacts on other taxa may require more consideration by conservation practitioners than they currently receive.

  6. Nationwide trophic cascades: changes in avian community structure driven by ungulates

    PubMed Central

    Palmer, Georgina; Stephens, Philip A.; Ward, Alastair I.; Willis, Stephen G.

    2015-01-01

    In recent decades, many ungulate populations have changed dramatically in abundance, resulting in cascading effects across ecosystems. However, studies of such effects are often limited in their spatial and temporal scope. Here, we contrast multi-species composite population trends of deer-sensitive and deer-tolerant woodland birds at a national scale, across Britain. We highlight the divergent fates of these two groups between 1994 and 2011, and show a striking association between the calculated divergence and a composite population trend of woodland deer. Our results demonstrate the link between changes in deer populations and changes in bird communities. In a period when composite population trends for deer increased by 46%, the community population trend across deer-sensitive birds (those dependent on understory vegetation) declined much more than the community trend for deer-tolerant birds. Our findings suggest that ongoing changes in the populations of herbivorous ungulates in many countries worldwide may help explain patterns of community restructuring at other trophic levels. Ungulate impacts on other taxa may require more consideration by conservation practitioners than they currently receive. PMID:26499183

  7. Plant toxins and trophic cascades alter fire regime and succession on a boral forest landscape

    USGS Publications Warehouse

    Feng, Zhilan; Alfaro-Murillo, Jorge A.; DeAngelis, Donald L.; Schmidt, Jennifer; Barga, Matthew; Zheng, Yiqiang; Ahmad Tamrin, Muhammad Hanis B.; Olson, Mark; Glaser, Tim; Kielland, Knut; Chapin, F. Stuart, III; Bryant, John

    2012-01-01

    Two models were integrated in order to study the effect of plant toxicity and a trophic cascade on forest succession and fire patterns across a boreal landscape in central Alaska. One of the models, ALFRESCO, is a cellular automata model that stochastically simulates transitions from spruce dominated 1 km2 spatial cells to deciduous woody vegetation based on stochastic fires, and from deciduous woody vegetation to spruce based on age of the cell with some stochastic variation. The other model, the ‘toxin-dependent functional response’ model (TDFRM) simulates woody vegetation types with different levels of toxicity, an herbivore browser (moose) that can forage selectively on these types, and a carnivore (wolf) that preys on the herbivore. Here we replace the simple succession rules in each ALFRESCO cell by plant–herbivore–carnivore dynamics from TDFRM. The central hypothesis tested in the integrated model is that the herbivore, by feeding selectively on low-toxicity deciduous woody vegetation, speeds succession towards high-toxicity evergreens, like spruce. Wolves, by keeping moose populations down, can help slow the succession. Our results confirmed this hypothesis for the model calibrated to the Tanana floodplain of Alaska. We used the model to estimate the effects of different levels of wolf control. Simulations indicated that management reductions in wolf densities could reduce the mean time to transition from deciduous to spruce by more than 15 years, thereby increasing landscape flammability. The integrated model can be useful in estimating ecosystem impacts of wolf control and moose harvesting in central Alaska.

  8. Natural and experimental tests of trophic cascades: gray wolves and white-tailed deer in a Great Lakes forest.

    PubMed

    Flagel, D G; Belovsky, G E; Beyer, D E

    2016-04-01

    Herbivores can be major drivers of environmental change, altering plant community structure and changing biodiversity through the amount and species of plants consumed. If natural predators can reduce herbivore numbers and/or alter herbivore foraging behavior, then predators may reduce herbivory on sensitive plants, and a trophic cascade will emerge. We have investigated whether gray wolves (Canis lupus) generate such trophic cascades by reducing white-tailed deer (Odocoileus virginianus) herbivory on saplings and rare forbs in a northern mesic forest (Land O' Lakes, WI). Our investigation used an experimental system of deer exclosures in areas of high and low wolf use that allowed us to examine the role that wolf predation may play in reducing deer herbivory through direct reduction in deer numbers or indirectly through changing deer behavior. We found that in areas of high wolf use, deer were 62 % less dense, visit duration was reduced by 82 %, and percentage of time spent foraging was reduced by 43 %; in addition, the proportion of saplings browsed was nearly sevenfold less. Average maple (Acer spp.) sapling height and forb species richness increased 137 and 117 % in areas of high versus low wolf use, respectively. The results of the exclosure experiments revealed that the negative impacts of deer on sapling growth and forb species richness became negligible in high wolf use areas. We conclude that wolves are likely generating trophic cascades which benefit maples and rare forbs through trait-mediated effects on deer herbivory, not through direct predation kills. PMID:26670677

  9. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape

    PubMed Central

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G.; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G.

    2015-01-01

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169

  10. Incorporating anthropogenic effects into trophic ecology: predator-prey interactions in a human-dominated landscape.

    PubMed

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G

    2015-09-01

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169

  11. Does cadmium pollution change trophic interactions in rockpool food webs?

    SciTech Connect

    Koivisto, S.; Arner, M.; Kautsky, N.

    1997-06-01

    The authors studied the regulation of phytoplankton and zooplankton biomass in rockpool food webs under chronic cadmium pollution. Experimental food webs with two and three trophic levels were composed of phytoplankton, small-bodied zooplankton (Chydorus sphaericus, Cyclops sp., and rotifers), Daphnia magna, and Notonecta sp., a zooplanktivorous predator. Every food web received a control and cadmium treatment allowing a separate study of cadmium and predation effects. After a 3-week stabilization period, cadmium and Notonecta were added and changes in primary productivity, chlorophyll, zooplankton species composition, and biomass were followed during 8 weeks. The results showed that phytoplankton and Daphnia were consumer regulated in both control and cadmium treatments, although resource availability ultimately determined the biomass at each trophic level. Daphnia was the only zooplankton species that reduced phytoplankton and also the only species that was eliminated by Notonecta predation. Notonecta had an indirect positive impact on phytoplankton biomass that increased after the extinction of Daphnia. Cadmium significantly reduced phytoplankton and Daphnia but did not change the trophic interactions between them, i.e., Daphnia and chlorophyll were significantly negatively correlated both in the control and cadmium treatments. Cadmium did not affect the relationship between Daphnia and Notonecta.

  12. A multifaceted trophic cascade in a detritus-based system: density-, trait-, or processing-chain-mediated effects?

    PubMed Central

    Albeny-Simões, Daniel; Murrell, Ebony G.; Vilela, Evaldo F.; Juliano, Steven A.

    2015-01-01

    We investigated three pathways by which predators on an intermediate trophic level may produce a trophic cascade in detritus-based systems. Predators may increase lower trophic levels (bacteria) by reducing density of bacteriovores, by altering behavior of bacteriovores, and by processing living bacteriovores into carcasses, feces, and dissolved nutrients that are substrates for bacteria. We tested these pathways in laboratory experiments with mosquitoes in water-filled containers. Larval Toxorhynchites rutilus prey on larval Aedes triseriatus, which feed on bacteria. Using containers stocked with oak leaf infusion as a bacterial substrate, we compared bacterial productivity at 7 and 14 days for: prey alone; prey with a predator; and prey with predation cues but no predator. Controls contained no larvae, either with predation cues or without cues. Predation cues in the control treatment increased bacterial abundance at 7 days, but this effect waned by 14 days. Aedes triseriatus larvae reduced bacterial abundance significantly at 14 days. Predator cues and real predation both eliminated the negative effect of A. triseriatus on bacterial abundance. Predation cues reduced survivorship of A. triseriatus larvae at 14 days, however this effect was smaller than the effect of real predation. We further tested effects of residues from predation as cues or as detritus in a second experiment in which A. triseriatus were killed at similar rates by: real predators; mechanical damage without the predator and carcasses left as detritus; or mechanical damage and carcasses removed. No prey larvae were killed in controls. Bacterial productivity was greater with real predation than in all other treatments and greater when prey larvae were killed or killed and removed, than in controls. Thus we find evidence that all three pathways contribute to the trophic cascade from T. rutilus to bacteria in tree hole systems. PMID:25844268

  13. A trophic cascade induced by predatory ants in a fig-fig wasp mutualism.

    PubMed

    Wang, Bo; Geng, Xiang-Zong; Ma, Li-Bin; Cook, James M; Wang, Rui-Wu

    2014-09-01

    A trophic cascade occurs when predators directly decrease the densities, or change the behaviour, of herbivores and thus indirectly increase plant productivity. The predator-herbivore-plant context is well known, but some predators attack species beneficial to plants (e.g. pollinators) and/or enemies of herbivores (e.g. parasites), and their role in the dynamics of mutualisms remains largely unexplored. We surveyed the predatory ant species and studied predation by the dominant ant species, the weaver ant Oecophylla smaragdina, associated with the fig tree Ficus racemosa in southwest China. We then tested the effects of weaver ants on the oviposition behaviour of pollinating and non-pollinating fig wasps in an ant-exclusion experiment. The effects of weaver ants on fig wasp community structure and fig seed production were then compared between trees with and without O. smaragdina. Oecophylla smaragdina captured more non-pollinating wasps (Platyneura mayri) than pollinators as the insects arrived to lay eggs. When ants were excluded, more non-pollinators laid eggs into figs and fewer pollinators entered figs. Furthermore, trees with O. smaragdina produced more pollinator offspring and fewer non-pollinator offspring, shifting the community structure significantly. In addition, F. racemosa produced significantly more seeds on trees inhabited by weaver ants. Oecophylla smaragdina predation reverses the dominance of the two commonest wasp species at the egg-laying stage and favours the pollinators. This behavioural pattern is mirrored by wasp offspring production, with pollinators' offspring dominating figs produced by trees inhabited by weaver ants, and offspring of the non-pollinator P. mayri most abundant in figs on trees inhabited by other ants. Overall, our results suggest that predation by weaver ants limits the success of the non-pollinating P. mayri and therefore indirectly benefits the mutualism by increasing the reproductive success of both the

  14. Trophic interactions within the Ross Sea continental shelf ecosystem

    PubMed Central

    Smith, Walker O; Ainley, David G; Cattaneo-Vietti, Riccardo

    2006-01-01

    The continental shelf of the Ross Sea is one of the Antarctic's most intensively studied regions. We review the available data on the region's physical characteristics (currents and ice concentrations) and their spatial variations, as well as components of the neritic food web, including lower and middle levels (phytoplankton, zooplankton, krill, fishes), the upper trophic levels (seals, penguins, pelagic birds, whales) and benthic fauna. A hypothetical food web is presented. Biotic interactions, such as the role of Euphausia crystallorophias and Pleuragramma antarcticum as grazers of lower levels and food for higher trophic levels, are suggested as being critical. The neritic food web contrasts dramatically with others in the Antarctic that appear to be structured around the keystone species Euphausia superba. Similarly, we suggest that benthic–pelagic coupling is stronger in the Ross Sea than in most other Antarctic regions. We also highlight many of the unknowns within the food web, and discuss the impacts of a changing Ross Sea habitat on the ecosystem. PMID:17405209

  15. Bears benefit plants via a cascade with both antagonistic and mutualistic interactions.

    PubMed

    Grinath, Joshua B; Inouye, Brian D; Underwood, Nora

    2015-02-01

    Predators can influence primary producers by generating cascades of effects in ecological webs. These effects are often non-intuitive, going undetected because they involve many links and different types of species interactions. Particularly, little is understood about how antagonistic (negative) and mutualistic (positive) interactions combine to create cascades. Here, we show that black bears can benefit plants by consuming ants. The ants are mutualists of herbivores and protect herbivores from other arthropod predators. We found that plants near bear-damaged ant nests had greater reproduction than those near undamaged nests, due to weaker ant protection for herbivores, which allowed herbivore suppression by arthropod predators. Our results highlight the need to integrate mutualisms into trophic cascade theory, which is based primarily on antagonistic relationships. Predators are often conservation targets, and our results suggest that bears and other predators should be managed with the understanding that they can influence primary producers through many paths. PMID:25534277

  16. Trophic interactions determine the effects of drought on an aquatic ecosystem.

    PubMed

    Amundrud, Sarah L; Srivastava, Diane S

    2016-06-01

    Species interactions can be important mediators of community and ecosystem responses to environmental stressors. However, we still lack a mechanistic understanding of the indirect ecological effects of stress that arise via altered species interactions. To understand how species interactions will be altered by environmental stressors, we need to know if the species that are vulnerable to such stressors also have large impacts on the ecosystem. As predators often exhibit certain traits that are linked to a high vulnerability to stress (e.g., large body size, long generation time), as well as having large effects on communities (e.g., top-down trophic effects), predators may be particularly likely to mediate ecological effects of environmental stress. Other functional groups, like facilitators, are known to have large impacts on communities, but their vulnerability to perturbations remains undocumented. Here, we use aquatic insect communities in bromeliads to examine the indirect effects of an important stressor (drought) on community and ecosystem responses. In a microcosm experiment, we manipulated predatory and facilitative taxa under a range of experimental droughts, and quantified effects on community structure and ecosystem function. Drought, by adversely affecting the top predator, had indirect cascading effects on the entire food web, altering community composition and decomposition. We identified the likely pathway of how drought cascaded through the food web from the top-down as drought -->predator --> shredder --> decomposition. This stress-induced cascade depended on predators exhibiting both a strong vulnerability to drought and large impacts on prey (especially shredders), as well as shredders exhibiting high functional importance as decomposers. PMID:27459778

  17. A continental scale trophic cascade from wolves through coyotes to foxes.

    PubMed

    Newsome, Thomas M; Ripple, William J

    2015-01-01

    Top-down processes, via the direct and indirect effects of interspecific competitive killing (no consumption of the kill) or intraguild predation (consumption of the kill), can potentially influence the spatial distribution of terrestrial predators, but few studies have demonstrated the phenomenon at a continental scale. For example, in North America, grey wolves Canis lupus are known to kill coyotes Canis latrans, and coyotes, in turn, may kill foxes Vulpes spp., but the spatial effects of these competitive interactions at large scales are unknown. Here, we analyse fur return data across eight jurisdictions in North America to test whether the presence or absence of wolves has caused a continent-wide shift in coyote and red fox Vulpes vulpes density. Our results support the existence of a continental scale cascade whereby coyotes outnumber red foxes in areas where wolves have been extirpated by humans, whereas red foxes outnumber coyotes in areas where wolves are present. However, for a distance of up to 200 km on the edge of wolf distribution, there is a transition zone where the effects of top-down control are weakened, possibly due to the rapid dispersal and reinvasion capabilities of coyotes into areas where wolves are sporadically distributed or at low densities. Our results have implications for understanding how the restoration of wolf populations across North America could potentially affect co-occurring predators and prey. We conclude that large carnivores may need to occupy large continuous areas to facilitate among-carnivore cascades and that studies of small areas may not be indicative of the effects of top-down mesopredator control. PMID:24930631

  18. Cryptic Population Dynamics: Rapid Evolution Masks Trophic Interactions

    PubMed Central

    Yoshida, Takehito; Ellner, Stephen P; Jones, Laura E; Bohannan, Brendan J. M; Lenski, Richard E; Hairston, Nelson G

    2007-01-01

    Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components) is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution. PMID:17803356

  19. Disentangling trophic interactions inside a Caribbean marine reserve.

    PubMed

    Kellner, Julie B; Litvin, Steven Y; Hastings, Alan; Micheli, Fiorenza; Mumby, Peter J

    2010-10-01

    Recent empirical studies have demonstrated that human activities such as fishing can strongly affect the natural capital and services provided by tropical seascapes. However, policies to mitigate anthropogenic impacts can also alter food web structure and interactions, regardless of whether the regulations are aimed at single or multiple species, with possible unexpected consequences for the ecosystems and their associated services. Complex community response to management interventions have been highlighted in the Caribbean, where, contrary to predictions from linear food chain models, a reduction in fishing intensity through the establishment of a marine reserve has led to greater biomass of herbivorous fish inside the reserve, despite an increased abundance of large predatory piscivores. This positive multi-trophic response, where both predators and prey benefit from protection, highlights the need to take an integrated approach that considers how numerous factors control species coexistence in both fished and unfished systems. In order to understand these complex relationships, we developed a general model to examine the trade-offs between fishing pressure and trophic control on reef fish communities, including an exploration of top-down and bottom-up effects. We then validated the general model predictions by parameterizing the model for a reef system in the Bahamas in order to tease apart the wide range of species responses to reserves in the Caribbean. Combining the development of general theory and site-specific models parameterized with field data reveals the underlying driving forces in these communities and enables us to make better predictions about possible population and community responses to different management schemes. PMID:21049884

  20. The relevance of food peak architecture in trophic interactions.

    PubMed

    Vatka, Emma; Orell, Markku; Rytkönen, Seppo

    2016-04-01

    Phenological shifts and associated changes in the temporal match between trophic levels have been a major focus of the study of ecological consequences of climate change. Previously, the food peak has been thought to respond as an entity to warming temperatures. However, food peak architecture, that is, timings and abundances of prey species and the level of synchrony between them, determines the timing and shape of the food peak. We demonstrate this with a case example of three passerine prey species and their predator. We explored temporal trends in the timing, height, width, and peakedness of prey availabilities and explained their variation with food peak architecture and ambient temperatures of prebreeding and breeding seasons. We found a temporal match between the predator's breeding schedule and food availability. Temporal trends in the timing of the food peak or in the synchrony between the prey species were not found. However, the food peak has become wider and more peaked over time. With more peaked food availabilities, predator's breeding success will depend more on the temporal match between its breeding schedule and the food peak, ultimately affecting the timing of breeding in the predator population. The height and width of the food peak depended on the abundances and breeding season lengths of individual prey species and their reciprocal synchronies. Peakednesses of separate prey species' availability distributions alone explained the peakedness of the food peak. Timing and quantity of food production were associated with temperatures of various time periods with variable relevance in different prey species. Alternating abundances of early and late breeding prey species caused high annual fluctuation in the timing of the food peak. Interestingly, the food peak may become later even when prey species' schedules are advanced. Climate warming can thus produce unexpected changes in the food availabilities, intervening in trophic interactions. PMID

  1. Top-predator control-induced trophic cascades: an alternative hypothesis to the conclusion of Colman et al.

    PubMed Central

    Allen, Benjamin L.

    2015-01-01

    Colman et al. (2014 Proc. R. Soc. B 281, 20133094. (doi:10.1098/rspb.2013.3094)) recently argued that observed positive relationships between dingoes and small mammals were a result of top-down processes whereby lethal dingo control reduced dingoes and increased mesopredators and herbivores, which then suppressed small mammals. Here, I show that the prerequisite negative effects of dingo control on dingoes were not shown, and that the same positive relationships observed may simply represent well-known bottom-up processes whereby more generalist predators are found in places with more of their preferred prey. Identification of top-predator control-induced trophic cascades first requires demonstration of some actual effect of control on predators, typically possible only through manipulative experiments with the ability to identify cause and effect. PMID:25473006

  2. Top-predator control-induced trophic cascades: an alternative hypothesis to the conclusion of Colman et al.

    PubMed

    Allen, Benjamin L

    2015-01-22

    Colman et al. (2014 Proc. R. Soc. B 281, 20133094. (doi:10.1098/rspb.2013.3094)) recently argued that observed positive relationships between dingoes and small mammals were a result of top-down processes whereby lethal dingo control reduced dingoes and increased mesopredators and herbivores, which then suppressed small mammals. Here, I show that the prerequisite negative effects of dingo control on dingoes were not shown, and that the same positive relationships observed may simply represent well-known bottom-up processes whereby more generalist predators are found in places with more of their preferred prey. Identification of top-predator control-induced trophic cascades first requires demonstration of some actual effect of control on predators, typically possible only through manipulative experiments with the ability to identify cause and effect. PMID:25473006

  3. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming.

    PubMed

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-05-12

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa. PMID:25918393

  4. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming

    PubMed Central

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-01-01

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa. PMID:25918393

  5. Interacting trophic forcing and the population dynamics of herring.

    PubMed

    Lindegren, Martin; Ostman, Orjan; Gårdmark, Anna

    2011-07-01

    Small pelagic fish occupy a central position in marine ecosystems worldwide, largely by determining the energy transfer from lower trophic levels to predators at the top of the food web, including humans. Population dynamics of small pelagic fish may therefore be regulated neither strictly bottom-up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue. Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life cycle. Our results indicate significant bottom-up effects of zooplankton and interspecific competition from sprat (Sprattus sprattus), particularly on younger age classes of herring. Although top-down forcing through fishing and predation by grey seals (Halichoerus grypus) and Atlantic cod (Gadus morhua) also was evident, these factors were less important than resource availability and interspecific competition. Understanding key ecological processes and interactions is fundamental to ecosystem-based management practices necessary to promote sustainable exploitation of small pelagic fish. PMID:21870614

  6. Trophic interactions between parasitoids and necrophagous flies in Central Argentina.

    PubMed

    Sereno, Ana P; Salvo, Adriana; Battán-Horenstein, Moira

    2016-10-01

    Larvae of necrophagous flies in the families Calliphoridae, Sarcophagidae and Muscidae are the main exploiters of decaying organic matter. Knowledge of insect species associated with each stage of decay can be used to estimate the time since death in the crime scene. Dipteran larvae are attacked by a rich community of parasitoids, including species of Braconidae, Ichneumonidae and Pteromalidae (Hymenoptera: Parasitica). This study examined the parasitic complex associated with flies of forensic and sanitary importance in the city of Córdoba (Argentina). Sampling was conducted at two sites with different urbanization levels from December 2012 to March 2013; parasitoids were collected using fly traps baited with beef liver. Rates of parasitism and of parasitized pupae were estimated and species composition was analyzed for both communities. Sarcophagidae was the most abundant family, represented by two species, followed by Calliphoridae. Nasonia vitripennis Ashmead (Hymenoptera) was the most abundant species and was collected from a wider variety of hosts. To the best of our knowledge, this is the first study providing accurate information about trophic interactions between calyptrate dipteran species and their hymenopteran parasitoids in central Argentina. PMID:27423397

  7. Trophic cascades and future harmful algal blooms within ice-free Arctic Seas north of Bering Strait: A simulation analysis

    NASA Astrophysics Data System (ADS)

    Walsh, John J.; Dieterle, Dwight A.; Chen, F. Robert; Lenes, Jason M.; Maslowski, Wieslaw; Cassano, John J.; Whitledge, Terry E.; Stockwell, Dean; Flint, Mikhail; Sukhanova, Irina N.; Christensen, John

    2011-11-01

    Within larger ice-free regions of the western Arctic Seas, subject to ongoing trophic cascades induced by past overfishing, as well as to possible future eutrophication of the drainage basins of the Yukon and Mackenzie Rivers, prior very toxic harmful algal blooms (HABs) - first associated with ∼100 human deaths near Sitka, Alaska in 1799 - may soon expand. Blooms of calcareous coccolithophores in the Bering Sea during 1997-1998 were non-toxic harbingers of the subsequent increments of other non-siliceous phytoplankton. But, now saxitoxic dinoflagellates, e.g. Alexandrium tamarense, were instead found by us within the adjacent downstream Chukchi Sea during SBI cruises of 2002 and 2003. A previous complex, coupled biophysical model had been validated earlier by ship-board observations from the Chukchi/Beaufort Seas during the summer of 2002. With inclusion of phosphorus as another chemical state variable to modulate additional competition by recently observed nitrogen-fixers, we now explore here the possible consequences of altered composition of dominant phytoplankton functional groups [diatoms, microflagellates, prymnesiophyte Phaeocystis colonies, coccolithophores, diazotrophs, and dinoflagellates] in relation to increases of the toxic A. tamarense, responding to relaxation of grazing pressure by herbivores north of Bering Strait as part of a continuing trophic cascade. Model formulation was guided by validation observations obtained during 2002-2004 from: cruises of the SBI, CHINARE, and CASES programs; moored arrays in Bering Strait; other RUSALCA cruises around Wrangel Island; and SBI helicopter surveys of the shelf-break regions of the Arctic basin. Our year-long model scenarios during 2002-2003 indicate that post bloom silica-limitation of diatoms, after smaller simulated spring grazing losses, led to subsequent competitive advantages in summer for the coccolithophores, dinoflagellates, and diazotrophs. Immediate top-down control is exerted by imposed

  8. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.

    PubMed

    Anthony, Robert G; Estes, James A; Ricca, Mark A; Miles, A Keith; Forsman, Eric D

    2008-10-01

    Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993-1994 and 2000-2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993-1994 to 2000-2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex predator

  9. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.

    USGS Publications Warehouse

    Anthony, R.G.; Estes, J.A.; Ricca, M.A.; Miles, A.K.; Forsman, E.D.

    2008-01-01

    Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993-1994 and 2000-2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993-1994 to 2000-2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex predator

  10. Herbivory drives large-scale spatial variation in reef fish trophic interactions

    PubMed Central

    Longo, Guilherme O; Ferreira, Carlos Eduardo L; Floeter, Sergio R

    2014-01-01

    Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large-scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large-scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10-fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large

  11. Herbivory drives large-scale spatial variation in reef fish trophic interactions.

    PubMed

    Longo, Guilherme O; Ferreira, Carlos Eduardo L; Floeter, Sergio R

    2014-12-01

    Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large-scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large-scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10-fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large

  12. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing.

    PubMed

    Altieri, Andrew H; Bertness, Mark D; Coverdale, Tyler C; Herrmann, Nicholas C; Angelini, Christine

    2012-06-01

    Overexploitation of predators has been linked to the collapse of a growing number of shallow-water marine ecosystems. However, salt-marsh ecosystems are often viewed and managed as systems controlled by physical processes, despite recent evidence for herbivore-driven die-off of marsh vegetation. Here we use field observations, experiments, and historical records at 14 sites to examine whether the recently reported die-off of northwestern Atlantic salt marshes is associated with the cascading effects of predator dynamics and intensive recreational fishing activity. We found that the localized depletion of top predators at sites accessible to recreational anglers has triggered the proliferation of herbivorous crabs, which in turn results in runaway consumption of marsh vegetation. This suggests that overfishing may be a general mechanism underlying the consumer-driven die-off of salt marshes spreading throughout the western Atlantic. Our findings support the emerging realization that consumers play a dominant role in regulating marine plant communities and can lead to ecosystem collapse when their impacts are amplified by human activities, including recreational fishing. PMID:22834380

  13. Invasive species triggers a massive loss of ecosystem services through a trophic cascade.

    PubMed

    Walsh, Jake R; Carpenter, Stephen R; Vander Zanden, M Jake

    2016-04-12

    Despite growing recognition of the importance of ecosystem services and the economic and ecological harm caused by invasive species, linkages between invasions, changes in ecosystem functioning, and in turn, provisioning of ecosystem services remain poorly documented and poorly understood. We evaluate the economic impacts of an invasion that cascaded through a food web to cause substantial declines in water clarity, a valued ecosystem service. The predatory zooplankton, the spiny water flea (Bythotrephes longimanus), invaded the Laurentian Great Lakes in the 1980s and has subsequently undergone secondary spread to inland lakes, including Lake Mendota (Wisconsin), in 2009. In Lake Mendota, Bythotrephes has reached unparalleled densities compared with in other lakes, decreasing biomass of the grazer Daphnia pulicaria and causing a decline in water clarity of nearly 1 m. Time series modeling revealed that the loss in water clarity, valued at US$140 million (US$640 per household), could be reversed by a 71% reduction in phosphorus loading. A phosphorus reduction of this magnitude is estimated to cost between US$86.5 million and US$163 million (US$430-US$810 per household). Estimates of the economic effects of Great Lakes invasive species may increase considerably if cases of secondary invasions into inland lakes, such as Lake Mendota, are included. Furthermore, such extreme cases of economic damages call for increased investment in the prevention and control of invasive species to better maximize the economic benefits of such programs. Our results highlight the need to more fully incorporate ecosystem services into our analysis of invasive species impacts, management, and public policy. PMID:27001838

  14. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  15. Effects of exurban development on trophic interactions in a desert landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context Mechanisms of ecosystem change in urbanizing landscapes are poorly understood, especially in exurban areas featuring residential or commercial development set in a matrix of modified and natural vegetation. We asked how development altered trophic interactions and ecosystem processes in the ...

  16. Trophic interactions between native and introduced fish species in a littoral fish community.

    PubMed

    Monroy, M; Maceda-Veiga, A; Caiola, N; De Sostoa, A

    2014-11-01

    The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable-isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ(13)C and δ(15)N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31.6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19.7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits. PMID:25263642

  17. The loss of indirect interactions leads to cascading extinctions of carnivores.

    PubMed

    Sanders, Dirk; Sutter, Louis; van Veen, F J Frank

    2013-05-01

    Species extinctions are biased towards higher trophic levels, and primary extinctions are often followed by unexpected secondary extinctions. Currently, predictions on the vulnerability of ecological communities to extinction cascades are based on models that focus on bottom-up effects, which cannot capture the effects of extinctions at higher trophic levels. We show, in experimental insect communities, that harvesting of single carnivorous parasitoid species led to a significant increase in extinction rate of other parasitoid species, separated by four trophic links. Harvesting resulted in the release of prey from top-down control, leading to increased interspecific competition at the herbivore trophic level. This resulted in increased extinction rates of non-harvested parasitoid species when their host had become rare relative to other herbivores. The results demonstrate a mechanism for horizontal extinction cascades, and illustrate that altering the relationship between a predator and its prey can cause wide-ranging ripple effects through ecosystems, including unexpected extinctions. PMID:23445500

  18. Impact of conservation areas on trophic interactions between apex predators and herbivores on coral reefs.

    PubMed

    Rizzari, Justin R; Bergseth, Brock J; Frisch, Ashley J

    2015-04-01

    Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top-down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large-bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no-take, and no-entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no-entry zones than in fished and no-take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no-entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top-down forces may not play a strong role in regulating large-bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. PMID:25185522

  19. Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade?

    PubMed

    Burkholder, Derek A; Heithaus, Michael R; Fourqurean, James W; Wirsing, Aaron; Dill, Lawrence M

    2013-11-01

    1. The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in ecosystems around the world, but there remain important questions regarding the contexts in which such changes are most likely and the mechanisms through which they occur, particularly in marine ecosystems. 2. We used long-term exclusion cages to examine the effects of large grazers (sea cows, Dugong dugon; sea turtles Chelonia mydas) on seagrass community structure, biomass and nutrient dynamics. Experiments were conducted in habitats with high risk of predation (interior of shallow banks) and lower risk (edges of banks) to elucidate whether nonconsumptive (risk) effects of tiger sharks (Galeocerdo cuvier), a roving predator, structure herbivore impacts on seagrasses. 3. In lower-risk habitats, excluding large herbivores resulted in increased leaf length for Cymodocea angustata and Halodule uninervis. C. angustata shoot densities nearly tripled when released from herbivory, while H. uninervis nearly disappeared from exclusion cages over the course of the study. 4. We found no support for the hypothesis that grazing increases seagrass nutrient content. Instead, phosphorus content was higher in seagrasses within exclosures. This pattern is consistent with decreased light availability in the denser C. angustata canopies that formed in exclosures, and may indicate that competition for light led to the decrease in H. uninervis. 5. Impacts of large grazers were consistent with a behaviour-mediated trophic cascade (BMTC) initiated by tiger sharks and mediated by risk-sensitive foraging by large grazers. 6, Our results suggest that large-bodied grazers likely played important roles in seagrass ecosystem dynamics historically and that roving predators are capable of initiating a BMTC. Conservation efforts in coastal ecosystems must account for such interactions or risk unintended consequences. PMID:23730871

  20. Accounting for size-specific predation improves our ability to predict the strength of a trophic cascade.

    PubMed

    Stevenson, Christine F; Demes, Kyle W; Salomon, Anne K

    2016-02-01

    Predation can influence the magnitude of herbivory that grazers exert on primary producers by altering both grazer abundance and their per capita consumption rates via changes in behavior, density-dependent effects, and size. Therefore, models based solely on changes in abundance may miss key components of grazing pressure. We estimated shifts in grazing pressure associated with changes in the abundance and per capita consumption rates of sea urchins triggered by size-selective predation by sea otters (Enhydra lutris). Field surveys suggest that sea otters dramatically decreased the abundance and median size of sea urchins. Furthermore, laboratory experiments revealed that kelp consumption by sea urchins varied nonlinearly as a function of urchin size such that consumption rates increased to the 0.56 and 0.68 power of biomass for red and green urchins, respectively. This reveals that shifts in urchin size structure due to size-selective predation by sea otters alter sea urchin per capita grazing rates. Comparison of two quantitative models estimating total consumptive capacity revealed that a model incorporating shifts in urchin abundance while neglecting urchin size structure overestimated grazing pressure compared to a model that incorporated size. Consequently, incorporating shifts in urchin size better predicted field estimates of kelp abundance compared to equivalent models based on urchin abundance alone. We provide strong evidence that incorporating size-specific parameters increases our ability to describe and predict trophic interactions. PMID:26941943

  1. Zooplanktivory and nutrient regeneration by invertebrate (Mysis relicta) and vertebrate (Oncorhynchus nerka) planktivores: Implications for trophic interactions in oligotrophic lakes

    USGS Publications Warehouse

    Chipps, S.R.; Bennett, D.H.

    2000-01-01

    We investigated zooplanktivory and nutrient regeneration by the opossum shrimp Mysis relicta and kokanee Oncorhynchus nerka to assess the relative roles of these planktivores in oligotrophic food webs. Using bioenergetic models and clearance rate estimates, we quantified phosphorus (P) excretion rates and consumption of cladoceran prey by Mysis and kokanees in Lake Pend Oreille, Idaho, from 1995 to 1996. Consumption of cladoceran prey by Mysis was 186 kg ?? ha-1 ?? year-1, whereas consumption by kokanees was less than one quarter as much, at 45 kg ?? ha-1 ?? year-1. Similarly, Mysis excreted approximately 0.250 kg P ?? ha-1 ?? year-1 during nighttime migrations into the upper water column, whereas P excretion by kokanees was less than one third as much, at approximately 0.070 kg P ?? ha-1 ?? year-1. On a volumetric basis, nocturnal excretion by Mysis ranged from 0.002 to 0.007 ??g P ?? L-1 ?? d-1 and accounted for less than 1% of the soluble reactive P typically measured in the upper water column of the lake. Hence, nutrient recycling by Mysis may be limited in the upper water column because of the nocturnal feeding habitats that constrain Mysis to deeper strata for much of the day. In spring and autumn months, low abundance of cladoceran prey coincided with high seasonal energy requirements of the Mysis population that were linked to timing of annual Mysis brood release and abundance of age-0 Mysis. Predation by Mysis accounted for 5-70% of daily cladoceran standing stock, supporting the notion that seasonal availability of cladocerans may be regulated by Mysis predation. In lakes where Mysis experience little predation mortality, they likely play a dominant role in food web interactions (e.g., trophic cascades) relative to planktivorous fishes. Biotic mechanisms, such as successful predator-avoidance behavior, omnivorous feeding habits, and seasonal variation in Mysisbiomass, enhance the ability of Mysis to influence food web interactions from an intermediate

  2. Trophic interactions in the coastal ecosystem of Sri Lanka: An ECOPATH preliminary approach

    NASA Astrophysics Data System (ADS)

    Haputhantri, S. S. K.; Villanueva, M. C. S.; Moreau, J.

    2008-01-01

    This study attempts to assemble and summarize existing information in order to build a general representation of the trophic interactions within the shallow coastal ecosystem of Sri Lanka. A multispecific ecosystem-based approach on trophic relationships and their possible variations was performed using ECOPATH. Thirty-nine functional groups were considered representing all trophic levels in the food web. Time-dynamic simulation was carried out using the ECOSIM routine to evaluate the impact of the 1998 El Niño event on key functional groups. Results show that the time needed for any impacted functional group to recover to its initial abundance increased with the trophic level. Two time-series data sets derived from commercial catch and effort statistics were used for validation of ECOSIM results. The El Niño simulation results validated by the time-series data confirmed the ability of the proposed multispecies model to describe the sudden environmental changes. Possible impacts due to increase of fishing effort were also simulated by separately considering frequently used fishing gears. The analysis revealed that small-mesh gillnet fishery operates independently from the other existing developing fisheries in the same area and can be managed accordingly. Fishing-effort simulations suggest that the increase of fishing intensity by small-mesh gillnets would contribute to the decline of small pelagic catch. This was also found to influence the overall catch. The present level of exploitation of small pelagic fishery resources does not seem sustainable.

  3. Interaction of upstream flow distortions with high Mach number cascades

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1981-01-01

    Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.

  4. Uncovering Trophic Interactions in Arthropod Predators through DNA Shotgun-Sequencing of Gut Contents.

    PubMed

    Paula, Débora P; Linard, Benjamin; Crampton-Platt, Alex; Srivathsan, Amrita; Timmermans, Martijn J T N; Sujii, Edison R; Pires, Carmen S S; Souza, Lucas M; Andow, David A; Vogler, Alfried P

    2016-01-01

    Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus), but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks. PMID:27622637

  5. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton.

    PubMed

    Plum, Christoph; Hüsener, Matthias; Hillebrand, Helmut

    2015-11-01

    Despite the progress made in explaining trophic interactions through the stoichiometric interplay between consumers and resources, it remains unclear how the number of species in a trophic group influences the effects of elemental imbalances in food webs. Therefore, we conducted a laboratory experiment to test the hypothesis that multispecies producer assemblages alter the nutrient dynamics in a pelagic community. Four algal species were reared in mono- and polycultures under a 2 x 2 factorial combination of light and nutrient supply, thereby contrasting the stoichiometry of trophic interactions involving single vs. multiple producer species. After 9 d, these cultures were fed to the calanoid copepod Acartia tonsa, and we monitored biomass, resource use, and C:N:P stoichiometry in both phyto- and zooplankton. According to our expectations, light and N supply resulted in gradients of phytoplankton biomass and nutrient composition (C:N:P). Significant net diversity effects for algal biomass and C:N:P ratios reflected the greater responsiveness of the phytoplankton polyculture to altered resource supply compared to monocultures. These alterations of elemental ratios were common, and were partly triggered by changes in species frequency in the mixtures and partly by diversity-related changes in resource use. Copepod individual biomass increased under high light (HL) and N-reduced (-N) conditions, when food was high in C:N but low in C:P and N:P, whereas copepod growth was obviously P limited, and copepod stoichiometry was not affected by phytoplankton elemental composition. Correspondingly, copepod individual biomass reflected significant net diversity effects: compared to expectations- derived from monocultures, copepod individuals feeding on algal polycultures remained smaller than predicted under HL and N-sufficient (+N) conditions but grew larger than predicted under HL, -N and low light +N conditions. In conclusion, multiple producer species altered the

  6. Cascading trait-mediated interactions induced by ant pheromones.

    PubMed

    Hsieh, Hsun-Yi; Liere, Heidi; Soto, Estelí J; Perfecto, Ivette

    2012-09-01

    Trait-mediated indirect interactions (TMII) can be as important as density-mediated indirect interactions. Here, we provide evidence for a novel trait-mediated cascade (where one TMII affects another TMII) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles - the first TMII. However, parasitic phorid flies reduce ant foraging activity by 50% - the second TMII, providing a window of opportunity for female beetles to oviposit in high-quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade. PMID:23139877

  7. Cascading trait-mediated interactions induced by ant pheromones

    PubMed Central

    Hsieh, Hsun-Yi; Liere, Heidi; Soto, Estelí J; Perfecto, Ivette

    2012-01-01

    Trait-mediated indirect interactions (TMII) can be as important as density-mediated indirect interactions. Here, we provide evidence for a novel trait-mediated cascade (where one TMII affects another TMII) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles – the first TMII. However, parasitic phorid flies reduce ant foraging activity by 50% – the second TMII, providing a window of opportunity for female beetles to oviposit in high-quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade. PMID:23139877

  8. [Trophic chains in soil].

    PubMed

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems. PMID:25508107

  9. [Trophic chains in soil].

    PubMed

    Goncharov, A A; Tiunov, A V

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems. PMID:25438576

  10. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat

    PubMed Central

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased

  11. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.

    PubMed

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased

  12. Effects of urbanization on direct and indirect interactions in a tri-trophic system.

    PubMed

    Tabea, Turrini; Dirk, Sanders; Eva, Knop

    2016-04-01

    While effects of urbanization on species assemblages are receiving increasing attention, effects on ecological interactions remain largely unexplored. We investigated how urbanization influences the strength of direct and indirect trophic interactions in a tri- trophic system. In a field experiment including five cities and nearby farmed areas, we used potted Vicia faba plants and manipulated the presence of Megoura viciae aphids and that of naturally occurring aphid predators. When predators could access aphids, they reduced their abundance less in the urban than in the agricultural ecosystem. Compared to aphid abundance on plants without predator access, abundance on plants with predator access was 2.58 times lower in urban and 5.27 times lower in agricultural areas. This indicates that urbanization limited top-down control of aphids by predators. In both ecosystems, plant biomass was negatively affected by herbivores and positively affected by predators, but the positive indirect predator effect was weaker in cities. Compared to aphid-infested plants without predator access, plants with predator access were 1.89 times heavier in urban and 2.12 times heavier in agricultural areas. Surprisingly, differences between ecosystems regarding the indirect predator effect on plants were not explained by the differentially strong herbivore suppression. Instead, the urban environment limited plant biomass per se, thereby mitigating the scope of a positive predator effect. Our results show that urbanization can influence direct and indirect trophic interactions through effects on biotic top-down forces and on plant growth. In order to understand how urbanization affects biodiversity and ecosystem functioning, it is fundamental to not only consider species assemblages, but also species interactions. PMID:27411241

  13. A Time Domain Analysis of Gust-Cascade Interaction Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Hixon, R.; Sawyer, S. D.; Dyson, R. W.

    2003-01-01

    The gust response of a 2 D cascade is studied by solving the full nonlinear Euler equations employing higher order accurate spatial differencing and time stepping techniques. The solutions exhibit the exponential decay of the two circumferential mode orders of the cutoff blade passing frequency (BPF) tone and propagation of one circumferential mode order at 2BPF, as would be expected for the flow configuration considered. Two frequency excitations indicate that the interaction between the frequencies and the self interaction contribute to the amplitude of the propagating mode.

  14. CXCL12 Mediates Trophic Interactions between Endothelial and Tumor Cells in Glioblastoma

    PubMed Central

    Choe, Eun Joo; Woerner, B. Mark; Jackson, Erin; Sun, Tao; Leonard, Jeffrey; Piwnica-Worms, David; Rubin, Joshua B.

    2012-01-01

    Emerging evidence suggests endothelial cells (EC) play a critical role in promoting Glioblastoma multiforme (GBM) cell proliferation and resistance to therapy. The molecular basis for GBM-EC interactions is incompletely understood. We hypothesized that the chemokine CXCL12 and its receptor CXCR4 could mediate direct interactions between GBM cells and tumor-associated endothelial cells and that disruption of this interaction might be the molecular basis for the anti-tumor effects of CXCR4 antagonists. We investigated this possibility in vivo and in an in vitro co-culture model that incorporated extracellular matrix, primary human brain microvascular ECs (HBMECs) and either an established GBM cell line or primary GBM specimens. Depletion of CXCR4 in U87 GBM cells blocked their growth as intracranial xenografts indicating that tumor cell CXCR4 is required for tumor growth in vivo. In vitro, co-culture of either U87 cells or primary GBM cells with HBMECs resulted in their co-localization and enhanced GBM cell growth. Genetic manipulation of CXCL12 expression and pharmacological inhibition of its receptors CXCR4 and CXCR7 revealed that the localizing and trophic effects of endothelial cells on GBM cells were dependent upon CXCL12 and CXCR4. These findings indicate that the CXCL12/CXCR4 pathway directly mediates endothelial cell trophic function in GBMs and that inhibition of CXCL12-CXCR4 signaling may uniquely target this activity. Therapeutic disruption of endothelial cell trophic functions could complement the structural disruption of anti-angiogenic regimens and, in combination, might also improve the efficacy of radiation and chemotherapy in treating GBMs. PMID:22427929

  15. A role for fungi as parasites in the black box of marine trophic interactions.

    PubMed

    Richards, Thomas A; Chambouvet, Aurélie

    2016-08-01

    The role of microbial parasites in aquatic environments remains under-investigated and likely under-estimated limiting our understanding of trophic interactions and biogeochemical cycles (Lefèvre et al., ; Worden et al., ). All natural interactions between microbes are difficult to capture and study but those occurring in the open ocean more so, because the scale and the complexity of the system makes repeat sampling a challenge. Lepère and colleagues, by combining a range of cell recovery and detection techniques, have identified parasitic interactions between putative fungi and eukaryotic algae (Lepère et al., ) allowing us to peer into the black box of microbial parasitism in the marine water column. PMID:26971571

  16. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters

    PubMed Central

    Alvarado, Alejandra; Montañez-Hernández, Lilia E.; Palacio-Molina, Sandra L.; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P.; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process. PMID:25429286

  17. 'Trophic whales' as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment.

    PubMed

    Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich

    2015-05-01

    Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems. PMID:25420573

  18. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters.

    PubMed

    Alvarado, Alejandra; Montañez-Hernández, Lilia E; Palacio-Molina, Sandra L; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process. PMID:25429286

  19. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research

    PubMed Central

    Svenning, Jens-Christian; Pedersen, Pil B. M.; Donlan, C. Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M.; Sandel, Brody; Sandom, Christopher J.; Terborgh, John W.; Vera, Frans W. M.

    2016-01-01

    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human–wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology. PMID:26504218

  20. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research.

    PubMed

    Svenning, Jens-Christian; Pedersen, Pil B M; Donlan, C Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M; Sandel, Brody; Sandom, Christopher J; Terborgh, John W; Vera, Frans W M

    2016-01-26

    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human-wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology. PMID:26504218

  1. Noise generated by convected gusts interacting with swept airfoil cascades

    NASA Astrophysics Data System (ADS)

    Envia, E.; Kerschen, E. J.

    1986-07-01

    An analysis is developed for the noise generated by the interaction of a rotor viscous wake with a cascade of swept stator vanes. The stator vanes span a channel formed by infinite parallel walls and containing a subsonic mean flow. High frequency interactions, for which the noise generation is concentrated at the vane leading edge, are considered. The analysis utilizes a superposition of the solution to the isolated stator vane problem, presented in an earlier paper, to develop an approximate solution to the cascade problem. The rotor wake model includes the features of wake circumferential lean and a linear spanwise variation of the magnitude of the wake deficit velocity. Calculations are presented which show that, for rotor wakes with moderate circumferential lean, stator sweep produces substantial reductions in noise level. The vane sweep must be oriented to enhance the phase lags along the vane leading edge produced by wake lean. The noise levels are found to be fairly insensitive to spanwise variations in the wake deficit.

  2. Food-web dynamics and trophic-level interactions in a multispecies community of freshwater unionids

    USGS Publications Warehouse

    Nichols, S.J.; Garling, D.

    2000-01-01

    We compared feeding habits and trophic-level relationships of unionid species in a detritus-dominated river and an alga-dominated lake using biochemical analyses, gut contents, and stable-isotope ratios. The δ13C ratios for algae and other food-web components show that all unionids from both the river and the lake used bacterial carbons, not algal carbons, as their main dietary source, in spite of positive selection and concentration of diatoms and green algae from the water column in the gut and mantle cavity. Algae did provide key nutrients such as vitamins A and D and phytosterols that were bioaccumulated in the tissues of all species. The δ15N ratios for the multispecies unionid community in the Huron River indicated some differences in nitrogen enrichment between species, the greatest enrichment being found in Pyganadon grandis. These δ15N ratios indicate that unionids may not always feed as primary consumers or omnivores. Stable-isotope data were critical for delineating diets and trophic-level interactions of this group of filter-feeders. Further refinements in identifying bacterial and picoplankton components of the fine particulate organic matter are needed to complete our understanding of resource partitioning between multispecies unionid populations.

  3. Trophic interactions in the St. Lawrence Estuary (Canada): Must the blue whale compete for krill?

    NASA Astrophysics Data System (ADS)

    Savenkoff, C.; Comtois, S.; Chabot, D.

    2013-09-01

    Inverse methodology was used to construct a mass-balance model of the Lower St. Lawrence Estuary (LSLE) for the 2008-2010 time period. Our first objective was to make an overall description of community structure, trophic interactions, and the effects of fishing and predation on the vertebrate and invertebrate communities of the ecosystem. A second objective was to identify other important predators of krill, and to assess if these compete with blue whales, listed as endangered under the Canadian Species at Risk Act in 2005 (northwest Atlantic population). The Estuary and the Gulf of St. Lawrence are summer feeding grounds for blue whales and other marine mammals. Blue whales eat only euphausiids (krill) and require dense concentrations of prey to meet their energy requirements, which makes them particularly vulnerable to changes in prey availability. In the LSLE, many species from secondary producers (hyperiid amphipods, other macrozooplankton) to top predators (fish, birds, and marine mammals) consumed euphausiids. Consequently, krill predators were found at all consumer trophic levels. However, our results showed that only about 35% of the estimated euphausiid production was consumed by all predator species combined. Euphausiid did not seem to be a restricted resource in the LSLE ecosystem, at least during the study period. The blue whale did not appear to have to compete for krill in the LSLE.

