Science.gov

Sample records for case study water

  1. Water resources management: case study of Sharkia governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Y. A.; Rashad, M.

    2012-06-01

    Ministry of water resources and irrigation in Egypt is currently implementing projects that expand new cultivated area, and accordingly the supplies of Nile River to the Nile Delta will be negatively affected. So, Enormous interest toward water resources management has been taken in the Egyptian water sector. Conveyance infrastructure and irrigation technology has been gradually improved to ensure efficient distribution and utilization of scarce water resources. The present study is focused on the optimum utilization of water resources in Sharkia governorate, Egypt. Operational and planning distribution model is implemented on the selected case study (Sharkia governorate) to develop appropriate water plan. The gross revenue of all crops is correlated to surface water discharge, ground water discharge, surface water salinity, and ground water salinity. In addition, the effect of varying both surface and groundwater quantities and qualities on the gross revenue has been investigated. Moreover, the effect of limiting rice production on the gross revenue is allocated.

  2. Primary Datasets for Case Studies of River-Water Quality

    ERIC Educational Resources Information Center

    Goulder, Raymond

    2008-01-01

    Level 6 (final-year BSc) students undertook case studies on between-site and temporal variation in river-water quality. They used professionally-collected datasets supplied by the Environment Agency. The exercise gave students the experience of working with large, real-world datasets and led to their understanding how the quality of river water is…

  3. Market Simulations for Irrigation Water Rights: A Hypothetical Case Study

    NASA Astrophysics Data System (ADS)

    Wong, Benedict D. C.; Eheart, J. Wayland

    1983-10-01

    The efficiency of two marketable water rights systems in a lentic (lakelike) structure is assessed quantitatively for a case study based on hypothetical irrigation water use. Water rights are simulated on the bases of (1) the expected values of water rights to the users and (2) perfect foresight on the parts of users, and the economic outcomes of these markets are evaluated from both ex ante and ex post perspectives. The market outcomes are compared to the optimal (efficient) scheme and to two alternative nonmarket policies. Distributional aspects of the markets are examined on the basis of individual payoff. Simulation results show that higher efficiency is obtained for the two market systems than for the nonmarket policies and that the market systems recoup about 95% of the economic value of the optimal distribution. The results suggest that most of the 5% efficiency loss should be attributed to the design of the market system itself (i.e., the restrictions imposed by the definition of the rights and/or the water rights allocation policy), rather than the users' inability to predict future events.

  4. Childhood lead poisoning; Case study traces source to drinking water

    SciTech Connect

    Cosgrove, E.; Brown, M.J.; Madigan, P.; McNulty, P.; Okonski, L.; Schmidt, J.

    1989-07-01

    Lead poisoning as a result of drinking water carried through lead service lines has been well-documented in the literature. A case of childhood lead poisoning is presented in which the only identified source of lead was lead solder from newly installed water pipes. Partly as a result of this case, the Massachusetts Bourd of Plumbers and Gas Fitters banned the use of 50/50 lead-tin solder or potable water lines. It is anticipated that this ban will increase the cost of new housing by only $16 per unit but will significantly reduce one environmental source of lead.

  5. Technology Solutions Case Study: Heat Pump Water Heater Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory studied heat pump water heaters, an efficient, cost-effective alternative to traditional electric resistance water heaters that can improve energy efficiency by up to 62%.

  6. Water market transfers in South Africa: Two case studies

    NASA Astrophysics Data System (ADS)

    Nieuwoudt, W. L.; Armitage, R. M.

    2004-09-01

    Statistical analyses (discriminant, logit, and principal components) of water transfers in the Lower Orange River showed that water rights were transferred to farmers with the highest return per unit of water applied, those producing table grapes, and with high-potential arable "outer land" without water rights. Only unused water (sleeper right) was transferred, while water saved (through adoption of conservation practices) was retained possibly for security purposes. A second study in the Nkwaleni Valley in northern KwaZulu-Natal found that no water market had emerged despite the scarcity of water in the area. No willing sellers of water rights existed. Demand for institutional change to establish tradable water rights may take more time in the second area since crop profitability in this area is similar for potential buyers and nonbuyers. Transaction costs appear larger than benefits from market transactions. Farmers generally use all their water rights in the second area and retain surplus water rights as security against drought because of unreliable river flow. This study indicates that these irrigation farmers are highly risk averse (downside risk). Government policies that increase the level of risk and reduce security of licenses are estimated to have a significant effect on future investment in irrigation. In an investment model the following variables explain future investment: expected profits, liquidity, risk aversion (Arrow-Pratt), and security of water use rights. The study is seen in the light of the New South African Water Act of 1998. According to this act, the ownership of water in South Africa has changed from private to public. This reform may not impede the development of water markets in South Africa since in the well-developed water markets of the United States, western states claim ownership of water within their boundaries. All states in the western United States allow private rights in the use of water to be established and sold.

  7. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  8. Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Makungo, R.; Odiyo, J. O.; Tshidzumba, N.

    The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of

  9. Rapid detection of bacteria in drinking water and water contamination case studies

    NASA Astrophysics Data System (ADS)

    Deininger, Rolf A.; Lee, Jiyoung; Clark, Robert M.

    2011-12-01

    Water systems are inherently vulnerable to physical, chemical and biologic threats that might compromise a systems' ability to reliably deliver safe water. The ability of a water supply to provide water to its customers can be compromised by destroying or disrupting key physical elements of the water system. However, contamination is generally viewed as the most serious potential terrorist threat to water systems. Chemical or biologic agents could spread throughout a distribution system and result in sickness or death among the consumers and for some agents the presence of the contaminant might not be known until emergency rooms report an increase in patients with a particular set of symptoms. Even without serious health impacts, just the knowledge that a water system had been breached could seriously undermine consumer confidence in public water supplies. Therefore, the ability to rapidly detect contamination, especially microbiological contamination, is highly desirable. The authors summarize water contamination case studies and discuss a technique for identifying microbiological contamination based on ATP bioluminescence. This assay allows an estimation of bacterial populations within minutes and can be applied using a local platform. Previous ATP-based methods requires one hour, one liter of water, and has a sensitivity of 100000 cells for detection. The improved method discussed here is 100 times more sensitive, requires one-hundredth of the sample volume, and is over 10 times faster than standard method. This technique has a great deal of potential for application in situations in which a water system has been compromised.

  10. Peace Corps Water/Sanitation Case Studies and Analyses. Appropriate Technologies for Development. Case Study CS-4.

    ERIC Educational Resources Information Center

    Talbert, Diana E., Comp.

    This document provides an overview of Peace Corps water and sanitation activities, five case studies (Thailand, Yemen, Paraguay, Sierra Leone, and Togo), programming guidelines, and training information. Each case study includes: (1) background information on the country's geography, population, and economics; (2) information on the country's…

  11. EVOLUTION OF A REGIONAL WATER SUPPLY: A CASE STUDY

    EPA Science Inventory

    A study was done to describe the development of a regional water supply system around the City of Dallas, Texas, and to summarize the issues surrounding the regionalization process. Data were gathered from written histories of Dallas, the City of Dallas Water Utilities Department...

  12. DRINKING WATER DISTRIBUTION SYSTEM RELIABILITY: A CASE STUDY

    EPA Science Inventory

    The purpose of the study was to present a tool useful to water utilities that not only could analyze historical distribution system reliability data, but also provide a flexible and expandable mechanism for record-keeping enabling overall management of water work's facilities and...

  13. A case study of a bacterial pathogen in irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents a case study of how exotic strains of Ralstonia solanacearum were disseminated throughout Europe and Florida via waterways used for irrigation. Several studies have demonstrated that aquatic weeds that commonly grow in rivers and ponds are able to harbor the pathogen and allow ...

  14. Optimal demand reponse to water pricing policies under limited water supply in irrigation: a case study

    NASA Astrophysics Data System (ADS)

    Grießbach, Ulkrike; Stange, Peter; Schuetze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with the higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local stochastic water demand functions are used which are derived from optimized agronomic response on farms scale. These functions take into account different soil types, crops, stochastically generated climate scenarios considering different economic conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed and applied for a case study in Saxony which helps to evaluate combined water supply and demand management policies on a regional level.

  15. Landsat and water: case studies of the uses and benefits of landsat imagery in water resources

    USGS Publications Warehouse

    Serbina, Larisa O.; Miller, Holly M.

    2014-01-01

    The Landsat program has been collecting and archiving moderate resolution earth imagery since 1972. The number of Landsat users and uses has increased exponentially since the enactment of a free and open data policy in 2008, which made data available free of charge to all users. Benefits from the information Landsat data provides vary from improving environmental quality to protecting public health and safety and informing decision makers such as consumers and producers, government officials and the public at large. Although some studies have been conducted, little is known about the total benefit provided by open access Landsat imagery. This report contains a set of case studies focused on the uses and benefits of Landsat imagery. The purpose of these is to shed more light on the benefits accrued from Landsat imagery and to gain a better understanding of the program’s value. The case studies tell a story of how Landsat imagery is used and what its value is to different private and public entities. Most of the case studies focus on the use of Landsat in water resource management, although some other content areas are included.

  16. Hydrochemical evaluation of river water quality—a case study

    NASA Astrophysics Data System (ADS)

    Qishlaqi, Afishin; Kordian, Sediqeh; Parsaie, Abbas

    2016-04-01

    Rivers are one of the most environmentally vulnerable sources for contamination. Since the rivers pass through the cities, industrial and agricultural centers, these have been considered as place to dispose the sewages. This issue is more important when the river is one of the main sources of water supplying for drinking, agricultural and industrial utilizations. The goal of the present study was assessing the physicochemical characteristics of the Tireh River water. The Tireh River is the main river in the Karkheh catchment in the Iran. To this end, 14 sampling stations for measuring the physicochemical properties of Tireh River along the two main cities (Borujerd and Dorud) were measured. The results showed that (except SO4) Mg, Ca and other anions and cations have concentrations under WHO standard limitation. Almost all samples have suitable conditions for drinking with regard to the WHO standard and in comparison with agricultural standard (FAO Standard), and the potential of water is suitable for irrigation purposes. According to Wilcox diagram, 78 % of samples were at the C3-S1 and 21.5 % were at C2-S1 classes. The piper diagram shows that most of samples are bicarbonate and calcic facies.

  17. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  18. ADVERSE IMPACTS OF WASTE WATER TREATMENT ­ A CASE STUDY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial metal plating processes coat materials with metals, such as chromium, copper and nickel. After the plating process, excess metals are rinsed off and the rinse water is collected and then treated to remove metals prior to discharge of the rinse water into rivers. This waste water is typica...

  19. MULTIPLE WATER REUSE IN POULTRY PROCESSING: CASE STUDY IN EGYPT

    EPA Science Inventory

    An industrial-scale multiple water reuse system was under investigation for a period of four years at a modern poultry processing plant in Alexandria, Egypt. The system involved: chlorination of cooling water from the compressor; reuse of this water in the chiller; successive tra...

  20. Sedimentation in lagoon waters (Case study on Segara Anakan Lagoon)

    NASA Astrophysics Data System (ADS)

    Sari, Lilik Kartika; Adrianto, Luky; Soewardi, Kadarwan; Atmadipoera, Agus S.; Hilmi, Endang

    2016-05-01

    This study aims to demonstrate the effect of sedimentation on waters area that serves as an advocate for life. It is included in the category to be wary considering these conditions will reduce the quality of life and threaten the life and survival of endemic biota. Observations rate of sedimentation since April 2014 until March 2015 performed at 6 stations that are considered to represent the condition of the lagoon. The observations for rate of sedimentation was conducted twice in a month for one year. Oceanographic parameters was taken by CTD (Conductivity, Temperature, and Depth) sensor in two seasons, at the height of the rainy season, March 2014 and August 2014. Results showed that the aquatic area more narrow characterized by changes in the outside line of the island visible on the image observation for two decades.

  1. Reducing Lead in School Drinking Water: A Case Study.

    ERIC Educational Resources Information Center

    Odell, Lee

    1991-01-01

    The Seattle School District began a program in 1990 to identify lead levels in the district's drinking water and to implement measures to lower any high lead levels. Recounts each of the seven steps of the program, discusses what the district found, and explains how it lowered lead levels in the drinking water. (MLF)

  2. The Impacts of Water Conservation Strategies on Water Use: Four Case Studies1

    PubMed Central

    Tsai, Yushiou; Cohen, Sara; Vogel, Richard M

    2011-01-01

    We assessed impacts on water use achieved by implementation of controlled experiments relating to four water conservation strategies in four towns within the Ipswich watershed in Massachusetts. The strategies included (1) installation of weather-sensitive irrigation controller switches (WSICS) in residences and municipal athletic fields; (2) installation of rainwater harvesting systems in residences; (3) two outreach programs: (a) free home indoor water use audits and water fixture retrofit kits and (b) rebates for low-water-demand toilets and washing machines; and (4) soil amendments to improve soil moisture retention at a municipal athletic field. The goals of this study are to summarize the effectiveness of the four water conservation strategies and to introduce nonparametric statistical methods for evaluating the effectiveness of these conservation strategies in reducing water use. It was found that (1) the municipal WSICS significantly reduced water use; (2) residences with high irrigation demand were more likely than low water users to experience a substantial demand decrease when equipped with the WSICS; (3) rainwater harvesting provided substantial rainwater use, but these volumes were small relative to total domestic water use and relative to the natural fluctuations in domestic water use; (4) both the audits/retrofit and rebate programs resulted in significant water savings; and (5) a modeling approach showed potential water savings from soil amendments in ball fields. PMID:22457572

  3. The added value of water footprint assessment for national water policy: a case study for Morocco.

    PubMed

    Schyns, Joep F; Hoekstra, Arjen Y

    2014-01-01

    A Water Footprint Assessment is carried out for Morocco, mapping the water footprint of different activities at river basin and monthly scale, distinguishing between surface- and groundwater. The paper aims to demonstrate the added value of detailed analysis of the human water footprint within a country and thorough assessment of the virtual water flows leaving and entering a country for formulating national water policy. Green, blue and grey water footprint estimates and virtual water flows are mainly derived from a previous grid-based (5 × 5 arc minute) global study for the period 1996-2005. These estimates are placed in the context of monthly natural runoff and waste assimilation capacity per river basin derived from Moroccan data sources. The study finds that: (i) evaporation from storage reservoirs is the second largest form of blue water consumption in Morocco, after irrigated crop production; (ii) Morocco's water and land resources are mainly used to produce relatively low-value (in US$/m3 and US$/ha) crops such as cereals, olives and almonds; (iii) most of the virtual water export from Morocco relates to the export of products with a relatively low economic water productivity (in US$/m3); (iv) blue water scarcity on a monthly scale is severe in all river basins and pressure on groundwater resources by abstractions and nitrate pollution is considerable in most basins; (v) the estimated potential water savings by partial relocation of crops to basins where they consume less water and by reducing water footprints of crops down to benchmark levels are significant compared to demand reducing and supply increasing measures considered in Morocco's national water strategy. PMID:24919194

  4. The Added Value of Water Footprint Assessment for National Water Policy: A Case Study for Morocco

    PubMed Central

    Schyns, Joep F.; Hoekstra, Arjen Y.

    2014-01-01

    A Water Footprint Assessment is carried out for Morocco, mapping the water footprint of different activities at river basin and monthly scale, distinguishing between surface- and groundwater. The paper aims to demonstrate the added value of detailed analysis of the human water footprint within a country and thorough assessment of the virtual water flows leaving and entering a country for formulating national water policy. Green, blue and grey water footprint estimates and virtual water flows are mainly derived from a previous grid-based (5×5 arc minute) global study for the period 1996–2005. These estimates are placed in the context of monthly natural runoff and waste assimilation capacity per river basin derived from Moroccan data sources. The study finds that: (i) evaporation from storage reservoirs is the second largest form of blue water consumption in Morocco, after irrigated crop production; (ii) Morocco’s water and land resources are mainly used to produce relatively low-value (in US$/m3 and US$/ha) crops such as cereals, olives and almonds; (iii) most of the virtual water export from Morocco relates to the export of products with a relatively low economic water productivity (in US$/m3); (iv) blue water scarcity on a monthly scale is severe in all river basins and pressure on groundwater resources by abstractions and nitrate pollution is considerable in most basins; (v) the estimated potential water savings by partial relocation of crops to basins where they consume less water and by reducing water footprints of crops down to benchmark levels are significant compared to demand reducing and supply increasing measures considered in Morocco’s national water strategy. PMID:24919194

  5. THE EMPACT BEACHES: A CASE STUDY IN RECREATIONAL WATER SAMPLING

    EPA Science Inventory

    Various chapters describe sample and experimental design, use of a geometric mean or an arithmetic mean, modeling and forecasting, and risk assessment in relation to monitoring recreational waters for fecal indicators. All of these aspects of monitoring are dependent on the spat...

  6. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    EPA Science Inventory

    EPA is releasing the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and Developmen...

  7. CASE-CONTROL STUDY OF ASBESTOS IN DRINKING WATER AND CANCER RISK

    EPA Science Inventory

    The authors conducted a case-control, interview-based study of the risk of developing cancer from asbestos in drinking water. The Everett, Washington, area was selected for the study because of the unusually high concentration of chrysotile asbestos in the drinking water it draws...

  8. DRINKING WATER SOURCE AND RISK OF BLADDER CANCER: A CASE-CONTROL STUDY

    EPA Science Inventory

    A water source component was included in a large population based case-control interview study of artificial sweetners. Relative risk from using chlorinated surface water sources is not elevated in the exposed groups, and there is no suggestion of a duration-response relationship...

  9. Climate change, water rights, and agriculture: A case study in Idaho

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-05-01

    Water supply is important to agriculture and other consumptive uses in the arid and semiarid climate zones, but it has become increasingly uncertain under a changing climate. More important, how agricultural output will be affected may depend on how water resources are allocated based on the dominant sharing rule, according to Xu et al., who conducted a case study in Idaho.

  10. Water Resources Management in the Lerma-Chapala Basin, Mexico: A Case Study

    ERIC Educational Resources Information Center

    Villamagna, Amy M.; Murphy, Brian R.

    2008-01-01

    Water resources have become an increasingly important topic of discussion in natural resources and environmental management courses. To address the need for more critical thinking in the classroom and to provide an active learning experience for undergraduate students, we present a case study based on water competition and management in the…

  11. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  12. Electrochemical anomalies of protic ionic liquid - Water systems: A case study using ethylammonium nitrate - Water system

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Nakama, Kazuya; Hayashi, Ryotaro; Aono, Masami; Takekiyo, Takahiro; Yoshimura, Yukihiro; Saihara, Koji; Shimizu, Akio

    2016-08-01

    Electrochemical impedance spectroscopy was used to evaluate protic ionic liquid (pIL)-water mixtures in the temperature range of -35-25 °C. The pIL used in this study was ethylammonium nitrate (EAN). At room temperature, the resonant mode of conductivity was observed in the high frequency region. The anomalous conductivity disappeared once solidification occurred at low temperatures. The kinetic pH of the EAN-water system was investigated at a fixed temperature. Rhythmic pH oscillations in the EAN-H2O mixtures were induced at 70 < x < 90 mol% H2O. The electrochemical instabilities in a EAN-water mixture are caused in an intermediate state between pIL and bulk water. From the ab initio calculations, it was observed that the dipole moment of the EAN-water complex shows a discrete jump at around 85 mol% H2O. Water-mediated hydrogen bonding network drastically changes at the crossover concentration.

  13. Impact of Water Availability on Regional Power System Operations - A Case Study of ERCOT

    NASA Astrophysics Data System (ADS)

    Levin, T.; Zhou, Z.

    2015-12-01

    Impact of water availability on regional power system operations - A case study of ERCOT Thermal power plants are the largest single source of water withdrawals in the United States, mainly for cooling purposes. The amount of water that is required for cooling is highly dependent on a number of factors including the generation technologies being used, the temperature of the input water, and the total electricity load in the system. During summer months, many of these factors coincide to greatly increase the demand for water in a power system. Electricity demand typically reaches its annual peak when temperatures are high due to increased air conditioning loads. Ambient water temperatures also increase, meaning that greater quantities of water are required to provide the same amount of cooling at thermal generation plants. Finally, water availability is generally constrained due to seasonal effects and potential droughts. This raises concerns that water scarcity may lead to forced de-rating at some power plants during periods of peak demand, resulting in a more vulnerable and less reliable energy system. While increasing attention has recently been given to the inexorable link between water and energy, most commercial power models do not explicitly account for water use when optimizing system operation. We apply the AURORAxmp power modeling software to a case study analysis of the ERCOT power system to determine the water requirements of the system during periods of peak power demand. We then analyze water availability by location and time to identify potential supply shortages, which may reduce actual power generation availability. These data are fed back into the power systems model and specific generation units are de-rated as necessitated by water constraints. We then analyze these results to determine how the optimal generation mix, system reliability, and wholesale electricity prices may be affected by when the ERCOT power system is operated under water

  14. Water resources regulation based on ET management - A case study on Huabei Plain in China

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2012-04-01

    objective-ET distribution method, and the connections and interactions among ET water rights, surface-water rights and groundwater rights are studied. A case study is carried out to test the ET method over an agricultural area on Huabei Plain. SWAT model is employed to compare three water-saving scenarios. The results will lead to the practical water allocation scheme that is suitable in the study area.

  15. Case Studies of Water Vapor and Surface Liquid Water from AVIRIS Data Measured Over Denver, CO and Death Valley, CA

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.

    1991-01-01

    High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.

  16. Getting water right: A case study in water yield modelling based on precipitation data.

    PubMed

    Pessacg, Natalia; Flaherty, Silvia; Brandizi, Laura; Solman, Silvina; Pascual, Miguel

    2015-12-15

    Water yield is a key ecosystem service in river basins and especially in dry regions around the World. In this study we carry out a modelling analysis of water yields in the Chubut River basin, located in one of the driest districts of Patagonia, Argentina. We focus on the uncertainty around precipitation data, a driver of paramount importance for water yield. The objectives of this study are to: i) explore the spatial and numeric differences among six widely used global precipitation datasets for this region, ii) test them against data from independent ground stations, and iii) explore the effects of precipitation data uncertainty on simulations of water yield. The simulations were performed using the ecosystem services model InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) with each of the six different precipitation datasets as input. Our results show marked differences among datasets for the Chubut watershed region, both in the magnitude of precipitations and their spatial arrangement. Five of the precipitation databases overestimate the precipitation over the basin by 50% or more, particularly over the more humid western range. Meanwhile, the remaining dataset (Tropical Rainfall Measuring Mission - TRMM), based on satellite measurements, adjusts well to the observed rainfall in different stations throughout the watershed and provides a better representation of the precipitation gradient characteristic of the rain shadow of the Andes. The observed differences among datasets in the representation of the rainfall gradient translate into large differences in water yield simulations. Errors in precipitation of +30% (-30%) amplify to water yield errors ranging from 50 to 150% (-45 to -60%) in some sub-basins. These results highlight the importance of assessing uncertainties in main input data when quantifying and mapping ecosystem services with biophysical models and cautions about the undisputed use of global environmental datasets. PMID:26282756

  17. Embracing Uncertainty: A Case Study Examination of How Climate Change is Shifting Water Utility Planning

    NASA Astrophysics Data System (ADS)

    Kaatz, L.

    2015-12-01

    Climate change has emerged as one of the greatest challenges facing water utilities' planning for the future, adding a new source and level of complexity that is forcing many agencies to re-examine their decision-making processes. A significant barrier for many agencies is figuring out how to consider highly uncertain climate information and move away from deterministic thinking to make climate-informed decisions. To provide water professionals with practical and relevant information, the Water Utility Climate Alliance teamed up with the American Water Works Association, in coordination with the Water Research Foundation and Association of Metropolitan Water Agencies, to develop a white paper sharing insights into how and why water agencies are modifying planning and decision-making processes. The 13 case studies presented illustrate the variety of ways in which utilities are incorporating climate change into planning, from immediate operational decisions, to capital planning and asset management, to long-term supply planning.

  18. Toward greener dialysis: a case study to illustrate and encourage the salvage of reject water.

    PubMed

    Connor, Andrew; Milne, Steve; Owen, Andrew; Boyle, Gerard; Mortimer, Frances; Stevens, Paul

    2010-06-01

    Climate change is now considered to be a major global public health concern. However, the very provision of health care itself has a significant impact upon the environment. Action must be taken to reduce this impact. Water is a precious and finite natural resource. Vast quantities of high-grade water are required to provide haemodialysis. The reverse osmosis systems used in the purification process reject approximately two-thirds of the water presented to them. Therefore, around 250 litres of 'reject water' result from the production of the dialysate required for one treatment. This good quality reject water is lost-to-drain in the vast majority of centres worldwide. Simple methodologies exist to recycle this water for alternative purposes. We describe here a case study of the only UK renal service we know to have implemented such water-saving methodologies. We outline the benefits in terms of financial and environmental savings. PMID:20591001

  19. Water nitrates and CNS birth defects: a population-based case-control study

    SciTech Connect

    Arbuckle, T.E.; Sherman, G.J.; Corey, P.N.; Walters, D.; Lo, B.

    1988-03-01

    The relation between maternal exposure to nitrates in drinking water and risk of delivering an infant with a central nervous system (CNS) malformation was examined by means of a case-control study in New Brunswick, Canada. All cases of CNS defects for a high and a low prevalence area of New Brunswick, for the years 1973-1983, were included in the study. Controls were selected randomly from the livebirth files for the province, matched on county of maternal residence and date of birth. One hundred and thirty (130) cases were identified and individually matched with two controls each. Individual water samples were collected from the case and control mother's address given on the birth or stillbirth records. The study revealed that the effect of nitrate exposure in water was modified by whether the source of the drinking water was a private well or a public municipal distribution system. Compared to a baseline nitrate level of 0.1 ppm, exposure to nitrate levels of 26 ppm from private well water sources was associated with a moderate, but not statistically significant, increase in risk (risk odds ratio = 2.30; 95% confidence interval = 0.73-7.29). If the source of drinking water was a municipal distribution system or a private spring, an increase in nitrate exposure was associated with a decrease in risk of delivering a CNS-malformed infant; however, these effect estimates were not statistically significant. The positive increase in risk with nitrate exposure from well water sources requires further study using a larger case series and a larger proportion of exposures to nitrate levels exceeding 5 ppm.

  20. Energy-water analysis of the 10-year WECC transmission planning study cases.

    SciTech Connect

    Tidwell, Vincent Carroll; Passell, Howard David; Castillo, Cesar; Moreland, Barbara

    2011-11-01

    calculating water withdrawal and consumption for current and planned electric power generation; projected water demand from competing use sectors; and, surface and groundwater availability. WECC's long range planning is organized according to two target planning horizons, a 10-year and a 20-year. This study supports WECC in the 10-year planning endeavor. In this case the water implications associated with four of WECC's alternative future study cases (described below) are calculated and reported. In future phases of planning we will work with WECC to craft study cases that aim to reduce the thermoelectric footprint of the interconnection and/or limit production in the most water stressed regions of the West.

  1. Costs of water treatment due to diminished water quality: A case study in Texas

    NASA Astrophysics Data System (ADS)

    Dearmont, David; McCarl, Bruce A.; Tolman, Deborah A.

    1998-04-01

    The cost of municipal water treatment due to diminished water quality represents an important component of the societal costs of water pollution. Here the chemical costs of municipal water treatment are expressed as a function of raw surface water quality. Data are used for a 3-year period for 12 water treatment plants in Texas. Results show that when regional raw water contamination is present, the chemical cost of water treatment is increased by 95 per million gallons (per 3785 m3) from a base of 75. A 1% increase in turbidity is shown to increase chemical costs by 0.25%.

