Science.gov

Sample records for case study water

  1. Water resources management: case study of Sharkia governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Y. A.; Rashad, M.

    2012-06-01

    Ministry of water resources and irrigation in Egypt is currently implementing projects that expand new cultivated area, and accordingly the supplies of Nile River to the Nile Delta will be negatively affected. So, Enormous interest toward water resources management has been taken in the Egyptian water sector. Conveyance infrastructure and irrigation technology has been gradually improved to ensure efficient distribution and utilization of scarce water resources. The present study is focused on the optimum utilization of water resources in Sharkia governorate, Egypt. Operational and planning distribution model is implemented on the selected case study (Sharkia governorate) to develop appropriate water plan. The gross revenue of all crops is correlated to surface water discharge, ground water discharge, surface water salinity, and ground water salinity. In addition, the effect of varying both surface and groundwater quantities and qualities on the gross revenue has been investigated. Moreover, the effect of limiting rice production on the gross revenue is allocated.

  2. Primary Datasets for Case Studies of River-Water Quality

    ERIC Educational Resources Information Center

    Goulder, Raymond

    2008-01-01

    Level 6 (final-year BSc) students undertook case studies on between-site and temporal variation in river-water quality. They used professionally-collected datasets supplied by the Environment Agency. The exercise gave students the experience of working with large, real-world datasets and led to their understanding how the quality of river water is…

  3. Market Simulations for Irrigation Water Rights: A Hypothetical Case Study

    NASA Astrophysics Data System (ADS)

    Wong, Benedict D. C.; Eheart, J. Wayland

    1983-10-01

    The efficiency of two marketable water rights systems in a lentic (lakelike) structure is assessed quantitatively for a case study based on hypothetical irrigation water use. Water rights are simulated on the bases of (1) the expected values of water rights to the users and (2) perfect foresight on the parts of users, and the economic outcomes of these markets are evaluated from both ex ante and ex post perspectives. The market outcomes are compared to the optimal (efficient) scheme and to two alternative nonmarket policies. Distributional aspects of the markets are examined on the basis of individual payoff. Simulation results show that higher efficiency is obtained for the two market systems than for the nonmarket policies and that the market systems recoup about 95% of the economic value of the optimal distribution. The results suggest that most of the 5% efficiency loss should be attributed to the design of the market system itself (i.e., the restrictions imposed by the definition of the rights and/or the water rights allocation policy), rather than the users' inability to predict future events.

  4. Childhood lead poisoning; Case study traces source to drinking water

    SciTech Connect

    Cosgrove, E.; Brown, M.J.; Madigan, P.; McNulty, P.; Okonski, L.; Schmidt, J.

    1989-07-01

    Lead poisoning as a result of drinking water carried through lead service lines has been well-documented in the literature. A case of childhood lead poisoning is presented in which the only identified source of lead was lead solder from newly installed water pipes. Partly as a result of this case, the Massachusetts Bourd of Plumbers and Gas Fitters banned the use of 50/50 lead-tin solder or potable water lines. It is anticipated that this ban will increase the cost of new housing by only $16 per unit but will significantly reduce one environmental source of lead.

  5. Technology Solutions Case Study: Heat Pump Water Heater Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory studied heat pump water heaters, an efficient, cost-effective alternative to traditional electric resistance water heaters that can improve energy efficiency by up to 62%.

  6. Water market transfers in South Africa: Two case studies

    NASA Astrophysics Data System (ADS)

    Nieuwoudt, W. L.; Armitage, R. M.

    2004-09-01

    Statistical analyses (discriminant, logit, and principal components) of water transfers in the Lower Orange River showed that water rights were transferred to farmers with the highest return per unit of water applied, those producing table grapes, and with high-potential arable "outer land" without water rights. Only unused water (sleeper right) was transferred, while water saved (through adoption of conservation practices) was retained possibly for security purposes. A second study in the Nkwaleni Valley in northern KwaZulu-Natal found that no water market had emerged despite the scarcity of water in the area. No willing sellers of water rights existed. Demand for institutional change to establish tradable water rights may take more time in the second area since crop profitability in this area is similar for potential buyers and nonbuyers. Transaction costs appear larger than benefits from market transactions. Farmers generally use all their water rights in the second area and retain surplus water rights as security against drought because of unreliable river flow. This study indicates that these irrigation farmers are highly risk averse (downside risk). Government policies that increase the level of risk and reduce security of licenses are estimated to have a significant effect on future investment in irrigation. In an investment model the following variables explain future investment: expected profits, liquidity, risk aversion (Arrow-Pratt), and security of water use rights. The study is seen in the light of the New South African Water Act of 1998. According to this act, the ownership of water in South Africa has changed from private to public. This reform may not impede the development of water markets in South Africa since in the well-developed water markets of the United States, western states claim ownership of water within their boundaries. All states in the western United States allow private rights in the use of water to be established and sold.

  7. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  8. Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Makungo, R.; Odiyo, J. O.; Tshidzumba, N.

    The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of

  9. Rapid detection of bacteria in drinking water and water contamination case studies

    NASA Astrophysics Data System (ADS)

    Deininger, Rolf A.; Lee, Jiyoung; Clark, Robert M.

    2011-12-01

    Water systems are inherently vulnerable to physical, chemical and biologic threats that might compromise a systems' ability to reliably deliver safe water. The ability of a water supply to provide water to its customers can be compromised by destroying or disrupting key physical elements of the water system. However, contamination is generally viewed as the most serious potential terrorist threat to water systems. Chemical or biologic agents could spread throughout a distribution system and result in sickness or death among the consumers and for some agents the presence of the contaminant might not be known until emergency rooms report an increase in patients with a particular set of symptoms. Even without serious health impacts, just the knowledge that a water system had been breached could seriously undermine consumer confidence in public water supplies. Therefore, the ability to rapidly detect contamination, especially microbiological contamination, is highly desirable. The authors summarize water contamination case studies and discuss a technique for identifying microbiological contamination based on ATP bioluminescence. This assay allows an estimation of bacterial populations within minutes and can be applied using a local platform. Previous ATP-based methods requires one hour, one liter of water, and has a sensitivity of 100000 cells for detection. The improved method discussed here is 100 times more sensitive, requires one-hundredth of the sample volume, and is over 10 times faster than standard method. This technique has a great deal of potential for application in situations in which a water system has been compromised.

  10. Peace Corps Water/Sanitation Case Studies and Analyses. Appropriate Technologies for Development. Case Study CS-4.

    ERIC Educational Resources Information Center

    Talbert, Diana E., Comp.

    This document provides an overview of Peace Corps water and sanitation activities, five case studies (Thailand, Yemen, Paraguay, Sierra Leone, and Togo), programming guidelines, and training information. Each case study includes: (1) background information on the country's geography, population, and economics; (2) information on the country's…

  11. EVOLUTION OF A REGIONAL WATER SUPPLY: A CASE STUDY

    EPA Science Inventory

    A study was done to describe the development of a regional water supply system around the City of Dallas, Texas, and to summarize the issues surrounding the regionalization process. Data were gathered from written histories of Dallas, the City of Dallas Water Utilities Department...

  12. DRINKING WATER DISTRIBUTION SYSTEM RELIABILITY: A CASE STUDY

    EPA Science Inventory

    The purpose of the study was to present a tool useful to water utilities that not only could analyze historical distribution system reliability data, but also provide a flexible and expandable mechanism for record-keeping enabling overall management of water work's facilities and...

  13. A case study of a bacterial pathogen in irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents a case study of how exotic strains of Ralstonia solanacearum were disseminated throughout Europe and Florida via waterways used for irrigation. Several studies have demonstrated that aquatic weeds that commonly grow in rivers and ponds are able to harbor the pathogen and allow ...

  14. Optimal demand reponse to water pricing policies under limited water supply in irrigation: a case study

    NASA Astrophysics Data System (ADS)

    Grießbach, Ulkrike; Stange, Peter; Schuetze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with the higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local stochastic water demand functions are used which are derived from optimized agronomic response on farms scale. These functions take into account different soil types, crops, stochastically generated climate scenarios considering different economic conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed and applied for a case study in Saxony which helps to evaluate combined water supply and demand management policies on a regional level.

  15. Landsat and water: case studies of the uses and benefits of landsat imagery in water resources

    USGS Publications Warehouse

    Serbina, Larisa O.; Miller, Holly M.

    2014-01-01

    The Landsat program has been collecting and archiving moderate resolution earth imagery since 1972. The number of Landsat users and uses has increased exponentially since the enactment of a free and open data policy in 2008, which made data available free of charge to all users. Benefits from the information Landsat data provides vary from improving environmental quality to protecting public health and safety and informing decision makers such as consumers and producers, government officials and the public at large. Although some studies have been conducted, little is known about the total benefit provided by open access Landsat imagery. This report contains a set of case studies focused on the uses and benefits of Landsat imagery. The purpose of these is to shed more light on the benefits accrued from Landsat imagery and to gain a better understanding of the program’s value. The case studies tell a story of how Landsat imagery is used and what its value is to different private and public entities. Most of the case studies focus on the use of Landsat in water resource management, although some other content areas are included.

  16. Hydrochemical evaluation of river water quality—a case study

    NASA Astrophysics Data System (ADS)

    Qishlaqi, Afishin; Kordian, Sediqeh; Parsaie, Abbas

    2016-04-01

    Rivers are one of the most environmentally vulnerable sources for contamination. Since the rivers pass through the cities, industrial and agricultural centers, these have been considered as place to dispose the sewages. This issue is more important when the river is one of the main sources of water supplying for drinking, agricultural and industrial utilizations. The goal of the present study was assessing the physicochemical characteristics of the Tireh River water. The Tireh River is the main river in the Karkheh catchment in the Iran. To this end, 14 sampling stations for measuring the physicochemical properties of Tireh River along the two main cities (Borujerd and Dorud) were measured. The results showed that (except SO4) Mg, Ca and other anions and cations have concentrations under WHO standard limitation. Almost all samples have suitable conditions for drinking with regard to the WHO standard and in comparison with agricultural standard (FAO Standard), and the potential of water is suitable for irrigation purposes. According to Wilcox diagram, 78 % of samples were at the C3-S1 and 21.5 % were at C2-S1 classes. The piper diagram shows that most of samples are bicarbonate and calcic facies.

  17. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  18. ADVERSE IMPACTS OF WASTE WATER TREATMENT ­ A CASE STUDY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial metal plating processes coat materials with metals, such as chromium, copper and nickel. After the plating process, excess metals are rinsed off and the rinse water is collected and then treated to remove metals prior to discharge of the rinse water into rivers. This waste water is typica...

  19. MULTIPLE WATER REUSE IN POULTRY PROCESSING: CASE STUDY IN EGYPT

    EPA Science Inventory

    An industrial-scale multiple water reuse system was under investigation for a period of four years at a modern poultry processing plant in Alexandria, Egypt. The system involved: chlorination of cooling water from the compressor; reuse of this water in the chiller; successive tra...

  20. Sedimentation in lagoon waters (Case study on Segara Anakan Lagoon)

    NASA Astrophysics Data System (ADS)

    Sari, Lilik Kartika; Adrianto, Luky; Soewardi, Kadarwan; Atmadipoera, Agus S.; Hilmi, Endang

    2016-05-01

    This study aims to demonstrate the effect of sedimentation on waters area that serves as an advocate for life. It is included in the category to be wary considering these conditions will reduce the quality of life and threaten the life and survival of endemic biota. Observations rate of sedimentation since April 2014 until March 2015 performed at 6 stations that are considered to represent the condition of the lagoon. The observations for rate of sedimentation was conducted twice in a month for one year. Oceanographic parameters was taken by CTD (Conductivity, Temperature, and Depth) sensor in two seasons, at the height of the rainy season, March 2014 and August 2014. Results showed that the aquatic area more narrow characterized by changes in the outside line of the island visible on the image observation for two decades.

  1. Reducing Lead in School Drinking Water: A Case Study.

    ERIC Educational Resources Information Center

    Odell, Lee

    1991-01-01

    The Seattle School District began a program in 1990 to identify lead levels in the district's drinking water and to implement measures to lower any high lead levels. Recounts each of the seven steps of the program, discusses what the district found, and explains how it lowered lead levels in the drinking water. (MLF)

  2. The Impacts of Water Conservation Strategies on Water Use: Four Case Studies1

    PubMed Central

    Tsai, Yushiou; Cohen, Sara; Vogel, Richard M

    2011-01-01

    We assessed impacts on water use achieved by implementation of controlled experiments relating to four water conservation strategies in four towns within the Ipswich watershed in Massachusetts. The strategies included (1) installation of weather-sensitive irrigation controller switches (WSICS) in residences and municipal athletic fields; (2) installation of rainwater harvesting systems in residences; (3) two outreach programs: (a) free home indoor water use audits and water fixture retrofit kits and (b) rebates for low-water-demand toilets and washing machines; and (4) soil amendments to improve soil moisture retention at a municipal athletic field. The goals of this study are to summarize the effectiveness of the four water conservation strategies and to introduce nonparametric statistical methods for evaluating the effectiveness of these conservation strategies in reducing water use. It was found that (1) the municipal WSICS significantly reduced water use; (2) residences with high irrigation demand were more likely than low water users to experience a substantial demand decrease when equipped with the WSICS; (3) rainwater harvesting provided substantial rainwater use, but these volumes were small relative to total domestic water use and relative to the natural fluctuations in domestic water use; (4) both the audits/retrofit and rebate programs resulted in significant water savings; and (5) a modeling approach showed potential water savings from soil amendments in ball fields. PMID:22457572

  3. The added value of water footprint assessment for national water policy: a case study for Morocco.

    PubMed

    Schyns, Joep F; Hoekstra, Arjen Y

    2014-01-01

    A Water Footprint Assessment is carried out for Morocco, mapping the water footprint of different activities at river basin and monthly scale, distinguishing between surface- and groundwater. The paper aims to demonstrate the added value of detailed analysis of the human water footprint within a country and thorough assessment of the virtual water flows leaving and entering a country for formulating national water policy. Green, blue and grey water footprint estimates and virtual water flows are mainly derived from a previous grid-based (5 × 5 arc minute) global study for the period 1996-2005. These estimates are placed in the context of monthly natural runoff and waste assimilation capacity per river basin derived from Moroccan data sources. The study finds that: (i) evaporation from storage reservoirs is the second largest form of blue water consumption in Morocco, after irrigated crop production; (ii) Morocco's water and land resources are mainly used to produce relatively low-value (in US$/m3 and US$/ha) crops such as cereals, olives and almonds; (iii) most of the virtual water export from Morocco relates to the export of products with a relatively low economic water productivity (in US$/m3); (iv) blue water scarcity on a monthly scale is severe in all river basins and pressure on groundwater resources by abstractions and nitrate pollution is considerable in most basins; (v) the estimated potential water savings by partial relocation of crops to basins where they consume less water and by reducing water footprints of crops down to benchmark levels are significant compared to demand reducing and supply increasing measures considered in Morocco's national water strategy. PMID:24919194

  4. The Added Value of Water Footprint Assessment for National Water Policy: A Case Study for Morocco

    PubMed Central

    Schyns, Joep F.; Hoekstra, Arjen Y.

    2014-01-01

    A Water Footprint Assessment is carried out for Morocco, mapping the water footprint of different activities at river basin and monthly scale, distinguishing between surface- and groundwater. The paper aims to demonstrate the added value of detailed analysis of the human water footprint within a country and thorough assessment of the virtual water flows leaving and entering a country for formulating national water policy. Green, blue and grey water footprint estimates and virtual water flows are mainly derived from a previous grid-based (5×5 arc minute) global study for the period 1996–2005. These estimates are placed in the context of monthly natural runoff and waste assimilation capacity per river basin derived from Moroccan data sources. The study finds that: (i) evaporation from storage reservoirs is the second largest form of blue water consumption in Morocco, after irrigated crop production; (ii) Morocco’s water and land resources are mainly used to produce relatively low-value (in US$/m3 and US$/ha) crops such as cereals, olives and almonds; (iii) most of the virtual water export from Morocco relates to the export of products with a relatively low economic water productivity (in US$/m3); (iv) blue water scarcity on a monthly scale is severe in all river basins and pressure on groundwater resources by abstractions and nitrate pollution is considerable in most basins; (v) the estimated potential water savings by partial relocation of crops to basins where they consume less water and by reducing water footprints of crops down to benchmark levels are significant compared to demand reducing and supply increasing measures considered in Morocco’s national water strategy. PMID:24919194

  5. THE EMPACT BEACHES: A CASE STUDY IN RECREATIONAL WATER SAMPLING

    EPA Science Inventory

    Various chapters describe sample and experimental design, use of a geometric mean or an arithmetic mean, modeling and forecasting, and risk assessment in relation to monitoring recreational waters for fecal indicators. All of these aspects of monitoring are dependent on the spat...

  6. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    EPA Science Inventory

    EPA is releasing the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and Developmen...

  7. CASE-CONTROL STUDY OF ASBESTOS IN DRINKING WATER AND CANCER RISK

    EPA Science Inventory

    The authors conducted a case-control, interview-based study of the risk of developing cancer from asbestos in drinking water. The Everett, Washington, area was selected for the study because of the unusually high concentration of chrysotile asbestos in the drinking water it draws...

  8. Climate change, water rights, and agriculture: A case study in Idaho

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-05-01

    Water supply is important to agriculture and other consumptive uses in the arid and semiarid climate zones, but it has become increasingly uncertain under a changing climate. More important, how agricultural output will be affected may depend on how water resources are allocated based on the dominant sharing rule, according to Xu et al., who conducted a case study in Idaho.

  9. DRINKING WATER SOURCE AND RISK OF BLADDER CANCER: A CASE-CONTROL STUDY

    EPA Science Inventory

    A water source component was included in a large population based case-control interview study of artificial sweetners. Relative risk from using chlorinated surface water sources is not elevated in the exposed groups, and there is no suggestion of a duration-response relationship...

  10. Water Resources Management in the Lerma-Chapala Basin, Mexico: A Case Study

    ERIC Educational Resources Information Center

    Villamagna, Amy M.; Murphy, Brian R.

    2008-01-01

    Water resources have become an increasingly important topic of discussion in natural resources and environmental management courses. To address the need for more critical thinking in the classroom and to provide an active learning experience for undergraduate students, we present a case study based on water competition and management in the…

  11. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  12. Electrochemical anomalies of protic ionic liquid - Water systems: A case study using ethylammonium nitrate - Water system

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Nakama, Kazuya; Hayashi, Ryotaro; Aono, Masami; Takekiyo, Takahiro; Yoshimura, Yukihiro; Saihara, Koji; Shimizu, Akio

    2016-08-01

    Electrochemical impedance spectroscopy was used to evaluate protic ionic liquid (pIL)-water mixtures in the temperature range of -35-25 °C. The pIL used in this study was ethylammonium nitrate (EAN). At room temperature, the resonant mode of conductivity was observed in the high frequency region. The anomalous conductivity disappeared once solidification occurred at low temperatures. The kinetic pH of the EAN-water system was investigated at a fixed temperature. Rhythmic pH oscillations in the EAN-H2O mixtures were induced at 70 < x < 90 mol% H2O. The electrochemical instabilities in a EAN-water mixture are caused in an intermediate state between pIL and bulk water. From the ab initio calculations, it was observed that the dipole moment of the EAN-water complex shows a discrete jump at around 85 mol% H2O. Water-mediated hydrogen bonding network drastically changes at the crossover concentration.

  13. Impact of Water Availability on Regional Power System Operations - A Case Study of ERCOT

    NASA Astrophysics Data System (ADS)

    Levin, T.; Zhou, Z.

    2015-12-01

    Impact of water availability on regional power system operations - A case study of ERCOT Thermal power plants are the largest single source of water withdrawals in the United States, mainly for cooling purposes. The amount of water that is required for cooling is highly dependent on a number of factors including the generation technologies being used, the temperature of the input water, and the total electricity load in the system. During summer months, many of these factors coincide to greatly increase the demand for water in a power system. Electricity demand typically reaches its annual peak when temperatures are high due to increased air conditioning loads. Ambient water temperatures also increase, meaning that greater quantities of water are required to provide the same amount of cooling at thermal generation plants. Finally, water availability is generally constrained due to seasonal effects and potential droughts. This raises concerns that water scarcity may lead to forced de-rating at some power plants during periods of peak demand, resulting in a more vulnerable and less reliable energy system. While increasing attention has recently been given to the inexorable link between water and energy, most commercial power models do not explicitly account for water use when optimizing system operation. We apply the AURORAxmp power modeling software to a case study analysis of the ERCOT power system to determine the water requirements of the system during periods of peak power demand. We then analyze water availability by location and time to identify potential supply shortages, which may reduce actual power generation availability. These data are fed back into the power systems model and specific generation units are de-rated as necessitated by water constraints. We then analyze these results to determine how the optimal generation mix, system reliability, and wholesale electricity prices may be affected by when the ERCOT power system is operated under water

  14. Water resources regulation based on ET management - A case study on Huabei Plain in China

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2012-04-01

    objective-ET distribution method, and the connections and interactions among ET water rights, surface-water rights and groundwater rights are studied. A case study is carried out to test the ET method over an agricultural area on Huabei Plain. SWAT model is employed to compare three water-saving scenarios. The results will lead to the practical water allocation scheme that is suitable in the study area.

  15. Case Studies of Water Vapor and Surface Liquid Water from AVIRIS Data Measured Over Denver, CO and Death Valley, CA

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.

    1991-01-01

    High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.

  16. Getting water right: A case study in water yield modelling based on precipitation data.

    PubMed

    Pessacg, Natalia; Flaherty, Silvia; Brandizi, Laura; Solman, Silvina; Pascual, Miguel

    2015-12-15

    Water yield is a key ecosystem service in river basins and especially in dry regions around the World. In this study we carry out a modelling analysis of water yields in the Chubut River basin, located in one of the driest districts of Patagonia, Argentina. We focus on the uncertainty around precipitation data, a driver of paramount importance for water yield. The objectives of this study are to: i) explore the spatial and numeric differences among six widely used global precipitation datasets for this region, ii) test them against data from independent ground stations, and iii) explore the effects of precipitation data uncertainty on simulations of water yield. The simulations were performed using the ecosystem services model InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) with each of the six different precipitation datasets as input. Our results show marked differences among datasets for the Chubut watershed region, both in the magnitude of precipitations and their spatial arrangement. Five of the precipitation databases overestimate the precipitation over the basin by 50% or more, particularly over the more humid western range. Meanwhile, the remaining dataset (Tropical Rainfall Measuring Mission - TRMM), based on satellite measurements, adjusts well to the observed rainfall in different stations throughout the watershed and provides a better representation of the precipitation gradient characteristic of the rain shadow of the Andes. The observed differences among datasets in the representation of the rainfall gradient translate into large differences in water yield simulations. Errors in precipitation of +30% (-30%) amplify to water yield errors ranging from 50 to 150% (-45 to -60%) in some sub-basins. These results highlight the importance of assessing uncertainties in main input data when quantifying and mapping ecosystem services with biophysical models and cautions about the undisputed use of global environmental datasets. PMID:26282756

  17. Toward greener dialysis: a case study to illustrate and encourage the salvage of reject water.

    PubMed

    Connor, Andrew; Milne, Steve; Owen, Andrew; Boyle, Gerard; Mortimer, Frances; Stevens, Paul

    2010-06-01

    Climate change is now considered to be a major global public health concern. However, the very provision of health care itself has a significant impact upon the environment. Action must be taken to reduce this impact. Water is a precious and finite natural resource. Vast quantities of high-grade water are required to provide haemodialysis. The reverse osmosis systems used in the purification process reject approximately two-thirds of the water presented to them. Therefore, around 250 litres of 'reject water' result from the production of the dialysate required for one treatment. This good quality reject water is lost-to-drain in the vast majority of centres worldwide. Simple methodologies exist to recycle this water for alternative purposes. We describe here a case study of the only UK renal service we know to have implemented such water-saving methodologies. We outline the benefits in terms of financial and environmental savings. PMID:20591001

  18. Embracing Uncertainty: A Case Study Examination of How Climate Change is Shifting Water Utility Planning

    NASA Astrophysics Data System (ADS)

    Kaatz, L.

    2015-12-01

    Climate change has emerged as one of the greatest challenges facing water utilities' planning for the future, adding a new source and level of complexity that is forcing many agencies to re-examine their decision-making processes. A significant barrier for many agencies is figuring out how to consider highly uncertain climate information and move away from deterministic thinking to make climate-informed decisions. To provide water professionals with practical and relevant information, the Water Utility Climate Alliance teamed up with the American Water Works Association, in coordination with the Water Research Foundation and Association of Metropolitan Water Agencies, to develop a white paper sharing insights into how and why water agencies are modifying planning and decision-making processes. The 13 case studies presented illustrate the variety of ways in which utilities are incorporating climate change into planning, from immediate operational decisions, to capital planning and asset management, to long-term supply planning.

  19. Water nitrates and CNS birth defects: a population-based case-control study

    SciTech Connect

    Arbuckle, T.E.; Sherman, G.J.; Corey, P.N.; Walters, D.; Lo, B.

    1988-03-01

    The relation between maternal exposure to nitrates in drinking water and risk of delivering an infant with a central nervous system (CNS) malformation was examined by means of a case-control study in New Brunswick, Canada. All cases of CNS defects for a high and a low prevalence area of New Brunswick, for the years 1973-1983, were included in the study. Controls were selected randomly from the livebirth files for the province, matched on county of maternal residence and date of birth. One hundred and thirty (130) cases were identified and individually matched with two controls each. Individual water samples were collected from the case and control mother's address given on the birth or stillbirth records. The study revealed that the effect of nitrate exposure in water was modified by whether the source of the drinking water was a private well or a public municipal distribution system. Compared to a baseline nitrate level of 0.1 ppm, exposure to nitrate levels of 26 ppm from private well water sources was associated with a moderate, but not statistically significant, increase in risk (risk odds ratio = 2.30; 95% confidence interval = 0.73-7.29). If the source of drinking water was a municipal distribution system or a private spring, an increase in nitrate exposure was associated with a decrease in risk of delivering a CNS-malformed infant; however, these effect estimates were not statistically significant. The positive increase in risk with nitrate exposure from well water sources requires further study using a larger case series and a larger proportion of exposures to nitrate levels exceeding 5 ppm.

  20. Energy-water analysis of the 10-year WECC transmission planning study cases.

    SciTech Connect

    Tidwell, Vincent Carroll; Passell, Howard David; Castillo, Cesar; Moreland, Barbara

    2011-11-01

    calculating water withdrawal and consumption for current and planned electric power generation; projected water demand from competing use sectors; and, surface and groundwater availability. WECC's long range planning is organized according to two target planning horizons, a 10-year and a 20-year. This study supports WECC in the 10-year planning endeavor. In this case the water implications associated with four of WECC's alternative future study cases (described below) are calculated and reported. In future phases of planning we will work with WECC to craft study cases that aim to reduce the thermoelectric footprint of the interconnection and/or limit production in the most water stressed regions of the West.

  1. Costs of water treatment due to diminished water quality: A case study in Texas

    NASA Astrophysics Data System (ADS)

    Dearmont, David; McCarl, Bruce A.; Tolman, Deborah A.

    1998-04-01

    The cost of municipal water treatment due to diminished water quality represents an important component of the societal costs of water pollution. Here the chemical costs of municipal water treatment are expressed as a function of raw surface water quality. Data are used for a 3-year period for 12 water treatment plants in Texas. Results show that when regional raw water contamination is present, the chemical cost of water treatment is increased by 95 per million gallons (per 3785 m3) from a base of 75. A 1% increase in turbidity is shown to increase chemical costs by 0.25%.

  2. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi

    PubMed Central

    Kayser, Georgia L.; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E.

    2015-01-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries—Brazil, Ecuador, and Malawi—as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers. PMID:25798068

  3. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  4. Environmental health aspects of drinking water-borne outbreak due to karst flooding: case study.

    PubMed

    Dura, Gyula; Pándics, Tamás; Kádár, Mihály; Krisztalovics, Katalin; Kiss, Zoltánné; Bodnár, Judit; Asztalos, Agnes; Papp, Erzsébet

    2010-09-01

    Climate change may increase the incidence of waterborne diseases due to extreme rainfall events, and consequent microbiological contamination of the water source and supply. As a result of the complexity of the pathways from the surface to the consumer, it is difficult to detect an association between rainfall and human disease. The water supply of a Hungarian city, Miskolc (174,000 inhabitant), is mainly based on karstic water, a vulnerable underground water body. A large amount of precipitation fell on the catchment area of the karstic water source, causing an unusually strong karstic water flow and flooding, and subsequent microbiological contamination. The presence of several potential sources of contamination in the protective zone of the karstic water source should be emphasized. The water supplier was unprepared to treat the risk of waterborne outbreak caused by an extreme weather event. Public health intervention and hygienic measures were taken in line with epidemiological actions, focusing on the protection of consumers by providing safe drinking water. The contamination was identified, and measures were taken for risk reduction and prevention. This case study underlines the increasing importance of preparedness for extreme water events in order to protect the karstic water sources and to avoid waterborne outbreaks. PMID:20375480

  5. Controls on water use for thermoelectric generation: case study Texas, US.

    PubMed

    Scanlon, Bridget R; Reedy, Robert C; Duncan, Ian; Mullican, William F; Young, Michael

    2013-10-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km(3)), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km(3)) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. PMID:23937226

  6. Controls on Water Use for Thermoelectric Generation: Case Study Texas, U.S.

    PubMed Central

    2013-01-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km3), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km3) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. PMID:23937226

  7. Incorporating water consumption into crop water footprint: A case study of China's South-North Water Diversion Project.

    PubMed

    Wei, Yuhang; Tang, Deshan; Ding, Yifan; Agoramoorthy, Govindasamy

    2016-03-01

    The crop water footprint (WF) indicates the consumption of water for a crop during the planting period, mainly through evapotranspiration. However, as irrigated agriculture accounts for nearly 25% of the global agriculture water usage, evaluation of WF during transportation becomes essential to improve the efficiency of irrigated agriculture. This study aims at building an improved WF model to understand how much WF is produced due to water diversion and how much crop WF increases during the transfer. The proposed model is then used to calculate the WF of four major crops in five provinces along China's South-North Water Transfer Project in two steps. First, the WF of the water transfer project (WFeng) is assessed in a supply chain analysis method. Second, a WF allocation model is built to distribute the project WF for each crop/province. The results show that the evaporation and seepage are the main sources of WFeng. Out of five provinces, two namely Tianjin and Hebei present higher WFblue and WF increase. A positive correlation between water diversion distance and crop WF increase is noted. Among the four crops, cotton presents higher WFblue and WF increase. The crops with higher WFblue tend to be more strongly influenced by the water diversion project, due to high irrigation water dependency. This analysis may expand the WF concept from an evaporation-related term to a term reflecting crop biological processes and water consumption by artificial irrigation projects. Thus, it may serve as an indicator for optimizing future objectives and strategies associated to water resource planning in China and elsewhere. PMID:26760279

  8. Case Studies on the Impact of Concentrated Animal Feeding Operations (CAFOs) on Ground Water Quality

    EPA Science Inventory

    This report describes a series of case studies involving commercial swine, poultry, dairy, and beef CAFO operations where ground water contamination by nitrate and ammonia has occurred to ascertain whether other stressors in CAFO wastes are also being transported through the vado...