  4. Interactions between trophic levels in upwelling and non-upwelling regions during summer monsoon

    NASA Astrophysics Data System (ADS)

    Malik, A.; Fernandes, C. E. G.; Gonsalves, M.-J. B. D.; Subina, N. S.; Mamatha, S. S.; Krishna, K.; Varik, S.; Kumari, R.; Gauns, M.; Cejoice, R. P.; Pandey, S. S.; Jineesh, V. K.; Kamaleson, A. S.; Vijayan, V.; Mukherjee, I.; Subramanyan, S.; Nair, S.; Ingole, B.; LokaBharathi, P. A.

    2015-01-01

    Coastal upwelling is a regular phenomenon occurring along the southwest coast of India during summer monsoon (May-September). We hypothesize that there could be a shift in environmental parameters along with changes in the network of interactions between bacteria, phytoplankton, and zooplankton in upwelling and non-upwelling regions. During cruise # 267 on FORV Sagar Sampada, water samples were analysed for environmental and biological parameters from two transects, one upwelling region off Trivandrum (TVM) (8°26‧N, 76°20‧E-8°30‧N, 76°50‧E), and the other non-upwelling region off Calicut (CLT) (11°11‧N, 75°30‧E-11°14‧N,74°54‧E), about 230 nmi to the north. Meteorological, hydrological, and nutrient profiles confirmed upwelling off TVM. Bacteria, phytoplankton and zooplankton significantly responded. Primary and bacterial productivity enhanced together with increase in the percentage of viable bacteria (TVC). Pearson's correlation analysis pointed out the differences in bacterial interactions with other trophic levels at both transects. TVC played a prominent role in trophic interactions off TVM by depending on phytoplankton for substrate (r = 0.754). This contrasted with CLT where total counts (TC) played an important role. However, most interrelationships were less pronounced. Principal component analysis (PCA) confirmed the correlation analysis and further showed that the factor loadings of the biotic and abiotic parameters differed in strength and direction in the two regions. More importantly, the processes of mineralization by bacteria and uptake by phytoplankton are obviously more coupled off TVM as evidenced by the clustering of the related parameters in the PCA biplot. Canonical correspondence analysis also complements these findings and demonstrated that the abiotic factors influenced phytoplankton and bacteria similarly at TVM but differently at CLT. The impact on the trophic interrelationships is evident by the close association

  5. Climatic control of trophic interaction strength: the effect of lizards on spiders.

    PubMed

    Spiller, David A; Schoener, Thomas W

    2008-01-01

    We investigated how temporal variation in rainfall influences the impact of lizards on spiders inhabiting small islands in Abaco, Bahamas. Annual censuses of web spiders were conducted on nine lizard islands and on eight no-lizard islands 1994-2003. Repeated-measures ANOVA showed that annual variation in spider density (time) and in the lizard effect on spider density (lizard x time) were both significant. Correlation coefficients between the lizard effect (ln ratio of no-lizard to lizard spider densities) and number of rainfall days were generally negative, and strengthened with length of the time period during which rainfall was measured prior to annual spider censuses. Spider density was also negatively correlated with rainfall days and strengthened with length of the prior time period. Longer time intervals included the hurricane season, suggesting that the strong negative correlations were linked to high rainfall years during which tropical storms impacted the region and reduced spider and lizard densities. Split-plot ANOVA showed that rainfall during the hurricane season had a significant effect on the lizard effect and on spider density. Results in this study are opposite to those found in our previous 10-year study (1981-1990) conducted in the Exuma Cays, a moderately xeric region of the Bahamas, where the relation between rainfall and the lizard effect on spider density was positive. Combined data from the Exuma and Abaco studies produce a unimodal relation between trophic interaction strength and rainfall; we suggest that the negative effect of storms associated with rainfall was paramount in the present study, whereas the positive bottom-up effect of rainfall prevailed in our previous study. We conclude that climatic variability has a major impact on the trophic interaction and suggest that a substantial change in precipitation in either direction may weaken the interaction significantly. PMID:17972107

  6. Trophic interactions in the plankton of Malyi Sevan in July, 1984

    SciTech Connect

    Gulelmacher, B.L.; Simonyan, A.A.

    1986-09-01

    This paper describes some studies of the trophic interactions in the plankton in Lchashenskaya Bay in Malyi Sevan in July, 1984. The goal was to study the feeding characteristics of the major crustacean species and their influence on the phytoplankton. To study the effect of the planktonic crustaceans on the phytoplankton, a flask with an added 50 Acanthodiaptomus and a flask without crustaceans were exposed for 24 h after which a radioactive carbon isotope was added to them in the form of sodium carbonate. The radioactivity of the filters and working solutions was measured and autoradiographic preparations were made. It is shown that the more than threefold drop in the quantity of algae in a flask resulting from crustacean feeding did not lead to a significant decrease in primary production.

  7. Indirect trophic interactions with an invasive species affect phenotypic divergence in a top consumer.

    PubMed

    Hirsch, P E; Eklöv, P; Svanbäck, R

    2013-05-01

    While phenotypic responses to direct species interactions are well studied, we know little about the consequences of indirect interactions for phenotypic divergence. In this study we used lakes with and without the zebra mussel to investigate effects of indirect trophic interactions on phenotypic divergence between littoral and pelagic perch. We found a greater phenotypic divergence between littoral and pelagic individuals in lakes with zebra mussels and propose a mussel-mediated increase in pelagic and benthic resource availability as a major factor underlying this divergence. Lakes with zebra mussels contained higher densities of large plankton taxa and large invertebrates. We suggest that this augmented resource availability improved perch foraging opportunities in both the littoral and pelagic zones. Perch in both habitats could hence express a more specialized foraging morphology, leading to an increased divergence of perch forms in lakes with zebra mussels. As perch do not prey on mussels directly, we conclude that the increased divergence results from indirect interactions with the mussels. Our results hence suggest that species at lower food web levels can indirectly affect phenotypic divergence in species at the top of the food chain. PMID:23463242

  8. Vole and lemming activity observed from space: trophic cascade driven interannual vegetation cycles at a regional scale

    NASA Astrophysics Data System (ADS)

    Olofsson, J.; Tömmervik, H.; Callaghan, T.

    2011-12-01

    Present global warming requires an understanding of the factors controlling plant biomass and production. The extent to which plant biomass and production is controlled by bottom-up drivers like climate, nutrient and water availability and by top down drivers like herbivory and diseases in terrestrial systems is still under debate. By annually recording plant biomass and community composition in grazed control plots and in herbivore-free exclosures, at twelve sites in a subarctic ecosystem, we were able to show that the regular interannual density fluctuations of voles and lemmings drive synchronous interannual fluctuations in biomass of ground and field layer vegetation (Fig. 1). The effect of the rodents on the vegetation is so strong that it can be detected in fluctuations of NDVI estimates from satellite images of a 20km2 area of tundra heathland. Plant biomass in the field layer was between 9 and 23% lower and NDVI was between 1 % and 25 % lower, the year after a vole peak than the year before. The synchronous decline of most dominant shrub species in the winter following an autumn rodent peak drives the fluctuations in total plant biomass. That the rodent cycles are detectable from satellite images, despite the wide range of abiotic, biotic and antropogenic forces that influence the vegetation, shows that the effects of rodents are strong enough to influence how primary production, carbon storage and biodiversity will respond to ongoing and future climate change. Changes of the rodent cycle may thus cause cascading changes of ecosystem functioning in a changing climate.

  9. The effects of urbanization on trophic interactions in a desert landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods: Trophic systems can be affected through top-down (predators) and bottom-up (resources) impacts. Human activity can alter trophic systems by causing predators to avoid areas (top-down) or by providing increased resources through irrigation and decorative plants that attra...

  10. Imprudent fishing harvests and consequent trophic cascades on the West Florida shelf over the last half century: A harbinger of increased human deaths from paralytic shellfish poisoning along the southeastern United States, in response to oligotrophication?

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Tomas, C. R.; Steidinger, K. A.; Lenes, J. M.; Chen, F. R.; Weisberg, R. H.; Zheng, L.; Landsberg, J. H.; Vargo, G. A.; Heil, C. A.

    2011-06-01

    Within the context of ubiquitous overfishing of piscivores, recent consequent increments of jellyfish and clupeids have occurred at the zooplanktivore trophic level in the eastern Gulf of Mexico (GOM), after overfishing of one of their predators, i.e. red snapper. Initiation of a local trophic cascade thence led to declines of herbivore stocks, documented here on the West Florida shelf. These exacerbating world-wide trophic cascades have resulted in larger harmful algal blooms (HABs), already present at the base of most coastal food webs. Impacts on human health have thus far been minimal within nutrient-rich coastal regions. To provide a setting for past morbidities, consideration is given to chronologies of other trophic cascades within eutrophic, cold water marine ecosystems of the Scotian Sea, in the Gulf of Alaska, off Southwest Africa, within the Barents, White, and Black Seas, in the Gulf of Maine, and finally in the North Sea. Next, comparison is now made here of recent ten-fold increments within Florida waters of both relatively benign and saxitoxic HABs, some of which are fatal to humans. These events are placed in a perspective of other warm shelf systems of the South China and Caribbean Seas to assess prior and possible future poison toxicities of oligotrophic coastal habitats. Past wide-spread kills of fishes and sea urchins over the Caribbean Sea and the downstream GOM are examined in relation to the potential transmission of dinoflagellate saxitoxin and other epizootic poison vectors by western boundary currents over larger "commons" than local embayments. Furthermore, since some HABs produce more potent saxitoxins upon nutrient depletion, recent decisions to ban seasonal fertilizer applications to Florida lawns may have unintended consequences. In the future, human-killing phytoplankton, rather than relatively benign fish-killing HABs of the past, may be dispersed along the southeastern United States seaboard.

  11. Interaction of LRRK2 with kinase and GTPase signaling cascades

    PubMed Central

    Boon, Joon Y.; Dusonchet, Julien; Trengrove, Chelsea; Wolozin, Benjamin

    2014-01-01

    LRRK2 is a protein that interacts with a plethora of signaling molecules, but the complexity of LRRK2 function presents a challenge for understanding the role of LRRK2 in the pathophysiology of Parkinson’s disease (PD). Studies of LRRK2 using over-expression in transgenic mice have been disappointing, however, studies using invertebrate systems have yielded a much clearer picture, with clear effects of LRRK2 expression, knockdown or deletion in Caenorhabditis elegans and Drosophila on modulation of survival of dopaminergic neurons. Recent studies have begun to focus attention on particular signaling cascades that are a target of LRRK2 function. LRRK2 interacts with members of the mitogen activated protein kinase (MAPK) pathway and might regulate the pathway action by acting as a scaffold that directs the location of MAPK pathway activity, without strongly affecting the amount of MAPK pathway activity. Binding to GTPases, GTPase-activating proteins and GTPase exchange factors are another strong theme in LRRK2 biology, with LRRK2 binding to rac1, cdc42, rab5, rab7L1, endoA, RGS2, ArfGAP1, and ArhGEF7. All of these molecules appear to feed into a function output for LRRK2 that modulates cytoskeletal outgrowth and vesicular dynamics, including autophagy. These functions likely impact modulation of α-synuclein aggregation and associated toxicity eliciting the disease processes that we term PD. PMID:25071441

  12. NanoSIMS study of trophic interactions in the coral-dinoflagellate endosymbiosis

    NASA Astrophysics Data System (ADS)

    Kopp, Christophe; Mathieu, Pernice; Domart-Coulon, Isabelle; Djediat, Chakib; Spangenberg, Jorge; Alexander, Duncan; Hignette, Michel; Meziane, Tarik; Meibom, Anders

    2013-04-01

    Tropical and subtropical reef-building corals generally form a stable endosymbiotic association with autotrophic single-celled dinoflagellate algae, commonly known as "zooxanthellae", which is crucial for the development of coral reef ecosystems. In the present work, the spatial and temporal dynamics of trophic interactions between corals and their dinoflagellates was investigated in situ and at a subcellular level in the reef-building coral Pocillopora damicornis. Transmission electron microscopy (TEM) and quantitative NanoSIMS isotopic imaging of tissue ultra-thin sections (70 nm) were combined to precisely track the assimilation and the fate of 15N-labeled compounds (ammonium, nitrate and aspartic acid) within each symbiotic partner of the coral-dinoflagellate association. Among our main results, we found that (i) both dinoflagellate algae and coral tissue rapidly assimilate ammonium and aspartic acid from the environment, (ii) however only the dinoflagellates assimilate nitrate, (ii) nitrogen is rapidly and temporary stored within the dinoflagellate cells into uric acid crystals, and (iii) the dinoflagellate endosymbionts translocate nitrogenous compounds to their coral host. This study paves the way for exploring in details the wide range of metabolic interactions between partners of any symbiosis in the biosphere.

  13. Detritivores ameliorate the enhancing effect of plant-based trophic cascades on nitrogen cycling in an old-field system.

    PubMed

    Buchkowski, Robert W; Schmitz, Oswald J

    2015-04-01

    Nitrogen (N) cycling is a fundamental process central to numerous ecosystem functions and services. Accumulating evidence suggests that species within detritus- and plant-based food chains can play an instrumental role in regulating this process. However, the effects of each food chain are usually examined in isolation of each other, so it remains uncertain if their effects are equally important or if one chain exerts predominant control. We experimentally manipulated the species composition of detritus-based (isopods and spiders) and plant-based (grasshoppers and spiders) food chains individually and in combination within mesocosms containing plants and microbes from an old-field ecosystem. We tested: (i) their relative impact on N cycling, and (ii) whether interactions between them moderated the influence of one group or the other. We found that spiders in plant-based food chains exerted the only positive effect on N cycling. Detritus-based food chains had no net effects on N cycling but, when combined with plant-based food chains, ameliorated the positive effects of plant-based species. Our results suggest that detritus-based food chains may ultimately limit rates of N cycling by eroding the enhancing effects of plant-based food chains when antagonistic interactions between detritus- and plant-based species exist. PMID:25878045

  14. Detritivores ameliorate the enhancing effect of plant-based trophic cascades on nitrogen cycling in an old-field system

    PubMed Central

    Buchkowski, Robert W.; Schmitz, Oswald J.

    2015-01-01

    Nitrogen (N) cycling is a fundamental process central to numerous ecosystem functions and services. Accumulating evidence suggests that species within detritus- and plant-based food chains can play an instrumental role in regulating this process. However, the effects of each food chain are usually examined in isolation of each other, so it remains uncertain if their effects are equally important or if one chain exerts predominant control. We experimentally manipulated the species composition of detritus-based (isopods and spiders) and plant-based (grasshoppers and spiders) food chains individually and in combination within mesocosms containing plants and microbes from an old-field ecosystem. We tested: (i) their relative impact on N cycling, and (ii) whether interactions between them moderated the influence of one group or the other. We found that spiders in plant-based food chains exerted the only positive effect on N cycling. Detritus-based food chains had no net effects on N cycling but, when combined with plant-based food chains, ameliorated the positive effects of plant-based species. Our results suggest that detritus-based food chains may ultimately limit rates of N cycling by eroding the enhancing effects of plant-based food chains when antagonistic interactions between detritus- and plant-based species exist. PMID:25878045

  15. [Pollinators of Bertholletia excelsa (Lecythidales: Lecythidaceae): interactions with stingless bees (Apidae: Meliponini) and trophic niche].

    PubMed

    Santos, Charles F; Absy, Maria L

    2010-01-01

    This paper presents an analysis of the foraging behavior and interactions of Xylocopa frontalis Olivier (Apidae: Xylocopini) and Eulaema mocsaryi (Friese) (Apidae: Euglossini) in the presence of stingless bees (Apidae: Meliponini) in flowers of Bertholletia excelsa, the Brazilian nut. The palynological load carried by both species was also examined. This study was conducted in the farm Aruanã, Itacoatiara/ Amazonas state, Brazil, during the flowering peak of B. excelsa. The visitation by the main pollinators X. frontalis and E. mocsaryi were influenced by the presence and activities of stingless bees in the flowers of B. excelsa. Meliponini bees did not have any effect on the visits and collection of floral resources by X. frontalis, while negatively affecting the number of visits by E. mocsaryi. The stingless bees presented a variety of strategies to get access to pollen grains of B. excelsa, grouped into two categories: opportunism -Frieseomelitta trichocerata Moure, Tetragona goettei (Friese), and Tetragona kaieteurensis (Schwarz), and stealing -Trigona branneri Cockerell, Trigona fuscipennis Friese, and Trigona guianae Cockerell. The palynological analysis from X. frontalis showed that the bee collected pollen in a few species of plants, but mainly on B. excelsa. The pollen grains of B. excelsa were poorly represented in the pollen shipments of E. mocsaryi, due to its large trophic niche in the locality. PMID:21271049

  16. Weak trophic interactions among birds, insects and white oak saplings (Quercus alba)

    USGS Publications Warehouse

    Lichtenberg, J.S.; Lichtenberg, D.A.

    2002-01-01

    We examined the interactions among insectivorous birds, arthropods and white oak saplings (Quercus alba L.) in a temperate deciduous forest under 'open' and 'closed' canopy environments. For 2 y, we compared arthropod densities, leaf damage and sapling growth. Saplings from each canopy environment were assigned to one of four treatments: (1) reference, (2) bird exclosure, (3) insecticide and (4) exclosure + insecticide. Sap-feeding insects were the most abundant arthropod feeding guild encountered and birds reduced sap-feeder densities in 1997, but not in 1998. Although there was no detectable influence of birds on leaf-chewer densities in either year, leaf damage to saplings was greater within bird exclosures than outside of bird exclosures in 1997. Insecticide significantly reduced arthropod densities and leaf damage to saplings, but there was no corresponding increase in sapling growth. Growth and biomass were greater for saplings in more open canopy environments for both years. Sap-feeder densities were higher on closed canopy than open canopy saplings in 1997, but canopy environment did not influence the effects of birds on lower trophic levels. Although previous studies have found birds to indirectly influence plant growth and biomass, birds did not significantly influence the growth or biomass of white oak saplings during our study.

  17. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary

    USGS Publications Warehouse

    Alpine, A.E.; Cloern, J.E.

    1992-01-01

    San Francisco Bay has recently been invaded by the suspension-feeding clam Potamocorbula amurensis. Previous work has shown that phytoplankton biomass in the upper estuary is low (2-3 mg Chl a m-3) during seasonal periods of high river flow and short residence time and it is usually high (peak >30 mg Chl a m-3) during the summer-autumn seasons of low river flow and long residence time. However since P. amurensis became widespread and abundant in 1987, the summer phytoplankton biomass maximum has disappeared, presumably because of increased grazing pressure by this newly introduced species. For 1977-1990, mean estimated primary production was only 39 g C m-2 yr-1 during years when bivalve suspension feeders were abundant (>2000 m-2), compared to 106 g C m-2 yr-1 when bivalves were absent or present in low numbers. These observations support the hypothesis that seasonal and interannual fluctuations in estuarine phytoplankton biomass and primary production can be regulated jointly by direct physical effects (eg river-driven transport) and trophic interactions (episodes of enhanced grazing pressure by immigrant populations of benthic suspension feeders). -from Authors

  18. Food Web Architecture and Basal Resources Interact to Determine Biomass and Stoichiometric Cascades along a Benthic Food Web

    PubMed Central

    Guariento, Rafael D.; Carneiro, Luciana S.; Caliman, Adriano; Leal, João J. F.; Bozelli, Reinaldo L.; Esteves, Francisco A.

    2011-01-01

    Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé – RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry. PMID:21789234

  19. Complex trophic interactions of calanoid copepods in the Benguela upwelling system

    NASA Astrophysics Data System (ADS)

    Schukat, Anna; Auel, Holger; Teuber, Lena; Lahajnar, Niko; Hagen, Wilhelm

    2014-01-01

    Life-cycle adaptations, dietary preferences and trophic levels of calanoid copepods from the northern Benguela Current off Namibia were determined via lipid classes, marker fatty acids and stable isotope analyses, respectively. Trophic levels of copepod species were compared to other zooplankton and top consumers. Lipid class analyses revealed that three of the dominant calanoid copepod species stored wax esters, four accumulated triacylglycerols and another three species were characterised by high phospholipid levels. The two biomarker approaches (via fatty acids and stable isotopes) revealed a complex pattern of trophic positions for the various copepod species, but also highlighted the dietary importance of diatoms and dinoflagellates. Calanoides carinatus and Nannocalanus minor occupied the lowest trophic level (predominantly herbivorous) corresponding to high amounts of fatty acid markers for diatoms (e.g. 16:1(n - 7)) and dinoflagellates (e.g. 18:4(n - 3)). These two copepod species represent the classical link between primary production and higher trophic levels. All other copepods belonged to secondary or even tertiary (some deep-sea copepods) consumers. The calanoid copepod species cover the entire range of δ15N ratios, as compared to δ15N ratios of all non-calanoid taxa investigated, from salps to adult fish. These data emphasise that the trophic roles of calanoid copepods are far more complex than just interlinking primary producers with pelagic fish, which should also be considered in the process of developing realistic food-web models of coastal upwelling systems.

  20. Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies

    NASA Astrophysics Data System (ADS)

    Gill, Joel; Malamud, Bruce D.

    2016-04-01

    Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.

  1. Chemosensory reception, behavioral expression, and ecological interactions at multiple trophic levels.

    PubMed

    Ferrer, Ryan P; Zimmer, Richard K

    2007-05-01

    Chemoreception may function throughout an entire animal lifetime, with independent, stage-specific selection pressures leading to changes in physiological properties, behavioral expression, and hence, trophic interactions. When the California newt (Taricha torosa) metamorphoses from an entirely aquatic larva to a semi-terrestrial juvenile/adult form, its chemosensory organs undergo dramatic reorganization. The relationship between newt life-history stage and chemosensory-mediated behavior was established by comparing responses of adults (as determined here) to those of conspecific larvae (as studied previously). Bioassays were performed in mountain streams, testing responses of free-ranging adults to 13 individual l-amino acids. Relative to stream water (controls), adults turned immediately upcurrent and moved to the source of arginine, glycine or alanine release. These responses were indicative of predatory search. Arginine was the strongest attractant tested, with a response threshold (median effective dose) of 8.3x10(-7) mol l(-1) (uncorrected for dilution associated with chemical release and delivery). In contrast to adult behavior, arginine suppressed cannibal-avoidance and failed to evoke search reactions in larvae. For a common set of arginine analogs, the magnitudes of adult attraction and larval suppression were not positively correlated. Suppression of cannibal-avoidance behavior in larvae was unaffected by most structural modifications of the arginine molecule. Adult behavior, on the other hand, was strongly influenced by even subtle alterations in the parent compound. Reactions to arginine in both adults and larvae were eliminated by blocking the external openings of the nasal cavity. Stimulating adult predatory search in one case and inhibiting larval cannibal avoidance in the other, arginine is a chemical signal with opposing behavioral effects and varying ecological consequences. Significant differences between responses of adults and larvae to

  2. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    SciTech Connect

    Miller, Lance D; Mosher, Jennifer J; Venkateswaran, Amudhan; Yang, Zamin Koo; Palumbo, Anthony Vito; Phelps, Tommy Joe; Podar, Mircea; Schadt, Christopher Warren; Keller, Martin

    2010-01-01

    Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors.

  3. Protein-protein interactions in plant mitogen-activated protein kinase cascades.

    PubMed

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2016-02-01

    Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense. However, the molecular mechanisms underlying MAPK cascades are still elusive, due largely to our poor understanding of how they relay the signals. Extensive effort has been devoted to characterization of MAPK-substrate interactions to illustrate phosphorylation-based signaling. The diverse MAPK substrates identified also shed light on how spatiotemporal-specific protein-protein interactions function in distinct MAPK cascade-mediated biological processes. This review surveys various technologies used for characterizing MAPK-substrate interactions and presents case studies of MPK4 and MPK6, highlighting the multiple functions of MAPKs. Mass spectrometry-based approaches in identifying MAPK-interacting proteins are emphasized due to their increasing utility and effectiveness. The potential for using MAPKs and their substrates in enhancing plant stress tolerance is also discussed. PMID:26646897

  4. Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna.

    PubMed

    Pringle, Robert M; Young, Truman P; Rubenstein, Daniel I; McCauley, Douglas J

    2007-01-01

    Despite conceptual recognition that indirect effects initiated by large herbivores are likely to have profound impacts on ecological community structure and function, the existing literature on indirect effects focuses largely on the role of predators. As a result, we know neither the frequency and extent of herbivore-initiated indirect effects nor the mechanisms that regulate their strength. We examined the effects of ungulates on taxa (plants, arthropods, and an insectivorous lizard) representing several trophic levels, using a series of large, long-term, ungulate-exclusion plots that span a landscape-scale productivity gradient in an African savanna. At each of six sites, lizards, trees, and the numerically dominant order of arthropods (Coleoptera) were more abundant in the absence of ungulates. The effect of ungulates on arthropods was mediated by herbaceous vegetation cover. The effect on lizards was simultaneously mediated by both tree density (lizard microhabitat) and arthropod abundance (lizard food). The magnitudes of the experimental effects on all response variables (trees, arthropods, and lizards) were negatively correlated with two distinct measures of primary productivity. These results demonstrate strong cascading effects of ungulates, both trophic and nontrophic, and support the hypothesis that productivity regulates the strength of these effects. Hence, the strongest indirect effects (and thus, the greatest risks to ecosystem integrity after large mammals are extirpated) are likely to occur in low-productivity habitats. PMID:17190823

  5. Spatial analysis of the trophic interactions between two juvenile fish species and their preys along a coastal-estuarine gradient

    NASA Astrophysics Data System (ADS)

    Kopp, Dorothée; Le Bris, Hervé; Grimaud, Lucille; Nérot, Caroline; Brind'Amour, Anik

    2013-08-01

    Coastal and estuarine systems provide nursery grounds for many marine fish species. Their productivity has been correlated with terrigeneous inputs entering the coastal-estuarine benthic food web, thereby favouring the establishment of fish juveniles. Studies in these ecosystems often describe the nursery as a single large habitat without verifying nor considering the presence of contiguous habitats. Our study aimed at identifying different habitats based on macrozoobenthic communities and morpho-sedimentary characteristics and assessing the trophic interactions between fish juveniles and their benthic preys within these habitats. It included 43 sampling sites covering 5 habitats in which we described taxonomically and quantitatively the invertebrates and fish communities with stable isotopes and gut contents. It suggested that the benthic common sole Solea solea displayed feeding plasticity at the population level, separating the juveniles (G0) from the older fish (G1) into different "feeding sub-populations". Size-based feeding plasticity was also observable in the spatial occupancy of that species in the studied bay. The demersal pouting, Trisopterus luscus, equally used the different habitats but displayed low feeding plasticity across and inside each habitat. Stable isotopes proved to be powerful tools to study the spatial distribution of trophic interactions in complex ecosystems like the bay of Vilaine and to define optimal habitats for fish that use the coastal-estuarine ecosystem as nursery grounds.

  6. Elevated atmospheric CO{sub 2} alters root-microbe interactions and belowground trophic structure

    SciTech Connect

    Klironomos, J.N.; Rillig, M.C.; Allen, M.F.

    1995-09-01

    Various aspects of plant and ecosystem responses to elevated atmospheric carbon dioxide have been described. However, very little is known about the fate of carbon allocated belowground, microbial activity, and trophic structure in the rhizosphere. Rhizosphere microbes are fed primarily by root-derived substrates, fulfill functions such as mineralization, immobilization, decomposition, pathogeneity, and improvement of plant nutrition, and form the base of the below-ground food web. Belowground processes have so far been monitored using a black-box approach, thereby ignoring effects of global change at a finer (functional group) level of resolution. This study is the first to describe shifts in the activity and dominance between microbial functional groups, and the results of this on higher trophic levels. We observed that, in a nutrient-rich soil, carbon flow in the plant-soil system was shunted from a mutualistic-closed, mycorrhizal dominated flow to an opportunist-open, saprobe/pathogen dominated one. This indicates that elevated atmospheric CO{sub 2} may lead to far less predictable consequences than previously thought.

  7. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    PubMed Central

    2010-01-01

    Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network. PMID:20497531

  8. Hydrogen sulphide in cardiovascular system: A cascade from interaction between sulphur atoms and signalling molecules.

    PubMed

    Wang, Ming-Jie; Cai, Wen-Jie; Zhu, Yi-Chun

    2016-05-15

    As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases. PMID:27071836

  9. Benchmark Solution For The Category 3, Problem 2: Cascade - Gust Interaction

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2004-01-01

    The benchmark solution for the cascade-gust interaction problem is computed using a linearized Euler code called LINFLUX. The inherently three-dimensional code is run in the thin-annulus limit to compute the two-dimensional cascade response. The calculations are carried out in the frequency-domain and the unsteady response at each of the gust s three frequency component is computed. The results are presented on modal basis for pressure perturbations (i.e., acoustic modes) as well as velocity perturbations (i.e., convected gust modes) at each frequency.

  10. Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades

    NASA Astrophysics Data System (ADS)

    Yi, X.; Sand, A. E.; Mason, D. R.; Kirk, M. A.; Roberts, S. G.; Nordlund, K.; Dudarev, S. L.

    2015-05-01

    Using in situ transmission electron microscopy, we have directly observed nano-scale defects formed in ultra-high-purity tungsten by low-dose high-energy self-ion irradiation at 30 K. At cryogenic temperature lattice defects have reduced mobility, so these microscope observations offer a window on the initial, primary damage caused by individual collision cascade events. Electron microscope images provide direct evidence for a power-law size distribution of nano-scale defects formed in high-energy cascades, with an upper size limit independent of the incident ion energy, as predicted by Sand et al. (EPL, 103 (2013) 46003). Furthermore, the analysis of pair distribution functions of defects observed in the micrographs shows significant intra-cascade spatial correlations consistent with strong elastic interaction between the defects.

  11. High frequency formulation for the acoustic power spectrum due to cascade-turbulence interaction.

    PubMed

    Cheong, Cheolung; Joseph, Phillip; Lee, Soogab

    2006-01-01

    This paper investigates the noise radiated by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. An analytic formulation for the spectrum of acoustic power of a two-dimensional flat-plate is derived. The main finding of this paper is that the acoustic power spectrum from the cascade of flat airfoils may be split into two distinct frequency regions of low frequency and high frequency, separated by a critical frequency. Below this frequency, cascade effects due to the interaction between neighboring airfoils are shown to be important. At frequencies above the critical frequency, cascade effects are shown to be relatively weak. In this frequency range, acoustic power is shown to be approximately proportional to the number of blades. Based on this finding at high frequencies, an approximate expression is derived for the power spectrum that is valid above the critical frequency and which is in excellent agreement with the exact expression for the broadband power spectrum. The formulation is used to perform a parametric study on the effects on the power spectrum of the blade number, stagger angle, gap-chord ratio, and Mach number. The theory is also shown to provide a close fit to the measured spectrum of rotor-stator interaction. PMID:16454269

  12. Relation between the interaction potential, replacement collision sequences, and collision cascade expansion in iron

    NASA Astrophysics Data System (ADS)

    Becquart, C. S.; Souidi, A.; Hou, M.

    2002-10-01

    The binary collision approximation (BCA) grounded on molecular dynamics results is used to investigate the influence of the range and stiffness of interatomic potentials on the replacement collision sequence (RCS) length and frequency distributions as well as on the displacement cascade expansion and density. Different screened Coulomb potential functions are used in the Marlowe BCA program with suitably adjusted screening lengths. We show in this paper that for screened Coulomb potentials, the shorter the range, the lower the focusing threshold and the more important the RCS production. The cascade expansion and density is quite sensitive to the potential range at high interaction energies. The overall cascade expansion is found to be governed by the 10% highest-energy recoils. Their energy is above the RCS focusing energy threshold. The cascade density, i.e., the number of transient defects produced per unit volume, is suggested sufficient to interfere significantly with RCS propagation and thus with the spatial distribution of Frenkel pairs. Primary damage production thus involves the combined effect of high-energy collisions and RCS production. A careful choice of the short range potential has thus to be made when simulating displacement cascades.

  13. Trophic interactions of common elasmobranchs in deep-sea communities of the Gulf of Mexico revealed through stable isotope and stomach content analysis

    NASA Astrophysics Data System (ADS)

    Churchill, Diana A.; Heithaus, Michael R.; Vaudo, Jeremy J.; Grubbs, R. Dean; Gastrich, Kirk; Castro, José I.

    2015-05-01

    Deep-water sharks are abundant and widely distributed in the northern and eastern Gulf of Mexico. As mid- and upper-level consumers that can range widely, sharks likely are important components of deep-sea communities and their trophic interactions may serve as system-wide baselines that could be used to monitor the overall health of these communities. We investigated the trophic interactions of deep-sea sharks using a combination of stable isotope (δ13C and δ15N) and stomach content analyses. Two hundred thirty-two muscle samples were collected from elasmobranchs captured off the bottom at depths between 200 and 1100 m along the northern slope (NGS) and the west Florida slope (WFS) of the Gulf of Mexico during 2011 and 2012. Although we detected some spatial, temporal, and interspecific variation in apparent trophic positions based on stable isotopes, there was considerable isotopic overlap among species, between locations, and through time. Overall δ15N values in the NGS region were higher than in the WFS. The δ15N values also increased between April 2011 and 2012 in the NGS, but not the WFS, within Squalus cf. mitsukurii. We found that stable isotope values of S. cf. mitsukurii, the most commonly captured elasmobranch, varied between sample regions, through time, and also with sex and size. Stomach content analysis (n=105) suggested relatively similar diets at the level of broad taxonomic categories of prey among the taxa with sufficient sample sizes. We did not detect a relationship between body size and relative trophic levels inferred from δ15N, but patterns within several species suggest increasing trophic levels with increasing size. Both δ13C and δ15N values suggest a substantial degree of overlap among most deep-water shark species. This study provides the first characterization of the trophic interactions of deep-sea sharks in the Gulf of Mexico and establishes system baselines for future investigations.

  14. The inverted trophic cascade in tropical plankton communities: impacts of exotic fish in the Middle Rio Doce lake district, Minas Gerais, Brazil.

    PubMed

    Pinto-Coelho, R M; Bezerra-Neto, J F; Miranda, F; Mota, T G; Resck, R; Santos, A M; Maia-Barbosa, P M; Mello, N A S T; Marques, M M; Campos, M O; Barbosa, F A R

    2008-11-01

    The present study deals with the ecological impacts of the introduction of two alien species of piscivorous fish in several lakes of the Middle Rio Doce lake district in Minas Gerais, Brazil. It was demonstrated that these effects were not restricted only to the fish community. The introduction of the predatory red piranha Pygocentrus nattereri and the tucunaré Cichla cf. ocellaris caused not only a sharp decrease in the number of native fish species, but also major shifts in other trophic levels. Just after the fish were introduced, most lakes began to show conspicuous changes in phytoplankton species composition, in which Cyanophyceae gradually came to dominate. The zooplankton community lost several species, and in some cases, such as Lake Carioca, all the cladoceran species disappeared. On the other hand, invertebrate predators, represented by the dipteran Chaoboridae, boomed in the lake, with higher densities of exotic species, probably as a result of the 'ecological release' by reduction of the original fish fauna. There was a general trend of species loss in different trophic levels. All these changes are apparently associated with decreases in water quality. The present situation in these lakes demands new approaches to the management and conservation of these ecosystems. PMID:19197473

  15. Dynamical interaction of helium bubbles with cascade damage in Fe-9Cr ferritic alloy.

    SciTech Connect

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.; Materials Science Division; Shimane Univ.; Osaka Univ.

    2008-12-01

    Dynamic interaction of helium bubble with cascade damage in Fe-9Cr ferritic alloy has been studied using in situ irradiation and electron microscopy. During the irradiation of the alloy by 400 keV Fe{sup +} ions at temperatures where no thermal motion takes place, induced displacement of small helium bubbles was observed: the bubbles underwent sporadic and instant displacement. The displacement was of the order of a few nanometers. The experimentally determined displacement probability of helium bubbles is consistent with the calculated probability of their dynamic interaction with sub-cascades introduced by the irradiation. Furthermore, during the irradiation of the alloy at higher temperatures, both retarded and accelerated Brownian type motions were observed. These results are discussed on the basis of dynamic interaction of helium bubbles with point defects that survive through high-energy self-ion irradiation.

  16. The role of life histories and trophic interactions in population recovery.

    PubMed

    Audzijonyte, Asta; Kuparinen, Anna

    2016-08-01

    Factors affecting population recovery from depletion are at the focus of wildlife management. Particularly, it has been debated how life-history characteristics might affect population recovery ability and productivity. Many exploited fish stocks have shown temporal changes towards earlier maturation and reduced adult body size, potentially owing to evolutionary responses to fishing. Whereas such life-history changes have been widely documented, their potential role on stock's ability to recover from exploitation often remains ignored by traditional fisheries management. We used a marine ecosystem model parameterized for Southeastern Australian ecosystem to explore how changes towards "faster" life histories might affect population per capita growth rate r. We show that for most species changes towards earlier maturation during fishing have a negative effect (3-40% decrease) on r during the recovery phase. Faster juvenile growth and earlier maturation were beneficial early in life, but smaller adult body sizes reduced the lifetime reproductive output and increased adult natural mortality. However, both at intra- and inter-specific level natural mortality and trophic position of the species were as important in determining r as species longevity and age of maturation, suggesting that r cannot be predicted from life-history traits alone. Our study highlights that factors affecting population recovery ability and productivity should be explored in a multi-species context, where both age-specific fecundity and survival schedules are addressed simultaneously. It also suggests that contemporary life-history changes in harvested species are unlikely to increase their resilience and recovery ability. PMID:26538016

  17. Interaction of displacement cascade with helium bubbles in alpha-iron: Computer simulation

    SciTech Connect

    Pu, Jin; Yang, Li; Gao, Fei; Heinisch, Howard L.; Kurtz, Richard J.; Zu, Xiaotao T.

    2008-09-01

    Molecular dynamics (MD) method has been performed to study the interaction of displacement cascade with He bubbles with two sets of potentials. The results show that the stability of He bubbles depends much on the initial He-vacancy (He/V) ratio and the recoil energy. For an initial He/V ratio of 3, the cascade leads to the increase in the number of vacancies in the He bubble and the decrease in the He/V ratio. For an initial He/V ratio of 0.5, the interaction of a cascade with the He/V bubble results in the decrease in the number of vacancies and the increase in the He/V ratio. For an initial He/V ratio of 1, the stability of the bubbles slightly depends on the primary knock-on atom (PKA) energy. Furthermore, a large number of self-interstitial atom clusters are formed after cascade collision for the He/V ratio of 3, while large vacancy clusters are observed for the He/V ratio of 0.5. However, some differences of defect production and clustering between the two sets of potentials are observed, which may be associated the formation energies of He-V clusters, the binding energies of vacancies and He atoms to the clusters and the probability of subcascade formation.

  18. Trophic Interactions Between Insects and Stream-Associated Amphibians in Steep, Cobble-Bottom Streams of the Pacific Coast of North America

    PubMed Central

    Atwood, Trisha; Richardson, John S.

    2012-01-01

    Two native, stream-associated amphibians are found in coastal streams of the west coast of North America, the tailed frog and the coastal giant salamander, and each interacts with stream insects in contrasting ways. For tailed frogs, their tadpoles are the primary life stage found in steep streams and they consume biofilm from rock surfaces, which can have trophic and non-trophic effects on stream insects. By virtue of their size the tadpoles are relatively insensitive to stream insect larvae, and tadpoles are capable of depleting biofilm levels directly (exploitative competition), and may also “bulldoze” insect larvae from the surfaces of stones (interference competition). Coastal giant salamander larvae, and sometimes adults, are found in small streams where they prey primarily on stream insects, as well as other small prey. This predator-prey interaction with stream insects does not appear to result in differences in the stream invertebrate community between streams with and without salamander larvae. These two examples illustrate the potential for trophic and non-trophic interactions between stream-associated amphibians and stream insects, and also highlights the need for further research in these systems. PMID:26466536

  19. Modeling Microbial Dynamics in Aquifers Considering the Interaction Between the Higher Trophic Levels

    NASA Astrophysics Data System (ADS)

    Bajracharya, B. M.; Cirpka, O. A.; Lu, C.

    2014-12-01

    Models of microbial dynamics coupled to solute transport in aquifers typically require the introduction of a bacterial carrying capacity term to prevent excessive microbial growth close to substrate-injection boundaries. The factors controlling this carrying capacity, however, are not fully understood. Most explanations for the occurrence of a carrying capacity discussed are based on the assumption of a bottom-up control of groundwater ecosystems. An alternative explanation is based on top-down control. Our model considers substrate, bacteria and higher trophic levels, such as grazers or bacteriophages. The dissolved substrate is transported with water flow whereas the biomasses of bacteria and grazers are considered essentially immobile. The one-dimensional reactive transport model also accounts for substrate dispersion and a random walk of grazers influenced by the bacteria concentration. The grazers grow on the bacteria, leading to a negative feedback on the bacteria concentration which may limit the turnover of the substrate. A single retentostat model with Monod kinetics of bacterial growth and a second-order grazing shows that the system oscillates but approaches a stable steady state with non-zero concentrations of substrate, bacteria, and grazers. The steady-state concentration of the bacteria biomass is independent of the substrate concentration in the inflow. When coupling several retentostats in a series to mimic a groundwater column, the steady-state bacteria concentrations remain at a constant level over a significant travel distance. The results show that grazing is a possible explanation of the carrying capacity, provided that there is enough substrate to sustain bacteria and grazers.

  20. Direct and indirect trophic effects of predator depletion on basal trophic levels.

    PubMed

    Chen, Huili; Hagerty, Steven; Crotty, Sinead M; Bertness, Mark D

    2016-02-01

    Human population growth and development have heavily degraded coastal ecosystems with cascading impacts across multiple trophic levels. Understanding both the direct and indirect trophic effects of human activities is important for coastal conservation. In New England, recreational overfishing has triggered a regional trophic cascade. Predator depletion releases the herbivorous purple marsh crab from consumer control and leads to overgrazing of marsh cordgrass and salt marsh die-off. The direct and indirect trophic effects of predator depletion on basal trophic levels, however, are not understood. Using observational and experimental data, we examined the hypotheses that (1) direct trophic effects of predator depletion decrease meiofaunal abundance by releasing deposit feeding fiddler crabs from consumer control, and/or (2) indirect trophic effects of predator depletion increase meiofaunal abundance by releasing blue carbon via the erosion of centuries of accreted marsh peat. Experimental deposit feeder removal led to 23% higher meiofaunal density at die-off than at healthy sites, while reciprocally transplanting sediment from die-off and healthy sites revealed that carbon-rich die-off sediment increased meiofauna density by over 164%: six times stronger than direct trophic effects. Recovering sites had both carbon-rich sediment and reduced deposit feeding leading to higher meiofauna densities than both die-off and healthy sites. This suggests that consequences of the trophic downgrading of coastal habitats can be driven by both direct and indirect trophic mechanisms that may vary in direction and magnitude, making their elucidation dependent on experimental manipulations. PMID:27145609

  1. Cascading effects of a highly specialized beech-aphid–fungus interaction on forest regeneration

    PubMed Central

    Maynard, Lauren; Lemoine, Nathan P.; Shue, Jessica; Parker, John D.

    2014-01-01

    Specialist herbivores are thought to often enhance or maintain plant diversity within ecosystems, because they prevent their host species from becoming competitively dominant. In contrast, specialist herbivores are not generally expected to have negative impacts on non-hosts. However, we describe a cascade of indirect interactions whereby a specialist sooty mold (Scorias spongiosa) colonizes the honeydew from a specialist beech aphid (Grylloprociphilus imbricator), ultimately decreasing the survival of seedlings beneath American beech trees (Fagus grandifolia). A common garden experiment indicated that this mortality resulted from moldy honeydew impairing leaf function rather than from chemical or microbial changes to the soil. In addition, aphids consistently and repeatedly colonized the same large beech trees, suggesting that seedling-depauperate islands may form beneath these trees. Thus this highly specialized three-way beech-aphid–fungus interaction has the potential to negatively impact local forest regeneration via a cascade of indirect effects. PMID:25024911

  2. Trophic organisation and predator-prey interactions among commercially exploited demersal finfishes in the coastal waters of the southeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Abdurahiman, K. P.; Nayak, T. H.; Zacharia, P. U.; Mohamed, K. S.

    2010-05-01

    Trophic interactions in commercially exploited demersal finfishes in the southeastern Arabian Sea of India were studied to understand trophic organization with emphasis on ontogenic diet shifts within the marine food web. In total, the contents of 4716 stomachs were examined from which 78 prey items were identified. Crustaceans and fishes were the major prey groups to most of the fishes. Based on cluster analysis of predator feeding similarities and ontogenic diet shift within each predator, four major trophic guilds and many sub-guilds were identified. The first guild 'detritus feeders' included all size groups of Cynoglossus macrostomus, Pampus argenteus, Leiognathus bindus and Priacanthus hamrur. Guild two, named 'Shrimp feeders', was the largest guild identified and included all size groups of Rhynchobatus djiddensis and Nemipterus mesoprion, medium and large Nemipterus japonicus, P. hamrur and Grammoplites suppositus, small and medium Otolithes cuvieri and small Lactarius lactarius. Guild three, named 'crab and squilla feeders', consisted of few predators. The fourth trophic guild, 'piscivores', was mainly made up of larger size groups of all predators and all size groups of Pseudorhombus arsius and Carcharhinus limbatus. The mean diet breadth and mean trophic level showed strong correlation with ontogenic diet shift. The mean trophic level varied from 2.2 ± 0.1 in large L. bindus to 4.6 ± 0.2 in large Epinephelus diacanthus and the diet breadth from 1.4 ± 0.3 in medium P. argenteus to 8.3 ± 0.2 in medium N. japonicus. Overall, the present study showed that predators in the ecosystem have a strong feeding preference for the sergestid shrimp Acetes indicus, penaeid shrimps, epibenthic crabs and detritus.

  3. NITROGEN: DEFINING LIMITS TO ECOSYSTEM RESTORATION; THE INFLUENCE OF SUCCESSION AND TROPHIC INTERACTIONS

    EPA Science Inventory

    A goal of this research is to investigate the interacting characteristics of biota and abiotic conditions relative to nitrogen cycling in the ecosystem. The research will support development of nitrogen cycling models with an ultimate application directed towards identification ...

  4. Consistent role of weak and strong interactions in high- and low-diversity trophic food webs.

    PubMed

    Gellner, Gabriel; McCann, Kevin S

    2016-01-01

    The growing realization of a looming biodiversity crisis has inspired considerable progress in the quest to link biodiversity, structure and ecosystem function. Here we construct a method that bridges low- and high-diversity approaches to food web theory by elucidating the connection between the stability of the basic building block of food webs and the mean stability properties of large random food web networks. Applying this theoretical framework to common food web models reveals two key findings. First, in almost all cases, high-diversity food web models yield a stability relationship between weak and strong interactions that are compatible in every way to simple low-diversity models. And second, the models that generate the recently discovered phenomena of being purely stabilized by increasing interaction strength correspond to the biologically implausible assumption of perfect interaction strength symmetry. PMID:27068000

  5. Consistent role of weak and strong interactions in high- and low-diversity trophic food webs

    PubMed Central

    Gellner, Gabriel; McCann, Kevin S.

    2016-01-01

    The growing realization of a looming biodiversity crisis has inspired considerable progress in the quest to link biodiversity, structure and ecosystem function. Here we construct a method that bridges low- and high-diversity approaches to food web theory by elucidating the connection between the stability of the basic building block of food webs and the mean stability properties of large random food web networks. Applying this theoretical framework to common food web models reveals two key findings. First, in almost all cases, high-diversity food web models yield a stability relationship between weak and strong interactions that are compatible in every way to simple low-diversity models. And second, the models that generate the recently discovered phenomena of being purely stabilized by increasing interaction strength correspond to the biologically implausible assumption of perfect interaction strength symmetry. PMID:27068000

  6. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics.