  2. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi

    PubMed Central

    Kayser, Georgia L.; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E.

    2015-01-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries—Brazil, Ecuador, and Malawi—as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers. PMID:25798068

  3. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  4. Environmental health aspects of drinking water-borne outbreak due to karst flooding: case study.

    PubMed

    Dura, Gyula; Pándics, Tamás; Kádár, Mihály; Krisztalovics, Katalin; Kiss, Zoltánné; Bodnár, Judit; Asztalos, Agnes; Papp, Erzsébet

    2010-09-01

    Climate change may increase the incidence of waterborne diseases due to extreme rainfall events, and consequent microbiological contamination of the water source and supply. As a result of the complexity of the pathways from the surface to the consumer, it is difficult to detect an association between rainfall and human disease. The water supply of a Hungarian city, Miskolc (174,000 inhabitant), is mainly based on karstic water, a vulnerable underground water body. A large amount of precipitation fell on the catchment area of the karstic water source, causing an unusually strong karstic water flow and flooding, and subsequent microbiological contamination. The presence of several potential sources of contamination in the protective zone of the karstic water source should be emphasized. The water supplier was unprepared to treat the risk of waterborne outbreak caused by an extreme weather event. Public health intervention and hygienic measures were taken in line with epidemiological actions, focusing on the protection of consumers by providing safe drinking water. The contamination was identified, and measures were taken for risk reduction and prevention. This case study underlines the increasing importance of preparedness for extreme water events in order to protect the karstic water sources and to avoid waterborne outbreaks. PMID:20375480

  5. Controls on water use for thermoelectric generation: case study Texas, US.

    PubMed

    Scanlon, Bridget R; Reedy, Robert C; Duncan, Ian; Mullican, William F; Young, Michael

    2013-10-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km(3)), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km(3)) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. PMID:23937226

  6. Controls on Water Use for Thermoelectric Generation: Case Study Texas, U.S.

    PubMed Central

    2013-01-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km3), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km3) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. PMID:23937226

  7. Incorporating water consumption into crop water footprint: A case study of China's South-North Water Diversion Project.

    PubMed

    Wei, Yuhang; Tang, Deshan; Ding, Yifan; Agoramoorthy, Govindasamy

    2016-03-01

    The crop water footprint (WF) indicates the consumption of water for a crop during the planting period, mainly through evapotranspiration. However, as irrigated agriculture accounts for nearly 25% of the global agriculture water usage, evaluation of WF during transportation becomes essential to improve the efficiency of irrigated agriculture. This study aims at building an improved WF model to understand how much WF is produced due to water diversion and how much crop WF increases during the transfer. The proposed model is then used to calculate the WF of four major crops in five provinces along China's South-North Water Transfer Project in two steps. First, the WF of the water transfer project (WFeng) is assessed in a supply chain analysis method. Second, a WF allocation model is built to distribute the project WF for each crop/province. The results show that the evaporation and seepage are the main sources of WFeng. Out of five provinces, two namely Tianjin and Hebei present higher WFblue and WF increase. A positive correlation between water diversion distance and crop WF increase is noted. Among the four crops, cotton presents higher WFblue and WF increase. The crops with higher WFblue tend to be more strongly influenced by the water diversion project, due to high irrigation water dependency. This analysis may expand the WF concept from an evaporation-related term to a term reflecting crop biological processes and water consumption by artificial irrigation projects. Thus, it may serve as an indicator for optimizing future objectives and strategies associated to water resource planning in China and elsewhere. PMID:26760279

  8. Case Studies on the Impact of Concentrated Animal Feeding Operations (CAFOs) on Ground Water Quality

    EPA Science Inventory

    This report describes a series of case studies involving commercial swine, poultry, dairy, and beef CAFO operations where ground water contamination by nitrate and ammonia has occurred to ascertain whether other stressors in CAFO wastes are also being transported through the vado...

  9. CASE-CONTROL CANCER MORTALITY STUDY AND CHLORINATION OF DRINKING WATER IN LOUISIANA

    EPA Science Inventory

    Several Louisiana parished (counties) using the Mississippi River for their source of public drinking water have the highest mortality rates (1950-69) in the United States for several cancers. Therefore, a case-control mortality study on cancer of the liver, brain, pancreas, blad...

  10. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  11. Risk of Gastric Cancer by Water Source: Evidence from the Golestan Case-Control Study

    PubMed Central

    Eichelberger, Laura; Murphy, Gwen; Etemadi, Arash; Abnet, Christian C.; Islami, Farhad; Shakeri, Ramin; Malekzadeh, Reza; Dawsey, Sanford M.

    2015-01-01

    Background Gastric cancer (GC) is the world’s fifth most common cancer, and the third leading cause of cancer-related death. Over 70% of incident cases and deaths occur in developing countries. We explored whether disparities in access to improved drinking water sources were associated with GC risk in the Golestan Gastric Cancer Case Control Study. Methods and Findings 306 cases and 605 controls were matched on age, gender, and place of residence. We conducted unconditional logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CI), adjusted for age, gender, ethnicity, marital status, education, head of household education, place of birth and residence, homeownership, home size, wealth score, vegetable consumption, and H. pylori seropositivity. Fully-adjusted ORs were 0.23 (95% CI: 0.05–1.04) for chlorinated well water, 4.58 (95% CI: 2.07–10.16) for unchlorinated well water, 4.26 (95% CI: 1.81–10.04) for surface water, 1.11 (95% CI: 0.61–2.03) for water from cisterns, and 1.79 (95% CI: 1.20–2.69) for all unpiped sources, compared to in-home piped water. Comparing unchlorinated water to chlorinated water, we found over a two-fold increased GC risk (OR 2.37, 95% CI: 1.56–3.61). Conclusions Unpiped and unchlorinated drinking water sources, particularly wells and surface water, were significantly associated with the risk of GC. PMID:26023788

  12. Modeling integrated urban water systems in developing countries: case study of Port Vila, Vanuatu.

    PubMed

    Poustie, Michael S; Deletic, Ana

    2014-12-01

    Developing countries struggle to provide adequate urban water services, failing to match infrastructure with urban expansion. Despite requiring an improved understanding of alternative infrastructure performance when considering future investments, integrated modeling of urban water systems is infrequent in developing contexts. This paper presents an integrated modeling methodology that can assist strategic planning processes, using Port Vila, Vanuatu, as a case study. 49 future model scenarios designed for the year 2050, developed through extensive stakeholder participation, were modeled with UVQ (Urban Volume and Quality). The results were contrasted with a 2015 model based on current infrastructure, climate, and water demand patterns. Analysis demonstrated that alternative water servicing approaches can reduce Port Vila's water demand by 35 %, stormwater generation by 38 %, and nutrient release by 80 % in comparison to providing no infrastructural development. This paper demonstrates that traditional centralized infrastructure will not solve the wastewater and stormwater challenges facing rapidly growing urban cities in developing countries. PMID:24973053

  13. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.

    PubMed

    Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang

    2013-10-01

    In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (p<0.05). The biomasses of zooplankton and benthos were also improved after the vegetation replanting. The study confirmed that vegetation replanting could alleviate the increasing water pollution and rehabilitate the degraded aquatic ecosystem. The case study would be an example for polluted urban waters restoration in the middle-downstream area of Yangtze River Base. PMID:23247519

  14. Developing a national framework for safe drinking water--case study from Iceland.

    PubMed

    Gunnarsdottir, Maria J; Gardarsson, Sigurdur M; Bartram, Jamie

    2015-03-01

    Safe drinking water is one of the fundaments of society and experience has shown that a holistic national framework is needed for its effective provision. A national framework should include legal requirements on water protection, surveillance on drinking water quality and performance of the water supply system, and systematic preventive management. Iceland has implemented these requirements into legislation. This case study analyzes the success and challenges encountered in implementing the legislation and provide recommendations on the main shortcomings identified through the Icelandic experience. The results of the analysis show that the national framework for safe drinking water is mostly in place in Iceland. The shortcomings include the need for both improved guidance and control by the central government; and for improved surveillance of the water supply system and implementation of the water safety plan by the Local Competent Authorities. Communication to the public and between stakeholders is also insufficient. There is also a deficiency in the national framework regarding small water supply systems that needs to be addressed. Other elements are largely in place or on track. Most of the lessons learned are transferable to other European countries where the legal system around water safety is built on a common foundation from EU directives. The lessons can also provide valuable insights into how to develop a national framework elsewhere. PMID:25434689

  15. A case study of ethanol water demand during industrial phase in Brazil

    NASA Astrophysics Data System (ADS)

    Hernandes, T.; Scarpare, F. V.; Guarenghi, M.; Pereira, T.; Galdos, M. V.

    2012-12-01

    Thayse A. D. Hernandesb, Fábio V. Scarparea, Marjorie M. Guarenghib, Tássia P. Pereirab, Marcelo V. Galdosa a Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil, E-mail: fabio.scarpare@bioetanol.org.br b Faculdade de Engenharia Mecânica, Unicamp, Cidade Universitária "Zeferino Vaz", CEP 13083-860, Campinas, SP, Brazil In São Paulo State, the water resources have being used by sugarcane industry responsibly, through high reuse rates that may reach 95% during industrial process. The average amount of catchment water stays around 2.0 m3 Mg 1 of industrial sugarcane stalk. However, in some modern mills which use higher technical level of closed water circuit, the standard goal for sugarcane industry, 1.0 m3 Mg 1 can be reached. In some regions where the uptake water for industrial segment is high as in São Paulo State, water use assessment is desired for sustainable ethanol production. Thus, two regions in São Paulo State with two plants each were taken as a case study aiming to assess ethanol water demand during the industrial phase. Araraquara was the first study region where the water demand was classified as in critical condition in 2010 according to the Water and Electrical Energy Department of São Paulo State (DAEE). The industrial activities were responsible for 50% of the water catchment. Araçatuba was the second study region where water demand was classified as being of concern (DAEE) due to high percentage of catchment water for industrial activities, around 90%. Data regarding the amount of millable cane processed, days of the plant operation, ratio of cane used for ethanol production in 2010/2011 season were used for direct water demand estimation considering different water catchment scenarios of 2.0, 1.0 and 0.7 (technological development prediction scenario) m3 Mg-1 of millable cane. For indirect water demand estimation, data regarding installed capacity of each

  16. Water footprints as an indicator for the equitable utilization of shared water resources. (Case study: Egypt and Ethiopia shared water resources in Nile Basin)

    NASA Astrophysics Data System (ADS)

    Sallam, Osama M.

    2014-12-01

    The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.

  17. Comparative study between M. oleifera and aluminum sulfate for water treatment: case study Colombia.

    PubMed

    Salazar Gámez, Lorena L; Luna-delRisco, Mario; Cano, Roberto Efrain Salazar

    2015-10-01

    The world has a water deficit, mostly located in developing countries. For example, in Colombia, water deficit is a major concern and it increases in rural areas, where the rate of accessibility to drinking water is of 33.26% in 2005. Since the 1970s, the most used technology for water purification is the conventional physicochemical process. The most common coagulant used in this process is aluminum sulfate (alum). This study focuses on a comparison between Moringa oleifera seeds and alum for water treatment in different natural waters. Results showed that M. oleifera removed 90% turbidity and alum 96% from water samples from the tested natural brook. However, color removal for M. oleifera was 95 and 80.3% for alum. For water-polluted samples, both coagulants have shown high efficiency (100%) in color and turbidity removal. Usage of natural coagulants (i.e., M. oleifera) instead of chemical ones (i.e., alum) are more convenient in rural areas where the economic situation and accessibility of those products are key elements to maintain fresh water treatment standards. Additionally, results demonstrated that high dosages M. oleifera did not affect the optimal value in terms of color and turbidity removal. In rural and developing countries, this is important because it does not require a sophisticated dosing equipment. PMID:26437662

  18. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    PubMed Central

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  19. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill.

    PubMed

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  20. Influence of natural vs. anthropogenic stresses on water resource sustainability: a case study.

    PubMed

    Fennell, J; Zawadzki, A; Cadman, C

    2006-01-01

    Climate change has been identified as a major influence on basin water balances. However, land use and water use practices have also been identified as players. This case study was completed to better understand a changing water balance affecting a major basin in Alberta. The Beaver River basin is located in east central Alberta. Much of the basin has been developed for agricultural use; however, a number of heavy oil operations also exist. Both sectors use surface and groundwater. Evidence exists that the basin hydrology has changed since the mid-1970s. Coincidently, it was at this time that much of the land was cleared for agricultural development and commercial-scale oil development began. Oil industry use of water was suspected as the main cause for the changes observed. To investigate this further, data from regional hydrometric and meteorological stations were assessed along with water well hydrographs and historical satellite images. A significant correlation was found between basin responses and a climate phenomenon known as the Pacific decadal oscillation. Although the correlation between the Pacific decadal oscillation and basin hydrology appeared strong, deforestation for agricultural development also seemed to have an effect. Use of the local water resources was found to be of minor significance. PMID:16838685

  1. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    PubMed

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. PMID:26851759

  2. Overview of EPA's Approach to Developing Prospective Case Studies Technical Workshop: Case Studies to Assess Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    EPA Science Inventory

    One component of the United States Environmental Protection Agency's (EPA) study of the potential impacts of hydraulic fracturing on drinking water resources is prospective case studies, which are being conducted to more fully understand and assess if and how site specific hydrau...

  3. Case study on the implementation of deammonification for the process water treatment of Munich WWTPs.

    PubMed

    Hilliges, Rita; Steinle, Eberhard; Böhm, Bernhard

    2012-01-01

    The two-staged WWTP 'Gut Grosslappen' has a capacity of 2 mio. PE. It comprises a pre-denitrification in the first stage using recirculation from the nitrifying second stage. A residual post-denitrification in a downstream sand filter is required in order to achieve the effluent standards. Presently the process water from sludge digestion is treated separately by nitrification/denitrification. Due to necessary reconstruction of the biological stages, the process water treatment was included in the future overall process concept of the WWTP. A case study was conducted comparing the processes nitritation/denitrititation and deammonification with nitrification/denitrification including their effect on the operational costs of the planned main flow treatment. Besides the different operating costs the investment costs required for the process water treatment played a significant role. Six cases for the process water treatment were compared. As a result, in Munich deammonification can only be recommended for long-term future developments, due to the high investment costs, compared with the nitritation/denitritation alternative realizable in existing tanks. The savings concerning aeration, sludge disposal and chemicals were not sufficient to compensate for the additional investment costs. Due to the specific circumstances in Munich, for the time being the use of existing tanks for nitritation/denitritation proved to be most economical. PMID:22546808

  4. Bayesian approaches for Integrated Water Resources Management. A Mediterranean case study.

    NASA Astrophysics Data System (ADS)

    Gulliver, Zacarías; Herrero, Javier; José Polo, María

    2013-04-01

    This study presents the first steps of a short-term/mid-term analysis of the water resources in the Guadalfeo Basin, Spain. Within the basin the recent construction of the Rules dam has required the development of specific management tools and structures for this water system. The climate variability and the high water demand requirements for agriculture irrigation and tourism in this region may cause different controversies in the water management planning process. During the first stages of the study a rigorous analysis of the Water Framework Directive results was done in order to implement the legal requirements and the solutions for the gaps identified by the water authorities. In addition, the stakeholders and water experts identified the variables and geophysical processes for our specific water system case. These particularities need to be taken into account and are required to be reflected in the final computational tool. For decision making process purposes in a mid-term scale, a bayesian network has been used to quantify uncertainty which also provides a structure representation of probabilities, actions-decisions and utilities. On one hand by applying these techniques it is possible the inclusion of decision rules generating influence diagrams that provides clear and coherent semantics for the value of making an observation. On the other hand the utility nodes encode the stakeholders preferences which are measured on a numerical scale, choosing the action that maximizes the expected utility [MEU]. Also this graphical model allows us to identify gaps and project corrective measures, for example, formulating associated scenarios with different event hypotheses. In this sense conditional probability distributions of the seasonal water demand and waste water has been obtained between the established intervals. This fact will give to the regional water managers useful information for future decision making process. The final display is very visual and allows

  5. Assessment of management approaches in a public water utility: A case study of the Namibia water corporation (NAMWATER)

    NASA Astrophysics Data System (ADS)

    Ndokosho, Johnson; Hoko, Zvikomborero; Makurira, Hodson

    More than 90% of urban water supply and sanitation services in developing countries are provided by public organizations. However, public provision of services has been inherently inefficient. As a result a number of initiatives have emerged in recent years with a common goal to improve service delivery. In Namibia, the water sector reform resulted in the creation of a public utility called the Namibia Water Corporation (NAMWATER) which is responsible for bulk water supply countrywide. Since its inception in 1998, NAMWATER has been experiencing poor financial performance. This paper presents the findings of a case study that compared the management approaches of NAMWATER to the New Public Management (NPM) paradigm. The focus of the NPM approach is for the public water sector to mirror private sector methods of management so that public utilities can accrue the benefits of effectiveness, efficiency and flexibility often associated with private sector. The study tools used were a combination of literature review, interviews and questionnaires. It was found out that NAMWATER has a high degree of autonomy in its operations, albeit government approved tariffs and sourcing of external financing. The utility reports to government annually to account for results. The utility embraces a notion of good corporate culture and adheres to sound management practices. NAMWATER demonstrated a strong market-orientation indicated by the outsourcing of non-core functions but benchmarking was poorly done. NAMWATER’s customer-orientation is poor as evidenced by the lack of customer care facilities. NAMWATER’s senior management delegated operational authority to lower management to facilitate flexibility and eliminate bottlenecks. The lower management is in turn held accountable for performance by the senior management. There are no robust methods of ensuring sufficient accountability indicated by absence of performance contracts or service level agreements. It was concluded that

  6. Congenital malformations and maternal drinking water supply in rural South Australia: a case-control study.

    PubMed

    Dorsch, M M; Scragg, R K; McMichael, A J; Baghurst, P A; Dyer, K F

    1984-04-01

    A case-control study, carried out in the Mount Gambier region of South Australia, investigated the relationship between mothers' antenatal drinking water source and malformations in offspring. It was prompted by earlier descriptive findings of a statistically significant, and localized, increase in the perinatal mortality rate in Mount Gambier, due principally to congenital malformations affecting the central nervous system and multiple organ systems. Available for statistical analysis were 218 case-control pairs, from the period 1951-1979, individually matched by hospital, maternal age (+/- 2 years), parity and date of birth (+/- 1 month). Compared with women who drank only rainwater during their pregnancy (relative risk (RR) = 1.0), women who consumed principally groundwater had a statistically significant increase in risk of bearing a malformed child (RR = 2.8). Statistically significant risk increases occurred specifically for malformations of the central nervous system and musculoskeletal system. Reanalysis of the data by estimated water nitrate concentration demonstrated a nearly threefold increase in risk for women who drank water containing 5-15 ppm of nitrate, and a fourfold increase in risk for those consuming greater than 15 ppm of nitrate. A seasonal gradient in risk was evident among groundwater consumers, ranging from 0.9 for babies conceived in winter, 3.0 in autumn, to 7.0 and 6.3 for spring and summer conceptions, respectively. Linear logistic regression analysis, controlling for risk factors not accounted for in the study design, showed that maternal water supply, infant's sex, and mother's area of residence all contributed significantly to the risk of malformation. These results are discussed in relation to previous experimental and human descriptive studies, suggesting a plausible mechanism for nitrate-induced teratogenesis. PMID:6711537

  7. Congenital malformations and maternal drinking water supply in rural South Australia: a case-control study

    SciTech Connect

    Dorsch, M.M.; Scragg, R.K.R.; McMichael, A.J.; Baghurst, P.A.; Dyer, K.F.

    1984-04-01

    A case-control study, carried out in the Mount Gambier region of South Australia, investigated the relationship between mothers' antenatal drinking water source and malformations in offspring. It was prompted by earlier descriptive findings of a statistically significant, and localized, increase in the perinatal mortality rate in Mount Gambier, due principally to congential malformations affecting the central nervous system and multiple organ systems. Available for statistical analysis were 218 case-control pairs, from the period 1951-1979, individually matched by hospital, maternal age (+/- 2 years), parity and date of birth (+/- 1 month). Compared with women who drank only rainwater during their pregnancy (relative risk (RR) = 1.0), women who consumed principally groundwater had a statistically significant increase in risk of bearing a malformed child (RR = 2.8). statistically significant risk increases occurred specifically for malformations of the central nervous system and musculoskeletal system. Reanalysis of the data by estimated water nitrate concentration demonstrated a nearly threefold increase in risk for women who drank water containing 5-15 ppm of nitrate, and fourfold increase in risk for those consuming >15 ppm of nitrate.

  8. Assessment the performance of classification methods in water quality studies, A case study in Karaj River.

    PubMed

    Sakizadeh, Mohamad

    2015-09-01

    To show the performance of classification methods in water quality studies, linear discriminant, and Naïve Bayesian classification methods were applied at nine sampling stations with respect to four parameters including COD, nitrite, nitrate, and total coliforms (selected from ten water quality variables) in Karaj River, Iran. To fulfill the goals of this study, the sampling stations were first separated into two groups using cluster analysis. Rural wastewater was the main source of pollution in the first group, whereas the quality of water in the second group has been degraded mainly by organic and agricultural pollution. In order to have an independent group against which the performance of other classification methods is considered, three cross-validation methods including twofold, leave-one-out, and holdout methods were utilized to retain an independent test set. The results of cross-validation for the linear discriminant analysis show that, except for the leave-one-out method with 11.1 % misclassification error, the overall performance has been the same as that of the training data set. Therefore, it has outperformed compared with that of Naïve Bayesian classification method. However, even though in situations where the correlation coefficient among the parameters is low, the latest method can offer the same performance as that of linear discriminant analysis as well. A sensitivity analysis was implemented using ten water quality variables (pH, COD, EC, TDA, turbidity, nitrate, nitrite, sulfate, TC, and FC) to find the most important variables in the classification of Karaj River showing that turbidity, next to COD, pH, nitrate, and sulfate, have had the most contribution in this field. PMID:26275762

  9. Harmful algal blooms: a case study in two mesotrophic drinking water supply reservoirs in South Carolina

    USGS Publications Warehouse

    Journey, Celeste A.; Beaulieu, Karen M.; Knight, Rodney R.; Graham, Jennifer L.; Arrington, Jane M.; West, Rebecca; Westcott, John; Bradley, Paul M.

    2010-01-01

    Algal blooms can be harmful and a nuisance in a variety of aquatic ecosystems, including reservoirs and lakes. Cyanobacterial(blue-green algae) harmful algal blooms are notorious for producing both taste-and-odor compounds and potent toxins that may affect human health. Taste–and-odor episodes are aesthetic problems often caused by cyanobacterial-produced organic compounds (geosmin and methylisoborneol) and are common in reservoirs and lakes used as source water supplies. The occurrences of these taste-and-odor compounds and toxins (like microcystin) can be sporadic and vary in intensity both spatially and temporally. Recent publications by the U.S. Geological Survey address this complexity and provide protocols for cyanotoxin and taste-and-odor sampling programs. A case study conducted by the U.S. Geological Survey, in cooperation with Spartanburg Water, monitored two mesotrophic reservoirs that serve as public drinking water supplies in South Carolina. Study objectives were (1) to identify spatial and temporal occurrence of the taste-and-odor compound geosmin and the cyanotoxin microcystin and (2) to assess the associated limnological conditions before, during, and after these occurrences. Temporal and spatial occurrence of geosmin and microcystin were highly variable from 2007 to 2009. The highest geosmin concentrations tended to occur in the spring. Microcystin tended to occur in the late summer and early fall, but occurrence was rare and well below World Health Organization guidelines for finished drinking water and recreational activities. No current U.S. Environmental Protection Agency standards are applicable to cyanotoxins in drinking or ambient water. In general, elevated geosmin and microcystin concentrations were the result of complex interactions between cyanobacterial ⬚community composition, nutrient availability, water clarity, hydraulic residence time, and stratification.

  10. Pressures and Impacts On Water Quality: Case Study of Guadiana River Watershed

    NASA Astrophysics Data System (ADS)

    Gomes, F.; Quadrado, F.

    According to Article 5 and Annex II of the Water Framework Directive (WFD) is required that Member States identify significant anthropogenic pressures on river basins and also assess the potential impact of these pressures on the water bodies. The following areas have to be identified: point and diffuse sources pollution, the wa- ter abstraction, the water flow regulation, the morphological alterations and land use patterns. This work intends to describe and analyse the application of an integrated methodology for studying the importance of pressures and impacts on water quality. The methodology integrates loads calculation and mathematical models with Geo- graphical Information Systems (GIS). First step is to identify and characterise, point and diffuse sources of pollution, then estimate loads associate to that sources. Using GIS tools it is possible mapping the most problematic zones inside of the basin, con- cerning pressures to water resources. GIS model will be applied in order to estimate loads from diffuse pollution, using watershed characteristics, namely land use and to- pography. The obtained results together with loads from point sources pollution, will be integrated in a water quality model to evaluate the impacts of this pressures on the basin. For a correct basin management, it is necessary to minimise this impacts, with action plans and monitoring programmes, to improve water quality and achieve the environmental objectives. The case study is the Guadiana river, an international basin with a total area of 66 860 km2, having it is headwaters in Spain with a basin of 55 260 km2. The national area has 11 600 km2 and a big dam is being building, Alqueva, cre- ating a reservoir basin with 250 km2 and a storage capacity of 4 150 hm3. Guadiana river has an important role in the south of Portugal, a region with drought problems. Although the poor water quality that reaches the border, the Portuguese basin also has some important pollution sources. These can

  11. Habitat and Biodiversity of On-Farm Water Storages: A Case Study in Southeast Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Markwell, Kim A.; Fellows, Christine S.