  9. CASE-CONTROL CANCER MORTALITY STUDY AND CHLORINATION OF DRINKING WATER IN LOUISIANA

    EPA Science Inventory

    Several Louisiana parished (counties) using the Mississippi River for their source of public drinking water have the highest mortality rates (1950-69) in the United States for several cancers. Therefore, a case-control mortality study on cancer of the liver, brain, pancreas, blad...

  10. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  11. Risk of Gastric Cancer by Water Source: Evidence from the Golestan Case-Control Study

    PubMed Central

    Eichelberger, Laura; Murphy, Gwen; Etemadi, Arash; Abnet, Christian C.; Islami, Farhad; Shakeri, Ramin; Malekzadeh, Reza; Dawsey, Sanford M.

    2015-01-01

    Background Gastric cancer (GC) is the world’s fifth most common cancer, and the third leading cause of cancer-related death. Over 70% of incident cases and deaths occur in developing countries. We explored whether disparities in access to improved drinking water sources were associated with GC risk in the Golestan Gastric Cancer Case Control Study. Methods and Findings 306 cases and 605 controls were matched on age, gender, and place of residence. We conducted unconditional logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CI), adjusted for age, gender, ethnicity, marital status, education, head of household education, place of birth and residence, homeownership, home size, wealth score, vegetable consumption, and H. pylori seropositivity. Fully-adjusted ORs were 0.23 (95% CI: 0.05–1.04) for chlorinated well water, 4.58 (95% CI: 2.07–10.16) for unchlorinated well water, 4.26 (95% CI: 1.81–10.04) for surface water, 1.11 (95% CI: 0.61–2.03) for water from cisterns, and 1.79 (95% CI: 1.20–2.69) for all unpiped sources, compared to in-home piped water. Comparing unchlorinated water to chlorinated water, we found over a two-fold increased GC risk (OR 2.37, 95% CI: 1.56–3.61). Conclusions Unpiped and unchlorinated drinking water sources, particularly wells and surface water, were significantly associated with the risk of GC. PMID:26023788

  12. Modeling integrated urban water systems in developing countries: case study of Port Vila, Vanuatu.

    PubMed

    Poustie, Michael S; Deletic, Ana

    2014-12-01

    Developing countries struggle to provide adequate urban water services, failing to match infrastructure with urban expansion. Despite requiring an improved understanding of alternative infrastructure performance when considering future investments, integrated modeling of urban water systems is infrequent in developing contexts. This paper presents an integrated modeling methodology that can assist strategic planning processes, using Port Vila, Vanuatu, as a case study. 49 future model scenarios designed for the year 2050, developed through extensive stakeholder participation, were modeled with UVQ (Urban Volume and Quality). The results were contrasted with a 2015 model based on current infrastructure, climate, and water demand patterns. Analysis demonstrated that alternative water servicing approaches can reduce Port Vila's water demand by 35 %, stormwater generation by 38 %, and nutrient release by 80 % in comparison to providing no infrastructural development. This paper demonstrates that traditional centralized infrastructure will not solve the wastewater and stormwater challenges facing rapidly growing urban cities in developing countries. PMID:24973053

  13. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.

    PubMed

    Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang

    2013-10-01

    In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (p<0.05). The biomasses of zooplankton and benthos were also improved after the vegetation replanting. The study confirmed that vegetation replanting could alleviate the increasing water pollution and rehabilitate the degraded aquatic ecosystem. The case study would be an example for polluted urban waters restoration in the middle-downstream area of Yangtze River Base. PMID:23247519

  14. Developing a national framework for safe drinking water--case study from Iceland.

    PubMed

    Gunnarsdottir, Maria J; Gardarsson, Sigurdur M; Bartram, Jamie

    2015-03-01

    Safe drinking water is one of the fundaments of society and experience has shown that a holistic national framework is needed for its effective provision. A national framework should include legal requirements on water protection, surveillance on drinking water quality and performance of the water supply system, and systematic preventive management. Iceland has implemented these requirements into legislation. This case study analyzes the success and challenges encountered in implementing the legislation and provide recommendations on the main shortcomings identified through the Icelandic experience. The results of the analysis show that the national framework for safe drinking water is mostly in place in Iceland. The shortcomings include the need for both improved guidance and control by the central government; and for improved surveillance of the water supply system and implementation of the water safety plan by the Local Competent Authorities. Communication to the public and between stakeholders is also insufficient. There is also a deficiency in the national framework regarding small water supply systems that needs to be addressed. Other elements are largely in place or on track. Most of the lessons learned are transferable to other European countries where the legal system around water safety is built on a common foundation from EU directives. The lessons can also provide valuable insights into how to develop a national framework elsewhere. PMID:25434689

  15. A case study of ethanol water demand during industrial phase in Brazil

    NASA Astrophysics Data System (ADS)

    Hernandes, T.; Scarpare, F. V.; Guarenghi, M.; Pereira, T.; Galdos, M. V.

    2012-12-01

    Thayse A. D. Hernandesb, Fábio V. Scarparea, Marjorie M. Guarenghib, Tássia P. Pereirab, Marcelo V. Galdosa a Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil, E-mail: fabio.scarpare@bioetanol.org.br b Faculdade de Engenharia Mecânica, Unicamp, Cidade Universitária "Zeferino Vaz", CEP 13083-860, Campinas, SP, Brazil In São Paulo State, the water resources have being used by sugarcane industry responsibly, through high reuse rates that may reach 95% during industrial process. The average amount of catchment water stays around 2.0 m3 Mg 1 of industrial sugarcane stalk. However, in some modern mills which use higher technical level of closed water circuit, the standard goal for sugarcane industry, 1.0 m3 Mg 1 can be reached. In some regions where the uptake water for industrial segment is high as in São Paulo State, water use assessment is desired for sustainable ethanol production. Thus, two regions in São Paulo State with two plants each were taken as a case study aiming to assess ethanol water demand during the industrial phase. Araraquara was the first study region where the water demand was classified as in critical condition in 2010 according to the Water and Electrical Energy Department of São Paulo State (DAEE). The industrial activities were responsible for 50% of the water catchment. Araçatuba was the second study region where water demand was classified as being of concern (DAEE) due to high percentage of catchment water for industrial activities, around 90%. Data regarding the amount of millable cane processed, days of the plant operation, ratio of cane used for ethanol production in 2010/2011 season were used for direct water demand estimation considering different water catchment scenarios of 2.0, 1.0 and 0.7 (technological development prediction scenario) m3 Mg-1 of millable cane. For indirect water demand estimation, data regarding installed capacity of each

  16. Water footprints as an indicator for the equitable utilization of shared water resources. (Case study: Egypt and Ethiopia shared water resources in Nile Basin)

    NASA Astrophysics Data System (ADS)

    Sallam, Osama M.

    2014-12-01

    The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.

  17. Comparative study between M. oleifera and aluminum sulfate for water treatment: case study Colombia.

    PubMed

    Salazar Gámez, Lorena L; Luna-delRisco, Mario; Cano, Roberto Efrain Salazar

    2015-10-01

    The world has a water deficit, mostly located in developing countries. For example, in Colombia, water deficit is a major concern and it increases in rural areas, where the rate of accessibility to drinking water is of 33.26% in 2005. Since the 1970s, the most used technology for water purification is the conventional physicochemical process. The most common coagulant used in this process is aluminum sulfate (alum). This study focuses on a comparison between Moringa oleifera seeds and alum for water treatment in different natural waters. Results showed that M. oleifera removed 90% turbidity and alum 96% from water samples from the tested natural brook. However, color removal for M. oleifera was 95 and 80.3% for alum. For water-polluted samples, both coagulants have shown high efficiency (100%) in color and turbidity removal. Usage of natural coagulants (i.e., M. oleifera) instead of chemical ones (i.e., alum) are more convenient in rural areas where the economic situation and accessibility of those products are key elements to maintain fresh water treatment standards. Additionally, results demonstrated that high dosages M. oleifera did not affect the optimal value in terms of color and turbidity removal. In rural and developing countries, this is important because it does not require a sophisticated dosing equipment. PMID:26437662

  18. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    PubMed Central

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  19. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill.

    PubMed

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  20. Influence of natural vs. anthropogenic stresses on water resource sustainability: a case study.

    PubMed

    Fennell, J; Zawadzki, A; Cadman, C

    2006-01-01

    Climate change has been identified as a major influence on basin water balances. However, land use and water use practices have also been identified as players. This case study was completed to better understand a changing water balance affecting a major basin in Alberta. The Beaver River basin is located in east central Alberta. Much of the basin has been developed for agricultural use; however, a number of heavy oil operations also exist. Both sectors use surface and groundwater. Evidence exists that the basin hydrology has changed since the mid-1970s. Coincidently, it was at this time that much of the land was cleared for agricultural development and commercial-scale oil development began. Oil industry use of water was suspected as the main cause for the changes observed. To investigate this further, data from regional hydrometric and meteorological stations were assessed along with water well hydrographs and historical satellite images. A significant correlation was found between basin responses and a climate phenomenon known as the Pacific decadal oscillation. Although the correlation between the Pacific decadal oscillation and basin hydrology appeared strong, deforestation for agricultural development also seemed to have an effect. Use of the local water resources was found to be of minor significance. PMID:16838685

  1. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    PubMed

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. PMID:26851759

  2. Overview of EPA's Approach to Developing Prospective Case Studies Technical Workshop: Case Studies to Assess Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    EPA Science Inventory

    One component of the United States Environmental Protection Agency's (EPA) study of the potential impacts of hydraulic fracturing on drinking water resources is prospective case studies, which are being conducted to more fully understand and assess if and how site specific hydrau...

  3. Case study on the implementation of deammonification for the process water treatment of Munich WWTPs.

    PubMed

    Hilliges, Rita; Steinle, Eberhard; Böhm, Bernhard

    2012-01-01

    The two-staged WWTP 'Gut Grosslappen' has a capacity of 2 mio. PE. It comprises a pre-denitrification in the first stage using recirculation from the nitrifying second stage. A residual post-denitrification in a downstream sand filter is required in order to achieve the effluent standards. Presently the process water from sludge digestion is treated separately by nitrification/denitrification. Due to necessary reconstruction of the biological stages, the process water treatment was included in the future overall process concept of the WWTP. A case study was conducted comparing the processes nitritation/denitrititation and deammonification with nitrification/denitrification including their effect on the operational costs of the planned main flow treatment. Besides the different operating costs the investment costs required for the process water treatment played a significant role. Six cases for the process water treatment were compared. As a result, in Munich deammonification can only be recommended for long-term future developments, due to the high investment costs, compared with the nitritation/denitritation alternative realizable in existing tanks. The savings concerning aeration, sludge disposal and chemicals were not sufficient to compensate for the additional investment costs. Due to the specific circumstances in Munich, for the time being the use of existing tanks for nitritation/denitritation proved to be most economical. PMID:22546808

  4. Bayesian approaches for Integrated Water Resources Management. A Mediterranean case study.

    NASA Astrophysics Data System (ADS)

    Gulliver, Zacarías; Herrero, Javier; José Polo, María

    2013-04-01

    This study presents the first steps of a short-term/mid-term analysis of the water resources in the Guadalfeo Basin, Spain. Within the basin the recent construction of the Rules dam has required the development of specific management tools and structures for this water system. The climate variability and the high water demand requirements for agriculture irrigation and tourism in this region may cause different controversies in the water management planning process. During the first stages of the study a rigorous analysis of the Water Framework Directive results was done in order to implement the legal requirements and the solutions for the gaps identified by the water authorities. In addition, the stakeholders and water experts identified the variables and geophysical processes for our specific water system case. These particularities need to be taken into account and are required to be reflected in the final computational tool. For decision making process purposes in a mid-term scale, a bayesian network has been used to quantify uncertainty which also provides a structure representation of probabilities, actions-decisions and utilities. On one hand by applying these techniques it is possible the inclusion of decision rules generating influence diagrams that provides clear and coherent semantics for the value of making an observation. On the other hand the utility nodes encode the stakeholders preferences which are measured on a numerical scale, choosing the action that maximizes the expected utility [MEU]. Also this graphical model allows us to identify gaps and project corrective measures, for example, formulating associated scenarios with different event hypotheses. In this sense conditional probability distributions of the seasonal water demand and waste water has been obtained between the established intervals. This fact will give to the regional water managers useful information for future decision making process. The final display is very visual and allows

  5. Assessment of management approaches in a public water utility: A case study of the Namibia water corporation (NAMWATER)

    NASA Astrophysics Data System (ADS)

    Ndokosho, Johnson; Hoko, Zvikomborero; Makurira, Hodson

    More than 90% of urban water supply and sanitation services in developing countries are provided by public organizations. However, public provision of services has been inherently inefficient. As a result a number of initiatives have emerged in recent years with a common goal to improve service delivery. In Namibia, the water sector reform resulted in the creation of a public utility called the Namibia Water Corporation (NAMWATER) which is responsible for bulk water supply countrywide. Since its inception in 1998, NAMWATER has been experiencing poor financial performance. This paper presents the findings of a case study that compared the management approaches of NAMWATER to the New Public Management (NPM) paradigm. The focus of the NPM approach is for the public water sector to mirror private sector methods of management so that public utilities can accrue the benefits of effectiveness, efficiency and flexibility often associated with private sector. The study tools used were a combination of literature review, interviews and questionnaires. It was found out that NAMWATER has a high degree of autonomy in its operations, albeit government approved tariffs and sourcing of external financing. The utility reports to government annually to account for results. The utility embraces a notion of good corporate culture and adheres to sound management practices. NAMWATER demonstrated a strong market-orientation indicated by the outsourcing of non-core functions but benchmarking was poorly done. NAMWATER’s customer-orientation is poor as evidenced by the lack of customer care facilities. NAMWATER’s senior management delegated operational authority to lower management to facilitate flexibility and eliminate bottlenecks. The lower management is in turn held accountable for performance by the senior management. There are no robust methods of ensuring sufficient accountability indicated by absence of performance contracts or service level agreements. It was concluded that

  6. Congenital malformations and maternal drinking water supply in rural South Australia: a case-control study.

    PubMed

    Dorsch, M M; Scragg, R K; McMichael, A J; Baghurst, P A; Dyer, K F

    1984-04-01

    A case-control study, carried out in the Mount Gambier region of South Australia, investigated the relationship between mothers' antenatal drinking water source and malformations in offspring. It was prompted by earlier descriptive findings of a statistically significant, and localized, increase in the perinatal mortality rate in Mount Gambier, due principally to congenital malformations affecting the central nervous system and multiple organ systems. Available for statistical analysis were 218 case-control pairs, from the period 1951-1979, individually matched by hospital, maternal age (+/- 2 years), parity and date of birth (+/- 1 month). Compared with women who drank only rainwater during their pregnancy (relative risk (RR) = 1.0), women who consumed principally groundwater had a statistically significant increase in risk of bearing a malformed child (RR = 2.8). Statistically significant risk increases occurred specifically for malformations of the central nervous system and musculoskeletal system. Reanalysis of the data by estimated water nitrate concentration demonstrated a nearly threefold increase in risk for women who drank water containing 5-15 ppm of nitrate, and a fourfold increase in risk for those consuming greater than 15 ppm of nitrate. A seasonal gradient in risk was evident among groundwater consumers, ranging from 0.9 for babies conceived in winter, 3.0 in autumn, to 7.0 and 6.3 for spring and summer conceptions, respectively. Linear logistic regression analysis, controlling for risk factors not accounted for in the study design, showed that maternal water supply, infant's sex, and mother's area of residence all contributed significantly to the risk of malformation. These results are discussed in relation to previous experimental and human descriptive studies, suggesting a plausible mechanism for nitrate-induced teratogenesis. PMID:6711537

  7. Congenital malformations and maternal drinking water supply in rural South Australia: a case-control study

    SciTech Connect

    Dorsch, M.M.; Scragg, R.K.R.; McMichael, A.J.; Baghurst, P.A.; Dyer, K.F.

    1984-04-01

    A case-control study, carried out in the Mount Gambier region of South Australia, investigated the relationship between mothers' antenatal drinking water source and malformations in offspring. It was prompted by earlier descriptive findings of a statistically significant, and localized, increase in the perinatal mortality rate in Mount Gambier, due principally to congential malformations affecting the central nervous system and multiple organ systems. Available for statistical analysis were 218 case-control pairs, from the period 1951-1979, individually matched by hospital, maternal age (+/- 2 years), parity and date of birth (+/- 1 month). Compared with women who drank only rainwater during their pregnancy (relative risk (RR) = 1.0), women who consumed principally groundwater had a statistically significant increase in risk of bearing a malformed child (RR = 2.8). statistically significant risk increases occurred specifically for malformations of the central nervous system and musculoskeletal system. Reanalysis of the data by estimated water nitrate concentration demonstrated a nearly threefold increase in risk for women who drank water containing 5-15 ppm of nitrate, and fourfold increase in risk for those consuming >15 ppm of nitrate.

  8. Assessment the performance of classification methods in water quality studies, A case study in Karaj River.

    PubMed

    Sakizadeh, Mohamad

    2015-09-01

    To show the performance of classification methods in water quality studies, linear discriminant, and Naïve Bayesian classification methods were applied at nine sampling stations with respect to four parameters including COD, nitrite, nitrate, and total coliforms (selected from ten water quality variables) in Karaj River, Iran. To fulfill the goals of this study, the sampling stations were first separated into two groups using cluster analysis. Rural wastewater was the main source of pollution in the first group, whereas the quality of water in the second group has been degraded mainly by organic and agricultural pollution. In order to have an independent group against which the performance of other classification methods is considered, three cross-validation methods including twofold, leave-one-out, and holdout methods were utilized to retain an independent test set. The results of cross-validation for the linear discriminant analysis show that, except for the leave-one-out method with 11.1 % misclassification error, the overall performance has been the same as that of the training data set. Therefore, it has outperformed compared with that of Naïve Bayesian classification method. However, even though in situations where the correlation coefficient among the parameters is low, the latest method can offer the same performance as that of linear discriminant analysis as well. A sensitivity analysis was implemented using ten water quality variables (pH, COD, EC, TDA, turbidity, nitrate, nitrite, sulfate, TC, and FC) to find the most important variables in the classification of Karaj River showing that turbidity, next to COD, pH, nitrate, and sulfate, have had the most contribution in this field. PMID:26275762

  9. Harmful algal blooms: a case study in two mesotrophic drinking water supply reservoirs in South Carolina

    USGS Publications Warehouse

    Journey, Celeste A.; Beaulieu, Karen M.; Knight, Rodney R.; Graham, Jennifer L.; Arrington, Jane M.; West, Rebecca; Westcott, John; Bradley, Paul M.

    2010-01-01

    Algal blooms can be harmful and a nuisance in a variety of aquatic ecosystems, including reservoirs and lakes. Cyanobacterial(blue-green algae) harmful algal blooms are notorious for producing both taste-and-odor compounds and potent toxins that may affect human health. Taste–and-odor episodes are aesthetic problems often caused by cyanobacterial-produced organic compounds (geosmin and methylisoborneol) and are common in reservoirs and lakes used as source water supplies. The occurrences of these taste-and-odor compounds and toxins (like microcystin) can be sporadic and vary in intensity both spatially and temporally. Recent publications by the U.S. Geological Survey address this complexity and provide protocols for cyanotoxin and taste-and-odor sampling programs. A case study conducted by the U.S. Geological Survey, in cooperation with Spartanburg Water, monitored two mesotrophic reservoirs that serve as public drinking water supplies in South Carolina. Study objectives were (1) to identify spatial and temporal occurrence of the taste-and-odor compound geosmin and the cyanotoxin microcystin and (2) to assess the associated limnological conditions before, during, and after these occurrences. Temporal and spatial occurrence of geosmin and microcystin were highly variable from 2007 to 2009. The highest geosmin concentrations tended to occur in the spring. Microcystin tended to occur in the late summer and early fall, but occurrence was rare and well below World Health Organization guidelines for finished drinking water and recreational activities. No current U.S. Environmental Protection Agency standards are applicable to cyanotoxins in drinking or ambient water. In general, elevated geosmin and microcystin concentrations were the result of complex interactions between cyanobacterial ⬚community composition, nutrient availability, water clarity, hydraulic residence time, and stratification.

  10. Pressures and Impacts On Water Quality: Case Study of Guadiana River Watershed

    NASA Astrophysics Data System (ADS)

    Gomes, F.; Quadrado, F.

    According to Article 5 and Annex II of the Water Framework Directive (WFD) is required that Member States identify significant anthropogenic pressures on river basins and also assess the potential impact of these pressures on the water bodies. The following areas have to be identified: point and diffuse sources pollution, the wa- ter abstraction, the water flow regulation, the morphological alterations and land use patterns. This work intends to describe and analyse the application of an integrated methodology for studying the importance of pressures and impacts on water quality. The methodology integrates loads calculation and mathematical models with Geo- graphical Information Systems (GIS). First step is to identify and characterise, point and diffuse sources of pollution, then estimate loads associate to that sources. Using GIS tools it is possible mapping the most problematic zones inside of the basin, con- cerning pressures to water resources. GIS model will be applied in order to estimate loads from diffuse pollution, using watershed characteristics, namely land use and to- pography. The obtained results together with loads from point sources pollution, will be integrated in a water quality model to evaluate the impacts of this pressures on the basin. For a correct basin management, it is necessary to minimise this impacts, with action plans and monitoring programmes, to improve water quality and achieve the environmental objectives. The case study is the Guadiana river, an international basin with a total area of 66 860 km2, having it is headwaters in Spain with a basin of 55 260 km2. The national area has 11 600 km2 and a big dam is being building, Alqueva, cre- ating a reservoir basin with 250 km2 and a storage capacity of 4 150 hm3. Guadiana river has an important role in the south of Portugal, a region with drought problems. Although the poor water quality that reaches the border, the Portuguese basin also has some important pollution sources. These can

  11. Habitat and Biodiversity of On-Farm Water Storages: A Case Study in Southeast Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Markwell, Kim A.; Fellows, Christine S.

    2008-02-01

    On-farm water storages (locally known as farm dams or farm ponds) are an important part of many agricultural landscapes, as they provide a reliable source of water for irrigation and stock. Although these waterbodies are artificially constructed and morphologically simple, there is increasing interest in their potential role as habitat for native flora and fauna. In this article, we present results from a case study which examined the habitat characteristics (such as water physical and chemical parameters, benthic metabolism, and macrophyte cover) and the macrophyte and macroinvertebrate biodiversity of eight farm ponds on four properties in the Stanley Catchment, Southeast Queensland, Australia. Each landowner was interviewed to allow a comparison of the management of the ponds with measured habitat and biodiversity characteristics, and to understand landowners’ motivations in making farm pond management decisions. The physical and chemical water characteristics of the study ponds were comparable to the limited number of Australian farm ponds described in published literature. Littoral zones supported forty-five macroinvertebrate families, with most belonging to the orders Hemiptera, Coleoptera, Odonata, and Diptera. Invertebrate community composition was strongly influenced by littoral zone macrophyte structure, with significant differences between ponds with high macrophyte cover compared to those with bare littoral zones. The importance of littoral zone macrophytes was also suggested by a significant positive relationship between invertebrate taxonomic richness and macrophyte cover. The landowners in this study demonstrated sound ecological knowledge of their farm ponds, but many had not previously acknowledged them as having high habitat value for native flora and fauna. If managed for aquatic organisms as well as reliable water sources, these artificial habitats may help to maintain regional biodiversity, particularly given the large number of farm ponds

  12. Habitat and biodiversity of on-farm water storages: a case study in Southeast Queensland, Australia.

    PubMed

    Markwell, Kim A; Fellows, Christine S

    2008-02-01

    On-farm water storages (locally known as farm dams or farm ponds) are an important part of many agricultural landscapes, as they provide a reliable source of water for irrigation and stock. Although these waterbodies are artificially constructed and morphologically simple, there is increasing interest in their potential role as habitat for native flora and fauna. In this article, we present results from a case study which examined the habitat characteristics (such as water physical and chemical parameters, benthic metabolism, and macrophyte cover) and the macrophyte and macroinvertebrate biodiversity of eight farm ponds on four properties in the Stanley Catchment, Southeast Queensland, Australia. Each landowner was interviewed to allow a comparison of the management of the ponds with measured habitat and biodiversity characteristics, and to understand landowners' motivations in making farm pond management decisions.The physical and chemical water characteristics of the study ponds were comparable to the limited number of Australian farm ponds described in published literature. Littoral zones supported forty-five macroinvertebrate families, with most belonging to the orders Hemiptera, Coleoptera, Odonata, and Diptera. Invertebrate community composition was strongly influenced by littoral zone macrophyte structure, with significant differences between ponds with high macrophyte cover compared to those with bare littoral zones. The importance of littoral zone macrophytes was also suggested by a significant positive relationship between invertebrate taxonomic richness and macrophyte cover.The landowners in this study demonstrated sound ecological knowledge of their farm ponds, but many had not previously acknowledged them as having high habitat value for native flora and fauna. If managed for aquatic organisms as well as reliable water sources, these artificial habitats may help to maintain regional biodiversity, particularly given the large number of farm ponds across

  13. Interannual variation of ocean heat content in outer Indonesian waters in warming ocean (Case study: West Sumatra waters)

    NASA Astrophysics Data System (ADS)

    Radjawane, Ivonne M.; Bernawis, Lamona I.; Priyono, Bayu; Fadli, Muh.; Putuhena, Hugo S.

    2015-09-01

    This research was intended observe of interannual variation of Ocean Heat Content (OHC) in outer Indonesian Water within the boundary of Indonesia Economic Exclusive Zone (EEZ) with study case focused West Sumatra waters that related to global ocean warming. The temperature data were obtained from ARGO floats as well as other observations data from 2002-2010. OHC was calculated following the equations adopted from Young et al.(2009) using a two-layer ocean models which are above and below the thermocline, where the heat content is calculated from the surface to depth of 28° C isotherm of upper thermocline.The results show trend of increasing OHC and varies interannual in West Sumatra water. The OHC ranges from 425 MJ/m2 to 4720 MJ/m2 in West Sumatra. The signal of OHC in West Sumatra influenced by Indian Ocean Dipole Mode phenomena. When positive IOD event occurs then decrease of OHC in West Sumatra due to decrease in SST over the areas.

  14. Fuzzifying historical peak water levels: case study of the river Rhine at Basel

    NASA Astrophysics Data System (ADS)

    Salinas, Jose Luis; Kiss, Andrea; Blöschl, Günter

    2016-04-01

    Hydrological information comes from a variety of sources, which in some cases might be non-precise. In particular, this is an important issue for the available information on water stages during historical floods. An accurate estimation of the water level profile, together with an elevation model of the riverbed and floodplain areas is fundamental for the hydraulic reconstruction of historical flood events, allowing the back calculation of flood peak discharges, velocity and erosion fields, damages, among others. For the greatest floods during the last 1700 years, Wetter et al. (2011) reconstructed the water levels and historical discharges at different locations in the old city centre from a variety of historical sources (stone marks, official documents, paintings, etc). This work presents a model for the inherent unpreciseness of these historical water levels. This is, with the arithmetics of fuzzy numbers, described by their membership functions, in a similar fashion as the probability density function describes the uncertainty of a random variable. Additional to the in-site collected water stages from floodmarks and other documentary evidence (e.g. preserved in narratives and newspaper flood reports) are prone to be modeled in a fuzzy way. This study presents the use of fuzzy logic to transform historical information from different sources, in this case of flood water stages, into membership functions. This values might then introduced in the mathematical framework of Fuzzy Bayesian Inference to perform the statistical analyses with the rules of fuzzy numbers algebra. The results of this flood frequency analysis, as in the traditional non-fuzzy way, link discharges with exceedance probabilities or return periods. The main difference is, that the modeled discharge quantiles are not precise values, but fuzzy numbers instead, represented by their membership functions explicitly including the unpreciseness of the historical information used. Wetter, O., Pfister, C

  15. A snow water equivalent reanalysis case study over an Andean watershed

    NASA Astrophysics Data System (ADS)

    Cortés, G.; Girotto, M.; Margulis, S. A.

    2013-12-01

    The southern Andes and its seasonal snow cover represent an important seasonal water reservoir for many population centers. Despite this, there is a significant shortage of in situ instrumentation that limits real-time or historical analysis of snow dynamics. Historical remote sensing data can be used to augment the limited in situ data. We apply a data assimilation (reanalysis) framework to reconstruct space-time fields of snow water equivalent (SWE) for a case study over a watershed located in the semi-arid Andes (33°S) for the 2008 water year. The framework consists of conditioning an uncertain prior estimate, obtained from a Land Surface Model (LSM) using the MERRA reanalysis forcing data, with historical fractional snow covered area from the Landsat platform. The method is designed to generate improved estimates of precipitation forcing that are a key requirement for accurate SWE estimates. The resulting daily, 90 m gridded SWE values are validated against runoff volumes and existing in-situ SWE measurements. The resulting estimates consist of a valuable dataset that can serve as a basis for a diverse number of climatological and modeling applications, such as understanding climate change impacts, spatial variability patterns or hydrological model calibration in areas with low to non-existent SWE in-situ measurements.