    PubMed

    Lindroth, Richard L

    2010-01-01

    Prominent among the many factors now affecting the sustainability of forest ecosystems are anthropogenically-generated carbon dioxide (CO2) and ozone (O3). CO2 is the substrate for photosynthesis and thus can accelerate tree growth, whereas O3 is a highly reactive oxygen species and interferes with basic physiological functions. This review summarizes the impacts of CO2 and O3 on tree chemical composition and highlights the consequences thereof for trophic interactions and ecosystem dynamics. CO2 and O3 influence phytochemical composition by altering substrate availability and biochemical/physiological processes such as photosynthesis and defense signaling pathways. Growth of trees under enriched CO2 generally leads to an increase in the C/N ratio, due to a decline in foliar nitrogen and concomitant increases in carbohydrates and phenolics. Terpenoid levels generally are not affected by atmospheric CO2 concentration. O3 triggers up-regulation of antioxidant defense pathways, leading to the production of simple phenolics and flavonoids (more so in angiosperms than gymnosperms). Tannins levels generally are unaffected, while terpenoids exhibit variable responses. In combination, CO2 and O3 exert both additive and interactive effects on tree chemical composition. CO2-and O3-mediated changes in plant chemistry influence host selection, individual performance (development, growth, reproduction), and population densities of herbivores (primarily phytophagous insects) and soil invertebrates. These changes can effect shifts in the amount and temporal pattern of forest canopy damage and organic substrate deposition. Decomposition rates of leaf litter produced under elevated CO2 and O3 may or may not be altered, and can respond to both the independent and interactive effects of the pollutants. Overall, however, CO2 and O3 effects on decomposition will be influenced more by their impacts on the quantity, rather than quality, of litter produced. A prominent theme to emerge

  7. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications

    PubMed Central

    Clare, Elizabeth L

    2014-01-01

    The emerging field of ecological genomics contains several broad research areas. Comparative genomic and conservation genetic analyses are providing great insight into adaptive processes, species bottlenecks, population dynamics and areas of conservation priority. Now the same technological advances in high-throughput sequencing, coupled with taxonomically broad sequence repositories, are providing greater resolution and fundamentally new insights into functional ecology. In particular, we now have the capacity in some systems to rapidly identify thousands of species-level interactions using non-invasive methods based on the detection of trace DNA. This represents a powerful tool for conservation biology, for example allowing the identification of species with particularly inflexible niches and the investigation of food-webs or interaction networks with unusual or vulnerable dynamics. As they develop, these analyses will no doubt provide significant advances in the field of restoration ecology and the identification of appropriate locations for species reintroduction, as well as highlighting species at ecological risk. Here, I describe emerging patterns that have come from the various initial model systems, the advantages and limitations of the technique and key areas where these methods may significantly advance our empirical and applied conservation practices. PMID:25553074

  8. A Cascade Random Forests Algorithm for Predicting Protein-Protein Interaction Sites.

    PubMed

    Wei, Zhi-Sen; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun

    2015-10-01

    Protein-protein interactions exist ubiquitously and play important roles in the life cycles of living cells. The interaction sites (residues) are essential to understanding the underlying mechanisms of protein-protein interactions. Previous research has demonstrated that the accurate identification of protein-protein interaction sites (PPIs) is helpful for developing new therapeutic drugs because many drugs will interact directly with those residues. Because of its significant potential in biological research and drug development, the prediction of PPIs has become an important topic in computational biology. However, a severe data imbalance exists in the PPIs prediction problem, where the number of the majority class samples (non-interacting residues) is far larger than that of the minority class samples (interacting residues). Thus, we developed a novel cascade random forests algorithm (CRF) to address the serious data imbalance that exists in the PPIs prediction problem. The proposed CRF resolves the negative effect of data imbalance by connecting multiple random forests in a cascade-like manner, each of which is trained with a balanced training subset that includes all minority samples and a subset of majority samples using an effective ensemble protocol. Based on the proposed CRF, we implemented a new sequence-based PPIs predictor, called CRF-PPI, which takes the combined features of position-specific scoring matrices, averaged cumulative hydropathy, and predicted relative solvent accessibility as model inputs. Benchmark experiments on both the cross validation and independent validation datasets demonstrated that the proposed CRF-PPI outperformed the state-of-the-art sequence-based PPIs predictors. The source code for CRF-PPI and the benchmark datasets are available online at http://csbio.njust.edu.cn/bioinf/CRF-PPI for free academic use. PMID:26441427

  9. Coherent anti-Stokes Raman spectroscopy utilizing phase mismatched cascaded quadratic optical interactions in nonlinear crystals

    PubMed Central

    Petrov, Georgi I.; Zhi, Miaochan; Yakovlev, Vladislav V.

    2013-01-01

    We experimentally investigated the nonlinear optical interaction between the instantaneous four-wave mixing and the cascaded quadratic frequency conversion in commonly used nonlinear optical KTP and LiNbO3 with the aim of a possible background suppression of the non-resonant background in coherent anti-Stokes Raman scattering. The possibility of background-free heterodyne coherent anti-Stokes Raman scattering microspectroscopy is investigated at the interface formed by a liquid (isopropyl alcohol) and a nonlinear crystal (LiNbO3). PMID:24514791

  10. Trophic interactions and population growth rates: describing patterns and identifying mechanisms.

    PubMed Central

    Hudson, Peter J; Dobson, Andy P; Cattadori, Isabella M; Newborn, David; Haydon, Dan T; Shaw, Darren J; Benton, Tim G; Grenfell, Bryan T

    2002-01-01

    While the concept of population growth rate has been of central importance in the development of the theory of population dynamics, few empirical studies consider the intrinsic growth rate in detail, let alone how it may vary within and between populations of the same species. In an attempt to link theory with data we take two approaches. First, we address the question 'what growth rate patterns does theory predict we should see in time-series?' The models make a number of predictions, which in general are supported by a comparative study between time-series of harvesting data from 352 red grouse populations. Variations in growth rate between grouse populations were associated with factors that reflected the quality and availability of the main food plant of the grouse. However, while these results support predictions from theory, they provide no clear insight into the mechanisms influencing reductions in population growth rate and regulation. In the second part of the paper, we consider the results of experiments, first at the individual level and then at the population level, to identify the important mechanisms influencing changes in individual productivity and population growth rate. The parasitic nematode Trichostrongylus tenuis is found to have an important influence on productivity, and when incorporated into models with their patterns of distribution between individuals has a destabilizing effect and generates negative growth rates. The hypothesis that negative growth rates at the population level were caused by parasites was demonstrated by a replicated population level experiment. With a sound and tested model framework we then explore the interaction with other natural enemies and show that in general they tend to stabilize variations in growth rate. Interestingly, the models show selective predators that remove heavily infected individuals can release the grouse from parasite-induced regulation and allow equilibrium populations to rise. By contrast, a

  11. Trophic dynamics in an aquatic community: interactions among primary producers, grazers, and a pathogenic fungus.

    PubMed

    Buck, Julia C; Scholz, Katharina I; Rohr, Jason R; Blaustein, Andrew R

    2015-05-01

    Free-living stages of parasites are consumed by a variety of predators, which might have important consequences for predators, parasites, and hosts. For example, zooplankton prey on the infectious stage of the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen responsible for amphibian population declines and extinctions worldwide. Predation on parasites is predicted to influence community structure and function, and affect disease risk, but relatively few studies have explored its consequences empirically. We investigated interactions among Rana cascadae tadpoles, zooplankton, and Bd in a fully factorial experiment in outdoor mesocosms. We measured growth, development, survival, and infection of amphibians and took weekly measurements of the abundance of zooplankton, phytoplankton (suspended algae), and periphyton (attached algae). We hypothesized that zooplankton might have positive indirect effects on tadpoles by consuming Bd zoospores and by consuming phytoplankton, thus reducing the shading of a major tadpole resource, periphyton. We also hypothesized that zooplankton would have negative effects on tadpoles, mediated by competition for algal resources. Mixed-effects models, repeated-measures ANOVAs, and a structural equation model revealed that zooplankton significantly reduced phytoplankton but had no detectable effects on Bd or periphyton. Hence, the indirect positive effects of zooplankton on tadpoles were negligible when compared to the indirect negative effect mediated by competition for phytoplankton. We conclude that examination of host-pathogen dynamics within a community context may be necessary to elucidate complex community dynamics. PMID:25432573

  12. The comparative uptake and interaction of several radionuclides in the trophic levels surrounding the Los Alamos Meson Physics Facility (LAMPF) waste water ponds

    SciTech Connect

    Brooks, G.H. Jr.

    1989-08-01

    A study was undertaken to examine the uptake, distribution, and interaction of five activation products (Co-57, Be-7, Cs-134, Rb-83, and Mn-54) within the biotic and abiotic components surrounding the waste treatment lagoons of the Los Alamos Meson Physics Facility (LAMPF). The study attempted to ascertain where, and what specific interactions were taking place among the isotopes and the biotic/abiotic components. A statistical approach, utilizing Multivariate Analysis of Variance (MANOVA), was conducted testing the radioisotopic concentrations by (1) the trophic levels (TROPLVL) in each position sampled on the grid, (2) where sampled on the grid (TRAN), (3) where sampled with-in each grid line (PLOT), and (4) the side with which sampled (SIDE). This provided both the dependent and independent variables that would be tested. The Null Hypothesis (Ho) tested the difference in the mean values of the isotopes within/between each of the four independent variables. The Rb-83 statistic indicated an accumulation within the TRAN and PLOT variables within the sampled area. The Co-57 test statistic provided a value which indicated that accumulation of this isotope within TROPLVL was taking place. Mn-54 test values indicated that accumulation was also taking place at the higher trophic levels within the PLOT, TRAN, and SIDE positions. Cs-134 was found to accumulate to third level in this trophic level structure (TROPLVL-(vegetation)), and then decrease from there. The Be-7 component provided no variance from known compartmental transfers. 210 refs., 17 figs., 4 tabs.

  13. Mast pulses shape trophic interactions between fluctuating rodent populations in a primeval forest.

    PubMed

    Selva, Nuria; Hobson, Keith A; Cortés-Avizanda, Ainara; Zalewski, Andrzej; Donázar, José Antonio

    2012-01-01

    How different functional responses of consumers exploiting pulsed resources affect community dynamics is an ongoing question in ecology. Tree masting is a common resource pulse in terrestrial ecosystems that can drive rodent population cycles. Using stable isotope (δ(13)C, δ(15)N) analyses, we investigated the dietary response of two fluctuating rodent species, the yellow-necked mouse Apodemus flavicollis and the bank vole Myodes glareolus, to mast events in Białowieża Forest (NE Poland). Rodent hair samples were obtained non-invasively from faeces of their predators for an 11-year period that encompassed two mast events. Spectacular seed crops of deciduous trees, namely oak Quercus robur and hornbeam Carpinus betulus, occur after several intermediate years of moderate seed production, with a post-mast year characterised by a nil crop. While a Bayesian isotopic (SIAR) mixing model showed a variety of potential vegetation inputs to rodent diets, the isotopic niche of the yellow-necked mouse was strongly associated with mast of deciduous trees (>80% of diet), showing no variation among years of different seed crop. However, bank voles showed a strong functional response; in mast years the vole shifted its diet from herbs in deciduous forest (~66% of diet) to mast (~74%). Only in mast years did the isotopic niche of both rodent species overlap. Previous research showed that bank voles, subordinate and more generalist than mice, showed higher fluctuations in numbers in response to masting. This study provides unique data on the functional response of key pulse consumers in forest food webs, and contributes to our understanding of rodent population fluctuations and the mechanisms governing pulse-consumer interactions. PMID:23251475

  14. Mast Pulses Shape Trophic Interactions between Fluctuating Rodent Populations in a Primeval Forest

    PubMed Central

    Selva, Nuria; Hobson, Keith A.; Cortés-Avizanda, Ainara; Zalewski, Andrzej; Donázar, José Antonio

    2012-01-01

    How different functional responses of consumers exploiting pulsed resources affect community dynamics is an ongoing question in ecology. Tree masting is a common resource pulse in terrestrial ecosystems that can drive rodent population cycles. Using stable isotope (δ13C, δ15N) analyses, we investigated the dietary response of two fluctuating rodent species, the yellow-necked mouse Apodemus flavicollis and the bank vole Myodes glareolus, to mast events in Białowieża Forest (NE Poland). Rodent hair samples were obtained non-invasively from faeces of their predators for an 11-year period that encompassed two mast events. Spectacular seed crops of deciduous trees, namely oak Quercus robur and hornbeam Carpinus betulus, occur after several intermediate years of moderate seed production, with a post-mast year characterised by a nil crop. While a Bayesian isotopic (SIAR) mixing model showed a variety of potential vegetation inputs to rodent diets, the isotopic niche of the yellow-necked mouse was strongly associated with mast of deciduous trees (>80% of diet), showing no variation among years of different seed crop. However, bank voles showed a strong functional response; in mast years the vole shifted its diet from herbs in deciduous forest (∼66% of diet) to mast (∼74%). Only in mast years did the isotopic niche of both rodent species overlap. Previous research showed that bank voles, subordinate and more generalist than mice, showed higher fluctuations in numbers in response to masting. This study provides unique data on the functional response of key pulse consumers in forest food webs, and contributes to our understanding of rodent population fluctuations and the mechanisms governing pulse–consumer interactions. PMID:23251475

  15. Interaction of the Walker Lane and the Cascade Volcanic Arc, Northern California

    NASA Astrophysics Data System (ADS)

    Muffler, L.; Blakely, R.; Clynne, M.

    2008-12-01

    We utilize modern geologic and gravity data sets to examine the interaction between the Walker Lane and the southernmost Cascade Volcanic Arc. The Cascade Volcanic Arc in the Lassen region is the product of eastward subduction of the Juan de Fuca plate beneath the North American plate in northern California. To the southeast, the Walker Lane is a structural zone that takes up ~15-25% of the dextral movement between the Pacific and North American plates. The intersection of these two tectonic features in northeastern California is presumed to migrate northward roughly parallel to the northward migration of the Mendocino Triple Junction. Several workers have inferred that NW-trending dextral faults of the Walker Lane intersect and interact with the southernmost Cascade Volcanic Arc in the Lassen region. In the southernmost Cascade Arc, a pronounced unconformity separates <3.5 Ma volcanic rocks from underlying pre-Tertiary sedimentary and metamorphic rocks. The southern limit of volcanism has contracted northward from 40°7.5' at ~3.5 Ma to 40°22.5' at 0.5--0 Ma. Volcanism along the axis is dominated by volcanic centers---large, long-lived, composite, calc-alkaline edifices erupting the full range of compositions from basaltic andesite to rhyolite. Older volcanic centers (3.5--1 Ma) show no correlation with residual gravity, whereas a negative gravity anomaly (-15 mGal) does coincide with <800 ka focused volcanism at the Lassen Volcanic Center (LVC) and the Caribou Volcanic Field (CVF). The most negative part of this gravity anomaly (-30 mGal) coincides with the LVC, a locus of major silicic volcanism, including a significant caldera eruption at 610 ka and a 300--0 ka silicic domefield. Faults are conspicuous E, SE and N of the LVC, but are nearly absent within the LVC. Faults and gravity gradients SE of the LVC strike ~315°, sub-parallel to Walker Lane trends farther to the SE, whereas vent alignments and gravity gradients north of the LVC strike ~345°. Pronounced

  16. Seasonal dynamics and Trophic interactions of phytoplankton and zooplankton in the Vistula Lagoon of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dmitrieva, O. A.; Semenova, A. S.

    2012-11-01

    The trophic relationships of the phytoplankton and zooplankton in the Vistula Lagoon in 2008-2010 were investigated. In the current period, the lagoon is an eutrophic water body with summer blooms of blue-green algae. The trophic level of the Vistula Lagoon influences both the composition and quantitative characteristics of the communities of phytoplankton and zooplankton and the trophic relationships between them. In the analyzed period, the consumption of phytoplankton by the zooplankton on the average in the growing season was 28%, which is 1.5 times higher than in the late 1970s. The high grazing pressure of the zooplankton on the phytoplankton reduces its biomass, production, and the intensity of the blooming by the blue-green algae in the Vistula Lagoon.

  17. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: a review.

    PubMed

    van Duijvendijk, Gilian; Sprong, Hein; Takken, Willem

    2015-01-01

    The tick Ixodes ricinus is the main vector of the spirochaete Borrelia burgdorferi sensu lato, the causal agent of Lyme borreliosis, in the western Palearctic. Rodents are the reservoir host of B. afzelii, which can be transmitted to I. ricinus larvae during a blood meal. The infected engorged larvae moult into infected nymphs, which can transmit the spirochaetes to rodents and humans. Interestingly, even though only about 1% of the larvae develop into a borreliae-infected nymph, the enzootic borreliae lifecycle can persist. The development from larva to infected nymph is a key aspect in this lifecycle, influencing the density of infected nymphs and thereby Lyme borreliosis risk. The density of infected nymphs varies temporally and geographically and is influenced by multi-trophic (tick-host-borreliae) interactions. For example, blood feeding success of ticks and spirochaete transmission success differ between rodent species and host-finding success appears to be affected by a B. afzelii infection in both the rodent and the tick. In this paper, we review the major interactions between I. ricinus, rodents and B. afzelii that influence this development, with the aim to elucidate the critical factors that determine the epidemiological risk of Lyme borreliosis. The effects of the tick, rodent and B. afzelii on larval host finding, larval blood feeding, spirochaete transmission from rodent to larva and development from larva to nymph are discussed. Nymphal host finding, nymphal blood feeding and spirochaete transmission from nymph to rodent are the final steps to complete the enzootic B. afzelii lifecycle and are included in the review. It is concluded that rodent density, rodent infection prevalence, and tick burden are the major factors affecting the development from larva to infected nymph and that these interact with each other. We suggest that the B. afzelii lifecycle is dependent on the aggregation of ticks among rodents, which is manipulated by the pathogen

  18. Gyrokinetic turbulence cascade via predator-prey interactions between different scales

    SciTech Connect

    Kobayashi, Sumire Gurcan, Ozgur D.

    2015-05-15

    Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate “predator-prey” dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation | ϕ{sup ~}{sub k} |{sup 2}∼| n{sup ~}{sub k} |{sup 2}∝k{sup −3}/(1+k{sup 2}){sup 2}, with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistent zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.

  19. Gyrokinetic turbulence cascade via predator-prey interactions between different scales

    NASA Astrophysics Data System (ADS)

    Kobayashi, Sumire; Gurcan, Ozgur D.

    2015-05-01

    Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate "predator-prey" dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation |ϕ˜ k | 2˜|n˜ k | 2∝k-3/(1+k2 ) 2 , with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistent zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.

  20. An analysis for high Reynolds number inviscid/viscid interactions in cascades

    NASA Technical Reports Server (NTRS)

    Barnett, Mark; Verdon, Joseph M.; Ayer, Timothy C.

    1993-01-01

    An efficient steady analysis for predicting strong inviscid/viscid interaction phenomena such as viscous-layer separation, shock/boundary-layer interaction, and trailing-edge/near-wake interaction in turbomachinery blade passages is needed as part of a comprehensive analytical blade design prediction system. Such an analysis is described. It uses an inviscid/viscid interaction approach, in which the flow in the outer inviscid region is assumed to be potential, and that in the inner or viscous-layer region is governed by Prandtl's equations. The inviscid solution is determined using an implicit, least-squares, finite-difference approximation, the viscous-layer solution using an inverse, finite-difference, space-marching method which is applied along the blade surfaces and wake streamlines. The inviscid and viscid solutions are coupled using a semi-inverse global iteration procedure, which permits the prediction of boundary-layer separation and other strong-interaction phenomena. Results are presented for three cascades, with a range of inlet flow conditions considered for one of them, including conditions leading to large-scale flow separations. Comparisons with Navier-Stokes solutions and experimental data are also given.

  1. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  2. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions.

    PubMed

    Ling, S D; Johnson, C R

    2012-06-01

    Spatial closures in the marine environment are widely accepted as effective conservation and fisheries management tools. Given increasing human-derived stressors acting on marine ecosystems, the need for such effective action is urgently clear. Here we explore mechanisms underlying the utility of marine reserves to reinstate trophic dynamics and to increase resilience of kelp beds against climate-driven phase shift to sea urchin barrens on the rapidly warming Tasmanian east coast. Tethering and tagging experiments were used to examine size- and shelter-specific survival of the range-extending sea urchin Centrostephanus rodgersii (Diadematidae) translocated to reefs inside and outside no-take Tasmanian marine reserves. Results show that survival rates of C. rodgersii exposed on flat reef substratum by tethering were approximately seven times (small urchins 10.1 times; large urchins 6.1 times) lower on protected reef within marine reserve boundaries (high abundance of large predatory-capable lobsters) compared to fished reef (large predatory lobsters absent). When able to seek crevice shelter, tag-resighting models estimated that mortality rates of C. rodgersii were lower overall but remained 3.3 times (small urchins 2.1 times; large urchins 6.4 times) higher in the presence of large lobsters inside marine reserves, with higher survival of small urchins owing to greater access to crevices relative to large urchins. Indeed, shelter was 6.3 times and 3.1 times more important to survival of small and large urchins, respectively, on reserved relative to fished reef. Experimental results corroborate with surveys throughout the range extension region, showing greater occurrence of overgrazing on high-relief rocky habitats where shelter for C. rodgersii is readily available. This shows that ecosystem impacts mediated by range extension of such habitat-modifying organisms will be heterogeneous in space, and that marine systems with a more natural complement of large and thus

  3. Interaction of Dirac Fermion excitons and biexciton-exciton cascade in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ozfidan, Isil; Korkusinski, Marek; Hawrylak, Pawel

    2015-03-01

    We present a microscopic theory of interacting Dirac quasi-electrons and quasi-holes confined in graphene quantum dots. The single particle states of quantum dots are described using a tight binding model and screened direct, exchange, and scattering Coulomb matrix elements are computed using Slater pz orbitals. The many-body ground and excited states are expanded in a finite number of electron-hole pair excitations from the Hartree-Fock ground state and computed using exact diagonalization techniques. The resulting exciton and bi-exciton spectrum reflects the degeneracy of the top of the valence and bottom of the conduction band characteristic of graphene quantum dots with C3 symmetry. We study the interaction of multi-electron and hole complexes as a function of quantum dot size, shape and strength of Coulomb interactions. We identify two degenerate bright exciton (X) states and a corresponding biexciton (XX) state as XX-X cascade candidates, a source of entangled photon pairs. We next calculate the exciton to bi-exciton transitions detected in transient absorption experiments to extract the strength of exciton-exciton interactions and biexciton binding energies. We further explore the possibility of excitonic instability.

  4. Compound-specific isotopes of fatty acids as indicators of trophic interactions in the East China Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Wang, Na; Zhang, Jing; Wan, Ruijing; Dai, Fangqun; Jin, Xianshi

    2016-09-01

    The composition and compound-specific isotopes of fatty acids were studied within food webs in the East China Sea. Lipid-normalized stable carbon isotopes of total organic carbon had a good correlation with trophic level. Variations in fatty acid compositions among diff erent species were observed but were unclear. Diff erent dietary structures could be traced from molecular isotopes of selected fatty acids in the Shiba shrimp ( Matapenaeus joyneri), the coastal mud shrimp ( Solenocera crassicornis) and the northern Maoxia shrimp ( Acetes chinensis). Both M. joyneri and S. crassicornis are mainly benthos feeders, while A. chinensis is a pelagic species, although they have a similar fatty acid composition. There was a good correlation for isotopes of arachidonic acid (C20:4n6; ARA) and docosahexaenoic acid (C22:6n3; DHA) among pelagic species from higher trophic levels. The isotopic compositions of DHA in benthic species were more negative than those of pelagic species at the same trophic level. The fact that the diet of benthic species contains more degraded items, the carbon isotopes of which are derived from a large biochemical fraction, may be the reason for this variation. A comparative study of benthic and pelagic species demonstrated the diff erent carbon sources in potential food items and the presence of a more complex system at the water-sediment interface.

  5. Compound-specific isotopes of fatty acids as indicators of trophic interactions in the East China Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Wang, Na; Zhang, Jing; Wan, Ruijing; Dai, Fangqun; Jin, Xianshi

    2016-01-01

    The composition and compound-specific isotopes of fatty acids were studied within food webs in the East China Sea. Lipid-normalized stable carbon isotopes of total organic carbon had a good correlation with trophic level. Variations in fatty acid compositions among diff erent species were observed but were unclear. Diff erent dietary structures could be traced from molecular isotopes of selected fatty acids in the Shiba shrimp (Matapenaeus joyneri), the coastal mud shrimp (Solenocera crassicornis) and the northern Maoxia shrimp (Acetes chinensis). Both M. joyneri and S. crassicornis are mainly benthos feeders, while A. chinensis is a pelagic species, although they have a similar fatty acid composition. There was a good correlation for isotopes of arachidonic acid (C20:4n6; ARA) and docosahexaenoic acid (C22:6n3; DHA) among pelagic species from higher trophic levels. The isotopic compositions of DHA in benthic species were more negative than those of pelagic species at the same trophic level. The fact that the diet of benthic species contains more degraded items, the carbon isotopes of which are derived from a large biochemical fraction, may be the reason for this variation. A comparative study of benthic and pelagic species demonstrated the diff erent carbon sources in potential food items and the presence of a more complex system at the water-sediment interface.

  6. Electron-phonon interaction in three-barrier nanosystems as active elements of quantum cascade detectors

    SciTech Connect

    Tkach, N. V. Seti, Ju. A.; Grynyshyn, Yu. B.

    2015-04-15

    The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperature shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.

  7. Trophic interactions of the pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid and stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Petursdottir, H.; Gislason, A.; Falk-Petersen, S.; Hop, H.; Svavarsson, J.

    2008-01-01

    Trophic relationships of the important oceanic crustacean species Calanus finmarchicus, Meganyctiphanes norvegica and Sergestes arcticus, as well as the mesopelagic fishes Maurolicus muelleri, Benthosema glaciale and Sebastes mentella, were investigated over the Reykjanes Ridge in June 2003 and in June 2004. Measurements were performed of length, wet weight, dry weight, total lipid, lipid class, fatty acid and fatty alcohol profiles and stable isotopes (δ 13C and δ 15N). High amounts of the Calanus lipid markers, 20:1(n-9) and 22:1(n-11) in these species confirm the importance of Calanus spp. in this ecosystem. Comparisons of fatty acid/alcohol profiles by multivariate analysis revealed two main trophic pathways over the Reykjanes Ridge. In one pathway, Calanus spp. was an important part of the diet for the small mesopelagic fish species M. muelleri and B. glaciale and the shrimp S. arcticus, whereas in the other pathway, the euphausiid M. norvegica was the dominant food for the redfish S. mentella, and Calanus spp. were of less importance. M. muelleri and the smaller B. glaciale feed on C. finmarchicus, whereas the larger B. glaciale and S. arcticus select the larger, deeper-living C. hyperboreus. All investigated species are true pelagic species except for the shrimp S. arcticus, which seems to have a benthic feeding habit as well. The δ 15N levels show that of the species investigated, C. finmarchicus occupies the lowest trophic level (2.0) and the redfish, S. mentella, the highest (4.2). All the species were lipid rich, typical for subarctic pelagic ecosystem. Calanus finmarchicus, S. arcticus and B. glaciale store wax esters as their lipid stores, while M. norvegica, M. muelleri and S. mentella store triacylglycerols.

  8. Plasticity of trophic interactions among sharks from the oceanic south-western Indian Ocean revealed by stable isotope and mercury analyses

    NASA Astrophysics Data System (ADS)

    Kiszka, Jeremy J.; Aubail, Aurore; Hussey, Nigel E.; Heithaus, Michael R.; Caurant, Florence; Bustamante, Paco

    2015-02-01

    Sharks are a major component of the top predator guild in oceanic ecosystems, but the trophic relationships of many populations remain poorly understood. We examined chemical tracers of diet and habitat (δ15N and δ13C, respectively) and total mercury (Hg) concentrations in muscle tissue of seven pelagic sharks: blue shark (Prionace glauca), short-fin mako shark (Isurus oxyrinchus), oceanic whitetip shark (Carcharhinus longimanus), scalloped hammerhead shark (Sphyrna lewini), pelagic thresher shark (Alopias pelagicus), crocodile shark (Pseudocarcharias kamoharai) and silky shark (Carcharhinus falciformis), from the data poor south-western tropical Indian Ocean. Minimal interspecific variation in mean δ15N values and a large degree of isotopic niche overlap - driven by high intraspecific variation in δ15N values - was observed among pelagic sharks. Similarly, δ13C values of sharks overlapped considerably for all species with the exception of P. glauca, which had more 13C-depleted values indicating possibly longer residence times in purely pelagic waters. Geographic variation in δ13C, δ15N and Hg were observed for P. glauca and I. oxyrinchus. Mean Hg levels were similar among species with the exception of P. kamoharai which had significantly higher Hg concentrations likely related to mesopelagic feeding. Hg concentrations increased with body size in I. oxyrinchus, P. glauca and C. longimanus. Values of δ15N and δ13C varied with size only in P. glauca, suggesting ontogenetic shifts in diets or habitats. Together, isotopic data indicate that - with few exceptions - variance within species in trophic interactions or foraging habitats is greater than differentiation among pelagic sharks in the south-western Indian Ocean. Therefore, it is possible that this group exhibits some level of trophic redundancy, but further studies of diets and fine-scale habitat use are needed to fully test this hypothesis.

  9. Phylogenetic diversity and co-evolutionary signals among trophic levels change across a habitat edge.

    PubMed

    Peralta, Guadalupe; Frost, Carol M; Didham, Raphael K; Varsani, Arvind; Tylianakis, Jason M

    2015-03-01

    Incorporating the evolutionary history of species into community ecology enhances understanding of community composition, ecosystem functioning and responses to environmental changes. Phylogenetic history might partly explain the impact of fragmentation and land-use change on assemblages of interacting organisms and even determine potential cascading effects across trophic levels. However, it remains unclear whether phylogenetic diversity of basal resources is reflected at higher trophic levels in the food web. In particular, phylogenetic determinants of community structure have never been incorporated into habitat edge studies, even though edges are recognized as key factors affecting communities in fragmented landscapes. Here, we test whether phylogenetic diversity at different trophic levels (plants, herbivores and parasitoids) and signals of co-evolution (i.e. phylogenetic congruence) among interacting trophic levels change across an edge gradient between native and plantation forests. To ascertain whether there is a signal of co-evolution across trophic levels, we test whether related consumer species generally feed on related resource species. We found differences across trophic levels in how their phylogenetic diversity responded to the habitat edge gradient. Plant and native parasitoid phylogenetic diversity changed markedly across habitats, while phylogenetic variability of herbivores (which were predominantly native) did not change across habitats, though phylogenetic evenness declined in plantation interiors. Related herbivore species did not appear to feed disproportionately on related plant species (i.e. there was no signal of co-evolution) even when considering only native species, potentially due to the high trophic generality of herbivores. However, related native parasitoid species tended to feed on related herbivore species, suggesting the presence of a co-evolutionary signal at higher trophic levels. Moreover, this signal was stronger in

  10. Trophic interactions and distribution of some Squaliforme sharks, including new diet descriptions for Deania calcea and Squalus acanthias.

    PubMed

    Dunn, Matthew R; Stevens, Darren W; Forman, Jeffrey S; Connell, Amelia

    2013-01-01

    Squaliforme sharks are a common but relatively vulnerable bycatch in many deep water fisheries. Eleven species of squaliforme shark are commonly caught at depths of 200-1200 m on Chatham Rise, New Zealand, and their diversity suggests they might occupy different niches. The diets of 133 Deania calcea and 295 Squalus acanthias were determined from examination of stomach contents. The diet of D. calcea was characterised by mesopelagic fishes, and S. acanthias by benthic to pelagic fishes, but was more adaptive and included likely scavenging. Multivariate analyses found the most important predictors of diet variability in S. acanthias were year, bottom temperature, longitude, and fish weight. The diet of the nine other commonly caught squaliforme sharks was reviewed, and the spatial and depth distribution of all species on Chatham Rise described from research bottom trawl survey catches. The eleven species had a variety of different diets, and depth and location preferences, consistent with niche separation to reduce interspecific competition. Four trophic groups were identified, characterised by: mesopelagic fishes and invertebrates (Centroselachus crepidater, D. calcea, and Etmopterus lucifer); mesopelagic and benthopelagic fishes and invertebrates (Centroscymnus owstoni, Etmopterus baxteri); demersal and benthic fishes (Centrophorus squamosus, Dalatias licha, Proscymnodon plunketi); and a generalist diet of fishes and invertebrates (S. acanthias). The trophic levels of the species in each of the four groups were estimated as 4.18-4.24, 4.20-4.23, 4.24-4.48, and 3.84 respectively. The diet of Oxynotus bruniensis and Squalus griffini are unknown. The different niches occupied by different species are likely to influence their vulnerability to bottom trawl fisheries. Some species may benefit from fisheries through an increased availability of scavenged prey. PMID:23536896

  11. Trophic Interactions and Distribution of Some Squaliforme Sharks, Including New Diet Descriptions for Deania calcea and Squalus acanthias

    PubMed Central

    Dunn, Matthew R.; Stevens, Darren W.; Forman, Jeffrey S.; Connell, Amelia

    2013-01-01

    Squaliforme sharks are a common but relatively vulnerable bycatch in many deep water fisheries. Eleven species of squaliforme shark are commonly caught at depths of 200–1200 m on Chatham Rise, New Zealand, and their diversity suggests they might occupy different niches. The diets of 133 Deania calcea and 295 Squalus acanthias were determined from examination of stomach contents. The diet of D. calcea was characterised by mesopelagic fishes, and S. acanthias by benthic to pelagic fishes, but was more adaptive and included likely scavenging. Multivariate analyses found the most important predictors of diet variability in S. acanthias were year, bottom temperature, longitude, and fish weight. The diet of the nine other commonly caught squaliforme sharks was reviewed, and the spatial and depth distribution of all species on Chatham Rise described from research bottom trawl survey catches. The eleven species had a variety of different diets, and depth and location preferences, consistent with niche separation to reduce interspecific competition. Four trophic groups were identified, characterised by: mesopelagic fishes and invertebrates (Centroselachus crepidater, D. calcea, and Etmopterus lucifer); mesopelagic and benthopelagic fishes and invertebrates (Centroscymnus owstoni, Etmopterus baxteri); demersal and benthic fishes (Centrophorus squamosus, Dalatias licha, Proscymnodon plunketi); and a generalist diet of fishes and invertebrates (S. acanthias). The trophic levels of the species in each of the four groups were estimated as 4.18–4.24, 4.20–4.23, 4.24–4.48, and 3.84 respectively. The diet of Oxynotus bruniensis and Squalus griffini are unknown. The different niches occupied by different species are likely to influence their vulnerability to bottom trawl fisheries. Some species may benefit from fisheries through an increased availability of scavenged prey. PMID:23536896

  12. Scale-dependent bi-trophic interactions in a semi-arid savanna: how herbivores eliminate benefits of nutrient patchiness to plants.

    PubMed

    van der Waal, Cornelis; de Kroon, Hans; van Langevelde, Frank; de Boer, Willem F; Heitkönig, Ignas M A; Slotow, Rob; Pretorius, Yolanda; Prins, Herbert H T

    2016-08-01

    The scale of resource heterogeneity may influence how resources are locally partitioned between co-existing large and small organisms such as trees and grasses in savannas. Scale-related plant responses may, in turn, influence herbivore use of the vegetation. To examine these scale-dependent bi-trophic interactions, we varied fertilizer [(nitrogen (N)/phosphorus (P)/potassium (K)] applications to patches to create different scales of nutrient patchiness (patch size 2 × 2 m, 10 × 10 m, or whole-plot 50 × 50 m) in a large field experiment in intact African savanna. Within-patch fertilizer concentration and the total fertilizer load per plot were independently varied. We found that fertilization increased the leaf N and P concentrations of trees and grasses, resulting in elevated utilization by browsers and grazers. Herbivory off-take was particularly considerable at higher nutrient concentrations. Scale-dependent effects were weak. The net effect of fertilization and herbivory was that plants in fertilized areas tended to grow less and develop smaller rather than larger standing biomass compared to plants growing in areas that remained unfertilized. When all of these effects were considered together at the community (plot) level, herbivory completely eliminated the positive effects of fertilization on the plant community. While this was true for all scales of fertilization, grasses tended to profit more from coarse-grained fertilization and trees from fine-grained fertilization. We conclude that in herbivore-dominated communities, such as the African savanna, nutrient patchiness results in the herbivore community profiting rather more than the plant community, irrespective of the scale of patchiness. At the community level, the allometric scaling theory's prediction of plant-and probably also animal-production does not hold or may even be reversed as a result of complex bi-trophic interactions. PMID:27094543

  13. Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication.

    PubMed

    Zhu, Xiaoli; Sun, Liya; Chen, Yangyang; Ye, Zonghuang; Shen, Zhongming; Li, Genxi

    2013-09-15

    Graphene, a single atom thick and two dimensional carbon nano-material, has been proven to possess many unique properties, one of which is the recent discovery that it can interact with single-stranded DNA through noncovalent π-π stacking. In this work, we demonstrate that a new strategy to fabricate many kinds of biosensors can be developed by combining this property with cascade chemical reactions. Taking the fabrication of glucose sensor as an example, while the detection target, glucose, may regulate the graphene-DNA interaction through three cascade chemical reactions, electrochemical techniques are employed to detect the target-regulated graphene-DNA interaction. Experimental results show that in a range from 5μM to 20mM, the glucose concentration is in a natural logarithm with the logarithm of the amperometric response, suggesting a best detection limit and detection range. The proposed biosensor also shows favorable selectivity, and it has the advantage of no need for labeling. What is more, by controlling the cascade chemical reactions, detection of a variety of other targets may be achieved, thus the strategy proposed in this work may have a wide application potential in the future. PMID:23542067

  14. Competitive interactions between invasive Nile tilapia and native fish: the potential for altered trophic exchange and modification of food webs.

    PubMed

    Martin, Charles W; Valentine, Marla M; Valentine, John F

    2010-01-01

    Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important. PMID:21200433

  15. [Trophic interactions of the six most abundant fish species in the artisanal fishery in two bays, central Mexican Pacific].

    PubMed

    Flores Ortega, J R; Godínez Domínguez, E; Rojo Vázquez, J A; Corgos, A; Galván Piña, V H; Sansón González, G

    2010-03-01

    We surveyed the trophic components in six species of Bahía de Navidad and Bahía de Chamela: Microlepidotus brevipinnis, Caranx caballus, Haemulon flaviguttatum, Lutjanus guttatus, L. argentiventris and Mulloidichthys dentatus. Two main seasonal periods were considered: 1) North Equatorial Counter Current NECC period influence (T1) and 2) California Current CC period influence (T2). In Bahía de Navidad 78 prey taxa were identified in the stomachs. From July to December (T1), 64 prey taxa were found, and from January to June (T2), 45 prey items. In Bahía de Chamela 93 prey items were identified; 74 during T1 and 60 during T2. The highest prey number was found in the stomachs of M. dentatus during T1 in Bahía de Navidad and the lowest prey number (7) was recorded in H. flaviguttatum in Bahía de Navidad in the same period. Crustaceans were the most frequently recorded prey items, followed by fishes, mollusks, polychaetes, and echinoderms in both seasonal periods and sites. The six fish species studied are considered as specialist feeders due the low values of the niche breadth index. There was little similarity among the diets. PMID:20411730

  16. Importance of interactions between food quality, quantity, and gut transit time on consumer feeding, growth, and trophic dynamics.

    PubMed

    Mitra, Aditee; Flynn, Kevin J

    2007-05-01

    Ingestion kinetics of animals are controlled by both external food availability and feedback from the quantity of material already within the gut. The latter varies with gut transit time (GTT) and digestion of the food. Ingestion, assimilation efficiency, and thus, growth dynamics are not related in a simple fashion. For the first time, the important linkage between these processes and GTT is demonstrated; this is achieved using a biomass-based, mechanistic multinutrient model fitted to experimental data for zooplankton growth dynamics when presented with food items of varying quality (stoichiometric composition) or quantity. The results show that trophic transfer dynamics will vary greatly between the extremes of feeding on low-quantity/high-quality versus high-quantity/low-quality food; these conditions are likely to occur in nature. Descriptions of consumer behavior that assume a constant relationship between the kinetics of grazing and growth irrespective of food quality and/or quantity, with little or no recognition of the combined importance of these factors on consumer behavior, may seriously misrepresent consumer activity in dynamic situations. PMID:17427134

  17. Trophic interactions of the endangered Southern river otter ( Lontra provocax) in a Chilean Ramsar wetland inferred from prey sampling, fecal analysis, and stable isotopes

    NASA Astrophysics Data System (ADS)

    Franco, Marcela; Guevara, Giovany; Correa, Loreto; Soto-Gamboa, Mauricio

    2013-04-01

    Non-invasive methodological approaches are highly recommended and commonly used to study the feeding ecology of elusive and threatened mammals. In this study, we use multiple lines of evidence to assess the feeding strategies of the endangered Southern river otter, by determining seasonal prey availability (electrofishing), analysis of undigested prey remains (spraints), and the use of stable isotopes (δ15N and δ13C) in otter spraints ( n = 262) and prey in a wetland ecosystem of southern Chile (39°49'S, 73°15'W). Fecal and isotopic analyses suggest that the otter diet is restricted to a few prey items, particularly the less-mobile, bottom-living, and larger prey such as crayfish ( Samastacus spinifrons, 86.11 %) and crabs ( Aegla spp., 32.45 %), supplemented opportunistically by cyprinids ( Cyprinus carpio, 9.55 %) and catfish ( Diplomystes camposensis, 5.66 %). The results suggest that the river otter is highly specialized in bottom foraging. Isotopic signatures of food sources and feces revealed a mid-upper trophic position for the Southern river otter, with either higher or lower δ15N values than their potential prey items. δ13C values for river otters were less enriched than their potential food resources. We suggest that due to their narrow trophic niche and possible dependence on only a few food items, this species may be highly vulnerable to the reduction in its prey populations. Finally, maintaining the ecological interactions between Southern river otters and their prey is considered a central priority for the survival of this endangered carnivore mammal.

  18. Freely-migrating defects: Their production and interaction with cascade remnants

    SciTech Connect

    Rehn, L.E.; Wiedersich, H.

    1991-05-01

    Many microstructural changes that occur during irradiation are driven primarily by freely-migrating defects, i.e. those defects which escape from nascent cascades to migrate over distances that are large relative to typical cascade dimensions. Several measurements during irradiation at elevated temperatures have shown that the survival rate of freely-migrating defects decreases much more strongly with increasing primary recoil energy than does the survival rate for defects generated at liquid helium temperatures. For typical fission or fusion recoil spectra, and for heavy-ion bombardment, the fraction of defects that migrate long-distances is apparently only {approximately}1% of the calculated dpa. This small surviving fraction of freely-migrating defects results at least partially from additional intracascade recombination at elevated temperatures. However, cascade remnants, e.g., vacancy and interstitial clusters, also contribute by enhancing intercascade defect annihilation. A recently developed rate-theory approach is used to discuss the relative importance of intra- and intercascade recombination to the survival rate of freely-migrating defects. Within the validity of certain simplifying assumptions, the additional sink density provided by defect clusters produced directly within individual cascades can explain the difference between a defect survival rate of about 30% for low dose, low temperature irradiations with heavy ions, and a survival rate of only {approximately}1% for freely-migrating defects at elevated temperatures. The status of our current understanding of freely-migrating defects, including remaining unanswered questions, is also discussed. 33 refs., 5 figs.

  19. Table scraps: inter-trophic food provisioning by pumas

    PubMed Central

    Elbroch, L. Mark; Wittmer, Heiko U.

    2012-01-01

    Large carnivores perform keystone ecological functions through direct predation, or indirectly, through food subsidies to scavengers or trophic cascades driven by their influence on the distributions of their prey. Pumas (Puma concolor) are an elusive, cryptic species difficult to study and little is known about their inter-trophic-level interactions in natural communities. Using new GPS technology, we discovered that pumas in Patagonia provided 232 ± 31 kg of edible meat/month/100 km2 to near-threatened Andean condors (Vultur gryphus) and other members of a diverse scavenger community. This is up to 3.1 times the contributions by wolves (Canis lupus) to communities in Yellowstone National Park, USA, and highlights the keystone role large, solitary felids play in natural systems. These findings are more pertinent than ever, for managers increasingly advocate controlling pumas and other large felids to bolster prey populations and mitigate concerns over human and livestock safety, without a full understanding of the potential ecological consequences of their actions. PMID:22696284

  20. Table scraps: inter-trophic food provisioning by pumas.

    PubMed

    Elbroch, L Mark; Wittmer, Heiko U

    2012-10-23

    Large carnivores perform keystone ecological functions through direct predation, or indirectly, through food subsidies to scavengers or trophic cascades driven by their influence on the distributions of their prey. Pumas (Puma concolor) are an elusive, cryptic species difficult to study and little is known about their inter-trophic-level interactions in natural communities. Using new GPS technology, we discovered that pumas in Patagonia provided 232 ± 31 kg of edible meat/month/100 km(2) to near-threatened Andean condors (Vultur gryphus) and other members of a diverse scavenger community. This is up to 3.1 times the contributions by wolves (Canis lupus) to communities in Yellowstone National Park, USA, and highlights the keystone role large, solitary felids play in natural systems. These findings are more pertinent than ever, for managers increasingly advocate controlling pumas and other large felids to bolster prey populations and mitigate concerns over human and livestock safety, without a full understanding of the potential ecological consequences of their actions. PMID:22696284

  1. Ecotoxicity and genotoxicity of cadmium in different marine trophic levels.

    PubMed

    Pavlaki, Maria D; Araújo, Mário J; Cardoso, Diogo N; Silva, Ana Rita R; Cruz, Andreia; Mendo, Sónia; Soares, Amadeu M V M; Calado, Ricardo; Loureiro, Susana

    2016-08-01

    Cadmium ecotoxicity and genotoxicity was assessed in three representative species of different trophic levels of marine ecosystems - the calanoid copepod Acartia tonsa, the decapod shrimp, Palaemon varians and the pleuronectiform fish Solea senegalensis. Ecotoxicity endpoints assessed in this study were adult survival, hatching success and larval development ratio (LDR) for A. tonsa, survival of the first larval stage (zoea I) and post-larvae of P. varians, egg and larvae survival, as well as the presence of malformations in the larval stage of S. senegalensis. In vivo genotoxicity was assessed on adult A. tonsa, the larval and postlarval stage of P. varians and newly hatched larvae of S. senegalensis using the comet assay. Results showed that the highest sensitivity to cadmium is displayed by A. tonsa, with the most sensitive endpoint being the LDR of nauplii to copepodites. Sole eggs displayed the highest tolerance to cadmium compared to the other endpoints evaluated for all tested species. Recorded cadmium toxicity was (by increasing order): S. senegalensis eggs < P. varians post-larvae < P. varians zoea I < S. senegalensis larvae < A. tonsa eggs < A. tonsa LDR. DNA damage to all species exposed to cadmium increased with increasing concentrations. Overall, understanding cadmium chemical speciation is paramount to reliably evaluate the effects of this metal in marine ecosystems. Cadmium is genotoxic to all three species tested and therefore may differentially impact individuals and populations of marine taxa. As A. tonsa was the most sensitive species and occupies a lower trophic level, it is likely that cadmium contamination may trigger bottom-up cascading effects in marine trophic interactions. PMID:27203468

  2. Short-term disturbance of a grazer has long-term effects on bacterial communities--relevance of trophic interactions for recovery from pesticide effects.

    PubMed

    Foit, Kaarina; Chatzinotas, Antonis; Liess, Matthias

    2010-08-15

    Little is known about the transfer of pesticide effects from higher trophic levels to bacterial communities by grazing. We investigated the effects of pulse exposure to the pyrethroid Fenvalerate on a grazer-prey system that comprised populations of Daphnia magna and bacterial communities. We observed the abundance and population size structure of D. magna by image analysis. Aquatic bacteria were monitored with regard to abundance (by cell staining) and community structure (by a 16S ribosomal RNA fingerprinting method). Shortly after exposure (2 days), the abundance of D. magna decreased. In contrast, the abundance of bacteria increased; in particular fast-growing bacteria proliferated, which changed the bacterial community structure. Long after pulse exposure (26 days), the size structure of D. magna was still affected and dominated by a cohort of small individuals. This cohort of small D. magna grazed actively on bacteria, which resulted in low bacterial abundance and low percentage of fast-growing bacteria. We identified grazing pressure as an important mediator for translating long-term pesticide effects from a grazer population on its prey. Hence, bacterial communities are potentially affected throughout the period that their grazers show pesticide effects concerning abundance or population size structure. Owing to interspecific interactions, the recovery of one species can only be assessed by considering its community context. PMID:20554058

  3. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes.

    PubMed

    Clerissi, Camille; Desdevises, Yves; Romac, Sarah; Audic, Stéphane; de Vargas, Colomban; Acinas, Silvia G; Casotti, Raffaella; Poulain, Julie; Wincker, Patrick; Hingamp, Pascal; Ogata, Hiroyuki; Grimsley, Nigel

    2015-12-01

    High-throughput sequencing of Prasinovirus DNA polymerase and host green algal (Mamiellophyceae) ribosomal RNA genes was used to analyse the diversity and distribution of these taxa over a ∼10 000 km latitudinal section of the Indian Ocean. New viral and host groups were identified among the different trophic conditions observed, and highlighted that although unknown prasinoviruses are diverse, the cosmopolitan algal genera Bathycoccus, Micromonas and Ostreococcus represent a large proportion of the host diversity. While Prasinovirus communities were correlated to both the geography and the environment, host communities were not, perhaps because the genetic marker used lacked sufficient resolution. Nevertheless, analysis of single environmental variables showed that eutrophic conditions strongly influence the distributions of both hosts and viruses. Moreover, these communities were not correlated, in their composition or specific richness. These observations could result from antagonistic dynamics, such as that illustrated in a prey-predator model, and/or because hosts might be under a complex set of selective pressures. Both of these reasons must be considered to interpret environmental surveys of viruses and hosts, because covariation does not always imply interaction. PMID:26472079

  4. Mutualistic and antagonistic trophic interactions in canola: the role of aphids in shaping pest and predator populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids have important effects on the abundance and occurrence of tending ants, predators, and pests in agronomic systems, and DNA-based gut content analysis can aid in establishing predator-prey interactions. The purpose of this study was to determine how the presence of aphids, ants, and pest indiv...