    2008-02-01

    On-farm water storages (locally known as farm dams or farm ponds) are an important part of many agricultural landscapes, as they provide a reliable source of water for irrigation and stock. Although these waterbodies are artificially constructed and morphologically simple, there is increasing interest in their potential role as habitat for native flora and fauna. In this article, we present results from a case study which examined the habitat characteristics (such as water physical and chemical parameters, benthic metabolism, and macrophyte cover) and the macrophyte and macroinvertebrate biodiversity of eight farm ponds on four properties in the Stanley Catchment, Southeast Queensland, Australia. Each landowner was interviewed to allow a comparison of the management of the ponds with measured habitat and biodiversity characteristics, and to understand landowners’ motivations in making farm pond management decisions. The physical and chemical water characteristics of the study ponds were comparable to the limited number of Australian farm ponds described in published literature. Littoral zones supported forty-five macroinvertebrate families, with most belonging to the orders Hemiptera, Coleoptera, Odonata, and Diptera. Invertebrate community composition was strongly influenced by littoral zone macrophyte structure, with significant differences between ponds with high macrophyte cover compared to those with bare littoral zones. The importance of littoral zone macrophytes was also suggested by a significant positive relationship between invertebrate taxonomic richness and macrophyte cover. The landowners in this study demonstrated sound ecological knowledge of their farm ponds, but many had not previously acknowledged them as having high habitat value for native flora and fauna. If managed for aquatic organisms as well as reliable water sources, these artificial habitats may help to maintain regional biodiversity, particularly given the large number of farm ponds

  12. Habitat and biodiversity of on-farm water storages: a case study in Southeast Queensland, Australia.

    PubMed

    Markwell, Kim A; Fellows, Christine S

    2008-02-01

    On-farm water storages (locally known as farm dams or farm ponds) are an important part of many agricultural landscapes, as they provide a reliable source of water for irrigation and stock. Although these waterbodies are artificially constructed and morphologically simple, there is increasing interest in their potential role as habitat for native flora and fauna. In this article, we present results from a case study which examined the habitat characteristics (such as water physical and chemical parameters, benthic metabolism, and macrophyte cover) and the macrophyte and macroinvertebrate biodiversity of eight farm ponds on four properties in the Stanley Catchment, Southeast Queensland, Australia. Each landowner was interviewed to allow a comparison of the management of the ponds with measured habitat and biodiversity characteristics, and to understand landowners' motivations in making farm pond management decisions.The physical and chemical water characteristics of the study ponds were comparable to the limited number of Australian farm ponds described in published literature. Littoral zones supported forty-five macroinvertebrate families, with most belonging to the orders Hemiptera, Coleoptera, Odonata, and Diptera. Invertebrate community composition was strongly influenced by littoral zone macrophyte structure, with significant differences between ponds with high macrophyte cover compared to those with bare littoral zones. The importance of littoral zone macrophytes was also suggested by a significant positive relationship between invertebrate taxonomic richness and macrophyte cover.The landowners in this study demonstrated sound ecological knowledge of their farm ponds, but many had not previously acknowledged them as having high habitat value for native flora and fauna. If managed for aquatic organisms as well as reliable water sources, these artificial habitats may help to maintain regional biodiversity, particularly given the large number of farm ponds across

  13. Interannual variation of ocean heat content in outer Indonesian waters in warming ocean (Case study: West Sumatra waters)

    NASA Astrophysics Data System (ADS)

    Radjawane, Ivonne M.; Bernawis, Lamona I.; Priyono, Bayu; Fadli, Muh.; Putuhena, Hugo S.

    2015-09-01

    This research was intended observe of interannual variation of Ocean Heat Content (OHC) in outer Indonesian Water within the boundary of Indonesia Economic Exclusive Zone (EEZ) with study case focused West Sumatra waters that related to global ocean warming. The temperature data were obtained from ARGO floats as well as other observations data from 2002-2010. OHC was calculated following the equations adopted from Young et al.(2009) using a two-layer ocean models which are above and below the thermocline, where the heat content is calculated from the surface to depth of 28° C isotherm of upper thermocline.The results show trend of increasing OHC and varies interannual in West Sumatra water. The OHC ranges from 425 MJ/m2 to 4720 MJ/m2 in West Sumatra. The signal of OHC in West Sumatra influenced by Indian Ocean Dipole Mode phenomena. When positive IOD event occurs then decrease of OHC in West Sumatra due to decrease in SST over the areas.

  14. Fuzzifying historical peak water levels: case study of the river Rhine at Basel

    NASA Astrophysics Data System (ADS)

    Salinas, Jose Luis; Kiss, Andrea; Blöschl, Günter

    2016-04-01

    Hydrological information comes from a variety of sources, which in some cases might be non-precise. In particular, this is an important issue for the available information on water stages during historical floods. An accurate estimation of the water level profile, together with an elevation model of the riverbed and floodplain areas is fundamental for the hydraulic reconstruction of historical flood events, allowing the back calculation of flood peak discharges, velocity and erosion fields, damages, among others. For the greatest floods during the last 1700 years, Wetter et al. (2011) reconstructed the water levels and historical discharges at different locations in the old city centre from a variety of historical sources (stone marks, official documents, paintings, etc). This work presents a model for the inherent unpreciseness of these historical water levels. This is, with the arithmetics of fuzzy numbers, described by their membership functions, in a similar fashion as the probability density function describes the uncertainty of a random variable. Additional to the in-site collected water stages from floodmarks and other documentary evidence (e.g. preserved in narratives and newspaper flood reports) are prone to be modeled in a fuzzy way. This study presents the use of fuzzy logic to transform historical information from different sources, in this case of flood water stages, into membership functions. This values might then introduced in the mathematical framework of Fuzzy Bayesian Inference to perform the statistical analyses with the rules of fuzzy numbers algebra. The results of this flood frequency analysis, as in the traditional non-fuzzy way, link discharges with exceedance probabilities or return periods. The main difference is, that the modeled discharge quantiles are not precise values, but fuzzy numbers instead, represented by their membership functions explicitly including the unpreciseness of the historical information used. Wetter, O., Pfister, C

  15. A snow water equivalent reanalysis case study over an Andean watershed

    NASA Astrophysics Data System (ADS)

    Cortés, G.; Girotto, M.; Margulis, S. A.

    2013-12-01

    The southern Andes and its seasonal snow cover represent an important seasonal water reservoir for many population centers. Despite this, there is a significant shortage of in situ instrumentation that limits real-time or historical analysis of snow dynamics. Historical remote sensing data can be used to augment the limited in situ data. We apply a data assimilation (reanalysis) framework to reconstruct space-time fields of snow water equivalent (SWE) for a case study over a watershed located in the semi-arid Andes (33°S) for the 2008 water year. The framework consists of conditioning an uncertain prior estimate, obtained from a Land Surface Model (LSM) using the MERRA reanalysis forcing data, with historical fractional snow covered area from the Landsat platform. The method is designed to generate improved estimates of precipitation forcing that are a key requirement for accurate SWE estimates. The resulting daily, 90 m gridded SWE values are validated against runoff volumes and existing in-situ SWE measurements. The resulting estimates consist of a valuable dataset that can serve as a basis for a diverse number of climatological and modeling applications, such as understanding climate change impacts, spatial variability patterns or hydrological model calibration in areas with low to non-existent SWE in-situ measurements.

  16. Urban vulnerability and resiliency over water-related risks: a case study from Algiers.

    PubMed

    Aroua, Najet

    2016-01-01

    The ad hoc management of natural environmental features and inappropriate social interventions could cause vulnerability of thriving urban ecosystems. For instance sub-aerial exposure, water-related hazards, urban intrinsic sensitivity, urban adaptation ability or flexibility and urban transformability factors could contribute a potential danger. In spite of seasonal climatic changes, the exposure indicates a significant geographical determinism whereas the other factors express its antithesis. The present paper aims to adapt a vulnerability-resilience indicators' multicriteria analysis to show the variability and contribution rate with regard to local water-related risks. The municipality of al-Harrash from Algiers has been selected as a case study. The urban vulnerability-resilience closely tied up with a sum of relevant indicators confirmed by the diagnosis items, which are relevant to the local urban and hydro systems. The cumulative sums are obtained from a classification process referring to several criteria implied in the water-related risks. These were formulated here for the purpose of a multicriteria analysis with the objective of assessing the urban vulnerability-resilience index and subsequently orientating the preventive strategy towards different levels of sustainable measures. With this respect the exposure and sensitivity received a significant score while adaptation ability and transformability scored very low. PMID:26942538

  17. A water soluble additive to suppress respirable dust from concrete-cutting chainsaws: a case study.

    PubMed

    Summers, Michael P; Parmigiani, John P

    2015-01-01

    Respirable dust is of particular concern in the construction industry because it contains crystalline silica. Respirable forms of silica are a severe health threat because they heighten the risk of numerous respirable diseases. Concrete cutting, a common work practice in the construction industry, is a major contributor to dust generation. No studies have been found that focus on the dust suppression of concrete-cutting chainsaws, presumably because, during normal operation water is supplied continuously and copiously to the dust generation points. However, there is a desire to better understand dust creation at low water flow rates. In this case study, a water-soluble surfactant additive was used in the chainsaw's water supply. Cutting was performed on a free-standing concrete wall in a covered outdoor lab with a hand-held, gas-powered, concrete-cutting chainsaw. Air was sampled at the operator's lapel, and around the concrete wall to simulate nearby personnel. Two additive concentrations were tested (2.0% and 0.2%), across a range of fluid flow rates (0.38-3.8 Lpm [0.1-1.0 gpm] at 0.38 Lpm [0.1 gpm] increments). Results indicate that when a lower concentration of additive is used exposure levels increase. However, all exposure levels, once adjusted for 3 hours of continuous cutting in an 8-hour work shift, are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) of 5 mg/m(3). Estimates were made using trend lines to predict the fluid flow rates that would cause respirable dust exposure to exceed both the OSHA PEL and the American Conference of Governmental Industrial Hygienists (ACGIH®) threshold limit value (TLV). PMID:25714034

  18. Ocean Color Retrieval Using LANDSAT-8 Imagery in Coastal Case 2 Waters (case Study Persian and Oman Gulf)

    NASA Astrophysics Data System (ADS)

    Moradi, N.; Hasanlou, M.; Saadatseresht, M.

    2016-06-01

    . Despite the high importance of the Persian Gulf and Oman Sea which can have up basin countries, to now few studies have been done in this area. The focus of this article on the northern part of Oman Sea and Persian Gulf, the shores of neighboring Iran (case 2 water). In this paper, by using Landsat 8 satellite imageries, we have discussed chla concentrations and customizing different OC algorithms for this new dataset (Landsat-8 imagery). This satellite was launched in 2013 and its data using two sensors continuously are provided operating one sensor imager land (OLI: Operational Land Imager) and the Thermal Infrared Sensor (TIRS: Thermal InfraRed Sensor) and are available. This sensors collect image data, respectively, for the nine-band short wavelength in the range of 433-2300 nm and dual-band long wavelength thermal. Seven band of the nine band picked up by the sensor information of OLI to deal with sensors TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) in previous satellite Landsat compatible and two other band, the band of coastal water (433 to 453 nm) and Cirrus band (1360 to 1390 nm), short wave infrared provides to measure water quality and high thin clouds. Since OLI sensor in Landsat satellite 8 compared with other sensors to study OC have been allocated a much better spatial resolution can be more accurate to determine changes in OC. To evaluate the results of the image sensor MODIS (Moderate Resolution Imaging Spectroradiometer) at the same time satellite images Landsat 8 is used. The statistical parameters used in order to evaluate the performance of different algorithms, including root mean square error (RMSE) and coefficient of determination (R2), and on the basis of these parameters we choose the most appropriate algorithm for the area. Extracted results for implementing different OC algorithms clearly shows superiority of utilized method by R2=0.71 and RMSE=0.07.

  19. Public choice in water resource management: two case studies of the small-scale hydroelectric controversy

    SciTech Connect

    Soden, D.L.

    1985-01-01

    Hydroelectric issues have a long history in the Pacific Northwest, and more recently have come to focus on developing environmentally less-obtrusive means of hydroelectric generation. Small-scale hydroelectric represents perhaps the most important of these means of developing new sources of renewable resources to lessen the nation's dependence on foreign sources of energy. Each potential small-scale hydroelectric project, however, manifests a unique history which provides a highly useful opportunity to study the process of collective social choice in the area of new energy uses of water resources. Utilizing the basic concepts of public choice theory, a highly developed and increasingly widely accepted approach in the social sciences, the politicalization of small-scale hydroelectric proposals is analyzed. Through the use of secondary analysis of archival public opinion data collected from residents of the State of Idaho, and through the development of the two case studies - one on the Palouse River in Eastern Washington and the other at Elk Creek Falls in Northern Idaho, the policy relevant behavior and influence of major actors is assessed. Results provide a useful test of the utility of public-choice theory for the study of cases of natural-resources development when public involvement is high.

  20. CANCER RISK FROM ASBESTOS IN DRINKING WATER: SUMMARY OF A CASE-CONTROL STUDY IN WESTERN WASHINGTON

    EPA Science Inventory

    Case-control, interview-based study of the risk of developing cancer from asbestos in drinking water was conducted in an area including Beverett, Washington, selected because of the unusually high concentration of chrysotile asbestos in drinking water from the Sultan River. Throu...

  1. Abandoned metal mines and their impact on receiving waters: A case study from Southwest England.

    PubMed

    Beane, Steven J; Comber, Sean D W; Rieuwerts, John; Long, Peter

    2016-06-01

    Historic mine sites are a major source of contamination to terrestrial and river environments. To demonstrate the importance of determining the significance of point and diffuse metal contamination and the related bioavailability of the metals present from abandoned mines a case study has been carried out. The study provides a quantitative assessment of a historic mine site, Wheal Betsy, southwest England, and its contribution to non-compliance with Water Framework Directive (WFD) Environmental Quality Standards (EQS) for Cd, Cu, Pb and Zn. Surface water and sediment samples showed significant negative environmental impacts even taking account of the bioavailability of the metal present, with lead concentration in the stream sediment up to 76 times higher than the Canadian sediment guidelines 'Probable Effect Level'. Benthic invertebrates showed a decline in species richness adjacent to the mine site with lead and cadmium the main cause. The main mine drainage adit was the single most significant source of metal (typically 50% of metal load from the area, but 88% for Ni) but the mine spoil tips north and south of the adit input added together discharged roughly an equivalent loading of metal with the exception of Ni. The bioavailability of metal in the spoil tips exhibited differing spatial patterns owing to varying ambient soil physico-chemistry. The data collected is essential to provide a clear understanding of the contamination present as well as its mobility and bioavailability, in order to direct the decision making process regarding remediation options and their likely effectiveness. PMID:27023117

  2. Usefulness of satellite water vapour imagery in forecasting strong convection: A flash-flood case study

    NASA Astrophysics Data System (ADS)

    Georgiev, Christo G.; Kozinarova, Gergana

    Using a case study of a severe convective event as an example, a framework for interpreting 6.2 µm channel satellite imagery that enables to indicate upper-level conditioning of the convective environment is presented and discussed. In order to illustrate the approach, all convective cells during the summer of 2007 that produced precipitations over Bulgaria are considered. They are classified regarding the observed moisture pattern in mid-upper levels as well as the low-level conditions of air humidity and convergence of the flow. Water vapour (WV) images are used to study the evolution of the upper-level moist and dry structures. The proposed interpretation is that the role of the upper-level dry boundaries identified in the WV imagery as favoured areas for the initiation of deep moist convection cannot be understood (and hence cannot be forecasted accurately) by considering them in isolation from the dynamic rate at which they are maintained. The paper examines the 23 June 2006 flash flood in Sofia city as a case, in which the operational forecast of the National Institute of Meteorology and Hydrology of Bulgaria based on the mesoscale NWP model ALADIN underestimated the severity of the convective process. A comparison between the satellite water vapour imagery and the corresponding geopotential field of the dynamical tropopause, expressed in terms of potential vorticity (PV), shows an error in the performance of the ARPEGE operational numerical model. There is an obvious mismatch between the PV anomaly structure and the dry zone of the imagery. The forecast field shows underestimation of the tropopause height gradient and displacement of the PV anomaly to the southwest of the real position seen in the satellite image. It is concluded that the observed poor forecast is a result of the ARPEGE failure to treat correctly the interaction between the PV anomaly and the low-level warm anomaly.

  3. Water Efficiency Improvements at Various Environmental Protection Agency Sites: Best Management Practice Case Study #12 - Laboratory/Medical Equipment (Brochure)

    SciTech Connect

    Blakley, H.

    2011-03-01

    The U.S. Environmental Protection Agency (EPA) built a successful water conservation program and reduced potable water use through a series of initiatives at EPA laboratories. The projects highlighted in this case study demonstrate EPA's ability to reduce water use in laboratory and medical equipment by implementing vacuum pump and steam sterilizer replacements and retrofits. Due to the success of the initial vacuum pump and steam sterilizer projects described here, EPA is implementing similar projects at several laboratories throughout the nation.

  4. Breast cancer risk and drinking water contaminated by wastewater: a case control study

    PubMed Central

    Brody, Julia Green; Aschengrau, Ann; McKelvey, Wendy; Swartz, Christopher H; Kennedy, Theresa; Rudel, Ruthann A

    2006-01-01

    Background Drinking water contaminated by wastewater is a potential source of exposure to mammary carcinogens and endocrine disrupting compounds from commercial products and excreted natural and pharmaceutical hormones. These contaminants are hypothesized to increase breast cancer risk. Cape Cod, Massachusetts, has a history of wastewater contamination in many, but not all, of its public water supplies; and the region has a history of higher breast cancer incidence that is unexplained by the population's age, in-migration, mammography use, or established breast cancer risk factors. We conducted a case-control study to investigate whether exposure to drinking water contaminated by wastewater increases the risk of breast cancer. Methods Participants were 824 Cape Cod women diagnosed with breast cancer in 1988–1995 and 745 controls who lived in homes served by public drinking water supplies and never lived in a home served by a Cape Cod private well. We assessed each woman's exposure yearly since 1972 at each of her Cape Cod addresses, using nitrate nitrogen (nitrate-N) levels measured in public wells and pumping volumes for the wells. Nitrate-N is an established wastewater indicator in the region. As an alternative drinking water quality indicator, we calculated the fraction of recharge zones in residential, commercial, and pesticide land use areas. Results After controlling for established breast cancer risk factors, mammography, and length of residence on Cape Cod, results showed no consistent association between breast cancer and average annual nitrate-N (OR = 1.8; 95% CI 0.6 – 5.0 for ≥ 1.2 vs. < .3 mg/L), the sum of annual nitrate-N concentrations (OR = 0.9; 95% CI 0.6 – 1.5 for ≥ 10 vs. 1 to < 10 mg/L), or the number of years exposed to nitrate-N over 1 mg/L (OR = 0.9; 95% CI 0.5 – 1.5 for ≥ 8 vs. 0 years). Variation in exposure levels was limited, with 99% of women receiving some of their water from supplies with nitrate-N levels in excess of

  5. Forensic applications of stable isotope analysis: case studies of the origins of water in mislabeled beer and contaminated diesel fuel.

    PubMed

    Papesch, Wolfgang; Horacek, Micha

    2009-06-01

    This paper describes the use of oxygen (18O) isotope analysis of water contained in two different materials--beer and diesel fuel--involved in the resolution of two separate cases. In the first case study, it was possible to demonstrate that a sample of beer labelled as premium brand in fact belonged to a cheap brand. The second case related to the contamination of diesel fuel from a service station. The diesel fuel contained visible amounts of water, which caused vehicles that had been filled up with it to become defective. For insurance purposes, it was necessary to determine the source of water. The delta18O values for the water of nearly all samples of diesel was close to the delta18O of local tap water at the filling station. PMID:19606593

  6. Strategic decision making under climate change: a case study on Lake Maggiore water system

    NASA Astrophysics Data System (ADS)

    Micotti, M.; Soncini Sessa, R.; Weber, E.

    2014-09-01

    Water resources planning processes involve different kinds of decisions that are generally evaluated under a stationary climate scenario assumption. In general, the possible combinations of interventions are mutually compared as single alternatives. However, the ongoing climate change requires us to reconsider this approach. Indeed, what have to be compared are not individual alternatives, but families of alternatives, characterized by the same structural decisions, i.e. by actions that have long-term effects and entail irrevocable changes in the system. The rationale is that the structural actions, once they have been implemented, cannot be easily modified, while the management decisions can be adapted to the evolving conditions. This paper considers this methodological problem in a real case study, in which a strategic decision has to be taken: a new barrage was proposed to regulate Lake Maggiore outflow, but, alternatively, either the present barrage can be maintained with its present regulation norms or with a new one. The problem was dealt with by multi-criteria decision analysis involving many stakeholders and two decision-makers. An exhaustive set of indicators was defined in the participatory process, conducted under the integrated water resource management paradigm, and many efficient (in Pareto sense) regulation policies were identified. The paper explores different formulations of a global index to evaluate and compare the effectiveness of the classes of alternatives under both stationary and changing hydrological scenarios in order to assess their adaptability to the ongoing climate change.

  7. Virtual water trade patterns in relation to environmental and socioeconomic factors: a case study for Tunisia

    NASA Astrophysics Data System (ADS)

    Chouchane, Hatem; Krol, Maarten; Hoekstra, Arjen

    2016-04-01

    Water scarcity is among the main problems faced by many societies. Growing water demands put increasing pressure on local water resources, especially in water-short countries. Virtual water trade can play a key role in filling the gap between local demands and supply. This study aims to analyze the changes in virtual water trade of Tunisia in relation to environmental and socio-economic factors such as GDP, irrigated land, precipitation, population and water scarcity. The water footprint is estimated using Aquacrop for six crops over the period 1981-2010 at daily basis and a spatial resolution of 5 by 5 arc minutes. Virtual water trade is quantified at yearly basis. Regression models are used to investigate changes in virtual water trade in relation to various environmental and socio-economic factors. The explaining variables are selected in order to help understanding the trend and the inter-annual variability of the net virtual water import; GDP, population and irrigated land are hypothesized to explain the trend, and precipitation and water scarcity to explain variability. The selected crops are divided into three baskets. The first basket includes the two most imported crops, which are mainly rain-fed (wheat and barley). The second basket contains the two most exported crops, which are both irrigated and rain-fed (olives and dates). In the last basket we find the two highest economic blue water productive crops, which are mainly irrigated (tomatoes and potatoes). The results show the impact of each factor on net virtual water import of the selected crops during the period 1981-2010. Keywords: Virtual water, trade patterns, Aquacrop, Tunisia, water scarcity, water footprint.

  8. Testing biological effects of hand-washing grey water for reuse in irrigation on an urban farm: a case study.

    PubMed

    Khan, Mohammad Zain; Sim, Yei Lin; Lin, Yang Jian; Lai, Ka Man

    2013-01-01

    The feasibility of reusing hand-washing grey water contaminated with antibacterial hand-washing liquid for irrigation purposes in an urban farm is explored in this case study. Experiments are carried out to investigate if the quality of this grey water allows for its reuse in agriculture as per the guidelines established by the World Health Organization (WHO). However, there is no guideline to test the biological effect of grey water prior to agricultural use. It is plausible that the antibacterial property of the grey water can harm the soil microbial system and plants when applied to land, even if all other water quality parameters satisfy the WHO limit. We use algae (Chlorella vulgaris) and indigenous soil bacteria as initial plant and soil bacteria indicators, respectively, to test the potential inhibition of the water on plants and soil bacteria. Results show that the chemical oxygen demand (COD) of the grey water is 10% higher than the WHO permissible level, while all other water quality parameters are within the limits after four days of our experimental period. An inhibitory effect is observed in all of the biological tests. However, the inhibitory effect on algae and soil bacteria is not observed after the four-day period. The case study demonstrates a new approach for testing the biological effect of grey water, which can be used in conjunction with the WHO guideline, and provides data for this urban farm to set up a future water treatment system for grey-water reuse in irrigation. PMID:23530370

  9. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.

    2014-01-01

    Water Footprint Assessment is a quickly growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of water footprint estimates to changes in important input variables and quantifies the size of uncertainty in water footprint estimates. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat in the Yellow River Basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River Basin in the period considered. The sensitivity and uncertainty analysis focused on the effects on water footprint estimates at basin level (in m3 t-1) of four key input variables: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), and crop calendar. The one-at-a-time method was carried out to analyse the sensitivity of the water footprint of crops to fractional changes of individual input variables. Uncertainties in crop water footprint estimates were quantified through Monte Carlo simulations. The results show that the water footprint of crops is most sensitive to ET0 and Kc, followed by crop calendar and PR. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0 was dominant compared to that of precipitation. The uncertainties in the total water footprint of a crop as a result of combined key input uncertainties were on average ±26% (at 95% confidence level). The sensitivities and uncertainties differ across crop types, with highest sensitivities

  10. Experimental and Numerical Studies on Mudstone's Creep Behavior During Water Injection and Its Effect on Casing Damage

    NASA Astrophysics Data System (ADS)

    Huang, X. L.; Yang, C. H.; Liu, J. J.; He, X.; Xiong, J.

    2008-07-01

    During the process of water injection production in oilfield, when water cuts into the mudstone, as a result, large numbers of casings are damaged because of mudstone's creep characteristic. In order to analyze this phenomenon, the uniaxial compression experiments and creep experiments of mudstone from Daqing Oil Field under different saturation conditions were done, it was studied that how the mudstone's mechanical parameters and creep characteristic would change with the increment of water contents. The results indicate that the rock strength and elastic modulus are decreased rapidly with the increment of water contents, on the other hand, the creep strain and steady state creep strain rate are increased with the increment of water contents, and also the steady state creep strain rate is enhanced with the increment of deviatoric stress. Through the creep characteristic curves, a nonlinear creeping constitutive equation of mudstone considering the changes of water contents was established. In the deep stratum of the oilfield, the calculation model of casing-cement sheath-mudstone was built, based on the experiment results of mudstone and its creep constitutive equation, mudstone's creep pressure with time under different water contents was simulated. The simulation results show that the increasing water content accelerates the incremental rate of the creep pressure of mudstone, so the time of reaching yield state of casing will descend greatly, which means service time of casing becomes much shorter.

  11. Improving hydrocarbon/water ratios in producing wells - An Indonesian case history study

    SciTech Connect

    Stanley, F.O.; Marnoch, E.; Tanggu, P.S.

    1996-12-31

    Excessive water production is consistently burdening the oil industry, especially as lifting and facility costs rise and disposal of produced water becomes increasingly difficult, expensive and environmentally sensitive. A previously developed amphoteric polymer material (APM) (SPE Paper No. 14822) has been successfully applied in Indonesia. This product reduces volumes of produced water and very often increases hydrocarbon production by effectively reducing the permeability to water without significantly changing the formation permeability to hydrocarbons. This paper will review the mechanism, application and associated lab results by which the APM polymer reduces water cut with the primary emphasis on the Indonesian case histories and placement techniques. Results indicate that high permeability sandstone reservoirs, with water production problems, can benefit from APM treatments. The product can successfully and economically reduce water production with the added benefit of increased hydrocarbon production often noted. Laboratory and field results indicate good product application under high shear situations and at temperatures up to 275 {degrees}F. Careful candidate selection and good placement techniques, in conjunction with production logging to determine water location, are important to the success of APM jobs.

  12. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. PMID:27070382

  13. Spatial analysis of water infiltration in urban soils. Case study of Iasi municipality (Romania)

    NASA Astrophysics Data System (ADS)

    Cristian Vasilica, Secu; Ionut, Minea

    2013-04-01

    The post-communist period (after 1989) caused important changes in the functional structure of Iasi municipality. The partly dismantling of the industrial area, the urban sprawl against the periurban and agricultural space, the new infrastructure works, all these determined important changes of soils' physical and morphological properties (e.g. porosity, density, compaction, infiltration rate etc., in the first case, and changes in soil horizons, in the second case etc.). This study aims to prove the variability of physical properties through the combination of statistical and geostatistical methods intended for a correct spatial representation. Water infiltration in urban soils was analyzed in relation to land use and the age of parental materials. Field investigations consisted in measurements of the water infiltration (by the means of Turf Tech infiltrometer), resistance to penetration (penetrologger), moisture deficit (Theta Probe) and resistivity (EC) for 70 equally distanced points (750 m x 750 m) placed in a grid covering more than 33 km2. In the laboratory, there were determined several parameters as density, porosity (air pycnometer), gravimetric moisture and other hydrophysical indicators. Filed investigations results are very heterogeneous, because of the human intervention on soils. The curves of variation for the rate water infiltration in soils indicate a downward trend, from high values in first time interval (one minute), between 5000 and 60 mm/h-1, gradually decreasing to the interval of 5-10 minutes (between 30 and 1000 mm/ h-1 to a general trend of flattening after a large time interval (in the timeframe of 50-60 minutes, the infiltration rate ranges between 4 and 142 mm•h-1). The highest frequency (≥65%) caracterizes the infiltration rates between 20 and 65 mm•h-1. For each analyzed sector (residential areas, industrial areas, degraded lands, recreational areas - parks and botanical gardens, forests heterogeneous agricultural lands), the

  14. Assessment of the performance of a public water utility: A case study of Blantyre Water Board in Malawi

    NASA Astrophysics Data System (ADS)

    Kalulu, Khumbo; Hoko, Zvikomborero

    Water scarcity, deteriorating water quality and financial limitations to the development of new water sources affect the quality of urban water supply services. The costs would have to be transferred to governments or customers if water supply utilities are to operate effectively. Utilities therefore need to continuously minimize costs and maximize revenue to ensure affordability and consequently access to safe water. This paper presents findings of a study on the performance of Blantyre Water Board compared to best practice targets for developing countries. The study tools employed in this study included interviews and documentation review. Key aspects studied included unaccounted for water, working ratio, bill collection efficiency and; efficiency of operation and maintenance. The working ratio of the utility ranged from 0.69 to 1.3 which was above the proposed target working ratio 0.68 for developing country utilities. It was found that the level of unaccounted for water for the utility ranged from 36% to 47% compared to 25% for developing countries. The utility was not financially sustainable as it had been making losses since 2002, had a working ratio of up to 1.3 implying that the utility was unable to meet its operational and capital cost; and 70% of all the invoiced bills being collected in a maximum of 340 days against an ideal target of 90 days. The staff per thousand connections value was found to be 18 compared to an ideal value of five. It was concluded that the utility was generally performing poorly as most performance indicators were outside the range for best practice targets for utilities in developing countries.