  16. Urban vulnerability and resiliency over water-related risks: a case study from Algiers.

    PubMed

    Aroua, Najet

    2016-01-01

    The ad hoc management of natural environmental features and inappropriate social interventions could cause vulnerability of thriving urban ecosystems. For instance sub-aerial exposure, water-related hazards, urban intrinsic sensitivity, urban adaptation ability or flexibility and urban transformability factors could contribute a potential danger. In spite of seasonal climatic changes, the exposure indicates a significant geographical determinism whereas the other factors express its antithesis. The present paper aims to adapt a vulnerability-resilience indicators' multicriteria analysis to show the variability and contribution rate with regard to local water-related risks. The municipality of al-Harrash from Algiers has been selected as a case study. The urban vulnerability-resilience closely tied up with a sum of relevant indicators confirmed by the diagnosis items, which are relevant to the local urban and hydro systems. The cumulative sums are obtained from a classification process referring to several criteria implied in the water-related risks. These were formulated here for the purpose of a multicriteria analysis with the objective of assessing the urban vulnerability-resilience index and subsequently orientating the preventive strategy towards different levels of sustainable measures. With this respect the exposure and sensitivity received a significant score while adaptation ability and transformability scored very low. PMID:26942538

  17. A water soluble additive to suppress respirable dust from concrete-cutting chainsaws: a case study.

    PubMed

    Summers, Michael P; Parmigiani, John P

    2015-01-01

    Respirable dust is of particular concern in the construction industry because it contains crystalline silica. Respirable forms of silica are a severe health threat because they heighten the risk of numerous respirable diseases. Concrete cutting, a common work practice in the construction industry, is a major contributor to dust generation. No studies have been found that focus on the dust suppression of concrete-cutting chainsaws, presumably because, during normal operation water is supplied continuously and copiously to the dust generation points. However, there is a desire to better understand dust creation at low water flow rates. In this case study, a water-soluble surfactant additive was used in the chainsaw's water supply. Cutting was performed on a free-standing concrete wall in a covered outdoor lab with a hand-held, gas-powered, concrete-cutting chainsaw. Air was sampled at the operator's lapel, and around the concrete wall to simulate nearby personnel. Two additive concentrations were tested (2.0% and 0.2%), across a range of fluid flow rates (0.38-3.8 Lpm [0.1-1.0 gpm] at 0.38 Lpm [0.1 gpm] increments). Results indicate that when a lower concentration of additive is used exposure levels increase. However, all exposure levels, once adjusted for 3 hours of continuous cutting in an 8-hour work shift, are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) of 5 mg/m(3). Estimates were made using trend lines to predict the fluid flow rates that would cause respirable dust exposure to exceed both the OSHA PEL and the American Conference of Governmental Industrial Hygienists (ACGIH®) threshold limit value (TLV). PMID:25714034

  18. Ocean Color Retrieval Using LANDSAT-8 Imagery in Coastal Case 2 Waters (case Study Persian and Oman Gulf)

    NASA Astrophysics Data System (ADS)

    Moradi, N.; Hasanlou, M.; Saadatseresht, M.

    2016-06-01

    . Despite the high importance of the Persian Gulf and Oman Sea which can have up basin countries, to now few studies have been done in this area. The focus of this article on the northern part of Oman Sea and Persian Gulf, the shores of neighboring Iran (case 2 water). In this paper, by using Landsat 8 satellite imageries, we have discussed chla concentrations and customizing different OC algorithms for this new dataset (Landsat-8 imagery). This satellite was launched in 2013 and its data using two sensors continuously are provided operating one sensor imager land (OLI: Operational Land Imager) and the Thermal Infrared Sensor (TIRS: Thermal InfraRed Sensor) and are available. This sensors collect image data, respectively, for the nine-band short wavelength in the range of 433-2300 nm and dual-band long wavelength thermal. Seven band of the nine band picked up by the sensor information of OLI to deal with sensors TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) in previous satellite Landsat compatible and two other band, the band of coastal water (433 to 453 nm) and Cirrus band (1360 to 1390 nm), short wave infrared provides to measure water quality and high thin clouds. Since OLI sensor in Landsat satellite 8 compared with other sensors to study OC have been allocated a much better spatial resolution can be more accurate to determine changes in OC. To evaluate the results of the image sensor MODIS (Moderate Resolution Imaging Spectroradiometer) at the same time satellite images Landsat 8 is used. The statistical parameters used in order to evaluate the performance of different algorithms, including root mean square error (RMSE) and coefficient of determination (R2), and on the basis of these parameters we choose the most appropriate algorithm for the area. Extracted results for implementing different OC algorithms clearly shows superiority of utilized method by R2=0.71 and RMSE=0.07.

  19. Public choice in water resource management: two case studies of the small-scale hydroelectric controversy

    SciTech Connect

    Soden, D.L.

    1985-01-01

    Hydroelectric issues have a long history in the Pacific Northwest, and more recently have come to focus on developing environmentally less-obtrusive means of hydroelectric generation. Small-scale hydroelectric represents perhaps the most important of these means of developing new sources of renewable resources to lessen the nation's dependence on foreign sources of energy. Each potential small-scale hydroelectric project, however, manifests a unique history which provides a highly useful opportunity to study the process of collective social choice in the area of new energy uses of water resources. Utilizing the basic concepts of public choice theory, a highly developed and increasingly widely accepted approach in the social sciences, the politicalization of small-scale hydroelectric proposals is analyzed. Through the use of secondary analysis of archival public opinion data collected from residents of the State of Idaho, and through the development of the two case studies - one on the Palouse River in Eastern Washington and the other at Elk Creek Falls in Northern Idaho, the policy relevant behavior and influence of major actors is assessed. Results provide a useful test of the utility of public-choice theory for the study of cases of natural-resources development when public involvement is high.

  20. CANCER RISK FROM ASBESTOS IN DRINKING WATER: SUMMARY OF A CASE-CONTROL STUDY IN WESTERN WASHINGTON

    EPA Science Inventory

    Case-control, interview-based study of the risk of developing cancer from asbestos in drinking water was conducted in an area including Beverett, Washington, selected because of the unusually high concentration of chrysotile asbestos in drinking water from the Sultan River. Throu...

  1. Abandoned metal mines and their impact on receiving waters: A case study from Southwest England.

    PubMed

    Beane, Steven J; Comber, Sean D W; Rieuwerts, John; Long, Peter

    2016-06-01

    Historic mine sites are a major source of contamination to terrestrial and river environments. To demonstrate the importance of determining the significance of point and diffuse metal contamination and the related bioavailability of the metals present from abandoned mines a case study has been carried out. The study provides a quantitative assessment of a historic mine site, Wheal Betsy, southwest England, and its contribution to non-compliance with Water Framework Directive (WFD) Environmental Quality Standards (EQS) for Cd, Cu, Pb and Zn. Surface water and sediment samples showed significant negative environmental impacts even taking account of the bioavailability of the metal present, with lead concentration in the stream sediment up to 76 times higher than the Canadian sediment guidelines 'Probable Effect Level'. Benthic invertebrates showed a decline in species richness adjacent to the mine site with lead and cadmium the main cause. The main mine drainage adit was the single most significant source of metal (typically 50% of metal load from the area, but 88% for Ni) but the mine spoil tips north and south of the adit input added together discharged roughly an equivalent loading of metal with the exception of Ni. The bioavailability of metal in the spoil tips exhibited differing spatial patterns owing to varying ambient soil physico-chemistry. The data collected is essential to provide a clear understanding of the contamination present as well as its mobility and bioavailability, in order to direct the decision making process regarding remediation options and their likely effectiveness. PMID:27023117

  2. Usefulness of satellite water vapour imagery in forecasting strong convection: A flash-flood case study

    NASA Astrophysics Data System (ADS)

    Georgiev, Christo G.; Kozinarova, Gergana

    Using a case study of a severe convective event as an example, a framework for interpreting 6.2 µm channel satellite imagery that enables to indicate upper-level conditioning of the convective environment is presented and discussed. In order to illustrate the approach, all convective cells during the summer of 2007 that produced precipitations over Bulgaria are considered. They are classified regarding the observed moisture pattern in mid-upper levels as well as the low-level conditions of air humidity and convergence of the flow. Water vapour (WV) images are used to study the evolution of the upper-level moist and dry structures. The proposed interpretation is that the role of the upper-level dry boundaries identified in the WV imagery as favoured areas for the initiation of deep moist convection cannot be understood (and hence cannot be forecasted accurately) by considering them in isolation from the dynamic rate at which they are maintained. The paper examines the 23 June 2006 flash flood in Sofia city as a case, in which the operational forecast of the National Institute of Meteorology and Hydrology of Bulgaria based on the mesoscale NWP model ALADIN underestimated the severity of the convective process. A comparison between the satellite water vapour imagery and the corresponding geopotential field of the dynamical tropopause, expressed in terms of potential vorticity (PV), shows an error in the performance of the ARPEGE operational numerical model. There is an obvious mismatch between the PV anomaly structure and the dry zone of the imagery. The forecast field shows underestimation of the tropopause height gradient and displacement of the PV anomaly to the southwest of the real position seen in the satellite image. It is concluded that the observed poor forecast is a result of the ARPEGE failure to treat correctly the interaction between the PV anomaly and the low-level warm anomaly.

  3. Water Efficiency Improvements at Various Environmental Protection Agency Sites: Best Management Practice Case Study #12 - Laboratory/Medical Equipment (Brochure)

    SciTech Connect

    Blakley, H.

    2011-03-01

    The U.S. Environmental Protection Agency (EPA) built a successful water conservation program and reduced potable water use through a series of initiatives at EPA laboratories. The projects highlighted in this case study demonstrate EPA's ability to reduce water use in laboratory and medical equipment by implementing vacuum pump and steam sterilizer replacements and retrofits. Due to the success of the initial vacuum pump and steam sterilizer projects described here, EPA is implementing similar projects at several laboratories throughout the nation.

  4. Breast cancer risk and drinking water contaminated by wastewater: a case control study

    PubMed Central

    Brody, Julia Green; Aschengrau, Ann; McKelvey, Wendy; Swartz, Christopher H; Kennedy, Theresa; Rudel, Ruthann A

    2006-01-01

    Background Drinking water contaminated by wastewater is a potential source of exposure to mammary carcinogens and endocrine disrupting compounds from commercial products and excreted natural and pharmaceutical hormones. These contaminants are hypothesized to increase breast cancer risk. Cape Cod, Massachusetts, has a history of wastewater contamination in many, but not all, of its public water supplies; and the region has a history of higher breast cancer incidence that is unexplained by the population's age, in-migration, mammography use, or established breast cancer risk factors. We conducted a case-control study to investigate whether exposure to drinking water contaminated by wastewater increases the risk of breast cancer. Methods Participants were 824 Cape Cod women diagnosed with breast cancer in 1988–1995 and 745 controls who lived in homes served by public drinking water supplies and never lived in a home served by a Cape Cod private well. We assessed each woman's exposure yearly since 1972 at each of her Cape Cod addresses, using nitrate nitrogen (nitrate-N) levels measured in public wells and pumping volumes for the wells. Nitrate-N is an established wastewater indicator in the region. As an alternative drinking water quality indicator, we calculated the fraction of recharge zones in residential, commercial, and pesticide land use areas. Results After controlling for established breast cancer risk factors, mammography, and length of residence on Cape Cod, results showed no consistent association between breast cancer and average annual nitrate-N (OR = 1.8; 95% CI 0.6 – 5.0 for ≥ 1.2 vs. < .3 mg/L), the sum of annual nitrate-N concentrations (OR = 0.9; 95% CI 0.6 – 1.5 for ≥ 10 vs. 1 to < 10 mg/L), or the number of years exposed to nitrate-N over 1 mg/L (OR = 0.9; 95% CI 0.5 – 1.5 for ≥ 8 vs. 0 years). Variation in exposure levels was limited, with 99% of women receiving some of their water from supplies with nitrate-N levels in excess of

  5. Forensic applications of stable isotope analysis: case studies of the origins of water in mislabeled beer and contaminated diesel fuel.

    PubMed

    Papesch, Wolfgang; Horacek, Micha

    2009-06-01

    This paper describes the use of oxygen (18O) isotope analysis of water contained in two different materials--beer and diesel fuel--involved in the resolution of two separate cases. In the first case study, it was possible to demonstrate that a sample of beer labelled as premium brand in fact belonged to a cheap brand. The second case related to the contamination of diesel fuel from a service station. The diesel fuel contained visible amounts of water, which caused vehicles that had been filled up with it to become defective. For insurance purposes, it was necessary to determine the source of water. The delta18O values for the water of nearly all samples of diesel was close to the delta18O of local tap water at the filling station. PMID:19606593

  6. Strategic decision making under climate change: a case study on Lake Maggiore water system

    NASA Astrophysics Data System (ADS)

    Micotti, M.; Soncini Sessa, R.; Weber, E.

    2014-09-01

    Water resources planning processes involve different kinds of decisions that are generally evaluated under a stationary climate scenario assumption. In general, the possible combinations of interventions are mutually compared as single alternatives. However, the ongoing climate change requires us to reconsider this approach. Indeed, what have to be compared are not individual alternatives, but families of alternatives, characterized by the same structural decisions, i.e. by actions that have long-term effects and entail irrevocable changes in the system. The rationale is that the structural actions, once they have been implemented, cannot be easily modified, while the management decisions can be adapted to the evolving conditions. This paper considers this methodological problem in a real case study, in which a strategic decision has to be taken: a new barrage was proposed to regulate Lake Maggiore outflow, but, alternatively, either the present barrage can be maintained with its present regulation norms or with a new one. The problem was dealt with by multi-criteria decision analysis involving many stakeholders and two decision-makers. An exhaustive set of indicators was defined in the participatory process, conducted under the integrated water resource management paradigm, and many efficient (in Pareto sense) regulation policies were identified. The paper explores different formulations of a global index to evaluate and compare the effectiveness of the classes of alternatives under both stationary and changing hydrological scenarios in order to assess their adaptability to the ongoing climate change.

  7. Virtual water trade patterns in relation to environmental and socioeconomic factors: a case study for Tunisia

    NASA Astrophysics Data System (ADS)

    Chouchane, Hatem; Krol, Maarten; Hoekstra, Arjen

    2016-04-01

    Water scarcity is among the main problems faced by many societies. Growing water demands put increasing pressure on local water resources, especially in water-short countries. Virtual water trade can play a key role in filling the gap between local demands and supply. This study aims to analyze the changes in virtual water trade of Tunisia in relation to environmental and socio-economic factors such as GDP, irrigated land, precipitation, population and water scarcity. The water footprint is estimated using Aquacrop for six crops over the period 1981-2010 at daily basis and a spatial resolution of 5 by 5 arc minutes. Virtual water trade is quantified at yearly basis. Regression models are used to investigate changes in virtual water trade in relation to various environmental and socio-economic factors. The explaining variables are selected in order to help understanding the trend and the inter-annual variability of the net virtual water import; GDP, population and irrigated land are hypothesized to explain the trend, and precipitation and water scarcity to explain variability. The selected crops are divided into three baskets. The first basket includes the two most imported crops, which are mainly rain-fed (wheat and barley). The second basket contains the two most exported crops, which are both irrigated and rain-fed (olives and dates). In the last basket we find the two highest economic blue water productive crops, which are mainly irrigated (tomatoes and potatoes). The results show the impact of each factor on net virtual water import of the selected crops during the period 1981-2010. Keywords: Virtual water, trade patterns, Aquacrop, Tunisia, water scarcity, water footprint.

  8. Testing biological effects of hand-washing grey water for reuse in irrigation on an urban farm: a case study.

    PubMed

    Khan, Mohammad Zain; Sim, Yei Lin; Lin, Yang Jian; Lai, Ka Man

    2013-01-01

    The feasibility of reusing hand-washing grey water contaminated with antibacterial hand-washing liquid for irrigation purposes in an urban farm is explored in this case study. Experiments are carried out to investigate if the quality of this grey water allows for its reuse in agriculture as per the guidelines established by the World Health Organization (WHO). However, there is no guideline to test the biological effect of grey water prior to agricultural use. It is plausible that the antibacterial property of the grey water can harm the soil microbial system and plants when applied to land, even if all other water quality parameters satisfy the WHO limit. We use algae (Chlorella vulgaris) and indigenous soil bacteria as initial plant and soil bacteria indicators, respectively, to test the potential inhibition of the water on plants and soil bacteria. Results show that the chemical oxygen demand (COD) of the grey water is 10% higher than the WHO permissible level, while all other water quality parameters are within the limits after four days of our experimental period. An inhibitory effect is observed in all of the biological tests. However, the inhibitory effect on algae and soil bacteria is not observed after the four-day period. The case study demonstrates a new approach for testing the biological effect of grey water, which can be used in conjunction with the WHO guideline, and provides data for this urban farm to set up a future water treatment system for grey-water reuse in irrigation. PMID:23530370

  9. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.

    2014-01-01

    Water Footprint Assessment is a quickly growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of water footprint estimates to changes in important input variables and quantifies the size of uncertainty in water footprint estimates. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat in the Yellow River Basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River Basin in the period considered. The sensitivity and uncertainty analysis focused on the effects on water footprint estimates at basin level (in m3 t-1) of four key input variables: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), and crop calendar. The one-at-a-time method was carried out to analyse the sensitivity of the water footprint of crops to fractional changes of individual input variables. Uncertainties in crop water footprint estimates were quantified through Monte Carlo simulations. The results show that the water footprint of crops is most sensitive to ET0 and Kc, followed by crop calendar and PR. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0 was dominant compared to that of precipitation. The uncertainties in the total water footprint of a crop as a result of combined key input uncertainties were on average ±26% (at 95% confidence level). The sensitivities and uncertainties differ across crop types, with highest sensitivities

  10. Experimental and Numerical Studies on Mudstone's Creep Behavior During Water Injection and Its Effect on Casing Damage

    NASA Astrophysics Data System (ADS)

    Huang, X. L.; Yang, C. H.; Liu, J. J.; He, X.; Xiong, J.

    2008-07-01

    During the process of water injection production in oilfield, when water cuts into the mudstone, as a result, large numbers of casings are damaged because of mudstone's creep characteristic. In order to analyze this phenomenon, the uniaxial compression experiments and creep experiments of mudstone from Daqing Oil Field under different saturation conditions were done, it was studied that how the mudstone's mechanical parameters and creep characteristic would change with the increment of water contents. The results indicate that the rock strength and elastic modulus are decreased rapidly with the increment of water contents, on the other hand, the creep strain and steady state creep strain rate are increased with the increment of water contents, and also the steady state creep strain rate is enhanced with the increment of deviatoric stress. Through the creep characteristic curves, a nonlinear creeping constitutive equation of mudstone considering the changes of water contents was established. In the deep stratum of the oilfield, the calculation model of casing-cement sheath-mudstone was built, based on the experiment results of mudstone and its creep constitutive equation, mudstone's creep pressure with time under different water contents was simulated. The simulation results show that the increasing water content accelerates the incremental rate of the creep pressure of mudstone, so the time of reaching yield state of casing will descend greatly, which means service time of casing becomes much shorter.

  11. Improving hydrocarbon/water ratios in producing wells - An Indonesian case history study

    SciTech Connect

    Stanley, F.O.; Marnoch, E.; Tanggu, P.S.

    1996-12-31

    Excessive water production is consistently burdening the oil industry, especially as lifting and facility costs rise and disposal of produced water becomes increasingly difficult, expensive and environmentally sensitive. A previously developed amphoteric polymer material (APM) (SPE Paper No. 14822) has been successfully applied in Indonesia. This product reduces volumes of produced water and very often increases hydrocarbon production by effectively reducing the permeability to water without significantly changing the formation permeability to hydrocarbons. This paper will review the mechanism, application and associated lab results by which the APM polymer reduces water cut with the primary emphasis on the Indonesian case histories and placement techniques. Results indicate that high permeability sandstone reservoirs, with water production problems, can benefit from APM treatments. The product can successfully and economically reduce water production with the added benefit of increased hydrocarbon production often noted. Laboratory and field results indicate good product application under high shear situations and at temperatures up to 275 {degrees}F. Careful candidate selection and good placement techniques, in conjunction with production logging to determine water location, are important to the success of APM jobs.

  12. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. PMID:27070382

  13. Spatial analysis of water infiltration in urban soils. Case study of Iasi municipality (Romania)

    NASA Astrophysics Data System (ADS)

    Cristian Vasilica, Secu; Ionut, Minea

    2013-04-01

    The post-communist period (after 1989) caused important changes in the functional structure of Iasi municipality. The partly dismantling of the industrial area, the urban sprawl against the periurban and agricultural space, the new infrastructure works, all these determined important changes of soils' physical and morphological properties (e.g. porosity, density, compaction, infiltration rate etc., in the first case, and changes in soil horizons, in the second case etc.). This study aims to prove the variability of physical properties through the combination of statistical and geostatistical methods intended for a correct spatial representation. Water infiltration in urban soils was analyzed in relation to land use and the age of parental materials. Field investigations consisted in measurements of the water infiltration (by the means of Turf Tech infiltrometer), resistance to penetration (penetrologger), moisture deficit (Theta Probe) and resistivity (EC) for 70 equally distanced points (750 m x 750 m) placed in a grid covering more than 33 km2. In the laboratory, there were determined several parameters as density, porosity (air pycnometer), gravimetric moisture and other hydrophysical indicators. Filed investigations results are very heterogeneous, because of the human intervention on soils. The curves of variation for the rate water infiltration in soils indicate a downward trend, from high values in first time interval (one minute), between 5000 and 60 mm/h-1, gradually decreasing to the interval of 5-10 minutes (between 30 and 1000 mm/ h-1 to a general trend of flattening after a large time interval (in the timeframe of 50-60 minutes, the infiltration rate ranges between 4 and 142 mm•h-1). The highest frequency (≥65%) caracterizes the infiltration rates between 20 and 65 mm•h-1. For each analyzed sector (residential areas, industrial areas, degraded lands, recreational areas - parks and botanical gardens, forests heterogeneous agricultural lands), the

  14. Assessment of the performance of a public water utility: A case study of Blantyre Water Board in Malawi

    NASA Astrophysics Data System (ADS)

    Kalulu, Khumbo; Hoko, Zvikomborero

    Water scarcity, deteriorating water quality and financial limitations to the development of new water sources affect the quality of urban water supply services. The costs would have to be transferred to governments or customers if water supply utilities are to operate effectively. Utilities therefore need to continuously minimize costs and maximize revenue to ensure affordability and consequently access to safe water. This paper presents findings of a study on the performance of Blantyre Water Board compared to best practice targets for developing countries. The study tools employed in this study included interviews and documentation review. Key aspects studied included unaccounted for water, working ratio, bill collection efficiency and; efficiency of operation and maintenance. The working ratio of the utility ranged from 0.69 to 1.3 which was above the proposed target working ratio 0.68 for developing country utilities. It was found that the level of unaccounted for water for the utility ranged from 36% to 47% compared to 25% for developing countries. The utility was not financially sustainable as it had been making losses since 2002, had a working ratio of up to 1.3 implying that the utility was unable to meet its operational and capital cost; and 70% of all the invoiced bills being collected in a maximum of 340 days against an ideal target of 90 days. The staff per thousand connections value was found to be 18 compared to an ideal value of five. It was concluded that the utility was generally performing poorly as most performance indicators were outside the range for best practice targets for utilities in developing countries.

  15. (Case studies examining energy policies and strategies for water resources development): Foreign trip report, May 7--13, 1989

    SciTech Connect

    Hildebrand, S.G.

    1989-05-24

    The traveler met with colleagues involved with Project 12.2 of the IHP of UNESCO to discuss and finalize case studies that are being prepared for a report entitled ''Case Studies Examining Energy Policies and Strategies for Water Resources Development.'' Draft case studies from the United States, Brazil, Norway, and Czechoslovakia were reviewed and discussed. The traveler was appointed editor of the final report. The traveler met with staff of the National Department of Water and Electrical Energy of the Ministry of Mines and Energy, the Secretary General of the Ministry of Mines and Energy, the Executive Secretary to the National Energy Commission of Brazil, and the newly created Brazilian Institute of the Environment. The traveler was briefed on the functions of these departments, and he briefed them on water resource activities conducted at ORNL. The traveler presented a seminar at Eletrobras (national electric utility) in Brazil on environmental research at ORNL.

  16. Cryosphere water balance in the HKH-system: case study Batura Glacier (Upper Hunza, Karakoram)

    NASA Astrophysics Data System (ADS)

    Winiger, M.; Boerst, U.

    2012-12-01

    Investigations on climate dynamics and related responses of the cryosphere in the Hindukush-Karakoram-Himalaya (HKH) increasingly result in regional different functional patterns. A predominant loss of ice and snow is documented for most of the region. Nevertheless, in the northwestern part, mainly in the Karakoram, several studies identified exemptions from the general HKH-pattern, either for individual glaciers or altitudinal ranges. Coordinated comparative studies, based on comparable methodological approaches and data bases might help to provide a better understanding of climate-cryosphere-runoff-systems. 'Third Pole Environment' (TEP), as well as the 'Upper Indus Basin' Initiative (UIB) of the 'International Centre for Integrated Mountain Development' (ICIMOD) promote and develop coordinated campaigns for the assessment of high altitude water balances in the HKH mountain ranges. As a first step, inventories of glaciers and snow-cover for HKH, the Tibetan Plateau, as well as its neighboring mountain ranges have been carried out. Glacier typology, climate related spatial and temporal dynamics, the impact of black carbon, dust and other influencing factors will further differentiate general inventories. In a next phase, case studies at selected sites, based on comparable approaches, thorough quality assessments of existing data series have been initiated by several research groups - up to now with only little coordination. Identification of case study sites should take advantage of previous studies. Although proper long-term monitoring is almost completely lacking, several glaciers in the Karakoram have repeatedly been investigated. Among them Raikot Glacier (Nanga Parbat), Biafo-Hispar glacier system, Baltoro Glacier (K2), and Batura Glacier (Gojal, Upper Hunza) are comparatively well documented examples. As part of the UIB-initiative, Batura, Passu and Baltoro Glaciers are in the process of repeat investigations of mass-balance. Selected first results of

  17. A case study of dissolved air flotation for seasonal high turbidity water in Korea.

    PubMed

    Kwon, S B; Ahn, H W; Ahn, C J; Wang, C K

    2004-01-01

    A DAF (Dissolved-Air-Flotation) process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when freshwater algae blooms occur or raw water turbidity becomes high. Pre-sedimentation is operated in case when the raw water turbidity is very high due to rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of the raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than the conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while the removal of them by sedimentation is more difficult. One of the main concerns for DAF operation is a high raw water turbidity. DAF is not adequate for raw water, which is more turbid than 100 NTU. In order to avoid this problem, pre-sedimentation basins are installed in the DAF plant to decrease the turbidity of the DAF inflow. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, it is suggested that pre-sedimentation with optimum coagulation prior to DAF is the appropriate treatment scheme. PMID:15686028

  18. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood.

    PubMed

    Sun, Rubao; An, Daizhi; Lu, Wei; Shi, Yun; Wang, Lili; Zhang, Can; Zhang, Ping; Qi, Hongjuan; Wang, Qiang

    2016-02-01

    In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets. PMID:27441250

  19. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    PubMed

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals. PMID:21105699

  20. Residential energy-tax-credit eligibility: a case study for the heat-pump water heater

    SciTech Connect

    Cohn, S M; Cardell, N S

    1982-09-01

    Described are the methodology and results of an analysis to determine the eligibility of an energy-efficient item for the residential energy-tax credit. Although energy credits are granted only on a national basis, an attempt to determine the tax-credit eligibility for an item such as the heat-pump water heater (HPWH) analyzing national data is inappropriate. The tax-credit eligibility of the HPWH is evaluated for the ten federal regions to take into consideration the regional differences of: (1) HPWH annual efficiency, (2) existing water heater stocks by fuel type, (3) electricity, fuel oil, and natural-gas price variations, and (4) electric-utility oil and gas use for electricity generation. A computer model of consumer choice of HPWH selection as well as a computer code evaluating the economics of tax-credit eligibility on a regional basis were developed as analytical tools for this study. The analysis in this report demonstrates that the HPWH meets an important criteria for eligibility by the Treasury Department for an energy tax credit (nationally, the estimated dollar value of savings of oil and gas over the lifetime of those HPWH's sold during 1981 to 1985 due to the tax credit exceeds the revenue loss to the treasury). A natural-gas price-deregulation scenario is one of two fuel scenarios that are evaluated using the equipment choice and tax-credit models. These two cases show the amounts of oil and gas saved by additional HPWH units sold (due to the tax credit during 1981 to 1985 (range from 13.9 to 23.1 million barrels of oil equivalent over the lifetime of the equipment.

  1. WETLANDS AND WATER QUALITY TRADING: REVIEW OF CURRENT SCIENCE AND ECONOMIC PRACTICES WITH SELECTED CASE STUDIES

    EPA Science Inventory

    The study evaluates the technical, economic, and administrative aspects of establishing water quality trading (WQT) programs where the nutrient removal capacity of wetlands is used to improve water quality. WQT is a potentially viable approach for wastewater dischargers to cost-e...

  2. Meeting Indigenous peoples' objectives in environmental flow assessments: Case studies from an Australian multi-jurisdictional water sharing initiative

    NASA Astrophysics Data System (ADS)

    Jackson, Sue; Pollino, Carmel; Maclean, Kirsten; Bark, Rosalind; Moggridge, Bradley

    2015-03-01

    The multi-dimensional relationships that Indigenous peoples have with water are only recently gaining recognition in water policy and management activities. Although Australian water policy stipulates that the native title interests of Indigenous peoples and their social, cultural and spiritual objectives be included in water plans, improved rates of Indigenous access to water have been slow to eventuate, particularly in those regions where the water resource is fully developed or allocated. Experimentation in techniques and approaches to both identify and determine Indigenous water requirements will be needed if environmental assessment processes and water sharing plans are to explicitly account for Indigenous water values. Drawing on two multidisciplinary case studies conducted in Australia's Murray-Darling Basin, we engage Indigenous communities to (i) understand their values and explore the application of methods to derive water requirements to meet those values; (ii) assess the impact of alternative water planning scenarios designed to address over-allocation to irrigation; and (iii) define additional volumes of water and potential works needed to meet identified Indigenous requirements. We provide a framework where Indigenous values can be identified and certain water needs quantified and advance a methodology to integrate Indigenous social, cultural and environmental objectives into environmental flow assessments.

  3. Environmental and economic aspects of water kiosks: Case study of a medium-sized Italian town

    SciTech Connect

    Torretta, Vincenzo

    2013-05-15

    The consumption of bottled water in Italy began in the 1970s. Since then, this usage has grown considerably, also as a result of changes in habits. The environmental impact as a result of the water production chain is very significant; it would be considered, for example, the use of plastic bottles, the consumption of oil in the production of the bottles, the emission of air from the vehicles that transport the bottles, non-recycled plastic packaging, etc. In this study, considering the comparison between two situations, use of bottled water and use of water kiosk (WK), an environmental and economic impact evaluation has been done. The study considered the production of a WK in a town with 9000 inhabitants, which supplies controlled, still and sparkling water, with an organoleptic quality higher than tap water coming from the aqueduct. In particular, taking into consideration the environmental aspects, specific attention was paid both to CO{sub 2} emissions and PET bottle waste reduction. The economic impact evaluation was carried out from the consumer’s point of view. In order to provide a supply service that was economically sustainable, a calculation was done with the aim of determining a specific fee for the supplied water. Moreover, a comparison has been made between quality parameters achieved with the analysis of water from aqueducts with the limits established in the Italian legislation and the parameters of several Italian water brands. The study has the aim at considering the opportunity to follow a different people’s habits, closer to the concept of sustainability, reducing the environmental charge related to the realization, transport and consumption of plastic water bottles without significant reduction of the quality of the service and with convenient and interesting economic implications. In fact the results of the study show that the alternative of WKs is more efficient in economic and environmental terms respect to the use of bottled water.