  5. Cascading ecological effects of eliminating fishery discards.

    PubMed

    Heath, Michael R; Cook, Robin M; Cameron, Angus I; Morris, David J; Speirs, Douglas C

    2014-01-01

    Discarding by fisheries is perceived as contrary to responsible harvesting. Legislation seeking to end the practice is being introduced in many jurisdictions. However, discarded fish are food for a range of scavenging species; so, ending discarding may have ecological consequences. Here we investigate the sensitivity of ecological effects to discarding policies using an ecosystem model of the North Sea--a region where 30-40% of trawled fish catch is currently discarded. We show that landing the entire catch while fishing as usual has conservation penalties for seabirds, marine mammals and seabed fauna, and no benefit to fish stocks. However, combining landing obligations with changes in fishing practices to limit the capture of unwanted fish results in trophic cascades that can benefit birds, mammals and most fish stocks. Our results highlight the importance of considering the broader ecosystem consequences of fishery management policy, since species interactions may dissipate or negate intended benefits. PMID:24820200

  6. Cascading ecological effects of eliminating fishery discards

    PubMed Central

    Heath, Michael R.; Cook, Robin M.; Cameron, Angus I.; Morris, David J.; Speirs, Douglas C.

    2014-01-01

    Discarding by fisheries is perceived as contrary to responsible harvesting. Legislation seeking to end the practice is being introduced in many jurisdictions. However, discarded fish are food for a range of scavenging species; so, ending discarding may have ecological consequences. Here we investigate the sensitivity of ecological effects to discarding policies using an ecosystem model of the North Sea—a region where 30–40% of trawled fish catch is currently discarded. We show that landing the entire catch while fishing as usual has conservation penalties for seabirds, marine mammals and seabed fauna, and no benefit to fish stocks. However, combining landing obligations with changes in fishing practices to limit the capture of unwanted fish results in trophic cascades that can benefit birds, mammals and most fish stocks. Our results highlight the importance of considering the broader ecosystem consequences of fishery management policy, since species interactions may dissipate or negate intended benefits. PMID:24820200

  7. Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact.

    PubMed

    Audzijonyte, Asta; Kuparinen, Anna; Gorton, Rebecca; Fulton, Elizabeth A

    2013-04-23

    Humans are changing marine ecosystems worldwide, both directly through fishing and indirectly through climate change. One of the little explored outcomes of human-induced change involves the decreasing body sizes of fishes. We use a marine ecosystem model to explore how a slow (less than 0.1% per year) decrease in the length of five harvested species could affect species interactions, biomasses and yields. We find that even small decreases in fish sizes are amplified by positive feedback loops in the ecosystem and can lead to major changes in natural mortality. For some species, a total of 4 per cent decrease in length-at-age over 50 years resulted in 50 per cent increase in predation mortality. However, the magnitude and direction in predation mortality changes differed among species and one shrinking species even experienced reduced predation pressure. Nevertheless, 50 years of gradual decrease in body size resulted in 1-35% decrease in biomasses and catches of all shrinking species. Therefore, fisheries management practices that ignore contemporary life-history changes are likely to overestimate long-term yields and can lead to overfishing. PMID:23365151

  8. Radioactive tracers as a tool for the study of in situ meiofaunal-microbial trophic interactions in marine sediments

    SciTech Connect

    Carman, K.R.

    1989-01-01

    Three methods of delivering labeled substrates to natural cores of sediments were compared. Slurried sediments disrupted the sedimentary structure and significantly altered uptake of labeled substrates by copepod species. Thus, disruption of sedimentary structure can significantly alter microbial-meiofaunal interactions and influence the results of grazing studies. The ({sup 3}H)-thymidine technique for measuring bacterial production was evaluated. The metabolic fate of labeled thymidine in a coastal marine sediment was not consistent with assumptions necessary for measuring bacterial production or its consumption by meiofauna. Microautoradiography was used to demonstrate the sedimentary microalgae and heterotrophic bacteria can be selectively labeled with ({sup 14}C)bicarbonate and labeled organic substrates, respectively. A study was performed to determine if radioactivity measured in copepods from grazing experiments was the result of ingestion of labeled microorganisms or the result of uptake by non-feeding processes. Uptake of label by copepods from ({sup 14}C)-bicarbonate was due almost exclusively to grazing on microalgae. Uptake of label by copepods from ({sup 14}C)-acetate, however, resulted from activity by epicuticular bacteria and was not due to ingestion of labeled bacteria.

  9. Nature and Timing of Interaction Between the Cascade Arc and Cascadia Backarc Structural Regimes

    NASA Astrophysics Data System (ADS)

    Meigs, A.

    2012-12-01

    Upper plate deformation in Cascadia is among the most unusual of any convergent plate boundary. In Cascadia, migration of a forearc sliver plus vertical axis rotation occur in the upper plate and the rotational deformation field affects the forearc, arc, and backarc. Rotation rate decreases eastward, which requires differential motion between the arc and backarc and between backarc structural provinces. Backarc structure changes from north-south-directed crustal shortening in the north to east-west crustal extension in the south. Backarc shortening structures in the north intersect and may cross the arc at a high angle. In contrast, the Cascade graben marks the western-most extensional structure in the south and thus represents the edge of the Basin and Range province. A Miocene through Quaternary depocenter filled with volcanic and volcaniclastic rocks, the Deschutes Basin (DB) formed between the 3 principal arc and backarc structural provinces of Cascadia (the Cascade arc graben (CG), faults of the northwestern Basin and Range extensional province (NWBR), and the Yakima fold and thrust belt (YFB)). Geological data suggest that Mutton Mountain, the YFB fold bounding the northern margin of the DB, was active after 15 Ma. Mutton Mountain is a structural high cored by an Oligocene rhyolite complex, unconformably overlain by Columbia River Basalt (CRB) and younger volcaniclastic sediments and basaltic lava flows on the north flank. Progressive folding of these strata to the north in the Tygh Valley syncline continued until after 3 Ma. Mutton Mountain and the Tygh Valley syncline are apparently truncated by the CG in the west. Along the western basin boundary of the DB, published stratigraphic relationships demonstrate that extension across the CG initiated after ~7.4 Ma. Extension of the NWBR occurred in two stages. From the latitude of the Oregon-Idaho border eastward, extension began after 15 Ma. Extension shifted westward across the corner of the NWBR after 10 Ma

  10. Multi-tissue stable isotope analysis and acoustic telemetry reveal seasonal variability in the trophic interactions of juvenile bull sharks in a coastal estuary.

    PubMed

    Matich, Philip; Heithaus, Michael R

    2014-01-01

    Understanding how natural and anthropogenic drivers affect extant food webs is critical to predicting the impacts of climate change and habitat alterations on ecosystem dynamics. In the Florida Everglades, seasonal reductions in freshwater flow and precipitation lead to annual migrations of aquatic taxa from marsh habitats to deep-water refugia in estuaries. The timing and intensity of freshwater reductions, however, will be modified by ongoing ecosystem restoration and predicted climate change. Understanding the importance of seasonally pulsed resources to predators is critical to predicting the impacts of management and climate change on their populations. As with many large predators, however, it is difficult to determine to what extent predators like bull sharks (Carcharhinus leucas) in the coastal Everglades make use of prey pulses currently. We used passive acoustic telemetry to determine whether shark movements responded to the pulse of marsh prey. To investigate the possibility that sharks fed on marsh prey, we modelled the predicted dynamics of stable isotope values in bull shark blood and plasma under different assumptions of temporal variability in shark diets and physiological dynamics of tissue turnover and isotopic discrimination. Bull sharks increased their use of upstream channels during the late dry season, and although our previous work shows long-term specialization in the diets of sharks, stable isotope values suggested that some individuals adjusted their diets to take advantage of prey entering the system from the marsh, and as such this may be an important resource for the nursery. Restoration efforts are predicted to increase hydroperiods and marsh water levels, likely shifting the timing, duration and intensity of prey pulses, which could have negative consequences for the bull shark population and/or induce shifts in behaviour. Understanding the factors influencing the propensity to specialize or adopt more flexible trophic interactions

  11. Gut Contents as Direct Indicators for Trophic Relationships in the Cambrian Marine Ecosystem

    PubMed Central

    Vannier, Jean

    2012-01-01

    Present-day ecosystems host a huge variety of organisms that interact and transfer mass and energy via a cascade of trophic levels. When and how this complex machinery was established remains largely unknown. Although exceptionally preserved biotas clearly show that Early Cambrian animals had already acquired functionalities that enabled them to exploit a wide range of food resources, there is scant direct evidence concerning their diet and exact trophic relationships. Here I describe the gut contents of Ottoia prolifica, an abundant priapulid worm from the middle Cambrian (Stage 5) Burgess Shale biota. I identify the undigested exoskeletal remains of a wide range of small invertebrates that lived at or near the water sediment interface such as hyolithids, brachiopods, different types of arthropods, polychaetes and wiwaxiids. This set of direct fossil evidence allows the first detailed reconstruction of the diet of a 505-million-year-old animal. Ottoia was a dietary generalist and had no strict feeding regime. It fed on both living individuals and decaying organic matter present in its habitat. The feeding behavior of Ottoia was remarkably simple, reduced to the transit of food through an eversible pharynx and a tubular gut with limited physical breakdown and no storage. The recognition of generalist feeding strategies, exemplified by Ottoia, reveals key-aspects of modern-style trophic complexity in the immediate aftermath of the Cambrian explosion. It also shows that the middle Cambrian ecosystem was already too complex to be understood in terms of simple linear dynamics and unique pathways. PMID:23300612

  12. Gut contents as direct indicators for trophic relationships in the Cambrian marine ecosystem.

    PubMed

    Vannier, Jean

    2012-01-01

    Present-day ecosystems host a huge variety of organisms that interact and transfer mass and energy via a cascade of trophic levels. When and how this complex machinery was established remains largely unknown. Although exceptionally preserved biotas clearly show that Early Cambrian animals had already acquired functionalities that enabled them to exploit a wide range of food resources, there is scant direct evidence concerning their diet and exact trophic relationships. Here I describe the gut contents of Ottoia prolifica, an abundant priapulid worm from the middle Cambrian (Stage 5) Burgess Shale biota. I identify the undigested exoskeletal remains of a wide range of small invertebrates that lived at or near the water sediment interface such as hyolithids, brachiopods, different types of arthropods, polychaetes and wiwaxiids. This set of direct fossil evidence allows the first detailed reconstruction of the diet of a 505-million-year-old animal. Ottoia was a dietary generalist and had no strict feeding regime. It fed on both living individuals and decaying organic matter present in its habitat. The feeding behavior of Ottoia was remarkably simple, reduced to the transit of food through an eversible pharynx and a tubular gut with limited physical breakdown and no storage. The recognition of generalist feeding strategies, exemplified by Ottoia, reveals key-aspects of modern-style trophic complexity in the immediate aftermath of the Cambrian explosion. It also shows that the middle Cambrian ecosystem was already too complex to be understood in terms of simple linear dynamics and unique pathways. PMID:23300612

  13. Toll-like receptor cascade and gene polymorphism in host–pathogen interaction in Lyme disease

    PubMed Central

    Rahman, Shusmita; Shering, Maria; Ogden, Nicholas H; Lindsay, Robbin; Badawi, Alaa

    2016-01-01

    Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages. PMID:27330321

  14. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease.

    PubMed

    Rahman, Shusmita; Shering, Maria; Ogden, Nicholas H; Lindsay, Robbin; Badawi, Alaa

    2016-01-01

    Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages. PMID:27330321

  15. Prey size structure diminishes cascading effects by increasing interference competition and predation among prey.

    PubMed

    Geraldii, Nathan R

    2015-09-01

    The size of an organism can change by orders of magnitude during its lifespan. Size can determine whether an individual consumes, is consumed, competes, or avoids individuals of the same or different species. Two complementary mesocosm experiments with a tri-trophic food chain (top predator, toadfish, Opsanus tau; intermediate prey, mud crab, family Xanthidae; basal resource, oyster, Crassostrea virginica) were conducted to measure how the size of both the top predator and the intermediate prey affects consumptive and behavioral interactions in trophic cascades. In the first experiment, I systematically varied the sizes of predators and prey, respectively. The amount of crab biomass consumed was dependent on crab size and not toadfish size, but the effect of crab size did not cascade to alter oyster survival. Increased oyster survival from crab interference competition in the absence of toadfish was similar to oyster survival,from predator-avoidance behavior in the presence of a toadfish. When all crab size classes were present, crab mortality was similar in the presence and absence of toadfish, highlighting the importance of intraguild predation in food-web dynamics. The second experiment separated crab mortality by other crabs from crab mortality by predatory toadfish and found that crab mortality generally switched from intra- to interguild predation when a toadfish was present. In addition, field surveys indicated mud crab abundance and size was primarily influenced by mud crab recruitment, but not by toadfish abundance, which supports our experimental results that interactions among mud crabs have similar effects to predator-prey interactions. These findings indicate that changes in size or abundance of intermediate prey may be comparable to changes in top predator abundance in terms of trophic interactions and their transmission to lower levels, which suggests that certain types of relatively simple food chains can be resilient to the loss of higher trophic

  16. Cascading life-history interactions: alternative density-dependent pathways drive recruitment dynamics in a freshwater fish.

    PubMed

    Vandenbos, Rena E; Tonn, William M; Boss, Shelly M

    2006-07-01

    Although density-dependent mechanisms in early life-history are important regulators of recruitment in many taxa, consequences of such mechanisms on other life-history stages are poorly understood. To examine interacting and cascading effects of mechanisms acting on different life-history stages, we stocked experimental ponds with fathead minnow (Pimephales promelas) at two different densities. We quantified growth and survival of the stocked fish, the eggs they produced, and the resulting offspring during their first season of life. Per-capita production and survival of eggs were inversely related to density of stocked fish; significant egg cannibalism by stocked minnows resulted in initial young-of-the-year (YOY) densities that were inversely related to adult densities. Subsequent growth and survival of YOY were then inversely related to these initial YOY densities, and survival of YOY was selective for larger fish. Because of these compensatory processes in the egg and YOY stages, treatments did not differ in YOY abundance and mean size at the end of the growing season. Because of differences in the intensity of size-selective mortality, however, variation in end-of season sizes of YOY was strongly (and inversely) related to densities of stocked fish. When mortality was severe in the egg stage (high densities of stocked fish), final YOY size distributions were more variable than when the dominant mortality was size-selective in the YOY stage (low stocked fish densities). These differences in size variation could have subsequent recruitment consequences, as overwinter survival is typically selective for YOY fish larger than a critical threshold size. Density-dependent effects on a given life stage are not independent, but will be influenced by earlier stages; alternative recruitment pathways can result when processes at earlier stages differ in magnitude or selectivity. Appreciation of these cascading effects should enhance our overall understanding of the

  17. Eco-evolutionary trophic dynamics: loss of top predators drives trophic evolution and ecology of prey.

    PubMed

    Palkovacs, Eric P; Wasserman, Ben A; Kinnison, Michael T

    2011-01-01

    Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. PMID:21526156

  18. Cascading processes and interactions in torrent catchments and their influence on the damage pattern

    NASA Astrophysics Data System (ADS)

    Keiler, Margreth; Gebbers, David

    2014-05-01

    Research on single geomorphological processes during damaging events has a long history; however, comprehensive documentations and analyses of the events have been conducted not until the late 1980s. Thus, for highly damaging events insights about triggering, the evolution and the impacts of processes during an event and the resulting damage were produced. Though, in the majority of cases the processes were studied in a well-defined procedure of one disciplinary focus. These focused studies neglect mutable influences which may alter the sequence of the process or the event. During damaging events multiple geomorphological processes are active which leads to the assumption that they have a certain impact on each other and the course of damaging effect. Consequently, for a comprehensive hazard and risk analysis all processes of a catchment have to be analysed and evaluated quantitatively and qualitatively (MARZOCCHI, 2007). Although the demand for a sophisticated risk management is increasing, the research on interactions as well as on physical vulnerability to multiple hazards, including the different processes impact effects, is still very limited (KAPPES et al., 2010, 2011). The challenges in this field are the quantity of data needed, and furthermore to conduct this kind of analysis is very complex and complicated (KAPPES et al. 2012). Yet, knowledge about possible interactions and resulting impact effects could significantly contribute to the reduction of risk in a region. The objective of this study is to analyse, i) how geomorphological processes interact with each other and with other factors of the surrounding during a damaging event, ii) what influences those interactions have on the resulting damage of the event and iii) whether or not different events are comparable in terms of those interactions and their impacts. To meet these objectives, 15 damaging torrent events, which occurred between 2000 and 2011 in the Bernese Oberland and the Pennine Alps

  19. Effective screening strategy using ensembled pharmacophore models combined with cascade docking: application to p53-MDM2 interaction inhibitors.

    PubMed

    Xue, Xin; Wei, Jin-Lian; Xu, Li-Li; Xi, Mei-Yang; Xu, Xiao-Li; Liu, Fang; Guo, Xiao-Ke; Wang, Lei; Zhang, Xiao-Jin; Zhang, Ming-Ye; Lu, Meng-Chen; Sun, Hao-Peng; You, Qi-Dong

    2013-10-28

    Protein-protein interactions (PPIs) play a crucial role in cellular function and form the backbone of almost all biochemical processes. In recent years, protein-protein interaction inhibitors (PPIIs) have represented a treasure trove of potential new drug targets. Unfortunately, there are few successful drugs of PPIIs on the market. Structure-based pharmacophore (SBP) combined with docking has been demonstrated as a useful Virtual Screening (VS) strategy in drug development projects. However, the combination of target complexity and poor binding affinity prediction has thwarted the application of this strategy in the discovery of PPIIs. Here we report an effective VS strategy on p53-MDM2 PPI. First, we built a SBP model based on p53-MDM2 complex cocrystal structures. The model was then simplified by using a Receptor-Ligand complex-based pharmacophore model considering the critical binding features between MDM2 and its small molecular inhibitors. Cascade docking was subsequently applied to improve the hit rate. Based on this strategy, we performed VS on NCI and SPECS databases and successfully discovered 6 novel compounds from 15 hits with the best, compound 1 (NSC 5359), K(i) = 180 ± 50 nM. These compounds can serve as lead compounds for further optimization. PMID:24050442

  20. Trophic shift, not collapse

    USGS Publications Warehouse

    Madenjian, Charles P.; Rutherford, Edward S.; Stow, Craig A.; Roseman, Edward F.; He, Ji X.

    2013-01-01

    scientists who are closely monitoring Lake Huron’s food web, we believe that the ongoing changes are more accurately characterized as a trophic shift in which benthic pathways have become more prominent. While decreases in abundance have occurred for some species, others are experiencing improved reproduction resulting in the restoration of several important native species.

  1. Lake trophic applications: Wisconsin

    NASA Technical Reports Server (NTRS)

    Scarpace, F.

    1981-01-01

    Efforts to classify the water quality characteristics of lakes using LANDSAT imagery are reported. Image processing and registration techniques are described. A lake classification scheme which involves the assignment of a trophic class number was used in the data analysis. The resulting values were compared to the corresponding rank assignment derived from field measurements.

  2. Cascading effects of fire retardant on plant-microbe interactions, community composition, and invasion.

    PubMed

    Marshall, Abigail; Waller, Lauren; Lekberg, Ylva

    2016-06-01

    Climate change, historical fire suppression, and a rise in human movements in urban-forest boundaries have resulted in an increased use of long-term fire retardant (LTFR). While LTFR is an effective fire-fighting tool, it contains high concentrations of nitrogen and phosphorus, and little is known about how this nutrient pulse affects terrestrial ecosystems. We used field surveys and greenhouse experiments to quantify effects of LTFR on plant productivity, community composition, and plant interactions with the ubiquitous root symbiont arbuscular mycorrhizal fungi (AMF). In the field, LTFR applications were associated with persistent shifts in plant communities toward exotic annuals with little or no dependency of AMF. Plants exposed to LTFR were less colonized by AMF, both in field surveys and in the greenhouse, and this was most likely due to the substantial and persistent increase in soil available phosphorus. All plants grew bigger with LTFR in the greenhouse, but the invasive annual cheatgrass (Bromus tectorum) benefitted most. While LTFR can control fires, it may cause long-term changes in soil nutrient availabilities, disrupt plant interactions with beneficial soil microbes, and exasperate invasion by some exotic plants. PMID:27509743

  3. Unsteady Euler cascade analysis

    NASA Technical Reports Server (NTRS)

    Liu, Jong-Shang; Sockol, Peter M.

    1989-01-01

    The results of an investigation of the rotor-stator interaction phenomena in turbomachines are presented. Numerical study was carried out by solving the unsteady Euler equations in the blade-to-blade direction for a variety of cascade geometries. The problem of uneven rotor and stator blades is addressed by adopting the tilted time domain technique. Computed solutions are presented and discussed for a NACA 0012 type cascade and the first stage fuel turbopump of the Space Shuttle Main Engine (SSME).

  4. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain.

    PubMed

    Sanders, Dirk; Moser, Andrea; Newton, Jason; van Veen, F J Frank

    2016-03-16

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host-parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary-secondary-tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ(15)N increased with trophic level, with trophic discrimination factors (Δ(15)N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host-parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems. PMID:26962141

  5. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host–parasitoid food chain

    PubMed Central

    Moser, Andrea; van Veen, F. J. Frank

    2016-01-01

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host–parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary–secondary–tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ15N increased with trophic level, with trophic discrimination factors (Δ15N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host–parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems. PMID:26962141

  6. Species Introductions and Their Cascading Impacts on Biotic Interactions in desert riparian ecosystems.

    PubMed

    Hultine, Kevin R; Bean, Dan W; Dudley, Tom L; Gehring, Catherine A

    2015-10-01

    Desert riparian ecosystems of North America are hotspots of biodiversity that support many sensitive species, and are in a region experiencing some of the highest rates of climatic alteration in North America. Fremont cottonwood, Populus fremontii, is a foundation tree species of this critical habitat, but it is threatened by global warming and regional drying, and by a non-native tree/shrub, Tamarix spp., all of which can disrupt the mutualism between P. fremontii and its beneficial mycorrhizal fungal communities. Specialist herbivorous leaf beetles (Diorhabda spp.) introduced for biocontrol of Tamarix are altering the relationship between this shrub and its environment. Repeated episodic feeding on Tamarix foliage by Diorhabda results in varying rates of dieback and mortality, depending on genetic variation in allocation of resources, growing conditions, and phenological synchrony between herbivore and host plant. In this article, we review the complex interaction between climatic change and species introductions and their combined impacts on P. fremontii and their associated communities. We anticipate that (1) certain genotypes of P. fremontii will respond more favorably to the presence of Tamarix and to climatic change due to varying selection pressures to cope with competition and stress; (2) the ongoing evolution of Diorhabda's life cycle timing will continue to facilitate its expansion in North America, and will over time enhance herbivore impact to Tamarix; (3) defoliation by Diorhabda will reduce the negative impact of Tamarix on P. fremontii associations with mycorrhizal fungi; and (4) spatial variability in climate and climatic change will modify the capacity for Tamarix to survive episodic defoliation by Diorhabda, thereby altering the relationship between Tamarix and P. fremontii, and its associated mycorrhizal fungal communities. Given the complex biotic/abiotic interactions outlined in this review, conservation biologists and riparian ecosystem

  7. Concentrations and trophic interactions of novel brominated flame retardants, HBCD, and PBDEs in zooplankton and fish from Lake Maggiore (Northern Italy).

    PubMed

    Poma, Giulia; Volta, Pietro; Roscioli, Claudio; Bettinetti, Roberta; Guzzella, Licia

    2014-05-15

    Following the release of the international regulations on PBDEs and HBCD, the aim of this study is to evaluate the concentrations of novel brominated flame retardants (NBFRs), including 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), hexabromobenzene (HBB), and pentabromoethylbenzene (PBEB), in an Italian subalpine lake located in a populated and industrial area. The study investigated specifically the potential BFR biomagnification in a particular lake's pelagic food web, whose structure and dynamics were evaluated using the Stable Isotope Analysis. The potential BFR biomagnification was investigated by using the trophic-level adjusted BMFs and Trophic Magnification Factors (TMFs), confirming that HBCD and some PBDE congeners are able to biomagnify within food webs. Comparing the calculated values of BMFTL and TMF, a significant positive correlation was observed between the two factors, suggesting that the use of BMFTL to investigate the biomagnification potential of organic chemical compounds might be an appropriate approach when a simple food web is considered. PMID:24614155

  8. Trophic flexibility and the persistence of understory birds in intensively logged rainforest.

    PubMed

    Edwards, David P; Woodcock, Paul; Newton, Rob J; Edwards, Felicity A; Andrews, David J R; Docherty, Teegan D S; Mitchell, Simon L; Ota, Takahiro; Benedick, Suzan; Bottrell, Simon H; Hamer, Keith C

    2013-10-01

    Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable-isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic-niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic-niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic-niche widths in degraded forest. Species with narrow trophic-niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species' trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. PMID:23647024

  9. Trigeminal trophic syndrome.

    PubMed

    Kumar, Parimalam; Thomas, Jayakar

    2014-01-01

    Trigeminal trophic syndrome (TTS) is a rare cause of facial ulceration, consequent to damage to the trigeminal nerve or its central sensory connections. We reporta case of TTS in a 48-year-old woman with Bell's palsy following herpes zoster infection. The patient was treated and counseled. There hasnot been any recurrence for 1 year and the patient is being followed-up. The diagnosis of TTS should be suspected when there is unilateral facial ulceration, especially involving the ala nasi associated with sensory impairment. PMID:24470665

  10. Multiplicities of secondaries in interactions of 1.8 GeV/nucleon Fe-56 nuclei with photoemulsion and the cascade evaporation model

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Ostroumov, V. I.; Crawford, H. J.; Benton, E. V.

    1995-01-01

    A nuclear photographic emulsion method was used to study the charge-state, ionization, and angular characteristics of secondaries produced in inelastic interactions of Fe-56 nuclei at 1.8 GeV/nucleon with H, CNO, and AgBr nuclei. The data obtained are compared with the results of calculations made in terms of the Dubna version of the cascade evaporation model (DCM). The DCM has been shown to satisfactorily describe most of the interaction characteristics for two nuclei in the studied reactions. At the same time, quantitative differences are observed in some cases.

  11. Trophic classification of selected Colorado lakes

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.; Boland, D. H. P.

    1979-01-01

    Multispectral scanner data, acquired over several Colorado lakes using LANDSAT-1 and aircraft, were used in conjunction with contact-sensed water quality data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators. Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state.

  12. Interactions between mafic eruptions and glacial ice or snow: implications of the 2010 Eyjafjallajökull, Iceland, eruption for hazard assessments in the central Oregon Cascades

    NASA Astrophysics Data System (ADS)

    McKay, D.; Cashman, K. V.

    2010-12-01

    The 2010 eruption of Eyjafjallajökull, Iceland, demonstrated the importance of addressing hazards specific to mafic eruptions in regions where interactions with glacial ice or snow are likely. One such region is the central Oregon Cascades, where there are hundreds of mafic vents, many of which are Holocene in age. Here we present field observations and quantitative analyses of tephra deposits from recent eruptions at Sand Mountain, Yapoah Cone, and Collier Cone (all <4 ka). These deposits differ from typical Cascade cinder cone deposits in several ways. Most significantly, the Sand Mountain eruption produced a relatively large tephra blanket (~1 km3) that is unusually fine-grained: average clast size is 0.063 - 0.5 mm, in contrast to tephra from typical Cascade cinder cones, which are dominated by small lapilli-sized clasts rather than ash. The eruption of Eyjafjallajökull earlier this year prompted us to investigate the role that ice or snow may have played in the production of unusually fine-grained tephra during the Sand Mountain eruption. The eruption date of Sand Mountain is not well constrained, but it likely occurred during the Neoglacial phase of ice advance, which lasted from ~2 to 8 ka in the central Oregon Cascades (Marcott et al., 2009). During the Neoglacial, winter snowfall was likely ~23% greater and summer temperatures ~1.4°C cooler than present (Marcott, 2009). Although ice did not advance to the elevation of the Sand Mountain vents during this time, the eruption could have occurred through several meters of snow. We have also seen very fine-grained tephra at Yapoah Cone, which is located at a higher elevation and may have interacted with glacial ice. In addition to being characterized by unusually fine grainsize, the Yapoah tephra blanket is deposited directly on top of hyaloclastite in several locations. Tephra from Collier Cone is not characterized by unusually fine grainsize, but several sections of the deposit exhibit features that suggest

  13. Trophic coherence determines food-web stability

    PubMed Central

    Johnson, Samuel; Domínguez-García, Virginia; Donetti, Luca; Muñoz, Miguel A.

    2014-01-01

    Why are large, complex ecosystems stable? Both theory and simulations of current models predict the onset of instability with growing size and complexity, so for decades it has been conjectured that ecosystems must have some unidentified structural property exempting them from this outcome. We show that trophic coherence—a hitherto ignored feature of food webs that current structural models fail to reproduce—is a better statistical predictor of linear stability than size or complexity. Furthermore, we prove that a maximally coherent network with constant interaction strengths will always be linearly stable. We also propose a simple model that, by correctly capturing the trophic coherence of food webs, accurately reproduces their stability and other basic structural features. Most remarkably, our model shows that stability can increase with size and complexity. This suggests a key to May’s paradox, and a range of opportunities and concerns for biodiversity conservation. PMID:25468963

  14. Trophic coherence determines food-web stability.

    PubMed

    Johnson, Samuel; Domínguez-García, Virginia; Donetti, Luca; Muñoz, Miguel A

    2014-12-16

    Why are large, complex ecosystems stable? Both theory and simulations of current models predict the onset of instability with growing size and complexity, so for decades it has been conjectured that ecosystems must have some unidentified structural property exempting them from this outcome. We show that trophic coherence--a hitherto ignored feature of food webs that current structural models fail to reproduce--is a better statistical predictor of linear stability than size or complexity. Furthermore, we prove that a maximally coherent network with constant interaction strengths will always be linearly stable. We also propose a simple model that, by correctly capturing the trophic coherence of food webs, accurately reproduces their stability and other basic structural features. Most remarkably, our model shows that stability can increase with size and complexity. This suggests a key to May's paradox, and a range of opportunities and concerns for biodiversity conservation. PMID:25468963

  15. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree-epiphyte system.

    PubMed

    Angelini, Christine; Silliman, Brian R

    2014-01-01

    Facilitation cascades arise where primary foundation species facilitate secondary (dependent) foundation species, and collectively, they increase habitat complexity and quality to enhance biodiversity. Whether such phenomena occur in nonmarine systems and if secondary foundation species enhance food web structure (e.g., support novel feeding guilds) and ecosystem function (e.g., provide nursery for juveniles) remain unclear. Here we report on field experiments designed to test whether trees improve epiphyte survival and epiphytes secondarily increase the number and diversity of adult and juvenile invertebrates in a potential live oak-Tillandsia usneoides (Spanish moss) facilitation cascade. Our results reveal that trees reduce physical stress to facilitate Tillandsia, which, in turn, reduces desiccation and predation stress to facilitate invertebrates. In experimental removals, invertebrate total density, juvenile density, species richness and H' diversity were 16, 60, 1.7, and 1.5 times higher, and feeding guild richness and H' were 5 and 11 times greater in Tillandsia-colonized relative to Tillandsia-removal limb plots. Tillandsia enhanced communities similarly in a survey across the southeastern United States. These findings reveal that a facilitation cascade organizes this widespread terrestrial assemblage and expand the role of secondary foundation species as drivers of trophic structure and ecosystem function. We conceptualize the relationship between foundation species' structural attributes and associated species abundance and composition in a Foundation Species-Biodiversity (FSB) model. Importantly, the FSB predicts that, where secondary foundation species form expansive and functionally distinct structures that increase habitat availability and complexity within primary foundation species, they generate and maintain hot spots of biodiversity and trophic interactions. PMID:24649658

  16. Tracking Earthquake Cascades

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2011-12-01

    In assessing their risk to society, earthquakes are best characterized as cascades that can propagate from the natural environment into the socio-economic (built) environment. Strong earthquakes rarely occur as isolated events; they usually cluster in foreshock-mainshock-aftershock sequences, seismic swarms, and extended sequences of large earthquakes that propagate along major fault systems. These cascades are regulated by stress-mediated interactions among faults driven by tectonic loading. Within these cascades, each large event can itself cause a chain reaction in which the primary effects of faulting and ground shaking induce secondary effects, including tsunami, landslides, liquefaction, and set off destructive processes within the built environment, such as fires and radiation leakage from nuclear plants. Recent earthquakes have demonstrated how the socio-economic effects of large earthquakes can reverberate for many years. To reduce earthquake risk and improve the resiliency of communities to earthquake damage, society depends on five geotechnologies for tracking earthquake cascades: long-term probabilistic seismic hazard analysis (PSHA), short-term (operational) earthquake forecasting, earthquake early warning, tsunami warning, and the rapid production of post-event information for response and recovery (see figure). In this presentation, I describe how recent advances in earthquake system science are leading to improvements in this geotechnology pipeline. In particular, I will highlight the role of earthquake simulations in predicting strong ground motions and their secondary effects before and during earthquake cascades

  17. Trophic interactions in the benthic boundary layer of the Beaufort Sea shelf, Arctic Ocean: Combining bulk stable isotope and fatty acid signatures

    NASA Astrophysics Data System (ADS)

    Connelly, Tara L.; Deibel, Don; Parrish, Christopher C.

    2014-01-01

    The food web structure and diets of 26 taxa of benthic boundary layer (BBL) zooplankton on the Beaufort Sea shelf were studied using carbon and nitrogen stable isotopes and fatty acids. Mean δ15N values ranged from 7.3‰ for the amphipod Melita formosa to 14.9‰ for an unidentified polychaete, suggesting that taxa sampled came from three trophic levels. For 8 taxa, the lightest carbon signature occurred near the mouth of the Mackenzie River. Stable isotope ratios helped clarify the origin of signature fatty acids. Levels of certain polyunsaturated fatty acids (PUFA) were negatively correlated with δ15N, with the exception of 22:6ω3, which was positively correlated with δ15N, suggesting that this essential PUFA was retained through the food web. Discriminant analysis proved to be a powerful tool, predicting taxa from fatty acid profiles with 99% accuracy, and revealing strong phylogenetic trends in fatty acid profiles. The amphipod Arrhis phyllonyx had higher levels of ω6 PUFA, especially 20:4ω6 with several possible sources, than other peracarid crustaceans. The holothurian had high levels of odd numbered and branched chain fatty acids, indicative of bacterial consumption, while fatty acids of phytoplankton origin were important discriminants for Calanus hyperboreus and the chaetognaths Eukrohnia hamata and Parasagitta elegans. This relationship indicates that the conventional phytoplankton-copepod-chaetognath food web found in the water column also exists in the BBL. This observation, as well as generally low δ15N and high levels of certain PUFA in samples with lower δ15N, strongly suggests that BBL zooplankton on the Beaufort Sea shelf have access to fresh material of phytoplankton origin either by feeding on sedimenting matter or by active migration to surface waters.

  18. Tectonic Geomorphology and Volcano-Tectonic Interaction in the Eastern Boundary of the Southern Cascades (Hat Creek Graben), California, USA

    NASA Astrophysics Data System (ADS)

    Paguican, E. M. R.; Bursik, M. I.

    2015-12-01

    The eastern boundary of the Southern Cascades (Hat Creek Graben), California, USA is an extensively faulted volcanic corridor with spectacular, high, steep scarps in a bedrock of late Tertiary and Quaternary volcanic and sedimentary deposits. The morphology of the graben is a result of the plate motions associated with multiple tectonic provinces, faulting, and recurring volcanic activity from more than 500 vents, over the past 7 my. The graben is at the boundary between two distinct geologic and geomorphic areas -- the Cascade Range on the west and the Modoc Plateau on the east -- between Mt. Shasta and Medicine Lake Highlands volcano, and Lassen Volcanic Center on the north and south, respectively. This study describes the geomorphological and tectonic features, their alignment and distribution, to understand the volcano-tectonic and geomorphology relationships in the Hat Creek Graben. We interpret topographic models generated from satellite images to create a database of volcanic centers and structures, and analyze the spatial distribution of the volcanic centers in the Hat Creek Graben. Poisson Nearest Neighbor analysis reveals a clustered distribution of volcanic centers, implying continuous or recurrent activity of magma sources as it propagates to the surface. Volcanic centers in the Hat Creek Graben have multiple preferred alignments, typical for extensional tectonic environments because of competing regional and local stress field influences and the presence of pre-existing, near-surface fractures. Most small stratovolcanoes ("lava cones") on the west are influenced by normal regional stress, and have crater amphitheater openings perpendicular to the maximum horizontal stress (σHmax), while those on the east, in a transcurrent regional stress regime, are at an acute angle. These results can be used as an indicator of the degree of impingement of the Walker Lane shear zone on the Cascades region.

  19. Collisional Cascades Revisited

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke; Pan, M.

    2013-01-01

    Collisional cascades are believed to be the primary mechanism operating in circumstellar dusty debris disks, and are thought to be important in the Kuiper and Asteroid belt. Collisional cascades transfer mass via destructive collisions from larger bodies to smaller ones. Their widespread occurrence and potential importance in understanding planet formation and planet-disk interactions have motivated detailed studies of collisional cascades. The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. We relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan & Sari (2005) can steepen to values as large as q = 3.26. These differences in the size distribution power law index are very important when estimating the total disk mass, including larger bodies, by extrapolating from the observed dust masses. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies in, for example, extrasolar debris disks may constrain the total mass in large bodies stirring the cascade as well as the colliding bodies

  20. Coupled 2-dimensional cascade theory for noise and unsteady aerodynamics of blade row interaction in turbofans. Volume 1: Theory development and parametric studies

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1994-01-01

    Typical analytical models for interaction between rotor and stator in a turbofan analyze the effect of wakes from the rotor impinging on the stator, producing unsteady loading, and thereby generating noise. Reflection/transmission characteristics of the rotor are sometimes added in a separate calculation. In those models, there is a one-to-one relationship between wake harmonics and noise harmonics; that is, the BPF (blade passing frequency) wake harmonic causes only the BPF noise harmonic, etc. This report presents a more complete model in which flow tangency boundary conditions are satisfied on two cascades in relative motion for several harmonics simultaneously. By an extension of S.N. Smith's code for two dimensional flat plate cascades, the noise generation/frequency scattering/blade row reflection problem is solved in a single matrix inversion. It is found that the BPF harmonic excitation of the stator scatters considerable energy in the higher BPF harmonics due to relative motion between the blade rows. Furthermore, when swirl between the rotor and stator is modeled, a 'mode trapping' effect occurs which explains observations on fans operating at rotational speeds below BFP cuton: the BPF mode amplifies between blade rows by multiple reflections but cannot escape to the inlet and exit ducts. However, energy scattered into higher harmonics does propagate and dominates the spectrum at two and three times BPF. This report presents the complete derivation of the theory, comparison with a previous (more limited) coupled rotor/stator interaction theory due to Kaji and Okazaki, exploration of the mode trapping phenomenon, and parametric studies showing the effects of vane/blade ratio and rotor/stator interaction. For generality, the analysis applies to stages where the rotor is either upstream or downstream of the stator and to counter rotation stages. The theory has been coded in a FORTRAN program called CUP2D, documented in Volume 2 of this report. It is

  1. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions

    SciTech Connect

    Yun, Seungman; Tanguay, Jesse; Cunningham, Ian A.; Kim, Ho Kyung

    2013-04-15

    Purpose: Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. Methods: A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an 'energy-labeled reabsorption' process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. Results: The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. Conclusions: A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter above 20

  2. Interaction of dense shelf water cascading and open-sea convection in the northwestern Mediterranean during winter 2012

    NASA Astrophysics Data System (ADS)

    Durrieu de Madron, X.; Houpert, L.; Puig, P.; Sanchez-Vidal, A.; Testor, P.; Bosse, A.; Estournel, C.; Somot, S.; Bourrin, F.; Bouin, M. N.; Beauverger, M.; Beguery, L.; Calafat, A.; Canals, M.; Cassou, C.; Coppola, L.; Dausse, D.; D'Ortenzio, F.; Font, J.; Heussner, S.; Kunesch, S.; Lefevre, D.; Le Goff, H.; MartíN, J.; Mortier, L.; Palanques, A.; Raimbault, P.

    2013-04-01

    The winter of 2012 experienced peculiar atmospheric conditions that triggered a massive formation of dense water on the continental shelf and in the deep basin of the Gulf of Lions. Multiplatforms observations enabled a synoptic view of dense water formation and spreading at basin scale. Five months after its formation, the dense water of coastal origin created a distinct bottom layer up to a few hundreds of meters thick over the central part of the NW Mediterranean basin, which was overlaid by a layer of newly formed deep water produced by open-sea convection. These new observations highlight the role of intense episodes of both dense shelf water cascading and open-sea convection to the progressive modification of the NW Mediterranean deep waters.

  3. Eastern Scotian Shelf trophic dynamics: A review of the evidence for diverse hypotheses

    NASA Astrophysics Data System (ADS)

    Sinclair, Michael; Power, Michael; Head, Erica; Li, William K. W.; McMahon, Michael; Mohn, Robert; O'Boyle, Robert; Swain, Douglas; Tremblay, John

    2015-11-01

    Two hypotheses have been proposed to account for trophic dynamic control of the eastern Scotian Shelf ecosystem off Atlantic Canada: (1) top-down: fishery induced trophic cascade and (2) bottom-up: climate variability. We evaluate the evidence in support of these hypotheses: including observations on top-down drivers (fishing effort and predation by grey seals), bottom-up drivers (nutrient supply and water column stratification), and the several trophic levels (groundfish, macro-invertebrates, small pelagic fish, and plankton). There is limited support for the fishery-induced trophic cascade hypothesis. The predictions of the climate variability hypothesis are generally met for the lower and middle trophic levels, but the ongoing high levels of natural mortality of groundfish are not accounted for. We propose an alternative hypothesis encompassing concurrent top-down and bottom-up processes, and conclude that many species of groundfish (including cod) and small pelagic fish stocks (including herring) will not recover with the ongoing high levels of natural mortality generated by grey seal predation. Predictions on future trends in abundance of the commercially important macro-invertebrate species (lobster, snow crab, and shrimp) are not possible based on the available evidence.

  4. Stochastic background of atmospheric cascades

    SciTech Connect

    Wilk, G. ); Wlodarczyk, Z. )

    1993-06-15

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.

  5. Stochastic background of atmospheric cascades

    NASA Astrophysics Data System (ADS)

    Wilk, G.; WŁOdarczyk, Z.

    1993-06-01

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.

  6. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass.

    PubMed

    Deraison, Hélène; Badenhausser, Isabelle; Loeuille, Nicolas; Scherber, Christoph; Gross, Nicolas

    2015-12-01

    Understanding the consequences of trophic interactions for ecosystem functioning is challenging, as contrasting effects of species and functional diversity can be expected across trophic levels. We experimentally manipulated functional identity and diversity of grassland insect herbivores and tested their impact on plant community biomass. Herbivore resource acquisition traits, i.e. mandible strength and the diversity of mandibular traits, had more important effects on plant biomass than body size. Higher herbivore functional diversity increased overall impact on plant biomass due to feeding niche complementarity. Higher plant functional diversity limited biomass pre-emption by herbivores. The functional diversity within and across trophic levels therefore regulates the impact of functionally contrasting consumers on primary producers. By experimentally manipulating the functional diversity across trophic levels, our study illustrates how trait-based approaches constitute a promising way to tackle existing links between trophic interactions and ecosystem functioning. PMID:26439435

  7. Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.

    PubMed

    Lauria, Valentina; Attrill, Martin J; Pinnegar, John K; Brown, Andrew; Edwards, Martin; Votier, Stephen C

    2012-01-01

    Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66 ± 0.02 °C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = -0.305 ± 0.125; 1-group: p = 0.04, slope = -0.410 ± 0.193). Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 ± 0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 ± 0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales. PMID:23091621

  8. Contrasting cascades: insectivorous birds increase pine but not parasitic mistletoe growth.

    PubMed

    Mooney, Kailen A; Linhart, Yan B

    2006-03-01

    1. Intraguild predation occurs when top predators feed upon both intermediate predators and herbivores. Intraguild predators may thus have little net impact on herbivore abundance. Variation among communities in the strength of trophic cascades (the indirect effects of predators on plants) may be due to differing frequencies of intraguild predation. Less is known about the influence of variation within communities in predator-predator interactions upon trophic cascade strength. 2. We compared the effects of a single predator community between two sympatric plants and two herbivore guilds. We excluded insectivorous birds with cages from ponderosa pine Pinus ponderosa trees parasitized by dwarf mistletoe Arceuthobium vaginatum. For 3 years we monitored caged and control trees for predatory arthropods that moved between the two plants, foliage-feeding caterpillars and sap-feeding hemipterans that were host-specific, and plant damage and growth. 3. Excluding birds increased the abundance of ant-tended aphids on pine and resulted in an 11% reduction in pine woody growth. Mutualist ants protected pine-feeding aphids from predatory arthropods, allowing aphid populations to burgeon in cages even though predatory arthropods also increased in cages. By protecting pine-feeding aphids from predatory arthropods but not birds, mutualist ants created a three-tiered linear food chain where bird effects cascaded to pine growth via aphids. 4. In contrast to the results for tended aphids on pine, bird exclusion had no net effects on untended pine herbivores, the proportion of pine foliage damaged by pine-feeding caterpillars, or the proportion of mistletoe plants damaged by mistletoe-feeding caterpillars. These results suggest that arthropod predators, which were more abundant in cages as compared with control trees, compensated for bird predation of untended pine and mistletoe herbivores. 5. These contrasting effects of bird exclusion support food web theory: where birds were

  9. A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition

    PubMed Central

    Mathieu, A.; Cournède, P. H.; Letort, V.; Barthélémy, D.; de Reffye, P.

    2009-01-01

    Background and Aims The strong influence of environment and functioning on plant organogenesis has been well documented by botanists but is poorly reproduced in most functional–structural models. In this context, a model of interactions is proposed between plant organogenesis and plant functional mechanisms. Methods The GreenLab model derived from AMAP models was used. Organogenetic rules give the plant architecture, which defines an interconnected network of organs. The plant is considered as a collection of interacting ‘sinks’ that compete for the allocation of photosynthates coming from ‘sources’. A single variable characteristic of the balance between sources and sinks during plant growth controls different events in plant development, such as the number of branches or the fruit load. Key Results Variations in the environmental parameters related to light and density induce changes in plant morphogenesis. Architecture appears as the dynamic result of this balance, and plant plasticity expresses itself very simply at different levels: appearance of branches and reiteration, number of organs, fructification and adaptation of ecophysiological characteristics. Conclusions The modelling framework serves as a tool for theoretical botany to explore the emergence of specific morphological and architectural patterns and can help to understand plant phenotypic plasticity and its strategy in response to environmental changes. PMID:19297366

  10. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators

    PubMed Central

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A.

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  11. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators.

    PubMed

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  12. Hadron cascades produced by electromagnetic cascades

    SciTech Connect

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps.

  13. Effects of trophic similarity on community composition.

    PubMed

    Morlon, Hélène; Kefi, Sonia; Martinez, Neo D

    2014-12-01

    Understanding how ecological processes determine patterns among species coexisting within ecosystems is central to ecology. Here, we explore relationships between species' local coexistence and their trophic niches in terms of their feeding relationships both as consumers and as resources. We build on recent concepts and methods from community phylogenetics to develop a framework for analysing mechanisms responsible for community composition using trophic similarity among species and null models of community assembly. We apply this framework to 50 food webs found in 50 Adirondack lakes and find that species composition in these communities appears to be driven by both bottom-up effects by which the presence of prey species selects for predators of those prey, and top-down effects by which prey more tolerant of predation out-compete less tolerant prey of the same predators. This approach to community food webs is broadly applicable and shows how species interaction networks can inform an increasingly large array of theory central to community ecology. PMID:25292331

  14. Interaction of 1/3?11 0?(0001) edge dislocation with point defect clusters created in displacement cascades in a-zirconium.

    SciTech Connect

    Voskoboinikov, Roman E; Osetskiy, Yury N; Bacon, David J

    2005-01-01

    Atomic-scale details of the interaction of a 1/3 11{bar 2}0 (0001) edge dislocation, which dissociates in the basal plane, with four typical vacancy and self-interstitial atom (SIA) clusters created by displacement cascades in a-zirconium are investigated by computer modelling. A triangular cluster of SIAs lying within a basal atomic plane adjacent to the dislocation glide plane is not absorbed by the dislocation but is pushed along by the leading partial. A 3-D SIA cluster lying across the glide plane is completely absorbed by the dislocation by creation of two super-jogs. The dislocation also climbs by interaction with a prismatic vacancy cluster, but only half of the vacancies are absorbed in this case. For a cluster formed from a basal platelet of vacancies, the dislocation experiences a glide resistance, but both the line and cluster are fully restored after breakaway. Stress-strain curves and the critical stress for dislocation breakaway from a cluster are presented.

  15. Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    PubMed Central

    Reynolds, Pamela L.; Bruno, John F.

    2012-01-01

    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions. PMID:22693549

  16. Trophic Ecology of Benthic Marine Invertebrates with Bi-Phasic Life Cycles: What Are We Still Missing?

    PubMed

    Calado, Ricardo; Leal, Miguel Costa

    2015-01-01

    The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions. PMID:26320615

  17. Epibiotic mutualists alter coral susceptibility and response to biotic disturbance through cascading trait-mediated indirect interactions

    NASA Astrophysics Data System (ADS)

    Bergsma, G. S.