  15. (Case studies examining energy policies and strategies for water resources development): Foreign trip report, May 7--13, 1989

    SciTech Connect

    Hildebrand, S.G.

    1989-05-24

    The traveler met with colleagues involved with Project 12.2 of the IHP of UNESCO to discuss and finalize case studies that are being prepared for a report entitled ''Case Studies Examining Energy Policies and Strategies for Water Resources Development.'' Draft case studies from the United States, Brazil, Norway, and Czechoslovakia were reviewed and discussed. The traveler was appointed editor of the final report. The traveler met with staff of the National Department of Water and Electrical Energy of the Ministry of Mines and Energy, the Secretary General of the Ministry of Mines and Energy, the Executive Secretary to the National Energy Commission of Brazil, and the newly created Brazilian Institute of the Environment. The traveler was briefed on the functions of these departments, and he briefed them on water resource activities conducted at ORNL. The traveler presented a seminar at Eletrobras (national electric utility) in Brazil on environmental research at ORNL.

  16. Cryosphere water balance in the HKH-system: case study Batura Glacier (Upper Hunza, Karakoram)

    NASA Astrophysics Data System (ADS)

    Winiger, M.; Boerst, U.

    2012-12-01

    Investigations on climate dynamics and related responses of the cryosphere in the Hindukush-Karakoram-Himalaya (HKH) increasingly result in regional different functional patterns. A predominant loss of ice and snow is documented for most of the region. Nevertheless, in the northwestern part, mainly in the Karakoram, several studies identified exemptions from the general HKH-pattern, either for individual glaciers or altitudinal ranges. Coordinated comparative studies, based on comparable methodological approaches and data bases might help to provide a better understanding of climate-cryosphere-runoff-systems. 'Third Pole Environment' (TEP), as well as the 'Upper Indus Basin' Initiative (UIB) of the 'International Centre for Integrated Mountain Development' (ICIMOD) promote and develop coordinated campaigns for the assessment of high altitude water balances in the HKH mountain ranges. As a first step, inventories of glaciers and snow-cover for HKH, the Tibetan Plateau, as well as its neighboring mountain ranges have been carried out. Glacier typology, climate related spatial and temporal dynamics, the impact of black carbon, dust and other influencing factors will further differentiate general inventories. In a next phase, case studies at selected sites, based on comparable approaches, thorough quality assessments of existing data series have been initiated by several research groups - up to now with only little coordination. Identification of case study sites should take advantage of previous studies. Although proper long-term monitoring is almost completely lacking, several glaciers in the Karakoram have repeatedly been investigated. Among them Raikot Glacier (Nanga Parbat), Biafo-Hispar glacier system, Baltoro Glacier (K2), and Batura Glacier (Gojal, Upper Hunza) are comparatively well documented examples. As part of the UIB-initiative, Batura, Passu and Baltoro Glaciers are in the process of repeat investigations of mass-balance. Selected first results of

  17. A case study of dissolved air flotation for seasonal high turbidity water in Korea.

    PubMed

    Kwon, S B; Ahn, H W; Ahn, C J; Wang, C K

    2004-01-01

    A DAF (Dissolved-Air-Flotation) process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when freshwater algae blooms occur or raw water turbidity becomes high. Pre-sedimentation is operated in case when the raw water turbidity is very high due to rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of the raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than the conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while the removal of them by sedimentation is more difficult. One of the main concerns for DAF operation is a high raw water turbidity. DAF is not adequate for raw water, which is more turbid than 100 NTU. In order to avoid this problem, pre-sedimentation basins are installed in the DAF plant to decrease the turbidity of the DAF inflow. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, it is suggested that pre-sedimentation with optimum coagulation prior to DAF is the appropriate treatment scheme. PMID:15686028

  18. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood.

    PubMed

    Sun, Rubao; An, Daizhi; Lu, Wei; Shi, Yun; Wang, Lili; Zhang, Can; Zhang, Ping; Qi, Hongjuan; Wang, Qiang

    2016-02-01

    In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets. PMID:27441250

  19. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    PubMed

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals. PMID:21105699

  20. Residential energy-tax-credit eligibility: a case study for the heat-pump water heater

    SciTech Connect

    Cohn, S M; Cardell, N S

    1982-09-01

    Described are the methodology and results of an analysis to determine the eligibility of an energy-efficient item for the residential energy-tax credit. Although energy credits are granted only on a national basis, an attempt to determine the tax-credit eligibility for an item such as the heat-pump water heater (HPWH) analyzing national data is inappropriate. The tax-credit eligibility of the HPWH is evaluated for the ten federal regions to take into consideration the regional differences of: (1) HPWH annual efficiency, (2) existing water heater stocks by fuel type, (3) electricity, fuel oil, and natural-gas price variations, and (4) electric-utility oil and gas use for electricity generation. A computer model of consumer choice of HPWH selection as well as a computer code evaluating the economics of tax-credit eligibility on a regional basis were developed as analytical tools for this study. The analysis in this report demonstrates that the HPWH meets an important criteria for eligibility by the Treasury Department for an energy tax credit (nationally, the estimated dollar value of savings of oil and gas over the lifetime of those HPWH's sold during 1981 to 1985 due to the tax credit exceeds the revenue loss to the treasury). A natural-gas price-deregulation scenario is one of two fuel scenarios that are evaluated using the equipment choice and tax-credit models. These two cases show the amounts of oil and gas saved by additional HPWH units sold (due to the tax credit during 1981 to 1985 (range from 13.9 to 23.1 million barrels of oil equivalent over the lifetime of the equipment.

  1. WETLANDS AND WATER QUALITY TRADING: REVIEW OF CURRENT SCIENCE AND ECONOMIC PRACTICES WITH SELECTED CASE STUDIES

    EPA Science Inventory

    The study evaluates the technical, economic, and administrative aspects of establishing water quality trading (WQT) programs where the nutrient removal capacity of wetlands is used to improve water quality. WQT is a potentially viable approach for wastewater dischargers to cost-e...

  2. Meeting Indigenous peoples' objectives in environmental flow assessments: Case studies from an Australian multi-jurisdictional water sharing initiative

    NASA Astrophysics Data System (ADS)

    Jackson, Sue; Pollino, Carmel; Maclean, Kirsten; Bark, Rosalind; Moggridge, Bradley

    2015-03-01

    The multi-dimensional relationships that Indigenous peoples have with water are only recently gaining recognition in water policy and management activities. Although Australian water policy stipulates that the native title interests of Indigenous peoples and their social, cultural and spiritual objectives be included in water plans, improved rates of Indigenous access to water have been slow to eventuate, particularly in those regions where the water resource is fully developed or allocated. Experimentation in techniques and approaches to both identify and determine Indigenous water requirements will be needed if environmental assessment processes and water sharing plans are to explicitly account for Indigenous water values. Drawing on two multidisciplinary case studies conducted in Australia's Murray-Darling Basin, we engage Indigenous communities to (i) understand their values and explore the application of methods to derive water requirements to meet those values; (ii) assess the impact of alternative water planning scenarios designed to address over-allocation to irrigation; and (iii) define additional volumes of water and potential works needed to meet identified Indigenous requirements. We provide a framework where Indigenous values can be identified and certain water needs quantified and advance a methodology to integrate Indigenous social, cultural and environmental objectives into environmental flow assessments.

  3. Environmental and economic aspects of water kiosks: Case study of a medium-sized Italian town

    SciTech Connect

    Torretta, Vincenzo

    2013-05-15

    The consumption of bottled water in Italy began in the 1970s. Since then, this usage has grown considerably, also as a result of changes in habits. The environmental impact as a result of the water production chain is very significant; it would be considered, for example, the use of plastic bottles, the consumption of oil in the production of the bottles, the emission of air from the vehicles that transport the bottles, non-recycled plastic packaging, etc. In this study, considering the comparison between two situations, use of bottled water and use of water kiosk (WK), an environmental and economic impact evaluation has been done. The study considered the production of a WK in a town with 9000 inhabitants, which supplies controlled, still and sparkling water, with an organoleptic quality higher than tap water coming from the aqueduct. In particular, taking into consideration the environmental aspects, specific attention was paid both to CO{sub 2} emissions and PET bottle waste reduction. The economic impact evaluation was carried out from the consumer’s point of view. In order to provide a supply service that was economically sustainable, a calculation was done with the aim of determining a specific fee for the supplied water. Moreover, a comparison has been made between quality parameters achieved with the analysis of water from aqueducts with the limits established in the Italian legislation and the parameters of several Italian water brands. The study has the aim at considering the opportunity to follow a different people’s habits, closer to the concept of sustainability, reducing the environmental charge related to the realization, transport and consumption of plastic water bottles without significant reduction of the quality of the service and with convenient and interesting economic implications. In fact the results of the study show that the alternative of WKs is more efficient in economic and environmental terms respect to the use of bottled water.

  4. Environmental and economic aspects of water kiosks: case study of a medium-sized Italian town.

    PubMed

    Torretta, Vincenzo

    2013-05-01

    The consumption of bottled water in Italy began in the 1970s. Since then, this usage has grown considerably, also as a result of changes in habits. The environmental impact as a result of the water production chain is very significant; it would be considered, for example, the use of plastic bottles, the consumption of oil in the production of the bottles, the emission of air from the vehicles that transport the bottles, non-recycled plastic packaging, etc. In this study, considering the comparison between two situations, use of bottled water and use of water kiosk (WK), an environmental and economic impact evaluation has been done. The study considered the production of a WK in a town with 9000 inhabitants, which supplies controlled, still and sparkling water, with an organoleptic quality higher than tap water coming from the aqueduct. In particular, taking into consideration the environmental aspects, specific attention was paid both to CO2 emissions and PET bottle waste reduction. The economic impact evaluation was carried out from the consumer's point of view. In order to provide a supply service that was economically sustainable, a calculation was done with the aim of determining a specific fee for the supplied water. Moreover, a comparison has been made between quality parameters achieved with the analysis of water from aqueducts with the limits established in the Italian legislation and the parameters of several Italian water brands. The study has the aim at considering the opportunity to follow a different people's habits, closer to the concept of sustainability, reducing the environmental charge related to the realization, transport and consumption of plastic water bottles without significant reduction of the quality of the service and with convenient and interesting economic implications. In fact the results of the study show that the alternative of WKs is more efficient in economic and environmental terms respect to the use of bottled water. PMID:23465314

  5. Heavy Metals in Water and Sediment: A Case Study of Tembi River

    PubMed Central

    Shanbehzadeh, Saeed; Vahid Dastjerdi, Marzieh; Hassanzadeh, Akbar; Kiyanizadeh, Toba

    2014-01-01

    This study was carried out to examine heavy metals concentration in water and sediment of upstream and downstream of the entry of the sewage to the Tembi River, Iran. Samples were collected from upstream and downstream and were analyzed for Cd, Cr, Cu, Fe, Pb, Ni, and Zn by atomic absorption spectrophotometer. The results indicated that the average concentration of the metals in water and sediment on downstream was more than that of upstream. The comparison of the mean concentrations of heavy metals in water of the Tembi River with drinking water standards and those in the water used for agriculture suggests that the mean concentration of Cu and Zn lies within the standard range for drinking water and the mean concentration of Mn, Zn, and Pb lies within the standard range of agricultural water. The highest average concentration on downstream for Pb in water and for Mn in sediment was 1.95 and 820.5 ppm, respectively. Also, the lowest average concentration on upstream was identified for Cd in water and sediment 0.07 and 10 ppm, respectively. With regard to the results, it gets clear that using the water for recreational purposes, washing, and fishing is detrimental to human health and the environment. PMID:24616738

  6. Municipal water quantities and health in Nunavut households: an exploratory case study in Coral Harbour, Nunavut, Canada

    PubMed Central

    Daley, Kiley; Castleden, Heather; Jamieson, Rob; Furgal, Chris; Ell, Lorna

    2014-01-01

    Background Access to adequate quantities of water has a protective effect on human health and well-being. Despite this, public health research and interventions are frequently focused solely on water quality, and international standards for domestic water supply minimums are often overlooked or unspecified. This trend is evident in Inuit and other Arctic communities even though numerous transmissible diseases and bacterium infections associated with inadequate domestic water quantities are prevalent. Objectives Our objective was to explore the pathways by which the trucked water distribution systems being used in remote northern communities are impacting health at the household level, with consideration given to the underlying social and environmental determinants shaping health in the region. Methods Using a qualitative case study design, we conducted 37 interviews (28 residents, 9 key informants) and a review of government water documents to investigate water usage practices and perspectives. These data were thematically analysed to understand potential health risks in Arctic communities and households. Results Each resident receives an average of 110 litres of municipal water per day. Fifteen of 28 households reported experiencing water shortages at least once per month. Of those 15, most were larger households (5 people or more) with standard sized water storage tanks. Water shortages and service interruptions limit the ability of some households to adhere to public health advice. The households most resilient, or able to cope with domestic water supply shortages, were those capable of retrieving their own drinking water directly from lake and river sources. Residents with extended family and neighbours, whom they can rely on during shortages, were also less vulnerable to municipal water delays. Conclusions The relatively low in-home water quantities observed in Coral Harbour, Nunavut, appear adequate for some families. Those living in overcrowded households

  7. Case Studies

    ERIC Educational Resources Information Center

    Ritter, Lois A., Ed.; Sue, Valerie M., Ed.

    2007-01-01

    This article presents two case studies using online surveys for evaluation. The authors begin with an example of a needs assessment survey designed to measure the amount of help new students at a university require in their first year. They then discuss the follow-up survey conducted by the same university to measure the effectiveness of the…

  8. Linking Assessment to Decision Making in Water Resources Planning - Decision Making Frameworks and Case Study Evaluations

    NASA Astrophysics Data System (ADS)

    Broman, D.; Gangopadhyay, S.; Simes, J.

    2015-12-01

    Climate assessments have become an accepted and commonly used component of long term water management and planning. There is substantial variation in the methods used in these assessments; however, managers and decision-makers have come to value their utility to identify future system limitations, and to evaluate future alternatives to ensure satisfactory system performance. A new set of decision-making frameworks have been proposed, including robust decision making (RDM), and decision scaling, that directly address the deep uncertainties found in both future climate, and non-climatic factors. Promising results have been obtained using these new frameworks, offering a more comprehensive understanding of future conditions leading to failures, and identification of measures to address these failures. Data and resource constraints have limited the use of these frameworks within the Bureau of Reclamation. We present here a modified framework that captures the strengths of previously proposed methods while using a suite of analysis tool that allow for a 'rapid climate assessment' to be performed. A scalable approach has been taken where more complex tools can be used if project resources allow. This 'rapid assessment' is demonstrated through two case studies on the Santa Ana and Colorado Rivers where previous climate assessments have been completed. Planning-level measures are used to compare how decision making is affected when using this new decision making framework.

  9. Industrial wastewater minimization using water pinch analysis: a case study on an old textile plant.

    PubMed

    Ujang, Z; Wong, C L; Manan, Z A

    2002-01-01

    Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively. PMID:12523736

  10. Cr(VI) and Conductivity as Indicators of Surface Water Pollution from Ferrochrome Production in South Africa: Four Case Studies

    NASA Astrophysics Data System (ADS)

    Loock-Hattingh, M. M.; Beukes, J. P.; van Zyl, P. G.; Tiedt, L. R.

    2015-10-01

    South Africa is one of the largest ferrochromium (FeCr) producers. Most FeCr is exported to developed countries. Therefore the impact of this industry is of national and international importance. Cr(VI) and conductivity of surface water in four case study areas, near five FeCr smelters were monitored for approximately 1 year. Results indicated that FeCr production in three case study areas had a negative influence on the Cr(VI) concentration and/or the conductivity of surface waters. In the remaining case study areas, drinking water, originating from groundwater, was severely polluted with Cr(VI). The main factors causing pollution were surface run-off and/or seepage, while atmospheric deposition did not seem to contribute significantly. The extinction of diatoms during a severe Cr(VI) surface water pollution event (concentrations up to 216 µg/L) in one of the case study areas was also observed, which clearly indicates the ecological impact of such surface water pollution events.

  11. Temporal water quality response in an urban river: a case study in peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    VishnuRadhan, Renjith; Zainudin, Zaki; Sreekanth, G. B.; Dhiman, Ravinder; Salleh, Mohd. Noor; Vethamony, P.

    2015-07-01

    Ambient water quality is a prerequisite for the health and self-purification capacity of riverine ecosystems. To understand the general water quality situation, the time series data of selected water quality parameters were analyzed in an urban river in Peninsular Malaysia. In this regard, the stations were selected from the main stem of the river as well as from the side channel. The stations located at the main stem of the river are less polluted than that in the side channel. Water Quality Index scores indicated that the side channel station is the most polluted, breaching the Class IV water quality criteria threshold during the monitoring period, followed by stations at the river mouth and the main channel. The effect of immediate anthropogenic waste input is also evident at the side channel station. The Organic Pollution Index of side channel station is (14.99) ~3 times higher than at stations at river mouth (4.11) and ~6 times higher than at the main channel (2.57). The two-way ANOVA showed significant difference among different stations. Further, the factor analysis on water quality parameters yielded two significant factors. They discriminated the stations into two groups. The land-use land cover classification of the study area shows that the region near the sampling sites is dominated by urban settlements (33.23 %) and this can contribute significantly to the deterioration of ambient river water quality. The present study estimated the water quality condition and response in the river and the study can be an immediate yardstick for base lining river water quality, and a basis for future water quality modeling studies in the region.

  12. Equivalency of risk for a modified health endpoint: a case from recreational water epidemiology studies

    EPA Science Inventory

    The United States Environmental Protection Agency (US EPA) and its predecessors have conducted three distinct series of epidemiological studies beginning in 1948 on the relationship between bathing water quality and swimmers' illnesses. Keeping pace with advances in microbial tec...

  13. Quantification of Water Energy Nexus for Sustainable Development at Local Level: Case Study of Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Grover, S.; Tayal, S.

    2014-12-01

    Interdependency between water and energy is generally transacted in trade-off mode; where either of the resource gets affected because of the other. Generally this trade-off is commonly known as water-energy nexus. Many studies have been undertaken in various parts of the world using various approaches to tease out the intricate nexus. This research has adopted a different approach to quantify the inter-dependency. The adopted approach made an attempt to tease out the nexus from demand side for both the resources. For water demand assessment PODIUM Sim model was used and for other parameters available secondary data was used. Using this approach percentage share of water for energy and energy for water was estimated. For an informed decision making and sustainable development, assessment was carried out at state level as most of the policies are made specifically for the state. The research was done for the southernmost state of India, Tamil Nadu which is a rapidly growing industrial hub. Tamil Nadu is energy and water intensive state and the analysis shows that the share of water demand from energy sector compared to water demand from other major sectors is miniscule. While, the energy demand in water sector for various processes in different sectors compared to energy demand as total has a comparable share of range 15-25%. This analysis indicated the relative risk sectors face in competition for the resource. It point outs that water sector faces fierce competition with other sectors for energy. Moreover, the results of the study has assessed that state has negative water balance, which may make access to water more energy intensive with time. But, a projection into future scenario with an assumption based on the ongoing policy program of improving irrigation efficiency was made. It provided a solution of a potential positive equilibrium which conserves both water and energy. This scenario gave promising results which indicated less of water demand from

  14. Developing Water Resource Security in a Greenhouse Gas Constrained Context - A Case Study in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; Aghakouchak, A.; Samuelsen, S.

    2015-12-01

    The onset of drought conditions in regions such as California due to shortfalls in precipitation has brought refreshed attention to the vulnerability of our water supply paradigm to changes in climate patterns. In the face of a changing climate which can exacerbate drought conditions in already dry areas, building resiliency into our water supply infrastructure requires some decoupling of water supply availability from climate behavior through conservation, efficiency, and alternative water supply measures such as desalination and water reuse. The installation of these measures requires varying degrees of direct energy inputs and/or impacts the energy usage of the water supply infrastructure (conveyance, treatment, distribution, wastewater treatment). These impacts have implications for greenhouse gas emissions from direct fuel usage or impacts on the emissions from the electric grid. At the scale that these measures may need to be deployed to secure water supply availability, especially under climate change impacted hydrology, they can potentially pose obstacles for meeting greenhouse gas emissions reduction and renewable utilization goals. Therefore, the portfolio of these measures must be such that detrimental impacts on greenhouse gas emissions are minimized. This study combines climate data with a water reservoir network model and an electric grid dispatch model for the water-energy system of California to evaluate 1) the different pathways and scale of alternative water resource measures needed to secure water supply availability and 2) the impacts of following these pathways on the ability to meet greenhouse gas and renewable utilization goals. It was discovered that depending on the water supply measure portfolio implemented, impacts on greenhouse gas emissions and renewable utilization can either be beneficial or detrimental, and optimizing the portfolio is more important under climate change conditions due to the scale of measures required.

  15. Spatial assessment of monitoring network in coastal waters: a case study of Kuwait Bay.

    PubMed

    Al-Mutairi, Nawaf; AbaHussain, Asma; El-Battay, Ali

    2015-10-01

    Spatial analyses of water-quality-monitoring networks in coastal waters are important because pollution sources vary temporally and spatially. This study was conducted to evaluate the spatial distribution of the water-quality-monitoring network of Kuwait Bay using both geostatistical and multivariate techniques. Three years of monthly data collected from six existing monitoring stations covering Kuwait Bay between 2009 and 2011 were employed in conjunction with data collected from 20 field sampling sites. Field sampling locations were selected based on a stratified random sampling scheme oriented by an existing classification map of Kuwait Bay. Two water quality datasets obtained from different networks were compared by cluster analysis applied to the Water Quality Index (WQI) and other water quality parameters, after which the Kriging method was used to generate distribution maps of water quality for spatial assessment. Cluster analysis showed that the current monitoring network does not represent water quality patterns in Kuwait Bay. Specifically, the distribution maps revealed that the existing monitoring network is inadequate for heavily polluted areas such as Sulaibikhat Bay and the northern portion of Kuwait Bay. Accordingly, the monitoring system in Kuwait Bay must be revised or redesigned. The geostatistical approach and cluster analysis employed in this study will be useful for evaluating future proposed modifications to the monitoring stations network in Kuwait Bay. PMID:26362877

  16. Water productivity analysis for smallholder rainfed systems: A case study of Makanya catchment, Tanzania

    NASA Astrophysics Data System (ADS)

    Mutiro, J.; Makurira, H.; Senzanje, A.; Mul, M. L.

    Decreasing food security as a result of ever-increasing population, less water availability and soil degradation is common in countries in sub-Saharan Africa. While most of the developed fresh water resources are heavily committed to irrigation, about 90% of sub-Saharan populations rely solely on rainfed agriculture for their livelihoods. The majority of the population is therefore not directly benefiting from developed water resources but are, in fact, subsistence rainfed farmers. Thus, in sub-Saharan Africa, techniques which help to improve water productivity (WP) can assist in alleviating the impacts of water scarcity especially for crop production purposes. A study was conducted in the semi-arid Makanya catchment in northern Tanzania where farmers depend on rainfed subsistence farming for their livelihoods. The objective of the study was to assess the effect of improved conservation agriculture techniques on WP of a maize crop. An assessment of the current WP in rainfed and partially supplementary irrigated agriculture was made. The crop water requirement for maize in the study area was found to be 508 mm/season by using the CROPWAT model compared to total received rainfall of up to 383.86 mm per study plot during the same period. An attempt was made to separate transpiration from evapotranspiration using a transpiration meter. Results indicate that, currently, WP for maize in the catchment is low (0.18-1.33 kg m -3). Introduction of improved techniques increased WP by between 90% and 110%. Infiltration rates also increased from 6 to 26 cm/h. The conclusion from the research is that, from a purely scientific view, there is room to significantly improve the water use techniques being applied for crop productivity through improving current smallholder farming practices A clear understanding and quantification of the water partitioning processes is required to maximise productive water use by the plant as transpiration and this is directly related to biomass

  17. Grey water treatment at a sports centre for reuse in irrigation: a case study.

    PubMed

    Gabarró, J; Batchelli, L; Balaguer, M D; Puig, S; Colprim, J

    2013-01-01

    Grey water has long been considered a promising option for dealing with water scarcity and reuse. However, factors such as lack of macronutrients and low carbon content make its treatment challenging. The aim of this paper was to investigate the applicability of sequencing batch reactor (SBR) technology to on-site grey water treatment at a sports centre for reuse in irrigation. The results demonstrated that the regenerated water complied with microbiological parameters concerning restriction of solids and organic matter removal. Denitrification was not fully accomplished, but ammonium was totally oxidised and low concentrations of nitrates were achieved. Effluent with good appearance and no odour was used in an experimental study to irrigate a grid system containing natural and artificial grass sections. The conclusion is that SBR technology offers a promising treatment for grey water. PMID:24191471

  18. Case study sensitivity analysis of transmission spectra for water contaminant monitoring

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Yapijakis, C.; Aiken, D.; Shabaev, A.; Ramsey, S.; Peak, J.

    2016-05-01

    Monitoring of contaminants associated with specific water resources using transmission spectra, with respect to types and relative concentrations, requires tracking statistical profiles of water contaminants in terms of spatial-temporal distributions of electromagnetic absorption spectra ranging from the ultraviolet to infrared. For this purpose, correlation between spectral signatures and types of contaminants within specific water resources must be made, as well as correlation of spectral signatures with results of processes for removal of contaminants, such as ozonation. Correlation between absorption spectra and changes in chemical and physical characteristics of contaminants, within a volume of sampled solution, requires sufficient sensitivity. The present study examines the sensitivity of transmission spectra with respect to general characteristics of water contaminants for spectral analysis of water samples.

  19. Geospatial Water Quality Analysis of Dilla Town, Gadeo Zone, Ethiopia - A Case Study

    NASA Astrophysics Data System (ADS)

    Pakhale, G. K.; Wakeyo, T. B.