  4. Environmental and economic aspects of water kiosks: case study of a medium-sized Italian town.

    PubMed

    Torretta, Vincenzo

    2013-05-01

    The consumption of bottled water in Italy began in the 1970s. Since then, this usage has grown considerably, also as a result of changes in habits. The environmental impact as a result of the water production chain is very significant; it would be considered, for example, the use of plastic bottles, the consumption of oil in the production of the bottles, the emission of air from the vehicles that transport the bottles, non-recycled plastic packaging, etc. In this study, considering the comparison between two situations, use of bottled water and use of water kiosk (WK), an environmental and economic impact evaluation has been done. The study considered the production of a WK in a town with 9000 inhabitants, which supplies controlled, still and sparkling water, with an organoleptic quality higher than tap water coming from the aqueduct. In particular, taking into consideration the environmental aspects, specific attention was paid both to CO2 emissions and PET bottle waste reduction. The economic impact evaluation was carried out from the consumer's point of view. In order to provide a supply service that was economically sustainable, a calculation was done with the aim of determining a specific fee for the supplied water. Moreover, a comparison has been made between quality parameters achieved with the analysis of water from aqueducts with the limits established in the Italian legislation and the parameters of several Italian water brands. The study has the aim at considering the opportunity to follow a different people's habits, closer to the concept of sustainability, reducing the environmental charge related to the realization, transport and consumption of plastic water bottles without significant reduction of the quality of the service and with convenient and interesting economic implications. In fact the results of the study show that the alternative of WKs is more efficient in economic and environmental terms respect to the use of bottled water. PMID:23465314

  5. Heavy Metals in Water and Sediment: A Case Study of Tembi River

    PubMed Central

    Shanbehzadeh, Saeed; Vahid Dastjerdi, Marzieh; Hassanzadeh, Akbar; Kiyanizadeh, Toba

    2014-01-01

    This study was carried out to examine heavy metals concentration in water and sediment of upstream and downstream of the entry of the sewage to the Tembi River, Iran. Samples were collected from upstream and downstream and were analyzed for Cd, Cr, Cu, Fe, Pb, Ni, and Zn by atomic absorption spectrophotometer. The results indicated that the average concentration of the metals in water and sediment on downstream was more than that of upstream. The comparison of the mean concentrations of heavy metals in water of the Tembi River with drinking water standards and those in the water used for agriculture suggests that the mean concentration of Cu and Zn lies within the standard range for drinking water and the mean concentration of Mn, Zn, and Pb lies within the standard range of agricultural water. The highest average concentration on downstream for Pb in water and for Mn in sediment was 1.95 and 820.5 ppm, respectively. Also, the lowest average concentration on upstream was identified for Cd in water and sediment 0.07 and 10 ppm, respectively. With regard to the results, it gets clear that using the water for recreational purposes, washing, and fishing is detrimental to human health and the environment. PMID:24616738

  6. Case Studies

    ERIC Educational Resources Information Center

    Ritter, Lois A., Ed.; Sue, Valerie M., Ed.

    2007-01-01

    This article presents two case studies using online surveys for evaluation. The authors begin with an example of a needs assessment survey designed to measure the amount of help new students at a university require in their first year. They then discuss the follow-up survey conducted by the same university to measure the effectiveness of the…

  7. Municipal water quantities and health in Nunavut households: an exploratory case study in Coral Harbour, Nunavut, Canada

    PubMed Central

    Daley, Kiley; Castleden, Heather; Jamieson, Rob; Furgal, Chris; Ell, Lorna

    2014-01-01

    Background Access to adequate quantities of water has a protective effect on human health and well-being. Despite this, public health research and interventions are frequently focused solely on water quality, and international standards for domestic water supply minimums are often overlooked or unspecified. This trend is evident in Inuit and other Arctic communities even though numerous transmissible diseases and bacterium infections associated with inadequate domestic water quantities are prevalent. Objectives Our objective was to explore the pathways by which the trucked water distribution systems being used in remote northern communities are impacting health at the household level, with consideration given to the underlying social and environmental determinants shaping health in the region. Methods Using a qualitative case study design, we conducted 37 interviews (28 residents, 9 key informants) and a review of government water documents to investigate water usage practices and perspectives. These data were thematically analysed to understand potential health risks in Arctic communities and households. Results Each resident receives an average of 110 litres of municipal water per day. Fifteen of 28 households reported experiencing water shortages at least once per month. Of those 15, most were larger households (5 people or more) with standard sized water storage tanks. Water shortages and service interruptions limit the ability of some households to adhere to public health advice. The households most resilient, or able to cope with domestic water supply shortages, were those capable of retrieving their own drinking water directly from lake and river sources. Residents with extended family and neighbours, whom they can rely on during shortages, were also less vulnerable to municipal water delays. Conclusions The relatively low in-home water quantities observed in Coral Harbour, Nunavut, appear adequate for some families. Those living in overcrowded households

  8. Linking Assessment to Decision Making in Water Resources Planning - Decision Making Frameworks and Case Study Evaluations

    NASA Astrophysics Data System (ADS)

    Broman, D.; Gangopadhyay, S.; Simes, J.

    2015-12-01

    Climate assessments have become an accepted and commonly used component of long term water management and planning. There is substantial variation in the methods used in these assessments; however, managers and decision-makers have come to value their utility to identify future system limitations, and to evaluate future alternatives to ensure satisfactory system performance. A new set of decision-making frameworks have been proposed, including robust decision making (RDM), and decision scaling, that directly address the deep uncertainties found in both future climate, and non-climatic factors. Promising results have been obtained using these new frameworks, offering a more comprehensive understanding of future conditions leading to failures, and identification of measures to address these failures. Data and resource constraints have limited the use of these frameworks within the Bureau of Reclamation. We present here a modified framework that captures the strengths of previously proposed methods while using a suite of analysis tool that allow for a 'rapid climate assessment' to be performed. A scalable approach has been taken where more complex tools can be used if project resources allow. This 'rapid assessment' is demonstrated through two case studies on the Santa Ana and Colorado Rivers where previous climate assessments have been completed. Planning-level measures are used to compare how decision making is affected when using this new decision making framework.

  9. Cr(VI) and Conductivity as Indicators of Surface Water Pollution from Ferrochrome Production in South Africa: Four Case Studies

    NASA Astrophysics Data System (ADS)

    Loock-Hattingh, M. M.; Beukes, J. P.; van Zyl, P. G.; Tiedt, L. R.

    2015-10-01

    South Africa is one of the largest ferrochromium (FeCr) producers. Most FeCr is exported to developed countries. Therefore the impact of this industry is of national and international importance. Cr(VI) and conductivity of surface water in four case study areas, near five FeCr smelters were monitored for approximately 1 year. Results indicated that FeCr production in three case study areas had a negative influence on the Cr(VI) concentration and/or the conductivity of surface waters. In the remaining case study areas, drinking water, originating from groundwater, was severely polluted with Cr(VI). The main factors causing pollution were surface run-off and/or seepage, while atmospheric deposition did not seem to contribute significantly. The extinction of diatoms during a severe Cr(VI) surface water pollution event (concentrations up to 216 µg/L) in one of the case study areas was also observed, which clearly indicates the ecological impact of such surface water pollution events.

  10. Industrial wastewater minimization using water pinch analysis: a case study on an old textile plant.

    PubMed

    Ujang, Z; Wong, C L; Manan, Z A

    2002-01-01

    Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively. PMID:12523736

  11. Temporal water quality response in an urban river: a case study in peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    VishnuRadhan, Renjith; Zainudin, Zaki; Sreekanth, G. B.; Dhiman, Ravinder; Salleh, Mohd. Noor; Vethamony, P.

    2015-07-01

    Ambient water quality is a prerequisite for the health and self-purification capacity of riverine ecosystems. To understand the general water quality situation, the time series data of selected water quality parameters were analyzed in an urban river in Peninsular Malaysia. In this regard, the stations were selected from the main stem of the river as well as from the side channel. The stations located at the main stem of the river are less polluted than that in the side channel. Water Quality Index scores indicated that the side channel station is the most polluted, breaching the Class IV water quality criteria threshold during the monitoring period, followed by stations at the river mouth and the main channel. The effect of immediate anthropogenic waste input is also evident at the side channel station. The Organic Pollution Index of side channel station is (14.99) ~3 times higher than at stations at river mouth (4.11) and ~6 times higher than at the main channel (2.57). The two-way ANOVA showed significant difference among different stations. Further, the factor analysis on water quality parameters yielded two significant factors. They discriminated the stations into two groups. The land-use land cover classification of the study area shows that the region near the sampling sites is dominated by urban settlements (33.23 %) and this can contribute significantly to the deterioration of ambient river water quality. The present study estimated the water quality condition and response in the river and the study can be an immediate yardstick for base lining river water quality, and a basis for future water quality modeling studies in the region.

  12. Equivalency of risk for a modified health endpoint: a case from recreational water epidemiology studies

    EPA Science Inventory

    The United States Environmental Protection Agency (US EPA) and its predecessors have conducted three distinct series of epidemiological studies beginning in 1948 on the relationship between bathing water quality and swimmers' illnesses. Keeping pace with advances in microbial tec...

  13. Quantification of Water Energy Nexus for Sustainable Development at Local Level: Case Study of Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Grover, S.; Tayal, S.

    2014-12-01

    Interdependency between water and energy is generally transacted in trade-off mode; where either of the resource gets affected because of the other. Generally this trade-off is commonly known as water-energy nexus. Many studies have been undertaken in various parts of the world using various approaches to tease out the intricate nexus. This research has adopted a different approach to quantify the inter-dependency. The adopted approach made an attempt to tease out the nexus from demand side for both the resources. For water demand assessment PODIUM Sim model was used and for other parameters available secondary data was used. Using this approach percentage share of water for energy and energy for water was estimated. For an informed decision making and sustainable development, assessment was carried out at state level as most of the policies are made specifically for the state. The research was done for the southernmost state of India, Tamil Nadu which is a rapidly growing industrial hub. Tamil Nadu is energy and water intensive state and the analysis shows that the share of water demand from energy sector compared to water demand from other major sectors is miniscule. While, the energy demand in water sector for various processes in different sectors compared to energy demand as total has a comparable share of range 15-25%. This analysis indicated the relative risk sectors face in competition for the resource. It point outs that water sector faces fierce competition with other sectors for energy. Moreover, the results of the study has assessed that state has negative water balance, which may make access to water more energy intensive with time. But, a projection into future scenario with an assumption based on the ongoing policy program of improving irrigation efficiency was made. It provided a solution of a potential positive equilibrium which conserves both water and energy. This scenario gave promising results which indicated less of water demand from

  14. Developing Water Resource Security in a Greenhouse Gas Constrained Context - A Case Study in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; Aghakouchak, A.; Samuelsen, S.

    2015-12-01

    The onset of drought conditions in regions such as California due to shortfalls in precipitation has brought refreshed attention to the vulnerability of our water supply paradigm to changes in climate patterns. In the face of a changing climate which can exacerbate drought conditions in already dry areas, building resiliency into our water supply infrastructure requires some decoupling of water supply availability from climate behavior through conservation, efficiency, and alternative water supply measures such as desalination and water reuse. The installation of these measures requires varying degrees of direct energy inputs and/or impacts the energy usage of the water supply infrastructure (conveyance, treatment, distribution, wastewater treatment). These impacts have implications for greenhouse gas emissions from direct fuel usage or impacts on the emissions from the electric grid. At the scale that these measures may need to be deployed to secure water supply availability, especially under climate change impacted hydrology, they can potentially pose obstacles for meeting greenhouse gas emissions reduction and renewable utilization goals. Therefore, the portfolio of these measures must be such that detrimental impacts on greenhouse gas emissions are minimized. This study combines climate data with a water reservoir network model and an electric grid dispatch model for the water-energy system of California to evaluate 1) the different pathways and scale of alternative water resource measures needed to secure water supply availability and 2) the impacts of following these pathways on the ability to meet greenhouse gas and renewable utilization goals. It was discovered that depending on the water supply measure portfolio implemented, impacts on greenhouse gas emissions and renewable utilization can either be beneficial or detrimental, and optimizing the portfolio is more important under climate change conditions due to the scale of measures required.

  15. Spatial assessment of monitoring network in coastal waters: a case study of Kuwait Bay.

    PubMed

    Al-Mutairi, Nawaf; AbaHussain, Asma; El-Battay, Ali

    2015-10-01

    Spatial analyses of water-quality-monitoring networks in coastal waters are important because pollution sources vary temporally and spatially. This study was conducted to evaluate the spatial distribution of the water-quality-monitoring network of Kuwait Bay using both geostatistical and multivariate techniques. Three years of monthly data collected from six existing monitoring stations covering Kuwait Bay between 2009 and 2011 were employed in conjunction with data collected from 20 field sampling sites. Field sampling locations were selected based on a stratified random sampling scheme oriented by an existing classification map of Kuwait Bay. Two water quality datasets obtained from different networks were compared by cluster analysis applied to the Water Quality Index (WQI) and other water quality parameters, after which the Kriging method was used to generate distribution maps of water quality for spatial assessment. Cluster analysis showed that the current monitoring network does not represent water quality patterns in Kuwait Bay. Specifically, the distribution maps revealed that the existing monitoring network is inadequate for heavily polluted areas such as Sulaibikhat Bay and the northern portion of Kuwait Bay. Accordingly, the monitoring system in Kuwait Bay must be revised or redesigned. The geostatistical approach and cluster analysis employed in this study will be useful for evaluating future proposed modifications to the monitoring stations network in Kuwait Bay. PMID:26362877

  16. Water productivity analysis for smallholder rainfed systems: A case study of Makanya catchment, Tanzania

    NASA Astrophysics Data System (ADS)

    Mutiro, J.; Makurira, H.; Senzanje, A.; Mul, M. L.

    Decreasing food security as a result of ever-increasing population, less water availability and soil degradation is common in countries in sub-Saharan Africa. While most of the developed fresh water resources are heavily committed to irrigation, about 90% of sub-Saharan populations rely solely on rainfed agriculture for their livelihoods. The majority of the population is therefore not directly benefiting from developed water resources but are, in fact, subsistence rainfed farmers. Thus, in sub-Saharan Africa, techniques which help to improve water productivity (WP) can assist in alleviating the impacts of water scarcity especially for crop production purposes. A study was conducted in the semi-arid Makanya catchment in northern Tanzania where farmers depend on rainfed subsistence farming for their livelihoods. The objective of the study was to assess the effect of improved conservation agriculture techniques on WP of a maize crop. An assessment of the current WP in rainfed and partially supplementary irrigated agriculture was made. The crop water requirement for maize in the study area was found to be 508 mm/season by using the CROPWAT model compared to total received rainfall of up to 383.86 mm per study plot during the same period. An attempt was made to separate transpiration from evapotranspiration using a transpiration meter. Results indicate that, currently, WP for maize in the catchment is low (0.18-1.33 kg m -3). Introduction of improved techniques increased WP by between 90% and 110%. Infiltration rates also increased from 6 to 26 cm/h. The conclusion from the research is that, from a purely scientific view, there is room to significantly improve the water use techniques being applied for crop productivity through improving current smallholder farming practices A clear understanding and quantification of the water partitioning processes is required to maximise productive water use by the plant as transpiration and this is directly related to biomass

  17. Grey water treatment at a sports centre for reuse in irrigation: a case study.

    PubMed

    Gabarró, J; Batchelli, L; Balaguer, M D; Puig, S; Colprim, J

    2013-01-01

    Grey water has long been considered a promising option for dealing with water scarcity and reuse. However, factors such as lack of macronutrients and low carbon content make its treatment challenging. The aim of this paper was to investigate the applicability of sequencing batch reactor (SBR) technology to on-site grey water treatment at a sports centre for reuse in irrigation. The results demonstrated that the regenerated water complied with microbiological parameters concerning restriction of solids and organic matter removal. Denitrification was not fully accomplished, but ammonium was totally oxidised and low concentrations of nitrates were achieved. Effluent with good appearance and no odour was used in an experimental study to irrigate a grid system containing natural and artificial grass sections. The conclusion is that SBR technology offers a promising treatment for grey water. PMID:24191471

  18. Case study sensitivity analysis of transmission spectra for water contaminant monitoring

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Yapijakis, C.; Aiken, D.; Shabaev, A.; Ramsey, S.; Peak, J.

    2016-05-01

    Monitoring of contaminants associated with specific water resources using transmission spectra, with respect to types and relative concentrations, requires tracking statistical profiles of water contaminants in terms of spatial-temporal distributions of electromagnetic absorption spectra ranging from the ultraviolet to infrared. For this purpose, correlation between spectral signatures and types of contaminants within specific water resources must be made, as well as correlation of spectral signatures with results of processes for removal of contaminants, such as ozonation. Correlation between absorption spectra and changes in chemical and physical characteristics of contaminants, within a volume of sampled solution, requires sufficient sensitivity. The present study examines the sensitivity of transmission spectra with respect to general characteristics of water contaminants for spectral analysis of water samples.

  19. The assessment of water use and reuse through reported data: A US case study.

    PubMed

    Wiener, Maria J; Jafvert, Chad T; Nies, Loring F

    2016-01-01

    Increasing demands for freshwater make it necessary to find innovative ways to extend the life of our water resources, and to manage them in a sustainable way. Indirect water reuse plays a role in meeting freshwater demands but there is limited documentation of it. There is a need to analyze its current status for water resources planning and conservation, and for understanding how it potentially impacts human health. However, the fact that data are archived in discrete uncoordinated databases by different state and federal entities, limits the capacity to complete holistic analysis of critical resources at large watershed scales. Humans alter the water cycle for food production, manufacturing, energy production, provision of potable water and recreation. Ecosystems services are affected at watershed scales but there are also global scale impacts from greenhouse gas emissions enabled by access to cooling, processing and irrigation water. To better document these issues and to demonstrate the utility of such an analysis, we studied the Wabash River Watershed located in the U.S. Midwest. Data for water extraction, use, discharge, and river flow were collected, curated and reorganized in order to characterize the water use and reuse within the basin. Indirect water reuse was estimated by comparing treated wastewater discharges with stream flows at selected points within the watershed. Results show that during the low flow months of July-October, wastewater discharges into the Wabash River basin contributed 82 to 121% of the stream flow, demonstrating that the level of water use and unplanned reuse is significant. These results suggest that intentional water reuse for consumptive purposes such as landscape or agricultural irrigation could have substantial ecological impacts by diminishing stream flow during vulnerable low flow periods. PMID:26363391

  20. Impact of climate change on water resources status: A case study for Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Koutroulis, Aristeidis G.; Tsanis, Ioannis K.; Daliakopoulos, Ioannis N.; Jacob, Daniela

    2013-02-01

    SummaryAn assessment of the impact of global climate change on the water resources status of the island of Crete, for a range of 24 different scenarios of projected hydro-climatological regime is presented. Three "state of the art" Global Climate Models (GCMs) and an ensemble of Regional Climate Models (RCMs) under emission scenarios B1, A2 and A1B provide future precipitation (P) and temperature (T) estimates that are bias adjusted against observations. The ensemble of RCMs for the A1B scenario project a higher P reduction compared to GCMs projections under A2 and B1 scenarios. Among GCMs model results, the ECHAM model projects a higher P reduction compared to IPSL and CNCM. Water availability for the whole island at basin scale until 2100 is estimated using the SAC-SMA rainfall-runoff model And a set of demand and infrastructure scenarios are adopted to simulate potential water use. While predicted reduction of water availability under the B1 emission scenario can be handled with water demand stabilized at present values and full implementation of planned infrastructure, other scenarios require additional measures and a robust signal of water insufficiency is projected. Despite inherent uncertainties, the quantitative impact of the projected changes on water availability indicates that climate change plays an important role to water use and management in controlling future water status in a Mediterranean island like Crete. The results of the study reinforce the necessity to improve and update local water management planning and adaptation strategies in order to attain future water security.

  1. Geospatial Water Quality Analysis of Dilla Town, Gadeo Zone, Ethiopia - A Case Study

    NASA Astrophysics Data System (ADS)

    Pakhale, G. K.; Wakeyo, T. B.

    2015-12-01

    Dilla is a socio-economically important town in Ethiopia, established on the international highway joining capital cities of Ethiopia and Kenya. It serves as an administrative center of the Gedeo Zone in SNNPR region of Ethiopia accommodating around 65000 inhabitants and also as an important trade centre for coffee. Due to the recent developments and urbanization in town and surrounding area, waste and sewage discharge has been raised significantly into the water resources. Also frequent rainfall in the region worsens the problem of water quality. In this view, present study aims to analyze water quality profile of Dilla town using 12 physico-chemical parameters. 15 Sampling stations are identified amongst the open wells, bore wells and from surface water, which are being extensively used for drinking and other domestic purposes. Spectrophotometer is used to analyze data and Gaussian process regression is used to interpolate the same in GIS environment to represent spatial distribution of parameters. Based on observed and desirable values of parameters, water quality index (WQI); an indicator of weighted estimate of the quantities of various parameters ranging from 1 to 100, is developed in GIS. Higher value of WQI indicates better while low value indicates poor water quality. This geospatial analysis is carried out before and after rainfall to understand temporal variation with reference to rainfall which facilitates in identifying the potential zones of drinking water. WQI indicated that 8 out of 15 locations come under acceptable category indicating the suitability of water for human use, however remaining locations are unfit. For example: the water sample at main_campus_ustream_1 (site name) site has very low WQI after rainfall, making it unfit for human usage. This suggests undertaking of certain measures in town to enhance the water quality. These results are useful for town authorities to take corrective measures and ameliorate the water quality for human

  2. Impacts of population growth and economic development on water quality of a lake: case study of Lake Victoria Kenya water.

    PubMed

    Juma, Dauglas Wafula; Wang, Hongtao; Li, Fengting

    2014-04-01

    Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l(-1) in 1990 to 98 μg 1(-1) in 2008, while PO4-P increased from 4 μg l(-1) in 1990 to 57 μg l(-1) in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service. PMID:24442964

  3. Desalination of Ground Water Minerals (Case Study: Kashan Desert in Iran)

    NASA Astrophysics Data System (ADS)

    Mahani, S. E.; Esmaeli Mahani, M.; Siavoshi, F.; Jafari, M.

    2009-12-01

    The present study focuses on testing quality and desalination of minerals from ground water that is used as the only source of water supply particularly for drinking in the Kashan Desert in Iran. About 14.2 cubic meter water/year from 59 wells, with the average depth of 120 meter, are used for drinking and personal usage in the selected study area. To test the quality of ground water, in general, salinity of minerals such as: chloride (Cl), sulfate (SO4), carbonate (CO3), bicarbonate (HCO3), potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg), as well as PH, Total Dissolved Solids (TDS), Electric Conductivity (EC), and Temperature (T) are measured. EC and TDS in the deserts and arid areas are usually very high because of lack of rainfall, higher temperature, and high rate of evaporation. If the TDS is greater than 1000 mg/l, ground water needs to be desalinated. The TDS of ground water samples in Kashan Desert is greater than 2500 mg/l, which is higher than international World Health Organization (WHO) and Environmental Protection Agency (EPA) standard values. Conventional treatment can not be the only solution for making Kashan Desert ground water that much pure that can be used as fresh water for drinking because EC, Mg, Na, Cl, and SO4 are also higher than standard values. Various techniques such as: Ion Exchange (IX), Microfiltration (MF), Ultra Filtration (UF), Nano Filtration (NF), Electro Dialysis (ED), and Reserve Osmosis (RO) are examined to desalinate above mentioned minerals. Based on molecular weight and diameter of chemical particles which should be removed, in addition to experiences of operational groups in Iran, the RO technique has been selected as the best methodology. The results show that the RO technique could improve the quality of Kashan Desert ground water by comparison with the standard fresh water up to 95% to 99%.

  4. HYDROGEOLOGIC CASE STUDIES

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  5. MULTIPLE CONTAMINANTS CASE STUDIES

    EPA Science Inventory

    The presentation provides information taken from the arsenic demonstration program projects that have treatment systems removing multiply contaminants from drinking water. The case studies sited in the presentation consist of projects that have arsenic along with either nitrate, ...

  6. The effects of construction on water quality: a case study of the culverting of Abram Creek.

    PubMed

    Houser, Darci L; Pruess, Heidi

    2009-08-01

    While sediment is a leading cause of impaired water, studies have shown that construction activities incorporating best management practices (BMPs) can be conducted without lasting detrimental effects on water quality. This paper examines the water quality impacts of a construction project involving the culverting of a creek to allow for the construction of a runway at an airport in Cleveland, Ohio. Sampling parameters included total suspended solids (TSS), dissolved oxygen (DO), pH, conductivity, and temperature. To assess the effects of the construction project conducted using appropriate BMPs, weekly water quality samples were taken upstream and downstream from the construction site. The samples were categorized as baseline, active construction, and post-construction to isolate the effects of the construction activities. t tests were used to compare upstream and downstream data for each of the parameters and ANOVA was used to compare the individual water quality parameters in the three sampling periods to see if there were significant increases or decreases of the water quality parameters within the phases. Results of ANOVA indicate there were no statistically significant differences between upstream and downstream in the mean sample results for TSS, conductivity, and pH when comparing the three phases. While the descriptive statistics conducted on the data illustrated minor variation in the upstream, downstream, and between phase comparisons, the results of the t tests helped to strengthen the theory that construction projects utilizing appropriate BMPs can yield minimal impact on overall water quality of surrounding water bodies. PMID:18629442

  7. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    NASA Astrophysics Data System (ADS)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  8. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.

    2014-06-01

    Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t-1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River basin in the period considered. The one-at-a-time method was carried out to analyse the sensitivity of the crop water footprint to fractional changes of seven individual input variables and parameters: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), crop calendar (planting date with constant growing degree days), soil water content at field capacity (Smax), yield response factor (Ky) and maximum yield (Ym). Uncertainties in crop water footprint estimates related to uncertainties in four key input variables: PR, ET0, Kc, and crop calendar were quantified through Monte Carlo simulations. The results show that the sensitivities and uncertainties differ across crop types. In general, the water footprint of crops is most sensitive to ET0 and Kc, followed by the crop calendar. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint is, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0was dominant compared to that of PR. The uncertainties in the total water footprint of a crop as a result of combined key input

  9. Water uptake efficiency of a maize plant - A simulation case study

    NASA Astrophysics Data System (ADS)

    Meunier, Félicien; Leitner, Daniel; Bodner, Gernot; Javaux, Mathieu; Schnepf, Andrea

    2014-05-01

    segments based on literature values. This numerical experiment shows significantly different behaviors of the root systems in terms of dynamics of the water uptake, duration of the water stress or cumulative transpiration. The ranking of the maize architectures varied according to the considered drought scenario. The performance of a root system depends on the environment and on its hydraulic architecture suggesting that we always need to take the genotype-environment interaction into account for recommending breeding options. This study also shows that an ideotype must be built for one specific environment: the one we created experienced difficulties to transpire when placed in different conditions it has been designed for. By mathematical simulation we increased the understanding of the most important underlying processes governing water uptake in a root system.

  10. Determining return water levels at ungauged coastal sites: a case study for northern Germany

    NASA Astrophysics Data System (ADS)

    Arns, Arne; Wahl, Thomas; Haigh, Ivan D.; Jensen, Jürgen

    2015-04-01

    We estimate return periods and levels of extreme still water levels for the highly vulnerable and historically and culturally important small marsh islands known as the Halligen, located in the Wadden Sea offshore of the coast of northern Germany. This is a challenging task as only few water level records are available for this region, and they are currently too short to apply traditional extreme value analysis methods. Therefore, we use the Regional Frequency Analysis (RFA) approach. This originates from hydrology but has been used before in several coastal studies and is also currently applied by the local federal administration responsible for coastal protection in the study area. The RFA enables us to indirectly estimate return levels by transferring hydrological information from gauged to related ungauged sites. Our analyses highlight that this methodology has some drawbacks and may over- or underestimate return levels compared to direct analyses using station data. To overcome these issues, we present an alternative approach, combining numerical and statistical models. First, we produced a numerical multidecadal model hindcast of water levels for the entire North Sea. Predicted water levels from the hindcast are bias corrected using the information from the available tide gauge records. Hence, the simulated water levels agree well with the measured water levels at gauged sites. The bias correction is then interpolated spatially to obtain correction functions for the simulated water levels at each coastal and island model grid point in the study area. Using a recommended procedure to conduct extreme value analyses from a companion study, return water levels suitable for coastal infrastructure design are estimated continuously along the entire coastline of the study area, including the offshore islands. A similar methodology can be applied in other regions of the world where tide gauge observations are sparse.

  11. HIV/AIDS and access to water: A case study of home-based care in Ngamiland, Botswana

    NASA Astrophysics Data System (ADS)

    Ngwenya, B. N.; Kgathi, D. L.

    This case study investigates access to potable water in HIV/AIDS related home-based care households in five rural communities in Ngamiland, Botswana. Primary data collected from five villages consisted of two parts. The first survey collected household data on demographic and rural livelihood features and impacts of HIV/AIDS. A total of 129 households were selected using a two-stage stratified random sampling method. In the second survey, a total of 39 family primary and community care givers of continuously ill, bed-ridden or non-bed-ridden HIV/AIDS patients were interviewed. A detailed questionnaire, with closed and open-ended questions, was used to collect household data. In addition to using the questionnaire, data were also collected through participant observation, informal interviews and secondary sources. The study revealed that there are several sources of water for communities in Ngamiland such as off-plot, outdoor (communal) and on-plot outdoor and/or indoor (private) water connections, as well as other sources such as bowsed water, well-points, boreholes and open perennial/ephemeral water from river channels and pans. There was a serious problem of unreliable water supply caused by, among other things, the breakdown of diesel-powered water pumps, high frequency of HIV/AIDS related absenteeism, and the failure of timely delivery of diesel fuel. Some villages experienced chronic supply disruptions while others experienced seasonal or occasional water shortages. Strategies for coping with unreliability of water supply included economizing on water, reserve storage, buying water, and collection from river/dug wells or other alternative sources such as rain harvesting tanks in government institutions. The unreliability of water supply resulted in an increase in the use of water of poor quality and other practices of poor hygiene as well as a high opportunity cost of water collection. In such instances, bathing of patients was cut from twice daily to once or

  12. Cryptosporidium and Giardia in Surface Water: A Case Study from Michigan, USA to Inform Management of Rural Water Systems

    PubMed Central

    Dreelin, Erin A.; Ives, Rebecca L.; Molloy, Stephanie; Rose, Joan B.