    2012-06-01

    Biotic disturbances are important drivers of community structure, but interactions among community members can determine trajectories of response and recovery. On coral reefs in French Polynesia, epibiotic amphipods induce the formation of branch-like "fingers" on flat colonies of encrusting Montipora coral. The fingers form as coral encrusts the amphipods' tubes and lead to significant changes in colony morphology. I tested whether the induced morphological changes affect Montipora's susceptibility to predation by pincushion ( Culcita novaeguineae) and crown-of-thorns sea stars ( Acanthaster planci). Montipora with fingers were less likely to be attacked and more likely to survive attack than colonies without fingers. Furthermore, the presence of fingers altered A. planci prey preference. Sea stars preferred Montipora without fingers over other common coral genera, but preferred other genera when Montipora had fingers. Amphipods indirectly affected Montipora's resistance and resilience to predation, and the susceptibility of other coral genera to predation, through induced morphological changes. Such trait-mediated indirect interactions likely play an important role in determining how species respond to periodic sea star outbreaks.

  18. Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities

    PubMed Central

    García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao

    2016-01-01

    Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298

  19. Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities.

    PubMed

    García-Comas, Carmen; Sastri, Akash R; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-Hao

    2016-02-10

    Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298

  20. Mesoscale Eddies Are Oases for Higher Trophic Marine Life

    PubMed Central

    Godø, Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. PMID:22272294

  1. Diversity Effects on Productivity Are Stronger within than between Trophic Groups in the Arbuscular Mycorrhizal Symbiosis

    PubMed Central

    Koch, Alexander M.; Antunes, Pedro M.; Klironomos, John N.

    2012-01-01

    Background The diversity of plants and arbuscular mycorrhizal fungi (AMF) has been experimentally shown to alter plant and AMF productivity. However, little is known about how plant and AMF diversity interact to shape their respective productivity. Methodology/Principal Findings We co-manipulated the diversity of both AMF and plant communities in two greenhouse studies to determine whether the productivity of each trophic group is mainly influenced by plant or AMF diversity, respectively, and whether there is any interaction between plant and fungal diversity. In both experiments we compared the productivity of three different plant species monocultures, or their respective 3-species mixtures. Similarly, in both studies these plant treatments were crossed with an AMF diversity gradient that ranged from zero (non-mycorrhizal controls) to a maximum of three and five taxonomically distinct AMF taxa, respectively. We found that within both trophic groups productivity was significantly influenced by taxon identity, and increased with taxon richness. These main effects of AMF and plant diversity on their respective productivities did not depend on each other, even though we detected significant individual taxon effects across trophic groups. Conclusions/Significance Our results indicate that similar ecological processes regulate diversity-productivity relationships within trophic groups. However, productivity-diversity relationships are not necessarily correlated across interacting trophic levels, leading to asymmetries and possible biotic feedbacks. Thus, biotic interactions within and across trophic groups should be considered in predictive models of community assembly. PMID:22629347

  2. Transsynaptic trophic effects of steroid hormones in an avian model of adult brain plasticity

    PubMed Central

    Brenowitz, Eliot A.

    2014-01-01

    The avian song control system provides an excellent model for studying transsynaptic trophic effects of steroid sex hormones. Seasonal changes in systemic testosterone (T) and its metabolites regulate plasticity of this system. Steroids interact with the neurotrophin brain-derived neurotrophic factor (BDNF) to influence cellular processes of plasticity in nucleus HVC of adult birds, including the addition of newborn neurons. This interaction may also occur transsynpatically; T increases the synthesis of BDNF in HVC, and BDNF protein is then released by HVC neurons on to postsynaptic cells in nucleus RA where it has trophic effects on activity and morphology. Androgen action on RA neurons increases their activity and this has a retrograde trophic effect on the addition of new neurons to HVC. The functional linkage of sex steroids to BDNF may be of adaptive value in regulating the trophic effects of the neurotrophin and coordinating circuit function in reproductively relevant contexts. PMID:25285401

  3. Rescuing Ecosystems from Extinction Cascades

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  4. MAP kinase cascades: scaffolding signal specificity.

    PubMed

    van Drogen, Frank; Peter, Matthias

    2002-01-22

    Scaffold proteins organize many MAP kinase pathways by interacting with several components of these cascades. Recent studies suggest that scaffold proteins provide local activation platforms that contribute to signal specificity by insulating different MAP kinase pathways. PMID:11818078

  5. Amniotic fluid: Source of trophic factors for the developing intestine

    PubMed Central

    Dasgupta, Soham; Arya, Shreyas; Choudhary, Sanjeev; Jain, Sunil K

    2016-01-01

    The gastrointestinal tract (GIT) is a complex system, which changes in response to requirements of the body. GIT represents a barrier to the external environment. To achieve this, epithelial cells must renew rapidly. This renewal of epithelial cells starts in the fetal life under the influence of many GIT peptides by swallowing amniotic fluid (AF). Development and maturation of GIT is a very complex cascade that begins long before birth and continues during infancy and childhood by breast-feeding. Many factors like genetic preprogramming, local and systemic endocrine secretions and many trophic factors (TF) from swallowed AF contribute and modulate the development and growth of the GIT. GIT morphogenesis, differentiation and functional development depend on the activity of various TF in the AF. This manuscript will review the role of AF borne TF in the development of GIT. PMID:26909227

  6. Trophic amplification of climate warming

    PubMed Central

    Kirby, Richard R.; Beaugrand, Gregory

    2009-01-01

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems. PMID:19740882

  7. TROPHIC CLASSIFICATION OF SELECTED COLORADO LAKES

    EPA Science Inventory

    Multispectral scanner data, acquired over several Colorado lakes using LANDSAT-1 and aircraft, were used in conjunction with contact-sensed water quality data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-se...

  8. Trophic Shifts of a Generalist Consumer in Response to Resource Pulses

    PubMed Central

    Shaner, Pei-Jen L.; Macko, Stephen A.

    2011-01-01

    Trophic shifts of generalist consumers can have broad food-web and biodiversity consequences through altered trophic flows and vertical diversity. Previous studies have used trophic shifts as indicators of food-web responses to perturbations, such as species invasion, and spatial or temporal subsidies. Resource pulses, as a form of temporal subsidies, have been found to be quite common among various ecosystems, affecting organisms at multiple trophic levels. Although diet switching of generalist consumers in response to resource pulses is well documented, few studies have examined if the switch involves trophic shifts, and if so, the directions and magnitudes of the shifts. In this study, we used stable carbon and nitrogen isotopes with a Bayesian multi-source mixing model to estimate proportional contributions of three trophic groups (i.e. producer, consumer, and fungus-detritivore) to the diets of the White-footed mouse (Peromyscus leucopus) receiving an artificial seed pulse or a naturally-occurring cicadas pulse. Our results demonstrated that resource pulses can drive trophic shifts in the mice. Specifically, the producer contribution to the mouse diets was increased by 32% with the seed pulse at both sites examined. The consumer contribution to the mouse diets was also increased by 29% with the cicadas pulse in one of the two grids examined. However, the pattern was reversed in the second grid, with a 13% decrease in the consumer contribution with the cicadas pulse. These findings suggest that generalist consumers may play different functional roles in food webs under perturbations of resource pulses. This study provides one of the few highly quantitative descriptions on dietary and trophic shifts of a key consumer in forest food webs, which may help future studies to form specific predictions on changes in trophic interactions following resource pulses. PMID:21437248

  9. Taxonomic and trophic-level differences in the climate sensitivity of seasonal events

    NASA Astrophysics Data System (ADS)

    Høye, T. T.; Thackeray, S.; Henrys, P. A.; Hemming, D.; Bell, J. R.; Botham, M. S.; Burthe, S.; Helaouet, P.; Johns, D.; Jones, I. D.; Leech, D. I.; Mackay, E. B.; Massimino, D.; Atkinson, S.; Bacon, P. J.; Brereton, T. M.; Carvalho, L.; Clutton-Brock, T. H.; Duck, C.; Edwards, M.; Elliott, J. M.; Hall, S.; Harrington, R.; Pearce-Higgins, J. W.; Kruuk, L. E.; Pemberton, J. M.; Sparks, T. H.; Thompson, P. M.; White, I.; Winfield, I. J.; Wanless, S.

    2015-12-01

    Among-species differences in phenological responses to climate change are of sufficient magnitude to desynchronise key ecological interactions, threatening ecosystem function and services. To assess these threats, it is vital to quantify the relative impact of climate change on species at different trophic levels. Here we apply a novel Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, quantifying among-species variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms sharing taxonomic affinities or trophic position. Despite this, we detected a systematic difference in the direction and magnitude, but not seasonal timing, of phenological climate sensitivity among trophic levels. Secondary consumers showed consistently lower climate sensitivity than other groups and are projected to lag behind phenological changes at lower trophic levels, potentially making them at higher risk of disconnection with seasonal resources.

  10. Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests

    NASA Astrophysics Data System (ADS)

    Leclerc, Jean-Charles; Riera, Pascal; Laurans, Martial; Leroux, Cédric; Lévêque, Laurent; Davoult, Dominique

    2015-01-01

    Worldwide kelp forests have been the focus of several studies concerning ecosystem dysfunction in the past decades. Multifactorial kelp threats have been described and include deforestation due to human impact, cascading effects and climate change. Here, we compared community and trophic structure in two contrasting kelp forests off the coasts of Brittany. One has been harvested five years before sampling and shelters abundant omnivorous predators, almost absent from the other, which has been treated as preserved from kelp harvest. δ15N analyses conducted on the overall communities were linked to the tropho-functional structure of different strata featuring these forests (stipe and holdfast of canopy kelp and rock). Our results yielded site-to-site differences of community and tropho-functional structures across kelp strata, particularly contrasting in terms of biomass on the understorey. Similarly, isotope analyses inferred the top trophic position of Marthasterias glacialis and Echinus esculentus which may be considered as strong interactors in the sub-canopy. We interrogate these patterns and propose a series of probable and testable alternative hypotheses to explain them. For instance, we propose that differences of trophic structure and functioning result from confounded effects of contrasting wave dissipation depending on kelp size-density structure and community cascading involving these omnivorous predators. Given the species diversity and complexity of food web highlighted in these habitats, we call for further comprehensive research about the overall strata and tropho-functional groups for conservation management in kelp forests.

  11. Critical transitions in colliding cascades

    PubMed

    Gabrielov; Keilis-Borok; Zaliapin; Newman

    2000-07-01

    We consider here the interaction of direct and inverse cascades in a hierarchical nonlinear system that is continuously loaded by external forces. The load is applied to the largest element and is transferred down the hierarchy to consecutively smaller elements, thereby forming a direct cascade. The elements of the system fail (i. e., break down) under the load. The smallest elements fail first. The failures gradually expand up the hierarchy to the larger elements, thus forming an inverse cascade. Eventually the failures heal, ensuring that the system will function indefinitely. The direct and inverse cascades collide and interact. Loading triggers the failures, while failures release and redistribute the load. Notwithstanding its relative simplicity, this model reproduces the major dynamical features observed in seismicity, including the seismic cycle, intermittence of seismic regime, power-law energy distribution, clustering in space and time, long-range correlations, and a set of seismicity patterns premonitory to a strong earthquake. In this context, the hierarchical structure of the model crudely imitates a system of tectonic blocks spread by a network of faults (note that the behavior of such a network is different from that of a single fault). Loading mimics the impact of tectonic forces, and failures simulate earthquakes. The model exhibits three basic types of premonitory pattern reflecting seismic activity, clustering of earthquakes in space and time, and the range of correlation between the earthquakes. The colliding-cascade model seemingly exhibits regularities that are common in a wide class of complex hierarchical systems, not necessarily Earth specific. PMID:11088457

  12. Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system.

    PubMed

    Jabiol, Jérémy; McKie, Brendan G; Bruder, Andreas; Bernadet, Caroline; Gessner, Mark O; Chauvet, Eric

    2013-09-01

    1. Understanding the functional significance of species interactions in ecosystems has become a major challenge as biodiversity declines rapidly worldwide. Ecosystem consequences arising from the loss of diversity either within trophic levels (horizontal diversity) or across trophic levels (vertical diversity) are well documented. However, simultaneous losses of species at different trophic levels may also result in interactive effects, with potentially complex outcomes for ecosystem functioning. 2. Because of logistical constraints, the outcomes of such interactions have been difficult to assess in experiments involving large metazoan species. Here, we take advantage of a detritus-based model system to experimentally assess the consequences of biodiversity change within both horizontal and vertical food-web components on leaf-litter decomposition, a fundamental process in a wide range of ecosystems. 3. Our concurrent manipulation of fungal decomposer diversity (0, 1 or 5 species), detritivore diversity (0, 1 or 3 species), and the presence of predatory fish scent showed that trophic complexity is key to eliciting diversity effects on ecosystem functioning. Specifically, although fungi and detritivores tended to promote decomposition individually, rates were highest in the most complete community where all trophic levels were represented at the highest possible species richness. In part, the effects were trait-mediated, reflected in the contrasting foraging responses of the detritivore species to predator scent. 4. Our results thus highlight the importance of interactive effects of simultaneous species loss within multiple trophic levels on ecosystem functioning. If a common phenomenon, this outcome suggests that functional ecosystem impairment resulting from widespread biodiversity loss could be more severe than inferred from previous experiments confined to varying diversity within single trophic levels. PMID:23574276

  13. Phenological sensitivity to climate across taxa and trophic levels.

    PubMed

    Thackeray, Stephen J; Henrys, Peter A; Hemming, Deborah; Bell, James R; Botham, Marc S; Burthe, Sarah; Helaouet, Pierre; Johns, David G; Jones, Ian D; Leech, David I; Mackay, Eleanor B; Massimino, Dario; Atkinson, Sian; Bacon, Philip J; Brereton, Tom M; Carvalho, Laurence; Clutton-Brock, Tim H; Duck, Callan; Edwards, Martin; Elliott, J Malcolm; Hall, Stephen J G; Harrington, Richard; Pearce-Higgins, James W; Høye, Toke T; Kruuk, Loeske E B; Pemberton, Josephine M; Sparks, Tim H; Thompson, Paul M; White, Ian; Winfield, Ian J; Wanless, Sarah

    2016-07-14

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average). PMID:27362222

  14. Trophic relationships in an estuarine environment: A quantitative fatty acid analysis signature approach

    NASA Astrophysics Data System (ADS)

    Magnone, Larisa; Bessonart, Martin; Gadea, Juan; Salhi, María

    2015-12-01

    In order to better understand the functioning of aquatic environments, it is necessary to obtain accurate diet estimations in food webs. Their description should incorporate information about energy flow and the relative importance of trophic pathways. Fatty acids have been extensively used in qualitative studies on trophic relationships in food webs. Recently a new method to estimate quantitatively single predator diet has been developed. In this study, a model of aquatic food web through quantitative fatty acid signature analysis was generated to identify the trophic interactions among the species in the Rocha Lagoon. The biological sampling over two consecutive annual periods was comprehensive enough to identify all functional groups in the aquatic food web (except birds and mammals). Heleobia australis seemed to play a central role in this estuarine ecosystem. As both, a grazer and a prey to several other species, probably H. australis is transferring a great amount of energy to upper trophic levels. Most of the species at Rocha Lagoon have a wide range of prey items in their diet reflecting a complex food web, which is characteristic of extremely dynamic environment as estuarine ecosystems. QFASA is a model in tracing and quantitative estimate trophic pathways among species in an estuarine food web. The results obtained in the present work are a valuable contribution in the understanding of trophic relationships in Rocha Lagoon.

  15. ATLSS: Across trophic level system simulation for the freshwater areas of the Everglades

    SciTech Connect

    Martin, F.D. ); Deangelis, D.L.; Gross, L.J. )

    1994-06-01

    The Everglades of South Florida are characterized by complex patterns of spatial heterogeneity and temporal variability, with water flow being the major factor controlling the trophic dynamics of the system. A key objective of modeling studies is to compare the future effects of alternate hydrologic scenarios on the biotic components of the system. Due to the varying scales at which trophic interactions occur, and the importance of population structure and individual behavior for population prediction in higher trophic level organisms, use of a single modeling approach is not appropriate. We will describe a scheme to integrate three approaches for different trophic levels of the system: (1) process models for lower trophic levels (including benthic insects, periphyton and zooplankton), (2) structured population models for five functional groups of fish and macroinvertebrates, and (3) individual-based models for large consumers (wood storks, great blue herons, white ibis, American alligators, white-tailed deer, and Florida panther). These are integrated across the freshwater landscape of the Everglades and coupled to GIS maps for cover type. Spatial scales of resolution for the models are as small as 100 m, with the capability to vary this based upon the scale of available input data. The system is then coupled to a hydrology model, and used to assess the effects of alternative proposed restoration scenarios on trophic structure.

  16. Ecological opportunities and intraspecific competition alter trophic niche specialization in an opportunistic stream predator.

    PubMed

    Evangelista, Charlotte; Boiche, Anatole; Lecerf, Antoine; Cucherousset, Julien

    2014-09-01

    Many generalist populations are composed of specialized individuals that use a narrow part of the population's niche. Ecological theories predict that individual specialization and population trophic niche are determined by biotic interactions and resource diversity emerging from environmental variations (i.e. ecological opportunities). However, due to the paucity of empirical and experimental demonstrations, the genuine importance of each of these drivers in determining trophic niche attributes is not fully appreciated. The present study aimed at determining the population level and individual responses of brown trout (Salmo trutta) to variations in ecological opportunities (terrestrial prey inputs) and autochthonous prey communities among 10 stream reaches along a riparian condition gradient using individual longitudinal monitoring and stable isotope analyses. Our results suggested that trophic niche diversity varied along the environmental gradient, while individual trophic specialization was indirectly driven by ecological opportunities through strengthened intraspecific competition. Individual diet was repeatable over the study period, and the growth rate of juvenile brown trout increased with their specialization for aquatic predatory invertebrates. Our findings highlight the dual influences of intraspecific competition and ecological opportunities on individual trophic specialization and population trophic niche. PMID:24499451

  17. Biomass changes and trophic amplification of plankton in a warmer ocean.

    PubMed

    Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-07-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  18. South Cascade Glacier bibliography

    SciTech Connect

    Fountain, A.G.; Fulk, M.A.

    1984-01-01

    South Cascade Glacier, in Washington State, resides in a well-defined basin with mainly unglacierized divides making it ideal for most glaciological and hydrological studies. This bibliography is divided into three cateogories: (1) studies done about South Cascade Glacier specifically; (2) studies that use data from South Cascade Glacier but do not focus on or give insight to the glacier itself; and (3) instrumentation studies and non-glacier projects including snow studies done in the basin. (ACR)

  19. Emergence of event cascades in inhomogeneous networks.

    PubMed

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-01-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network. PMID:27625183

  20. Thermally cascaded thermoelectric generator

    NASA Technical Reports Server (NTRS)

    Flaherty, R.

    1970-01-01

    High efficiency thermoelectric generator utilizes a high-temperature thermoelectric material in thermal series with a low-temperature material. A thermally cascaded generator increases system efficiency.

  1. Cascading Effects Following Intervention

    PubMed Central

    Patterson, Gerald R.; Forgatch, Marion S.; DeGarmo, David S.

    2010-01-01

    Four different sources for cascade effects were examined using 9-year process and outcome data from a randomized controlled trial (RCT) of a preventive intervention using Parent Management Training – Oregon Model (PMTO™). The social interaction learning (SIL) model of child antisocial behavior serves as one basis for predicting change. A second source addresses the issue of comorbid relationships among clinical diagnoses. The third source, collateral changes, describes events in which changes in one family member correlate with changes in another. The fourth component is based on the long-term effects of reducing coercion and increasing positive interpersonal processes within the family. New findings from the 9-year follow-up show that mothers experienced benefits as measured by standard of living (i.e., income, occupation, education, and financial stress) and frequency of police arrests. It is assumed that PMTO reduces the level of coercion, which sets the stage for a massive increase in positive social interaction. In effect, PMTO alters the family environment and thereby opens doors to healthy new social environments. PMID:20883592

  2. Cascaded automatic target recognition (Cascaded ATR)

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2010-04-01

    The global war on terror has plunged US and coalition forces into a battle space requiring the continuous adaptation of tactics and technologies to cope with an elusive enemy. As a result, technologies that enhance the intelligence, surveillance, and reconnaissance (ISR) mission making the warfighter more effective are experiencing increased interest. In this paper we show how a new generation of smart cameras built around foveated sensing makes possible a powerful ISR technique termed Cascaded ATR. Foveated sensing is an innovative optical concept in which a single aperture captures two distinct fields of view. In Cascaded ATR, foveated sensing is used to provide a coarse resolution, persistent surveillance, wide field of view (WFOV) detector to accomplish detection level perception. At the same time, within the foveated sensor, these detection locations are passed as a cue to a steerable, high fidelity, narrow field of view (NFOV) detector to perform recognition level perception. Two new ISR mission scenarios, utilizing Cascaded ATR, are proposed.

  3. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  4. Wasp-Waist Interactions in the North Sea Ecosystem

    PubMed Central

    Fauchald, Per; Skov, Henrik; Skern-Mauritzen, Mette; Johns, David; Tveraa, Torkild

    2011-01-01

    Background In a “wasp-waist” ecosystem, an intermediate trophic level is expected to control the abundance of predators through a bottom-up interaction and the abundance of prey through a top-down interaction. Previous studies suggest that the North Sea is mainly governed by bottom-up interactions driven by climate perturbations. However, few studies have investigated the importance of the intermediate trophic level occupied by small pelagic fishes. Methodology/Principal Findings We investigated the numeric interactions among 10 species of seabirds, two species of pelagic fish and four groups of zooplankton in the North Sea using decadal-scale databases. Linear models were used to relate the time series of zooplankton and seabirds to the time series of pelagic fish. Seabirds were positively related to herring (Clupea harengus), suggesting a bottom-up interaction. Two groups of zooplankton; Calanus helgolandicus and krill were negatively related to sprat (Sprattus sprattus) and herring respectively, suggesting top-down interactions. In addition, we found positive relationships among the zooplankton groups. Para/pseudocalanus was positively related to C. helgolandicus and C. finmarchicus was positively related to krill. Conclusion/Significance Our results indicate that herring was important in regulating the abundance of seabirds through a bottom-up interaction and that herring and sprat were important in regulating zooplankton through top-down interactions. We suggest that the positive relationships among zooplankton groups were due to selective foraging and switching in the two clupeid fishes. Our results suggest that “wasp-waist” interactions might be more important in the North Sea than previously anticipated. Fluctuations in the populations of pelagic fish due to harvesting and depletion of their predators might accordingly have profound consequences for ecosystem dynamics through trophic cascades. PMID:21829494

  5. Trophic Hierarchies Illuminated via Amino Acid Isotopic Analysis

    PubMed Central

    Steffan, Shawn A.; Chikaraishi, Yoshito; Horton, David R.; Ohkouchi, Naohiko; Singleton, Merritt E.; Miliczky, Eugene; Hogg, David B.; Jones, Vincent P.

    2013-01-01

    Food web ecologists have long sought to characterize the trophic niches of animals using stable isotopic analysis. However, distilling trophic position from isotopic composition has been difficult, largely because of the variability associated with trophic discrimination factors (inter-trophic isotopic fractionation and routing). We circumvented much of this variability using compound-specific isotopic analysis (CSIA). We examined the 15N signatures of amino acids extracted from organisms reared in pure culture at four discrete trophic levels, across two model communities. We calculated the degree of enrichment at each trophic level and found there was a consistent trophic discrimination factor (~7.6‰). The constancy of the CSIA-derived discrimination factor permitted unprecedented accuracy in the measurement of animal trophic position. Conversely, trophic position estimates generated via bulk-15N analysis significantly underestimated trophic position, particularly among higher-order consumers. We then examined the trophic hierarchy of a free-roaming arthropod community, revealing the highest trophic position (5.07) and longest food chain ever reported using CSIA. High accuracy in trophic position estimation brings trophic function into sharper focus, providing greater resolution to the analysis of food webs. PMID:24086703

  6. Terahertz quantum cascade VECSEL

    NASA Astrophysics Data System (ADS)

    Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.; Itoh, Tatsuo; Williams, Benjamin S.

    2016-03-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) have been successfully used in the visible and near-infrared to achieve high output power with excellent Gaussian beam quality. However, the concept of VECSEL has been impossible to implement for quantum-cascade (QC) lasers due to the "intersubband selection rule". We have recently demonstrated the first VECSEL in the terahertz range. The enabling component for the QC-VECSEL is an amplifying metasurface reflector composed of a sparse array of metallic sub-cavities, which allows the normally incident radiation to interact with the electrically pumped QC gain medium. In this work, we presented multiple design variations based on the first demonstrated THz QC-VECSEL, regarding the lasing frequencies, the output coupler and the intra-cavity aperture. Our work on THz QC-VECSEL initiates a new approach towards achieving scalable output power in combination with a diffraction-limited beam pattern for THz QC-lasers. The design variations presented in this work further demonstrate the practicality and potential of VECSEL approach to make ideal terahertz QC-laser sources.

  7. Habitat effects on the relative importance of trait- and density-mediated indirect interactions.

    PubMed

    Trussell, Geoffrey C; Ewanchuk, Patrick J; Matassa, Catherine M

    2006-11-01

    Classical views of trophic cascades emphasize the primacy of consumptive predator effects on prey populations to the transmission of indirect effects [density-mediated indirect interactions (DMIIs)]. However, trophic cascades can also emerge without changes in the density of interacting species because of non-consumptive predator effects on prey traits such as foraging behaviour [trait-mediated indirect interactions (TMIIs)]. Although ecologists appreciate this point, measurements of the relative importance of each indirect predator effect are rare. Experiments with a three-level, rocky shore food chain containing an invasive predatory crab (Carcinus maenas), an intermediate consumer (the snail, Nucella lapillus) and a basal resource (the barnacle, Semibalanus balanoides) revealed that the strength of TMIIs is comparable with, or exceeds, that of DMIIs. Moreover, the sign and strength of each indirect predator effect depends on whether it is measured in risky or refuge habitats. Because habitat shifts are often responsible for the emergence of TMIIs, attention to the sign and strength of these interactions in both habitats will improve our understanding of the link between individual behaviour and community dynamics. PMID:17040327

  8. Using stable isotopes to test for trophic niche partitioning: a case study with stream salamanders and fish

    USGS Publications Warehouse

    Sepulveda, Adam; Lowe, Winsor H.; Marra, Peter P.

    2012-01-01

    5. Although we did not identify mechanisms that facilitate salamander and fish coexistence, our empirical data and use of novel approaches to describe the trophic niche did yield important insights on the role of predator–prey interactions and cannibalism as alternative coexistence mechanisms. In addition, we found that 95% kernel estimators are a simple and robust method to describe population-level measure of trophic structure.

  9. Trophic Factor Expression in Phrenic Motor Neurons

    PubMed Central

    Mantilla, Carlos B.; Sieck, Gary C.

    2008-01-01

    The function of a motor neuron and the muscle fibers it innervates (i.e., a motor unit) determines neuromotor output. Unlike other skeletal muscles, respiratory muscles (e.g., the diaphragm, DIAm) must function from birth onwards in sustaining ventilation. DIAm motor units are capable of both ventilatory and non-ventilatory behaviors, including expulsive behaviors important for airway clearance. There is significant diversity in motor unit properties across different types of motor units in the DIAm. The mechanisms underlying the development and maintenance of motor unit diversity in respiratory muscles (including the DIAm) are not well understood. Recent studies suggest that trophic factor influences contribute to this diversity. Remarkably little is known about the expression of trophic factors and their receptors in phrenic motor neurons. This review will focus on the contribution of trophic factors to the establishment and maintenance of motor unit diversity in the DIAm, during development and in response to injury or disease. PMID:18708170

  10. Examination of the Trophic Interactions Between a Species in Decline, the Ozark Hellbender (Cryptobranchus alleganiensis bishopi), and a Prey Base Composed of Multiple Crayfish Species Using Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Hiler, W. R.; Wheeler, B. A.; Trauth, S. E.; Christian, A. D.

    2005-05-01

    Since the early 1980's the Ozark hellbender, North America's largest salamander, has undergone a series of declines throughout its entire range. Two Arkansas rivers known to have populations of hellbenders are the Eleven Point (EP) and Spring (SR) rivers. Ozark hellbenders from the SR have undergone the most drastic population decline witnessed within their range over the past 20 years. Shifts in benthic habitat and community compositions could influence these declines, which could affect the species composition of their primary prey item, the crayfish. The objectives of our study were to use stable C and N isotope analysis to 1) determine what individual or multiple species of crayfish contribute to hellbender diets, and 2) determine if certain size classes of crayfish contribute to hellbender diets. We chose four study sites, three from the EP and one from the SR and collected tissue plugs from a total of 10 hellbenders. Tissue samples from three size classes of the crayfish known to occur in the EP and SR rivers were also collected. By linking stable C and N ratios results and relative abundances of crayfish in each of the river sites, we hope to identify species-specific trophic relationships between hellbenders and crayfish.

  11. 5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE CREEK FROM 100 YARDS WEST OF THE ROSTRUM (ROCK FORMATION ON SOUTH SIDE OF MERCED RIVER). HIGHWAY 140 IS AT BOTTOM OF FRAME. HIGHWAY 120, THE BIG OAK FLAT ROAD CROSSES FRAME JUST ABOVE CENTER. - Cascade Creek Bridge, Spanning Cascade Creek on New Big Oak Flat Road, Yosemite Village, Mariposa County, CA

  12. Future Antidepressant Targets: Neurotrophic Factors and Related Signaling Cascades

    PubMed Central

    Schmidt, Heath D.; Banasr, Mounira; Duman, Ronald S.

    2009-01-01

    Preclinical and clinical studies demonstrate that neurotrophic factors play critical roles in the etiology and treatment of depression. While the mechanisms underlying the therapeutic efficacy of antidepressants remain unknown, increasing evidence supports a role for increased trophic support in the treatment of depression. Furthermore, antidepressants block or reverse stress-induced down regulation of neurotrophic factor expression in limbic and cortical nuclei involved in the underlying pathophysiology of depression. Thus, components of neurotrophic factor-mediated signaling cascades or the signal transduction pathways that regulate neurotrophic factor expression may provide additional targets for the development of novel, more efficacious antidepressant drugs. PMID:19802372

  13. Phenological Advances and Trophic Consequences in Low- and High-Arctic Greenland

    NASA Astrophysics Data System (ADS)

    Høye, T. T.; Schmidt, N. M.; Forchhammer, M. C.; Bøving, P. S.; Post, E.

    2009-12-01

    Seasonal timing of reproduction (phenology) is highly responsive to global warming, especially in the Arctic. Here, we present a comparative analysis of multi-annual observational data on phenological dynamics across trophic levels from Zackenberg, North-East Greenland (a High Arctic site) and Kangerlussuaq, West Greenland (a Low Arctic site). Both sites have experienced considerable warming and our analyses indicate that rates of change in plant phenological responses may differ between sites, related to different proximal drivers at the two sites. We also present parallel data on interacting organisms (pollinators and mammalian herbivores) to evaluate the risks and effects of trophic mismatch at these two sites.

  14. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification.

    PubMed

    Thomsen, Mads S; Wernberg, Thomas; Altieri, Andrew; Tuya, Fernando; Gulbransen, Dana; McGlathery, Karen J; Holmer, Marianne; Silliman, Brian R

    2010-08-01

    The importance of positive interactions is increasingly acknowledged in contemporary ecology. Most research has focused on direct positive effects of one species on another. However, there is recent evidence that indirect positive effects in the form of facilitation cascades can also structure species abundances and biodiversity. Here we conceptualize a specific type of facilitation cascade-the habitat cascade. The habitat cascade is defined as indirect positive effects on focal organisms mediated by successive facilitation in the form of biogenic formation or modification of habitat. Based on a literature review, we demonstrate that habitat cascades are a general phenomenon that enhances species abundance and diversity in forests, salt marshes, seagrass meadows, and seaweed beds. Habitat cascades are characterized by a hierarchy of facilitative interactions in which a basal habitat former (typically a large primary producer, e.g., a tree) creates living space for an intermediate habitat former (e.g., an epiphyte) that in turn creates living space for the focal organisms (e.g., spiders, beetles, and mites). We then present new data on a habitat cascade common to soft-bottom estuaries in which a relatively small invertebrate provides basal habitat for larger intermediate seaweeds that, in turn, generate habitat for focal invertebrates and epiphytes. We propose that indirect positive effects on focal organisms will be strongest when the intermediate habitat former is larger and different in form and function from the basal habitat former. We also discuss how humans create, modify, and destroy habitat cascades via global habitat destruction, climatic change, over-harvesting, pollution, or transfer of invasive species. Finally, we outline future directions for research that will lead to a better understanding of habitat cascades. PMID:21558196

  15. Rescaling the trophic structure of marine food webs

    PubMed Central

    Hussey, Nigel E; MacNeil, M Aaron; McMeans, Bailey C; Olin, Jill A; Dudley, Sheldon FJ; Cliff, Geremy; Wintner, Sabine P; Fennessy, Sean T; Fisk, Aaron T

    2014-01-01

    Measures of trophic position (TP) are critical for understanding food web interactions and human-mediated ecosystem disturbance. Nitrogen stable isotopes (δ15N) provide a powerful tool to estimate TP but are limited by a pragmatic assumption that isotope discrimination is constant (change in δ15N between predator and prey, Δ15N = 3.4‰), resulting in an additive framework that omits known Δ15N variation. Through meta-analysis, we determine narrowing discrimination from an empirical linear relationship between experimental Δ15N and δ15N values of prey consumed. The resulting scaled Δ15N framework estimated reliable TPs of zooplanktivores to tertiary piscivores congruent with known feeding relationships that radically alters the conventional structure of marine food webs. Apex predator TP estimates were markedly higher than currently assumed by whole-ecosystem models, indicating perceived food webs have been truncated and species-interactions over simplified. The scaled Δ15N framework will greatly improve the accuracy of trophic estimates widely used in ecosystem-based management. PMID:24308860

  16. Rescaling the trophic structure of marine food webs.

    PubMed

    Hussey, Nigel E; Macneil, M Aaron; McMeans, Bailey C; Olin, Jill A; Dudley, Sheldon F J; Cliff, Geremy; Wintner, Sabine P; Fennessy, Sean T; Fisk, Aaron T

    2014-02-01

    Measures of trophic position (TP) are critical for understanding food web interactions and human-mediated ecosystem disturbance. Nitrogen stable isotopes (δ(15) N) provide a powerful tool to estimate TP but are limited by a pragmatic assumption that isotope discrimination is constant (change in δ(15) N between predator and prey, Δ(15) N = 3.4‰), resulting in an additive framework that omits known Δ(15) N variation. Through meta-analysis, we determine narrowing discrimination from an empirical linear relationship between experimental Δ(15) N and δ(15) N values of prey consumed. The resulting scaled Δ(15) N framework estimated reliable TPs of zooplanktivores to tertiary piscivores congruent with known feeding relationships that radically alters the conventional structure of marine food webs. Apex predator TP estimates were markedly higher than currently assumed by whole-ecosystem models, indicating perceived food webs have been truncated and species-interactions over simplified. The scaled Δ(15) N framework will greatly improve the accuracy of trophic estimates widely used in ecosystem-based management. PMID:24308860

  17. Cascading effects of belowground predators on plant communities are density-dependent.

    PubMed

    Thakur, Madhav Prakash; Herrmann, Martina; Steinauer, Katja; Rennoch, Saskia; Cesarz, Simone; Eisenhauer, Nico

    2015-10-01

    Soil food webs comprise a multitude of trophic interactions that can affect the composition and productivity of plant communities. Belowground predators feeding on microbial grazers like Collembola could decelerate nutrient mineralization by reducing microbial turnover in the soil, which in turn could negatively influence plant growth. However, empirical evidences for the ecological significance of belowground predators on nutrient cycling and plant communities are scarce. Here, we manipulated predator density (Hypoaspis aculeifer: predatory mite) with equal densities of three Collembola species as a prey in four functionally dissimilar plant communities in experimental microcosms: grass monoculture (Poa pratensis), herb monoculture (Rumex acetosa), legume monoculture (Trifolium pratense), and all three species as a mixed plant community. Density manipulation of predators allowed us to test for density-mediated effects of belowground predators on Collembola and lower trophic groups. We hypothesized that predator density will reduce Collembola population causing a decrease in nutrient mineralization and hence detrimentally affect plant growth. First, we found a density-dependent population change in predators, that is, an increase in low-density treatments, but a decrease in high-density treatments. Second, prey suppression was lower at high predator density, which caused a shift in the soil microbial community by increasing the fungal: bacterial biomass ratio, and an increase of nitrification rates, particularly in legume monocultures. Despite the increase in nutrient mineralization, legume monocultures performed worse at high predator density. Further, individual grass shoot biomass decreased in monocultures, while it increased in mixed plant communities with increasing predator density, which coincided with elevated soil N uptake by grasses. As a consequence, high predator density significantly increased plant complementarity effects indicating a decrease in

  18. First direct evidence of a vertebrate three-level trophic chain in the fossil record.

    PubMed

    Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H J

    2008-01-22

    We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time. PMID:17971323

  19. The nitrogen cascade

    SciTech Connect

    Galloway J.N.; Aber J.D.; Erisman J.W.; Seitzinger S.P.; Howarth R.W.; Cowling E.B.; Cosby B.J.

    2003-04-01

    Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N{sub 2}) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth's atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N{sub 2}.

  20. Modeling lake trophic state: a random forest approach

    EPA Science Inventory

    Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...

  1. Trophic status evaluation of TVA reservoirs

    SciTech Connect

    Placke, J.F.

    1983-10-01

    TVA tributary and mainstem reservoirs show generalized differences in morphometry, hydraulics, nutrient loads, and response to nutrient concentrations. Neither type of reservoir is strictly comparable to the natural lakes on which classical eutrophication studies have been based. The majority of published trophic state indices and standards (e.g., hypolimnetic dissolved oxygen depletion, Secchi depth, areas nutrient loading rates, in-reservoir phosphorus concentrations) are inappropriate for evaluation of some or all TVA reservoirs. No single trophic potential or trophic response variable summarizes the mechanisms and manifestations of eutrophication sufficiently to be used as a sole criterion for judging or regulating TVA reservoir water quality. Relative multivariate trophic state indices were developed for mainstem and tributary reservoirs. Ranking of the mainstem reservoirs is based on chlorophyll, macrophyte coverage, hydraulic retention time, reservoir area less than five feet deep, annual pool elevation drawdown, and Secchi depth. Based on available data, the rank from least eutrophic to most eutrophic is: Pickwick, Kentucky, Chickamauga, Nickajack, Wilson, Fort Loudoun, Watts Bar, Wheeler, and Guntersville Reservoirs. Ranking of the tributary reservoirs is based on chlorophyll, total phosphorus and total nitrogen weighted by the N:P ratio, and bio-available inorganic carbon levels. The rank from least eutrophic to most eutrophic is: Hiwassee, Blue Ridge, Chatuge, Norris and Fontana, Watauga, South Holston, Tims Ford, Cherokee, Douglas, and Boone Reservoirs. 130 references, 18 figures, 30 tables.

  2. Habitat contrasts reveal a shift in the trophic position of ant assemblages.

    PubMed

    Gibb, Heloise; Cunningham, Saul A

    2011-01-01

    1. Trophic structure within a guild can be influenced by factors such as resource availability and competition. While ants occupy a wide range of positions in food webs, and ant community composition changes with habitat, it is not well understood if ant genera tend to maintain their position in the trophic structure, or if trophic position varies across habitats. 2. We used ratios of stable isotopes of carbon and nitrogen to test for differences in the trophic structure and position of assemblages of ants among habitat types. We tested for differences between assemblages in replicate sites of the land use categories: (i) pastures with old large trees; (ii) recently revegetated pastures with small young trees; and (iii) remnant woodlands. Known insect herbivores and predatory spiders provided baselines for herbivorous and predaceous arthropods. Soil samples were used to correct for the base level of isotopic enrichment at each site. 3. We found no significant interactions between land use and ant genus for isotope enrichment, indicating that trophic structure is conserved across land use categories. The fixed relative positions of genera in the trophic structure might be re-enforced by competition or some other factor. However, the entire ant assemblage had significantly lower δ(15) N values in revegetated sites, suggesting that ants feed lower down in the food chain i.e. they are more 'herbivorous' in revegetated sites. This may be a result of the high availability of plant sugars, honeydew and herbivorous arthropod prey. 4. Surprisingly, ants in remnants and pastures with trees displayed similar isotopic compositions. Interactions within ant assemblages are thus likely to be resilient to changes in land use, but ant diets in early successional habitats may reflect the simplicity of communities, which may have comparatively lower rates of saprophagy and predation. PMID:20831728

  3. Stability of Helium Clusters during Displacement Cascades

    SciTech Connect

    Yang, Li; Zu, Xiaotao T.; Xiao, H. Y.; Gao, Fei; Heinisch, Howard L.; Kurtz, Richard J.; Wang, Zhiguo; Liu, K. Z.

    2007-02-01

    The interaction of displacement cascades with helium-vacancy clusters is investigated using molecular dynamics simulations. The He-vacancy clusters initially consist of 20 vacancies with a Helium-to-vacancy ratio ranging from 0.2 to 3. The primary knock-on atom (PKA) energy, Ep, varies from 2 keV to 10 keV, and the PKA direction is chosen such that a displacement cascade is able to directly interact with a helium-vacancy cluster. The simulation results show that the effect of displacement cascades on a helium-vacancy cluster strongly depends on both the helium-to-vacancy ratio and the PKA energy. For the same PKA energy, the size of helium-vacancy clusters increases with the He/V ratio, but for the same ratio, the cluster size changes more significantly with increasing PKA energy. It has been observed that the He-vacancy clusters can be dissolved when the He/V ratio less than 1, but they are able to re-nucleate during the thermal spike phase, forming small He-V nuclei. When the He/V ratio is larger than 1, the He-V clusters can absorb a number of vacancies produced by displacement cascades, forming larger He-V clusters. These results are discussed in terms of PKA energy, helium-to-vacancy ratio, number of vacancies produced by cascades, and mobility of helium atoms.

  4. Trophic state of benthic deep-sea ecosystems from two different continental margins off Iberia

    NASA Astrophysics Data System (ADS)

    Dell'Anno, A.; Pusceddu, A.; Corinaldesi, C.; Canals, M.; Heussner, S.; Thomsen, L.; Danovaro, R.

    2013-05-01

    The bioavailability of organic matter in benthic deep-sea ecosystems, commonly used to define their trophic state, can greatly influence key ecological processes such as biomass production and nutrient cycling. Here, we assess the trophic state of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean) and Portuguese (NE Atlantic) continental margins, offshore east and west Iberia, respectively, by using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Two out of the three sampling periods occurred a few months after dense shelf water cascading events. The benthic deep-sea ecosystems investigated in this study were characterized by high amounts of bioavailable organic matter when compared to other deep-sea sediments. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in primary productivity of surface waters reported for the two regions. Similarly, sediments of the Catalan margin were characterized by significantly higher food quantity and quality in spring, when the phytoplankton bloom occurs in surface waters, than in summer and autumn. Differences in the benthic trophic state of canyons against open slopes were more evident in the Portuguese than in the Catalan margin. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Overall, our findings suggest that the intensity of primary production processes along with the lateral transfer of organic particles, even amplified by episodic events, can have a role in controlling the quantity and distribution of bioavailable organic detritus and its nutritional value along these continental margin ecosystems.

  5. Analysis of the multiple roles of gld-1 in germline development: Interactions with the sex determination cascade and the glp-1 signaling pathway

    SciTech Connect

    Francis, R.; Schedl, T.; Maine, E.

    1995-02-01

    The Caenorhabditis elegans gene gld-1 is essential for oocyte development; in gld-1 (null) hermaphrodites, a tumor forms where oogenesis would normally occur. We use genetic epistasis analysis to demonstrate that tumor formation is dependent on the sexual fate of the germline. When the germline sex determination pathway is set in the female mode (terminal fem/fog genes inactive), gld-1 (null) germ cells exit meiotic prophase and proliferate to form a tumor, but when the pathway is et in the male mode, they develop into sperm. We conclude that the gld-1 (null) phenotype is cell-type specific and that gld-1(+) acts at the end of the cascade to direct oogenesis. We also use cell ablation and epistasis analysis to examine the dependence of tumor formation on the glp-1 signaling pathway. Although glp-1 activity promotes tumor growth, it is not essential for tumor formation by gld-1 (null) germ cells. These data also reveal that gld-1(+) plays a nonessential (and sex nonspecific) role in regulating germ cell proliferation before their entry into meiosis. Thus gld-1(+) may negatively regulate proliferation at two distinct points in germ cell development: before entry into meiotic prophase in both sexes (nonessential premeiotic gld-1 function) and during meiotic prophase when the sex determination pathway is set in the female mode (essential meiotic gld-1 function). 46 refs., 9 figs., 4 tabs.

  6. Analysis of the Multiple Roles of Gld-1 in Germline Development: Interactions with the Sex Determination Cascade and the Glp-1 Signaling Pathway

    PubMed Central

    Francis, R.; Maine, E.; Schedl, T.

    1995-01-01

    The Caenorhabditis elegans gene gld-1 is essential for oocyte development; in gld-1 (null) hermaphrodites, a tumor forms where oogenesis would normally occur. We use genetic epistasis analysis to demonstrate that tumor formation is dependent on the sexual fate of the germline. When the germline sex determination pathway is set in the female mode (terminal fem/fog genes inactive), gld-1 (null) germ cells exit meiotic prophase and proliferate to form a tumor, but when the pathway is set in the male mode, they develop into sperm. We conclude that the gld-1 (null) phenotype is cell-type specific and that gld-1 (+) acts at the end of the cascade to direct oogenesis. We also use cell ablation and epistasis analysis to examine the dependence of tumor formation on the glp-1 signaling pathway. Although glp-1 activity promotes tumor growth, it is not essential for tumor formation by gld-1 (null) germ cells. These data also reveal that gld-1 (+) plays a nonessential (and sex nonspecific) role in regulating germ cell proliferation before their entry into meiosis. Thus gld-1 (+) may negatively regulate proliferation at two distinct points in germ cell development: before entry into meiotic prophase in both sexes (nonessential premeiotic gld-1 function) and during meiotic prophase when the sex determination pathway is set in the female mode (essential meiotic gld-1 function). PMID:7713420

  7. Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade.

    PubMed

    Lee, Hyun; Yuan, Chunhua; Hammet, Andrew; Mahajan, Anjali; Chen, Eric S-W; Wu, Ming-Ru; Su, Mei-I; Heierhorst, Jörg; Tsai, Ming-Daw

    2008-06-20

    Forkhead-associated (FHA) domains recognize phosphothreonines, and SQ/TQ cluster domains (SCDs) contain concentrated phosphorylation sites for ATM/ATR-like DNA-damage-response kinases. The Rad53-SCD1 has dual functions in regulating the activation of the Rad53-Dun1 checkpoint kinase cascade but with unknown molecular mechanisms. Here we present structural, biochemical, and genetic evidence that Dun1-FHA possesses an unprecedented diphosphothreonine-binding specificity. The Dun1-FHA has >100-fold increased affinity for diphosphorylated relative to monophosphorylated Rad53-SCD1 due to the presence of two separate phosphothreonine-binding pockets. In vivo, any single threonine of Rad53-SCD1 is sufficient for Rad53 activation and RAD53-dependent survival of DNA damage, but two adjacent phosphothreonines in the Rad53-SCD1 and two phosphothreonine-binding sites in the Dun1-FHA are necessary for Dun1 activation and DUN1-dependent transcriptional responses to DNA damage. The results uncover a phospho-counting mechanism that regulates the specificity of SCD, and provide mechanistic insight into a role of multisite phosphorylation in DNA-damage signaling. PMID:18570878

  8. Temperature cascade control of distillation columns

    SciTech Connect

    Wolff, E.A.; Skogestad, S.

    1996-02-01

    This paper examines how difficult control tasks are enhanced by introducing secondary measurements, creating control cascades. Temperature is much used as secondary measurement because of cheap implementation and quick and accurate response. Distillation is often operated in this manner due to slow or lacking composition measurements, although the benefits have hardly been investigated closely, especially for multivariable control applications. The authors therefore use distillation as the example when quantifying improvements in interaction and disturbance rejection. They also give analytical expressions for the secondary controller gain. The improvements are reached through simple cascade operation of the control system and require no complicated estimator function.

  9. Resonant Cascaded Downconversion

    SciTech Connect

    Weedbrook, Christian; Parrett, Ben; Kheruntsyan, Karen; Drummond, Peter; Pooser, Raphael C; Pfister, Olivier

    2012-01-01

    We analyze an optical parametric oscillator (OPO) in which cascaded down-conversion occurs inside a cavity resonant for all modes but the initial pump. Due to the resonant cascade design, the OPO presents two {chi}{sup (2)}-level oscillation thresholds that are therefore much lower than for a {chi}{sup (3)} OPO. This is promising for reaching the regime of an effective third-order nonlinearity well above both thresholds. Such a {chi}{sup (2)} cascaded device also has potential applications in frequency conversion to far-infrared regimes. But, most importantly, it can generate novel multipartite quantum correlations in the output radiation, which represent a step beyond squeezed or entangled light. The output can be highly non-Gaussian and therefore not describable by any semiclassical model. In this paper, we derive quantum stochastic equations in the positive-P representation and undertake an analysis of steady-state and dynamical properties of this system.