    2015-12-01

    Dilla is a socio-economically important town in Ethiopia, established on the international highway joining capital cities of Ethiopia and Kenya. It serves as an administrative center of the Gedeo Zone in SNNPR region of Ethiopia accommodating around 65000 inhabitants and also as an important trade centre for coffee. Due to the recent developments and urbanization in town and surrounding area, waste and sewage discharge has been raised significantly into the water resources. Also frequent rainfall in the region worsens the problem of water quality. In this view, present study aims to analyze water quality profile of Dilla town using 12 physico-chemical parameters. 15 Sampling stations are identified amongst the open wells, bore wells and from surface water, which are being extensively used for drinking and other domestic purposes. Spectrophotometer is used to analyze data and Gaussian process regression is used to interpolate the same in GIS environment to represent spatial distribution of parameters. Based on observed and desirable values of parameters, water quality index (WQI); an indicator of weighted estimate of the quantities of various parameters ranging from 1 to 100, is developed in GIS. Higher value of WQI indicates better while low value indicates poor water quality. This geospatial analysis is carried out before and after rainfall to understand temporal variation with reference to rainfall which facilitates in identifying the potential zones of drinking water. WQI indicated that 8 out of 15 locations come under acceptable category indicating the suitability of water for human use, however remaining locations are unfit. For example: the water sample at main_campus_ustream_1 (site name) site has very low WQI after rainfall, making it unfit for human usage. This suggests undertaking of certain measures in town to enhance the water quality. These results are useful for town authorities to take corrective measures and ameliorate the water quality for human

  20. The assessment of water use and reuse through reported data: A US case study.

    PubMed

    Wiener, Maria J; Jafvert, Chad T; Nies, Loring F

    2016-01-01

    Increasing demands for freshwater make it necessary to find innovative ways to extend the life of our water resources, and to manage them in a sustainable way. Indirect water reuse plays a role in meeting freshwater demands but there is limited documentation of it. There is a need to analyze its current status for water resources planning and conservation, and for understanding how it potentially impacts human health. However, the fact that data are archived in discrete uncoordinated databases by different state and federal entities, limits the capacity to complete holistic analysis of critical resources at large watershed scales. Humans alter the water cycle for food production, manufacturing, energy production, provision of potable water and recreation. Ecosystems services are affected at watershed scales but there are also global scale impacts from greenhouse gas emissions enabled by access to cooling, processing and irrigation water. To better document these issues and to demonstrate the utility of such an analysis, we studied the Wabash River Watershed located in the U.S. Midwest. Data for water extraction, use, discharge, and river flow were collected, curated and reorganized in order to characterize the water use and reuse within the basin. Indirect water reuse was estimated by comparing treated wastewater discharges with stream flows at selected points within the watershed. Results show that during the low flow months of July-October, wastewater discharges into the Wabash River basin contributed 82 to 121% of the stream flow, demonstrating that the level of water use and unplanned reuse is significant. These results suggest that intentional water reuse for consumptive purposes such as landscape or agricultural irrigation could have substantial ecological impacts by diminishing stream flow during vulnerable low flow periods. PMID:26363391

  1. Impact of climate change on water resources status: A case study for Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Koutroulis, Aristeidis G.; Tsanis, Ioannis K.; Daliakopoulos, Ioannis N.; Jacob, Daniela

    2013-02-01

    SummaryAn assessment of the impact of global climate change on the water resources status of the island of Crete, for a range of 24 different scenarios of projected hydro-climatological regime is presented. Three "state of the art" Global Climate Models (GCMs) and an ensemble of Regional Climate Models (RCMs) under emission scenarios B1, A2 and A1B provide future precipitation (P) and temperature (T) estimates that are bias adjusted against observations. The ensemble of RCMs for the A1B scenario project a higher P reduction compared to GCMs projections under A2 and B1 scenarios. Among GCMs model results, the ECHAM model projects a higher P reduction compared to IPSL and CNCM. Water availability for the whole island at basin scale until 2100 is estimated using the SAC-SMA rainfall-runoff model And a set of demand and infrastructure scenarios are adopted to simulate potential water use. While predicted reduction of water availability under the B1 emission scenario can be handled with water demand stabilized at present values and full implementation of planned infrastructure, other scenarios require additional measures and a robust signal of water insufficiency is projected. Despite inherent uncertainties, the quantitative impact of the projected changes on water availability indicates that climate change plays an important role to water use and management in controlling future water status in a Mediterranean island like Crete. The results of the study reinforce the necessity to improve and update local water management planning and adaptation strategies in order to attain future water security.

  2. Impacts of population growth and economic development on water quality of a lake: case study of Lake Victoria Kenya water.

    PubMed

    Juma, Dauglas Wafula; Wang, Hongtao; Li, Fengting

    2014-04-01

    Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l(-1) in 1990 to 98 μg 1(-1) in 2008, while PO4-P increased from 4 μg l(-1) in 1990 to 57 μg l(-1) in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service. PMID:24442964

  3. Desalination of Ground Water Minerals (Case Study: Kashan Desert in Iran)

    NASA Astrophysics Data System (ADS)

    Mahani, S. E.; Esmaeli Mahani, M.; Siavoshi, F.; Jafari, M.

    2009-12-01

    The present study focuses on testing quality and desalination of minerals from ground water that is used as the only source of water supply particularly for drinking in the Kashan Desert in Iran. About 14.2 cubic meter water/year from 59 wells, with the average depth of 120 meter, are used for drinking and personal usage in the selected study area. To test the quality of ground water, in general, salinity of minerals such as: chloride (Cl), sulfate (SO4), carbonate (CO3), bicarbonate (HCO3), potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg), as well as PH, Total Dissolved Solids (TDS), Electric Conductivity (EC), and Temperature (T) are measured. EC and TDS in the deserts and arid areas are usually very high because of lack of rainfall, higher temperature, and high rate of evaporation. If the TDS is greater than 1000 mg/l, ground water needs to be desalinated. The TDS of ground water samples in Kashan Desert is greater than 2500 mg/l, which is higher than international World Health Organization (WHO) and Environmental Protection Agency (EPA) standard values. Conventional treatment can not be the only solution for making Kashan Desert ground water that much pure that can be used as fresh water for drinking because EC, Mg, Na, Cl, and SO4 are also higher than standard values. Various techniques such as: Ion Exchange (IX), Microfiltration (MF), Ultra Filtration (UF), Nano Filtration (NF), Electro Dialysis (ED), and Reserve Osmosis (RO) are examined to desalinate above mentioned minerals. Based on molecular weight and diameter of chemical particles which should be removed, in addition to experiences of operational groups in Iran, the RO technique has been selected as the best methodology. The results show that the RO technique could improve the quality of Kashan Desert ground water by comparison with the standard fresh water up to 95% to 99%.

  4. The effects of construction on water quality: a case study of the culverting of Abram Creek.

    PubMed

    Houser, Darci L; Pruess, Heidi

    2009-08-01

    While sediment is a leading cause of impaired water, studies have shown that construction activities incorporating best management practices (BMPs) can be conducted without lasting detrimental effects on water quality. This paper examines the water quality impacts of a construction project involving the culverting of a creek to allow for the construction of a runway at an airport in Cleveland, Ohio. Sampling parameters included total suspended solids (TSS), dissolved oxygen (DO), pH, conductivity, and temperature. To assess the effects of the construction project conducted using appropriate BMPs, weekly water quality samples were taken upstream and downstream from the construction site. The samples were categorized as baseline, active construction, and post-construction to isolate the effects of the construction activities. t tests were used to compare upstream and downstream data for each of the parameters and ANOVA was used to compare the individual water quality parameters in the three sampling periods to see if there were significant increases or decreases of the water quality parameters within the phases. Results of ANOVA indicate there were no statistically significant differences between upstream and downstream in the mean sample results for TSS, conductivity, and pH when comparing the three phases. While the descriptive statistics conducted on the data illustrated minor variation in the upstream, downstream, and between phase comparisons, the results of the t tests helped to strengthen the theory that construction projects utilizing appropriate BMPs can yield minimal impact on overall water quality of surrounding water bodies. PMID:18629442

  5. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    NASA Astrophysics Data System (ADS)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  6. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.

    2014-06-01

    Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t-1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River basin in the period considered. The one-at-a-time method was carried out to analyse the sensitivity of the crop water footprint to fractional changes of seven individual input variables and parameters: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), crop calendar (planting date with constant growing degree days), soil water content at field capacity (Smax), yield response factor (Ky) and maximum yield (Ym). Uncertainties in crop water footprint estimates related to uncertainties in four key input variables: PR, ET0, Kc, and crop calendar were quantified through Monte Carlo simulations. The results show that the sensitivities and uncertainties differ across crop types. In general, the water footprint of crops is most sensitive to ET0 and Kc, followed by the crop calendar. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint is, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0was dominant compared to that of PR. The uncertainties in the total water footprint of a crop as a result of combined key input

  7. Water uptake efficiency of a maize plant - A simulation case study

    NASA Astrophysics Data System (ADS)

    Meunier, Félicien; Leitner, Daniel; Bodner, Gernot; Javaux, Mathieu; Schnepf, Andrea

    2014-05-01

    segments based on literature values. This numerical experiment shows significantly different behaviors of the root systems in terms of dynamics of the water uptake, duration of the water stress or cumulative transpiration. The ranking of the maize architectures varied according to the considered drought scenario. The performance of a root system depends on the environment and on its hydraulic architecture suggesting that we always need to take the genotype-environment interaction into account for recommending breeding options. This study also shows that an ideotype must be built for one specific environment: the one we created experienced difficulties to transpire when placed in different conditions it has been designed for. By mathematical simulation we increased the understanding of the most important underlying processes governing water uptake in a root system.

  8. MULTIPLE CONTAMINANTS CASE STUDIES

    EPA Science Inventory

    The presentation provides information taken from the arsenic demonstration program projects that have treatment systems removing multiply contaminants from drinking water. The case studies sited in the presentation consist of projects that have arsenic along with either nitrate, ...

  9. HYDROGEOLOGIC CASE STUDIES

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  10. Determining return water levels at ungauged coastal sites: a case study for northern Germany

    NASA Astrophysics Data System (ADS)

    Arns, Arne; Wahl, Thomas; Haigh, Ivan D.; Jensen, Jürgen

    2015-04-01

    We estimate return periods and levels of extreme still water levels for the highly vulnerable and historically and culturally important small marsh islands known as the Halligen, located in the Wadden Sea offshore of the coast of northern Germany. This is a challenging task as only few water level records are available for this region, and they are currently too short to apply traditional extreme value analysis methods. Therefore, we use the Regional Frequency Analysis (RFA) approach. This originates from hydrology but has been used before in several coastal studies and is also currently applied by the local federal administration responsible for coastal protection in the study area. The RFA enables us to indirectly estimate return levels by transferring hydrological information from gauged to related ungauged sites. Our analyses highlight that this methodology has some drawbacks and may over- or underestimate return levels compared to direct analyses using station data. To overcome these issues, we present an alternative approach, combining numerical and statistical models. First, we produced a numerical multidecadal model hindcast of water levels for the entire North Sea. Predicted water levels from the hindcast are bias corrected using the information from the available tide gauge records. Hence, the simulated water levels agree well with the measured water levels at gauged sites. The bias correction is then interpolated spatially to obtain correction functions for the simulated water levels at each coastal and island model grid point in the study area. Using a recommended procedure to conduct extreme value analyses from a companion study, return water levels suitable for coastal infrastructure design are estimated continuously along the entire coastline of the study area, including the offshore islands. A similar methodology can be applied in other regions of the world where tide gauge observations are sparse.

  11. HIV/AIDS and access to water: A case study of home-based care in Ngamiland, Botswana

    NASA Astrophysics Data System (ADS)

    Ngwenya, B. N.; Kgathi, D. L.

    This case study investigates access to potable water in HIV/AIDS related home-based care households in five rural communities in Ngamiland, Botswana. Primary data collected from five villages consisted of two parts. The first survey collected household data on demographic and rural livelihood features and impacts of HIV/AIDS. A total of 129 households were selected using a two-stage stratified random sampling method. In the second survey, a total of 39 family primary and community care givers of continuously ill, bed-ridden or non-bed-ridden HIV/AIDS patients were interviewed. A detailed questionnaire, with closed and open-ended questions, was used to collect household data. In addition to using the questionnaire, data were also collected through participant observation, informal interviews and secondary sources. The study revealed that there are several sources of water for communities in Ngamiland such as off-plot, outdoor (communal) and on-plot outdoor and/or indoor (private) water connections, as well as other sources such as bowsed water, well-points, boreholes and open perennial/ephemeral water from river channels and pans. There was a serious problem of unreliable water supply caused by, among other things, the breakdown of diesel-powered water pumps, high frequency of HIV/AIDS related absenteeism, and the failure of timely delivery of diesel fuel. Some villages experienced chronic supply disruptions while others experienced seasonal or occasional water shortages. Strategies for coping with unreliability of water supply included economizing on water, reserve storage, buying water, and collection from river/dug wells or other alternative sources such as rain harvesting tanks in government institutions. The unreliability of water supply resulted in an increase in the use of water of poor quality and other practices of poor hygiene as well as a high opportunity cost of water collection. In such instances, bathing of patients was cut from twice daily to once or

  12. Cryptosporidium and Giardia in Surface Water: A Case Study from Michigan, USA to Inform Management of Rural Water Systems

    PubMed Central

    Dreelin, Erin A.; Ives, Rebecca L.; Molloy, Stephanie; Rose, Joan B.

    2014-01-01

    Cryptosporidium and Giardia pose a threat to human health in rural environments where water supplies are commonly untreated and susceptible to contamination from agricultural animal waste/manure, animal wastewater, septic tank effluents and septage. Our goals for this paper are to: (1) explore the prevalence of these protozoan parasites, where they are found, in what quantities, and which genotypes are present; (2) examine relationships between disease and land use comparing human health risks between rural and urban environments; and (3) synthesize available information to gain a better understanding of risk and risk management for rural water supplies. Our results indicate that Cryptosporidium and Giardia were more prevalent in rural versus urban environments based on the number of positive samples. Genotyping showed that both the human and animal types of the parasites are found in rural and urban environments. Rural areas had a higher incidence of disease compared to urban areas based on the total number of disease cases. Cryptosporidiosis and giardiasis were both positively correlated (p < 0.001) with urban area, population size, and population density. Finally, a comprehensive strategy that creates knowledge pathways for data sharing among multiple levels of management may improve decision-making for protecting rural water supplies. PMID:25317981

  13. Water and Energy Savings using Demand Hot Water Recirculating Systems in Residential Homes: A Case Study of Five Homes in Palo Alto, California

    SciTech Connect

    Ally, M.R.

    2002-11-14

    This report summarizes a preliminary study aimed at estimating the potential of saving potable water, (and the electrical energy used to heat it), that is presently lost directly to the drain while occupants wait for hot water to arrive at the faucet (point of use). Data were collected from five single-family homes in Palo Alto, California. Despite the small sample size in this study, the results make a compelling case for retrofitting homes with hot water recirculation systems to eliminate unnecessary wastage of water at the point of use. Technical as well as behavioral and attitudinal changes towards water conservation are necessary for a fulfilling and successful conservation effort. This report focuses on the technical issues, but behavioral issues are also noted, which may be factored into future studies involving local and state governments and utility companies.

  14. Future water supply management adaptation measures - case study of Ljubljana field aquifer

    NASA Astrophysics Data System (ADS)

    Čenčur Curk, B.; Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Bogardi, I.

    2012-04-01

    The main drinking water supply problems are related to the significant change of groundwater quantity and quality observed in the last decades as an effect of land use practices and very likely also climate change. The latter may affect the ability of drinking water suppliers to provide enough water of sufficient quality to the consumers. These topics were studied in the frame of SEE project CC-WaterS (Climate Change and Impact on Water Supply) with the main goal to develop a water supply management system regarding optimisation of water extraction and land use restrictions under climate change scenarios for water suppliers, since existing management practices are mostly inadequate to reduce impacts of CC on water supply reliability. The main goal was a designation of appropriate measures and risk assessment to adapt water supply to changing climate and land use activities considering socio-economic aspects. This was accomplished by using 'Fuzzy Decimaker', which is a tool for selecting and ranking risk reduction measures or management actions for local waterworks or water authorities under the pressure of climate change. Firstly, management options were selected and ranked. For public water supply of Ljubljana, the capital of Slovenia, several management options were selected. For improvement of water supply and preservation of water resource quantities there is a need for engineering interventions, such as reducing water losses on pipelines. For improving drinking water safety and preserving water resource quality farmers are not allowed to use fertilisers in the first safeguarding zone and they get compensations for income reduction because of lower farming production. Compensations for farming restrictions in the second safeguarding zone were applied as additional management option. On the other hand, drinking water treatment is another management option to be considered. Trends in groundwater level are decreasing, above all recharge areas of waterworks

  15. Case study of complaints on drinking water quality: relationship to copper content?

    PubMed

    Pizarro, Fernando; Araya, Magdalena; Vásquez, Marcela; Lagos, Gustavo; Olivares, Manuel; Méndez, Marco A; Leyton, Bárbara; Reyes, Arturo; Letelier, Victoria; Uauy, Ricardo

    2007-05-01

    Several families of Talca city, Chile complained to health authorities for what they attributed to consumption of copper (Cu)-contaminated drinking water. We assessed the situation 6-12 mo after the initiation of complaints by characterizing the symptoms reported, the chemistry of drinking water, and the Cu concentration in stagnant drinking water. After completing a census, 1778 households accepted participation and were categorized as follows: category 1, Cu plumbing for tap water and dwellers reporting health complaints (HC); category 2, Cu plumbing for tap water and dwellers reporting no HC; category 3, plastic plumbing for tap water and dwellers reporting no HC. Questionnaires recorded characteristics of households and symptoms presented by each member of the family in the last 3 mo. The Cu concentration in drinking water was measured in a subsample of 80 homes with Cu pipes. In category 1, participants presented significantly more abdominal pain, diarrhea, and/or vomiting (gastrointestinal [GI] symptoms) in comparison to category 3 and to categories 2 plus 3. The stagnant Cu concentrations measured in drinking water in all houses studied were below the US Environmental Protection Agency guideline value (<1.3 mg Cu/L). In summary, data obtained by interviews suggested that individuals in some areas of Talca city were suffering more GI symptoms potentially related to Cu excess, but measurement of Cu concentration in stagnant tap waters ruled out the association between Cu exposure and GI symptom reports at the time of this study. The dose-response curves for GI symptoms and Cu exposure now available were crucial in the analyses of results. PMID:17646683

  16. Assessment of water quality: a case study of the Seybouse River (North East of Algeria)

    NASA Astrophysics Data System (ADS)

    Guettaf, M.; Maoui, A.; Ihdene, Z.

    2014-11-01

    The assessment of water quality has been carried out to determine the concentrations of different ions present in the surface waters. The Seybouse River constitutes a dump of industrial and domestic rejections which contribute to the degradation of water quality. A total of 48 surface water samples were collected from different stations. The first objective of this study is the use of water quality index (WQI) to evaluate the state of the water in this river. The second aim is to calculate the parameters of the quality of water destined for irrigation such as sodium adsorption ratio , sodium percentage, and residual sodium carbonate. A high mineralization and high concentration of major chemical elements and nutrients indicate inevitably a high value of WQI index. The mean value of electrical conductivity is about 945.25 µs/cm in the station 2 (Bouhamdane) and exceeds 1,400 µs/cm in station 12 of Nador. The concentration of sulfates is above 250 mg/l in the stations 8 (Zimba) and 11 (Helia). A concentration of orthophosphate over 2 mg/l was observed in the station 11. The comparison of the obtained and the WHO standards indicates a before using it use in agricultural purposes.

  17. Integrated hydrological and water quality model for river management: a case study on Lena River.

    PubMed

    Fonseca, André; Botelho, Cidália; Boaventura, Rui A R; Vilar, Vítor J P

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km(2) watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between -26% and 23% for calibration and -30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. PMID:24742558

  18. The association between campylobacteriosis, agriculture and drinking water: a case-case study in a region of British Columbia, Canada, 2005-2009.

    PubMed

    Galanis, E; Mak, S; Otterstatter, M; Taylor, M; Zubel, M; Takaro, T K; Kuo, M; Michel, P

    2014-10-01

    We studied the association between drinking water, agriculture and sporadic human campylobacteriosis in one region of British Columbia (BC), Canada. We compared 2992 cases of campylobacteriosis to 4816 cases of other reportable enteric diseases in 2005-2009 using multivariate regression. Cases were geocoded and assigned drinking water source, rural/urban environment and socioeconomic status (SES) according to the location of their residence using geographical information systems analysis methods. The odds of campylobacteriosis compared to enteric disease controls were higher for individuals serviced by private wells than municipal surface water systems (odds ratio 1·4, 95% confidence interval 1·1-1·8). In rural settings, the odds of campylobacteriosis were higher in November (P = 0·014). The odds of campylobacteriosis were higher in individuals aged ⩾15 years, especially in those with higher SES. In this region of BC, campylobacteriosis risk, compared to other enteric diseases, seems to be mediated by vulnerable drinking water sources and rural factors. Consideration should be given to further support well-water users and to further study the microbiological impact of agriculture on water. PMID:24892423

  19. LCA of waste prevention activities: a case study for drinking water in Italy.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2012-10-15

    The strategic relevance of waste prevention has considerably increased worldwide during recent years, such that the current European legislation requires the preparation of national waste prevention programmes in which reduction objectives and measures are identified. In such a context, it is possible to recognise how, in order to correctly evaluate the environmental consequences of a prevention activity, a life cycle perspective should be employed. This allows us to go beyond the simple reduction of the generated waste which, alone, does not automatically imply achieving better overall environmental performance, especially when this reduction is not pursued through the simple reduction of consumption. In this study, the energetic and environmental performance of two waste prevention activities considered particularly meaningful for the Italian context were evaluated using life cycle assessment (LCA) methodology. The two activities were the utilisation of public network water (two scenarios) and of refillable bottled water (two scenarios) for drinking purposes, instead of one-way bottled water (three scenarios). The energy demand and specific potential impacts of the four waste prevention scenarios and of the three baseline scenarios were compared with the aim of evaluating whether, and under what conditions, the analysed prevention activities are actually associated with overall energetic and environmental benefits. In typical conditions, the use of public network water directly from the tap results in the best scenario, while if water is withdrawn from public fountains, its further transportation by private car can involve significant impacts. The use of refillable PET bottled water seems the preferable scenario for packaged water consumption, if refillable bottles are transported to local distributors along the same (or a lower) distance as one-way bottles to retailers. The use of refillable glass bottled water is preferable to one-way bottled water only if a

  20. How effective is river restoration in re-establishing groundwater - surface water interactions? - A case study

    NASA Astrophysics Data System (ADS)

    Kurth, A.-M.; Weber, C.; Schirmer, M.

    2015-01-01

    In this study we investigated whether river restoration was successful in re-establishing vertical connectivity and, thereby, groundwater-surface water interactions, in a degraded urban stream. Well-tried passive Distributed Temperature Sensing (DTS) and novel active and passive DTS approaches were employed to study groundwater-surface water interactions in an experimental reach of an urban stream before and after its restoration and in two (near-) natural reference streams. Results were validated with Radon-222 analyses. Our results indicated that river restoration at the study site was indeed successful in increasing groundwater-surface water interactions. Increased surface water downwelling occurred locally at the tip of a gravel island created during river restoration. Hence, the installation of in-stream structures increased the vertical connectivity and thus groundwater-surface water interactions. With the methods presented in this publication it would be possible to routinely investigate the success of river restorations in re-establishing vertical connectivity, thereby gaining insight into the effectiveness of specific restoration measures. This, in turn, would enable the optimization of future river restoration projects, rendering them more cost-effective and successful.

  1. Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Durry, G.; Longo, K.; Freitas, S.; Rivière, E. D.; Pirre, M.

    2006-08-01

    In this study, we evaluate the ability of the BRAMS mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to ECMWF analysis. The mesoscale model performs significantly better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The improvement provided by the mesoscale model for water vapour comes mainly from (i) the enhanced vertical resolution in the UTLS (250 m for BRAMS and ~1 km for ECMWF model) and (ii) the more detailed microphysical parameterization providing ice supersaturations as in the observations. The ECMWF vertical resolution (~1 km) is too coarse to capture the observed fine scale vertical variations of water vapour in the UTLS. In near saturated or supersaturated layers, the mesoscale model relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, ECMWF analysis gives good results partly thanks to data assimilation. The analysis of the mesoscale model results showed that in undersaturated layers, the water vapour profile depends mainly on the dynamics. In saturated/supersaturated layers, microphysical processes play an important role and have to be taken into account on top of the dynamical processes to understand the water vapour profiles. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour profiles that are significantly dryer than micro-SDLA measurements. This similarity comes from the fact that BRAMS is initialised using ECMWF analysis and that no mesoscale

  2. Coastal hypoxia diminished by intrusion of open ocean water after long El Nino Events: Case study of Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Lui, H. K.; Chen, C. T. A.

    2015-12-01

    Coastal regions suffer from increasing terrestrial inputs of nutrients and organic matter. Consequently, hypoxia (dissolved oxygen (DO) < 30% or 2 mg/L) in the coastal regions has become more serious. In the study of coastal eutrophication and hypoxia, incoming offshore seawater has rarely been addressed. With references to the time-series data in the coast of Hong Kong and at the South East Asia Time Series Study (SEATS) station located in the northern South China Sea (SCS), this study demonstrates that coastal waters of Hong Kong have suffered hypoxia for over a decade. The hypoxia condition, however, diminished between 2002 and 2004, most likely owning to a large scale intrusion of the West Philippine Sea (WPS) seawater. For instance, at station SM18 located south of Hong Kong, the summer DO minimum has generally decreased from a saturation state of about 60% to as low as 5% from 1990 to 2013. The almost anoxic condition occurred in 2011 after a La Nina event. On the other hand, the summer DO minimum reached a high value of 79% in 2004 after a long El Nino event. Meanwhile, seawater at the SEATS site also contained the highest proportion of the WPS water, reflecting the large intrusion of the WPS seawater into the SCS. Such a result illustrates a situation that coastal eutrophication and hypoxia could be worsened when the intrusion of open ocean water decreases, and vice versa.

  3. Sub-pixel mapping of water boundaries using pixel swapping algorithm (case study: Tagliamento River, Italy)

    NASA Astrophysics Data System (ADS)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2015-10-01

    Taking the advantages of remotely sensed data for mapping and monitoring of water boundaries is of particular importance in many different management and conservation activities. Imagery data are classified using automatic techniques to produce maps entering the water bodies' analysis chain in several and different points. Very commonly, medium or coarse spatial resolution imagery is used in studies of large water bodies. Data of this kind is affected by the presence of mixed pixels leading to very outstanding problems, in particular when dealing with boundary pixels. A considerable amount of uncertainty inescapably occurs when conventional hard classifiers (e.g., maximum likelihood) are applied on mixed pixels. In this study, Linear Spectral Mixture Model (LSMM) is used to estimate the proportion of water in boundary pixels. Firstly by applying an unsupervised clustering, the water body is identified approximately and a buffer area considered ensuring the selection of entire boundary pixels. Then LSMM is applied on this buffer region to estimate the fractional maps. However, resultant output of LSMM does not provide a sub-pixel map corresponding to water abundances. To tackle with this problem, Pixel Swapping (PS) algorithm is used to allocate sub-pixels within mixed pixels in such a way to maximize the spatial proximity of sub-pixels and pixels in the neighborhood. The water area of two segments of Tagliamento River (Italy) are mapped in sub-pixel resolution (10m) using a 30m Landsat image. To evaluate the proficiency of the proposed approach for sub-pixel boundary mapping, the image is also classified using a conventional hard classifier. A high resolution image of the same area is also classified and used as a reference for accuracy assessment. According to the results, sub-pixel map shows in average about 8 percent higher overall accuracy than hard classification and fits very well in the boundaries with the reference map.