    2014-01-01

    Cryptosporidium and Giardia pose a threat to human health in rural environments where water supplies are commonly untreated and susceptible to contamination from agricultural animal waste/manure, animal wastewater, septic tank effluents and septage. Our goals for this paper are to: (1) explore the prevalence of these protozoan parasites, where they are found, in what quantities, and which genotypes are present; (2) examine relationships between disease and land use comparing human health risks between rural and urban environments; and (3) synthesize available information to gain a better understanding of risk and risk management for rural water supplies. Our results indicate that Cryptosporidium and Giardia were more prevalent in rural versus urban environments based on the number of positive samples. Genotyping showed that both the human and animal types of the parasites are found in rural and urban environments. Rural areas had a higher incidence of disease compared to urban areas based on the total number of disease cases. Cryptosporidiosis and giardiasis were both positively correlated (p < 0.001) with urban area, population size, and population density. Finally, a comprehensive strategy that creates knowledge pathways for data sharing among multiple levels of management may improve decision-making for protecting rural water supplies. PMID:25317981

  13. Water and Energy Savings using Demand Hot Water Recirculating Systems in Residential Homes: A Case Study of Five Homes in Palo Alto, California

    SciTech Connect

    Ally, M.R.

    2002-11-14

    This report summarizes a preliminary study aimed at estimating the potential of saving potable water, (and the electrical energy used to heat it), that is presently lost directly to the drain while occupants wait for hot water to arrive at the faucet (point of use). Data were collected from five single-family homes in Palo Alto, California. Despite the small sample size in this study, the results make a compelling case for retrofitting homes with hot water recirculation systems to eliminate unnecessary wastage of water at the point of use. Technical as well as behavioral and attitudinal changes towards water conservation are necessary for a fulfilling and successful conservation effort. This report focuses on the technical issues, but behavioral issues are also noted, which may be factored into future studies involving local and state governments and utility companies.

  14. Future water supply management adaptation measures - case study of Ljubljana field aquifer

    NASA Astrophysics Data System (ADS)

    Čenčur Curk, B.; Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Bogardi, I.

    2012-04-01

    The main drinking water supply problems are related to the significant change of groundwater quantity and quality observed in the last decades as an effect of land use practices and very likely also climate change. The latter may affect the ability of drinking water suppliers to provide enough water of sufficient quality to the consumers. These topics were studied in the frame of SEE project CC-WaterS (Climate Change and Impact on Water Supply) with the main goal to develop a water supply management system regarding optimisation of water extraction and land use restrictions under climate change scenarios for water suppliers, since existing management practices are mostly inadequate to reduce impacts of CC on water supply reliability. The main goal was a designation of appropriate measures and risk assessment to adapt water supply to changing climate and land use activities considering socio-economic aspects. This was accomplished by using 'Fuzzy Decimaker', which is a tool for selecting and ranking risk reduction measures or management actions for local waterworks or water authorities under the pressure of climate change. Firstly, management options were selected and ranked. For public water supply of Ljubljana, the capital of Slovenia, several management options were selected. For improvement of water supply and preservation of water resource quantities there is a need for engineering interventions, such as reducing water losses on pipelines. For improving drinking water safety and preserving water resource quality farmers are not allowed to use fertilisers in the first safeguarding zone and they get compensations for income reduction because of lower farming production. Compensations for farming restrictions in the second safeguarding zone were applied as additional management option. On the other hand, drinking water treatment is another management option to be considered. Trends in groundwater level are decreasing, above all recharge areas of waterworks

  15. Case study of complaints on drinking water quality: relationship to copper content?

    PubMed

    Pizarro, Fernando; Araya, Magdalena; Vásquez, Marcela; Lagos, Gustavo; Olivares, Manuel; Méndez, Marco A; Leyton, Bárbara; Reyes, Arturo; Letelier, Victoria; Uauy, Ricardo

    2007-05-01

    Several families of Talca city, Chile complained to health authorities for what they attributed to consumption of copper (Cu)-contaminated drinking water. We assessed the situation 6-12 mo after the initiation of complaints by characterizing the symptoms reported, the chemistry of drinking water, and the Cu concentration in stagnant drinking water. After completing a census, 1778 households accepted participation and were categorized as follows: category 1, Cu plumbing for tap water and dwellers reporting health complaints (HC); category 2, Cu plumbing for tap water and dwellers reporting no HC; category 3, plastic plumbing for tap water and dwellers reporting no HC. Questionnaires recorded characteristics of households and symptoms presented by each member of the family in the last 3 mo. The Cu concentration in drinking water was measured in a subsample of 80 homes with Cu pipes. In category 1, participants presented significantly more abdominal pain, diarrhea, and/or vomiting (gastrointestinal [GI] symptoms) in comparison to category 3 and to categories 2 plus 3. The stagnant Cu concentrations measured in drinking water in all houses studied were below the US Environmental Protection Agency guideline value (<1.3 mg Cu/L). In summary, data obtained by interviews suggested that individuals in some areas of Talca city were suffering more GI symptoms potentially related to Cu excess, but measurement of Cu concentration in stagnant tap waters ruled out the association between Cu exposure and GI symptom reports at the time of this study. The dose-response curves for GI symptoms and Cu exposure now available were crucial in the analyses of results. PMID:17646683

  16. Assessment of water quality: a case study of the Seybouse River (North East of Algeria)

    NASA Astrophysics Data System (ADS)

    Guettaf, M.; Maoui, A.; Ihdene, Z.

    2014-11-01

    The assessment of water quality has been carried out to determine the concentrations of different ions present in the surface waters. The Seybouse River constitutes a dump of industrial and domestic rejections which contribute to the degradation of water quality. A total of 48 surface water samples were collected from different stations. The first objective of this study is the use of water quality index (WQI) to evaluate the state of the water in this river. The second aim is to calculate the parameters of the quality of water destined for irrigation such as sodium adsorption ratio , sodium percentage, and residual sodium carbonate. A high mineralization and high concentration of major chemical elements and nutrients indicate inevitably a high value of WQI index. The mean value of electrical conductivity is about 945.25 µs/cm in the station 2 (Bouhamdane) and exceeds 1,400 µs/cm in station 12 of Nador. The concentration of sulfates is above 250 mg/l in the stations 8 (Zimba) and 11 (Helia). A concentration of orthophosphate over 2 mg/l was observed in the station 11. The comparison of the obtained and the WHO standards indicates a before using it use in agricultural purposes.

  17. Integrated hydrological and water quality model for river management: a case study on Lena River.

    PubMed

    Fonseca, André; Botelho, Cidália; Boaventura, Rui A R; Vilar, Vítor J P

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km(2) watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between -26% and 23% for calibration and -30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. PMID:24742558

  18. The association between campylobacteriosis, agriculture and drinking water: a case-case study in a region of British Columbia, Canada, 2005-2009.

    PubMed

    Galanis, E; Mak, S; Otterstatter, M; Taylor, M; Zubel, M; Takaro, T K; Kuo, M; Michel, P

    2014-10-01

    We studied the association between drinking water, agriculture and sporadic human campylobacteriosis in one region of British Columbia (BC), Canada. We compared 2992 cases of campylobacteriosis to 4816 cases of other reportable enteric diseases in 2005-2009 using multivariate regression. Cases were geocoded and assigned drinking water source, rural/urban environment and socioeconomic status (SES) according to the location of their residence using geographical information systems analysis methods. The odds of campylobacteriosis compared to enteric disease controls were higher for individuals serviced by private wells than municipal surface water systems (odds ratio 1·4, 95% confidence interval 1·1-1·8). In rural settings, the odds of campylobacteriosis were higher in November (P = 0·014). The odds of campylobacteriosis were higher in individuals aged ⩾15 years, especially in those with higher SES. In this region of BC, campylobacteriosis risk, compared to other enteric diseases, seems to be mediated by vulnerable drinking water sources and rural factors. Consideration should be given to further support well-water users and to further study the microbiological impact of agriculture on water. PMID:24892423

  19. LCA of waste prevention activities: a case study for drinking water in Italy.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2012-10-15

    The strategic relevance of waste prevention has considerably increased worldwide during recent years, such that the current European legislation requires the preparation of national waste prevention programmes in which reduction objectives and measures are identified. In such a context, it is possible to recognise how, in order to correctly evaluate the environmental consequences of a prevention activity, a life cycle perspective should be employed. This allows us to go beyond the simple reduction of the generated waste which, alone, does not automatically imply achieving better overall environmental performance, especially when this reduction is not pursued through the simple reduction of consumption. In this study, the energetic and environmental performance of two waste prevention activities considered particularly meaningful for the Italian context were evaluated using life cycle assessment (LCA) methodology. The two activities were the utilisation of public network water (two scenarios) and of refillable bottled water (two scenarios) for drinking purposes, instead of one-way bottled water (three scenarios). The energy demand and specific potential impacts of the four waste prevention scenarios and of the three baseline scenarios were compared with the aim of evaluating whether, and under what conditions, the analysed prevention activities are actually associated with overall energetic and environmental benefits. In typical conditions, the use of public network water directly from the tap results in the best scenario, while if water is withdrawn from public fountains, its further transportation by private car can involve significant impacts. The use of refillable PET bottled water seems the preferable scenario for packaged water consumption, if refillable bottles are transported to local distributors along the same (or a lower) distance as one-way bottles to retailers. The use of refillable glass bottled water is preferable to one-way bottled water only if a

  20. How effective is river restoration in re-establishing groundwater - surface water interactions? - A case study

    NASA Astrophysics Data System (ADS)

    Kurth, A.-M.; Weber, C.; Schirmer, M.

    2015-01-01

    In this study we investigated whether river restoration was successful in re-establishing vertical connectivity and, thereby, groundwater-surface water interactions, in a degraded urban stream. Well-tried passive Distributed Temperature Sensing (DTS) and novel active and passive DTS approaches were employed to study groundwater-surface water interactions in an experimental reach of an urban stream before and after its restoration and in two (near-) natural reference streams. Results were validated with Radon-222 analyses. Our results indicated that river restoration at the study site was indeed successful in increasing groundwater-surface water interactions. Increased surface water downwelling occurred locally at the tip of a gravel island created during river restoration. Hence, the installation of in-stream structures increased the vertical connectivity and thus groundwater-surface water interactions. With the methods presented in this publication it would be possible to routinely investigate the success of river restorations in re-establishing vertical connectivity, thereby gaining insight into the effectiveness of specific restoration measures. This, in turn, would enable the optimization of future river restoration projects, rendering them more cost-effective and successful.

  1. Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Durry, G.; Longo, K.; Freitas, S.; Rivière, E. D.; Pirre, M.

    2006-08-01

    In this study, we evaluate the ability of the BRAMS mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to ECMWF analysis. The mesoscale model performs significantly better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The improvement provided by the mesoscale model for water vapour comes mainly from (i) the enhanced vertical resolution in the UTLS (250 m for BRAMS and ~1 km for ECMWF model) and (ii) the more detailed microphysical parameterization providing ice supersaturations as in the observations. The ECMWF vertical resolution (~1 km) is too coarse to capture the observed fine scale vertical variations of water vapour in the UTLS. In near saturated or supersaturated layers, the mesoscale model relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, ECMWF analysis gives good results partly thanks to data assimilation. The analysis of the mesoscale model results showed that in undersaturated layers, the water vapour profile depends mainly on the dynamics. In saturated/supersaturated layers, microphysical processes play an important role and have to be taken into account on top of the dynamical processes to understand the water vapour profiles. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour profiles that are significantly dryer than micro-SDLA measurements. This similarity comes from the fact that BRAMS is initialised using ECMWF analysis and that no mesoscale

  2. Coastal hypoxia diminished by intrusion of open ocean water after long El Nino Events: Case study of Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Lui, H. K.; Chen, C. T. A.

    2015-12-01

    Coastal regions suffer from increasing terrestrial inputs of nutrients and organic matter. Consequently, hypoxia (dissolved oxygen (DO) < 30% or 2 mg/L) in the coastal regions has become more serious. In the study of coastal eutrophication and hypoxia, incoming offshore seawater has rarely been addressed. With references to the time-series data in the coast of Hong Kong and at the South East Asia Time Series Study (SEATS) station located in the northern South China Sea (SCS), this study demonstrates that coastal waters of Hong Kong have suffered hypoxia for over a decade. The hypoxia condition, however, diminished between 2002 and 2004, most likely owning to a large scale intrusion of the West Philippine Sea (WPS) seawater. For instance, at station SM18 located south of Hong Kong, the summer DO minimum has generally decreased from a saturation state of about 60% to as low as 5% from 1990 to 2013. The almost anoxic condition occurred in 2011 after a La Nina event. On the other hand, the summer DO minimum reached a high value of 79% in 2004 after a long El Nino event. Meanwhile, seawater at the SEATS site also contained the highest proportion of the WPS water, reflecting the large intrusion of the WPS seawater into the SCS. Such a result illustrates a situation that coastal eutrophication and hypoxia could be worsened when the intrusion of open ocean water decreases, and vice versa.

  3. Sub-pixel mapping of water boundaries using pixel swapping algorithm (case study: Tagliamento River, Italy)

    NASA Astrophysics Data System (ADS)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2015-10-01

    Taking the advantages of remotely sensed data for mapping and monitoring of water boundaries is of particular importance in many different management and conservation activities. Imagery data are classified using automatic techniques to produce maps entering the water bodies' analysis chain in several and different points. Very commonly, medium or coarse spatial resolution imagery is used in studies of large water bodies. Data of this kind is affected by the presence of mixed pixels leading to very outstanding problems, in particular when dealing with boundary pixels. A considerable amount of uncertainty inescapably occurs when conventional hard classifiers (e.g., maximum likelihood) are applied on mixed pixels. In this study, Linear Spectral Mixture Model (LSMM) is used to estimate the proportion of water in boundary pixels. Firstly by applying an unsupervised clustering, the water body is identified approximately and a buffer area considered ensuring the selection of entire boundary pixels. Then LSMM is applied on this buffer region to estimate the fractional maps. However, resultant output of LSMM does not provide a sub-pixel map corresponding to water abundances. To tackle with this problem, Pixel Swapping (PS) algorithm is used to allocate sub-pixels within mixed pixels in such a way to maximize the spatial proximity of sub-pixels and pixels in the neighborhood. The water area of two segments of Tagliamento River (Italy) are mapped in sub-pixel resolution (10m) using a 30m Landsat image. To evaluate the proficiency of the proposed approach for sub-pixel boundary mapping, the image is also classified using a conventional hard classifier. A high resolution image of the same area is also classified and used as a reference for accuracy assessment. According to the results, sub-pixel map shows in average about 8 percent higher overall accuracy than hard classification and fits very well in the boundaries with the reference map.

  4. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    SciTech Connect

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: “W” process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four

  5. Case study on the destruction of organic dyes in supercritical water

    SciTech Connect

    LaJeunesse, C.A.; Rice, S.F.

    1994-11-01

    Organic dyes, which were used in Navy shells to mark ships and structures, need to be disposed of without burning. A study was undertaken to assess the feasibility of using supercritical water oxidation to destroy organic dyes. Experimental destruction efficiencies, product analyses, and process configuration are reported.

  6. An Integrated Environmental and Water Accounting and Analytical Framework for Accountable water Governance: a Case Study for Haihe Basin

    NASA Astrophysics Data System (ADS)

    Qin, C.

    2009-04-01

    Water is a critical issue in China for a variety of reasons. This is especially urgent in Haihe basin with poor water availability of 305 m3 per capita basis. With the rapid economic development and associated increases in water demand, the river basin has been enduring increasing water stress. Water for the ecosystem use has been compromised and the environment has been deteriorating. Water shortage and environmental degradation have become a bottleneck to the further development of the economy and society. On one side, previous water resource managers have emphasized the amount of water withdrawn but rarely take water quality into consideration. On the other side, environmental managers have usually ignored the importance of pollutant assimilating capacity of water flows for the wastewater control. It is especially important to measure the impacts of both water withdrawn and wastewater discharge on the hydro-ecosystem. Thus, water consumption should not only account for the amount of water inputs but also the amount of water contaminated in the hydro-ecosystem by the discharged wastewater. Water quantity and quality of return flows should also become the important components of such an environmental and water account. Because return flow from upstream sites represents an externality to downstream uses, which can be positive as an additional source and negative as a pollutant source. In this paper we present an integrated environmental and water accounting and analytical approach based on a distributed hydrological model WEP-L (Water and Energy transfer Process in Large river basins) combined with a simple water quality model. Our environmental and water accounting framework and analysis tool allows tracking water consumption on the input side, water pollution from the human system and water flows passing the hydrological system thus enabling us to deal with water resources of different qualities. Keywords: Environmental accounting; Water accounting; Water

  7. Water quality assessment in terms of water quality index (WQI): case study of the Kolong River, Assam, India

    NASA Astrophysics Data System (ADS)

    Bora, Minakshi; Goswami, Dulal C.

    2016-07-01

    The Kolong River of Nagaon district, Assam has been facing serious degradation leading to its current moribund condition due to a drastic human intervention in the form of an embankment put across it near its take-off point from the Brahmaputra River in the year 1964. The blockage of the river flow was adopted as a flood control measure to protect its riparian areas, especially the Nagaon town, from flood hazard. The river, once a blooming distributary of the mighty Brahmaputra, had high navigability and rich riparian biodiversity with a well established agriculturally productive watershed. However, the present status of Kolong River is highly wretched as a consequence of the post-dam effects thus leaving it as stagnant pools of polluted water with negligible socio-economic and ecological value. The Central Pollution Control Board, in one of its report has placed the Kolong River among 275 most polluted rivers of India. Thus, this study is conducted to analyze the seasonal water quality status of the Kolong River in terms of water quality index (WQI). The WQI scores shows very poor to unsuitable quality of water samples in almost all the seven sampling sites along the Kolong River. The water quality is found to be most deteriorated during monsoon season with an average WQI value of 122.47 as compared to pre-monsoon and post-monsoon season having average WQI value of 85.73 and 80.75, respectively. Out of the seven sampling sites, Hatimura site (S1) and Nagaon Town site (S4) are observed to be the most polluted sites.

  8. Shallow water submarine hydrothermal activity - A case study in the assessment of ocean acidification and fertilization

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yoshida, K.; Hagiwara, T.; Nagao, K.; Kusakabe, M.; Wang, B.; Chen, C. A.

    2012-12-01

    Most natural Shallow Water submarine Hydrothermal activates (SWH) along coastlines are related to hydrothermal eruptions involving heating of groundwater with the volcanic gas. These SWHs supply nutrients such as phosphorus and micro nutrients like iron to the euphotic zone, contributing to the overall natural fertility and primary productivity of coastal waters. However, SWHs also have a negative effect, dispersing toxic materials such as mercury and arsenic, and affecting the acidification of the surrounding waters. In this study, we evaluate the impact of "iron supply" and "ocean acidification" on the primary production in a coastal marine environment, at a SWH area discovered off Gueshandao Island, northeast Taiwan. In the past three years, expeditions were conducted and observations made around this SWH site. Divers, small boats and a research vessel (R/V OR1, Ocean University National Taiwan) were used to survey successively larger areas around the site. Some of the results obtained are as follows. Hydrothermal vents are located in a hilly terrain rich with hot spring water with gas erupting intermittently. There are two types of vents, roughly divided by color, yellow hot spring water with higher temperature >110 degC ejected from sulfur chimneys of various sizes, and colorless water with lower temperature ~80 degC ejected directly from the crevices of the andesitic bedrock. Natural sulfur solidifying in the mouth of a small chimney was captured by a video camera, and explosions were also observed at intervals of a few minutes. Sediment, sand and particles of sulfur were deposited on the sides to a radius of about 50 m condensing around the chimney. The bottom type changes from sand/particles to outcrop/rock away from the vents. Moreover, gas samples were collected from the vents; the ratios of gas concentrations (N2/Ar) and isotopic composition of noble gas (3He/4He) suggest that these volcanic gases are mantle-derived. Hydrothermal fluid with high p

  9. Beneficial effects on water management of simple hydraulic structures in wetland systems: the Vallevecchia case study, Italy.

    PubMed

    Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L

    2011-01-01

    Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion. PMID:22053478

  10. Coastal water quality from remote sensing and GIS. A case study on South West Sardinia (Italy)

    SciTech Connect

    Poli, U.; Ippoliti, M.; Venturini, C.; Falcone, P.; Marino, A.

    1997-08-01

    In this paper the application of remote sensing image processing and GIS techniques in monitoring and managing coastal areas is proposed. The methodology has been applied to South-West Sardinia Coast where the environment is endangered by industrial plants and other human activities. The area is characterized by the presence of many submarine springs aligned along coastal cliffs. Water quality parameters (chlorophyll, suspended sediments and temperature) spatial and temporal variations, have been studied using Landsat TM images. Particularly, in this paper are reported the results referred to sea surface thermal gradients, considered as one of the main water quality index. Thermal gradients have been mapped in order to outline water circulation, thermal pollution and presence and distribution of submarine springs. Furthermore, a GIS approach of relating mono and multitemporal TM data with ground referenced information on industrial plants characteristics and distribution has been applied.

  11. Non-market valuation supporting water management: the case study in Czestochowa, Poland

    NASA Astrophysics Data System (ADS)

    Kountouris, Y.; Godyn, I.; Sauer, J.

    2014-07-01

    Water resources in Poland continue to be under stress despite systematic efforts to safeguard ground and surface water quality and quantity. Groundwater protection from nitrate pollution of human origin requires the development of sewerage systems. Such investments are often financed from public funds that must be formally appraised. The appraisal should be done by a comparison of benefits and costs of investment measures - not only financial but also environmental and social. A significant challenge is the monetization of the effects on the environment. In this paper we use non-market valuation to examine residents' preferences and estimate their willingness to pay for improving drinking water quality. This paper also contributes to the narrow literature on valuation of benefits of measures for groundwater quality improvement by presenting an application of the choice experiment method in the Czestochowa Region of Poland. To the best of our knowledge this is the first study estimating the value of benefits of the groundwater quality improvement in Poland.

  12. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen (Final)

    EPA Science Inventory

    Cover of the Nanomaterial <span class=Case Studies Final Report "> This document is a starting point to determine what is known and what needs to b...

  13. Evolution of water chemistry during Marcellus Shale gas development: A case study in West Virginia.

    PubMed

    Ziemkiewicz, Paul F; Thomas He, Y

    2015-09-01

    Hydraulic fracturing (HF) has been used with horizontal drilling to extract gas and natural gas liquids from source rock such as the Marcellus Shale in the Appalachian Basin. Horizontal drilling and HF generates large volumes of waste water known as flowback. While inorganic ion chemistry has been well characterized, and the general increase in concentration through the flowback is widely recognized, the literature contains little information relative to organic compounds and radionuclides. This study examined the chemical evolution of liquid process and waste streams (including makeup water, HF fluids, and flowback) in four Marcellus Shale gas well sites in north central West Virginia. Concentrations of organic and inorganic constituents and radioactive isotopes were measured to determine changes in waste water chemistry during shale gas development. We found that additives used in fracturing fluid may contribute to some of the constituents (e.g., Fe) found in flowback, but they appear to play a minor role. Time sequence samples collected during flowback indicated increasing concentrations of organic, inorganic and radioactive constituents. Nearly all constituents were found in much higher concentrations in flowback water than in injected HF fluids suggesting that the bulk of constituents originate in the Marcellus Shale formation rather than in the formulation of the injected HF fluids. Liquid wastes such as flowback and produced water, are largely recycled for subsequent fracturing operations. These practices limit environmental exposure to flowback. PMID:25957035

  14. Evaluating the metallic pollution of riverine water and sediments: a case study of Aras River.

    PubMed

    Nasehi, F; Hassani, A H; Monavvari, M; Karbassi, A R; Khorasani, N

    2013-01-01

    Metallic pollution caused by elements Zn, Cu, Fe, Pb, Ni, Cd, and Hg in water and sediments of Aras River within a specific area in Ardabil province of Iran is considered. Water and sediment samples were collected seasonally and once respectively from the five selected stations. Regarding WHO published permissible values, only Ni concentration in spring and summer water samples has exceeded the acceptable limit up to four times greater than the limit. The concentration of metals Ni, Pb, and Fe in river water shows a direct relationship with river water discharge and the amount of precipitation. Enhanced soil erosion, bed load dissolution, and runoffs may play a key role in remarkable augmentation of metallic ions concentration. Furthermore, excessive use of pesticides which contain a variety of metallic ions (mainly Cu) in spring and summer may also result in an increase in the metals' concentration. The potential risk of Ni exposure to the water environment of the study area is assigned to juice, dairy products, edible oil, and sugar cane factories as well as soybean crop lands which are located within the sub-basin of Aras River in the study area. Regarding the sediment samples, the bioavailable metal concentrations indicate an ascending order from the first station towards the last one. In comparison with earth crust, sedimental and igneous rocks the reported metallic concentration values, except for Cd, lie within the low-risk status. Regarding Cd, the reported values in some stations (S2, S4, and S5) are up to ten times greater than that of shale which may be considered as a remarkable risk potential. The industrial and municipal wastewater generated by Parsabad moqan industrial complex and residential areas, in addition to the discharges of animal husbandry centers, may be addressed as the key factors in the sharp increase of metallic pollution potential in stations 4 and 5. PMID:22318740

  15. Case Studies of Mixed-phase Winter Orographic Clouds with High Liquid Water Content over Idaho

    NASA Astrophysics Data System (ADS)

    Tessendorf, S. A.; Xue, L.; Weeks, C.; Rasmussen, R.; French, J.; Geerts, B.; Holbrook, V. P.; Blestrud, D.; Kunkel, M. L.; Parkinson, S.

    2015-12-01

    Wintertime orographic clouds have been shown to contain supercooled liquid water (SLW) as observed by radiometers and simulated by numerical models. The presence of SLW is often an indication that the precipitation process is not efficient, possibly due to a lack of ice nuclei able to be activated into ice crystals. Natural ice nuclei often do not become activated until temperatures are colder than -15 C, however silver iodide has been shown to activate at subfreezing temperatures as warm as -5 C (DeMott 1999, Hoose and Mohler 2012). As such, the precipitation from relatively warm mixed-phase orographic clouds with SLW could potentially be enhanced using silver iodide. Idaho Power Company (IPC) has been operating a cloud seeding program in the Payette River Basin of western Idaho for over 15 years aimed at enhancing the precipitation from winter orographic clouds. During the past 5 years, IPC and the National Center for Atmospheric Research (NCAR) have been conducting research aimed at better understanding the cloud physics of the winter orographic clouds in the region and their potential for cloud seeding. From this research, several cases have been identified that have very high amounts of SLW, based on radiometer observations and numerical modeling. In one case, in situ measurements from the University of Wyoming King Air were also collected. This paper will present observations and modeling results of two cases with high SLW and discuss the implications that such cases have on aircraft icing and how seeding them with silver iodide might impact their precipitation production.

  16. Impact of shale gas development on water resources: a case study in northern poland.

    PubMed

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86% of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies. PMID:25877457

  17. Impact of Shale Gas Development on Water Resources: A Case Study in Northern Poland

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86 % of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  18. Site-specific water quality criteria -- Case studies of available methodologies

    SciTech Connect

    DeShields, B.R.; Hawkins, E.T.; Alsop, W.R.

    1995-12-31

    The Clean Water Act and EPA`s National Toxic Rule require states to either adopt EPA`s National Ambient Water Quality Criteria (AWQCs) or to develop Site Specific Water Quality Criteria (SSWQC). EPA has published several guidance documents on how to develop SSWQC. These methods as well as methods currently in development for calculating SSWQC were examined. EPA currently identifies three methods for developing SSWQC: the Recalculation Method, the Indicator Species or Water Effects Ratio (WER) Method, and the Resident Species Method. SSWQC have been developed in some states/regions using one of or a combination of these methods. Examples of studies conducted to develop SSWQCs including those conducted for San Francisco Bay and the Santa Ana River in California, and New York Harbor. Methods used to develop SSWQC in these regions and ongoing efforts in other regions were reviewed and compared. An evaluation of the effectiveness of these studies in terms of successfulness, timeliness, cost, and benefit to both the discharger and the environment was conducted. In addition, issues related to SSWQC development such as the use of total vs. dissolved metal concentrations, species selection, and laboratory and field techniques were examined. A summary of these evaluations will be presented.

  19. Integrating wastewater reuse in water resources management for hotels in arid coastal regions - Case Study of Sharm El Sheikh, Egypt.

    PubMed

    Lamei, A; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water (using reverse osmosis) for their domestic water supply, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their potable and non-potable water needs. There is normally a contractual agreement stating a minimum amount of water that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). Hotels have to carefully analyse their water requirements in order to determine which percentage of the hotel's peak water demand should be used in the contract in order to reduce water costs and avoid the risk of water shortage. This paper describes a model to optimise the contracted-for irrigation water supply with the objective function to minimise total water cost to hotels. It analyses what the contracted-for irrigation water supply of a given hotel should be, based on the size of the green irrigated area on one hand and the unit prices of the different types of water on the other hand. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh (Sharm), Egypt. This paper presents costs of wastewater treatment using waste stabilisation ponds, which is the prevailing treatment mechanism in the case study area for centralised plants, as well as aerobic/anaerobic treatment used for decentralised wastewater treatment plants in the case study area. There is only one centralised wastewater treatment plant available in the city exerting monopoly and selling treated wastewater to hotels at a much higher price than the actual cost that a hotel would bear if it treated its own wastewater. Contracting for full peak irrigation demand is the highest total cost option. Contracting for a portion of the peak irrigation demand and complementing the rest from desalination water is a cheaper option. A better option still is to complement the excess irrigation demand

  20. Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand.

    PubMed

    Censi, P; Spoto, S E; Saiano, F; Sprovieri, M; Mazzola, S; Nardone, G; Di Geronimo, S I; Punturo, R; Ottonello, D

    2006-08-01

    A geochemical survey of the northwestern part of the Thailand Gulf (Inner Gulf) was carried out in order to define concentrations and distribution patterns of selected heavy metals (V, Cr, Co, Ni, Cu, Zn, and U) in the coastal system and estuarine area of the Mae Klong river. The results indicate the presence of two different sources of heavy metals in the studied environment and allowed us to identify a lithogenic component that significantly influences the composition of coastal waters and suspended particulate matter (SPM). Comparison of the normalized heavy metals concentrations both in the studied samples and in those reported for the Sn-W ores present in the surrounding areas suggests an important anthropogenic contribution to the chemistry of the seafloor sediments. Vanadium and nickel enrichment factors (EF) calculated for coastal waters indicate that contamination by hydrocarbons discharge took place in the investigated area. PMID:16403556

  1. Biocatalysis in water-in-ionic liquid microemulsions: a case study with horseradish peroxidase.

    PubMed

    Moniruzzaman, M; Kamiya, N; Goto, M

    2009-01-20

    In this article we report the first results on the enzymatic activity of horseradish peroxidase (HRP) microencapsulated in water-in-ionic liquid (w/IL) microemulsions using pyrogallol as the substrate. Toward this goal, the system used in this study was composed of anionic surfactant AOT (sodium bis(2-ethyl-1-hexyl)sulfosuccinate)/hydrophobic IL [C(8)mim][Tf(2)N] (1-octyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)amide)/water/1-hexanol. In this system, the catalytic activity of HRP was measured as a function of substrate concentrations, W(0) (molar ratio of water to surfactant), pH, and 1-hexanol content. The curve of the activity-W(0) profile was found to be hyperbolic for the new microemulsion. The apparent Michaelis-Menten kinetic parameters (k(cat) and K(m)) were estimated and compared to those obtained from a conventional microemulsion. Apparently, it was found that HRP-catalyzed oxidation of pyrogallol by hydrogen peroxide in IL microemulsuions is much more effective than in a conventional AOT/water/isooctane microemulsion. The stability of HRP solubilized in the newly developed w/IL microemulsions was examined, and it was found that HRP retained almost 70% of its initial activity after incubation at 28 degrees C for 30 h. PMID:19113810

  2. Drought risk assessments of water resources systems under climate change: a case study in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, T. C.; Chen, C.; Kuo, C. M.; Tseng, H. W.; Yu, P. S.