  10. The Ontogenetically Variable Trophic Niche of a Praying Mantid Revealed by Stable Isotope Analysis.

    PubMed

    Hurd, Lawrence E; Dehart, Pieter A P; Taylor, Joseph M; Campbell, Meredith C; Shearer, Megan M

    2015-04-01

    Praying mantids have been shown to exert strong influences on arthropod community composition. However, they may not occupy the same trophic level throughout their lives. Trophic shifting over a life cycle could explain the documented variation in results from field studies, but specific interactions of predators within food webs have been difficult to determine simply by comparing control and treatment assemblages in field experiments. We examined the trophic position of the Chinese praying mantid, Tenodera aridifolia sinensis (Saussure), using stable isotope analysis (SIA). We measured the δ(13)C and δ(15)N of field-collected arthropods, and of laboratory groups of mantids fed known diets of these arthropods chosen from the most abundant trophic guilds: herbivores (sap feeders and plant chewers), and carnivores. We also collected mantids from the field over a growing season and compared their SIA values to those of the laboratory groups. Both δ(13)C and δ(15)N of mantids fed carnivorous prey (spiders or other mantids) were higher than those fed herbivores (grasshoppers). SIA values from field-collected mantids were highly variable, and indicated that they did not take prey from trophic guilds in proportion to their abundances, i.e., were not frequency-dependent predators. Further, δ(15)N decreased from a high at egg hatch to a low at the third instar as early nymphs fed mainly on lower trophic levels, and increased steadily thereafter as they shifted to feeding on higher levels. We suggest that the community impact of generalist predators can be strongly influenced by ontogenetic shifts in diet. PMID:26313177

  11. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology.

    PubMed

    Kaplan, Ian; Carrillo, Juli; Garvey, Michael; Ode, Paul J

    2016-04-01

    In occupying an intermediate trophic position, herbivorous insects serve a vital link between plants at the base of the food chain and parasitoids at the top. Although these herbivore-mediated indirect plant-parasitoid interactions are well-documented, new studies have uncovered previously undescribed mechanisms that are fundamentally changing how we view tri-trophic relationships. In this review we highlight recent advances in this field focusing on both plant-driven and parasitoid-driven outcomes that flow up and down the trophic web, respectively. From the bottom-up, plant metabolites can impact parasitoid success by altering host immune function; however, few have considered the potential effects of other plant defense strategies such as tolerance on parasitoid ecology and behavior. From the top-down, parasitoids have long been considered plant bodyguards, but in reality the consequences of parasitism for herbivory rates and induction of plant defensive chemistry are far more complicated with cascading effects on community-level interactions. PMID:27436656

  12. Tree phylogenetic diversity promotes host-parasitoid interactions.

    PubMed

    Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria

    2016-07-13

    Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. PMID:27383815

  13. Trophic links between functional groups of arable plants and beetles are stable at a national scale.

    PubMed

    Brooks, David R; Storkey, Jonathan; Clark, Suzanne J; Firbank, Les G; Petit, Sandrine; Woiwod, Ian P

    2012-01-01

    1. There is an urgent need to accurately model how environmental change affects the wide-scale functioning of ecosystems, but advances are hindered by a lack of knowledge of how trophic levels are linked across space. It is unclear which theoretical approach to take to improve modelling of such interactions, but evidence is gathering that linking species responses to their functional traits can increase understanding of ecosystem dynamics. Currently, there are no quantitative studies testing how this approach might improve models of multiple, trophically interacting species, at wide spatial scales. 2. Arable weeds play a foundational role in linking food webs, providing resources for many taxa, including carabid beetles that feed on their seeds and weed-associated invertebrate prey. Here, we model associations between weeds and carabids across farmland in Great Britain (GB), to test the hypothesis that wide-scale trophic links between these groups are structured by their species functional traits. 3. A network of c. 250 arable fields, covering four crops and most lowland areas of GB, was sampled for weed, carabid and invertebrate taxa over 3 years. Data sets of these groups were closely matched in time and space, and each contained numerous species with a range of eco-physiological traits. The consistency of trophic linkages between multiple taxa sharing functional traits was tested within multivariate and log-linear models. 4. Robust links were established between the functional traits of taxa and their trophic interactions. Autumn-germinating, small-seeded weeds were associated with smaller, spring-breeding carabids, more specialised in seed feeding, whereas spring-germinating, large-seeded weeds were associated with a range of larger, autumn-breeding omnivorous carabids. These relationships were strong and dynamic, being independent of changes in invertebrate food resources and consistent across sample dates, crops and regions of GB. 5. We conclude that, in at

  14. Intra Nucleon Cascade Program

    Energy Science and Technology Software Center (ESTSC)

    1998-08-18

    The package consists of three programs ISABEL, EVA, and PACE-2. ISABEL and PACE-2 are part of the LAHET code. ISABEL is an intra-nucleon cascade program. The output cascades are used as directly as input files to the two evaporation programs EVA and PACE-2. EVA ignores the effect of the angular momentum of the excited nuclei on the deexcitation and also ignores the possibility of gamma emission as long as particle emission is energetically allowed. PACE-2more » takes full account of angular momentum effects including irast levels and gamma emission at all stages of the evaporation chain.« less

  15. Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice

    PubMed Central

    Iwata, Jun-ichi; Suzuki, Akiko; Pelikan, Richard C.; Ho, Thach-Vu; Sanchez-Lara, Pedro A.; Urata, Mark; Dixon, Michael J.; Chai, Yang

    2013-01-01

    Cleft palate is one of the most common human birth defects and is associated with multiple genetic and environmental risk factors. Although mutations in the genes encoding transforming growth factor beta (TGFβ) signaling molecules and interferon regulatory factor 6 (Irf6) have been identified as genetic risk factors for cleft palate, little is known about the relationship between TGFβ signaling and IRF6 activity during palate formation. Here, we show that TGFβ signaling regulates expression of Irf6 and the fate of the medial edge epithelium (MEE) during palatal fusion in mice. Haploinsufficiency of Irf6 in mice with basal epithelial-specific deletion of the TGFβ signaling mediator Smad4 (Smad4fl/fl;K14-Cre;Irf6+/R84C) results in compromised p21 expression and MEE persistence, similar to observations in Tgfbr2fl/fl;K14-Cre mice, although the secondary palate of Irf6+/R84C and Smad4fl/fl;K14-Cre mice form normally. Furthermore, Smad4fl/fl;K14-Cre;Irf6+/R84C mice show extra digits that are consistent with abnormal toe and nail phenotypes in individuals with Van der Woude and popliteal pterygium syndromes, suggesting that the TGFβ/SMAD4/IRF6 signaling cascade might be a well-conserved mechanism in regulating multiple organogenesis. Strikingly, overexpression of Irf6 rescued p21 expression and MEE degeneration in Tgfbr2fl/fl;K14-Cre mice. Thus, IRF6 and SMAD4 synergistically regulate the fate of the MEE, and TGFβ-mediated Irf6 activity is responsible for MEE degeneration during palatal fusion in mice. PMID:23406900

  16. Introgressive hybridization in a trophically polymorphic cichlid

    PubMed Central

    Hulsey, C Darrin; García-de-León, Francisco J

    2013-01-01

    Trophically polymorphic species could represent lineages that are rapidly diverging along an ecological axis or could phenotypically mark the collapse of species through introgressive hybridization. We investigated patterns of introgression between the trophically polymorphic cichlid fish Herichthys minckleyi and its relative H. cyanoguttatus using a combination of population genetics and species tree analyses. We first examined the distribution of mitochondrial haplotypes within the alternative H. minckleyi pharyngeal jaw morphotypes that are endemic to the small desert valley of Cuatro Ciénegas. We recovered two clusters of mitochondrial haplotypes. The first contained a number of slightly differentiated cytochrome b (cytb) haplotypes that showed some phylogeographic signal and were present in both jaw morphotypes. The other haplotype was monomorphic, highly differentiated from the other cluster, present in equal frequencies in the morphotypes, and identical to H. cyanoguttatus haplotypes found outside Cuatro Ciénegas. Then, we investigated whether H. minckleyi individuals with the H. cyanoguttatus cytb were more evolutionarily similar to H. cyanoguttatus or other H. minckleyi using a species tree analysis of 84 nuclear loci. Both H. minckleyi pharyngeal morphotypes, regardless of their cytb haplotype, were quite distinct from H. cyanoguttatus. However, hybridization could be blurring subdivision within H. minckleyi as the alternative jaw morphotypes were not genetically distinct from one another. Accounting for introgression from H. cyanoguttatus will be essential to understand the evolution of the trophically polymorphic cichlid H. minckleyi. PMID:24340193

  17. Introgressive hybridization in a trophically polymorphic cichlid.

    PubMed

    Hulsey, C Darrin; García-de-León, Francisco J

    2013-11-01

    Trophically polymorphic species could represent lineages that are rapidly diverging along an ecological axis or could phenotypically mark the collapse of species through introgressive hybridization. We investigated patterns of introgression between the trophically polymorphic cichlid fish Herichthys minckleyi and its relative H. cyanoguttatus using a combination of population genetics and species tree analyses. We first examined the distribution of mitochondrial haplotypes within the alternative H. minckleyi pharyngeal jaw morphotypes that are endemic to the small desert valley of Cuatro Ciénegas. We recovered two clusters of mitochondrial haplotypes. The first contained a number of slightly differentiated cytochrome b (cytb) haplotypes that showed some phylogeographic signal and were present in both jaw morphotypes. The other haplotype was monomorphic, highly differentiated from the other cluster, present in equal frequencies in the morphotypes, and identical to H. cyanoguttatus haplotypes found outside Cuatro Ciénegas. Then, we investigated whether H. minckleyi individuals with the H. cyanoguttatus cytb were more evolutionarily similar to H. cyanoguttatus or other H. minckleyi using a species tree analysis of 84 nuclear loci. Both H. minckleyi pharyngeal morphotypes, regardless of their cytb haplotype, were quite distinct from H. cyanoguttatus. However, hybridization could be blurring subdivision within H. minckleyi as the alternative jaw morphotypes were not genetically distinct from one another. Accounting for introgression from H. cyanoguttatus will be essential to understand the evolution of the trophically polymorphic cichlid H. minckleyi. PMID:24340193

  18. Microbes are trophic analogs of animals

    PubMed Central

    Steffan, Shawn A.; Chikaraishi, Yoshito; Currie, Cameron R.; Horn, Heidi; Gaines-Day, Hannah R.; Pauli, Jonathan N.; Zalapa, Juan E.; Ohkouchi, Naohiko

    2015-01-01

    In most ecosystems, microbes are the dominant consumers, commandeering much of the heterotrophic biomass circulating through food webs. Characterizing functional diversity within the microbiome, therefore, is critical to understanding ecosystem functioning, particularly in an era of global biodiversity loss. Using isotopic fingerprinting, we investigated the trophic positions of a broad diversity of heterotrophic organisms. Specifically, we examined the naturally occurring stable isotopes of nitrogen (15N:14N) within amino acids extracted from proteobacteria, actinomycetes, ascomycetes, and basidiomycetes, as well as from vertebrate and invertebrate macrofauna (crustaceans, fish, insects, and mammals). Here, we report that patterns of intertrophic 15N-discrimination were remarkably similar among bacteria, fungi, and animals, which permitted unambiguous measurement of consumer trophic position, independent of phylogeny or ecosystem type. The observed similarities among bacterial, fungal, and animal consumers suggest that within a trophic hierarchy, microbiota are equivalent to, and can be interdigitated with, macrobiota. To further test the universality of this finding, we examined Neotropical fungus gardens, communities in which bacteria, fungi, and animals are entwined in an ancient, quadripartite symbiosis. We reveal that this symbiosis is a discrete four-level food chain, wherein bacteria function as the apex carnivores, animals and fungi are meso-consumers, and the sole herbivores are fungi. Together, our findings demonstrate that bacteria, fungi, and animals can be integrated within a food chain, effectively uniting the macro- and microbiome in food web ecology and facilitating greater inclusion of the microbiome in studies of functional diversity. PMID:26598691

  19. Microbes are trophic analogs of animals.

    PubMed

    Steffan, Shawn A; Chikaraishi, Yoshito; Currie, Cameron R; Horn, Heidi; Gaines-Day, Hannah R; Pauli, Jonathan N; Zalapa, Juan E; Ohkouchi, Naohiko

    2015-12-01

    In most ecosystems, microbes are the dominant consumers, commandeering much of the heterotrophic biomass circulating through food webs. Characterizing functional diversity within the microbiome, therefore, is critical to understanding ecosystem functioning, particularly in an era of global biodiversity loss. Using isotopic fingerprinting, we investigated the trophic positions of a broad diversity of heterotrophic organisms. Specifically, we examined the naturally occurring stable isotopes of nitrogen ((15)N:(14)N) within amino acids extracted from proteobacteria, actinomycetes, ascomycetes, and basidiomycetes, as well as from vertebrate and invertebrate macrofauna (crustaceans, fish, insects, and mammals). Here, we report that patterns of intertrophic (15)N-discrimination were remarkably similar among bacteria, fungi, and animals, which permitted unambiguous measurement of consumer trophic position, independent of phylogeny or ecosystem type. The observed similarities among bacterial, fungal, and animal consumers suggest that within a trophic hierarchy, microbiota are equivalent to, and can be interdigitated with, macrobiota. To further test the universality of this finding, we examined Neotropical fungus gardens, communities in which bacteria, fungi, and animals are entwined in an ancient, quadripartite symbiosis. We reveal that this symbiosis is a discrete four-level food chain, wherein bacteria function as the apex carnivores, animals and fungi are meso-consumers, and the sole herbivores are fungi. Together, our findings demonstrate that bacteria, fungi, and animals can be integrated within a food chain, effectively uniting the macro- and microbiome in food web ecology and facilitating greater inclusion of the microbiome in studies of functional diversity. PMID:26598691

  20. 'Cascade Gold' raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cascade Gold’ is a new gold fruited, floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). It has been evaluated at Puyallup, Wash. in plantings from 1988 to 2008. ...

  1. Cascaded thermoacoustic devices

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  2. Trophic position of soil nematodes in boreal forests as indicated by stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Kudrin, Alexey; Tsurikov, Sergey

    2016-04-01

    Despite the well-developed trophic classification of soil nematodes, their position in soil food webs is still little understood. Observed deviations from the typical feeding strategy indicate that a simplified trophic classification probably does not fully reflect actual trophic interactions. Furthermore, the extent and functional significance of nematodes as prey for other soil animals remains unknown. Stable isotope analysis (SIA) is powerful tool for investigating the structure of soil food webs, but its application to the study of soil nematodes has been limited to only a few studies. We used stable isotope analysis to gain a better understanding of trophic links of several groups of soil nematodes in two boreal forests on albeluvisol. We investigated four taxonomic groups of nematodes: Mononchida, Dorylaimida, Plectidae and Tylenchidae (mostly from the genus Filenchus), that according to the conventional trophic classification represent predators, omnivores, bacterivores and root-fungal feeders, respectively. To assess the trophic position of nematodes, we used a comparison against a set of reference species including herbivorous, saprophagous and predatory macro-invertebrates, oribatid and mesostigmatid mites, and collembolans. Our results suggest that trophic position of the investigated groups of soil nematodes generally corresponds to the conventional classification. All nematodes were enriched in 13C relative to Picea abies roots and litter, and mycorrhizal fungal mycelium. Root-fungal feeders Tylenchidae had δ15N values similar to those of earthworms, enchytraeids and Entomobrya collembolans, but slightly lower δ13C values. Bacterivorous Plectidae were either equal or enriched in 15N compared with saprophagous macroinvertebrates and most mesofauna species. Omnivorous Dorylaimida and predatory Mononchida were further enriched in 15N and their isotopic signature was similar to that of predatory arthropods. These data confirm a clear separation of

  3. Cascade decays of hollow ions

    SciTech Connect

    Omar, G. ); Hahn, Y. )

    1991-05-01

    A multiple-electron-emission process for atoms with one or more inner-shell vacancies is treated using the radiative- and Auger-electron-emission cascade model, in which inner-shell holes are assumed to decay by sequentially emitting radiations and/or Auger electrons. Such hollow ions are produced by synchrotron irradiation of atomic targets and in ion-surface interactions with multiple-electron transfers. The final charge-state distribution is determined by the Auger and radiative branching ratios at each stage of the decay sequence. At intermediate stages of cascade, hollow ions with more than one hole in different ionization stages are created. The Ne, Mg, and Fe{sup 14+} ions with the initial 1{ital s}, 2{ital s}, and 2{ital p} vacancies are considered in detail, and the core charge dependence of the maximum charge state is studied. The hollow Mg ion with double initial 1{ital s} holes is analyzed, and the result compared with that for the case of one 1{ital s} hole. The peak is shifted more than two units to a higher degree of ionization. The correlated shake-off and shake-up multiple-electron processes are not considered, but they are expected to cause further shifts.

  4. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  5. Ecological community integration increases with added trophic complexity

    USGS Publications Warehouse

    Wright, C.K.

    2008-01-01

    The existence of functional biological organization at the level of multi-species communities has long been contested in ecology and evolutionary biology. I found that adding a trophic level to simulated ecological communities enhanced their ability to compete at the community level, increasing the likelihood of one community forcing all or most species in a second community to extinction. Community-level identity emerged within systems of interacting ecological networks, while competitive ability at the community level was enhanced by intense within-community selection pressure. These results suggest a reassessment of the nature of biological organization above the level of species, indicating that the drive toward biological integration, so prominent throughout the history of life, might extend to multi-species communities. ?? 2007 Elsevier B.V. All rights reserved.

  6. Zambian Macrophyte Trophic Ranking scheme (ZMTR): assessing the trophic status of tropical southern African rivers

    NASA Astrophysics Data System (ADS)

    Kennedy, Michael; Lang, Pauline; Tapia Grimaldo, Julissa; Varandas Martins, Sara; Bruce, Alannah; Lowe, Steven; Sichingabula, Henry; Briggs, John; Murphy, Kevin

    2015-04-01

    A new river bioassessment scheme to indicate the trophic status of tropical southern African river systems was developed using newly collected data from macrophyte and water chemistry surveys, conducted during 2006 - 2012. 271 samples were collected from 228 sites in Zambian rivers and associated floodplain waterbodies, mainly located in the five freshwater ecoregions of the world which are primarily represented in Zambia. A typology based on these ecoregions, and three categories of stream order (standing waters; small streams; larger streams and rivers) was set up to structure the data and determine reference conditions for PO4-P. The biomonitoring protocols for the Zambian Macrophyte Trophic Ranking system (ZMTR) were based on schemes used in non-tropical parts of the world, particularly the UK and South Africa, but recalibrated and adapted to reflect tropical conditions and include tropical macrophyte species. Zambian Trophic Ranking Scores (ZTRS-sp) were calculated for each of 225 macrophyte species recorded in the survey, using a quantitative procedure based on relative occurrence of each species in six end sample-groups, of differing mean orthophosphate status, produced by TWINSPAN classification of the dataset. ZMTR-sample values were then calculated based on the occurrence of macrophyte species in each sample. The outcome suggests that the scheme predicts the (mainly mid-range) trophic status of Zambian river systems quite well but tends to underestimate high enrichment, and overestimate the trophic status of some low nutrient rivers. Case studies are presented of application of the methodology, and the potential of the method for hindcasting river trophic status in the wider geographic region is outlined.

  7. Trophic transfer of silver nanoparticles from earthworms disrupts the locomotion of springtails (Collembola).

    PubMed

    Kwak, Jin Il; An, Youn-Joo

    2016-09-01

    Understanding how nanomaterials are transferred through food chains and evaluating their resulting toxicity is important. However, limited research has been conducted on the toxic consequences of trophically transferred nanomaterials in terrestrial ecosystems. In this study, we documented the adverse effects of trophically transferred silver nanoparticles (AgNPs) in a soil-earthworm (Eisenia andrei)-Collembola (Lobella sokamensis) food chain. We exposed E. andrei to soil with AgNPs at concentrations of 50, 200, and 500μg AgNPs/g soil dry weight and assessed their survival after 7days. Trophic-transfer containers were then prepared and E. andrei that survived the 7days test period were washed, killed in boiling water, and added to the containers with L. sokamensis. We noted negligible effects and low bioaccumulation at the lowest AgNP concentration (50μg AgNPs/g soil dry weight) in earthworms and the L. sokamensis that fed on them. The highest concentration of AgNPs (500μg AgNPs/g soil dry weight) resulted in juvenile earthworm mortality and increased transfer of AgNPs to Collembola, which subsequently inhibited their locomotion. To our knowledge, this is the first study to document the trophic transfer and adverse effects of AgNPs in a soil-earthworm-Collembola food chain, a common prey-decomposer interaction in soil ecosystems. PMID:27187058

  8. Trophic state determination for shallow coastal lakes from Landsat imagery

    NASA Technical Reports Server (NTRS)

    Welby, C. W.; Witherspoon, A. M.; Holman, R. E., III

    1981-01-01

    A study has been carried out to develop a photo-optical technique by which Landsat imagery can be used to monitor trophic states of lakes. The proposed technique uses a single number to characterize the trophic state, and a feature within the satellite scene is used as an internal standard for comparison of the lakes in time. By use of the technique it is possible to assess in retrospect the trophic state of each individual lake.

  9. Fundamental Investigation of Circumferentially Varying Stator Cascades

    NASA Astrophysics Data System (ADS)

    Farnsworth, John A. N.

    2011-12-01

    The fundamentals of circumferentially varying stator cascades and their interactions with a downstream fixed pitch propeller were investigated experimentally utilizing multiple measurement techniques. The flow physics associated with the isolated circumferentially varying, or cyclic, stator cascade was studied in a wind tunnel environment through string tuft flow visualization, 2-D PIV, Stereoscopic PIV, and static surface pressure measurements. The coupled wake physics of the cyclic stator cascade with propeller were then investigated in a water tunnel using Stereo PIV. Finally, the global performance of components and the coupled system were quantified through force and moment measurements on the model in the water tunnel. A cyclic distribution of the stators' deflections resulted in non-axisymmetric distributions of the surface pressure and the flow field downstream of the stator array. In the model near wake the flow field is associated with secondary flow patterns in the form of coherent streamwise vortical structures that can be described by potential flow mechanisms. The collective pitch distribution of the stators produces a flow field that resembles a potential Rankine vortex, whereas the cyclic pitch distribution generates a flow pattern that can be described by a potential vortex pair in a cross flow. The stator distribution alone produces a significant side force that increases linearly with stator pitch amplitude. When a propeller is incorporated downstream from the cyclic cascade the side force from the stator cascade is reduced, but a small vertical force and pitching moment are created. The generation of these secondary forces and moments can be related to the redistribution of the tangential flow from the cyclic cascade into the axial direction by the retreating and advancing blade states of the fixed pitch propeller.

  10. The Geant4 Bertini Cascade

    NASA Astrophysics Data System (ADS)

    Wright, D. H.; Kelsey, M. H.

    2015-12-01

    One of the medium energy hadron-nucleus interaction models in the GEANT4 simulation toolkit is based partly on the Bertini intranuclear cascade model. Since its initial appearance in the toolkit, this model has been largely re-written in order to extend its physics capabilities and to reduce its memory footprint. Physics improvements include extensions in applicable energy range and incident particle types, and improved hadron-nucleon cross-sections and angular distributions. Interfaces have also been developed which allow the model to be coupled with other GEANT4 models at lower and higher energies. The inevitable speed reductions due to enhanced physics have been mitigated by memory and CPU efficiency improvements. Details of these improvements, along with selected comparisons of the model to data, are discussed.

  11. Diversity Cascades and Malaria Vectors

    PubMed Central

    CARLSON, JOHN C.; DYER, LEE A.; OMLIN, FRANCOIS X.; BEIER, JOHN C.

    2009-01-01

    The interactions between predator diversity and primary consumer abundance can include direct effects and indirect, cascading effects. Understanding these effects on immature Anopheles mosquitoes is important in sub-Saharan Africa, where most cases of malaria occur. Aquatic predators and immature mosquitoes were collected from shallow pools of varying age previously excavated by brickmakers in the western highlands of Kenya. Path analysis showed an indirect negative effect of habitat age on An. gambiae (Giles, 1902) mediated by effects on predator diversity. Disturbance resets habitats to an earlier successional stage, diminishing predator diversity and increasing An. gambiae populations. The increase in vector abundance as a result of reduced predator diversity highlights the public health value in conserving native insect diversity. PMID:19496413

  12. The Geant4 Bertini Cascade

    SciTech Connect

    Wright, D. H.; Kelsey, M. H.

    2015-12-01

    One of the medium energy hadron–nucleus interaction models in the Geant4 simulation toolkit is based partly on the Bertini intranuclear cascade model. Since its initial appearance in the toolkit, this model has been largely re-written in order to extend its physics capabilities and to reduce its memory footprint. Physics improvements include extensions in applicable energy range and incident particle types, and improved hadron–nucleon cross-sections and angular distributions. Interfaces have also been developed which allow the model to be coupled with other Geant4 models at lower and higher energies. The inevitable speed reductions due to enhanced physics have been mitigated by memory and CPU efficiency improvements. Details of these improvements, along with selected comparisons of the model to data, are discussed.

  13. Severe Droughts Reduce Estuarine Primary Productivity with Cascading Effects on Higher Trophic Levels

    EPA Science Inventory

    Using a 10 year time-series dataset, we analyzed the effects of two severe droughts on water quality and ecosystem processes in a temperate, eutrophic estuary (Neuse River Estuary, North Carolina). During the droughts, dissolved inorganic nitrogen concentrations were on average 4...

  14. Trophic cascades following the disease-induced decline of an apex predator, the Tasmanian devil.

    PubMed

    Hollings, Tracey; Jones, Menna; Mooney, Nick; McCallum, Hamish

    2014-02-01

    As apex predators disappear worldwide, there is escalating evidence of their importance in maintaining the integrity and diversity of the ecosystems they inhabit. The largest extant marsupial carnivore, the Tasmanian devil (Sarcophilus harrisii) is threatened with extinction from a transmissible cancer, devil facial tumor disease (DFTD). The disease, first observed in 1996, has led to apparent population declines in excess of 95% in some areas and has spread to more than 80% of their range. We analyzed a long-term Tasmania-wide data set derived from wildlife spotlighting surveys to assess the effects of DFTD-induced devil decline on populations of other mammals and to examine the relative strength of top-down and bottom-up control of mesopredators between 2 regions with different environmental conditions. Collection of the data began >10 years before DFTD was first observed. A decrease in devil populations was immediate across diseased regions following DFTD arrival, and there has been no indication of population recovery. Feral cats (Felis catus) increased in areas where the disease was present the longest, and feral cat occurrence was significantly and negatively associated with devils. The smallest mesopredator, the eastern quoll (Dasyurus viverrinus), declined rapidly following DFTD arrival. This result suggests the species was indirectly protected by devils through the suppression of larger predators. Rainfall deficiency was also a significant predictor of their decline. Environmental variables determined the relative importance of top-down control in the population regulation of mesopredators. In landscapes of low rainfall and relatively higher proportions of agriculture and human settlement, top-down forces were dampened and bottom-up forces had the most effect on mesopredators. For herbivore prey species, there was evidence of population differences after DFTD arrival, but undetected environmental factors had greater effects. The unique opportunity to assess population changes over extensive temporal and spatial scales following apex predator loss further demonstrated their role in structuring ecosystems and of productivity in determining the strength of top-down control. PMID:24024987

  15. Trophic cascades in a cranberry marsh: Can detritus-removal improve biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological pest control is predicated on the concept that plants are protected when carnivores suppress herbivore populations. However, many factors, including detritus-based food-chains, may re-shape the effectiveness of predators in a given agro ecosystem. The addition of detrital subsidies, such ...

  16. TESTING THE GENERALITY OF A TROPHIC CASCADE MODEL FOR PLAGUE. (R829091)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Sending mixed messages: a trophic cascade produced by a belowground herbivore-induced cue.

    PubMed

    Ali, Jared G; Campos-Herrera, Raquel; Alborn, Hans T; Duncan, Larry W; Stelinski, Lukasz L

    2013-08-01

    Plants defend themselves against herbivores both directly (chemical toxins and physical barriers) and indirectly (attracting natural enemies of their herbivores). Previous work has shown that plant roots of citrus defend against root herbivores by releasing an herbivore-induced plant volatile (HIPV), pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene), that attracts naturally occurring entomopathogenic nematodes (EPNs) to Diaprepes abbreviatus larvae when applied in the field. However, the soil community is complex and contains a diversity of interspecific relationships that modulate food web assemblages. Herein, we tested the hypothesis that other nematode types beyond EPNs, as well as, nematophagous fungi are affected by the same HIPV that attracts EPNs to herbivore-damaged roots. We employed molecular probes designed to detect and quantify nematodes from the Acrobeloides-group (free-living bacterivorous nematodes, FLBNs), some of which compete with EPNs by 'hyperparasitizing' insect cadavers, and five species of nematophagous fungi (NF), which attack and kill EPNs. In two different agricultural systems (citrus and blueberry), we detected diverse species of nematodes and fungi; however, only the behavior of FLBNs was affected in a manner similar to that reported previously for EPNs. Although detected, NF abundance was not statistically affected by the presence of the belowground HIPV. We provide the first evidence showing subterranean HIPVs behave much the same as those aboveground, attracting not only parasitoids, but also hyperparasites and other food web members. PMID:23925492

  18. Sending mixed messages: a trophic cascade produced by a belowground herbivore-induced cue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants defend themselves against herbivores both directly (chemical toxins and physical barriers) and indirectly (attracting natural enemies of their herbivores). Previous work has shown that roots of citrus defend themselves against root herbivores by releasing an herbivore induced plant volatile (...

  19. Forest fragmentation reduces parasitism via species loss at multiple trophic levels.

    PubMed

    Fenoglio, Maria Silvina; Srivastava, Diane; Valladares, Graciela; Cagnolo, Luciano; Salvo, Adriana

    2012-11-01

    Although there is accumulating evidence from artificially assembled communities that reductions of species diversity result in diminished ecosystem functioning, it is not yet clear how real-world changes in diversity affect the flow of energy between trophic levels in multi-trophic contexts. In central Argentina, forest fragmentation has led to species loss of plants, herbivore and parasitoid insects, decline in trophic processes (herbivory and parasitism), and food web contraction. Here we examine if and how loss of parasitoid species following fragmentation causes decreased parasitism rates, by analyzing food webs of leaf miners and parasitoids from 19 forest fragments of decreasing size. We asked three questions: Do reductions in parasitoid richness following fragmentation directly or indirectly affect parasitism rate? Are changes in community parasitism rate driven by changes in the parasitism rate of individual leaf miner species, or changes in leaf miner composition, or both? Which traits of species determine the effects of food web change on parasitism rates? We found that habitat loss initiated a bottom-up cascade of extinctions from plants to leaf miners to parasitoids, with reductions in parasitoid richness ultimately driving decreases in parasitism rates. This relationship between parasitoid richness and parasitism depended on changes in the relative abundance (but not occurrence) of leaf miners such that parasitoid-rich fragments were dominated by leaf miner species that supported high rates of parasitism. Surprisingly, we found that only a small subset of species in the food web could account for much of the increase in parasitism with parasitoid richness: lepidopteran miners that attained exceptionally high densities in some fragments and their largely specialist parasitoids. How specialized a parasitoid is, and the relative abundance of leaf miners, had important effects on the diversity-parasitism rate relationship, but not other leaf miner traits

  20. Cascaded humidified advanced turbine

    SciTech Connect

    Nakhamkin, M.; Swenson, E.C.; Cohn, A.; Bradshaw, D.; Taylor, R.; Wilson, J.M.; Gaul, G.; Jahnke, F.; Polsky, M.

    1995-05-01

    This article describes how, by combining the best features of simple- and combined-cycle gas turbine power plants, the CHAT cycle concept offers power producers a clean, more efficient and less expensive alternative to both. The patented cascaded advanced turbine and its cascaded humidified advanced turbine (CHAT) derivative offer utilities and other power producers a practical advanced gas turbine power plant by combining commercially-available gas turbine and industrial compressor technologies in a unique way. Compared to combined-cycle plants, a CHAT power plant has lower emissions and specific capital costs-approximately 20 percent lower than what is presently available. Further, CHAT`s operating characteristics are especially well-suited to load following quick start-up scenarios and they are less susceptible to power degradation from higher ambient air temperature conditions.

  1. Emergence of structural patterns in neutral trophic networks.

    PubMed

    Canard, Elsa; Mouquet, Nicolas; Marescot, Lucile; Gaston, Kevin J; Gravel, Dominique; Mouillot, David

    2012-01-01

    Interaction networks are central elements of ecological systems and have very complex structures. Historically, much effort has focused on niche-mediated processes to explain these structures, while an emerging consensus posits that both niche and neutral mechanisms simultaneously shape many features of ecological communities. However, the study of interaction networks still lacks a comprehensive neutral theory. Here we present a neutral model of predator-prey interactions and analyze the structural characteristics of the simulated networks. We find that connectance values (complexity) and complexity-diversity relationships of neutral networks are close to those observed in empirical bipartite networks. High nestedness and low modularity values observed in neutral networks fall in the range of those from empirical antagonist bipartite networks. Our results suggest that, as an alternative to niche-mediated processes that induce incompatibility between species ("niche forbidden links"), neutral processes create "neutral forbidden links" due to uneven species abundance distributions and the low probability of interaction between rare species. Neutral trophic networks must be seen as the missing endpoint of a continuum from niche to purely stochastic approaches of community organization. PMID:22899987

  2. Superconducting cascade electron refrigerator

    SciTech Connect

    Camarasa-Gómez, M.; Giazotto, F.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.

    2014-05-12

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  3. Information cascade on networks

    NASA Astrophysics Data System (ADS)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  4. Superconducting cascade electron refrigerator

    NASA Astrophysics Data System (ADS)

    Camarasa-Gómez, M.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.; Giazotto, F.

    2014-05-01

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  5. A simple model of global cascades on random networks

    PubMed Central

    Watts, Duncan J.

    2002-01-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascades—herein called global cascades—that occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable. PMID:16578874

  6. Can salinity trigger cascade effects on streams? A mesocosm approach.

    PubMed

    Cañedo-Argüelles, Miguel; Sala, Miquel; Peixoto, Gabriela; Prat, Narcís; Faria, Melissa; Soares, Amadeu M V M; Barata, Carlos; Kefford, Ben

    2016-01-01

    Human activities have greatly increased the salt concentration of the world's rivers, and this might be amplified by water scarcity in the future. While the lethal effects of salinity have been documented for a wide variety of stream invertebrates, the sub-lethal effects (i.e. changes in biological condition without mortality) are not deeply understood yet. One important sub-lethal effect that has yet to be investigated is changes in predation efficiency, which could trigger cascade effects associated to the abundance of herbivorous invertebrates that control algae biomass. In this study we combined the use of biomarkers with community-level data in a stream mesocosm to evaluate the potential cascade effect of increased salinity on the trophic food web. Both predation and salt treatments had an effect on the aquatic invertebrate abundance, richness and community composition. The presence of predators had a clear cascade effect, it reduced herbivorous invertebrate abundance and richness leading to higher chlorophyll a concentrations. The salt treatment significantly reduced taxa richness, but only in the gravel bed. The predators were significantly stressed by salt addition, as shown by the different analyzed biomarkers. Concordantly, in the presence of predators, Tanytarsini registered higher abundances and chlorophyll a showed a lower concentration when salt was added. However, none of these changes was significant. Therefore, although salt addition significantly stressed Dina lineata, our results suggest that a longer exposure time is needed to fully capture cascading effects (e.g. a decrease in chlorophyll a due to a relaxation of predation on herbivorous invertebrates). We suggest that the potential cascade effects of salinization need to be evaluated when addressing the impacts of water scarcity (as caused by climate change and increasing water demand) on river ecosystems, since flow reductions will lead to higher salt concentrations. PMID:25818391

  7. Trophic radiation through polymorphism in cichlid fishes.

    PubMed

    Sage, R D; Selander, R K

    1975-11-01

    Several morphologically defined species of cichlid fishes (Cichlasoma) endemic to the Cuatro Cienegas basin of Mexico and differing in tooth structure, body shape, and diet are allelically identical at 27 gene loci. The presence of only one Mendelian population in each of three drainage systems studied and the occurrence of two of the morphotypes in the same broods indicate that the supposed species are morphs. That trophic radiation in the Cuatro Cienegas cichlids has been achieved through ecological polymorphism rather than speciation raises questions regarding the genetic basis for the extensive intralacustrine radiation of cichlids in Africa and elsewhere. PMID:16592286

  8. Trophic radiation through polymorphism in cichlid fishes

    PubMed Central

    Sage, Richard D.; Selander, Robert K.

    1975-01-01

    Several morphologically defined species of cichlid fishes (Cichlasoma) endemic to the Cuatro Cienegas basin of Mexico and differing in tooth structure, body shape, and diet are allelically identical at 27 gene loci. The presence of only one Mendelian population in each of three drainage systems studied and the occurrence of two of the morphotypes in the same broods indicate that the supposed species are morphs. That trophic radiation in the Cuatro Cienegas cichlids has been achieved through ecological polymorphism rather than speciation raises questions regarding the genetic basis for the extensive intralacustrine radiation of cichlids in Africa and elsewhere. Images PMID:16592286

  9. Trigeminal trophic syndrome treated with thermoplastic occlusion.

    PubMed

    Kurien, Anil M; Damian, Diona L; Moloney, Fergal J

    2011-02-01

    A 72-year-old man with a history of thrombotic CVA causing lateral medullary infarction presented with non-healing ulcers of the right side of the face of 5 months' duration. After extensive investigations, a diagnosis of trigeminal trophic syndrome was made. The ulcers progressed relentlessly despite amitriptyline and gabapentin, and he was treated with a combination of carbamazepine and thermoplastic mask occlusion of the right side of his face. Over the next 10 weeks the shallower facial ulcers began to diminish in depth and diameter, and the deeper ulcers stopped progressing. Although the patient showed early signs of healing, he died because of complications from the CVA. PMID:21332680

  10. Coupled 2-dimensional cascade theory for noise an d unsteady aerodynamics of blade row interaction in turbofans. Volume 2: Documentation for computer code CUP2D

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1994-01-01

    A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.

  11. Atomistic Simulation of Displacement Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Weber, William J.; Corrales, Louis R.; BP McGrail and GA Cragnolino

    2002-05-06

    Low energy displacement cascades in zircon (ZrSiO4) initiated by a Zr primary knock-on atom have been investigated by molecular dynamics simulations using a Coulombic model for long-range interactions, Buckingham potential for short-range interactions and Ziegler-Biersack potentials for close pair interactions. Displacements were found to occur mainly in the O sublattice, and O replacements by a ring mechanism were predominant. Clusters containing Si interstitials bridged by O interstitials, vacancy clusters and anti-site defects were found to occur. This Si-O-Si bridging is considerable in quenched liquid ZrSiO4.

  12. Cascade properties of shear Alfven wave turbulence

    NASA Technical Reports Server (NTRS)

    Bondeson, A.

    1985-01-01

    Nonlinear three-wave interactions of linear normal modes are investigated for two-dimensional incompressible magnetohydrodynamics and the weakly three-dimensional Strauss equations in the case where a strong uniform background field B0 is present. In both systems the only resonant interaction affecting Alfven waves is caused by the shear of the background field plus the zero frequency components of the perturbation. It is shown that the Alfven waves are cascaded in wavenumber space by a mechanism equivalent to the resonant absorption at the Alfven resonance. For large wavenumbers perpendicular to B0, the cascade is described by Hamilton's ray equations, dk/dt = -(first-order) partial derivative of omega with respect to vector r, where omega includes the effects of the zero frequency perturbations.

  13. Trophic level responses differ as climate warms in Ireland

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant ( P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature ( P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly ( P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  14. Trophic level responses differ as climate warms in Ireland.

    PubMed

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant (P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature (P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly (P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms. PMID:25380974

  15. Drivers of trophic amplification of ocean productivity trends in a changing climate

    NASA Astrophysics Data System (ADS)

    Stock, C. A.; Dunne, J. P.; John, J. G.

    2014-12-01

    physical and biological interactions governing ZGE, MESOTL and ZPC is needed to further refine estimates of climate-driven productivity changes across trophic levels.

  16. The virus's tooth: cyanophages affect an African flamingo population in a bottom-up cascade

    PubMed Central

    Peduzzi, Peter; Gruber, Martin; Gruber, Michael; Schagerl, Michael

    2014-01-01

    Trophic cascade effects occur when a food web is disrupted by loss or significant reduction of one or more of its members. In East African Rift Valley lakes, the Lesser Flamingo is on top of a short food chain. At irregular intervals, the dominance of their most important food source, the cyanobacterium Arthrospira fusiformis, is interrupted. Bacteriophages are known as potentially controlling photoautotrophic bacterioplankton. In Lake Nakuru (Kenya), we found the highest abundance of suspended viruses ever recorded in a natural aquatic system. We document that cyanophage infection and the related breakdown of A. fusiformis biomass led to a dramatic reduction in flamingo abundance. This documents that virus infection at the very base of a food chain can affect, in a bottom-up cascade, the distribution of end consumers. We anticipate this as an important example for virus-mediated cascading effects, potentially occurring also in various other aquatic food webs. PMID:24430484

  17. Initial Review of Methods for Cascading Failure Analysis in Electric Power Transmission Systems

    SciTech Connect

    Baldick, R.; Chowdhury, Badrul; Dobson, Ian; Dong, Zhao Yang; Gou, Bei; Hawkins, David L.; Huang, Zhenyu; Joung, Manho; Kirschen, Daniel; Li, Fangxing; Li, Juan; Li, Zuyi; Liu, Chen-Ching; Mili, Lamine; Miller, Stephen; Podmore, Robin; Schneider, Kevin P.; Sun, Kai; Wang, David; Wu, Zhigang; Zhang, Pei; Zhang, Wenjie; Zhang, Xiaoping

    2008-09-09

    Large blackouts are typically caused by cascading failure propagating through a power system by means of a variety of processes. Because of the wide range of time scales, mulitple interacting processes, and the hugh number of possible interactions, the simulation and analysis of cascading blackouts is extremely complicated. This paper defines cascading failure for blackouts and gives an initial review of the current understanding, industrial tools, and the challenges and emerging methods of analysis and simulation.

  18. [Treatment of trophic ulsers of different etiology].

    PubMed

    Bogomolov, M S; Slobodianiuk, V V

    2013-01-01

    The research included 40 patients with chronic trophic ulcers of lower extremities of different etiology (arterial insufficiency - 14 patients, venous insufficiency - 20 patients, diabetic foot syndrome - 6 people). According to the data of prime bacteriological inoculation, the main pathogens were: gram-positive coccus (Staphylococcus spp., Staphylococcus aureus - 75%, Staphylococcus epidermidis - 7,5%) and yeast-like fungi (Candida albicans - 7,5%). Microbial semination in plentiful quantity (more than 106 KOE) was detected at first inoculation in 85% of the patients. The ointment was applied for the patients. After 20 days, the lack of growth and the decrease of contamination level (lower than critical (less than 102 KOE) were noted. A visual analog scale estimated an intensity of pain in patients and it consisted of 39,8% before the treatment, 27,1% - after 10 days, 14,6% - after 20 days. The "Oflomelid" application allowed the reduction of the terms of wound cleansing from nonviable tissues in majority of patients and gained the fast transition from the granulation to epithelization phase. The principle of wound management with the application of ointment "Oflomelid" should be followed in a moist environment. A modern wound dressing must be used after the ointment. This shortened the terms of separate-phase wound repair and decreased the terms of the whole period of trophic ulcers repair in patients with vascular and endocrine pathology. PMID:24640746

  19. Trophic dynamics influence climate at high latitudes

    NASA Astrophysics Data System (ADS)

    Oksanen, L.; Tuomi, M.; Hoset, K.; Oksanen, T.; Olofsson, J.; Dahlgren, J.; Nordic Center of Excellence-Tundra

    2011-12-01

    Abundance relationships between tall woody plants and low herbaceous plants influence ground albedo. Increasing abundance of erect woody plants on the tundra increase the amount of solar energy converted to heat, thus speeding up global warming. By transplanting vegetation blocks from an island with predatory mammals and gray-sided voles (Myodes rufocanus) to similar habitats on islands with gray-sided voles but no resident predators and to islands with neither voles nor predators, we show that changing trophic dynamics radically change the abundance relationships between woody and herbaceous plants. Impacts of food limited gray-sided voles result to devastation of all erect woody plants, regardless of their palatability, thus differing both quantitatively and qualitatively from the selective impacts of the same species in the presence of predators. The shift from vegetation dominated by erect woody plants to vegetation dominated by herbs or trailing dwarf shrubs also increases ground albedo. The relationship between climate and trophic dynamics is thus no one way street. Rather than responding passively to changes in climate, food webs can also influence climate via their impacts on ground albedo.

  20. Tri-trophic insecticidal effects of African plants against cabbage pests.

    PubMed

    Amoabeng, Blankson W; Gurr, Geoff M; Gitau, Catherine W; Nicol, Helen I; Munyakazi, Louis; Stevenson, Phil C

    2013-01-01

    Botanical insecticides are increasingly attracting research attention as they offer novel modes of action that may provide effective control of pests that have already developed resistance to conventional insecticides. They potentially offer cost-effective pest control to smallholder farmers in developing countries if highly active extracts can be prepared simply from readily available plants. Field cage and open field experiments were conducted to evaluate the insecticidal potential of nine common Ghanaian plants: goat weed, Ageratum conyzoides (Asteraceae), Siam weed, Chromolaena odorata (Asteraceae), Cinderella weed, Synedrella nodiflora (Asteraceae), chili pepper, Capsicum frutescens (Solanaceae), tobacco, Nicotiana tabacum (Solanaceae) cassia, Cassia sophera (Leguminosae), physic nut, Jatropha curcas (Euphorbiaceae), castor oil plant, Ricinus communis (Euphorbiaceae) and basil, Ocimum gratissimum (Lamiaceae). In field cage experiments, simple detergent and water extracts of all botanical treatments gave control of cabbage aphid, Brevicoryne brassicae and diamondback moth, Plutella xylostella, equivalent to the synthetic insecticide Attack® (emamectin benzoate) and superior to water or detergent solution. In open field experiments in the major and minor rainy seasons using a sub-set of plant extracts (A. conyzoides, C. odorata, S. nodiflora, N. tabacum and R. communis), all controlled B. brassicae and P. xylostella more effectively than water control and comparably with or better than Attack®. Botanical and water control treatments were more benign to third trophic level predators than Attack®. Effects cascaded to the first trophic level with all botanical treatments giving cabbage head weights, comparable to Attack® in the minor season. In the major season, R. communis and A conyzoides treatment gave lower head yields than Attack® but the remaining botanicals were equivalent or superior to this synthetic insecticide. Simply-prepared extracts from readily

  1. Tri-Trophic Insecticidal Effects of African Plants against Cabbage Pests

    PubMed Central

    Amoabeng, Blankson W.; Gurr, Geoff M.; Gitau, Catherine W.; Nicol, Helen I.; Stevenson, Phil C.

    2013-01-01

    Botanical insecticides are increasingly attracting research attention as they offer novel modes of action that may provide effective control of pests that have already developed resistance to conventional insecticides. They potentially offer cost-effective pest control to smallholder farmers in developing countries if highly active extracts can be prepared simply from readily available plants. Field cage and open field experiments were conducted to evaluate the insecticidal potential of nine common Ghanaian plants: goat weed, Ageratum conyzoides (Asteraceae), Siam weed, Chromolaena odorata (Asteraceae), Cinderella weed, Synedrella nodiflora (Asteraceae), chili pepper, Capsicum frutescens (Solanaceae), tobacco, Nicotiana tabacum (Solanaceae) cassia, Cassia sophera (Leguminosae), physic nut, Jatropha curcas (Euphorbiaceae), castor oil plant, Ricinus communis (Euphorbiaceae) and basil, Ocimum gratissimum (Lamiaceae). In field cage experiments, simple detergent and water extracts of all botanical treatments gave control of cabbage aphid, Brevicoryne brassicae and diamondback moth, Plutella xylostella, equivalent to the synthetic insecticide Attack® (emamectin benzoate) and superior to water or detergent solution. In open field experiments in the major and minor rainy seasons using a sub-set of plant extracts (A. conyzoides, C. odorata, S. nodiflora, N. tabacum and R. communis), all controlled B. brassicae and P. xylostella more effectively than water control and comparably with or better than Attack®. Botanical and water control treatments were more benign to third trophic level predators than Attack®. Effects cascaded to the first trophic level with all botanical treatments giving cabbage head weights, comparable to Attack® in the minor season. In the major season, R. communis and A conyzoides treatment gave lower head yields than Attack® but the remaining botanicals were equivalent or superior to this synthetic insecticide. Simply-prepared extracts from readily

  2. Reassessing the trophic role of reef sharks as apex predators on coral reefs

    NASA Astrophysics Data System (ADS)

    Frisch, Ashley J.; Ireland, Matthew; Rizzari, Justin R.; Lönnstedt, Oona M.; Magnenat, Katalin A.; Mirbach, Christopher E.; Hobbs, Jean-Paul A.