  4. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    SciTech Connect

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: “W” process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four

  5. Case study on the destruction of organic dyes in supercritical water

    SciTech Connect

    LaJeunesse, C.A.; Rice, S.F.

    1994-11-01

    Organic dyes, which were used in Navy shells to mark ships and structures, need to be disposed of without burning. A study was undertaken to assess the feasibility of using supercritical water oxidation to destroy organic dyes. Experimental destruction efficiencies, product analyses, and process configuration are reported.

  6. An Integrated Environmental and Water Accounting and Analytical Framework for Accountable water Governance: a Case Study for Haihe Basin

    NASA Astrophysics Data System (ADS)

    Qin, C.

    2009-04-01

    Water is a critical issue in China for a variety of reasons. This is especially urgent in Haihe basin with poor water availability of 305 m3 per capita basis. With the rapid economic development and associated increases in water demand, the river basin has been enduring increasing water stress. Water for the ecosystem use has been compromised and the environment has been deteriorating. Water shortage and environmental degradation have become a bottleneck to the further development of the economy and society. On one side, previous water resource managers have emphasized the amount of water withdrawn but rarely take water quality into consideration. On the other side, environmental managers have usually ignored the importance of pollutant assimilating capacity of water flows for the wastewater control. It is especially important to measure the impacts of both water withdrawn and wastewater discharge on the hydro-ecosystem. Thus, water consumption should not only account for the amount of water inputs but also the amount of water contaminated in the hydro-ecosystem by the discharged wastewater. Water quantity and quality of return flows should also become the important components of such an environmental and water account. Because return flow from upstream sites represents an externality to downstream uses, which can be positive as an additional source and negative as a pollutant source. In this paper we present an integrated environmental and water accounting and analytical approach based on a distributed hydrological model WEP-L (Water and Energy transfer Process in Large river basins) combined with a simple water quality model. Our environmental and water accounting framework and analysis tool allows tracking water consumption on the input side, water pollution from the human system and water flows passing the hydrological system thus enabling us to deal with water resources of different qualities. Keywords: Environmental accounting; Water accounting; Water

  7. Water quality assessment in terms of water quality index (WQI): case study of the Kolong River, Assam, India

    NASA Astrophysics Data System (ADS)

    Bora, Minakshi; Goswami, Dulal C.

    2016-07-01

    The Kolong River of Nagaon district, Assam has been facing serious degradation leading to its current moribund condition due to a drastic human intervention in the form of an embankment put across it near its take-off point from the Brahmaputra River in the year 1964. The blockage of the river flow was adopted as a flood control measure to protect its riparian areas, especially the Nagaon town, from flood hazard. The river, once a blooming distributary of the mighty Brahmaputra, had high navigability and rich riparian biodiversity with a well established agriculturally productive watershed. However, the present status of Kolong River is highly wretched as a consequence of the post-dam effects thus leaving it as stagnant pools of polluted water with negligible socio-economic and ecological value. The Central Pollution Control Board, in one of its report has placed the Kolong River among 275 most polluted rivers of India. Thus, this study is conducted to analyze the seasonal water quality status of the Kolong River in terms of water quality index (WQI). The WQI scores shows very poor to unsuitable quality of water samples in almost all the seven sampling sites along the Kolong River. The water quality is found to be most deteriorated during monsoon season with an average WQI value of 122.47 as compared to pre-monsoon and post-monsoon season having average WQI value of 85.73 and 80.75, respectively. Out of the seven sampling sites, Hatimura site (S1) and Nagaon Town site (S4) are observed to be the most polluted sites.

  8. Shallow water submarine hydrothermal activity - A case study in the assessment of ocean acidification and fertilization

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yoshida, K.; Hagiwara, T.; Nagao, K.; Kusakabe, M.; Wang, B.; Chen, C. A.

    2012-12-01

    Most natural Shallow Water submarine Hydrothermal activates (SWH) along coastlines are related to hydrothermal eruptions involving heating of groundwater with the volcanic gas. These SWHs supply nutrients such as phosphorus and micro nutrients like iron to the euphotic zone, contributing to the overall natural fertility and primary productivity of coastal waters. However, SWHs also have a negative effect, dispersing toxic materials such as mercury and arsenic, and affecting the acidification of the surrounding waters. In this study, we evaluate the impact of "iron supply" and "ocean acidification" on the primary production in a coastal marine environment, at a SWH area discovered off Gueshandao Island, northeast Taiwan. In the past three years, expeditions were conducted and observations made around this SWH site. Divers, small boats and a research vessel (R/V OR1, Ocean University National Taiwan) were used to survey successively larger areas around the site. Some of the results obtained are as follows. Hydrothermal vents are located in a hilly terrain rich with hot spring water with gas erupting intermittently. There are two types of vents, roughly divided by color, yellow hot spring water with higher temperature >110 degC ejected from sulfur chimneys of various sizes, and colorless water with lower temperature ~80 degC ejected directly from the crevices of the andesitic bedrock. Natural sulfur solidifying in the mouth of a small chimney was captured by a video camera, and explosions were also observed at intervals of a few minutes. Sediment, sand and particles of sulfur were deposited on the sides to a radius of about 50 m condensing around the chimney. The bottom type changes from sand/particles to outcrop/rock away from the vents. Moreover, gas samples were collected from the vents; the ratios of gas concentrations (N2/Ar) and isotopic composition of noble gas (3He/4He) suggest that these volcanic gases are mantle-derived. Hydrothermal fluid with high p

  9. Beneficial effects on water management of simple hydraulic structures in wetland systems: the Vallevecchia case study, Italy.

    PubMed

    Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L

    2011-01-01

    Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion. PMID:22053478

  10. Coastal water quality from remote sensing and GIS. A case study on South West Sardinia (Italy)

    SciTech Connect

    Poli, U.; Ippoliti, M.; Venturini, C.; Falcone, P.; Marino, A.

    1997-08-01

    In this paper the application of remote sensing image processing and GIS techniques in monitoring and managing coastal areas is proposed. The methodology has been applied to South-West Sardinia Coast where the environment is endangered by industrial plants and other human activities. The area is characterized by the presence of many submarine springs aligned along coastal cliffs. Water quality parameters (chlorophyll, suspended sediments and temperature) spatial and temporal variations, have been studied using Landsat TM images. Particularly, in this paper are reported the results referred to sea surface thermal gradients, considered as one of the main water quality index. Thermal gradients have been mapped in order to outline water circulation, thermal pollution and presence and distribution of submarine springs. Furthermore, a GIS approach of relating mono and multitemporal TM data with ground referenced information on industrial plants characteristics and distribution has been applied.

  11. Non-market valuation supporting water management: the case study in Czestochowa, Poland

    NASA Astrophysics Data System (ADS)

    Kountouris, Y.; Godyn, I.; Sauer, J.

    2014-07-01

    Water resources in Poland continue to be under stress despite systematic efforts to safeguard ground and surface water quality and quantity. Groundwater protection from nitrate pollution of human origin requires the development of sewerage systems. Such investments are often financed from public funds that must be formally appraised. The appraisal should be done by a comparison of benefits and costs of investment measures - not only financial but also environmental and social. A significant challenge is the monetization of the effects on the environment. In this paper we use non-market valuation to examine residents' preferences and estimate their willingness to pay for improving drinking water quality. This paper also contributes to the narrow literature on valuation of benefits of measures for groundwater quality improvement by presenting an application of the choice experiment method in the Czestochowa Region of Poland. To the best of our knowledge this is the first study estimating the value of benefits of the groundwater quality improvement in Poland.

  12. Evolution of water chemistry during Marcellus Shale gas development: A case study in West Virginia.

    PubMed

    Ziemkiewicz, Paul F; Thomas He, Y

    2015-09-01

    Hydraulic fracturing (HF) has been used with horizontal drilling to extract gas and natural gas liquids from source rock such as the Marcellus Shale in the Appalachian Basin. Horizontal drilling and HF generates large volumes of waste water known as flowback. While inorganic ion chemistry has been well characterized, and the general increase in concentration through the flowback is widely recognized, the literature contains little information relative to organic compounds and radionuclides. This study examined the chemical evolution of liquid process and waste streams (including makeup water, HF fluids, and flowback) in four Marcellus Shale gas well sites in north central West Virginia. Concentrations of organic and inorganic constituents and radioactive isotopes were measured to determine changes in waste water chemistry during shale gas development. We found that additives used in fracturing fluid may contribute to some of the constituents (e.g., Fe) found in flowback, but they appear to play a minor role. Time sequence samples collected during flowback indicated increasing concentrations of organic, inorganic and radioactive constituents. Nearly all constituents were found in much higher concentrations in flowback water than in injected HF fluids suggesting that the bulk of constituents originate in the Marcellus Shale formation rather than in the formulation of the injected HF fluids. Liquid wastes such as flowback and produced water, are largely recycled for subsequent fracturing operations. These practices limit environmental exposure to flowback. PMID:25957035

  13. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen (Final)

    EPA Science Inventory

    Cover of the Nanomaterial <span class=Case Studies Final Report "> This document is a starting point to determine what is known and what needs to b...

  14. Evaluating the metallic pollution of riverine water and sediments: a case study of Aras River.

    PubMed

    Nasehi, F; Hassani, A H; Monavvari, M; Karbassi, A R; Khorasani, N

    2013-01-01

    Metallic pollution caused by elements Zn, Cu, Fe, Pb, Ni, Cd, and Hg in water and sediments of Aras River within a specific area in Ardabil province of Iran is considered. Water and sediment samples were collected seasonally and once respectively from the five selected stations. Regarding WHO published permissible values, only Ni concentration in spring and summer water samples has exceeded the acceptable limit up to four times greater than the limit. The concentration of metals Ni, Pb, and Fe in river water shows a direct relationship with river water discharge and the amount of precipitation. Enhanced soil erosion, bed load dissolution, and runoffs may play a key role in remarkable augmentation of metallic ions concentration. Furthermore, excessive use of pesticides which contain a variety of metallic ions (mainly Cu) in spring and summer may also result in an increase in the metals' concentration. The potential risk of Ni exposure to the water environment of the study area is assigned to juice, dairy products, edible oil, and sugar cane factories as well as soybean crop lands which are located within the sub-basin of Aras River in the study area. Regarding the sediment samples, the bioavailable metal concentrations indicate an ascending order from the first station towards the last one. In comparison with earth crust, sedimental and igneous rocks the reported metallic concentration values, except for Cd, lie within the low-risk status. Regarding Cd, the reported values in some stations (S2, S4, and S5) are up to ten times greater than that of shale which may be considered as a remarkable risk potential. The industrial and municipal wastewater generated by Parsabad moqan industrial complex and residential areas, in addition to the discharges of animal husbandry centers, may be addressed as the key factors in the sharp increase of metallic pollution potential in stations 4 and 5. PMID:22318740

  15. Case Studies of Mixed-phase Winter Orographic Clouds with High Liquid Water Content over Idaho

    NASA Astrophysics Data System (ADS)

    Tessendorf, S. A.; Xue, L.; Weeks, C.; Rasmussen, R.; French, J.; Geerts, B.; Holbrook, V. P.; Blestrud, D.; Kunkel, M. L.; Parkinson, S.

    2015-12-01

    Wintertime orographic clouds have been shown to contain supercooled liquid water (SLW) as observed by radiometers and simulated by numerical models. The presence of SLW is often an indication that the precipitation process is not efficient, possibly due to a lack of ice nuclei able to be activated into ice crystals. Natural ice nuclei often do not become activated until temperatures are colder than -15 C, however silver iodide has been shown to activate at subfreezing temperatures as warm as -5 C (DeMott 1999, Hoose and Mohler 2012). As such, the precipitation from relatively warm mixed-phase orographic clouds with SLW could potentially be enhanced using silver iodide. Idaho Power Company (IPC) has been operating a cloud seeding program in the Payette River Basin of western Idaho for over 15 years aimed at enhancing the precipitation from winter orographic clouds. During the past 5 years, IPC and the National Center for Atmospheric Research (NCAR) have been conducting research aimed at better understanding the cloud physics of the winter orographic clouds in the region and their potential for cloud seeding. From this research, several cases have been identified that have very high amounts of SLW, based on radiometer observations and numerical modeling. In one case, in situ measurements from the University of Wyoming King Air were also collected. This paper will present observations and modeling results of two cases with high SLW and discuss the implications that such cases have on aircraft icing and how seeding them with silver iodide might impact their precipitation production.

  16. Site-specific water quality criteria -- Case studies of available methodologies

    SciTech Connect

    DeShields, B.R.; Hawkins, E.T.; Alsop, W.R.

    1995-12-31

    The Clean Water Act and EPA`s National Toxic Rule require states to either adopt EPA`s National Ambient Water Quality Criteria (AWQCs) or to develop Site Specific Water Quality Criteria (SSWQC). EPA has published several guidance documents on how to develop SSWQC. These methods as well as methods currently in development for calculating SSWQC were examined. EPA currently identifies three methods for developing SSWQC: the Recalculation Method, the Indicator Species or Water Effects Ratio (WER) Method, and the Resident Species Method. SSWQC have been developed in some states/regions using one of or a combination of these methods. Examples of studies conducted to develop SSWQCs including those conducted for San Francisco Bay and the Santa Ana River in California, and New York Harbor. Methods used to develop SSWQC in these regions and ongoing efforts in other regions were reviewed and compared. An evaluation of the effectiveness of these studies in terms of successfulness, timeliness, cost, and benefit to both the discharger and the environment was conducted. In addition, issues related to SSWQC development such as the use of total vs. dissolved metal concentrations, species selection, and laboratory and field techniques were examined. A summary of these evaluations will be presented.

  17. Impact of shale gas development on water resources: a case study in northern poland.

    PubMed

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86% of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies. PMID:25877457

  18. Impact of Shale Gas Development on Water Resources: A Case Study in Northern Poland

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86 % of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  19. Integrating wastewater reuse in water resources management for hotels in arid coastal regions - Case Study of Sharm El Sheikh, Egypt.

    PubMed

    Lamei, A; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water (using reverse osmosis) for their domestic water supply, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their potable and non-potable water needs. There is normally a contractual agreement stating a minimum amount of water that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). Hotels have to carefully analyse their water requirements in order to determine which percentage of the hotel's peak water demand should be used in the contract in order to reduce water costs and avoid the risk of water shortage. This paper describes a model to optimise the contracted-for irrigation water supply with the objective function to minimise total water cost to hotels. It analyses what the contracted-for irrigation water supply of a given hotel should be, based on the size of the green irrigated area on one hand and the unit prices of the different types of water on the other hand. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh (Sharm), Egypt. This paper presents costs of wastewater treatment using waste stabilisation ponds, which is the prevailing treatment mechanism in the case study area for centralised plants, as well as aerobic/anaerobic treatment used for decentralised wastewater treatment plants in the case study area. There is only one centralised wastewater treatment plant available in the city exerting monopoly and selling treated wastewater to hotels at a much higher price than the actual cost that a hotel would bear if it treated its own wastewater. Contracting for full peak irrigation demand is the highest total cost option. Contracting for a portion of the peak irrigation demand and complementing the rest from desalination water is a cheaper option. A better option still is to complement the excess irrigation demand

  20. Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand.

    PubMed

    Censi, P; Spoto, S E; Saiano, F; Sprovieri, M; Mazzola, S; Nardone, G; Di Geronimo, S I; Punturo, R; Ottonello, D

    2006-08-01

    A geochemical survey of the northwestern part of the Thailand Gulf (Inner Gulf) was carried out in order to define concentrations and distribution patterns of selected heavy metals (V, Cr, Co, Ni, Cu, Zn, and U) in the coastal system and estuarine area of the Mae Klong river. The results indicate the presence of two different sources of heavy metals in the studied environment and allowed us to identify a lithogenic component that significantly influences the composition of coastal waters and suspended particulate matter (SPM). Comparison of the normalized heavy metals concentrations both in the studied samples and in those reported for the Sn-W ores present in the surrounding areas suggests an important anthropogenic contribution to the chemistry of the seafloor sediments. Vanadium and nickel enrichment factors (EF) calculated for coastal waters indicate that contamination by hydrocarbons discharge took place in the investigated area. PMID:16403556

  1. Biocatalysis in water-in-ionic liquid microemulsions: a case study with horseradish peroxidase.

    PubMed

    Moniruzzaman, M; Kamiya, N; Goto, M

    2009-01-20

    In this article we report the first results on the enzymatic activity of horseradish peroxidase (HRP) microencapsulated in water-in-ionic liquid (w/IL) microemulsions using pyrogallol as the substrate. Toward this goal, the system used in this study was composed of anionic surfactant AOT (sodium bis(2-ethyl-1-hexyl)sulfosuccinate)/hydrophobic IL [C(8)mim][Tf(2)N] (1-octyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)amide)/water/1-hexanol. In this system, the catalytic activity of HRP was measured as a function of substrate concentrations, W(0) (molar ratio of water to surfactant), pH, and 1-hexanol content. The curve of the activity-W(0) profile was found to be hyperbolic for the new microemulsion. The apparent Michaelis-Menten kinetic parameters (k(cat) and K(m)) were estimated and compared to those obtained from a conventional microemulsion. Apparently, it was found that HRP-catalyzed oxidation of pyrogallol by hydrogen peroxide in IL microemulsuions is much more effective than in a conventional AOT/water/isooctane microemulsion. The stability of HRP solubilized in the newly developed w/IL microemulsions was examined, and it was found that HRP retained almost 70% of its initial activity after incubation at 28 degrees C for 30 h. PMID:19113810

  2. Water Balance of Lakes in the Continental Arctic: An Arid Zone Case Study

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; YI, Y.; Birks, S. J.

    2014-12-01

    Stable isotope mass balance using oxygen-18 and deuterium has been applied to study spatial evaporation and water balance trends across continental northern Canada, a remote region of greater than 275,000 km2 characterized by significant seasonal aridity and strong gradients in hydroclimate and vegetation. Calculated catchment-weighted evaporation losses based on a lake survey in the 1990s were estimated at ~10-15% in tundra areas draining into the Arctic Ocean to as high as 60% in forested subarctic areas draining to the Mackenzie River via Great Bear or Great Slave Lakes. Open-water evaporation was found to generally decrease with increasing latitude, accounting for 5 to 50% of total evapotranspiration. Two long-term studies initiated in the 1990s, and carried on for 20+ years, confirm many of the findings of the initial survey and now provide a complimentary perspective of temporal variations in water balance along two representative string-of-lakes drainages located in boreal and tundra settings. For a tundra watershed, the study reveals important lake-order-dependent patterns of evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/precipitation. For a boreal watershed, the analysis also reveals that fluctuations in effective drainage area due to intermittent connectivity between lakes during dry periods can be an important driver of downstream isotopic signals.

  3. Drought risk assessments of water resources systems under climate change: a case study in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, T. C.; Chen, C.; Kuo, C. M.; Tseng, H. W.; Yu, P. S.

    2012-11-01

    This study aims at assessing the impact of climate change on drought risk in a water resources system in Southern Taiwan by integrating the weather generator, hydrological model and simulation model of reservoir operation. Three composite indices with multi-aspect measurements of reservoir performance (i.e. reliability, resilience and vulnerability) were compared by their monotonic behaviors to find a suitable one for the study area. The suitable performance index was then validated by the historical drought events and proven to have the capability of being a drought risk index in the study area. The downscaling results under A1B emission scenario from seven general circulation models were used in this work. The projected results show that the average monthly mean inflows during the dry season tend to decrease from the baseline period (1980-1999) to the future period (2020-2039); the average monthly mean inflows during the wet season may increase/decrease in the future. Based on the drought risk index, the analysis results for public and agricultural water uses show that the occurrence frequency of drought may increase and the severity of drought may be more serious during the future period than during the baseline period, which makes a big challenge on water supply and allocation for the authorities of reservoir in Southern Taiwan.

  4. Effect of quality of phreatic aquifer water and water upwelling on constructions. A case study of Ouargla

    NASA Astrophysics Data System (ADS)

    Saggaï, Sofiane; Bachi, Oum Elkheir; Saggaï, Ali

    2016-07-01

    In Ouargla's oasis, which is one of urban conglomerations of Algerian Sahara, the exploitation and/or the overexploitation of the deep aquifers of continental intercalary and of complex terminal that contain waters of mediocre quality (salty and hot), and the rejection of waters of drainage, urban residual waters and non-treated industrial waters are responsible, at the same time, of the degradation of the quality of waters of the groundwater and its upwelling. This situation has led to: (i) the deterioration of the environment and (ii) the deterioration of constructions (houses, roads, etc…). The present paper consists in giving in detail the causes of the water upwelling of phreatic aquifers in our regions, the quality of water of this aquifer and the influence of the quality of phreatic aquifer water on environment and constructions in Ouargla city by analyzing water samples of 10 points of this town.

  5. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    NASA Astrophysics Data System (ADS)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-01-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  6. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    NASA Astrophysics Data System (ADS)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-06-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  7. Risk assessment and water safety plan: case study in Beijing, China.

    PubMed

    Ye, Bixiong; Chen, Yuansheng; Li, Yonghua; Li, Hairong; Yang, Linsheng; Wang, Wuyi

    2015-06-01

    Two typical rural water utilities in Beijing, China were chosen to describe the principles and applications of water safety plans (WSP), to provide a methodological guide for the actual application and improve the quality of rural drinking water quality, and to establish an appropriate method for WSP applied in rural water supply. Hazards and hazardous events were identified and risk assessment was conducted for rural water supply systems. A total of 13 and 12 operational limits were defined for two utilities, respectively. The main risk factors that affect the water safety were identified in water sources, water processes, water disinfection systems and water utility management. The main control measures were strengthening the water source protection, monitoring the water treatment processes, establishing emergency mechanisms, improving chemical input and operating system management. WSP can be feasibly applied to the management of a rural water supply. PMID:26042982

  8. Quantifying Uncertainties in Large Scale Water Budget: Case Study in Siberia

    NASA Astrophysics Data System (ADS)

    Joe, S.; Brubaker, K. L.

    2004-12-01

    Assessment and prediction of Arctic River flows' effects on ocean circulation and climate are hindered by lack of knowledge about the terrestial water balance in remote regions. In this study, we quantify the components of the annual water budget for a large Siberian river basin and -- most importantly -- the uncertainty in the components. The water budget for a watershed can be simplified to basic inputs and outputs: Precipitation (P), Streamflow (Q), and Evapotranspiration (E). Over the long term, assuming negligible change in storage, inputs and outputs should balance, P = Q + E. However, errors in measuring and estimating the components lead to a nonzero closure error, CE = P - Q - E. The uncertainty in the water balance can be quantified by the variance of CE, which is equal to the sum of the component variances (assumed independent). The closure error and its variance were estimated for the 57000 km2 Tom River basin (a subbasin of the Ob River) for five water years, 1981- 1985. We hypothesized that (a) the CE would be negative due to underestimation of P by the sparse, low-elevation precipitation network, and (b) statistical hypothesis testing would show that the CE is not significantly different from 0, due to uncertainty in the components. The basin mean and variance of P were estimated by kriging station observations. The annual mean Q was obtained from discharge measurements at Tomsk, Russia; the uncertainty in Q was based on published estimates of rating curve error bars. The basin mean and variance of E were computed from a derived distribution based on Monte Carlo simulation of the Penman Monteith model, driven by measured meteorological data at Tomsk, and accounting for variation in elevation and vegetation. Annual CEs were negative, ranging from -160 to -325 mm, and the standard deviations ranged from 50 to 60 mm. The CE was significantly different from 0 for all five water years, supporting the belief that annual P is underestimated by the gage

  9. Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Durry, G.; Longo, K.; Freitas, S.; Rivière, E. D.; Pirre, M.

    2007-03-01

    In this study, we evaluate the ability of the BRAMS (Brazilian Regional Atmospheric Modeling System) mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to the ECMWF analysis. The observations exhibit fine scale vertical structures of water vapour of a few hundred meters height. The ECMWF vertical resolution (~1 km) is too coarse to capture these vertical structures in the UTLS. With a vertical resolution similar to ECMWF, the mesoscale model performs better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The BRAMS model with 250 m vertical resolution is able to capture more of the observed fine scale vertical variations of water vapour compared to runs with a coarser vertical resolution. This is mainly related to: (i) the enhanced vertical resolution in the UTLS and (ii) to the more detailed microphysical parameterization providing ice supersaturations as in the observations. In near saturated or supersaturated layers, the mesoscale model predicted relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, the ECMWF analysis gives good results partly attributed to data assimilation. The analysis of the mesoscale model results showed that the vertical variations of the water vapour profile depends on the dynamics in unsaturated layer while the microphysical processes play a major role in saturated/supersaturated layers. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour

  10. Selection of Waste Water Equalization Systems for Multi Product Batch Production Facility: An Industrial Case Study

    NASA Astrophysics Data System (ADS)

    Bhatt, Vaidehi; Srinivasarao, Meka.; Dhanwani, Anand

    2010-10-01

    The generation rates of waste water from a batch plant causes significant variations in the flow rate as well as concentrations in the influent to effluent treatment plant. Flow equalization systems are used to reduce the shock loads. The present study deals with the suitability of two flow equalization schemes practiced in the industry with an objective of increasing production flexibility. The simulation study has conclusively established suitability of combined segregation tanks over distributed segregation tanks for a given production capacity. It is also shown that the production flexibility is more for combined scheme in comparison with the distributed scheme.

  11. Water quality assessment of aquatic ecosystems using ecological criteria – case study in Bulgaria

    PubMed Central

    Damyanova, Sonya; Ivanova, Iliana; Ignatova, Nadka

    2014-01-01

    Four aquatic ecosystems (two rivers and two dams) situated in the western part of Bulgaria were investigated over a three years’ period. The River Egulya and Petrohan dam are situated in mountainous regions at about 1000 m altitude, and are not influenced by any anthropogenic sources. Petrohan dam is a site for long-term ecosystem research as a part of Bulgarian long-term ecological research network. The other two systems belong to populated industrial areas. The River Martinovska flows through a region with former long-term mining activity, while Ogosta dam is near a battery production factory. Both the geochemical and geographical ecosystems’ conditions are different, and their social usage as well. Ogosta dam water is used for irrigation and Petrohan dam for electric supply. The ecosystem sensitivity to heavy metals was evaluated by a critical load approach. Two criteria were used for risk assessment: critical load exceedance and microbial toxicity test. All studied ecosystems were more sensitive to cadmium than to lead deposition. The potential risk of Cd damage is higher for Petrohan dam and the River Egulya, where critical load exceedance was calculated for two years. Pseudomonas putida growth inhibition test detected a lack of toxicity for all studied ecosystems at the time of investigation with the exception of the low water September sample of the River Martinovska. The fast bacterial test is very suitable for a regular measurement of water toxicity because of its simplicity, lack of sophisticated equipment and clear results. PMID:26019591

  12. A management system for accidental water pollution risk in a harbour: The Barcelona case study

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Jordà, Gabriel; Espino, Manuel; Romo, Javier; García-Sotillo, Marcos

    2011-10-01

    Water quality degradation in harbour domains can have an important negative impact from an economic, touristic and environmental point of view. In that sense, water quality management is becoming a main concern for harbour managers. In this paper, we present the research behind the initiative started in Spanish harbours to control water quality degradation due to accidental pollution. This management system is already operationally running in the Barcelona harbour (NW Mediterranean Sea). The system is based on a recent published risk assessment, which takes into account not only the different activities in the harbour and their inherent risk of accident but also the physical behaviour of harbour waters. In this methodology, a key element is to get hydrodynamic forecasts. Thus, the system is composed of a hierarchy of nested hydrodynamic models covering from the basin scale to the harbour scale and a module that computes the different parameters needed for risk assessment. Special emphasis is made on describing the steps followed for system implementation because such implementation is far from a mere technical problem. The first step is to identify the main forcing factors for the harbour hydrodynamics from both field data and numerical experiments, which has never been done before for the Barcelona harbour. Wind and shelf currents are suggested as the main forcing factors for the harbour circulation. The second step is to identify the requirements that a numerical model must fulfil in order to properly solve the Barcelona harbour's hydrodynamics. A high resolution (< 50 m) three dimensional model able to prognostically calculate temperature and salinity evolution; full air-sea coupling is needed as well. The third step is to investigate the best operational strategy. We have found that small errors in the initial density profiles are acceptable for surface current forecasts but not for deep circulation. A cold start must be avoided and a 72 h spin-up is

  13. 21st Century Water Asset Accounting - Case Studies Report (WERF Report INFR6R12a)

    EPA Science Inventory

    America’s decaying water infrastructure presents significant financial and logistical challenges for water utilities. Green infrastructure has been gaining traction as a viable alternative and complement to traditional “grey” infrastructure for water management. Current accounti...