    2012-11-01

    This study aims at assessing the impact of climate change on drought risk in a water resources system in Southern Taiwan by integrating the weather generator, hydrological model and simulation model of reservoir operation. Three composite indices with multi-aspect measurements of reservoir performance (i.e. reliability, resilience and vulnerability) were compared by their monotonic behaviors to find a suitable one for the study area. The suitable performance index was then validated by the historical drought events and proven to have the capability of being a drought risk index in the study area. The downscaling results under A1B emission scenario from seven general circulation models were used in this work. The projected results show that the average monthly mean inflows during the dry season tend to decrease from the baseline period (1980-1999) to the future period (2020-2039); the average monthly mean inflows during the wet season may increase/decrease in the future. Based on the drought risk index, the analysis results for public and agricultural water uses show that the occurrence frequency of drought may increase and the severity of drought may be more serious during the future period than during the baseline period, which makes a big challenge on water supply and allocation for the authorities of reservoir in Southern Taiwan.

  3. Water Balance of Lakes in the Continental Arctic: An Arid Zone Case Study

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; YI, Y.; Birks, S. J.

    2014-12-01

    Stable isotope mass balance using oxygen-18 and deuterium has been applied to study spatial evaporation and water balance trends across continental northern Canada, a remote region of greater than 275,000 km2 characterized by significant seasonal aridity and strong gradients in hydroclimate and vegetation. Calculated catchment-weighted evaporation losses based on a lake survey in the 1990s were estimated at ~10-15% in tundra areas draining into the Arctic Ocean to as high as 60% in forested subarctic areas draining to the Mackenzie River via Great Bear or Great Slave Lakes. Open-water evaporation was found to generally decrease with increasing latitude, accounting for 5 to 50% of total evapotranspiration. Two long-term studies initiated in the 1990s, and carried on for 20+ years, confirm many of the findings of the initial survey and now provide a complimentary perspective of temporal variations in water balance along two representative string-of-lakes drainages located in boreal and tundra settings. For a tundra watershed, the study reveals important lake-order-dependent patterns of evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/precipitation. For a boreal watershed, the analysis also reveals that fluctuations in effective drainage area due to intermittent connectivity between lakes during dry periods can be an important driver of downstream isotopic signals.

  4. Effect of quality of phreatic aquifer water and water upwelling on constructions. A case study of Ouargla

    NASA Astrophysics Data System (ADS)

    Saggaï, Sofiane; Bachi, Oum Elkheir; Saggaï, Ali

    2016-07-01

    In Ouargla's oasis, which is one of urban conglomerations of Algerian Sahara, the exploitation and/or the overexploitation of the deep aquifers of continental intercalary and of complex terminal that contain waters of mediocre quality (salty and hot), and the rejection of waters of drainage, urban residual waters and non-treated industrial waters are responsible, at the same time, of the degradation of the quality of waters of the groundwater and its upwelling. This situation has led to: (i) the deterioration of the environment and (ii) the deterioration of constructions (houses, roads, etc…). The present paper consists in giving in detail the causes of the water upwelling of phreatic aquifers in our regions, the quality of water of this aquifer and the influence of the quality of phreatic aquifer water on environment and constructions in Ouargla city by analyzing water samples of 10 points of this town.

  5. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    NASA Astrophysics Data System (ADS)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-06-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  6. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    NASA Astrophysics Data System (ADS)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-01-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  7. Risk assessment and water safety plan: case study in Beijing, China.

    PubMed

    Ye, Bixiong; Chen, Yuansheng; Li, Yonghua; Li, Hairong; Yang, Linsheng; Wang, Wuyi

    2015-06-01

    Two typical rural water utilities in Beijing, China were chosen to describe the principles and applications of water safety plans (WSP), to provide a methodological guide for the actual application and improve the quality of rural drinking water quality, and to establish an appropriate method for WSP applied in rural water supply. Hazards and hazardous events were identified and risk assessment was conducted for rural water supply systems. A total of 13 and 12 operational limits were defined for two utilities, respectively. The main risk factors that affect the water safety were identified in water sources, water processes, water disinfection systems and water utility management. The main control measures were strengthening the water source protection, monitoring the water treatment processes, establishing emergency mechanisms, improving chemical input and operating system management. WSP can be feasibly applied to the management of a rural water supply. PMID:26042982

  8. Quantifying Uncertainties in Large Scale Water Budget: Case Study in Siberia

    NASA Astrophysics Data System (ADS)

    Joe, S.; Brubaker, K. L.

    2004-12-01

    Assessment and prediction of Arctic River flows' effects on ocean circulation and climate are hindered by lack of knowledge about the terrestial water balance in remote regions. In this study, we quantify the components of the annual water budget for a large Siberian river basin and -- most importantly -- the uncertainty in the components. The water budget for a watershed can be simplified to basic inputs and outputs: Precipitation (P), Streamflow (Q), and Evapotranspiration (E). Over the long term, assuming negligible change in storage, inputs and outputs should balance, P = Q + E. However, errors in measuring and estimating the components lead to a nonzero closure error, CE = P - Q - E. The uncertainty in the water balance can be quantified by the variance of CE, which is equal to the sum of the component variances (assumed independent). The closure error and its variance were estimated for the 57000 km2 Tom River basin (a subbasin of the Ob River) for five water years, 1981- 1985. We hypothesized that (a) the CE would be negative due to underestimation of P by the sparse, low-elevation precipitation network, and (b) statistical hypothesis testing would show that the CE is not significantly different from 0, due to uncertainty in the components. The basin mean and variance of P were estimated by kriging station observations. The annual mean Q was obtained from discharge measurements at Tomsk, Russia; the uncertainty in Q was based on published estimates of rating curve error bars. The basin mean and variance of E were computed from a derived distribution based on Monte Carlo simulation of the Penman Monteith model, driven by measured meteorological data at Tomsk, and accounting for variation in elevation and vegetation. Annual CEs were negative, ranging from -160 to -325 mm, and the standard deviations ranged from 50 to 60 mm. The CE was significantly different from 0 for all five water years, supporting the belief that annual P is underestimated by the gage

  9. Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Durry, G.; Longo, K.; Freitas, S.; Rivière, E. D.; Pirre, M.

    2007-03-01

    In this study, we evaluate the ability of the BRAMS (Brazilian Regional Atmospheric Modeling System) mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to the ECMWF analysis. The observations exhibit fine scale vertical structures of water vapour of a few hundred meters height. The ECMWF vertical resolution (~1 km) is too coarse to capture these vertical structures in the UTLS. With a vertical resolution similar to ECMWF, the mesoscale model performs better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The BRAMS model with 250 m vertical resolution is able to capture more of the observed fine scale vertical variations of water vapour compared to runs with a coarser vertical resolution. This is mainly related to: (i) the enhanced vertical resolution in the UTLS and (ii) to the more detailed microphysical parameterization providing ice supersaturations as in the observations. In near saturated or supersaturated layers, the mesoscale model predicted relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, the ECMWF analysis gives good results partly attributed to data assimilation. The analysis of the mesoscale model results showed that the vertical variations of the water vapour profile depends on the dynamics in unsaturated layer while the microphysical processes play a major role in saturated/supersaturated layers. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour

  10. Selection of Waste Water Equalization Systems for Multi Product Batch Production Facility: An Industrial Case Study

    NASA Astrophysics Data System (ADS)

    Bhatt, Vaidehi; Srinivasarao, Meka.; Dhanwani, Anand

    2010-10-01

    The generation rates of waste water from a batch plant causes significant variations in the flow rate as well as concentrations in the influent to effluent treatment plant. Flow equalization systems are used to reduce the shock loads. The present study deals with the suitability of two flow equalization schemes practiced in the industry with an objective of increasing production flexibility. The simulation study has conclusively established suitability of combined segregation tanks over distributed segregation tanks for a given production capacity. It is also shown that the production flexibility is more for combined scheme in comparison with the distributed scheme.

  11. Water quality assessment of aquatic ecosystems using ecological criteria – case study in Bulgaria

    PubMed Central

    Damyanova, Sonya; Ivanova, Iliana; Ignatova, Nadka

    2014-01-01

    Four aquatic ecosystems (two rivers and two dams) situated in the western part of Bulgaria were investigated over a three years’ period. The River Egulya and Petrohan dam are situated in mountainous regions at about 1000 m altitude, and are not influenced by any anthropogenic sources. Petrohan dam is a site for long-term ecosystem research as a part of Bulgarian long-term ecological research network. The other two systems belong to populated industrial areas. The River Martinovska flows through a region with former long-term mining activity, while Ogosta dam is near a battery production factory. Both the geochemical and geographical ecosystems’ conditions are different, and their social usage as well. Ogosta dam water is used for irrigation and Petrohan dam for electric supply. The ecosystem sensitivity to heavy metals was evaluated by a critical load approach. Two criteria were used for risk assessment: critical load exceedance and microbial toxicity test. All studied ecosystems were more sensitive to cadmium than to lead deposition. The potential risk of Cd damage is higher for Petrohan dam and the River Egulya, where critical load exceedance was calculated for two years. Pseudomonas putida growth inhibition test detected a lack of toxicity for all studied ecosystems at the time of investigation with the exception of the low water September sample of the River Martinovska. The fast bacterial test is very suitable for a regular measurement of water toxicity because of its simplicity, lack of sophisticated equipment and clear results. PMID:26019591

  12. A management system for accidental water pollution risk in a harbour: The Barcelona case study

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Jordà, Gabriel; Espino, Manuel; Romo, Javier; García-Sotillo, Marcos

    2011-10-01

    Water quality degradation in harbour domains can have an important negative impact from an economic, touristic and environmental point of view. In that sense, water quality management is becoming a main concern for harbour managers. In this paper, we present the research behind the initiative started in Spanish harbours to control water quality degradation due to accidental pollution. This management system is already operationally running in the Barcelona harbour (NW Mediterranean Sea). The system is based on a recent published risk assessment, which takes into account not only the different activities in the harbour and their inherent risk of accident but also the physical behaviour of harbour waters. In this methodology, a key element is to get hydrodynamic forecasts. Thus, the system is composed of a hierarchy of nested hydrodynamic models covering from the basin scale to the harbour scale and a module that computes the different parameters needed for risk assessment. Special emphasis is made on describing the steps followed for system implementation because such implementation is far from a mere technical problem. The first step is to identify the main forcing factors for the harbour hydrodynamics from both field data and numerical experiments, which has never been done before for the Barcelona harbour. Wind and shelf currents are suggested as the main forcing factors for the harbour circulation. The second step is to identify the requirements that a numerical model must fulfil in order to properly solve the Barcelona harbour's hydrodynamics. A high resolution (< 50 m) three dimensional model able to prognostically calculate temperature and salinity evolution; full air-sea coupling is needed as well. The third step is to investigate the best operational strategy. We have found that small errors in the initial density profiles are acceptable for surface current forecasts but not for deep circulation. A cold start must be avoided and a 72 h spin-up is

  13. 21st Century Water Asset Accounting - Case Studies Report (WERF Report INFR6R12a)

    EPA Science Inventory

    America’s decaying water infrastructure presents significant financial and logistical challenges for water utilities. Green infrastructure has been gaining traction as a viable alternative and complement to traditional “grey” infrastructure for water management. Current accounti...

  14. Case-Control Study of Arsenic in Drinking Water and Kidney Cancer in Uniquely Exposed Northern Chile

    PubMed Central

    Ferreccio, Catterina; Smith, Allan H.; Durán, Viviana; Barlaro, Teresa; Benítez, Hugo; Valdés, Rodrigo; Aguirre, Juan José; Moore, Lee E.; Acevedo, Johanna; Vásquez, María Isabel; Pérez, Liliana; Yuan, Yan; Liaw, Jane; Cantor, Kenneth P.; Steinmaus, Craig

    2013-01-01

    Millions of people worldwide are exposed to arsenic in drinking water. The International Agency for Research on Cancer has concluded that ingested arsenic causes lung, bladder, and skin cancer. However, a similar conclusion was not made for kidney cancer because of a lack of research with individual data on exposure and dose-response. With its unusual geology, high exposures, and good information on past arsenic water concentrations, northern Chile is one of the best places in the world to investigate the carcinogenicity of arsenic. We performed a case-control study in 2007–2010 of 122 kidney cancer cases and 640 population-based controls with individual data on exposure and potential confounders. Cases included 76 renal cell, 24 transitional cell renal pelvis and ureter, and 22 other kidney cancers. For renal pelvis and ureter cancers, the adjusted odds ratios by average arsenic intakes of <400, 400–1,000, and >1,000 µg/day (median water concentrations of 60, 300, and 860 µg/L) were 1.00, 5.71 (95% confidence interval: 1.65, 19.82), and 11.09 (95% confidence interval: 3.60, 34.16) (Ptrend < 0.001), respectively. Odds ratios were not elevated for renal cell cancer. With these new findings, including evidence of dose-response, we believe there is now sufficient evidence in humans that drinking-water arsenic causes renal pelvis and ureter cancer. PMID:23764934

  15. Translating global climate model projections into usable information for water managers and industry: A case study from Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Ling, F.; Graham, B.; Grose, M.; Corney, S.; Holz, G.; White, C.; Gaynor, S.; Bindoff, N.

    2010-09-01

    differentiated. This is important for water managers, as it separates elements outside of their control (climate) from those under their control (e.g. irrigation). While changes in human water use are not considered in the Climate Futures for Tasmania study, Tasmanian water managers will be able to adapt the river systems models to quantify changes in water management policies. Finally, projections of runoff were adapted to run through the Hydro Tasmania Systems model Temsim. Temsim uses hydrological inputs in conjunction with projected power demand and energy prices to simulate the Hydro Tasmania power generation system. The Temsim runs translate CFT climate projections into metrics such as storage levels, power generation, and revenue - metrics that can inform the future operation of the Hydro Tasmania system. The result is climate information tailored to the needs of water managers and industry, ensuring the research will be understandable and useable. This paper presents the communication strategy implemented by Climate Futures for Tasmania, and provides a case study of how interaction with government and industry directed the technical research.

  16. Management of a water distribution network by coupling GIS and hydraulic modeling: a case study of Chetouane in Algeria

    NASA Astrophysics Data System (ADS)

    Abdelbaki, Chérifa; Benchaib, Mohamed Mouâd; Benziada, Salim; Mahmoudi, Hacène; Goosen, Mattheus

    2016-04-01

    For more effective management of water distribution network in an arid region, Mapinfo GIS (8.0) software was coupled with a hydraulic model (EPANET 2.0) and applied to a case study region, Chetouane, situated in the north-west of Algeria. The area is characterized not only by water scarcity but also by poor water management practices. The results showed that a combination of GIS and modeling permits network operators to better analyze malfunctions with a resulting more rapid response as well as facilitating in an improved understanding of the work performed on the network. The grouping of GIS and modeling as an operating tool allows managers to diagnosis a network, to study solutions of problems and to predict future situations. The later can assist them in making informed decisions to ensure an acceptable performance level for optimal network operation.

  17. Case studies of water supply in oceanic extratropical cyclones using an Eulerian-Lagrangian method

    NASA Astrophysics Data System (ADS)

    Liu, Gongbo

    An Eulerian-Lagrangian method has been developed to study the transport of water supply to precipitation in a rainstorm. Water mass in an air parcel is not conservative so the trajectory of the air parcel cannot describe the complete motion of the moisture. This method represents a rainstorm, a limited area of heavy precipitation in a three-hour period in a model, with several thousands air parcels. The water contributing to the rainstorm's precipitation from these parcels is tracked backward to recover its transport and its source regions. Exchange of moisture among these parcel by diffusion, convection and stable precipitation is computed. Water from surface evaporation that is ingested into parcels in the planetary boundary layer is computed. The moisture exchange between these parcels and other portions of the atmosphere is excluded from consideration. Water supply of two oceanic extratropical cyclones has been simulated. Fields of wind velocity, moisture and moisture sources/sinks are provided on the Eulerian grid using the Limited Area Mesoscale Prediction System for 90s (Kreitzberg and Perkey 1976, Cohen 1994). Simulations are performed over a period of 24 hours for one cyclone and 36 hours for the other. Seven rainstorms are selected during the life cycles of the two cyclones to represent different developing stages and different precipitation systems. Results show that about 80% of the water supply for identified precipitation can be tracked back 24 hours for some rainstorms and 36 hours for others. Tests on water budget computations show other errors are negligible. Transport tracks are established between rainstorm precipitation and the water source regions. They are roughly categorized as anticyclonic, cyclonic, sharp- turnings and complex motion patterns associated with horizontal origins and initial altitudes. Comparison of these tracks with the warm conveyor belt (Browning 1971, Harrold 1973) and the cold conveyor belt (Carlson 1980) conceptual

  18. Duripan effect on soil water availability: study case in North-Central Namibia

    NASA Astrophysics Data System (ADS)

    Prudat, Brice; Bloemertz, Lena; Kuhn, Nikolaus J.

    2016-04-01

    Soils with duripan and other hardpans are frequently disregarded for agriculture. However, in North-Central Namibia, farmers cultivate a type of sandy soil with a developing duripan at few decimetres of depth. This soil is particularly valuable for Pearl Millet cultivation during years with limited rainfall. Understanding the water dynamic and the role of the duripan in the soil moisture dynamic will improve livelihood and secure food production in North-Central Namibia, in Southern Angola and other areas in the world where similar soils appear. We recorded soil water content during five months at different depth in one of these sandy soil. The comparison of the recorded data with values calculated with models based on e.g. texture indicate that the duripan plays a very important role as water reservoir. Our results demonstrate that soils with duripans should not be disregarded for agricultural development, especially in context with irregular rainfall patterns. Understanding the role of duripans based on this study will thus help to anticipate and alleviate the effect of climate change in northern Namibia and other semi-arid regions, where similar soils occur.

  19. An uncertainty framework to estimate dense water formation rates : case study in the Northwestern Mediterranean.

    NASA Astrophysics Data System (ADS)

    Waldman, Robin; Somot, Samuel; Herrmann, Marine; Sevault, Florence; Estournel, Claude; Testor, Pierre

    2015-04-01

    The Northwestern Mediterranean (NWMed) sea is a key region for the Mediterranean thermohaline circulation as it includes the main deep water formation sites of the Western Mediterranean. The Mediterranean Ocean Observing System for the Environment (MOOSE) has been implemented since 2007 over that region to characterize the space and time variability of the main water masses up to interannual (yearly summer cruises) scale. However, despite a large covering of the NWMed region, the limited number of conductivity, temperature and depth (CTD) casts leads to subsampling errors and advocates for an uncertainty assessment of large-scale hydrology estimates. This study aims at estimating the error related to subsampling in time and space. For that purpose, an Observing System Simulation Experiment (OSSE) is performed with an eddy-permitting Mediterranean sea model (NEMOMED12) and an eddy-resolving NWMed sea model (SYMPHONIE). A subsampling of the full model fields in time and space allows for an error estimate in terms of large-scale hydrology. The methodology is applied to dense water volume estimates for the period july 2012 - july 2013. Secondly, an optimization framework is proposed to evaluate and improve MOOSE network's performances under a series of scientific constraints. The results will be discussed for an application in MOOSE observing network, as well as the main assumptions, the stakes and limitations of this framework.

  20. Managing Expectations: Results from Case Studies of US Water Utilities on Preparing for, Coping with, and Adapting to Extreme Events

    NASA Astrophysics Data System (ADS)

    Beller-Simms, N.; Metchis, K.

    2014-12-01

    Water utilities, reeling from increased impacts of successive extreme events such as floods, droughts, and derechos, are taking a more proactive role in preparing for future incursions. A recent study by Federal and water foundation investigators, reveals how six US water utilities and their regions prepared for, responded to, and coped with recent extreme weather and climate events and the lessons they are using to plan future adaptation and resilience activities. Two case studies will be highlighted. (1) Sonoma County, CA, has had alternating floods and severe droughts. In 2009, this area, home to competing water users, namely, agricultural crops, wineries, tourism, and fisheries faced a three-year drought, accompanied at the end by intense frosts. Competing uses of water threatened the grape harvest, endangered the fish industry and resulted in a series of regulations, and court cases. Five years later, new efforts by partners in the entire watershed have identified mutual opportunities for increased basin sustainability in the face of a changing climate. (2) Washington DC had a derecho in late June 2012, which curtailed water, communications, and power delivery during a record heat spell that impacted hundreds of thousands of residents and lasted over the height of the tourist-intensive July 4th holiday. Lessons from this event were applied three months later in anticipation of an approaching Superstorm Sandy. This study will help other communities in improving their resiliency in the face of future climate extremes. For example, this study revealed that (1) communities are planning with multiple types and occurrences of extreme events which are becoming more severe and frequent and are impacting communities that are expanding into more vulnerable areas and (2) decisions by one sector can not be made in a vacuum and require the scientific, sectoral and citizen communities to work towards sustainable solutions.

  1. Application of the environmental Gini coefficient in allocating water governance responsibilities: a case study in Taihu Lake Basin, China.

    PubMed

    Zhou, Shenbei; Du, Amin; Bai, Minghao

    2015-01-01

    The equitable allocation of water governance responsibilities is very important yet difficult to achieve, particularly for a basin which involves many stakeholders and policymakers. In this study, the environmental Gini coefficient model was applied to evaluate the inequality of water governance responsibility allocation, and an environmental Gini coefficient optimisation model was built to achieve an optimal adjustment. To illustrate the application of the environmental Gini coefficient, the heavily polluted transboundary Taihu Lake Basin in China, was chosen as a case study. The results show that the original environmental Gini coefficient of the chemical oxygen demand (COD) was greater than 0.2, indicating that the allocation of water governance responsibilities in Taihu Lake Basin was unequal. Of seven decision-making units, three were found to be inequality factors and were adjusted to reduce the water pollutant emissions and to increase the water governance inputs. After the adjustment, the environmental Gini coefficient of the COD was less than 0.2 and the reduction rate was 27.63%. The adjustment process provides clear guidance for policymakers to develop appropriate policies and improve the equality of water governance responsibility allocation. PMID:25860708

  2. Impacts of urbanisation on urban-rural water cycle: a China case study

    NASA Astrophysics Data System (ADS)

    Wang, Mingna; Singh, Shailesh Kumar; Zhang, Jun-e.; Khu, Soon Thiam

    2016-04-01

    Urbanization, which essentially create more impervious surface, is an inevitable part of modern societal development throughout the world. It produces several changes in the natural hydrological cycle by adding several processes. A better understanding of the impacts of urbanization, will allow policy makers to balance development and environment sustainability needs. It also helps underdeveloped countries make strategic decisions in their development process. The objective of this study is to understand and quantify the sensitivity of the urban-rural water cycle to urbanisation. A coupled hydrological model, MODCYCLE, was set up to simulate the effect of changes in landuse on daily streamflow and groundwater and applied to the Tianjin municipality, a rapidly urbanising mega-city on the east coast of China. The model uses landuse, land cover, soil, meteorological and climatic data to represent important parameters in the catchment. The fraction of impervious surface was used as a surrogate to quantify the degree of landuse change. In this work, we analysed the water cycle process under current urbanization situation in Tianjin. A number of different future development scenarios on based on increasing urbanisation intensity is explored. The results show that the expansion of urban areas had a great influence on generation of flow process and on ET, and the surface runoff was most sensitive to urbanisation. The results of these scenarios-based study about future urbanisation on hydrological system will help planners and managers in taking proper decisions regarding sustainable development.

  3. Water Resources Risks and the Climate Resilience Toolkit: Tools, Case Studies, and Partnerships

    NASA Astrophysics Data System (ADS)

    Read, E. K.; Blodgett, D. L.; Booth, N.

    2014-12-01

    The Water Resources Risk topic of the Climate Resilience Toolkit (CRT) is designed to provide decision support, technical, and educational resources to communities, water resource managers, policy analysts, and water utilities working to increase the resilience of water resources to climate change. We highlight the partnerships (between federal and state agencies, non-governmental organizations, and private partners), tools (e.g., downscaled climate products, historical and real-time water data, and decision support) and success stories that are informing the CRT Water Resources Risks Theme content, and identify remaining needs in available resources for building resilience of water resources to climate change. The following questions will frame the content of the Water Resources Risk CRT: How are human and natural components of the hydrologic cycle changing? How can communities and water managers plan for uncertain future conditions? How will changing water resources impact food production, energy resources, ecosystems, and human health? What water resources data are of high value to society and are they easily accessible? Input on existing tools, resources, or potential partnerships that could be used to further develop content and fill gaps in the Water Resources CRT is welcome. We also invite ideas for water resources 'innovation challenges', in which technology developers work to create tools to that enhance the capacity of communities and managers to increase resilience of water resources at the local and regional scales.

  4. Uncertainty analysis of a spatially-explicit annual water-balance model: case study of the Cape Fear catchment, NC

    NASA Astrophysics Data System (ADS)

    Hamel, P.; Guswa, A. J.

    2014-10-01

    There is an increasing demand for assessment of water provisioning ecosystem services. While simple models with low data and expertise requirements are attractive, their use as decision-aid tools should be supported by uncertainty characterization. We assessed the performance of the InVEST annual water yield model, a popular tool for ecosystem service assessment based on the Budyko framework. Our study involved the comparison of ten subcatchments in the Cape Fear watershed, NC, ranging in size and land use configuration. We analyzed the model sensitivity to the eco-hydrological parameters and the effect of extrapolating a lumped theory to a fully distributed model. Comparison of the model predictions with observations and with a lumped water balance model confirmed that the model is able to represent differences in land uses. Our results also emphasize the effect of climate input errors, especially annual precipitation, and errors in the eco-hydrological parameter Z, which are both comparable to the model structure uncertainties. In practice, our case study supports the use of the model for predicting land use change effect on water provisioning, although its use for identifying areas of high water yield will be influenced by precipitation errors. While the results are inherently local, analysis of the model structure suggests that many insights from this study will hold globally. Further work toward characterization of uncertainties in such simple models will help identify the regions and decision contexts where the model predictions may be used with confidence.

  5. Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina

    NASA Astrophysics Data System (ADS)

    Hamel, P.; Guswa, A. J.

    2015-02-01

    There is an increasing demand for assessment of water provisioning ecosystem services. While simple models with low data and expertise requirements are attractive, their use as decision-aid tools should be supported by uncertainty characterization. We assessed the performance of the InVEST annual water yield model, a popular tool for ecosystem service assessment based on the Budyko hydrological framework. Our study involved the comparison of 10 subcatchments ranging in size and land-use configuration, in the Cape Fear basin, North Carolina. We analyzed the model sensitivity to climate variables and input parameters, and the structural error associated with the use of the Budyko framework, a lumped (catchment-scale) model theory, in a spatially explicit way. Comparison of model predictions with observations and with the lumped model predictions confirmed that the InVEST model is able to represent differences in land uses and therefore in the spatial distribution of water provisioning services. Our results emphasize the effect of climate input errors, especially annual precipitation, and errors in the ecohydrological parameter Z, which are both comparable to the model structure uncertainties. Our case study supports the use of the model for predicting land-use change effect on water provisioning, although its use for identifying areas of high water yield will be influenced by precipitation errors. While some results are context-specific, our study provides general insights and methods to help identify the regions and decision contexts where the model predictions may be used with confidence.

  6. Assessing the Consistency and Microbiological Effectiveness of Household Water Treatment Practices by Urban and Rural Populations Claiming to Treat Their Water at Home: A Case Study in Peru

    PubMed Central

    Rosa, Ghislaine; Huaylinos, Maria L.; Gil, Ana; Lanata, Claudio; Clasen, Thomas

    2014-01-01

    Background Household water treatment (HWT) can improve drinking water quality and prevent disease if used correctly and consistently by vulnerable populations. Over 1.1 billion people report treating their water prior to drinking it. These estimates, however, are based on responses to household surveys that may exaggerate the consistency and microbiological performance of the practice—key factors for reducing pathogen exposure and achieving health benefits. The objective of this study was to examine how HWT practices are actually performed by households identified as HWT users, according to international monitoring standards. Methods and Findings We conducted a 6-month case study in urban (n = 117 households) and rural (n = 115 households) Peru, a country in which 82.8% of households report treating their water at home. We used direct observation, in-depth interviews, surveys, spot-checks, and water sampling to assess water treatment practices among households that claimed to treat their drinking water at home. While consistency of reported practices was high in both urban (94.8%) and rural (85.3%) settings, availability of treated water (based on self-report) at time of collection was low, with 67.1% and 23.0% of urban and rural households having treated water at all three sampling visits. Self-reported consumption of untreated water in the home among adults and children <5 was common and this was corroborated during home observations. Drinking water of self-reported users was significantly better than source water in the urban setting and negligible but significantly better in the rural setting. However, only 46.3% and 31.6% of households had drinking water <1 CFU/100 mL at all follow-up visits. Conclusions Our results raise questions about the usefulness of current international monitoring of HWT practices and their usefulness as a proxy indicator for drinking water quality. The lack of consistency and sub-optimal microbiological effectiveness also

  7. Integrated water and renewable energy management: the Acheloos-Peneios region case study

    NASA Astrophysics Data System (ADS)

    Koukouvinos, Antonios; Nikolopoulos, Dionysis; Efstratiadis, Andreas; Tegos, Aristotelis; Rozos, Evangelos; Papalexiou, Simon-Michael; Dimitriadis, Panayiotis; Markonis, Yiannis; Kossieris, Panayiotis; Tyralis, Christos; Karakatsanis, Georgios; Tzouka, Katerina; Christofides, Antonis; Karavokiros, George; Siskos, Alexandros; Mamassis, Nikos; Koutsoyiannis, Demetris

    2015-04-01

    Within the ongoing research project "Combined Renewable Systems for Sustainable Energy Development" (CRESSENDO), we have developed a novel stochastic simulation framework for optimal planning and management of large-scale hybrid renewable energy systems, in which hydropower plays the dominant role. The methodology and associated computer tools are tested in two major adjacent river basins in Greece (Acheloos, Peneios) extending over 15 500 km2 (12% of Greek territory). River Acheloos is characterized by very high runoff and holds ~40% of the installed hydropower capacity of Greece. On the other hand, the Thessaly plain drained by Peneios - a key agricultural region for the national economy - usually suffers from water scarcity and systematic environmental degradation. The two basins are interconnected through diversion projects, existing and planned, thus formulating a unique large-scale hydrosystem whose future has been the subject of a great controversy. The study area is viewed as a hypothetically closed, energy-autonomous, system, in order to evaluate the perspectives for sustainable development of its water and energy resources. In this context we seek an efficient configuration of the necessary hydraulic and renewable energy projects through integrated modelling of the water and energy balance. We investigate several scenarios of energy demand for domestic, industrial and agricultural use, assuming that part of the demand is fulfilled via wind and solar energy, while the excess or deficit of energy is regulated through large hydroelectric works that are equipped with pumping storage facilities. The overall goal is to examine under which conditions a fully renewable energy system can be technically and economically viable for such large spatial scale.