    2016-06-01

    Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark ( Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.

  3. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study.

    PubMed

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; Calijuri, Maria do Carmo

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation (P < 0.01, ANCOVA). The results indicated that the water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050  org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation. PMID:26604008

  4. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study

    NASA Astrophysics Data System (ADS)

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; do Carmo Calijuri, Maria

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation ( P < 0.01, ANCOVA). The results indicated that the water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050 org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.

  5. [Cell technologies in complex treatment of venous trophic ulcers].

    PubMed

    Gavrilenko, A V; Pavlova, O V; Ivanov, A A; Vakhrat'ian, P E; Dashinimaev, É B; Li, R A

    2011-01-01

    Live skin equivalent and fibroblasts in gel were used in complex treatment of venous trophic ulcers to evaluate efficacy of cell transplants. Their efficacy depended on extent of trophic ulcer and time of their existence. Cell culture method is minimally traumatic, can be used in elder patients and seniors and gives positive results in 85% of cases. PMID:21350400

  6. Assessing Lake Trophic Status: A Proportional Odds Logistic Regression Model

    EPA Science Inventory

    Lake trophic state classifications are good predictors of ecosystem condition and are indicative of both ecosystem services (e.g., recreation and aesthetics), and disservices (e.g., harmful algal blooms). Methods for classifying trophic state are based off the foundational work o...

  7. COASTAL WETLAND-NEARSHORE FOOD WEB LINKAGES ALONG A TROPHIC GRADIENT IN GREEN BAY: A FISH-EYE VIEW

    EPA Science Inventory

    To identify ecological interactions among Green Bay coastal wetlands and lake habitats we analyzed stable isotope signatures of organismsa from wetland and adjacent nearshore food webs in Green Bay, Lake Michigan. We were interested in the influence of nutrient loading/trophic st...

  8. The Ufm1 Cascade

    PubMed Central

    Daniel, Jens; Liebau, Eva

    2014-01-01

    The ubiquitin-fold modifier 1 (Ufm1) is a posttranslational modifier that belongs to the ubiquitin-like protein (UBL) family. Ufm1 is present in nearly all eukaryotic organisms, with the exception of fungi. It resembles ubiquitin in its ability to be ligated to other proteins, as well as in the mechanism of ligation. While the Ufm1 cascade has been implicated in endoplasmic reticulum functions and cell cycle control, its biological role still remains poorly understood. In this short review, we summarize the current state of Ufm1 research and its potential role in human diseases, like diabetes, ischemic heart disease and cancer. PMID:24921187

  9. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea.

    PubMed

    Puerta, Patricia; Hunsicker, Mary E; Quetglas, Antoni; Álvarez-Berastegui, Diego; Esteban, Antonio; González, María; Hidalgo, Manuel

    2015-01-01

    Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla) and sea surface temperature (SST), and trophic (prey density) conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid) across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents a valuable

  10. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea

    PubMed Central

    Puerta, Patricia; Hunsicker, Mary E.; Quetglas, Antoni; Álvarez-Berastegui, Diego; Esteban, Antonio; González, María; Hidalgo, Manuel

    2015-01-01

    Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla) and sea surface temperature (SST), and trophic (prey density) conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid) across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents a valuable

  11. Trophic flow structure of the Danajon ecosystem (Central Philippines) and impacts of illegal and destructive fishing practices

    NASA Astrophysics Data System (ADS)

    Bacalso, Regina Therese M.; Wolff, Matthias

    2014-11-01

    A trophic model of the shallow Danajon Bank, in the Central Visayas, Philippines was developed using a mass-balance approach (Ecopath) to describe the system characteristics and fisheries interactions. The Ecopath model is composed of 37 functional groups and 17 fishing fleet types reflecting the high diversity of catches and fishing operations in the Danajon Bank. Collectively, the catch is dominated by lower trophic level fish and invertebrates as reflected in the mean trophic level of the fishery (2.95). The low biomass and high exploitation levels for many upper trophic level groups and the little evidence for strong natural physical disturbances suggest that top-down fishery is the main driver of system dynamics. The mixed trophic impacts (MTI) analysis reveals the role of the illegal and destructive fishing operations in influencing the ecosystem structure and dynamics. Furthermore, the illegal fisheries' estimated collective annual harvest is equivalent to nearly a quarter of the entire municipal fisheries catch in the area. Improved fisheries law enforcement by the local government units to curb these illegal and destructive fishing operations could substantially increase the potential gains of the legal fisheries.

  12. Richness-Productivity Relationships Between Trophic Levels in a Detritus-Based System: Significance of Abundance and Trophic Linkage.

    EPA Science Inventory

    Most theoretical and empirical studies of productivity–species richness relationships fail to consider linkages among trophic levels. We quantified productivity–richness relationships in detritus-based, water-filled tree-hole communities for two trophic levels: invertebrate consu...

  13. Stable Isotopes Reveal Trophic Partitioning and Trophic Plasticity of a Larval Amphibian Guild.

    PubMed

    Arribas, Rosa; Díaz-Paniagua, Carmen; Caut, Stephane; Gomez-Mestre, Ivan

    2015-01-01

    Temporary ponds are highly variable systems where resource availability and community structure change extensively over time, and consequently the food web is highly dynamic. Amphibians play a critical role both as consumers and prey in aquatic communities and yet there is still little information on the trophic status of most amphibians. More importantly, little is known about the extent to which they can alter their trophic ecology in response to changing conditions. We experimentally investigated the effects of increased amphibian density, presence of intraguild competitors, and presence of native and invasive predators (either free or caged) on the trophic status of a Mediterranean amphibian guild, using stable isotopes. We observed variations in δ13C and δ15N isotopic values among amphibian species and treatments and differences in their food sources. Macrophytes were the most important food resource for spadefoot toad tadpoles (Pelobates cultripes) and relatively important for all anurans within the guild. High density and presence of P. cultripes tadpoles markedly reduced macrophyte biomass, forcing tadpoles to increase their feeding on detritus, algae and zooplankton, resulting in lower δ13C values. Native dytiscid predators only changed the isotopic signature of newts whereas invasive red swamp crayfish had an enormous impact on environmental conditions and greatly affected the isotopic values of amphibians. Crayfish forced tadpoles to increase detritus ingestion or other resources depleted in δ13C. We found that the opportunistic amphibian feeding was greatly conditioned by intra- and interspecific competition whereas non-consumptive predator effects were negligible. Determining the trophic plasticity of amphibians can help us understand natural and anthropogenic changes in aquatic ecosystems and assess amphibians' ability to adjust to different environmental conditions. PMID:26091281

  14. Stable Isotopes Reveal Trophic Partitioning and Trophic Plasticity of a Larval Amphibian Guild

    PubMed Central

    Arribas, Rosa; Díaz-Paniagua, Carmen; Caut, Stephane; Gomez-Mestre, Ivan

    2015-01-01

    Temporary ponds are highly variable systems where resource availability and community structure change extensively over time, and consequently the food web is highly dynamic. Amphibians play a critical role both as consumers and prey in aquatic communities and yet there is still little information on the trophic status of most amphibians. More importantly, little is known about the extent to which they can alter their trophic ecology in response to changing conditions. We experimentally investigated the effects of increased amphibian density, presence of intraguild competitors, and presence of native and invasive predators (either free or caged) on the trophic status of a Mediterranean amphibian guild, using stable isotopes. We observed variations in δ13C and δ15N isotopic values among amphibian species and treatments and differences in their food sources. Macrophytes were the most important food resource for spadefoot toad tadpoles (Pelobates cultripes) and relatively important for all anurans within the guild. High density and presence of P. cultripes tadpoles markedly reduced macrophyte biomass, forcing tadpoles to increase their feeding on detritus, algae and zooplankton, resulting in lower δ13C values. Native dytiscid predators only changed the isotopic signature of newts whereas invasive red swamp crayfish had an enormous impact on environmental conditions and greatly affected the isotopic values of amphibians. Crayfish forced tadpoles to increase detritus ingestion or other resources depleted in δ13C. We found that the opportunistic amphibian feeding was greatly conditioned by intra- and interspecific competition whereas non-consumptive predator effects were negligible. Determining the trophic plasticity of amphibians can help us understand natural and anthropogenic changes in aquatic ecosystems and assess amphibians’ ability to adjust to different environmental conditions. PMID:26091281

  15. How does plant chemical diversity contribute to biodiversity at higher trophic levels?

    PubMed

    Schuman, Meredith C; van Dam, Nicole M; Beran, Franziska; Harpole, W Stanley

    2016-04-01

    Plants, perhaps Earth's most accomplished chemists, produce thousands of specialized metabolites having no direct role in cell division or growth. These phytochemicals vary by taxon, with many taxa producing characteristic substance classes; and within taxa, with individual variation in structural variety and production patterns. Observations of corresponding variation in herbivore metabolism, behavior, and diet breadth motivated the development of chemical ecology research. We discuss the importance of plant biodiversity in general and phytochemical diversity in particular for biodiversity and ecological interactions at higher trophic levels. We then provide an overview of the descriptive, molecular and analytical tools which allow modern biologists to investigate phytochemical diversity and its effects on higher trophic levels, from physiological mechanisms to ecological communities. PMID:27436646

  16. Trophic specialisations in alternative heterochronic morphs

    NASA Astrophysics Data System (ADS)

    Denoël, Mathieu; Schabetsberger, Robert; Joly, Pierre

    Polymorphisms are suspected of reducing competition among conspecifics in heterogeneous environments by allowing differential resource use. However the adaptive significance of alternative morphs has been poorly documented. The aim of this study is to determine food partitioning of two heterochronic morphs of the Alpine newt, Triturus alpestris, in mountain lakes. The morphs differ in the functional morphology of their feeding apparatus. Only paedomorphs are able to expel water during prey suction behind the mouth through gill slits. We observed a substantial trophic differentiation between morphs in all lakes. Paedomorphs preyed mainly on plankton, whereas metamorphs foraged on terrestrial invertebrates that fell upon the water surface. This resource partitioning may facilitate the coexistence of the alternative morphs in lakes devoid of vertebrate competitors. Food diversity may thus favour the evolutionary maintenance of facultative polymorphism in natural populations.

  17. Trophic conditions in Lake Winnisquam, New Hampshire

    USGS Publications Warehouse

    Frost, Leonard R., Jr.

    1977-01-01

    Lake Winnisquam has received treated domestic sewage for approximately 50 years and since June 1961 has been treated with copper sulfate to control the growth of nuisance algae. The Laconia City secondary sewage-treatment plant was upgraded in 1975 to include phosphorus removal. Phosphorus was not removed effectively until early 1976, and, therefore, the 1976 data are considered baseline or pre-phosphorus removal with respect to anticipated changes in the trophic condition of the lake. Effluent from the Laconia State School primary-treatment plant was diverted to the Laconia City plant in October 1976. Dissolved oxygen concentrations showed marked differences between the two basins comprising Lake Winnisquam. Phytoplankton samples showed similarities by algal group for all stations but algal genera varied between the upper and lower basins. Total phosphorus concentrations in the epilimnion ranged from 0.01 to 0.10 milligram per liter, and accumulation of total phosphorus in the hypolimnion resulted in concentrations up to 0.59 milligrams per liter. Chemical states of nutrients varied among the stations corresponding to the degree of depletion of hypolimnetic dissolved oxygen. Dissolved oxygen profiles were used to illustrate zones of algal production, respiration, and bacterial decomposition. The rate of depletion of dissolved oxygen in the hypolimnion was linearly related to time. Because change in the rate of hypolimnetic dissolved oxygen depletion is more easily measured than change of nutrient load in the lake, it is suggested it be used as an indicator of the response of the lake to change in trophic condition.

  18. Cascade Error Projection Learning Algorithm

    NASA Technical Reports Server (NTRS)

    Duong, T. A.; Stubberud, A. R.; Daud, T.

    1995-01-01

    A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.

  19. Cascade physics at CLAS12

    SciTech Connect

    Guo, Lei

    2009-01-01

    Cascade spectroscopy offers rich discovering opportunities that are essential to the current JLAB spectroscopy program at both CLAS, CLAS12 and GLUEX. Recent CLAS results have demonstrated the feasibility to study cascade resonances through photoproduction. The cross sections for the ground state cascade is observed to increase as a function of energy in the range of 2.8-5GeV. With the maximum achievable energy at CLAS12 with the current tagger being 6.3~GeV, cascade resonances up to 2.4~GeV are expected to be produced with reasonable rates. The possible addition of a RICH detector would certainly benefit physics programs requiring the detection of kaons, especially cascade physics.

  20. Determination of fish trophic levels in an estuarine system

    NASA Astrophysics Data System (ADS)

    Pasquaud, S.; Pillet, M.; David, V.; Sautour, B.; Elie, P.

    2010-01-01

    The concept of trophic level is particularly relevant in order to improve knowledge of the structure and the functioning of an ecosystem. A precise estimation of fish trophic levels based on nitrogen isotopic signatures in environments as complex and fluctuant as estuaries requires a good description of the pelagic and benthic trophic chains and a knowledge of organic matter sources at the bottom. In this study these points are considered in the case of the Gironde estuary (south west France, Europe). To obtain a good picture of the food web, fish stomach content analyses and a bibliographic synthesis of the prey feeding ecology were carried out. Fish trophic levels were calculated from these results and δ 15N data. The feeding link investigation enabled us to identify qualitatively and quantitatively the different preys consumed by each fish group studied, to distinguish the prey feeding on benthos from those feeding on pelagos and to characterize the different nutritive pools at the base of the system. Among the species studied, only Liza ramada and the flatfish ( Platichthys flesus and Solea solea) depend mainly on benthic trophic compartments. All the other fish groups depend on several trophic (benthic and/or pelagic) sources. These results enabled us to correct the calculation of fish trophic levels which are coherent with their feeding ecology data obtained from the nitrogen isotopic integrative period. The present work shows that trophic positions are linked with the feeding ecology of fish species and vary according to individual size. Ecological data also allow the correction of the isotopic data by eliminating absurd results and showing the complementarity of the two methods. This work is the first to consider source variability in the fish food web. This is an indispensable step for trophic studies in a dynamic environment. The investigation of matter fluxes and recycling processes at the food web base would provide a useful improvement in future

  1. Cascade Distillation System Development

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  2. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.

  3. Interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J. R.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Höfling, S.

    2015-04-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron-hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3-6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm-2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT.

  4. Trophic dynamics of shrinking Subarctic lakes: naturally eutrophic waters impart resilience to rising nutrient and major ion concentrations.

    PubMed

    Lewis, Tyler L; Heglund, Patricia J; Lindberg, Mark S; Schmutz, Joel A; Schmidt, Joshua H; Dubour, Adam J; Rover, Jennifer; Bertram, Mark R

    2016-06-01

    Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production. PMID:26857253

  5. Trophic structure of a coastal fish community determined with diet and stable isotope analyses.

    PubMed

    Malek, A J; Collie, J S; Taylor, D L

    2016-09-01

    A combination of dietary guild analysis and nitrogen (δ(15) N) and carbon (δ(13) C) stable-isotope analysis was used to assess the trophic structure of the fish community in Rhode Island and Block Island Sounds, an area off southern New England identified for offshore wind energy development. In the autumn of 2009, 2010 and 2011, stomach and tissue samples were taken from 20 fish and invertebrate species for analysis of diet composition and δ(15) N and δ(13) C signatures. The food chain in Rhode Island and Block Island Sounds comprises approximately four trophic levels within which the fish community is divided into distinct dietary guilds, including planktivores, benthivores, crustacivores and piscivores. Within these guilds, inter-species isotopic and dietary overlap is high, suggesting that resource partitioning or competitive interactions play a major role in structuring the fish community. Carbon isotopes indicate that most fishes are supported by pelagic phytoplankton, although there is evidence that benthic production also plays a role, particularly for obligate benthivores such as skates Leucoraja spp. This type of analysis is useful for developing an ecosystem-based approach to management, as it identifies species that act as direct links to basal resources as well as species groups that share trophic roles. PMID:27406117

  6. The trophic importance of algal turfs for coral reef fishes: the crustacean link

    NASA Astrophysics Data System (ADS)

    Kramer, M. J.; Bellwood, O.; Bellwood, D. R.

    2013-06-01

    On coral reefs, the epilithic algal matrix (EAM) is widely recognised as an important resource for herbivorous and detritivorous fishes. In comparison, little is known of the interaction between benthic carnivores and the EAM, despite the abundance of Crustacea within the EAM. The trophic importance of the EAM to fishes was investigated in Pioneer Bay, Orpheus Island, Great Barrier Reef. Fish densities were quantified using visual and clove oil censuses, and gut content analyses conducted on abundant fish species. Crustaceans were found to be an important dietary category, contributing between 49.5 and 100 % of the gut contents, with harpacticoid copepods being the dominant component. Of the benthic carnivores, the goby Eviota zebrina was found to consume the most harpacticoids with a mean of 249 copepods m-2 day-1. This represents approximately 0.1 % of the available harpacticoid population in the EAM. In a striking comparison, herbivorous parrotfishes were estimated to consume over 12,000 harpacticoids m-2 day-1, over 27 times more than all benthic carnivores surveyed, representing approximately 5.3 % of the available harpacticoid copepod population each day. The high consumption of harpacticoid copepods by benthic carnivores and parrotfishes indicates that harpacticoids form an important trophic link between the EAM and higher trophic levels on coral reefs.

  7. Exceptional body sizes but typical trophic structure in a Pleistocene food web.

    PubMed

    Segura, Angel M; Fariña, Richard A; Arim, Matías

    2016-05-01

    In this study, we focused on the exceptionally large mammals inhabiting the Americas during the Quaternary period and the paramount role of body size in species ecology. We evaluated two main features of Pleistocene food webs: the relationship between body size and (i) trophic position and (ii) vulnerability to predation. Despite the large range of species sizes, we found a hump-shaped relationship between trophic position and body size. We also found a negative trend in species vulnerability similar to that observed in modern faunas. The largest species lived near the boundary of energetic constraints, such that any shift in resource availability could drive these species to extinction. Our results reinforce several features of megafauna ecology: (i) the negative relationship between trophic position and body size implies that large-sized species were particularly vulnerable to changes in energetic support; (ii) living close to energetic imbalance could favour the incorporation of additional energy sources, for example, a transition from a herbivorous to a scavenging diet in the largest species (e.g. Megatherium) and (iii) the interactions and structure of Quaternary megafauna communities were shaped by similar forces to those shaping modern fauna communities. PMID:27220860

  8. Stepping in Elton's footprints: a general scaling model for body masses and trophic levels across ecosystems.

    PubMed

    Riede, Jens O; Brose, Ulrich; Ebenman, Bo; Jacob, Ute; Thompson, Ross; Townsend, Colin R; Jonsson, Tomas

    2011-02-01

    Despite growing awareness of the significance of body-size and predator-prey body-mass ratios for the stability of ecological networks, our understanding of their distribution within ecosystems is incomplete. Here, we study the relationships between predator and prey size, body-mass ratios and predator trophic levels using body-mass estimates of 1313 predators (invertebrates, ectotherm and endotherm vertebrates) from 35 food-webs (marine, stream, lake and terrestrial). Across all ecosystem and predator types, except for streams (which appear to have a different size structure in their predator-prey interactions), we find that (1) geometric mean prey mass increases with predator mass with a power-law exponent greater than unity and (2) predator size increases with trophic level. Consistent with our theoretical derivations, we show that the quantitative nature of these relationships implies systematic decreases in predator-prey body-mass ratios with the trophic level of the predator. Thus, predators are, on an average, more similar in size to their prey at the top of food-webs than that closer to the base. These findings contradict the traditional Eltonian paradigm and have implications for our understanding of body-mass constraints on food-web topology, community dynamics and stability. PMID:21199248

  9. Trophic Complexity and the Adaptive Value of Damage-Induced Plant Volatiles

    PubMed Central

    Kaplan, Ian

    2012-01-01

    Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants “call for help” to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops. PMID:23209381

  10. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna.

    PubMed

    Lee, Woo-Mi; Yoon, Sung-Ji; Shin, Yu-Jin; An, Youn-Joo

    2015-06-01

    Understanding the trophic transfer of nanoparticles (NPs) is important because NPs are small enough to easily penetrate into organisms. In this study, we evaluated the trophic transfer of gold NPs (AuNPs) within the aquatic food chain. We observed AuNPs transfer from 2 species of primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna). Also, bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. The reasons for the difference in Au accumulation may be the physical structure of these organisms, and the surface area that is available for interaction with NPs. C. reinhardtii has a cell wall that may act as a barrier to the penetration of NPs. The size of E. gracilis is larger than that of C. reinhardtii. This study demonstrates the trophic transfer of AuNPs from a general producer to a consumer in an aquatic environment. PMID:25756227

  11. Spatial patterns and predictors of trophic control in marine ecosystems.

    PubMed

    Boyce, Daniel G; Frank, Kenneth T; Worm, Boris; Leggett, William C

    2015-10-01

    A key question in ecology is under which conditions ecosystem structure tends to be controlled by resource availability vs. consumer pressure. Several hypotheses derived from theory, experiments and observational field studies have been advanced, yet a unified explanation remains elusive. Here, we identify common predictors of trophic control in a synthetic analysis of 52 observational field studies conducted within marine ecosystems across the Northern Hemisphere and published between 1951 and 2014. Spatial regression analysis of 45 candidate variables revealed temperature to be the dominant predictor, with unimodal effects on trophic control operating both directly (r(2) = 0.32; P < 0.0001) and indirectly through influences on turnover rate and quality of primary production, biodiversity and omnivory. These findings indicate that temperature is an overarching determinant of the trophic dynamics of marine ecosystems, and that variation in ocean temperature will affect the trophic structure of marine ecosystems through both direct and indirect mechanisms. PMID:26252155

  12. Gasdynamic evaluation of choking cascade turns

    NASA Astrophysics Data System (ADS)

    Perez, D. R.

    1984-12-01

    Uses for ram air in airborne vehicles are increasing along with the need for sophisticated ducting of the compressed air. Inlets operating supercritically, a normal shock in the subsonic diffuser, and use an aerodynamic grid to control the normal shock position to a region of low total pressure losses are discussed. Turning of the flow requires long radius curves to maintain the total pressure. This study combines the internal shock positioning and flow turning into a flow choking cascade turn with a short radius. Several sets of 90 degree turning sections, for turning compressed air, were selected, designed, and tested gas dynamically. Two of the turn sections were totally subsonic and only turned the air flow. Two other sections turned and choked the flow during supercritical inlet operation. These flow controllers perform the same function as an aerodynamic grid and flow turning vanes used in current internal compressible airflow designs. These tests correlated the suitability of using a water table versus a gas dynamic apparatus for determining the flow control capabilities and pressure recovery of the cascades. The subsonic only turning section gave the best pressure recovery and total pressure distribution along the turning axis, but allowed the supercritical internal shock to move towards large shock/boundary layer interaction. The two shock positioning cascades provided good internal shock control with only slightly lower pressure recovery. Further investigation is needed for the effects of back pressure fluctuations on the flow dynamics.

  13. Enhanced understanding of ectoparasite: host trophic linkages on coral reefs through stable isotope analysis

    USGS Publications Warehouse

    Demopoulos, Amanda W. J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  14. Drivers of trophic amplification of ocean productivity trends in a changing climate

    NASA Astrophysics Data System (ADS)

    Stock, C. A.; Dunne, J. P.; John, J. G.

    2014-07-01

    . Improved understanding of the complex interactions governing these food web properties is essential to further refine estimates of climate-driven productivity changes across trophic levels.

  15. Enhanced understanding of ectoparasite-host trophic linkages on coral reefs through stable isotope analysis.

    PubMed

    Demopoulos, Amanda W J; Sikkel, Paul C

    2015-04-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ(13)C and δ(15)N values similar to their host, comparable with results from the small number of other host-parasite studies that have employed stable isotopes. Adult gnathiids were enriched in (15)N and depleted in (13)C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ(13)C values consistent with their food source and enriched in (15)N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically. PMID:25830112

  16. Trophic overlap between fish and riparian spiders: potential impacts of an invasive fish on terrestrial consumers.

    PubMed

    Jackson, Michelle C; Woodford, Darragh J; Bellingan, Terence A; Weyl, Olaf L F; Potgieter, Michael J; Rivers-Moore, Nick A; Ellender, Bruce R; Fourie, Hermina E; Chimimba, Christian T

    2016-03-01

    Studies on resource sharing and partitioning generally consider species that occur in the same habitat. However, subsidies between linked habitats, such as streams and riparian zones, create potential for competition between populations which never directly interact. Evidence suggests that the abundance of riparian consumers declines after fish invasion and a subsequent increase in resource sharing of emerging insects. However, diet overlap has not been investigated. Here, we examine the trophic niche of native fish, invasive fish, and native spiders in South Africa using stable isotope analysis. We compared spider abundance and diet at upstream fishless and downstream fish sites and quantified niche overlap with invasive and native fish. Spider abundance was consistently higher at upstream fishless sites compared with paired downstream fish sites, suggesting that the fish reduced aquatic resource availability to riparian consumers. Spiders incorporated more aquatic than terrestrial insects in their diet, with aquatic insects accounting for 45-90% of spider mass. In three of four invaded trout rivers, we found that the average proportion of aquatic resources in web-building spider diet was higher at fishless sites compared to fish sites. The probability of web-building and ground spiders overlapping into the trophic niche of invasive brown and rainbow trout was as high as 26 and 51%, respectively. In contrast, the probability of spiders overlapping into the trophic niche of native fish was always less than 5%. Our results suggest that spiders share resources with invasive fish. In contrast, spiders had a low probability of trophic overlap with native fish indicating that the traits of invaders may be important in determining their influence on ecosystem subsidies. We have added to the growing body of evidence that invaders can have cross-ecosystem impacts and demonstrated that this can be due to niche overlap. PMID:27087934

  17. Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web.

    PubMed

    Ruhí, Albert; Acuña, Vicenç; Barceló, Damià; Huerta, Belinda; Mor, Jordi-Rene; Rodríguez-Mozaz, Sara; Sabater, Sergi

    2016-01-01

    Increasing evidence exists that emerging pollutants such as pharmaceuticals (PhACs) and endocrine-disrupting compounds (EDCs) can be bioaccumulated by aquatic organisms. However, the relative role of trophic transfers in the acquisition of emerging pollutants by aquatic organisms remains largely unexplored. In freshwater ecosystems, wastewater treatment plants are a major source of PhACs and EDCs. Here we studied the entrance of emerging pollutants and their flow through riverine food webs in an effluent-influenced river. To this end we assembled a data set on the composition and concentrations of a broad spectrum of PhACs (25 compounds) and EDCs (12 compounds) in water, biofilm, and three aquatic macroinvertebrate taxa with different trophic positions and feeding strategies (Ancylus fluviatilis, Hydropsyche sp., Phagocata vitta). We tested for similarities in pollutant levels among these compartments, and we compared observed bioaccumulation factors (BAFs) to those predicted by a previously-developed empirical model based on octanol-water distribution coefficients (Dow). Despite a high variation in composition and levels of emerging pollutants across food web compartments, observed BAFs in Hydropsyche and Phagocata matched, on average, those already predicted. Three compounds (the anti-inflammatory drug diclofenac, the lipid regulator gemfibrozil, and the flame retardant TBEP) were detected in water, biofilm and (at least) one macroinvertebrate taxa. TBEP was the only compound present in all taxa and showed magnification across trophic levels. This suggests that prey consumption may be, in some cases, a significant exposure route. This study advances the notion that both waterborne exposure and trophic interactions need to be taken into account when assessing the potential ecological risks of emerging pollutants in aquatic ecosystems. PMID:26170111

  18. Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis

    PubMed Central

    Demopoulos, Amanda W.J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in 13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically. PMID:25830112

  19. Cascade Mtns. Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The ground near one of the long-dormant Three Sisters volcanoes in the Cascade Mountains of west-central Oregon has risen approximately 10centimeters in a 10-by-20-km parcel since 1996, meaning that magma or underground lava is slowly flowing into the area, according to a research team from the U.S. Geological Survey. The Three Sisters area -- which contains five volcanoes -- is only about 170 miles from Mount St. Helens, which erupted in 1980. Both are part of the Cascades Range, a line of 27volcanoes stretching from British Columbia in Canada to northern California. This perspective view was created by draping a simulated natural color ASTER image over digital topography from the U.S. Geological Survey National Elevation Dataset.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical

  20. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.

    PubMed

    Soliveres, Santiago; van der Plas, Fons; Manning, Peter; Prati, Daniel; Gossner, Martin M; Renner, Swen C; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul C; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-08-25

    Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services

  1. Trophic ulcers-Practical management guidelines

    PubMed Central

    Puri, Vinita; Venkateshwaran, N; Khare, Nishant

    2012-01-01

    The management of patients with trophic ulcers and their consequences is difficult not only because it is a recurrent and recalcitrant problem but also because the pathogenesis of the ulcer maybe different in each case. Methodically and systematically evaluating and ruling out concomitant pathologies helps to address each patient's specific needs and hence bring down devastating complications like amputation. With incidence of diabetes being high in our country, and leprosy being endemic too the consequences of neuropathy and angiopathy are faced by most wound care specialists. This article presents a review of current English literature available on this subject. The search words were entered in PubMed central and appropriate abstracts reviewed. Relevant full text articles were retrieved and perused. Cross references from these articles were also reviewed. Based on these articles and the authors’ experiences algorithms for management have been presented to facilitate easier understanding. It is hoped that the information presented in this article will help in management of this recalcitrant problem. PMID:23162234

  2. Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal.

    PubMed

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2016-02-24

    Loading of water bodies with dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) affects their integrity and functioning. Microbial interactions mitigate the negative effects of high nutrient loads in these ecosystems. Despite numerous studies on how biodiversity mediates ecosystem functions, whether and how diversity and complexity of microbial food webs (horizontal, vertical) and the underlying ecological mechanisms influence nutrient removal has barely been investigated. Using microbial microcosms accommodating systematic combinations of prey (bacteria) and predator (protists) species, we showed that increasing bacterial richness improved the extent and reliability of DOC and DTN removal. Bacterial diversity drove nutrient removal either due to species foraging physiology or functional redundancy, whereas protistan diversity affected nutrient removal through bacterial prey resource partitioning and changing nutrient balance in the system. Our results demonstrate that prey-predator diversity and trophic interactions interactively determine nutrient contents, thus implying the vital role of microbial trophic complexity as a biological buffer against DOC and DTN. PMID:26888033

  3. Consumer trait variation influences tritrophic interactions in salt marsh communities

    PubMed Central

    Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A

    2015-01-01

    The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait

  4. Consumer trait variation influences tritrophic interactions in salt marsh communities.

    PubMed

    Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A

    2015-07-01

    The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait

  5. Threshold cascades with response heterogeneity in multiplex networks

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Min; Brummitt, Charles D.; Goh, K.-I.

    2014-12-01

    Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.

  6. Design of choking cascade turns

    NASA Astrophysics Data System (ADS)

    Baird, J.

    1982-12-01

    Five different shock-positioning cascades, for short-radius turns in ramjet inlet diffusers, were designed and tested on the AFIT water table. These flow controllers were to perform the same function as the conventional arrangement of an aerodynamic grid and a long-radius turn. The tests were to determine the suitability of the water table for such experimentation, in addition to determining the flow-control capabilities and pressure recovery of the cascades. All five designs accomplished the flow-control function as designed, and two designs exhibited the same or better pressure recovery than the aerodynamic grid. The water table proved to be an excellent means of testing these cascades, primarily due to the ease of flow visualization in the tests done. The shock-positioning cascade, short-radius turn concept shows promise and should be tested further in gas-dynamic apparatus.

  7. Cascade redox flow battery systems

    DOEpatents

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  8. Kelvin waves cascade in superfluid turbulence.

    PubMed

    Kivotides, D; Vassilicos, J C; Samuels, D C; Barenghi, C F

    2001-04-01

    We study numerically the interaction of four initial superfluid vortex rings in the absence of any dissipation or friction. We find evidence for a cascade of Kelvin waves generated by individual vortex reconnection events which transfers energy to higher and higher wave numbers k. After the vortex reconnections occur, the energy spectrum scales as k(-1) and the curvature spectrum becomes flat. These effects highlight the importance of Kelvin waves and reconnections in the transfer of energy within a turbulent vortex tangle. PMID:11290112

  9. Cascades of Fano resonances in Mie scattering

    NASA Astrophysics Data System (ADS)

    Rybin, M. V.; Sinev, I. S.; Samusev, K. B.; Limonov, M. F.

    2014-03-01

    The interference nature of resonant Mie scattering, which is described within the Fano model, has been demonstrated. The interference is caused by interaction of an incident electromagnetic wave with reemitted waves that correspond to eigenmodes of a scattering particle. Mie scattering due to the interference can be represented in the form of cascades of resonance lines of different shapes, each of which is described by the classical Fano formula. The effect is observed in resonant light scattering by an arbitrary body of revolution and discussed in detail using the example of scattering by an infinite homogeneous dielectric cylinder.

  10. Computation of inverse magnetic cascades

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1981-01-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  11. The cascade high productivity language

    NASA Technical Reports Server (NTRS)

    Callahan, David; Chamberlain, Branford L.; Zima, Hans P.

    2004-01-01

    This paper describes the design of Chapel, the Cascade High Productivity Language, which is being developed in the DARPA-funded HPCS project Cascade led by Cray Inc. Chapel pushes the state-of-the-art in languages for HEC system programming by focusing on productivity, in particular by combining the goal of highest possible object code performance with that of programmability offered by a high-level user interface.

  12. Computation of inverse magnetic cascades

    SciTech Connect

    Montgomery, D.

    1981-10-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  13. Cascading gravity is ghost free

    SciTech Connect

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew J.

    2010-06-15

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  14. Trophic structure of vermetid reef community: High trophic diversity at small spatial scales

    NASA Astrophysics Data System (ADS)

    Colombo, Francesca; Costa, Valentina; Dubois, Stanislas F.; Gianguzza, Paola; Mazzola, Antonio; Vizzini, Salvatrice

    2013-03-01

    Stable isotopes were used to investigate contributions of autochthonous (i.e. benthic: epilithon and macroalgae) and allochthonous (i.e. pelagic: phytoplankton) organic matter sources to the diet of suspension-feeders, grazers and predators associated to small reef-pools (cuvettes) created by the reef-building species Dendropoma petraeum in the north-western coast of Sicily (Italy). Contributions of potential food sources were calculated using Bayesian mixing-models and integrated to a multivariate approach to highlight the diversity of C and N pathways within Dendropoma cuvettes. Both pelagic and benthic organic matter sources were exploited by benthic consumers, although clear differences were revealed in the various species depending on their feeding strategy. Three different trophic pathways were identified: one based mainly on phytoplankton, one based mainly on macroalgae and a third one mainly on epilithon. Suspension-feeders seemed to rely mainly on allochthonous organic matter sources, while grazers showed a wider diet spectrum. Predators revealed a high specialization in each of the three food chains and showed a distinct reliance on organic matter originated from benthic or pelagic sources. Stable isotopes evidenced here a marked differentiation of the trophic niche within the cuvette-associated community, which allows minimizing competition in very space-limited conditions.

  15. A trophic position model of pelagic food webs: Impact on contaminant bioaccumulation in lake trout

    SciTech Connect

    Zanden, M.J.V.; Rasmussen, J.B.

    1996-11-01

    To test how well use of discrete trophic levels represents pelagic trophic structure, dietary data from > 200 lake trout and pelagic forage fish populations was compiled and calculated a continuous (fractional) measure of trophic position for each population. Lake trout trophic position, which ranged from 3.0 to 4.6, explained 85% of the between-lake variability in mean PCB levels in lake trout muscle tissue, providing a significant improvement over the use of discrete trophic levels as a predictor of contaminant levels. Having demonstrated the utility of trophic position, a generalized {open_quotes}trophic position model{close_quotes} of lake trout food webs was developed. This approach eliminates minor trophic linkages, calculates a fractional measure of each species` trophic position, and aggregates species of similar trophic position into trophic guilds. This {open_quotes}realized{close_quotes} model represents trophic structure in terms of mass transfer and accounts for the complexity and omnivory that characterize aquatic food webs. In our trophic position model, smelt (a species of pelagic forage fish) were designated a trophic guild separate from other pelagic forage fish, due to their elevated trophic position. Separate consideration of smelt was supported by elevated lake trout trophic position, PCB, and Hg levels in lakes containing smelt. Consideration of omnivory caused biomagnification factors (BMFs) to be many times higher than BMFs that ignored omnivory. These omnivory-corrected BMF estimates appeared to be more consistent with values calculated using stable nitrogen isotopes ({delta}{sup 15}N), an alternative continuous measure of trophic position. {delta}{sup 15}N, an alternative continuous measure of trophic position. {delta}{sup 15}N provided trophic position estimates that generally corresponded with our diet-derived estimates. 186 refs., 7 figs., 3 tabs.

  16. Interband Cascade Photovoltaic Cells

    SciTech Connect

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  17. The trophic significance of Phaeocystis blooms

    NASA Astrophysics Data System (ADS)

    Weisse, T.; Tande, K.; Verity, P.; Hansen, F.; Gieskes, W.

    1994-04-01

    Both colonies and solitary cells of the prymnesiophyte Phaeocystis are ingested by a wide array of marine vertebrates. Grazers include protozoa, bivalves, amphipods, euphausiids and many copepod species. Common fish species such as mackerel ( Scomber scombrus) and flounder ( Pleuronectus flesus) have also been reported to feed upon Phaeocystis. While qualitative observations on the potential trophic significance of Phaeocystis exist for a long time, attempts to quantify feeding rates on Phaeocystis have begun only during the last decade. In feeding experiments, copepods have received most attention. Many copepod species appear to consume Phaeocystis colonies and solitary cells in the North Atlantic and in polar seas. Ingestion rates are highly variable depending on size and physiological state of Phaeocystis as well as on copepod species. Within the same species, large variations in individual feeding rates have been reported from different areas and investigators. When Phaeocystis co-occurs with larger amounts of diatoms, the latter seem to be preferred by some copepod species while others do not select against Phaeocystis. At present it is unclear whether this is primarily due to unsuitable size of Phaeocystis or because it is poor quality food. The relative nutritive value of Phaeocystis single cells and colonies should be investigated in more detail. Feeding of protozoa on Phaeocystis has been little studied. Ciliates and the giant dinoflagellate Noctiluca are known to consume Phaeocystis solitary cells. Protozoa might efficiently control Phaeocystis blooms during their initial phases when the share of solitary cells relative to total Phaeocystis biomass is higher than during later stages of the bloom. By switching their food preference towards heterotrophic food, copepods might benefit from enhanced protozoan biomass during Phaeocystis blooms. The potential succession of protozoan and metazoan grazers in the course of a Phaeocystis bloom awaits further

  18. Linking predators to seasonality of upwelling: Using food web indicators and path analysis to infer trophic connections

    NASA Astrophysics Data System (ADS)

    Thompson, Sarah Ann; Sydeman, William J.; Santora, Jarrod A.; Black, Bryan A.; Suryan, Robert M.; Calambokidis, John; Peterson, William T.; Bograd, Steven J.

    2012-08-01

    Upwelling in eastern boundary current systems is a primary driver of ecosystem productivity. Typically, peak upwelling occurs during spring and summer, but winter upwelling may also be important to ecosystem functions. In this study, we investigated the hypothesis that winter and spring/summer upwelling, operating through indirect trophic interactions, are important to a suite of top predators in the California Current. To test this hypothesis, we collated information on upwelling, chlorophyll-a concentrations, zooplankton and forage fish, and related these to predator responses including rockfish growth, salmon abundance, seabird productivity and phenology (timing of egg-laying), and whale abundance. Seabird diets served in part as food web indicators. We modeled pathways of response using path analysis and tested for significance of the dominant paths with multiple regression. We found support for the hypothesis that relationships between upwelling and top predator variables were mediated primarily by intermediate trophic levels. Both winter and summer upwelling were important in path models, as were intermediate lower and mid trophic level functional groups represented by chlorophyll-a, zooplankton, and forage fish. Significant pathways of response explained from 50% to 80% of the variation of seabird (Cassin's auklet (Ptychoramphus aleuticus) and common murre (Uria aalge)), humpback whale (Megaptera novaeangliae) and Chinook salmon (Oncorhynchus tshawytscha) dependent variables, whereas splitnose rockfish (Sebastes diploproa) showed no significant response pathways. Upwelling and trophic responses for salmon were established for both the year of ocean entry and the year of return, with zooplankton important in the year of ocean entry and forage fish important in the year of return. This study provides one of the first comparative investigations between upwelling and predators, from fish to marine mammals and birds within a geographically restricted area

  19. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators.

    PubMed

    Matich, Philip; Heithaus, Michael R; Layman, Craig A

    2011-01-01

    1. Apex predators are often assumed to be dietary generalists and, by feeding on prey from multiple basal nutrient sources, serve to couple discrete food webs. But there is increasing evidence that individual level dietary specialization may be common in many species, and this has not been investigated for many marine apex predators. 2. Because of their position at or near the top of many marine food webs, and the possibility that they can affect populations of their prey and induce trophic cascades, it is important to understand patterns of dietary specialization in shark populations. 3. Stable isotope values from body tissues with different turnover rates were used to quantify patterns of individual specialization in two species of 'generalist' sharks (bull sharks, Carcharhinus leucas, and tiger sharks, Galeocerdo cuvier). 4. Despite wide population-level isotopic niche breadths in both species, isotopic values of individual tiger sharks varied across tissues with different turnover rates. The population niche breadth was explained mostly by variation within individuals suggesting tiger sharks are true generalists. In contrast, isotope values of individual bull sharks were stable through time and their wide population level niche breadth was explained by variation among specialist individuals. 5. Relative resource abundance and spatial variation in food-predation risk tradeoffs may explain the differences in patterns of specialization between shark species. 6. The differences in individual dietary specialization between tiger sharks and bull sharks results in different functional roles in coupling or compartmentalizing distinct food webs. 7. Individual specialization may be an important feature of trophic dynamics of highly mobile marine top predators and should be explicitly considered in studies of marine food webs and the ecological role of top predators. PMID:20831730

  20. Spatial and seasonal variations in the trophic spectrum of demersal fish assemblages in Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Han, Dongyan; Xue, Ying; Ren, Yiping; Ma, Qiuyun

    2015-07-01

    Trophic structure of fish communities is fundamental for ecosystem-based fisheries management, and trophic spectrum classifies fishes by their positions in food web, which provides a simple summary on the trophic structure and ecosystem function. In this study, both fish biomass and abundance trophic spectra were constructed to study the spatial and seasonal variations in the trophic structure of demersal fish assemblages in Jiaozhou Bay, China. Data were collected from four seasonal bottom trawl surveys in Jiaozhou Bay from February to November in 2011. Trophic levels (TLs) of fishes were determined by nitrogen stable isotope analysis. This study indicated that most of these trophic spectra had a single peak at trophic level (TL) of 3.4-3.7, suggesting that demersal fish assemblages of Jiaozhou Bay were dominated by secondary consumers (eg. Pholis fangi and Amblychaeturichthys hexanema). The spatial and seasonal variations of trophic spectra of Jiaozhou Bay reflected the influence of fish reproduction, fishing pressure and migration of fishes. Two-way analysis of variance (ANOVA) showed that seasonal variations in trophic spectra in Jiaozhou Bay were significant ( P<0.05), but variations among different areas were not significant ( P>0.05). The trophic spectrum has been proved to be a useful tool to monitor the trophic structure of fish assemblages. This study highlighted the comprehensive application of fish biomass and abundance trophic spectra in the study on trophic structure of fish assemblages.

  1. Behaviorally plastic host-plant use by larval Lepidoptera in tri-trophic food webs.

    PubMed

    Singer, Michael S

    2016-04-01

    Plant-insect interactions research emphasizes adaptive plasticity of plants and carnivores, such as parasitoids, implying a relatively passive role of herbivores. Current work is addressing this deficit, with exciting studies of behavioral plasticity of larval Lepidoptera (caterpillars). Here I use select examples to illustrate the diversity of behaviorally plastic host-plant use by caterpillars, including anti-predator tactics, self-medication, and evasion of dynamic plant defenses, as proof of the agency of caterpillar behavior in plant-insect interactions. I emphasize the significance of adaptive behavioral plasticity of caterpillars in the context of tri-trophic interactions. Recent research on trait-mediated indirect interactions places adaptive behavioral plasticity of herbivores at the center of community and food web dynamics, with far-reaching consequences of issues such as community stability. PMID:27436647

  2. Atomic cascade of muonic and pionic helium atoms

    SciTech Connect

    Landua, R.; Klempt, E.

    1982-06-21

    The cascade of muonic and pionic helium atoms in targets of arbitrary density is investigated. The calculation does not use any free parameters except for strong interaction effects. All measured x-ray intensities are reproduced, in particular also the K/sub ..beta..//K/sub ..cap alpha../ intensity ratios in pionic helium.

  3. From neurons to epidemics: How trophic coherence affects spreading processes.

    PubMed

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models-one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network-and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes. PMID:27368799

  4. From neurons to epidemics: How trophic coherence affects spreading processes

    NASA Astrophysics Data System (ADS)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  5. Multiplicative-cascade dynamics in pole balancing

    NASA Astrophysics Data System (ADS)

    Harrison, Henry S.; Kelty-Stephen, Damian G.; Vaz, Daniela V.; Michaels, Claire F.

    2014-06-01

    Pole balancing is a key task for probing the prospective control that organisms must engage in for purposeful action. The temporal structure of pole-balancing behaviors will reflect the on-line operation of control mechanisms needed to maintain an upright posture. In this study, signatures of multifractality are sought and found in time series of the vertical angle of a pole balanced on the fingertip. Comparisons to surrogate time series reveal multiplicative-cascade dynamics and interactivity across scales. In addition, simulations of a pole-balancing model generating on-off intermittency [J. L. Cabrera and J. G. Milton, Phys. Rev. Lett. 89, 158702 (2002), 10.1103/PhysRevLett.89.158702] were analyzed. Evidence of multifractality is also evident in simulations, though comparing simulated and participant series reveals a significantly greater contribution of cross-scale interactivity for the latter. These findings suggest that multiplicative-cascade dynamics are an extension of on-off intermittency and play a role in prospective coordination.

  6. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser. PMID:26072764

  7. Climate correlates of 20 years of trophic changes in a high-elevation riparian system

    USGS Publications Warehouse

    Martin, T.E.

    2007-01-01

    The consequences of climate change for ecosystem structure and function remain largely unknown. Here, I examine the ability of climate variation to explain long-term changes in bird and plant populations, as well as trophic interactions in a high-elevation riparian system in central Arizona, USA, based on 20 years of study. Abundances of dominant deciduous trees have declined dramatically over the 20 years, correlated with a decline in overwinter snowfall. Snowfall can affect overwinter presence of elk, whose browsing can significantly impact deciduous tree abundance. Thus, climate may affect the plant community indirectly through effects on herbivores, but may also act directly by influencing water availability for plants. Seven species of birds were found to initiate earlier breeding associated with an increase in spring temperature across years. The advance in breeding time did not affect starvation of young or clutch size. Earlier breeding also did not increase the length of the breeding season for single-brooded species, but did for multi-brooded species. Yet, none of these phenology-related changes was associated with bird population trends. Climate had much larger consequences for these seven bird species by affecting trophic levels below (plants) and above (predators) the birds. In particular, the climate-related declines in deciduous vegetation led to decreased abundance of preferred bird habitat and increased nest predation rates. In addition, summer precipitation declined over time, and drier summers also were further associated with greater nest predation in all species. The net result was local extinction and severe population declines in some previously common bird species, whereas one species increased strongly in abundance, and two species did not show clear population changes. These data indicate that climate can alter ecosystem structure and function through complex pathways that include direct and indirect effects on abundances and interactions

  8. Coherent coupling of multiple transverse modes in quantum cascade lasers.

    PubMed

    Yu, Nanfang; Diehl, Laurent; Cubukcu, Ertugrul; Bour, David; Corzine, Scott; Höfler, Gloria; Wojcik, Aleksander K; Crozier, Kenneth B; Belyanin, Alexey; Capasso, Federico

    2009-01-01

    Quantum cascade lasers are a unique laboratory for studying nonlinear laser dynamics because of their high intracavity intensity, strong intersubband optical nonlinearity, and an unusual combination of relaxation time scales. Here we investigate the nonlinear coupling between the transverse modes of quantum cascade lasers. We present evidence for stable phase coherence of multiple transverse modes over a large range of injection currents. We explain the phase coherence by a four-wave mixing interaction originating from the strong optical nonlinearity of the gain transition. The phase-locking conditions predicted by theory are supported by spectral data and both near- and far-field mode measurements. PMID:19257192

  9. Characterizing the trophic niches of stocked and resident cyprinid fishes: consistency in partitioning over time, space and body sizes.