  14. Case-Control Study of Arsenic in Drinking Water and Kidney Cancer in Uniquely Exposed Northern Chile

    PubMed Central

    Ferreccio, Catterina; Smith, Allan H.; Durán, Viviana; Barlaro, Teresa; Benítez, Hugo; Valdés, Rodrigo; Aguirre, Juan José; Moore, Lee E.; Acevedo, Johanna; Vásquez, María Isabel; Pérez, Liliana; Yuan, Yan; Liaw, Jane; Cantor, Kenneth P.; Steinmaus, Craig

    2013-01-01

    Millions of people worldwide are exposed to arsenic in drinking water. The International Agency for Research on Cancer has concluded that ingested arsenic causes lung, bladder, and skin cancer. However, a similar conclusion was not made for kidney cancer because of a lack of research with individual data on exposure and dose-response. With its unusual geology, high exposures, and good information on past arsenic water concentrations, northern Chile is one of the best places in the world to investigate the carcinogenicity of arsenic. We performed a case-control study in 2007–2010 of 122 kidney cancer cases and 640 population-based controls with individual data on exposure and potential confounders. Cases included 76 renal cell, 24 transitional cell renal pelvis and ureter, and 22 other kidney cancers. For renal pelvis and ureter cancers, the adjusted odds ratios by average arsenic intakes of <400, 400–1,000, and >1,000 µg/day (median water concentrations of 60, 300, and 860 µg/L) were 1.00, 5.71 (95% confidence interval: 1.65, 19.82), and 11.09 (95% confidence interval: 3.60, 34.16) (Ptrend < 0.001), respectively. Odds ratios were not elevated for renal cell cancer. With these new findings, including evidence of dose-response, we believe there is now sufficient evidence in humans that drinking-water arsenic causes renal pelvis and ureter cancer. PMID:23764934

  15. Translating global climate model projections into usable information for water managers and industry: A case study from Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Ling, F.; Graham, B.; Grose, M.; Corney, S.; Holz, G.; White, C.; Gaynor, S.; Bindoff, N.

    2010-09-01

    differentiated. This is important for water managers, as it separates elements outside of their control (climate) from those under their control (e.g. irrigation). While changes in human water use are not considered in the Climate Futures for Tasmania study, Tasmanian water managers will be able to adapt the river systems models to quantify changes in water management policies. Finally, projections of runoff were adapted to run through the Hydro Tasmania Systems model Temsim. Temsim uses hydrological inputs in conjunction with projected power demand and energy prices to simulate the Hydro Tasmania power generation system. The Temsim runs translate CFT climate projections into metrics such as storage levels, power generation, and revenue - metrics that can inform the future operation of the Hydro Tasmania system. The result is climate information tailored to the needs of water managers and industry, ensuring the research will be understandable and useable. This paper presents the communication strategy implemented by Climate Futures for Tasmania, and provides a case study of how interaction with government and industry directed the technical research.

  16. Management of a water distribution network by coupling GIS and hydraulic modeling: a case study of Chetouane in Algeria

    NASA Astrophysics Data System (ADS)

    Abdelbaki, Chérifa; Benchaib, Mohamed Mouâd; Benziada, Salim; Mahmoudi, Hacène; Goosen, Mattheus

    2016-04-01

    For more effective management of water distribution network in an arid region, Mapinfo GIS (8.0) software was coupled with a hydraulic model (EPANET 2.0) and applied to a case study region, Chetouane, situated in the north-west of Algeria. The area is characterized not only by water scarcity but also by poor water management practices. The results showed that a combination of GIS and modeling permits network operators to better analyze malfunctions with a resulting more rapid response as well as facilitating in an improved understanding of the work performed on the network. The grouping of GIS and modeling as an operating tool allows managers to diagnosis a network, to study solutions of problems and to predict future situations. The later can assist them in making informed decisions to ensure an acceptable performance level for optimal network operation.

  17. Case studies of water supply in oceanic extratropical cyclones using an Eulerian-Lagrangian method

    NASA Astrophysics Data System (ADS)

    Liu, Gongbo

    An Eulerian-Lagrangian method has been developed to study the transport of water supply to precipitation in a rainstorm. Water mass in an air parcel is not conservative so the trajectory of the air parcel cannot describe the complete motion of the moisture. This method represents a rainstorm, a limited area of heavy precipitation in a three-hour period in a model, with several thousands air parcels. The water contributing to the rainstorm's precipitation from these parcels is tracked backward to recover its transport and its source regions. Exchange of moisture among these parcel by diffusion, convection and stable precipitation is computed. Water from surface evaporation that is ingested into parcels in the planetary boundary layer is computed. The moisture exchange between these parcels and other portions of the atmosphere is excluded from consideration. Water supply of two oceanic extratropical cyclones has been simulated. Fields of wind velocity, moisture and moisture sources/sinks are provided on the Eulerian grid using the Limited Area Mesoscale Prediction System for 90s (Kreitzberg and Perkey 1976, Cohen 1994). Simulations are performed over a period of 24 hours for one cyclone and 36 hours for the other. Seven rainstorms are selected during the life cycles of the two cyclones to represent different developing stages and different precipitation systems. Results show that about 80% of the water supply for identified precipitation can be tracked back 24 hours for some rainstorms and 36 hours for others. Tests on water budget computations show other errors are negligible. Transport tracks are established between rainstorm precipitation and the water source regions. They are roughly categorized as anticyclonic, cyclonic, sharp- turnings and complex motion patterns associated with horizontal origins and initial altitudes. Comparison of these tracks with the warm conveyor belt (Browning 1971, Harrold 1973) and the cold conveyor belt (Carlson 1980) conceptual

  18. Duripan effect on soil water availability: study case in North-Central Namibia

    NASA Astrophysics Data System (ADS)

    Prudat, Brice; Bloemertz, Lena; Kuhn, Nikolaus J.

    2016-04-01

    Soils with duripan and other hardpans are frequently disregarded for agriculture. However, in North-Central Namibia, farmers cultivate a type of sandy soil with a developing duripan at few decimetres of depth. This soil is particularly valuable for Pearl Millet cultivation during years with limited rainfall. Understanding the water dynamic and the role of the duripan in the soil moisture dynamic will improve livelihood and secure food production in North-Central Namibia, in Southern Angola and other areas in the world where similar soils appear. We recorded soil water content during five months at different depth in one of these sandy soil. The comparison of the recorded data with values calculated with models based on e.g. texture indicate that the duripan plays a very important role as water reservoir. Our results demonstrate that soils with duripans should not be disregarded for agricultural development, especially in context with irregular rainfall patterns. Understanding the role of duripans based on this study will thus help to anticipate and alleviate the effect of climate change in northern Namibia and other semi-arid regions, where similar soils occur.

  19. An uncertainty framework to estimate dense water formation rates : case study in the Northwestern Mediterranean.

    NASA Astrophysics Data System (ADS)

    Waldman, Robin; Somot, Samuel; Herrmann, Marine; Sevault, Florence; Estournel, Claude; Testor, Pierre

    2015-04-01

    The Northwestern Mediterranean (NWMed) sea is a key region for the Mediterranean thermohaline circulation as it includes the main deep water formation sites of the Western Mediterranean. The Mediterranean Ocean Observing System for the Environment (MOOSE) has been implemented since 2007 over that region to characterize the space and time variability of the main water masses up to interannual (yearly summer cruises) scale. However, despite a large covering of the NWMed region, the limited number of conductivity, temperature and depth (CTD) casts leads to subsampling errors and advocates for an uncertainty assessment of large-scale hydrology estimates. This study aims at estimating the error related to subsampling in time and space. For that purpose, an Observing System Simulation Experiment (OSSE) is performed with an eddy-permitting Mediterranean sea model (NEMOMED12) and an eddy-resolving NWMed sea model (SYMPHONIE). A subsampling of the full model fields in time and space allows for an error estimate in terms of large-scale hydrology. The methodology is applied to dense water volume estimates for the period july 2012 - july 2013. Secondly, an optimization framework is proposed to evaluate and improve MOOSE network's performances under a series of scientific constraints. The results will be discussed for an application in MOOSE observing network, as well as the main assumptions, the stakes and limitations of this framework.

  20. Managing Expectations: Results from Case Studies of US Water Utilities on Preparing for, Coping with, and Adapting to Extreme Events

    NASA Astrophysics Data System (ADS)

    Beller-Simms, N.; Metchis, K.

    2014-12-01

    Water utilities, reeling from increased impacts of successive extreme events such as floods, droughts, and derechos, are taking a more proactive role in preparing for future incursions. A recent study by Federal and water foundation investigators, reveals how six US water utilities and their regions prepared for, responded to, and coped with recent extreme weather and climate events and the lessons they are using to plan future adaptation and resilience activities. Two case studies will be highlighted. (1) Sonoma County, CA, has had alternating floods and severe droughts. In 2009, this area, home to competing water users, namely, agricultural crops, wineries, tourism, and fisheries faced a three-year drought, accompanied at the end by intense frosts. Competing uses of water threatened the grape harvest, endangered the fish industry and resulted in a series of regulations, and court cases. Five years later, new efforts by partners in the entire watershed have identified mutual opportunities for increased basin sustainability in the face of a changing climate. (2) Washington DC had a derecho in late June 2012, which curtailed water, communications, and power delivery during a record heat spell that impacted hundreds of thousands of residents and lasted over the height of the tourist-intensive July 4th holiday. Lessons from this event were applied three months later in anticipation of an approaching Superstorm Sandy. This study will help other communities in improving their resiliency in the face of future climate extremes. For example, this study revealed that (1) communities are planning with multiple types and occurrences of extreme events which are becoming more severe and frequent and are impacting communities that are expanding into more vulnerable areas and (2) decisions by one sector can not be made in a vacuum and require the scientific, sectoral and citizen communities to work towards sustainable solutions.

  1. Application of the environmental Gini coefficient in allocating water governance responsibilities: a case study in Taihu Lake Basin, China.

    PubMed

    Zhou, Shenbei; Du, Amin; Bai, Minghao

    2015-01-01

    The equitable allocation of water governance responsibilities is very important yet difficult to achieve, particularly for a basin which involves many stakeholders and policymakers. In this study, the environmental Gini coefficient model was applied to evaluate the inequality of water governance responsibility allocation, and an environmental Gini coefficient optimisation model was built to achieve an optimal adjustment. To illustrate the application of the environmental Gini coefficient, the heavily polluted transboundary Taihu Lake Basin in China, was chosen as a case study. The results show that the original environmental Gini coefficient of the chemical oxygen demand (COD) was greater than 0.2, indicating that the allocation of water governance responsibilities in Taihu Lake Basin was unequal. Of seven decision-making units, three were found to be inequality factors and were adjusted to reduce the water pollutant emissions and to increase the water governance inputs. After the adjustment, the environmental Gini coefficient of the COD was less than 0.2 and the reduction rate was 27.63%. The adjustment process provides clear guidance for policymakers to develop appropriate policies and improve the equality of water governance responsibility allocation. PMID:25860708

  2. Impacts of urbanisation on urban-rural water cycle: a China case study

    NASA Astrophysics Data System (ADS)

    Wang, Mingna; Singh, Shailesh Kumar; Zhang, Jun-e.; Khu, Soon Thiam

    2016-04-01

    Urbanization, which essentially create more impervious surface, is an inevitable part of modern societal development throughout the world. It produces several changes in the natural hydrological cycle by adding several processes. A better understanding of the impacts of urbanization, will allow policy makers to balance development and environment sustainability needs. It also helps underdeveloped countries make strategic decisions in their development process. The objective of this study is to understand and quantify the sensitivity of the urban-rural water cycle to urbanisation. A coupled hydrological model, MODCYCLE, was set up to simulate the effect of changes in landuse on daily streamflow and groundwater and applied to the Tianjin municipality, a rapidly urbanising mega-city on the east coast of China. The model uses landuse, land cover, soil, meteorological and climatic data to represent important parameters in the catchment. The fraction of impervious surface was used as a surrogate to quantify the degree of landuse change. In this work, we analysed the water cycle process under current urbanization situation in Tianjin. A number of different future development scenarios on based on increasing urbanisation intensity is explored. The results show that the expansion of urban areas had a great influence on generation of flow process and on ET, and the surface runoff was most sensitive to urbanisation. The results of these scenarios-based study about future urbanisation on hydrological system will help planners and managers in taking proper decisions regarding sustainable development.

  3. Water Resources Risks and the Climate Resilience Toolkit: Tools, Case Studies, and Partnerships

    NASA Astrophysics Data System (ADS)

    Read, E. K.; Blodgett, D. L.; Booth, N.

    2014-12-01

    The Water Resources Risk topic of the Climate Resilience Toolkit (CRT) is designed to provide decision support, technical, and educational resources to communities, water resource managers, policy analysts, and water utilities working to increase the resilience of water resources to climate change. We highlight the partnerships (between federal and state agencies, non-governmental organizations, and private partners), tools (e.g., downscaled climate products, historical and real-time water data, and decision support) and success stories that are informing the CRT Water Resources Risks Theme content, and identify remaining needs in available resources for building resilience of water resources to climate change. The following questions will frame the content of the Water Resources Risk CRT: How are human and natural components of the hydrologic cycle changing? How can communities and water managers plan for uncertain future conditions? How will changing water resources impact food production, energy resources, ecosystems, and human health? What water resources data are of high value to society and are they easily accessible? Input on existing tools, resources, or potential partnerships that could be used to further develop content and fill gaps in the Water Resources CRT is welcome. We also invite ideas for water resources 'innovation challenges', in which technology developers work to create tools to that enhance the capacity of communities and managers to increase resilience of water resources at the local and regional scales.

  4. Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina

    NASA Astrophysics Data System (ADS)

    Hamel, P.; Guswa, A. J.

    2015-02-01

    There is an increasing demand for assessment of water provisioning ecosystem services. While simple models with low data and expertise requirements are attractive, their use as decision-aid tools should be supported by uncertainty characterization. We assessed the performance of the InVEST annual water yield model, a popular tool for ecosystem service assessment based on the Budyko hydrological framework. Our study involved the comparison of 10 subcatchments ranging in size and land-use configuration, in the Cape Fear basin, North Carolina. We analyzed the model sensitivity to climate variables and input parameters, and the structural error associated with the use of the Budyko framework, a lumped (catchment-scale) model theory, in a spatially explicit way. Comparison of model predictions with observations and with the lumped model predictions confirmed that the InVEST model is able to represent differences in land uses and therefore in the spatial distribution of water provisioning services. Our results emphasize the effect of climate input errors, especially annual precipitation, and errors in the ecohydrological parameter Z, which are both comparable to the model structure uncertainties. Our case study supports the use of the model for predicting land-use change effect on water provisioning, although its use for identifying areas of high water yield will be influenced by precipitation errors. While some results are context-specific, our study provides general insights and methods to help identify the regions and decision contexts where the model predictions may be used with confidence.

  5. Uncertainty analysis of a spatially-explicit annual water-balance model: case study of the Cape Fear catchment, NC

    NASA Astrophysics Data System (ADS)

    Hamel, P.; Guswa, A. J.

    2014-10-01

    There is an increasing demand for assessment of water provisioning ecosystem services. While simple models with low data and expertise requirements are attractive, their use as decision-aid tools should be supported by uncertainty characterization. We assessed the performance of the InVEST annual water yield model, a popular tool for ecosystem service assessment based on the Budyko framework. Our study involved the comparison of ten subcatchments in the Cape Fear watershed, NC, ranging in size and land use configuration. We analyzed the model sensitivity to the eco-hydrological parameters and the effect of extrapolating a lumped theory to a fully distributed model. Comparison of the model predictions with observations and with a lumped water balance model confirmed that the model is able to represent differences in land uses. Our results also emphasize the effect of climate input errors, especially annual precipitation, and errors in the eco-hydrological parameter Z, which are both comparable to the model structure uncertainties. In practice, our case study supports the use of the model for predicting land use change effect on water provisioning, although its use for identifying areas of high water yield will be influenced by precipitation errors. While the results are inherently local, analysis of the model structure suggests that many insights from this study will hold globally. Further work toward characterization of uncertainties in such simple models will help identify the regions and decision contexts where the model predictions may be used with confidence.

  6. Assessing the Consistency and Microbiological Effectiveness of Household Water Treatment Practices by Urban and Rural Populations Claiming to Treat Their Water at Home: A Case Study in Peru

    PubMed Central

    Rosa, Ghislaine; Huaylinos, Maria L.; Gil, Ana; Lanata, Claudio; Clasen, Thomas

    2014-01-01

    Background Household water treatment (HWT) can improve drinking water quality and prevent disease if used correctly and consistently by vulnerable populations. Over 1.1 billion people report treating their water prior to drinking it. These estimates, however, are based on responses to household surveys that may exaggerate the consistency and microbiological performance of the practice—key factors for reducing pathogen exposure and achieving health benefits. The objective of this study was to examine how HWT practices are actually performed by households identified as HWT users, according to international monitoring standards. Methods and Findings We conducted a 6-month case study in urban (n = 117 households) and rural (n = 115 households) Peru, a country in which 82.8% of households report treating their water at home. We used direct observation, in-depth interviews, surveys, spot-checks, and water sampling to assess water treatment practices among households that claimed to treat their drinking water at home. While consistency of reported practices was high in both urban (94.8%) and rural (85.3%) settings, availability of treated water (based on self-report) at time of collection was low, with 67.1% and 23.0% of urban and rural households having treated water at all three sampling visits. Self-reported consumption of untreated water in the home among adults and children <5 was common and this was corroborated during home observations. Drinking water of self-reported users was significantly better than source water in the urban setting and negligible but significantly better in the rural setting. However, only 46.3% and 31.6% of households had drinking water <1 CFU/100 mL at all follow-up visits. Conclusions Our results raise questions about the usefulness of current international monitoring of HWT practices and their usefulness as a proxy indicator for drinking water quality. The lack of consistency and sub-optimal microbiological effectiveness also

  7. Integrated water and renewable energy management: the Acheloos-Peneios region case study

    NASA Astrophysics Data System (ADS)

    Koukouvinos, Antonios; Nikolopoulos, Dionysis; Efstratiadis, Andreas; Tegos, Aristotelis; Rozos, Evangelos; Papalexiou, Simon-Michael; Dimitriadis, Panayiotis; Markonis, Yiannis; Kossieris, Panayiotis; Tyralis, Christos; Karakatsanis, Georgios; Tzouka, Katerina; Christofides, Antonis; Karavokiros, George; Siskos, Alexandros; Mamassis, Nikos; Koutsoyiannis, Demetris

    2015-04-01

    Within the ongoing research project "Combined Renewable Systems for Sustainable Energy Development" (CRESSENDO), we have developed a novel stochastic simulation framework for optimal planning and management of large-scale hybrid renewable energy systems, in which hydropower plays the dominant role. The methodology and associated computer tools are tested in two major adjacent river basins in Greece (Acheloos, Peneios) extending over 15 500 km2 (12% of Greek territory). River Acheloos is characterized by very high runoff and holds ~40% of the installed hydropower capacity of Greece. On the other hand, the Thessaly plain drained by Peneios - a key agricultural region for the national economy - usually suffers from water scarcity and systematic environmental degradation. The two basins are interconnected through diversion projects, existing and planned, thus formulating a unique large-scale hydrosystem whose future has been the subject of a great controversy. The study area is viewed as a hypothetically closed, energy-autonomous, system, in order to evaluate the perspectives for sustainable development of its water and energy resources. In this context we seek an efficient configuration of the necessary hydraulic and renewable energy projects through integrated modelling of the water and energy balance. We investigate several scenarios of energy demand for domestic, industrial and agricultural use, assuming that part of the demand is fulfilled via wind and solar energy, while the excess or deficit of energy is regulated through large hydroelectric works that are equipped with pumping storage facilities. The overall goal is to examine under which conditions a fully renewable energy system can be technically and economically viable for such large spatial scale.

  8. Building Rain Water Tanks and Building Skills: A Case Study of a Women's Organization in Uganda

    ERIC Educational Resources Information Center

    Payne, Deborah; Nakato, Margaret; Nabalango, Caroline

    2008-01-01

    Water collection in rural areas of Uganda is left primarily to women and children. Katosi Women Development Trust, an NGO based in rural Uganda has focused on addressing the gender-linked issue of increased water sources near the home through the construction of rain water collection tanks. In an effort to improve the income of members as well as…

  9. Wind energy applications for municipal water services: Opportunities, situational analyses, and case studies

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.

  10. Food- and water-borne disease: using case control studies to estimate the force of infection that accounts for primary, sporadic cases.

    PubMed

    Smith, G

    2013-06-01

    Disease models which take explicit account of heterogeneities in the risk of infection offer significant advantages over models in which the risk of infection is assumed to be uniform across all hosts. However, estimating the incidence rate (force of infection) in the different at-risk (exposure) groups is no easy matter. Classically, epidemiologists differentiate groups of hosts with different infection-risks according to their exposure to putative explanatory risk factors. The importance of these risk factors is assessed by case-control studies, in which the measure of effect (the difference in disease occurrence between one population and another) is the odds ratio. This paper describes for the first time how - and under what circumstances - the incidence in these different exposure groups can be estimated from odds ratios derived from case control studies in which controls have been selected by density sampling. This new estimation technique can be applied to any transmission modality but is especially useful in the case of models of food- and water-borne disease for which the case control literature represents a vast and, as yet, untapped resource. The paper finishes with a worked example using one of the most common of all food- and water-borne pathogens, Toxoplasma gondii. PMID:23746800

  11. Case Study: Testing with Case Studies

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman

    2015-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue discusses using case studies to test for knowledge or lessons learned.

  12. Shallow water radio-magnetotelluric (RMT) measurements in urban environment: A case study from Stockholm city

    NASA Astrophysics Data System (ADS)

    Mehta, Suman; Bastani, Mehrdad; Malehmir, Alireza; Wang, Shunguo; Pedersen, Laust

    2014-05-01

    The Radio-MagnetoTelluric (RMT) method uses the electromagnetic signal from distant radio transmitters in the frequency range 15 to 250 kHz. RMT applications in near-surface studies have already been well established. Two components of electric field and three components of magnetic field are measured. These measured components are related to each other via transfer functions which contain detailed information about the variation of electrical resistivity of the subsurface. The present study is carried out in the frame of TRUST (TRansparent Underground STructure) project supported by several research and public organizations as well as industry. The study area is located close to central Stockholm in Sweden where the Swedish traffic authority has planned to construct a 21-km long motorway to bypass the city. In order to reduce the impact on natural and cultural environments, 18 km of the motorway will be located in tunnels. The main objective of this study is thus to identify potential fracture zones and faults as well as the general geological settings. The proposed path of the tunnel partly passes under the Lake Mälaren at a depth of about 60 m. Thus a challenge was posed on the applicability of RMT method in shallow water environments. Successful applications of RMT measurements using the Uppsala University's EnviroMT system on land encouraged us to modify the system to acquire data over lake water especially in urban areas. Pioneered by the Geological Survey of Sweden (SGU), RMT data were collected over the Lake Mälaren in spring 2012. The prototype acquisition system did not only turn out to be appropriate for such a challenging environment, but it was also much more efficient as compared with land surveys. Fifty two lines including 1160 stations with an average spacing of 15 m were covered in three days. Cultural noise associated with the city-related environment had to be identified and filtered out before inversion could be carried out. Reliable estimates

  13. HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production--a case study.

    PubMed

    Dewettinck, T; Van Houtte, E; Geenens, D; Van Hege, K; Verstraete, W

    2001-01-01

    To obtain a sustainable water catchment in the dune area of the Flemish west coast, the integration of treated domestic wastewater in the existing potable water production process is planned. The hygienic hazards associated with the introduction of treated domestic wastewater into the water cycle are well recognised. Therefore, the concept of HACCP (Hazard Analysis and Critical Control Points) was used to guarantee hygienically safe drinking water production. Taking into account the literature data on the removal efficiencies of the proposed advanced treatment steps with regard to enteric viruses and protozoa and after setting high quality limits based on the recent progress in quantitative risk assessment, the critical control points (CCPs) and points of attention (POAs) were identified. Based on the HACCP analysis a specific monitoring strategy was developed which focused on the control of these CCPs and POAs. PMID:11464766

  14. Consumptive water use associated with food waste: case study of fresh mango in Australia

    NASA Astrophysics Data System (ADS)

    Ridoutt, B. G.; Juliano, P.; Sanguansri, P.; Sellahewa, J.

    2009-07-01

    In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44 692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg-1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of one kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg-1, which is the volume of direct water use by an Australian household having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.

  15. Economic feasibility study for improving drinking water quality: a case study of arsenic contamination in rural Argentina.

    PubMed

    Molinos-Senante, María; Perez Carrera, Alejo; Hernández-Sancho, Francesc; Fernández-Cirelli, Alicia; Sala-Garrido, Ramón

    2014-12-01

    Economic studies are essential in evaluating the potential external investment support and/or internal tariffs available to improve drinking water quality. Cost-benefit analysis (CBA) is a useful tool to assess the economic feasibility of such interventions, i.e. to take some form of action to improve the drinking water quality. CBA should involve the market and non-market effects associated with the intervention. An economic framework was proposed in this study, which estimated the health avoided costs and the environmental benefits for the net present value of reducing the pollutant concentrations in drinking water. We conducted an empirical application to assess the economic feasibility of removing arsenic from water in a rural area of Argentina. Four small-scale methods were evaluated in our study. The results indicated that the inclusion of non-market benefits was integral to supporting investment projects. In addition, the application of the proposed framework will provide water authorities with more complete information for the decision-making process. PMID:24925717

  16. A review of potable water accessibility and sustainability issues in developing countries - case study of Uganda.

    PubMed

    Nayebare, Shedrack R; Wilson, Lloyd R; Carpenter, David O; Dziewulski, David M; Kannan, Kurunthachalam

    2014-01-01

    Providing sources of sustainable and quality potable water in Uganda is a significant public health issue. This project aimed at identifying and prioritizing possible actions on how sustainable high quality potable water in Uganda's water supply systems could be achieved. In that respect, a review of both the current water supply systems and government programs on drinking water in Uganda was completed. Aspects of quantity, quality, treatment methods, infrastructure, storage and distribution of water for different water systems were evaluated and compared with the existing water supply systems in the U.S., Latin America and the Caribbean, for purposes of generating feasible recommendations and opportunities for improvement. Uganda utilizes surface water, groundwater, and rainwater sources for consumption. Surface water covers 15.4% of the land area and serves both urban and rural populations. Lake Victoria contributes about 85% of the total fresh surface water. Potable water quality is negatively affected by the following factors: disposal of sewage and industrial effluents, agricultural pesticides and fertilizers, and surface run-offs during heavy rains. The total renewable groundwater resources in Uganda are estimated to be 29 million m3/year with about 20,000 boreholes, 3000 shallow-wells and 200,000 springs, serving more than 80% of the rural and slum communities. Mean annual rainfall in Uganda ranges from 500 mm to 2500 mm. Groundwater and rainwater quality is mainly affected by poor sanitation and unhygienic practices. There are significant regional variations in the accessibility of potable water, with the Northeastern region having the least amount of potable water from all sources. Uganda still lags behind in potable water resource development. Priorities should be placed mainly on measures available for improvement of groundwater and rainwater resource utilization, protection of watersheds, health education, improved water treatment methods and

  17. Towards Automated Ecosystem-based Management: A case study of Northern Gulf of Mexico Water

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Lary, D. J.; Allee, R.; Gould, R.; Ko, D.