  8. Wind energy applications for municipal water services: Opportunities, situational analyses, and case studies

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.

  9. Building Rain Water Tanks and Building Skills: A Case Study of a Women's Organization in Uganda

    ERIC Educational Resources Information Center

    Payne, Deborah; Nakato, Margaret; Nabalango, Caroline

    2008-01-01

    Water collection in rural areas of Uganda is left primarily to women and children. Katosi Women Development Trust, an NGO based in rural Uganda has focused on addressing the gender-linked issue of increased water sources near the home through the construction of rain water collection tanks. In an effort to improve the income of members as well as…

  10. Food- and water-borne disease: using case control studies to estimate the force of infection that accounts for primary, sporadic cases.

    PubMed

    Smith, G

    2013-06-01

    Disease models which take explicit account of heterogeneities in the risk of infection offer significant advantages over models in which the risk of infection is assumed to be uniform across all hosts. However, estimating the incidence rate (force of infection) in the different at-risk (exposure) groups is no easy matter. Classically, epidemiologists differentiate groups of hosts with different infection-risks according to their exposure to putative explanatory risk factors. The importance of these risk factors is assessed by case-control studies, in which the measure of effect (the difference in disease occurrence between one population and another) is the odds ratio. This paper describes for the first time how - and under what circumstances - the incidence in these different exposure groups can be estimated from odds ratios derived from case control studies in which controls have been selected by density sampling. This new estimation technique can be applied to any transmission modality but is especially useful in the case of models of food- and water-borne disease for which the case control literature represents a vast and, as yet, untapped resource. The paper finishes with a worked example using one of the most common of all food- and water-borne pathogens, Toxoplasma gondii. PMID:23746800

  11. Case Study: Testing with Case Studies

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman

    2015-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue discusses using case studies to test for knowledge or lessons learned.

  12. Shallow water radio-magnetotelluric (RMT) measurements in urban environment: A case study from Stockholm city

    NASA Astrophysics Data System (ADS)

    Mehta, Suman; Bastani, Mehrdad; Malehmir, Alireza; Wang, Shunguo; Pedersen, Laust

    2014-05-01

    The Radio-MagnetoTelluric (RMT) method uses the electromagnetic signal from distant radio transmitters in the frequency range 15 to 250 kHz. RMT applications in near-surface studies have already been well established. Two components of electric field and three components of magnetic field are measured. These measured components are related to each other via transfer functions which contain detailed information about the variation of electrical resistivity of the subsurface. The present study is carried out in the frame of TRUST (TRansparent Underground STructure) project supported by several research and public organizations as well as industry. The study area is located close to central Stockholm in Sweden where the Swedish traffic authority has planned to construct a 21-km long motorway to bypass the city. In order to reduce the impact on natural and cultural environments, 18 km of the motorway will be located in tunnels. The main objective of this study is thus to identify potential fracture zones and faults as well as the general geological settings. The proposed path of the tunnel partly passes under the Lake Mälaren at a depth of about 60 m. Thus a challenge was posed on the applicability of RMT method in shallow water environments. Successful applications of RMT measurements using the Uppsala University's EnviroMT system on land encouraged us to modify the system to acquire data over lake water especially in urban areas. Pioneered by the Geological Survey of Sweden (SGU), RMT data were collected over the Lake Mälaren in spring 2012. The prototype acquisition system did not only turn out to be appropriate for such a challenging environment, but it was also much more efficient as compared with land surveys. Fifty two lines including 1160 stations with an average spacing of 15 m were covered in three days. Cultural noise associated with the city-related environment had to be identified and filtered out before inversion could be carried out. Reliable estimates

  13. HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production--a case study.

    PubMed

    Dewettinck, T; Van Houtte, E; Geenens, D; Van Hege, K; Verstraete, W

    2001-01-01

    To obtain a sustainable water catchment in the dune area of the Flemish west coast, the integration of treated domestic wastewater in the existing potable water production process is planned. The hygienic hazards associated with the introduction of treated domestic wastewater into the water cycle are well recognised. Therefore, the concept of HACCP (Hazard Analysis and Critical Control Points) was used to guarantee hygienically safe drinking water production. Taking into account the literature data on the removal efficiencies of the proposed advanced treatment steps with regard to enteric viruses and protozoa and after setting high quality limits based on the recent progress in quantitative risk assessment, the critical control points (CCPs) and points of attention (POAs) were identified. Based on the HACCP analysis a specific monitoring strategy was developed which focused on the control of these CCPs and POAs. PMID:11464766

  14. Consumptive water use associated with food waste: case study of fresh mango in Australia

    NASA Astrophysics Data System (ADS)

    Ridoutt, B. G.; Juliano, P.; Sanguansri, P.; Sellahewa, J.

    2009-07-01

    In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44 692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg-1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of one kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg-1, which is the volume of direct water use by an Australian household having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.

  15. Economic feasibility study for improving drinking water quality: a case study of arsenic contamination in rural Argentina.

    PubMed

    Molinos-Senante, María; Perez Carrera, Alejo; Hernández-Sancho, Francesc; Fernández-Cirelli, Alicia; Sala-Garrido, Ramón

    2014-12-01

    Economic studies are essential in evaluating the potential external investment support and/or internal tariffs available to improve drinking water quality. Cost-benefit analysis (CBA) is a useful tool to assess the economic feasibility of such interventions, i.e. to take some form of action to improve the drinking water quality. CBA should involve the market and non-market effects associated with the intervention. An economic framework was proposed in this study, which estimated the health avoided costs and the environmental benefits for the net present value of reducing the pollutant concentrations in drinking water. We conducted an empirical application to assess the economic feasibility of removing arsenic from water in a rural area of Argentina. Four small-scale methods were evaluated in our study. The results indicated that the inclusion of non-market benefits was integral to supporting investment projects. In addition, the application of the proposed framework will provide water authorities with more complete information for the decision-making process. PMID:24925717

  16. A review of potable water accessibility and sustainability issues in developing countries - case study of Uganda.

    PubMed

    Nayebare, Shedrack R; Wilson, Lloyd R; Carpenter, David O; Dziewulski, David M; Kannan, Kurunthachalam

    2014-01-01

    Providing sources of sustainable and quality potable water in Uganda is a significant public health issue. This project aimed at identifying and prioritizing possible actions on how sustainable high quality potable water in Uganda's water supply systems could be achieved. In that respect, a review of both the current water supply systems and government programs on drinking water in Uganda was completed. Aspects of quantity, quality, treatment methods, infrastructure, storage and distribution of water for different water systems were evaluated and compared with the existing water supply systems in the U.S., Latin America and the Caribbean, for purposes of generating feasible recommendations and opportunities for improvement. Uganda utilizes surface water, groundwater, and rainwater sources for consumption. Surface water covers 15.4% of the land area and serves both urban and rural populations. Lake Victoria contributes about 85% of the total fresh surface water. Potable water quality is negatively affected by the following factors: disposal of sewage and industrial effluents, agricultural pesticides and fertilizers, and surface run-offs during heavy rains. The total renewable groundwater resources in Uganda are estimated to be 29 million m3/year with about 20,000 boreholes, 3000 shallow-wells and 200,000 springs, serving more than 80% of the rural and slum communities. Mean annual rainfall in Uganda ranges from 500 mm to 2500 mm. Groundwater and rainwater quality is mainly affected by poor sanitation and unhygienic practices. There are significant regional variations in the accessibility of potable water, with the Northeastern region having the least amount of potable water from all sources. Uganda still lags behind in potable water resource development. Priorities should be placed mainly on measures available for improvement of groundwater and rainwater resource utilization, protection of watersheds, health education, improved water treatment methods and

  17. Towards Automated Ecosystem-based Management: A case study of Northern Gulf of Mexico Water

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Lary, D. J.; Allee, R.; Gould, R.; Ko, D.

    2012-12-01

    The vast and dynamic nature of large systems limit the feasibility of the frequent in situ sampling needed to establish a robust long-term database. Satellite remote sensing offers an alternative to in situ sampling and is possibly the best solution to address the data collection needs at a regional scale. In this context, we have used an unsupervised machine learning (ML) technique, called a self-organizing map (SOM), to objectively provide a classification of the US Gulf of Mexico water using a suite of ocean data products. The input data that we used in this study were the sea surface temperature, the surface chlorophyll concentration, the sea surface salinity, the euphotic depth and the temperature difference between the sea surface and the sea floor. The SOM method uses the multivariate signature of the data records to classify the data into a specified number of classes. The output of the analysis is essentially a comprehensive two-dimensional map of the Gulf of Mexico. We analyzed the individual SOM classes over a five-year period from 2005 to 2009. We then used the machine learning results to established a correspondence between the SOM classification and the completely independent Coastal and Marine Ecological Classification Standard (CMECS), which accommodates the physical, biological, and chemical information to collectively characterize marine and coastal ecosystems. The CMECS water column component information is then fused with fish count data from the Southeast Area Monitoring and Assessment Program (SEAMAP) to produce an interactive map. The results can be used in providing online decision-support system, and tools for Ecosystem-based management.Figures shows the fish count distribution with respect to the SOM classes. The fish preference can be inferred from the plot. This information can be used to construct an online decision-support system for conservation as well as commercial purposes.

  18. A methodology to determine pesticides pollution sources in water catchments: study case (Belgium).

    PubMed

    Limbourg, Q; Noel, S; Huyghebaert, B; Capette, L; Hallet, V

    2009-01-01

    In the Walloon Region (Belgium), a Committee of Investigation was created in 2007 to investigate and determine the potential pesticides pollution sources in drinkable water catchments. This Committee, constituted by a multidisciplinary team of experts i.e agronomists, soil scientists, phyto-chemists, hydrogeologists, is coordinated by the Walloon Agricultural Research Centre (CRA-W) and funded by the Société Publique de Gestion des Eaux (SPGE). The diagnosis method is inspired of the AQUAPLAINE method (Arvalis, France), and is composed of four steps: 1/preparing the diagnosis using existing data, 2/diagnosis using data bank completed by field observations, 3/meeting and discussion with the pesticide users, 4/final diagnosis and remediation proposal. In a rural district of Walloon Region, a water producer who possesses two catchments ("Les marroniers" (P1) and "Puits N2" (P2)) has problems with pesticides. The pollution started in 1998 with atrazine and bromacile detected in the two catchments. In 2004, 2,6-dichlorobenzamide, metabolite of dichlobenil, was also detected in the catchments. At present, all these pesticides are still found in the catchment P1 and only the 2,6 dichlorobenzamide is found in the other catchment. These active ingredients are not used in agriculture expect atrazine. Indeed, the main user of these products is the public sector. An investigation was realised to locate the main sites which are treated with these pesticides in this commune. The conclusion of this study is that the local authority used dichlobenil, bromacile and atrazine to weed the public areas. In more, the filling and the cleaning areas of sprayer, used for the treatment, are located near the catchments. PMID:20218526

  19. Environmental control on water quality; cases studies from Battle Mountain mining district, north-central Nevada. Chapter A.

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Wanty, Richard B.; Berger, Byron R.; Stillings, Lisa L.

    2003-01-01

    The environmental controls on water quality were the focus of our study in a portion of the Battle Mountain mining district, north-central Nevada. Samples representing areas outside known mineralized areas, in undisturbed mineralized areas, and in mined areas were chemically and isotopically analyzed. The results are related to geologic, hydrologic, and climatic data. Streams in background areas outside the mineralized zones reflect normal weathering of volcanically derived rocks. The waters are generally dilute, slightly alkaline in pH, and very low in metals. As these streams flow into mineralized zones, their character changes. In undisturbed mineralized areas, discharge into streams of ground water through hydrologically conductive fractures can be traced with chemistry and, even more effectively, with sulfur isotopic composition of dissolved sulfate. Generally, these tracers are much more subtle than in those areas where mining has produced adits and mine-waste piles. The influence of drainage from these mining relicts on water quality is often dramatic, especially in unusually wet conditions. In one heavily mined area, we were able to show that the unusually wet weather in the winter and spring greatly degraded water quality. Addition of calcite to the acid, metalrich mine drainage raised the stream pH and nearly quantitatively removed the metals through coprecipitation and (or) adsorption onto oxyhydroxides. This paper is divided into four case studies used to demonstrate our results. Each addresses the role of geology, hydrology, mining activity and (or) local climate on water quality. Collectively, they provide a comprehensive look at the important factors affecting water quality in this portion of the Battle Mountain mining district.

  20. Short communication: The water footprint of dairy products: case study involving skim milk powder.

    PubMed

    Ridoutt, B G; Williams, S R O; Baud, S; Fraval, S; Marks, N

    2010-11-01

    In the context of global water scarcity and food security concerns, water footprints are emerging as an important sustainability indicator in the agriculture and food sectors. Using a recently developed life cycle assessment-based methodology that takes into account local water stress where operations occur, the normalized water footprints of milk products from South Gippsland, one of Australia's major dairy regions, were 14.4 L/kg of total milk solids in whole milk (at farm gate) and 15.8 L/kg of total milk solids in skim milk powder (delivered to export destination). These results demonstrate that dairy products can be produced with minimal potential to contribute to freshwater scarcity. However, not all dairy production systems are alike and the variability in water footprints between systems and products should be explored to obtain strategic insights that will enable the dairy sector to minimize its burden on freshwater systems from consumptive water use. PMID:20965326

  1. The pros and cons of trading water: A case study in Australia

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-11-01

    Water is a commodity, and water rights can be freely traded in an open market. Proponents of the free market approach argue that it leads to the most efficient allocation of water resources, as it would for any other commodity. However, unlike some commodities, water is critical for human life, for many human activities, and as an environmental resource. When such an essential commodity becomes scarce, as frequently happens in Australia, which is prone to sudden and dramatic droughts, severe problems can occur quickly. In Australia's Murray Darling Basin, the country's largest agricultural region, the government had historically controlled the distribution of water rights. However, under these controls, a selected few controlled a large share of the water. To resolve this problem of overallocation, a free market approach was put in place in the early 1990s.

  2. Water stress, energy security and adaptation under changing climate: case study of Zeravshan river

    NASA Astrophysics Data System (ADS)

    Khujanazarov, T.; Namura, R.; Touge, Y.; Tanaka, K.; Toderich, K.

    2014-12-01

    Zeravshan a transboundary river in Central Asia is a snow-glacier fed river originating in Tajikistan that use only 4% of its resources, further flows to Uzbekistan who fully utilize river resources for irrigation. Such disparity in river usage causes Tajikistan to consider heavy investments in hydropower dams that will increase social and political tension between counterparts. Traditional irrigation under arid climate causes high rates of water losses in infiltration and evapotranspiration leading to land. Water stress analysis and water resources distribution under climate change and possible adaptation measures were investigated. The framework includes model to analyze available water resources and assessment of the basin efficiency including dam operation and irrigation demand, based on it adaptation measures were suggested. Comparison of the increasing irrigation efficiency in downstream to the 10% rate can decrease water requirements on early stages, however there are still large deficiency of the water resources in the peak irrigation season. Dam operation to benefit irrigation has positive impact while can't compensate the needs of energy in winter months. Cooperation of the both sides are required to address such changes in river flow as interest lies on opposite side. Increasing irrigation efficiency through using return marginal waters and salt tolerant crops under water stress were suggested. The plants were tested on several sites in the downstream of the river using mineralized return waters. The results suggest that using such plants can provide additional outcome for the local community while decreasing demand of the water resources and improving soil conditions. Combination of dam operation for energy production and increasing irrigation efficiency additionally by using return waters can provide a beneficial scenario for the region under future climate change. However, it will require strong political will to address energy swap to achieve nexus

  3. Integrated water resources management and water users' associations in the arid region of northwest China: a case study of farmers' perceptions.

    PubMed

    Hu, Xiao-Jun; Xiong, You-Cai; Li, Yong-Jin; Wang, Jian-Xin; Li, Feng-Min; Wang, Hai-Yang; Li, Lan-Lan

    2014-12-01

    Water scarcity is a critical policy issue in the arid regions of northwest China. The local government has widely adopted integrated water resources management (IWRM), but lacks support from farmers and farm communities. We undertook a case study in the Minqin oasis of northwest China to examine farmers' responses to IWRM and understand why farmer water users' associations (WUAs) are not functioning effectively at the community level. Results of quantitative and qualitative surveys of 392 farmers in 27 administrative villages showed that over 70% of farmers disapprove of the IWRM market-based reforms. In particular, the failure of farmer WUAs can be attributed to overlapping organizational structures between the WUAs and the villagers' committees; mismatches between the organizational scale of the WUAs and practical irrigation management by the farmers themselves; marginalization of rural women in water decision-making processes; and the inflexibility of IWRM implementation. An important policy implication from this study is that rebuilding farmer WUAs is key to overcoming the difficulties of IWRM. The current water governance structure, which is dominated by administrative systems, must be thoroughly reviewed to break the vicious cycle of tension and distrust between farmers and the government. PMID:25026372

  4. Impact of storm water runoff on efficiency of the effluent treatment plant - a case study

    SciTech Connect

    Suresh, I.V.; Murthy, M.V.R.L.; Sanghi, S.K.; Yadava, R.N.; Wanganeo, A.

    1996-04-01

    This paper evaluates the impact of storm water runoff on an existing sewage treatment plant situated in an industrial township. Significant dilution effect is observed during the monsoon period (June-September) in the influent and effluent characteristics of sewage. The estimated excess runoff water during these months is mainly due to the rainfall in the region and due to the absence of proper control or design for the collection of storm water, thereby avoiding the discharge of the storm water into the treatment plant. This has resulted in the reduction of BOD, COD, total nitrogen and total phosphorus, thus decreasing the efficiency of gas generation. 7 refs., 5 figs., 5 tabs.

  5. Hydrochemical assessment of water quality for irrigation: a case study of the Medjerda River in Tunisia

    NASA Astrophysics Data System (ADS)

    Etteieb, Selma; Cherif, Semia; Tarhouni, Jamila

    2015-02-01

    In order to characterize, classify and evaluate the suitability of Medjerda River water for irrigation, a hydrochemical assessment was conducted. It accounts for 80 % of the total Tunisian surface water. In this paper, hydrographical methods and PHREEQC geochemical program were used to characterize water quality of Medjerda River, whereas its suitability for irrigation was determined in accordance with its electrical conductivity (EC), sodium adsorption ratio (SAR) and sodium concentrations. It was established that the water samples were undersaturated with calcite, dolomite, aragonite, anhydrite, gypsum and halite except in one water sample which is supersaturated with carbonate minerals. The quality assessment of Medjerda River for irrigation purposes showed that some points belonged to the excellent-to-good and good-to-permissible irrigation water categories, while the remaining ones were classified as doubtful to unsuitable for irrigation making the river water use limited to plants with high salt tolerance. Moreover, based on FAO guidelines, almost all water samples may cause immediate salinity to gradual increasing problem but no soil infiltration problems except for two sampling points. However, immediate development or possible increasing of severe toxicity problems may be caused by the continuous use of this water for irrigation due to troublesome concentrations of chloride and sodium.

  6. Automated ground-water monitoring with Robowell: case studies and potential applications

    NASA Astrophysics Data System (ADS)

    Granato, Gregory E.; Smith, Kirk P.

    2002-02-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/

  7. Automated ground-water monitoring with robowell-Case studies and potential applications

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.

    2001-01-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.

  8. Technology Case Studies: Retrofit Integrated Space and Water Heating - Field Assessment

    SciTech Connect

    2014-05-01

    Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  9. Scenario-based decision making in water resource management: A case study in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Dong, Congli; Schoups, Gerrit; van de Giesen, Nick

    2013-04-01

    Decision making in water resource management encounters difficulties due to uncertainties about the future. Scenarios are useful to explore uncertainties and inform decision makers to take actions. Scenarios are originally used to describe the future states in the form of storylines. These are then supplemented with numerical information from model predictions and expert judgement. Probabilities are attached to scenarios to encourage the specific explanation of the assumptions and expectations behind the storylines, and communicate the possibility of each scenario. Bayesian probability offers a prior probability on the basis of available knowledge and beliefs at the presence of uncertainties, and allows for updating to the posterior probability as new evidence arises. Bayesian rules are also applicable for decision making given the existing probabilistic scenarios. Decisions can be ranked according to their performance on the utility function given each possible scenario. A case study is provided to find an optimal solution to alleviate the water stress problem in the Yellow River Delta for the next 30 years. Scenarios of water availability and water demand are developed for the planning period. In order to make decisions rationally, cost-benefit analysis is used to evaluate the performance of viable decisions given the probabilistic scenarios. Key word: Scenarios, Water Management, Uncertainty, Decision making, Bayesian approach

  10. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    PubMed

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. PMID:26028558

  11. Shutdown Decay Heat Removal analysis of a Westinghouse 3-loop pressurized water reactor: Case study

    SciTech Connect

    Sanders, G.A.; Ericson, D.M. Jr.; Cramond, W.R.

    1987-03-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Westinghouse 3-loop PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed.

  12. Shutdown decay heat removal analysis of a Babcock and Wilcox pressurized water reactor: Case study

    SciTech Connect

    Cramond, W.R.; Ericson, D.M. Jr.; Sanders, G.A.

    1987-03-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Babcock and Wilcox PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed.

  13. Shutdown decay heat removal analysis of a Combustion Engineering 2-loop pressurized water reactor: Case study

    SciTech Connect

    Cramond, W.R.; Ericson, D.M. Jr.; Sanders, G.A.

    1987-08-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Combustion Engineering 2-loop PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed.

  14. Shutdown decay heat removal analysis of a Westinghouse 2-loop pressurized water reactor: Case study

    SciTech Connect

    Cramond, W.R.; Ericson, D.M. Jr.; Sanders, G.A.

    1987-03-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Westinghouse 2-loop PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed.

  15. ACCURACY OF PROJECT-WIDE WATER USES FROM A WATER BALANCE: A CASE STUDY FROM SOUTHERN CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed water balance was conducted on the Imperial Valley in southern California for the years 1987 to 1996. The area included all lands within the boundaries defined, including farms, towns, road, etc. This analysis included surface and subsurface inflows, rainfall, surface and subsurface outfl...

  16. EPA Method 544: A Case Study in USEPA Drinking Water Method Develpment

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act required the U.S. Environmental Protection Agency (USEPA) to establish a Drinking Water Contaminant Candidate List (CCL) of chemicals and microbes that the Agency will consider for future regulation. One of the key pieces of info...

  17. Simulation Of Mine Water Inflow: Case Study Of The Štavalj Coal Mine (Southwestern Serbia)

    NASA Astrophysics Data System (ADS)

    Miladinović, Branko; Vakanjac, Vesna Ristić; Bukumirović, Dragomir; Dragišić, Veselin; Vakanjac, Boris

    2015-12-01

    The inflow of mine water to mining operations is often caused by random events such as precipitation. Consequently, the mine water inflow regime can be defined as a function of random events applying the theory of random processes. Regression models of the multiple linear correlation type have been used to simulate the inflow of mine water into mining operations, produce short-range predictions and facilitate rapid response inside the mine. The significance of such models lies in the ability to simulate and predict the consequences (mine water inflow), caused by events of a random nature (meteorological parameters: precipitation and air temperature). The presented prognostic models have been calibrated for mine water inflow to the Štavalj Coal Mine in southwestern Serbia. Mathematical dependencies were defined based on daily mine water inflow rates recorded during the period from 2003 to 2011, which can be used to generate short-range (1-7 day) predictions of mean daily mine water inflow rates to the Štavalj Coal Mine. A strong correlation (coefficient of correlation r = 0.93, Sig. = 0.00) was derived for the one-day forecast. The coefficients of correlation for predictions of mean daily mine water inflow rates related to time periods of two, three...seven days gradually declined to 0.63 (7-day mean daily inflow rate).

  18. Water management in a hyperinflationary environment: Case study of Nkayi district in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mazango, Nyasha B. M.; Munjeri, Cephas

    This paper discusses the management of local drinking water supplies in Nkayi, a poor rural district in Zimbabwe. The government policy of rural development has evolved a national sector strategy for water and sanitation, implemented through an Integrated Rural Water Supply and Sanitation (IRWSS) programme 1987-2000, with largely donor funding. One aspect of the programme has seen the construction and upgrading of communally-owned boreholes and deep-wells in villages to allow continuous access to sufficient and safe drinking water within a reasonable walking distance. However, due to dwindling state resources and budgetary constraints, since the 1990s, government has been decentralising service provision to local communities’ including water supply. This paper reveals how eight villages in Nkayi have qualitatively managed to innovatively sustain reliable water supply to continue to meet domestic demand despite the challenges of acute water shortages and the burden of rising maintenance costs due to hyperinflation. Despite an unfavourable economic environment, a unique cost-sharing and resource mobilization process by the community, Nkayi has ensured that 87 per cent of water points remain functional.

  19. Assessing Extension Program Impact: Case Study of a Water Quality Program.

    ERIC Educational Resources Information Center

    Bauder, J. W.

    1993-01-01

    Montana State University conducted a voluntary, private well water test program (n=3400) to direct public attention to water quality education. Eighty-four percent of the respondents to an impact assessment questionnaire indicated that the program was moderately to very effective. Other results involved user awareness and understanding, and…

  20. Water pollutant fingerprinting tracks recent industrial transfer from coastal to inland China: A case study

    PubMed Central

    Zheng, Weiwei; Wang, Xia; Tian, Dajun; Jiang, Songhui; Andersen, Melvin E.; He, Genhsjeng; Crabbe, M. James C.; Zheng, Yuxin; Zhong, Yang; Qu, Weidong

    2013-01-01

    In recent years, China’s developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. We have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. Our results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer. PMID:23301152

  1. Water pollutant fingerprinting tracks recent industrial transfer from coastal to inland China: A case study

    NASA Astrophysics Data System (ADS)

    Zheng, Weiwei; Wang, Xia; Tian, Dajun; Jiang, Songhui; Andersen, Melvin E.; He, Genhsjeng; Crabbe, M. James C.; Zheng, Yuxin; Zhong, Yang; Qu, Weidong

    2013-01-01

    In recent years, China's developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. We have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. Our results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer.

  2. Participatory geographic information systems for agricultural water management scenario development: A Tanzanian case study

    NASA Astrophysics Data System (ADS)

    Cinderby, Steve; Bruin, Annemarieke de; Mbilinyi, Boniface; Kongo, Victor; Barron, Jennie

    One of the keys to environmental management is to understand the impact and interaction of people with natural resources as a means to improve human welfare and the consequent environmental sustainability for future generations. In terms of water management one of the on-going challenges is to assess what impact interventions in agriculture, and in particularly different irrigation strategies, will have on livelihoods and water resources in the landscape. Whilst global and national policy provide the overall vision of desired outcomes for environmental management, agricultural development and water use strategies they are often presented with local challenges to embed these policies in the reality on the ground, with different stakeholder groups. The concept that government agencies, advocacy organizations, and private citizens should work together to identify mutually acceptable solutions to environmental and water resource issues is increasing in prominence. Participatory spatial engagement techniques linked to geographic information systems (commonly termed participatory GIS (PGIS)) offers one solution to facilitate such stakeholder dialogues in an efficient and consultative manner. In the context of agricultural water management multi-scale PGIS techniques have recently been piloted as part of the ‘Agricultural Water Management Solutions’ project to investigate the current use and dependencies of water by small-holder farmers a watershed in Tanzania. The piloted approach then developed PGIS scenarios describing the effects on livelihoods and water resources in the watershed when introducing different management technologies. These relatively rapid PGIS multi-scale methods show promise for assessing current and possible future agriculture water management technologies in terms of their bio-physical and socio-economic impacts at the watershed scale. The paper discusses the development of the methodology in the context of improved water management decision

  3. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    NASA Astrophysics Data System (ADS)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    water where it is a scarce resource. Linkage of water & Energy to the land has been established through irrigated agriculture which has seen an increasing trend in the case study area. A detail scenario planning for regional water-energy demand and supply in conjunction with different climate change and economic growth scenarios are considered. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, environmental etc.). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial transformation and the management of uncertainty by means of comparisons at a qualitative level in terms of the decision maker preferences. Result shows that such an integrated ("nexus") approach is likely to build resilience and reduces vulnerability to the combination of pressures acting upon the Mediterranean region's water systems, including climate-related shocks.

  4. D Documentation of a Historical Monument Using Terrestrial Laser Scanning Case Study: Byzantine Water Cistern, Istanbul

    NASA Astrophysics Data System (ADS)

    Temizer, T.; Nemli, G.; Ekizce, E.; Ekizce, A.; Demir, S.; Bayram, B.; Askin, F. H.; Cobanoglu, A. V.; Yilmaz, H. F.

    2013-07-01

    3D modelling of architectural structures for monitoring, conservation and restoration alterations in heritage sites has special challenges for data acquisition and processing. The accuracy of created 3D model is very important. In general, because of the complexity of the structures, 3D modelling can be time consuming and may include some difficulties. 3D terrestrial laser scanning technique is a reliable and advantageous method for reconstruction and conservation of monuments. This technique is commonly acknowledged due to its accuracy, speed and flexibility. Terrestrial laser scanners can be used for documentation of the cultural heritage for the future. But it is also important to understand the capabilities and right conditions of use and limitations of this technology. Istanbul is a rich city with cultural monuments, buildings and cultural heritage. The presented study consists of documentation of a Byzantine water cistern situated underground the court of Sarnicli Han building. The cistern which represents a very good living example of its period has been modelled in 3D by using terrestrial laser scanning technology and the accuracy assessment of this modelling is examined.

  5. Water Management Models in Practice: A Case Study of the Aswan High Dam

    NASA Astrophysics Data System (ADS)

    El-Ashry, M. T.; Alford, D. L.