    PubMed

    Bašić, Tea; Britton, J Robert

    2016-07-01

    Hatchery-reared fish are commonly stocked into freshwaters to enhance recreational angling. As these fishes are often of high trophic position and attain relatively large sizes, they potentially interact with functionally similar resident fishes and modify food-web structure. Hatchery-reared barbel Barbus barbus are frequently stocked to enhance riverine cyprinid fish communities in Europe; these fish can survive for over 20 years and exceed 8 kg. Here, their trophic consequences for resident fish communities were tested using cohabitation studies, mainly involving chub Squalius cephalus, a similarly large-bodied, omnivorous and long-lived species. These studies were completed over three spatial scales: pond mesocosms, two streams and three lowland rivers, and used stable isotope analysis. Experiments in mesocosms over 100 days revealed rapid formation of dietary specializations and discrete trophic niches in juvenile B. barbus and S. cephalus. This niche partitioning between the species was also apparent in the streams over 2 years. In the lowland rivers, where fish were mature individuals within established populations, this pattern was also generally apparent in fishes of much larger body sizes. Thus, the stocking of these hatchery-reared fish only incurred minor consequences for the trophic ecology of resident fish, with strong patterns of trophic niche partitioning and diet specialization. Application of these results to decision-making frameworks should enable managers to make objective decisions on whether cyprinid fish should be stocked into lowland rivers according to ecological risk. PMID:27547336

  10. Autoregressive cascades on random networks

    NASA Astrophysics Data System (ADS)

    Iyer, Srikanth K.; Vaze, Rahul; Narasimha, Dheeraj

    2016-04-01

    A network cascade model that captures many real-life correlated node failures in large networks via load redistribution is studied. The considered model is well suited for networks where physical quantities are transmitted, e.g., studying large scale outages in electrical power grids, gridlocks in road networks, and connectivity breakdown in communication networks, etc. For this model, a phase transition is established, i.e., existence of critical thresholds above or below which a small number of node failures lead to a global cascade of network failures or not. Theoretical bounds are obtained for the phase transition on the critical capacity parameter that determines the threshold above and below which cascade appears or disappears, respectively, that are shown to closely follow numerical simulation results.

  11. Scaling the trophic index (TRIX) in oligotrophic marine environments.

    PubMed

    Primpas, Ioannis; Karydis, Michael

    2011-07-01

    The TRIX index used for the assessment of trophic status of coastal waters has been applied in many European seas (Adriatic, Tyrrhenian, Baltic, Black Sea, and North Sea). However, all these waters are characterized by high nutrient levels and phytoplankton biomass; index calibration based on systems that are principally eutrophic may introduce bias to the index scaling. In the present work the TRIX trophic index is evaluated using three standard sets of data characterizing oligotrophy, mesotrophy, and eutrophication in the Aegean (Eastern Mediterranean) marine environment. A natural eutrophication scale based on the TRIX index that is suitable to characterize trophic conditions in oligotrophic Mediterranean water bodies is proposed. This scale was developed into a five-grade water quality classification scheme describing different levels of eutrophication. It is questionable whether this index can form a universal index of eutrophication or the scaling of TRIX should be region specific. PMID:20853189

  12. Structure of trophic and mutualistic networks across broad environmental gradients

    PubMed Central

    Welti, Ellen A R; Joern, Anthony

    2015-01-01

    This study aims to understand how inherent ecological network structures of nestedness and modularity vary over large geographic scales with implications for community stability. Bipartite networks from previous research from 68 locations globally were analyzed. Using a meta-analysis approach, we examine relationships between the structure of 22 trophic and 46 mutualistic bipartite networks in response to extensive gradients of temperature and precipitation. Network structures varied significantly across temperature gradients. Trophic networks showed decreasing modularity with increasing variation in temperature within years. Nestedness of mutualistic networks decreased with increasing temperature variability between years. Mean annual precipitation and variability of precipitation were not found to have significant influence on the structure of either trophic or mutualistic networks. By examining changes in ecological networks across large-scale abiotic gradients, this study identifies temperature variability as a potential environmental mediator of community stability. Understanding these relationships contributes to our ability to predict responses of biodiversity to climate change at the community level. PMID:25691960

  13. Parasitism as a Driver of Trophic Niche Specialisation.

    PubMed

    Britton, J Robert; Andreou, Demetra

    2016-06-01

    The population trophic niche of free-living species can be subdivided into smaller niches comprising individuals specialising on specific food items. The roles of parasites in creating these specialised subgroups remain unclear. Intrapopulation differences in parasite infections can develop from specialist individuals within populations. Their differences in morphology and habitat can increase their exposure to intermediate hosts via infected prey, altering their parasite fauna. However, we also suggest that parasite infections can drive this niche specialisation. Through mechanisms including parasite manipulation, altered host phenotypes, and/ or parasite-mediated competition, parasites can alter the resource availability of their hosts, altering their trophic niches. Thus, trophic niche specialisations could result from parasitism via varying influences on host traits, raising questions for future research. PMID:26968643

  14. Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream

    PubMed Central

    Du, Bowen; Haddad, Samuel P.; Luek, Andreas; Scott, W. Casan; Saari, Gavin N.; Kristofco, Lauren A.; Connors, Kristin A.; Rash, Christopher; Rasmussen, Joseph B.; Chambliss, C. Kevin; Brooks, Bryan W.

    2014-01-01

    Though pharmaceuticals are increasingly observed in a variety of organisms from coastal and inland aquatic systems, trophic transfer of pharmaceuticals in aquatic food webs have not been reported. In this study, bioaccumulation of select pharmaceuticals was investigated in a lower order effluent-dependent stream in central Texas, USA, using isotope dilution liquid chromatography–tandem mass spectrometry (MS). A fish plasma model, initially developed from laboratory studies, was tested to examine observed versus predicted internal dose of select pharmaceuticals. Pharmaceuticals accumulated to higher concentrations in invertebrates relative to fish; elevated concentrations of the antidepressant sertraline and its primary metabolite desmethylsertraline were observed in the Asian clam, Corbicula fluminea, and two unionid mussel species. Trophic positions were determined from stable isotopes (δ15N and δ13C) collected by isotope ratio-MS; a Bayesian mixing model was then used to estimate diet contributions towards top fish predators. Because diphenhydramine and carbamazepine were the only target compounds detected in all species examined, trophic magnification factors (TMFs) were derived to evaluate potential trophic transfer of both compounds. TMFs for diphenhydramine (0.38) and carbamazepine (1.17) indicated neither compound experienced trophic magnification, which suggests that inhalational and not dietary exposure represented the primary route of uptake by fish in this effluent-dependent stream. PMID:25313153

  15. Early herbivore alert matters: plant-mediated effects of egg deposition on higher trophic levels benefit plant fitness.

    PubMed

    Pashalidou, Foteini G; Frago, Enric; Griese, Eddie; Poelman, Erik H; van Loon, Joop J A; Dicke, Marcel; Fatouros, Nina E

    2015-09-01

    Induction of plant defences, specifically in response to herbivore attack, can save costs that would otherwise be needed to maintain defences even in the absence of herbivores. However, plants may suffer considerable damage during the time required to mount these defences against an attacker. This could be resolved if plants could respond to early cues, such as egg deposition, that reliably indicate future herbivory. We tested this hypothesis in a field experiment and found that egg deposition by the butterfly Pieris brassicae on black mustard (Brassica nigra) induced a plant response that negatively affected feeding caterpillars. The effect cascaded up to the third and fourth trophic levels (larval parasitoids and hyperparasitoids) by affecting the parasitisation rate and parasitoid performance. Overall, the defences induced by egg deposition had a positive effect on plant seed production and may therefore play an important role in the evolution of plant resistance to herbivores. PMID:26147078

  16. Nanowire terahertz quantum cascade lasers

    SciTech Connect

    Grange, Thomas

    2014-10-06

    Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.

  17. Cascaded target normal sheath acceleration

    SciTech Connect

    Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.

    2013-11-15

    A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

  18. [Method of local treatment of trophic ulcers of venous etiology].

    PubMed

    Kukol'nikova, E L; Zhukov, B N

    2011-01-01

    The study is based on the results of local treatment of trophic ulcers of 150 patients with chronic venous insufficiency of the lower extremities. Local treatment is laser treatment and diagnostic unit with a wavelength λ=0,65 mkm and output power of 30 mW in pulsed mode for 10 minutes 1 times per day for 7-10 days. As an objective criterion for determining the speed and intensity of the healing of trophic ulcers and non-contact fixing their area of applied computer thermography. True healing of ulcers was achieved in all patients during the period from 14 to 28 days. PMID:21983538

  19. INCAS: an analytical model to describe displacement cascades

    NASA Astrophysics Data System (ADS)

    Jumel, Stéphanie; Claude Van-Duysen, Jean

    2004-07-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricité de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  20. Trophic classification of Colorado lakes utilizing contact data, Landsat and aircraft-acquired multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Boland, D. H. P.; Blackwell, R. J.

    1978-01-01

    Multispectral scanner data, acquired over several Colorado lakes using Landsat-1 and aircraft, were used in conjunction with National Eutrophication Survey contact-sensed data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators (chlorophyll a, inverse of Secchi disk transparency, conductivity, total phosphorous, total organic nitrogen, algal assay yield). Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators (chlorophyll a, Secchi disk transparency, total organic nitrogen), and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state. Multispectral scanner data acquired from satellite and aircraft platforms can be used to advantage in lake monitoring and survey programs.

  1. TROPHIC STRUCTURE OF MACROBENTHIC COMMUNITIES IN NORTHERN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    Trophic structure of estuarine benthic communities in the northern Gulf of Mexico was characterized according to the functional roles and geographic distributions of the macrobenthos. acrobenthic organisms collected during two years of study were assigned to trophic groups to ass...

  2. Pair Cascades in Blazars and Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh Sheikhyousefi, Parisa

    2012-05-01

    Recently some intermediate BL Lac objects (IBL), low frequency peak BL Lac objects (LBL) and flat spectrum radio quasars (FSRQs) were detected as very high energy gamma-ray sources (VHE; E > 100 GeV) by the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope (MAGIC), the High Energy Stereoscopic System (H.E.S.S) and the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These discoveries suggest that VHE gamma-rays may be produced in all types of active galactic nuclei (AGN) and that this is not only a common property of high frequency peaked BL Lac objects (HBL). The detection of the radio galaxies M87, Cen A and NGC 1275 supports this idea. In those AGN, VHE photons may interact with low energy photons from the broadline region (BLR), accretion disk around the black hole or thermal infrared photons form a dust torus by photon-photon pair production if the total center-of-momentum frame energy is above threshold to produce an electron-positron pair. These particles can produce new high energy photons by Compton up-scattering, and again these high energy photons can interact with soft photons to produce a pair of particles. This process will continue, leading to a shower (cascade) of particles and radiation. As the shower develops, it will expand laterally. This may explain the detection of the radio galaxies as VHE gamma-ray sources. The central part of my Ph.D. research work deals with the theoretical simulation of very high energy gamma-ray induced pair cascades in blazars and radio galaxies. Gamma-rays from the core of the AGN interact with low energy photons from the AGN environment and produce pairs of electrons and positrons resulting in Compton supported pair cascades. I developed a Monte Carlo code which treats the processes of gamma-gamma absorption and pair production, gamma-ray and electron/positron propagation, and Compton scattering, tracking particle trajectories in full 3-dimensional geometry. I showed that even for a very weak

  3. Predator-prey trophic relationships in response to organic management practices.

    PubMed

    Schmidt, Jason M; Barney, Sarah K; Williams, Mark A; Bessin, Ricardo T; Coolong, Timothy W; Harwood, James D

    2014-08-01

    A broad range of environmental conditions likely regulate predator-prey population dynamics and impact the structure of these communities. Central to understanding the interplay between predator and prey populations and their importance is characterizing the corresponding trophic interactions. Here, we use a well-documented molecular approach to examine the structure of the community of natural enemies preying upon the squash bug, Anasa tristis, a herbivorous cucurbit pest that severely hinders organic squash and pumpkin production in the United States. Primer pairs were designed to examine the effects of organic management practices on the strength of these trophic connections and link this metric to measures of the arthropod predator complex density and diversity within an experimental open-field context. Replicated plots of butternut squash were randomly assigned to three treatments and were sampled throughout a growing season. Row-cover treatments had significant negative effects on squash bug and predator communities. In total, 640 predators were tested for squash bug molecular gut-content, of which 11% were found to have preyed on squash bugs, but predation varied over the season between predator groups (coccinellids, geocorids, nabids, web-building spiders and hunting spiders). Through the linking of molecular gut-content analysis to changes in diversity and abundance, these data delineate the complexity of interaction pathways on a pest that limits the profitability of organic squash production. PMID:24673741

  4. On nonlinear cascades of enstrophy over the tropics at 200 mb during two Northern Hemisphere summers

    NASA Technical Reports Server (NTRS)

    Chen, T.-C.; Tribbia, J. J.

    1980-01-01

    Diagnostic computations of nonlinear cascades of enstrophy have been performed in the wavenumber domain for two northern summers. Attention is focused on the interactions among the waves, the interaction between the zonal flow and a given wave and the exchanges due to the beta effect. It is found that two wave ranges (low and intermediate wavenumbers) cascade enstrophy to two ranges of wavenumbers. Calculations are also performed to evaluate the contribution from the standing (92-day mean) and transient modes to the nonlinear enstrophy cascade.

  5. Photographic study of obstacle-induced disturbations of transonic turbine cascade flow

    NASA Astrophysics Data System (ADS)

    Szumowski, A.; Amecke, J.; Agocs, J.

    1998-09-01

    In this paper, the cascade flow structures influenced by the position of the obstacle inserted in the downstream flow are presented. The experiments were conducted in a stationary cascade wind tunnel, and the results can not be attributed directly to the real rotor channel flow. Nevertheless, they show qualitatively the very complicated flow pattern in the region of the rotor-stator interaction. They explain the existence of very strong variation of the blade loading and high losses of cascade flow due to the rotor-stator interaction noted by previous authors.

  6. Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1-x(OH)x)2SiO4: many-phonon χ(3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔χ(3) Raman-induced interactions under single- and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Lux, O.; Rhee, H.; Eichler, H. J.; Yoneda, H.; Shirakawa, A.; Ueda, K.; Rückamp, R.; Bohatý, L.; Becker, P.

    2013-07-01

    Natural crystals of topaz, Al2(F1-x(OH)x)2SiO4 were found to be an attractive Raman gain material and a subject for the investigation of different χ(3)-nonlinear optical effects. We present several manifestations of photon-phonon interactions related to SRS and RFWM processes initiated by picosecond excitations at room and cryogenic (≈9 K) temperature. Among them are octave-spanning Stokes and anti-Stokes generation in the visible and near-IR spectral range, combined SRS-active phonon modes, cross-cascaded up-conversion, χ(3)↔χ(3) lasing, as well as THG via self-sum frequency parametric generation. All recorded Raman-induced lasing lines are identified and attributed to the promoting χ(3)-vibration transitions. Based on the experimental data, theoretical simulations employing Fourier analysis are performed to demonstrate the potential of wide SRS frequency combs in terms of ultra-short pulse generation. On the 50th anniversary of the discovery of stimulated Raman scattering.

  7. Characteristics for two kinds of cascading events

    NASA Astrophysics Data System (ADS)

    Zou, Sheng-Rong; Gu, Ai-Hua; Liu, Ai-Fen; Xu, Xiu-Lian; Wang, Jian; He, Da-Ren

    2011-04-01

    Avalanche or cascade failure is ubiquitous. We first classify the cascading phenomena into two categories: the cascading disasters which result in large-scale functional failures and the cascading events that do not lead to disasters. We elucidate that two important factors, the increasing amount of events and the acceleration of event frequency, can induce the crossover from the cascading phenomenon to the cascading disaster. Through a simplified sandpile model and a heuristic logistic map, we demonstrate that the dependence of the event number on the observation time behaves as a power-law and as an exponential for these two different cascading events, respectively. The analytic derivations are found to be consistent with several empirical observations. Our present findings contribute to the understanding of the transition between different cascading events, providing a basis for the further understanding of the transitions among more general critical events.

  8. Decadal-scale variations of trophic levels at high trophic levels in the Yellow Sea and the Bohai Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Tang, Q.; Jin, X.

    2007-09-01

    A total of 2759 stomachs collected from a bottom trawl survey carried out by R/V "Bei Dou" in the Yellow Sea between 32°00 and 36°30N in autumn 2000 and spring 2001 were examined. The trophic levels (TL) of eight dominant fish species were calculated based on stomach contents, and trophic levels of 17 dominant species in the Yellow Sea and the Bohai Sea reported in later 1950s and mid-1980s were estimated so as to be comparable. The results indicated that the mean trophic level at high trophic levels declined from 4.06 in 1959-1960 to 3.41 in 1998-1999, or 0.16-0.19·decade - 1 (mean 0.17·decade - 1 ) in the Bohai Sea, and from 3.61 in 1985-1986 to 3.40 in 2000-2001, or 0.14·decade - 1 in the Yellow Sea; all higher than global trend. The dominant species composition in the Yellow Sea and the Bohai Sea changed, with the percentage of planktivorous species increases and piscivorous or omnivorous species decreases, and this was one of the main reasons for the decline in mean trophic level at high tropic levels. Another main reason was intraspecific changes in TL. Similarly, many factors caused decline of trophic levels in the dominant fish species in the Yellow Sea and the Bohai Sea. Firstly, TL of the same prey got lower, and anchovy ( Engraulis japonicus) as prey was most representative. Secondly, TLs of diet composition getting lower resulted in not only decline of trophic levels but also changed feeding habits of some species, such as spotted velvetfish ( Erisphex pottii) and Trichiurus muticus in the Yellow Sea. Thirdly, species size getting smaller also resulted in not only decline of trophic levels but also changed feeding habits of some species, such as Bambay duck ( Harpodon nehereus) and largehead hairtail ( Trichiurus haumela). Furthermore, fishing pressure and climate change may be interfering to cause fishing down the food web in the China coastal ocean.

  9. Engineering Light: Quantum Cascade Lasers

    ScienceCinema

    Claire Gmachl

    2010-09-01

    Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.

  10. Applications of cascade multilevel inverters.

    PubMed

    Peng, Fang-zen; Qian, Zhao-ming

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi-pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters. PMID:14566981

  11. Evaluation of the trophic structure of the West Florida Shelf in the 2000s using the ecosystem model OSMOSE

    NASA Astrophysics Data System (ADS)

    Grüss, Arnaud; Schirripa, Michael J.; Chagaris, David; Drexler, Michael; Simons, James; Verley, Philippe; Shin, Yunne-Jai; Karnauskas, Mandy; Oliveros-Ramos, Ricardo; Ainsworth, Cameron H.

    2015-04-01

    We applied the individual-based, multi-species OSMOSE modeling approach to the West Florida Shelf, with the intent to inform ecosystem-based management (EBM) in this region. Our model, referred to as 'OSMOSE-WFS', explicitly considers both pelagic-demersal and benthic high trophic level (HTL) groups of fish and invertebrate species, and is forced by the biomass of low trophic level groups of species (plankton and benthos). We present a steady-state version of the OSMOSE-WFS model describing trophic interactions in the West Florida Shelf in the 2000s. OSMOSE-WFS was calibrated using a recently developed evolutionary algorithm that allowed simulated biomasses of HTL groups to match observed biomasses over the period 2005-2009. The validity of OSMOSE-WFS was then evaluated by comparing simulated diets to observed ones, and the simulated trophic levels to those in an Ecopath model of the West Florida Shelf (WFS Reef fish Ecopath). Finally, OSMOSE-WFS was used to explore the trophic structure of the West Florida Shelf in the 2000s and estimate size-specific natural mortality rates for a socio-economically important species, gag grouper (Mycteroperca microlepis). OSMOSE-WFS outputs were in full agreement with observations as to the body size and ecological niche of prey of the different HTL groups, and to a lesser extent in agreement with the observed species composition of the diet of HTL groups. OSMOSE-WFS and WFS Reef fish Ecopath concurred on the magnitude of the instantaneous natural mortality of the different life stages of gag grouper over the period 2005-2009, but not always on the main causes of natural mortality. The model evaluations conducted here provides a strong basis for ongoing work exploring fishing and environmental scenarios so as to inform EBM. From simple size-based predation rules, we were indeed able to capture the complexity of trophic interactions in the West Florida Shelf, and to identify the predators, prey and competitors of socio

  12. Beneficial or not? Carnivore trophic position under the lens of amino acid isotopic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The trophic tendency of a carnivore shapes the nature of its contribution to herbivore suppression, as well as its indirect role in crop protection. Unfortunately, measuring the lifetime trophic tendency of a carnivore has remained prohibitively difficult, and as a result, animal trophic function ha...

  13. PANEL CODE FOR PLANAR CASCADES

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1994-01-01

    The Panel Code for Planar Cascades was developed as an aid for the designer of turbomachinery blade rows. The effective design of turbomachinery blade rows relies on the use of computer codes to model the flow on blade-to-blade surfaces. Most of the currently used codes model the flow as inviscid, irrotational, and compressible with solutions being obtained by finite difference or finite element numerical techniques. While these codes can yield very accurate solutions, they usually require an experienced user to manipulate input data and control parameters. Also, they often limit a designer in the types of blade geometries, cascade configurations, and flow conditions that can be considered. The Panel Code for Planar Cascades accelerates the design process and gives the designer more freedom in developing blade shapes by offering a simple blade-to-blade flow code. Panel, or integral equation, solution techniques have been used for several years by external aerodynamicists who have developed and refined them into a primary design tool of the aircraft industry. The Panel Code for Planar Cascades adapts these same techniques to provide a versatile, stable, and efficient calculation scheme for internal flow. The code calculates the compressible, inviscid, irrotational flow through a planar cascade of arbitrary blade shapes. Since the panel solution technique is for incompressible flow, a compressibility correction is introduced to account for compressible flow effects. The analysis is limited to flow conditions in the subsonic and shock-free transonic range. Input to the code consists of inlet flow conditions, blade geometry data, and simple control parameters. Output includes flow parameters at selected control points. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 590K of 8 bit bytes. This program was developed in 1982.

  14. Isotopes reveal fluctuation in trophic levels of estuarine organisms, in space and time

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Salgado, J. P.; Mendonça, V.; Cabral, H.; Costa, M. J.

    2012-08-01

    The estimation of the trophic level (TL) occupied by organisms in estuarine food webs, based on isotopic analysis, is generally done only for one season or averaged among seasons and sites. This does not allow the observation of possible alterations of TL in time and space. As estuaries are highly dynamic environments, it is plausible that the TLs of many of its organisms are not static, like usually portrayed in food web diagrams, but fluctuate in space and time. The TLs of marine juvenile fish, resident fish, shrimp, polychaetes, bivalves and amphipods were determined isotopically, in the Tagus estuary. Sampling was carried out in two nursery areas at each season. Significant changes in TL were observed, in space and time, for the vast majority of the organisms. A drop in TL in summer was observed for various species. The high availability of microalgae and macroalgae in summer may be the cause for this drop, which mainly affects low TL omnivores. These omnivores may opportunistically increase the proportion of primary producers in their diet, thus lowering their mean TL. Such an effect seems to cascade to secondary consumers, like Solea senegalensis and Pomatoschistus microps, which also presented a drop in TL in summer. This study also revealed that organisms that have been considered to be mainly primary consumers, like Liza ramada, and Scrobicularia plana, can actually assume considerably higher TLs seasonally, placing them as secondary consumers.

  15. Manipulation of host-resource dynamics impacts transmission of trophic parasites.

    PubMed

    Luong, Lien T; Grear, Daniel A; Hudson, Peter J

    2014-09-01

    Many complex life cycle parasites rely on predator-prey interactions for transmission, whereby definitive hosts become infected via the consumption of an infected intermediate host. As such, these trophic parasites are embedded in the larger community food web. We postulated that exposure to infection and, hence, parasite transmission are inherently linked to host foraging ecology, and that perturbation of the host-resource dynamic will impact parasite transmission dynamics. We employed a field manipulation experiment in which natural populations of the eastern chipmunk (Tamias striatus) were provisioned with a readily available food resource in clumped or uniform spatial distributions. Using replicated longitudinal capture-mark-recapture techniques, replicated supplemented and unsupplemented control sites were monitored before and after treatment for changes in infection levels with three gastro-intestinal helminth parasites. We predicted that definitive hosts subject to food supplementation would experience lower rates of exposure to infective intermediate hosts, presumably because they shifted their diet away from the intermediate host towards the more readily available resource (sunflower seeds). As predicted, prevalence of infection by the trophically transmitted parasite decreased in response to supplemental food treatment, but no such change in infection prevalence was detected for the two directly transmitted parasites in the system. The fact that food supplementation only had an impact on the transmission of the trophically transmitted parasite, and not the directly transmitted parasites, supports our hypothesis that host foraging ecology directly affects exposure to parasites that rely on the ingestion of intermediate hosts for transmission. We concluded that the relative availability of different food resources has important consequences for the transmission of parasites and, more specifically, parasites that are embedded in the food web. The broader

  16. Trophic spectra under the lens of amino acid isotopic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in compound specific isotopic ratio analysis (CSIRA) have allowed researchers to measure trophic fractionation of 15N in specific amino acids, namely glutamic acid and phenylalanine. These amino acids have proven useful in food web studies because of the wide and consistent disparity...

  17. Assessing Trophic Position and Mercury Accumulation in Sanpping Turtles

    EPA Science Inventory

    This study determined the trophic position and the total mercury concentrations of snapping turtles (Chelydra serpentina) captured from 26 freshwater sites in Rhode Island. Turtles were captured in baited wire cages, and a non-lethal sampling technique was used in which tips of ...

  18. The trophic classification of lakes using ERTS multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.; Boland, D. H.

    1975-01-01

    Lake classification methods based on the use of ERTS data are described. Preliminary classification results obtained by multispectral and digital image processing techniques indicate satisfactory correlation between ERTS data and EPA-supplied water analysis. Techniques for determining lake trophic levels using ERTS data are examined, and data obtained for 20 lakes are discussed.

  19. Limits on ecosystem trophic complexity: insights from ecological network analysis.

    PubMed

    Ulanowicz, Robert E; Holt, Robert D; Barfield, Michael

    2014-02-01

    Articulating what limits the length of trophic food chains has remained one of the most enduring challenges in ecology. Mere counts of ecosystem species and transfers have not much illumined the issue, in part because magnitudes of trophic transfers vary by orders of magnitude in power-law fashion. We address this issue by creating a suite of measures that extend the basic indexes usually obtained by counting taxa and transfers so as to apply to networks wherein magnitudes vary by orders of magnitude. Application of the extended measures to data on ecosystem trophic networks reveals that the actual complexity of ecosystem webs is far less than usually imagined, because most ecosystem networks consist of a multitude of weak connections dominated by a relatively few strong flows. Although quantitative ecosystem networks may consist of hundreds of nodes and thousands of transfers, they nevertheless behave similarly to simpler representations of systems with fewer than 14 nodes or 40 flows. Both theory and empirical data point to an upper bound on the number of effective trophic levels at about 3-4 links. We suggest that several whole-system processes may be at play in generating these ecosystem limits and regularities. PMID:24382355

  20. Trophic Factors and Regulation of Gastrointestinal Tract and Liver Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand the role of trophic factors in fetal and neonatal gastrointestinal and liver growth it is important to first consider the nature of growth. The fetal and neonatal period is the most dynamic period of post conceptual growth and includes critical developmental milestones, such ...

  1. Trophic factors and regulation of gastrointestinal tract and liver development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the role of trophic factors in fetal and neonatal gastrointestinal (GI) and liver growth it is important to first consider the nature of growth. The fetal and neonatal period is the most dynamic period of postconceptual growth and includes critical developmental milestones, such as gas...

  2. Sexual dimorphism in a trophically polymorphic cichlid fish?

    PubMed

    Hulsey, Christopher Darrin; García-De León, Francisco J; Meyer, Axel

    2015-12-01

    Sexual dimorphism in ecologically relevant traits is ubiquitous in animals. However, other types of intraspecific phenotypic divergence, such as trophic polymorphism, are less common. Because linkage to sex should often lead to balancing selection, understanding the association between sex and phenotypic divergence could help explain why particular species show high morphological variability. To determine if sexual dimorphism could be helping to maintain ecomorphological variation in a classic case of intraspecific trophic polymorphism, we examined the association between sex and morphological divergence in the cichlid Herichthys minckleyi. Although H. minckleyi with enlarged molariform teeth on their pharyngeal jaws have been reported to more commonly be male, we did not find an association between sex and pharyngeal morphotype. Sex was associated with divergence in body size (as measured through standard length). But, sex was not associated with any of the other trophic traits examined. However, pharyngeal morphotype did show an association with gut length, gape, and tooth number. Sexual dimorphism is not playing a central role in enhancing trophic diversity within H. minckleyi. PMID:26289966

  3. Trophic transfer of radioisotopes in Mediterranean sponges through bacteria consumption.

    PubMed

    Lacoue-Labarthe, Thomas; Warnau, Michel; Beaugeard, Laureen; Pascal, Pierre-Yves

    2016-02-01

    Numerous field studies highlighted the capacities of marine sponges to bioaccumulate trace elements and assessed their potential as biomonitors of the marine environment. Experimental works demonstrated that dissolved metals and radionuclides can be taken up directly by sponge tissues but, to the best of our knowledge, little is known on the contribution of the dietary pathway through the consumption of contaminated bacteria considered as one of the trophic source in sponge diet. Objectives of this work are to study trophic transfer of radiotracers (110m)Ag, (241)Am, (109)Cd, (57)Co, (134)Cs, (54)Mn and (65)Zn from the marine bacteria Pseudomonas stutzeri to the Mediterranean sponges Aplysina cavernicola and Ircinia oros. P. stutzeri efficiently bioaccumulated trace elements in our culture experimental conditions with CF comprised between 10(5) and 10(7) after 48 h of growth in radiolabeled medium. When fed with these radiolabelled bacteria, A. cavernicola took up around 60% of radiotracers accumulated in trophic source except (134)Cs for which only 8% has been transferred from bacteria to sponge. Contrasting to this, I. oros retained only 7% of (110m)Ag, (109)Cd and (65)Zn counted in bacteria, but retained 2-fold longer accumulated metals in its tissues. The sponge inter-specific differences of accumulation and depuration following a trophic exposure are discussed with respect to the structure and the clearance capacities of each species. PMID:26544727

  4. 40 CFR 35.1605-6 - Trophic condition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Trophic condition. 35.1605-6 Section 35.1605-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned...

  5. 40 CFR 35.1605-6 - Trophic condition.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Trophic condition. 35.1605-6 Section 35.1605-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned...

  6. 40 CFR 35.1605-6 - Trophic condition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Trophic condition. 35.1605-6 Section 35.1605-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned...

  7. 40 CFR 35.1605-6 - Trophic condition.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Trophic condition. 35.1605-6 Section 35.1605-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned...

  8. 40 CFR 35.1605-6 - Trophic condition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Trophic condition. 35.1605-6 Section 35.1605-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned...

  9. Trophic hierarchies revealed via amino acid isotopic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the potential of isotopic methods to illuminate trophic function, accurate estimates of lifetime feeding tendencies have remained elusive. A relatively new approach—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino ...

  10. Trophic spectra reveal the community structure of a terrestrial system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in compound-specific isotopic ratio analysis (CSI-AA) have allowed researchers to measure trophic fractionation of 15N in specific amino acids, namely glutamic acid and phenylalanine. These amino acids have proven useful in food web studies because of the wide and consistent disparit...

  11. Trophic Pathways of the Mid-North Atlantic

    EPA Science Inventory

    Because deep-sea fisheries are increasing as coastal fisheries decline, fisheries scientists need baseline data on deep-sea ecosystems prior to further development of deep-water fisheries. We present preliminary results and ongoing efforts to characterize the trophic structure a...

  12. Glycosaminoglycans from aged human hippocampus have altered capacities to regulate trophic factors activities but not Aβ42 peptide toxicity.

    PubMed

    Huynh, Minh Bao; Villares, Joao; Díaz, Julia Elisa Sepúlveda; Christiaans, Stephy; Carpentier, Gilles; Ouidja, Mohand Ouidir; Sissoeff, Ludmilla; Raisman-Vozari, Rita; Papy-Garcia, Dulce

    2012-05-01

    Glycosaminoglycans (GAGs) are major extracellular matrix components known to tightly regulate cell behavior by interacting with tissue effectors as trophic factors and other heparin binding proteins. Alterations of GAGs structures might thus modify the nature and extent of these interactions and alter tissue integrity. Here, we studied levels and composition of GAGs isolated from adult and aged human hippocampus and investigated if their changes can influence the function of important trophic factors and the Aβ42 peptide toxicity. Biochemical analyses showed that heparan sulfates are increased in the aged hippocampus. Moreover, GAGs from aged hippocampus showed altered capacities to regulate trophic factor activities without changing their capacities to protect cells from Aβ42 toxicity, compared to adult hippocampus GAGs. Structural alterations in GAGs from elderly were suggested by differential transcripts levels of key biosynthetic enzymes. C5-epimerase and 2-OST expressions were decreased while NDST-2 and 3-OST-4 were increased; in contrast, heparanase expression was unchanged. Results suggest that alteration of GAGs in hippocampus of aged subjects could participate to tissue impairment during aging. PMID:22035591

  13. Growth and condition of juvenile coho salmon Oncorhynchus kisutch relate positively to species richness of trophically transmitted parasites.

    PubMed

    Losee, J P; Fisher, J; Teel, D J; Baldwin, R E; Marcogliese, D J; Jacobson, K C

    2014-11-01

    The aims of this study were first, to test the hypothesis that metrics of fish growth and condition relate positively to parasite species richness (S(R)) in a salmonid host; second, to identify whether S(R) differs as a function of host origin; third, to identify whether acquisition of parasites through marine v. freshwater trophic interactions was related to growth and condition of juvenile salmonids. To evaluate these questions, species diversity of trophically transmitted parasites in juvenile coho salmon Oncorhynchus kisutch collected off the coast of the Oregon and Washington states, U.S.A. in June 2002 and 2004 were analysed. Fish infected with three or more parasite species scored highest in metrics of growth and condition. Fish originating from the Columbia River basin had lower S(R) than those from the Oregon coast, Washington coast and Puget Sound, WA. Parasites obtained through freshwater or marine trophic interactions were equally important in the relationship between S(R) and ocean growth and condition of juvenile O. kisutch salmon. PMID:25271907

  14. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration.

    PubMed

    Arnold, Edith; Thebault, Stéphanie; Baeza-Cruz, German; Arredondo Zamarripa, David; Adán, Norma; Quintanar-Stéphano, Andrés; Condés-Lara, Miguel; Rojas-Piloni, Gerardo; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-01-29

    Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration. PMID:24478366

  15. Iron, copper and zinc isotopic fractionation up mammal trophic chains

    NASA Astrophysics Data System (ADS)

    Jaouen, Klervia; Pons, Marie-Laure; Balter, Vincent

    2013-07-01

    There is a growing body of evidence that some non-traditional elements exhibit stable isotope compositions that are distinct in botanical and animal products, providing potential new tracers for diet reconstructions. Here, we present data for iron (Fe), copper (Cu) and zinc (Zn) stable isotope compositions in plants and bones of herbivores and carnivores. The samples come from trophic chains located in the Western Cape area and in the Kruger National Park in South Africa. The Fe, Cu and Zn isotope systematics are similar in both parks. However, local Cu, and possibly Zn, isotopic values of soils influence that of plants and of higher trophic levels. Between plants and bones of herbivores, the Zn isotope compositions are 66Zn-enriched by about 0.8‰ whereas no significant trophic enrichment is observed for Fe and Cu. Between bones of herbivores and bones of carnivores, the Fe isotope compositions are 56Fe-depleted by about 0.6‰, the Cu isotope compositions are 65Cu-enriched by about 1.0‰, and the Zn isotope compositions are slightly 66Zn-depleted by about 0.2‰. The isotopic distributions of the metals in the body partly explain the observed trophic isotopic systematics. However, it is also necessary to invoke differential intestinal metal absorption between herbivores and carnivores to account for the observed results. Further studies are necessary to fully understand how the Fe, Cu and Zn isotope values are regulated within the ecosystem's trophic levels, but the data already suggests significant potential as new paleodietary and paleoecological proxies.

  16. Trophic ecomorphology of Siluriformes (Pisces, Osteichthyes) from a tropical stream.

    PubMed

    Pagotto, J P A; Goulart, E; Oliveira, E F; Yamamura, C B

    2011-05-01

    The present study analysed the relationship between morphology and trophic structure of Siluriformes (Pisces, Osteichthyes) from the Caracu Stream (22º 45' S and 53º 15' W), a tributary of the Paraná River (Brazil). Sampling was carried out at three sites using electrofishing, and two species of Loricariidae and four of Heptapteridae were obtained. A cluster analysis revealed the presence of three trophic guilds (detritivores, insectivores and omnivores). Principal components analysis demonstrated the segregation of two ecomorphotypes: at one extreme there were the detritivores (Loricariidae) with morphological structures that are fundamental in allowing them to fix themselves to substrates characterised by rushing torrents, thus permitting them to graze on the detritus and organic materials encrusted on the substrate; at the other extreme of the gradient there were the insectivores and omnivores (Heptapteridae), with morphological characteristics that promote superior performance in the exploitation of structurally complex habitats with low current velocity, colonised by insects and plants. Canonical discriminant analysis revealed an ecomorphological divergence between insectivores, which have morphological structures that permit them to capture prey in small spaces among rocks, and omnivores, which have a more compressed body and tend to explore food items deposited in marginal backwater zones. Mantel tests showed that trophic structure was significantly related to the body shape of a species, independently of the phylogenetic history, indicating that, in this case, there was an ecomorphotype for each trophic guild. Therefore, the present study demonstrated that the Siluriformes of the Caracu Stream were ecomorphologically structured and that morphology can be applied as an additional tool in predicting the trophic structure of this group. PMID:21755165

  17. Species-area relationships are modulated by trophic rank, habitat affinity, and dispersal ability.

    PubMed

    van Noordwijk, C G E; Verberk, Wilco C E P; Turin, Hans; Heijerman, Theodoor; Alders, Kees; Dekoninck, Wouter; Hannig, Karsten; Regan, Eugenie; McCormack, Stephen; Brown, Mark J F; Remke, Eva; Siepel, Henk; Berg, Matty P; Bonte, Dries

    2015-02-01

    viewed in concert. In addition, species' responses depend on the landscape context. Our study suggests that the impact of habitat area on trophic interactions may be larger than previously anticipated. In small habitat fragments surrounded by a hostile matrix, food chains may be strongly disrupted. This highlights the need to conserve continuous calcareous grassland patches of at least several hectares in size. PMID:26240873

  18. Modelling impacts of offshore wind farms on trophic web: the Courseulles-sur-Mer case study

    NASA Astrophysics Data System (ADS)

    Raoux, Aurore; Pezy, Jean-Philippe; Dauvin, Jean-Claude; Tecchio, samuele; Degraer, Steven; Wilhelmsson, Dan; Niquil, Nathalie

    2016-04-01

    The French government is planning the construction of three offshore wind farms in Normandy. These offshore wind farms will integrate into an ecosystem already subject to a growing number of anthropogenic disturbances such as transportation, fishing, sediment deposit, and sediment extraction. The possible effects of this cumulative stressors on ecosystem functioning are still unknown, but they could impact their resilience, making them susceptible to changes from one stable state to another. Understanding the behaviour of these marine coastal complex systems is essential in order to anticipate potential state changes, and to implement conservation actions in a sustainable manner. Currently, there are no global and integrated studies on the effects of construction and exploitation of offshore wind farms. Moreover, approaches are generally focused on the conservation of some species or groups of species. Here, we develop a holistic and integrated view of ecosystem impacts through the use of trophic webs modelling tools. Trophic models describe the interaction between biological compartments at different trophic levels and are based on the quantification of flow of energy and matter in ecosystems. They allow the application of numerical methods for the characterization of emergent properties of the ecosystem, also called Ecological Network Analysis (ENA). These indices have been proposed as ecosystem health indicators as they have been demonstrated to be sensitive to different impacts on marine ecosystems. We present here in detail the strategy for analysing the potential environmental impacts of the construction of the Courseulles-sur-Mer offshore wind farm (Bay of Seine) such as the reef effect through the use of the Ecopath with Ecosim software. Similar Ecopath simulations will be made in the future on the Le Tréport offshore wind farm site. Results will contribute to a better knowledge of the impacts of the offshore wind farms on ecosystems. They also allow to

  19. Tropospheric energy cascades in a global circulation model

    NASA Astrophysics Data System (ADS)

    Brune, Sebastian; Becker, Erich

    2010-05-01

    The global horizontal kinetic energy (KE) spectrum and its budget are analyzed using results from a mechanistic GCM. The model has a standard spectral dynamical core with very high vertikal resolution up to the middle stratosphere (T330/L100). As a turbulence model we combine the Smagorinsky scheme with an energy conserving hyperdiffusion that is applied for the very smallest resolved scales. The simulation confirms a slope of the KE spectrum close to -3 in the synoptic regime where the KE is dominated by vortical modes. Towards the mesoscales the spectrum flattens and assumes a slope close to -5/3. Here divergent modes become increasingly important and even dominate the KE. Our complete analysis of the sinks and sources in the spectral KE budget reveals the overall energy fluxes through the spectrum. For the upper troposphere, the change of KE due to horizontal advection is negative for large synoptic scales. It is positive for the planetary scale, as expected, and for the mesoscales as well. This implies that the mesoscales, which include the dynamical sources of tropospheric gravity waves, are in fact sustained by the energy injection at the baroclinic scale (forward energy cascade). We find an enstrophy cascade in accordance with 2D turbulence, but zero downscaling of energy due to the vortical modes alone. In other words, the forward energy cascade in the synoptic and mesoscale regime is solely due to the divergent modes and their nonlinear interaction with the vortical modes. This picture, derived form a mechanistic model, not only lends further evidence for a generally forward energy cascade in the upper tropospheric away from the baroclinic scale. It also extends the picture proposed earlier by Tung and Orlando: The transition from a -3 to a -5/3 slope in the tropospheric macroturbulence spectrum reflects the fact, that the energy cascade due to the horizontally divergent (3D) modes is hidden behind the (2D) enstrophy cascade in the synoptic regime but

  20. Compressible turbulence: the cascade and its locality.

    PubMed

    Aluie, Hussein

    2011-04-29

    We prove that interscale transfer of kinetic energy in compressible turbulence is dominated by local interactions. In particular, our results preclude direct transfer of kinetic energy from large-scales to dissipation scales, such as into shocks, in high Reynolds number turbulence as is commonly believed. Our assumptions on the scaling of structure functions are weak and enjoy compelling empirical support. Under a stronger assumption on pressure dilatation cospectrum, we show that mean kinetic and internal energy budgets statistically decouple beyond a transitional conversion range. Our analysis establishes the existence of an ensuing inertial range over which mean subgrid scale kinetic energy flux becomes constant, independent of scale. Over this inertial range, mean kinetic energy cascades locally and in a conservative fashion despite not being an invariant. PMID:21635038

  1. THE EFFECTS OF GRAIN BOUNDARIES ON RADIATION DAMAGE PRODUCTION BY DISPLACEMENT CASCADES IN α-Fe

    SciTech Connect

    Heinisch, Howard L.; Kurtz, Richard J.; Gao, Fei

    2011-04-17

    It is well known that grain boundaries in metals can be sinks for migrating defects such as mobile interstitial atoms, but less is known about the effects of grain boundaries on defect production and defect-grain boundary interactions due to displacement cascades in the vicinity of grain boundaries. Molecular dynamics simulations were performed for displacement cascades in the vicinity of both a symmetric {Sigma}3<110>{l_brace}112{r_brace} and a symmetric {Sigma}11<110>{l_brace}323{r_brace} grain boundary (GB) in {alpha}-Fe to investigate cascade-GB interactions and defect creation near GBs. Both self-interstitial atoms and vacancies are created within the {Sigma}11 GB as well as within the {Sigma}3 GB, although fewer defects are trapped in the {Sigma}3 GB than in the {Sigma}11. See Figures 1-3 and typical cascades in Figure 4. The relative numbers of surviving vacancies and interstitials per cascade residing within the GB vary as a function of the distance of the primary knock-on atom from the GB, with more interstitials than vacancies arriving at the GB from distant cascades. For both {Sigma}3 and {Sigma}11 GBs the total number of surviving defects per cascade increases somewhat with decreasing distance of the cascade from the GB, indicating that having some fraction of the defects trapped in the GB promotes the initial survival of more cascade defects overall relative to cascades in the perfect crystal. Molecular statics simulations of defect formation energies within the GBs (Figure 5) confirm that both vacancies and self-interstitials have lower defect formation energies in both the {Sigma}3 and {Sigma}11 GBs relative to their formation energies in the perfect crystal.

  2. Bankruptcy Cascades in Interbank Markets

    PubMed Central

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank’s liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  3. Cascade Chaotic System With Applications.

    PubMed

    Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip

    2015-09-01

    Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level. PMID:25373135

  4. Bankruptcy cascades in interbank markets.

    PubMed

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  5. Molecular characterization of trophic ecology within an island radiation of insect herbivores (Curculionidae: Entiminae: Cratopus).

    PubMed

    Kitson, James J N; Warren, Ben H; Florens, F B Vincent; Baider, Claudia; Strasberg, Dominique; Emerson, Brent C

    2013-11-01

    The phytophagous beetle family Curculionidae is the most species-rich insect family known, with much of this diversity having been attributed to both co-evolution with food plants and host shifts at key points within the early evolutionary history of the group. Less well understood is the extent to which patterns of host use vary within or among related species, largely because of the technical difficulties associated with quantifying this. Here we develop a recently characterized molecular approach to quantify diet within and between two closely related species of weevil occurring primarily within dry forests on the island of Mauritius. Our aim is to quantify dietary variation across populations and assess adaptive and nonadaptive explanations for this and to characterize the nature of a trophic shift within an ecologically distinct population within one of the species. We find that our study species are polyphagous, consuming a much wider range of plants than would be suggested by the literature. Our data suggest that local diet variation is largely explained by food availability, and locally specialist populations consume food plants that are not phylogenetically novel, but do appear to represent a novel preference. Our results demonstrate the power of molecular methods to unambiguously quantify dietary variation across populations of insect herbivores, providing a valuable approach to understanding trophic interactions within and among local plant and insect herbivore communities. PMID:24112379

  6. Ecological Processes Driving Trophic Transfer Of Metals In Aquatic Food Webs

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Folt, C. L.

    2004-05-01

    The transfer of metals in aquatic food webs from water to fish varies among lakes and metals. It is influenced by four ecological processes: biomagnification, biodiminution, biodilution (decreasing mass specific concentrations with increased biomass), and transfer by keystone conduit species. Data from three different field studies will be used to discuss the fate of Hg, Zn, As, and Pb in food webs typical of lakes throughout the northeast US. Metal concentrations were measured in the water, particulates, two size fractions of zooplankton, and in fish in a broad gradient of lakes and were related to ecological, physico-chemical and land use variables. Some metals biomagnified (Hg, Zn) while others biodiminished (As, Pb). Hg and Zn in zooplankton and fish were also correlated suggesting food is an important source of bioaccumulation. Both plankton abundance and species composition influenced the trophic transfer of metals, particularly Hg, to fish. Specifically, Hg concentrations in both zooplankton and fish were lower in lakes with higher plankton biomass. Moreover, Hg and As bioaccumulation was greater in cladocerans than copepods suggesting that cladocerans are major metal conduits in food webs. These results underscore the importance of biological interactions to trophic transfer of metals in aquatic food webs.

  7. [Diet, selectivity and trophic overlap between the sizes of silverside Menidia humboldtiana (Atheriniformes: Atherinopsidae) in the reservoir Tiacaque, Mexico].

    PubMed

    Sánchez, Regina; Ochoa, Abigahil; Mendoza, Angélica

    2013-06-01

    D Menidia humboldtiana, a native species of Mexico, is a common inhabitant of local reservoirs. It represents a highly appreciated fish of economic importance in the central part of the country because of its delicate flavor. Trophic behavior of this species is important to understand the relationships with other fish species in reservoirs. With the aim to study this specific topic, the trophic spectrum, selectivity coefficient and overlap, were determined among different sizes of the Silverside M humboldtiana. For this, both zooplankton and fish samples were taken during four different seasons of 1995. Zooplankton samples were taken through a mesh (125 micron), and all organisms were identified to generic level. Fish were captured and grouped into standard length intervals per season, and the stomach contents were obtained and analyzed. Trophic interactions included the stomach contents analysis (Laevastu method), the coefficient of selection (Chesson) and the trophic overlap (Morisita index modified by Horn) between sizes. A total of 14 zooplankton genera were identified, of which Bosmina was the most abundant (29 625 ind./10 L) followed by Cyclops (9496 ind./10 L), during the spring. Small size fishes (1-4.9cm) consumed high percentages of Cyclops in the spring (61.24%) and winter (69.82%). Ceriodaphnia was consumed by fish sizes of 3-10.9cm (72.41%) and 13-14.9cm (95.5%) during the summer; while in autumn, small sizes (1-4.9cm) ingested Mastigodiaptomus and Ceriodaphnia; Daphnia and Bosmina w