    1984-04-01

    The stated purpose of this volume is the development and evaluation of operating policies for the Aswan High Dam and their relation to the development of water resources policy in Egypt. That objective is admirably fulfilled through discussions of water use in Egypt and the operation objectives of the High Dam, the behavior of the physical system and simulation of the reservoir, a realtime management model of the dam, management of water shortages and trade-offs between major uses, and coordinated operation of the dam with new upstream as well as downstream developments.The High Dam has been a source of controversy, particularly with regard to its environmental impacts. Its adverse effects include changes in the water table and attendant salt buildup in irrigated areas, excessive growth of aquatic plants below the dam, shoreline erosion, and increases in water-borne diseases such as schistosomiasis (bilharzia). The dam was intended to offset rapid population growth by increasing food supplies through the transformation of irrigated land in southern Egypt from seasonal to perennial cultivation and by providing water for the reclamation of desert land. Unfortunately, such benefits have been outstripped by the rapidly growing population, and water shortages will be experienced by the end of the century.

  6. Fog and rain water chemistry at Mt. Fuji: A case study during the September 2002 campaign

    NASA Astrophysics Data System (ADS)

    Watanabe, Koichi; Takebe, Yusaku; Sode, Nobuhiro; Igarashi, Yasuhito; Takahashi, Hiroshi; Dokiya, Yukiko

    2006-12-01

    Measurements of fog and rain water chemistry at the summit of Mt. Fuji, the highest peak in Japan, as well as at Tarobo, the ESE slope of Mt. Fuji in September 2002. The pH of fog and rain water sampled at Mt. Fuji varied over a range of 4.0-6.8. Acidic fogs (pH < 5.0) were observed at the summit when the air mass came from the industrial regions on the Asian continent. The ratio of [SO 42-]/[NO 3-] in the fog water was lower at Tarobo than at the summit. High concentrations of Na + and Cl - were determined in the rain water sampled at the summit, possibly because of the long-range transport of sea-salt particles raised by a typhoon through the middle troposphere. The vertical transport of sea-salt particles would influence the cloud microphysical properties in the middle troposphere. Significant loss of Mg 2+ was seen in the rain water at the summit. The concentrations of peroxides in the fog and rain water were relatively large (10-105 μM). The potential capacity for SO 2 oxidation seems to be strong from summer to early autumn at Mt. Fuji. The fog water peroxide concentrations displayed diurnal variability. The peroxide concentrations in the nighttime were significantly higher than those in the daytime.

  7. Integrated System Dynamics Modelling for water scarcity assessment: case study of the Kairouan region.

    PubMed

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Savić, Dragan A; Kapelan, Zoran

    2012-12-01

    A System Dynamics Model (SDM) assessing water scarcity and potential impacts of socio-economic policies in a complex hydrological system is developed. The model, simulating water resources deriving from numerous catchment sources and demand from four sectors (domestic, industrial, agricultural, external pumping), contains multiple feedback loops and sub-models. The SDM is applied to the Merguellil catchment, Tunisia; the first time such an integrated model has been developed for the water scarce Kairouan region. The application represents an early step in filling a critical research gap. The focus of this paper is to a) assess the applicability of SDM for assessment of the evolution of a water-scarce catchment and b) to analyse the current and future behaviour of the catchment to evaluate water scarcity, focusing on understanding trends to inform policy. Baseline results indicate aquifer over-exploitation, agreeing with observed trends. If current policy and social behaviour continue, serious aquifer depletion is possible in the not too distant future, with implications for the economy and environment. This is unlikely to occur because policies preventing depletion will be implemented. Sensitivity tests were carried out to show which parameters most impacted aquifer behaviour. Results show non-linear model behaviour. Some tests showed negligible change in behaviour. Others showed unrealistic exponential changes in demand, revenue and aquifer water volume. Policy-realistic parameters giving the greatest positive impact on model behaviour were those controlling per-capita domestic water demand and the pumped volume to coastal cities. All potentially beneficial policy options should be considered, giving the best opportunity for preservation of Kairouan aquifer water quantity/quality, ecologically important habitats and the agricultural socio-economic driver of regional development. SDM is a useful tool for assessing the potential impacts of possible policy measures

  8. The Water Framework Directive: Can more information be extracted from groundwater data? A case study of Seewinkel, Burgenland, eastern Austria

    NASA Astrophysics Data System (ADS)

    Hatvani, István Gábor; Magyar, Norbert; Zessner, Matthias; Kovács, József; Blaschke, Alfred Paul

    2014-06-01

    Water protection is one of the most important goals in environmental protection. The Clean Water Act in the USA and the Water Framework Directive (WFD) in Europe are the legal frameworks to facilitate the achievement of this goal. The question is raised of whether more information can be extracted from WFD-related groundwater data. To answer it, a methodology has been developed that is easy to use and could be implemented into official practice. A case study is presented in which the groundwater data of a sodic area in Austria (Seewinkel) is assessed. Eighteen parameters in groundwater sampled from 23 wells (1991-2011) were analyzed. With basic statistics, trend-, cluster-, Wilks' λ and spatial sampling density analysis, local phosphorus and boron phenomena were described, along with the determining role of sulphate, groundwater flow, and the oxygen gradient in the area. As a final step, the spatial sampling density was determined. Regarding the current set of parameters, all the sampling sites are necessary and only in the case of certain parameters (Ca2+, Mg2+, K+, NO3 -, pH) could one sampling site be abandoned. The methodology applied brings a new perspective to exploring groundwater data collected according to the requirements of the WFD.

  9. Cancer risk from asbestos in drinking water. Summary of a case-control study in western Washington

    SciTech Connect

    Polissar, L.; Severson, R.K.; Boatman, E.S.

    1983-11-01

    A case-controlled, interview-based study of the risk of developing cancer from asbestos in drinking water was conducted. Cases and controls were selected from the Everett, Washington, area which has used the Sultan River as source of drinking water since 1918. Sultan River tapwater has concentrations of chrysotile asbestos around 200 million fibers/liter. Through a population based tumor registry, 382 individuals with cancer of the buccal cavity, pharynx, respiratory system, digestive system, bladder, or kidneys, diagnosed between 1977 and 1980, were identified. Data on asbestos exposure were collected based on residence and workplace history, and on individual water consumption. Logistic regression was used to estimate cancer risk. Summarizing the findings for imbibed asbestos, very few elevated risks of statistical significance were found. Considering the relative risk for each of the sites and for each of the four asbestos exposure variables, no instance was found in which the risk was elevated for both males and females. The only statistically significant elevated risks occurred for male pharynx and male stomach. 20 references.

  10. Case study of the effectiveness of passive grease trap for management on domestic kitchen waste water

    NASA Astrophysics Data System (ADS)

    Nidzamuddin, M. Y.; Juffrizal, K.; Mustapha, F.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.

    2015-05-01

    Household waste, generally known as trash or garbage is mostly includes food wastes, product packaging, and other miscellaneous inorganic wastes that are coming from domestic household. Grease waste such as oil and fats can contaminate water and also clot on pipes provoking blockages. Thus, waste water from kitchen sink need a proper way of filtration. Grease trap developed in this paper is viable in trapping the grease residue. The experiments have been conducted in controlled environment and the objectives are to investigate the effectiveness of grease trap by proving the existence of retention time and the expected ratio of collected water and oil during experiment process using a prototype model.

  11. Water for Agriculture in a Vulnerable Delta: A Case Study of Indian Sundarban

    NASA Astrophysics Data System (ADS)

    Das, S.; Bhadra, T.; Hazra, S.

    2015-12-01

    Indian Sundarban lies in the south-western part of the Ganges-Brahmaputra Delta and supports a 4.43 million strong population. The agrarian economy of Sundarban is dominated by rainfed subsistence rice farming. Unavailability of upstream fresh water, high salinity of river water of up to 32ppt, soil salinity ranging between 2dSm-1 to 19dSm-1, small land holdings of per capita 840 sq. metre and inadequate irrigation facilities are serious constraints for agricultural production in Sundarban. This paper assesses Cropping Intensity, Irrigation Intensity and Man-Cropland Ratio from Agriculture Census (2010-11) data and estimates the seasonal water demand for agriculture in different blocks of Sundarban. The research exposes the ever increasing population pressure on agriculture with an average Man Cropland Ratio of 1745 person/sq.km. In 2010-2011, the average cropping intensity was 129.97% and the irrigation intensity was 20.40%. The highest cropping and irrigation intensity have been observed in the inland blocks where shallow ground water is available for agriculture on the contrary, the lowest values have been observed in the southern blocks, due to existence of saline shallow ground water. The annual water demand for agriculture in Sundarban has been estimated as 2784 mcm. Available water from 70000 freshwater tanks and around 8000 numbers of shallow tube wells are not sufficient to meet the agricultural water demand. Existing irrigation sources and rainfall of 343 mcm fall far short of the water demand of 382 mcm during peak dry Season. Unavailability of fresh water restricts the food production, which endangers the food security of 87.5% of the people in Sundarban. To ensure the food security in changing climatic condition, expansion of irrigation network and harnessing of new water sources are essential. Large scale rainwater harvesting, rejuvenation and re-connection of disconnected river channels, artificial recharge within shallow aquifer to bring down its

  12. Integrated GRASS GIS based techniques to identify thermal anomalies on water surface. Taranto case study.

    NASA Astrophysics Data System (ADS)

    Massarelli, Carmine; Matarrese, Raffaella; Felice Uricchio, Vito

    2014-05-01

    In the last years, thermal images collected by airborne systems have made the detection of thermal anomalies possible. These images are an important tool to monitor natural inflows and legal or illegal dumping in coastal waters. By the way, the potential of these kinds of data is not well exploited by the Authorities who supervises the territory. The main reason is the processing of remote sensing data that requires very specialized operators and softwares which are usually expensive and complex. In this study, we adopt a simple methodology that uses GRASS, a free open-source GIS software, which has allowed us to map surface water thermal anomalies and, consequently, to identify and locate coastal inflows, as well as manmade or natural watershed drains or submarine springs (in italian citri) in the Taranto Sea (South of Italy). Taranto sea represents a coastal marine ecosystem that has been gradually modified by mankind. One of its inlet, the Mar Piccolo, is a part of the National Priority List site identified by the National Program of Environmental Remediation and Restoration because of the size and high presence of industrial activities, past and present, that have had and continue to seriously compromise the health status of the population and the environment. In order to detect thermal anomalies, two flights have been performed respectively on March 3rd and on April 7th, 2013. A total of 13 TABI images have been acquired to map the whole Mar Piccolo with 1m of spatial resolution. TABI-320 is an airborne thermal camera by ITRES, with a continuous spectral range between 8 and 12 microns. On July 15th, 2013, an in-situ survey was carried out along the banks to retrieve clear visible points of natural or artificial inflows, detecting up to 72 of discharges. GRASS GIS (Geographic Resources Analysis Support System), is a free and open source Geographic Information System (GIS) software suite used for geospatial data management and analysis, image processing

  13. Scale Issues in Modeling the Water Resources Sector in National Economic Models: A Case study of China

    NASA Astrophysics Data System (ADS)

    Strzepek, K. M.; Kirshen, P.; Yohe, G.

    2001-05-01

    The fundamental theme of this research was to investigate tradeoffs in model resolution for modeling water resources in the context of national economic development and capital investment decisions.. Based on a case study of China, the research team has developed water resource models at relatively fine scales, then investigated how they can be aggregated to regional or national scales and for use in national level planning decisions or global scale integrated assessment models of food and/or environmental change issues. The team has developed regional water supply and water demand functions.. Simplifying and aggregating the supply and demand functions will allow reduced form functions of the water sector for inclusion in large scale national economic models. Water Supply Cost functions were developed looking at both surface and groundwater supplies. Surface Water: Long time series of flows at the mouths of the 36 major river sub-basins in China are used in conjunction with different basin reservoir storage quantities to obtain storage-yield curves. These are then combined with reservoir and transmission cost data to obtain yield-cost or surface water demand curves. The methodology to obtain the long time series of flows for each basin is to fit a simple abcd water balance model to each basin. The costs of reservoir storage have been estimated by using a methodology developed in the USA that relates marginal storage costs to existing storage, slope and geological conditions. USA costs functions have then been adjusted to Chinese costs. The costs of some actual dams in China were used to "ground-truth" the methodology. Groundwater: The purpose of the groundwater work is to estimate the recharge in each basin, and the depths and quality of water of aquifers. A byproduct of the application of the abcd water balance model is the recharge. Depths and quality of aquifers are being taken from many separate reports on groundwater in different parts of China; we have been

  14. Bioremediation of organic solvents in ground water: A case study--Grandview, Missouri

    SciTech Connect

    Humenik, J.A. )

    1993-10-01

    Organic solvents leaking from underground storage tanks or from spillage pose a serious threat to ground-water quality. Chemicals such as styrene, ethylbenzene, toluene, and methyl-methacrylate are commonly associated with the manufacturing of plastics and fiberglass. After pump-and-treat operations were unsuccessful in remediating ground water contaminated with ethylbenzene and styrene resulting from leaking underground chemical storage tanks, bioremediation was implemented to degrade the contaminants to the Missouri Department of Natural Resources target cleanup limits. Due to low permeability clays and anaerobic subsurface conditions, the bioremediation design consisted of a ground-water recovery system, an aboveground bioreactor to treat ground water, and a recharge network to introduce acclimated microbes, nutrients, and oxygen to the subsurface. Commercially prepared microbial strains and nutrients were utilized for the close-loop system, as insufficient indigenous microbes and nutrients were present in subsurface matrix.

  15. Green Residential Demolitions: Case Study of Vacant Land Reuse in Storm Water Management in Cleveland

    EPA Science Inventory

    The demolition process impacts how vacant land might be reused for storm water management. For five residential demolition sites (Cleveland, Ohio), an enhanced green demolition process was observed in 2012, and soil physical and hydrologic characteristics were measured predemolit...

  16. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    Owing to increasing anthropogenic impacts, lagoons and wetlands are being exposed to environmental degradation. Therefore, the sustainable management of these environmental resources is a fundamental issue to maintain either the ecosystems and the human activity. The Massaciuccoli Lake is a coastal lake of fresh to brackish water surrounded by a marsh, which drains a total catchment of about 114 km2. Large part of the basin has been reclaimed since 1930 by means of pumping stations forcing water from the drained areas into the lake. The system is characterized by: high complexity of the hydrological setting; subsidence of the peaty soils in the reclaimed area (2 to 3 m in 70 years), that left the lake perched; reclaimed land currently devoted mainly to conventional agriculture (e.g.: maize monoculture) along with some industrial sites, two sewage treatment plants and some relevant urban settlements; social conflicts among different land users because of the impact on water quality and quantity. The interaction between such a fragile natural system and human activities leads to an altered ecological status mainly due to eutrophication and water salinisation. Hence, the present work aims at identifying and assessing the sources of nutrients (phosphorous in particular) into the lake, and characterising land use and some socio-economic aspects focusing on agricultural systems, in order to set up suitable mitigation measures. Water quantity and quality in the most intensively cultivated sub-catchment, placed 0.5 to 3 m under m.s.l. were monitored in order to underlain the interaction between water and its nutrient load. Questionnaires and interviews to farmers were conducted to obtain information about agricultural practices, farm management, risks and constraints for farming activities. The available information about the natural system and land use were collected and organised in a GIS system: a conceptual model of surface water hydrodinamics was build up and 14

  17. Integrated optimal allocation model for complex adaptive system of water resources management (II): Case study

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Xu, Chong-Yu; Liu, Dedi; Chen, Lu; Wang, Dong

    2015-12-01

    Climate change, rapid economic development and increase of the human population are considered as the major triggers of increasing challenges for water resources management. This proposed integrated optimal allocation model (IOAM) for complex adaptive system of water resources management is applied in Dongjiang River basin located in the Guangdong Province of China. The IOAM is calibrated and validated under baseline period 2010 year and future period 2011-2030 year, respectively. The simulation results indicate that the proposed model can make a trade-off between demand and supply for sustainable development of society, economy, ecology and environment and achieve adaptive management of water resources allocation. The optimal scheme derived by multi-objective evaluation is recommended for decision-makers in order to maximize the comprehensive benefits of water resources management.

  18. Water storage under changing climates: A case study of small farm dams in New Zealand

    NASA Astrophysics Data System (ADS)

    Thompson, J.; Preston, N.; Jackson, B. M.

    2009-12-01

    In many regions of the world, climate change scenarios predict a trend towards drier conditions. In agricultural areas, less rainfall during planting and growing periods will exacerbate existing water supply issues, with communities striving to find alternative water storage options. In New Zealand, both government and agricultural interest groups are promoting the construction of storage ponds (both small-scale ponds for farm use and larger reservoirs for community use) to tackle this issue. This paper investigates the use of small farm dams as a means of providing secure water storage while also considering downstream environmental impacts. New Zealand has thousands of small stock water and irrigation dams that interrupt streamflow, primarily located on first-order streams. With climate change scenarios predicting a 3-4% decrease in annual precipitation in some regions, it is expected that dam numbers will increase in the future. However, little is known about the impact of these dams on the downstream environment in terms of water quantity, quality, sediment transfer, and stream morphology at either the local or regional scale. A combination of field-based methods and modelling is used to quantify the overall impact of farm dams on the downstream system in an agricultural catchment in the Hawke’s Bay region of New Zealand. Results show that farm dams reduce overall discharge and flood peaks, but sustain winter flows for a longer duration between rainfall events. The dams also create a lowering of water quality and a decrease in the transfer of sediment, with aggradation occurring in downstream channel reaches. Implications at the wider catchment scale are discussed, along with improved management practices which could allow for both water security and the protection of the environment. Results have implications for regions of the world which face drier conditions under changing climate regimes and need environmentally and socio-economically sustainable water

  19. Settlement of mine spoil fill from water infiltration: Case study in eastern Kentucky

    SciTech Connect

    Karem, W.A.; Kalinski, M.E.; Hancher, D.E.

    2007-09-15

    Mine spoil valley fills are a by-product of mountaintop removal mining in the Appalachian coal mining region of the United States. These fills often result in large expanses of relatively flat land covering thousands of acres, which can be used for commercial or industrial development. However, this material is susceptible to damaging settlement, and highly publicized failures of structures built on mine spoil fills have led to reluctance on the part of investors to develop these areas. A key settlement mechanism in mine spoil is water infiltration. Percolating water slakes the shaly, angular spoil material at interparticle stress points, leading to excessive deformation and settlement. A lumber processing facility in Hazard, Ky., is an example of a structure that sustained serious damage as a result of settlement caused by water infiltration. A forensic site investigation of the facility revealed that excavation of existing surface mine spoil beneath the building footprint removed the low-permeability crust that forms on the top of mature mine spoil fill deposits. The removal of the crust allowed the infiltration of surface water. This, coupled with the unique configuration of the storm water drainage system at the facility and surface water drainage toward the building, led to differential settlement up to 1:120 (vertical: horizontal) and angular distortion up to 1: 150 over a period of several months. Foundation underpinning was performed to remedy the situation. For future development on mine spoil sites, recommended mitigating measures include presaturation of the mine spoil, design of drainage systems to adequately convey surface water away from the building, and use of geosynthetic barrier layers to prevent infiltration of surface water into the mine spoil beneath the structure.

  20. Ground water chlorinated ethenes in tree trunks: Case studies, influence of recharge, and potential degradation mechanism

    USGS Publications Warehouse

    Vroblesky, D.A.; Clinton, B.D.; Vose, J.M.; Casey, C.C.; Harvey, G.J.; Bradley, P.M.

    2004-01-01

    Trichloroethene (TCE) was detected in cores of trees growing above TCE-contaminated ground at three sites: the Carswell Golf Course in Texas, Air Force Plant PJKS in Colorado, and Naval Weapons Station Charleston in South Carolina. This was true even when the depth to water was 7.9 m or when the contaminated aquifer was confined beneath ???3 m of clay. Additional ground water contaminants detected in the tree cores were cis-1,2-dichloroethene at two sites and tetrachloroethene at one site. Thus, tree coring can be a rapid and effective means of locating shallow subsurface chlorinated ethenes and possibly identifying zones of active TCE dechlorination. Tree cores collected over time were useful in identifying the onset of ground water contamination. Several factors affecting chlorinated ethene concentrations in tree cores were identified in this investigation. The factors include ground water chlorinated ethene concentrations and depth to ground water contamination. In addition, differing TCE concentrations around the trunk of some trees appear to be related to the roots deriving water from differing areas. Opportunistic uptake of infiltrating rainfall can dilute prerain TCE concentrations in the trunk. TCE concentrations in core headspace may differ among some tree species. In some trees, infestation of bacteria in decaying heartwood may provide a TCE dechlorination mechanism within the trunk.

  1. Safe water supply without disinfection in a large city case study: Berlin.

    PubMed

    Grohmann, A; Petersohn, D

    2000-01-01

    Berlin's water supplies originate exclusively from groundwater. For sustainable water management, river water is treated by flocculation and filtration and used either for artificial groundwater recharge (rivers Spree and Havel) or for bank filtration (Nordgraben and Lake Tegel). Drinking water chlorination was abandoned in Berlin (West) in 1978, and in Berlin (East) in 1992, following German unification. Chlorine consumption for the purpose of weekly performance checks in the chlorination plants of Berlin's 11 waterworks and occasional chlorination within the pipe system following pipe burst events amounts to 2500 kg per year. Based on the annual water demand of 250 million cubic metres, this is equivalent to 0.01 mg of chlorine per litre. Microbiological monitoring at the 11 waterworks and at 383 sampling points within the pipe system shows CFU at less than 10/1 ml-1 and coliforms and E. coli invariably at 0/100 ml-1. In view of the low AOX content, a multiplication of bacteria within the pipe system can be expected to occur not at all or only to a small extent. Resource protection measures, filter backwashing and pipe system maintenance in observance of the relevant technical rules will continue to ensure that the quality of Berlin's drinking water meets stringent hygiene requirements without chlorination. PMID:11225280

  2. Case studies on developing local industry by using hot spring water and geothermal energy

    SciTech Connect

    Sasaki, Akira; Umetsu, Yoshio; Narita, Eiichi

    1997-12-31

    We have investigated the new ways to develop local industries by using hot spring water, geothermal water and geothermal energy from the Matsukawa Geothermal Power Plant in Iwate Prefecture, which is the first geothermal power plant established in Japan. The new dyeing technique, called {open_quotes}Geothermal Dyeing{close_quotes} was invented in which hydrogen sulfide in the water exhibited decoloration effect. By this technique we succeeded to make beautiful color patterns on fabrics. We also invented the new way to make the light wight wood, called {open_quotes}Geo-thermal Wood{close_quotes} by using hot spring water or geothermal water. Since polysaccharides in the wood material were hydrolyzed and taken out during the treatment in the hot spring water, the wood that became lighter is weight and more porous state. On the bases of these results, we have produced {open_quotes}Wooded Soap{close_quotes} on a commercial scale which is the soap, synthesized in the pore of the treated wood in round slice. {open_quotes}Collapsible Wood Cabin{close_quotes} was also produced for enjoyable outdoor life by using the modified properties of Geothermal Wood.

  3. High Resolution Integrated Hydrologic Modeling for Water Resource Management: Tahoe Basin Case Study

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Niswonger, R. G.; Huntington, J. L.; Gardner, M.; Morton, C.; Maples, S.; Reeves, D. M.; Pohll, G.

    2014-12-01

    Water resources in the high altitude, snow-dominated Tahoe basin are susceptible to long-term climate change and extreme climatic events due to large inter-annual climate variations. Lake Tahoe and its contributing watersheds exhibit high climatic (precipitation, temperature) and hydrologic (streamflow, evaporation) variation that exert significant control over regional water supply on annual and sub-annual timescales. To adequately quantify these controls, a high resolution (300m) physically based integrated surface and groundwater model, GSFLOW, of the Tahoe basin has been developed to identify key hydrologic mechanisms that explain recent changes in water resources of the region. The model is parameterized using geographical datasets and maintains a balance between (a) accurate representation of spatial (e.g., geology, streams, and topography) and hydrologic (groundwater, stream, lake, and wetland flows and storages) features, and (b) computational efficiency, which is a necessity for exploring critical vulnerabilities of water-supplies in the region. The calibrated model reproduces multiple observations of streamflow, snow water equivalent, satellite derived snow covered area, lake stage, and groundwater head. Climate input uncertainty was significantly decreased in the model through incorporating additional precipitation station data and helped improve model simulations of observed fluxes more than adjusting model parameters alone. The model simulates fluxes at the outlet of the watershed, but is also consistent at simulating streamflow at internal nodes. This integrated modeling framework helped assess both surface and groundwater resources in a coupled manner in the Tahoe basin.

  4. Rocky-shore communities as indicators of water quality: a case study in the Northwestern Mediterranean.

    PubMed

    Pinedo, Susana; García, María; Satta, Maria Paola; de Torres, Mariona; Ballesteros, Enric

    2007-01-01

    The collection of 152 samples from the upper sublittoral zone along the rocky coasts of Catalonia (Northwestern Mediterranean) was carried out in 1999 in order to test the suitability of littoral communities to be used as indicators of water quality in the frame of the European Water Framework Directive. Detrended correspondence analysis were performed to distinguish between different communities and to relate communities composition to water quality. Samples collected in reference sites were included in the analysis. Mediterranean rocky shore communities situated in the upper sublittoral zone can be used as indicators of the water quality: there is a gradient from high to bad status that comprises from dense Cystoseira mediterranea forests to green algae dominated communities. The geographical patterns in the distribution of these communities show that the best areas are situated in the Northern coast, where tourism is the main economic resource of the area, and the worst area is situated close to the metropolitan zone of Barcelona with high population and industrial development. Thus, Mediterranean sublittoral rocky shore communities are useful indicators of water quality and multivariate analysis are a suitable statistical tool for the assessment of the ecological status. PMID:17049951

  5. Algorithmic network monitoring for a modern water utility: a case study in Jerusalem.

    PubMed

    Armon, A; Gutner, S; Rosenberg, A; Scolnicov, H

    2011-01-01

    We report on the design, deployment, and use of TaKaDu, a real-time algorithmic Water Infrastructure Monitoring solution, with a strong focus on water loss reduction and control. TaKaDu is provided as a commercial service to several customers worldwide. It has been in use at HaGihon, the Jerusalem utility, since mid 2009. Water utilities collect considerable real-time data from their networks, e.g. by means of a SCADA system and sensors measuring flow, pressure, and other data. We discuss how an algorithmic statistical solution analyses this wealth of raw data, flexibly using many types of input and picking out and reporting significant events and failures in the network. Of particular interest to most water utilities is the early detection capability for invisible leaks, also a means for preventing large visible bursts. The system also detects sensor and SCADA failures, various water quality issues, DMA boundary breaches, unrecorded or unintended network changes (like a valve or pump state change), and other events, including types unforeseen during system design. We discuss results from use at HaGihon, showing clear operational value. PMID:21252425

  6. Water Management Planning: A Case Study at Blue Grass Army Depot

    SciTech Connect

    Solana, Amy E.; Mcmordie, Katherine

    2006-04-03

    Executive Order 13123, Greening the Government Through Efficient Energy Management, mandates an aggressive policy for reducing potable water consumption at federal facilities. Implementation guid¬ance from the U.S. Department of Energy (DOE) set a requirement for each federal agency to “reduce potable water usage by implementing life cycle, cost-effective water efficiency programs that include a water management plan, and not less than four Federal Energy Management Program (FEMP) Best Manage¬ment Practices (BMPs).” The objective of this plan is to gain full compliance with Executive Order 13123 and associated DOE implementation guidance on behalf of Blue Grass Army Depot (BGAD), Richmond, Kentucky. In accordance with this plan, BGAD must: • Incorporate the plan as a component of the Installation energy conservation plan • Investigate the water savings potential and life-cycle cost effectiveness of the Operations and Maintenance (O&M) and retrofit/replacement options associated with the ten FEMP BMPs • Put into practice all applicable O&M options • Identify retrofit/replacement options appropriate for implementation (based upon calculation of the simple payback periods) • Establish a schedule for implementation of applicable and cost-effective retrofit/replacement options.

  7. Recommendations for water supply in arsenic mitigation: a case study from Bangladesh.

    PubMed

    Hoque, B A; Mahmood, A A; Quadiruzzaman, M; Khan, F; Ahmed, S A; Shafique, S A; Rahman, M; Morshed, G; Chowdhury, T; Rahman, M M; Khan, F H; Shahjahan, M; Begum, M; Hoque, M M

    2000-11-01

    Arsenic problems have been observed in several countries around the world. The challenges of arsenic mitigation are more difficult for developing and poor countries due to resource and other limitations. Bangladesh is experiencing the worst arsenic problem in the world, as about 30 million people are possibly drinking arsenic contaminated water. Lack of knowledge has hampered the mitigation initiatives. This paper presents experience gained during an action research on water supply in arsenic mitigation in rural Singair, Bangladesh. The mitigation has been implemented there through integrated research and development of appropriate water supply options and its use through community participation. Political leaders and women played key roles in the success of the mitigation. More than one option for safe water has been developed and/or identified. The main recommendations include: integration of screening of tubewells and supply of safe water, research on technological and social aspects, community, women and local government participation, education and training of all stakeholders, immediate and appropriate use of the available knowledge, links between intermediate/immediate and long term investment, effective coordination and immediate attention by health, nutrition, agriculture, education, and other programs to this arsenic issue. PMID:11114764

  8. CASE STUDY OF A MARINE DISCHARGE: COMPARISON OF EFFLUENT AND RECEIVING WATER TOXICITY

    EPA Science Inventory

    An on-site investigation was conducted in northeast Florida to evaluate the toxicity of a pulp and paper mill discharge and to determine whether there was any receiving water toxicity associated with that discharge. The species tested included the macroalga Champia parvula, the m...

  9. Climate change impacts on marine water quality: The case study of the Northern Adriatic sea.

    PubMed

    Rizzi, J; Torresan, S; Critto, A; Zabeo, A; Brigolin, D; Carniel, S; Pastres, R; Marcomini, A

    2016-01-30

    Climate change is posing additional pressures on coastal ecosystems due to variations in water biogeochemical and physico-chemical parameters (e.g., pH, salinity) leading to aquatic ecosystem degradation. With the main aim of analyzing the potential impacts of climate change on marine water quality, a Regional Risk Assessment methodology was developed and applied to coastal marine waters of the North Adriatic. It integrates the outputs of regional biogeochemical and physico-chemical models considering future climate change scenarios (i.e., years 2070 and 2100) with site-specific environmental and socio-economic indicators. Results showed that salinity and temperature will be the main drivers of changes, together with macronutrients, especially in the area of the Po' river delta. The final outputs are exposure, susceptibility and risk maps supporting the communication of the potential consequences of climate change on water quality to decision makers and stakeholders and provide a basis for the definition of adaptation and management strategies. PMID:26152856

  10. QUAL2E - A CASE STUDY IN WATER QUALITY MODELING SOFTWARE

    EPA Science Inventory

    The series of computer programs known as QUAL-II has a long history in systems analysis in water quality management. The continuing cycle of testing and refinement of the computer program accounts for its many strengths as most of the weaknesses have been uncovered in this proces...