    2012-12-01

    The vast and dynamic nature of large systems limit the feasibility of the frequent in situ sampling needed to establish a robust long-term database. Satellite remote sensing offers an alternative to in situ sampling and is possibly the best solution to address the data collection needs at a regional scale. In this context, we have used an unsupervised machine learning (ML) technique, called a self-organizing map (SOM), to objectively provide a classification of the US Gulf of Mexico water using a suite of ocean data products. The input data that we used in this study were the sea surface temperature, the surface chlorophyll concentration, the sea surface salinity, the euphotic depth and the temperature difference between the sea surface and the sea floor. The SOM method uses the multivariate signature of the data records to classify the data into a specified number of classes. The output of the analysis is essentially a comprehensive two-dimensional map of the Gulf of Mexico. We analyzed the individual SOM classes over a five-year period from 2005 to 2009. We then used the machine learning results to established a correspondence between the SOM classification and the completely independent Coastal and Marine Ecological Classification Standard (CMECS), which accommodates the physical, biological, and chemical information to collectively characterize marine and coastal ecosystems. The CMECS water column component information is then fused with fish count data from the Southeast Area Monitoring and Assessment Program (SEAMAP) to produce an interactive map. The results can be used in providing online decision-support system, and tools for Ecosystem-based management.Figures shows the fish count distribution with respect to the SOM classes. The fish preference can be inferred from the plot. This information can be used to construct an online decision-support system for conservation as well as commercial purposes.

  18. A methodology to determine pesticides pollution sources in water catchments: study case (Belgium).

    PubMed

    Limbourg, Q; Noel, S; Huyghebaert, B; Capette, L; Hallet, V

    2009-01-01

    In the Walloon Region (Belgium), a Committee of Investigation was created in 2007 to investigate and determine the potential pesticides pollution sources in drinkable water catchments. This Committee, constituted by a multidisciplinary team of experts i.e agronomists, soil scientists, phyto-chemists, hydrogeologists, is coordinated by the Walloon Agricultural Research Centre (CRA-W) and funded by the Société Publique de Gestion des Eaux (SPGE). The diagnosis method is inspired of the AQUAPLAINE method (Arvalis, France), and is composed of four steps: 1/preparing the diagnosis using existing data, 2/diagnosis using data bank completed by field observations, 3/meeting and discussion with the pesticide users, 4/final diagnosis and remediation proposal. In a rural district of Walloon Region, a water producer who possesses two catchments ("Les marroniers" (P1) and "Puits N2" (P2)) has problems with pesticides. The pollution started in 1998 with atrazine and bromacile detected in the two catchments. In 2004, 2,6-dichlorobenzamide, metabolite of dichlobenil, was also detected in the catchments. At present, all these pesticides are still found in the catchment P1 and only the 2,6 dichlorobenzamide is found in the other catchment. These active ingredients are not used in agriculture expect atrazine. Indeed, the main user of these products is the public sector. An investigation was realised to locate the main sites which are treated with these pesticides in this commune. The conclusion of this study is that the local authority used dichlobenil, bromacile and atrazine to weed the public areas. In more, the filling and the cleaning areas of sprayer, used for the treatment, are located near the catchments. PMID:20218526

  19. Environmental control on water quality; cases studies from Battle Mountain mining district, north-central Nevada. Chapter A.

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Wanty, Richard B.; Berger, Byron R.; Stillings, Lisa L.

    2003-01-01

    The environmental controls on water quality were the focus of our study in a portion of the Battle Mountain mining district, north-central Nevada. Samples representing areas outside known mineralized areas, in undisturbed mineralized areas, and in mined areas were chemically and isotopically analyzed. The results are related to geologic, hydrologic, and climatic data. Streams in background areas outside the mineralized zones reflect normal weathering of volcanically derived rocks. The waters are generally dilute, slightly alkaline in pH, and very low in metals. As these streams flow into mineralized zones, their character changes. In undisturbed mineralized areas, discharge into streams of ground water through hydrologically conductive fractures can be traced with chemistry and, even more effectively, with sulfur isotopic composition of dissolved sulfate. Generally, these tracers are much more subtle than in those areas where mining has produced adits and mine-waste piles. The influence of drainage from these mining relicts on water quality is often dramatic, especially in unusually wet conditions. In one heavily mined area, we were able to show that the unusually wet weather in the winter and spring greatly degraded water quality. Addition of calcite to the acid, metalrich mine drainage raised the stream pH and nearly quantitatively removed the metals through coprecipitation and (or) adsorption onto oxyhydroxides. This paper is divided into four case studies used to demonstrate our results. Each addresses the role of geology, hydrology, mining activity and (or) local climate on water quality. Collectively, they provide a comprehensive look at the important factors affecting water quality in this portion of the Battle Mountain mining district.

  20. Short communication: The water footprint of dairy products: case study involving skim milk powder.

    PubMed

    Ridoutt, B G; Williams, S R O; Baud, S; Fraval, S; Marks, N

    2010-11-01

    In the context of global water scarcity and food security concerns, water footprints are emerging as an important sustainability indicator in the agriculture and food sectors. Using a recently developed life cycle assessment-based methodology that takes into account local water stress where operations occur, the normalized water footprints of milk products from South Gippsland, one of Australia's major dairy regions, were 14.4 L/kg of total milk solids in whole milk (at farm gate) and 15.8 L/kg of total milk solids in skim milk powder (delivered to export destination). These results demonstrate that dairy products can be produced with minimal potential to contribute to freshwater scarcity. However, not all dairy production systems are alike and the variability in water footprints between systems and products should be explored to obtain strategic insights that will enable the dairy sector to minimize its burden on freshwater systems from consumptive water use. PMID:20965326

  1. The pros and cons of trading water: A case study in Australia

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-11-01

    Water is a commodity, and water rights can be freely traded in an open market. Proponents of the free market approach argue that it leads to the most efficient allocation of water resources, as it would for any other commodity. However, unlike some commodities, water is critical for human life, for many human activities, and as an environmental resource. When such an essential commodity becomes scarce, as frequently happens in Australia, which is prone to sudden and dramatic droughts, severe problems can occur quickly. In Australia's Murray Darling Basin, the country's largest agricultural region, the government had historically controlled the distribution of water rights. However, under these controls, a selected few controlled a large share of the water. To resolve this problem of overallocation, a free market approach was put in place in the early 1990s.

  2. Water stress, energy security and adaptation under changing climate: case study of Zeravshan river

    NASA Astrophysics Data System (ADS)

    Khujanazarov, T.; Namura, R.; Touge, Y.; Tanaka, K.; Toderich, K.

    2014-12-01

    Zeravshan a transboundary river in Central Asia is a snow-glacier fed river originating in Tajikistan that use only 4% of its resources, further flows to Uzbekistan who fully utilize river resources for irrigation. Such disparity in river usage causes Tajikistan to consider heavy investments in hydropower dams that will increase social and political tension between counterparts. Traditional irrigation under arid climate causes high rates of water losses in infiltration and evapotranspiration leading to land. Water stress analysis and water resources distribution under climate change and possible adaptation measures were investigated. The framework includes model to analyze available water resources and assessment of the basin efficiency including dam operation and irrigation demand, based on it adaptation measures were suggested. Comparison of the increasing irrigation efficiency in downstream to the 10% rate can decrease water requirements on early stages, however there are still large deficiency of the water resources in the peak irrigation season. Dam operation to benefit irrigation has positive impact while can't compensate the needs of energy in winter months. Cooperation of the both sides are required to address such changes in river flow as interest lies on opposite side. Increasing irrigation efficiency through using return marginal waters and salt tolerant crops under water stress were suggested. The plants were tested on several sites in the downstream of the river using mineralized return waters. The results suggest that using such plants can provide additional outcome for the local community while decreasing demand of the water resources and improving soil conditions. Combination of dam operation for energy production and increasing irrigation efficiency additionally by using return waters can provide a beneficial scenario for the region under future climate change. However, it will require strong political will to address energy swap to achieve nexus

  3. Integrated water resources management and water users' associations in the arid region of northwest China: a case study of farmers' perceptions.

    PubMed

    Hu, Xiao-Jun; Xiong, You-Cai; Li, Yong-Jin; Wang, Jian-Xin; Li, Feng-Min; Wang, Hai-Yang; Li, Lan-Lan

    2014-12-01

    Water scarcity is a critical policy issue in the arid regions of northwest China. The local government has widely adopted integrated water resources management (IWRM), but lacks support from farmers and farm communities. We undertook a case study in the Minqin oasis of northwest China to examine farmers' responses to IWRM and understand why farmer water users' associations (WUAs) are not functioning effectively at the community level. Results of quantitative and qualitative surveys of 392 farmers in 27 administrative villages showed that over 70% of farmers disapprove of the IWRM market-based reforms. In particular, the failure of farmer WUAs can be attributed to overlapping organizational structures between the WUAs and the villagers' committees; mismatches between the organizational scale of the WUAs and practical irrigation management by the farmers themselves; marginalization of rural women in water decision-making processes; and the inflexibility of IWRM implementation. An important policy implication from this study is that rebuilding farmer WUAs is key to overcoming the difficulties of IWRM. The current water governance structure, which is dominated by administrative systems, must be thoroughly reviewed to break the vicious cycle of tension and distrust between farmers and the government. PMID:25026372

  4. Hydrochemical assessment of water quality for irrigation: a case study of the Medjerda River in Tunisia

    NASA Astrophysics Data System (ADS)

    Etteieb, Selma; Cherif, Semia; Tarhouni, Jamila

    2015-02-01

    In order to characterize, classify and evaluate the suitability of Medjerda River water for irrigation, a hydrochemical assessment was conducted. It accounts for 80 % of the total Tunisian surface water. In this paper, hydrographical methods and PHREEQC geochemical program were used to characterize water quality of Medjerda River, whereas its suitability for irrigation was determined in accordance with its electrical conductivity (EC), sodium adsorption ratio (SAR) and sodium concentrations. It was established that the water samples were undersaturated with calcite, dolomite, aragonite, anhydrite, gypsum and halite except in one water sample which is supersaturated with carbonate minerals. The quality assessment of Medjerda River for irrigation purposes showed that some points belonged to the excellent-to-good and good-to-permissible irrigation water categories, while the remaining ones were classified as doubtful to unsuitable for irrigation making the river water use limited to plants with high salt tolerance. Moreover, based on FAO guidelines, almost all water samples may cause immediate salinity to gradual increasing problem but no soil infiltration problems except for two sampling points. However, immediate development or possible increasing of severe toxicity problems may be caused by the continuous use of this water for irrigation due to troublesome concentrations of chloride and sodium.

  5. Impact of storm water runoff on efficiency of the effluent treatment plant - a case study

    SciTech Connect

    Suresh, I.V.; Murthy, M.V.R.L.; Sanghi, S.K.; Yadava, R.N.; Wanganeo, A.

    1996-04-01

    This paper evaluates the impact of storm water runoff on an existing sewage treatment plant situated in an industrial township. Significant dilution effect is observed during the monsoon period (June-September) in the influent and effluent characteristics of sewage. The estimated excess runoff water during these months is mainly due to the rainfall in the region and due to the absence of proper control or design for the collection of storm water, thereby avoiding the discharge of the storm water into the treatment plant. This has resulted in the reduction of BOD, COD, total nitrogen and total phosphorus, thus decreasing the efficiency of gas generation. 7 refs., 5 figs., 5 tabs.

  6. Technology Case Studies: Retrofit Integrated Space and Water Heating - Field Assessment

    SciTech Connect

    2014-05-01

    Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  7. Automated ground-water monitoring with Robowell: case studies and potential applications

    NASA Astrophysics Data System (ADS)

    Granato, Gregory E.; Smith, Kirk P.

    2002-02-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/

  8. Automated ground-water monitoring with robowell-Case studies and potential applications

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.

    2001-01-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.

  9. Scenario-based decision making in water resource management: A case study in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Dong, Congli; Schoups, Gerrit; van de Giesen, Nick

    2013-04-01

    Decision making in water resource management encounters difficulties due to uncertainties about the future. Scenarios are useful to explore uncertainties and inform decision makers to take actions. Scenarios are originally used to describe the future states in the form of storylines. These are then supplemented with numerical information from model predictions and expert judgement. Probabilities are attached to scenarios to encourage the specific explanation of the assumptions and expectations behind the storylines, and communicate the possibility of each scenario. Bayesian probability offers a prior probability on the basis of available knowledge and beliefs at the presence of uncertainties, and allows for updating to the posterior probability as new evidence arises. Bayesian rules are also applicable for decision making given the existing probabilistic scenarios. Decisions can be ranked according to their performance on the utility function given each possible scenario. A case study is provided to find an optimal solution to alleviate the water stress problem in the Yellow River Delta for the next 30 years. Scenarios of water availability and water demand are developed for the planning period. In order to make decisions rationally, cost-benefit analysis is used to evaluate the performance of viable decisions given the probabilistic scenarios. Key word: Scenarios, Water Management, Uncertainty, Decision making, Bayesian approach

  10. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    PubMed

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. PMID:26028558

  11. Shutdown Decay Heat Removal analysis of a Westinghouse 3-loop pressurized water reactor: Case study

    SciTech Connect

    Sanders, G.A.; Ericson, D.M. Jr.; Cramond, W.R.

    1987-03-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Westinghouse 3-loop PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed.

  12. Shutdown decay heat removal analysis of a Babcock and Wilcox pressurized water reactor: Case study

    SciTech Connect

    Cramond, W.R.; Ericson, D.M. Jr.; Sanders, G.A.

    1987-03-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Babcock and Wilcox PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed.

  13. Shutdown decay heat removal analysis of a Combustion Engineering 2-loop pressurized water reactor: Case study

    SciTech Connect

    Cramond, W.R.; Ericson, D.M. Jr.; Sanders, G.A.

    1987-08-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Combustion Engineering 2-loop PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed.

  14. Shutdown decay heat removal analysis of a Westinghouse 2-loop pressurized water reactor: Case study

    SciTech Connect

    Cramond, W.R.; Ericson, D.M. Jr.; Sanders, G.A.

    1987-03-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Westinghouse 2-loop PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed.

  15. ACCURACY OF PROJECT-WIDE WATER USES FROM A WATER BALANCE: A CASE STUDY FROM SOUTHERN CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed water balance was conducted on the Imperial Valley in southern California for the years 1987 to 1996. The area included all lands within the boundaries defined, including farms, towns, road, etc. This analysis included surface and subsurface inflows, rainfall, surface and subsurface outfl...

  16. EPA Method 544: A Case Study in USEPA Drinking Water Method Develpment

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act required the U.S. Environmental Protection Agency (USEPA) to establish a Drinking Water Contaminant Candidate List (CCL) of chemicals and microbes that the Agency will consider for future regulation. One of the key pieces of info...

  17. Simulation Of Mine Water Inflow: Case Study Of The Štavalj Coal Mine (Southwestern Serbia)

    NASA Astrophysics Data System (ADS)

    Miladinović, Branko; Vakanjac, Vesna Ristić; Bukumirović, Dragomir; Dragišić, Veselin; Vakanjac, Boris

    2015-12-01

    The inflow of mine water to mining operations is often caused by random events such as precipitation. Consequently, the mine water inflow regime can be defined as a function of random events applying the theory of random processes. Regression models of the multiple linear correlation type have been used to simulate the inflow of mine water into mining operations, produce short-range predictions and facilitate rapid response inside the mine. The significance of such models lies in the ability to simulate and predict the consequences (mine water inflow), caused by events of a random nature (meteorological parameters: precipitation and air temperature). The presented prognostic models have been calibrated for mine water inflow to the Štavalj Coal Mine in southwestern Serbia. Mathematical dependencies were defined based on daily mine water inflow rates recorded during the period from 2003 to 2011, which can be used to generate short-range (1-7 day) predictions of mean daily mine water inflow rates to the Štavalj Coal Mine. A strong correlation (coefficient of correlation r = 0.93, Sig. = 0.00) was derived for the one-day forecast. The coefficients of correlation for predictions of mean daily mine water inflow rates related to time periods of two, three...seven days gradually declined to 0.63 (7-day mean daily inflow rate).

  18. Water management in a hyperinflationary environment: Case study of Nkayi district in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mazango, Nyasha B. M.; Munjeri, Cephas

    This paper discusses the management of local drinking water supplies in Nkayi, a poor rural district in Zimbabwe. The government policy of rural development has evolved a national sector strategy for water and sanitation, implemented through an Integrated Rural Water Supply and Sanitation (IRWSS) programme 1987-2000, with largely donor funding. One aspect of the programme has seen the construction and upgrading of communally-owned boreholes and deep-wells in villages to allow continuous access to sufficient and safe drinking water within a reasonable walking distance. However, due to dwindling state resources and budgetary constraints, since the 1990s, government has been decentralising service provision to local communities’ including water supply. This paper reveals how eight villages in Nkayi have qualitatively managed to innovatively sustain reliable water supply to continue to meet domestic demand despite the challenges of acute water shortages and the burden of rising maintenance costs due to hyperinflation. Despite an unfavourable economic environment, a unique cost-sharing and resource mobilization process by the community, Nkayi has ensured that 87 per cent of water points remain functional.

  19. Assessing Extension Program Impact: Case Study of a Water Quality Program.

    ERIC Educational Resources Information Center

    Bauder, J. W.

    1993-01-01

    Montana State University conducted a voluntary, private well water test program (n=3400) to direct public attention to water quality education. Eighty-four percent of the respondents to an impact assessment questionnaire indicated that the program was moderately to very effective. Other results involved user awareness and understanding, and…

  20. Water pollutant fingerprinting tracks recent industrial transfer from coastal to inland China: A case study

    PubMed Central

    Zheng, Weiwei; Wang, Xia; Tian, Dajun; Jiang, Songhui; Andersen, Melvin E.; He, Genhsjeng; Crabbe, M. James C.; Zheng, Yuxin; Zhong, Yang; Qu, Weidong

    2013-01-01

    In recent years, China’s developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. We have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. Our results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer. PMID:23301152

  1. Water pollutant fingerprinting tracks recent industrial transfer from coastal to inland China: A case study

    NASA Astrophysics Data System (ADS)

    Zheng, Weiwei; Wang, Xia; Tian, Dajun; Jiang, Songhui; Andersen, Melvin E.; He, Genhsjeng; Crabbe, M. James C.; Zheng, Yuxin; Zhong, Yang; Qu, Weidong

    2013-01-01

    In recent years, China's developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. We have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. Our results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer.

  2. Participatory geographic information systems for agricultural water management scenario development: A Tanzanian case study

    NASA Astrophysics Data System (ADS)

    Cinderby, Steve; Bruin, Annemarieke de; Mbilinyi, Boniface; Kongo, Victor; Barron, Jennie

    One of the keys to environmental management is to understand the impact and interaction of people with natural resources as a means to improve human welfare and the consequent environmental sustainability for future generations. In terms of water management one of the on-going challenges is to assess what impact interventions in agriculture, and in particularly different irrigation strategies, will have on livelihoods and water resources in the landscape. Whilst global and national policy provide the overall vision of desired outcomes for environmental management, agricultural development and water use strategies they are often presented with local challenges to embed these policies in the reality on the ground, with different stakeholder groups. The concept that government agencies, advocacy organizations, and private citizens should work together to identify mutually acceptable solutions to environmental and water resource issues is increasing in prominence. Participatory spatial engagement techniques linked to geographic information systems (commonly termed participatory GIS (PGIS)) offers one solution to facilitate such stakeholder dialogues in an efficient and consultative manner. In the context of agricultural water management multi-scale PGIS techniques have recently been piloted as part of the ‘Agricultural Water Management Solutions’ project to investigate the current use and dependencies of water by small-holder farmers a watershed in Tanzania. The piloted approach then developed PGIS scenarios describing the effects on livelihoods and water resources in the watershed when introducing different management technologies. These relatively rapid PGIS multi-scale methods show promise for assessing current and possible future agriculture water management technologies in terms of their bio-physical and socio-economic impacts at the watershed scale. The paper discusses the development of the methodology in the context of improved water management decision

  3. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    NASA Astrophysics Data System (ADS)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    water where it is a scarce resource. Linkage of water & Energy to the land has been established through irrigated agriculture which has seen an increasing trend in the case study area. A detail scenario planning for regional water-energy demand and supply in conjunction with different climate change and economic growth scenarios are considered. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, environmental etc.). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial transformation and the management of uncertainty by means of comparisons at a qualitative level in terms of the decision maker preferences. Result shows that such an integrated ("nexus") approach is likely to build resilience and reduces vulnerability to the combination of pressures acting upon the Mediterranean region's water systems, including climate-related shocks.

  4. D Documentation of a Historical Monument Using Terrestrial Laser Scanning Case Study: Byzantine Water Cistern, Istanbul

    NASA Astrophysics Data System (ADS)

    Temizer, T.; Nemli, G.; Ekizce, E.; Ekizce, A.; Demir, S.; Bayram, B.; Askin, F. H.; Cobanoglu, A. V.; Yilmaz, H. F.

    2013-07-01

    3D modelling of architectural structures for monitoring, conservation and restoration alterations in heritage sites has special challenges for data acquisition and processing. The accuracy of created 3D model is very important. In general, because of the complexity of the structures, 3D modelling can be time consuming and may include some difficulties. 3D terrestrial laser scanning technique is a reliable and advantageous method for reconstruction and conservation of monuments. This technique is commonly acknowledged due to its accuracy, speed and flexibility. Terrestrial laser scanners can be used for documentation of the cultural heritage for the future. But it is also important to understand the capabilities and right conditions of use and limitations of this technology. Istanbul is a rich city with cultural monuments, buildings and cultural heritage. The presented study consists of documentation of a Byzantine water cistern situated underground the court of Sarnicli Han building. The cistern which represents a very good living example of its period has been modelled in 3D by using terrestrial laser scanning technology and the accuracy assessment of this modelling is examined.

  5. Water Management Models in Practice: A Case Study of the Aswan High Dam

    NASA Astrophysics Data System (ADS)

    El-Ashry, M. T.; Alford, D. L.

    1984-04-01

    The stated purpose of this volume is the development and evaluation of operating policies for the Aswan High Dam and their relation to the development of water resources policy in Egypt. That objective is admirably fulfilled through discussions of water use in Egypt and the operation objectives of the High Dam, the behavior of the physical system and simulation of the reservoir, a realtime management model of the dam, management of water shortages and trade-offs between major uses, and coordinated operation of the dam with new upstream as well as downstream developments.The High Dam has been a source of controversy, particularly with regard to its environmental impacts. Its adverse effects include changes in the water table and attendant salt buildup in irrigated areas, excessive growth of aquatic plants below the dam, shoreline erosion, and increases in water-borne diseases such as schistosomiasis (bilharzia). The dam was intended to offset rapid population growth by increasing food supplies through the transformation of irrigated land in southern Egypt from seasonal to perennial cultivation and by providing water for the reclamation of desert land. Unfortunately, such benefits have been outstripped by the rapidly growing population, and water shortages will be experienced by the end of the century.

  6. Fog and rain water chemistry at Mt. Fuji: A case study during the September 2002 campaign

    NASA Astrophysics Data System (ADS)

    Watanabe, Koichi; Takebe, Yusaku; Sode, Nobuhiro; Igarashi, Yasuhito; Takahashi, Hiroshi; Dokiya, Yukiko

    2006-12-01

    Measurements of fog and rain water chemistry at the summit of Mt. Fuji, the highest peak in Japan, as well as at Tarobo, the ESE slope of Mt. Fuji in September 2002. The pH of fog and rain water sampled at Mt. Fuji varied over a range of 4.0-6.8. Acidic fogs (pH < 5.0) were observed at the summit when the air mass came from the industrial regions on the Asian continent. The ratio of [SO 42-]/[NO 3-] in the fog water was lower at Tarobo than at the summit. High concentrations of Na + and Cl - were determined in the rain water sampled at the summit, possibly because of the long-range transport of sea-salt particles raised by a typhoon through the middle troposphere. The vertical transport of sea-salt particles would influence the cloud microphysical properties in the middle troposphere. Significant loss of Mg 2+ was seen in the rain water at the summit. The concentrations of peroxides in the fog and rain water were relatively large (10-105 μM). The potential capacity for SO 2 oxidation seems to be strong from summer to early autumn at Mt. Fuji. The fog water peroxide concentrations displayed diurnal variability. The peroxide concentrations in the nighttime were significantly higher than those in the daytime.

  7. Integrated System Dynamics Modelling for water scarcity assessment: case study of the Kairouan region.

    PubMed

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Savić, Dragan A; Kapelan, Zoran

    2012-12-01

    A System Dynamics Model (SDM) assessing water scarcity and potential impacts of socio-economic policies in a complex hydrological system is developed. The model, simulating water resources deriving from numerous catchment sources and demand from four sectors (domestic, industrial, agricultural, external pumping), contains multiple feedback loops and sub-models. The SDM is applied to the Merguellil catchment, Tunisia; the first time such an integrated model has been developed for the water scarce Kairouan region. The application represents an early step in filling a critical research gap. The focus of this paper is to a) assess the applicability of SDM for assessment of the evolution of a water-scarce catchment and b) to analyse the current and future behaviour of the catchment to evaluate water scarcity, focusing on understanding trends to inform policy. Baseline results indicate aquifer over-exploitation, agreeing with observed trends. If current policy and social behaviour continue, serious aquifer depletion is possible in the not too distant future, with implications for the economy and environment. This is unlikely to occur because policies preventing depletion will be implemented. Sensitivity tests were carried out to show which parameters most impacted aquifer behaviour. Results show non-linear model behaviour. Some tests showed negligible change in behaviour. Others showed unrealistic exponential changes in demand, revenue and aquifer water volume. Policy-realistic parameters giving the greatest positive impact on model behaviour were those controlling per-capita domestic water demand and the pumped volume to coastal cities. All potentially beneficial policy options should be considered, giving the best opportunity for preservation of Kairouan aquifer water quantity/quality, ecologically important habitats and the agricultural socio-economic driver of regional development. SDM is a useful tool for assessing the potential impacts of possible policy measures

  8. Cancer risk from asbestos in drinking water. Summary of a case-control study in western Washington

    SciTech Connect

    Polissar, L.; Severson, R.K.; Boatman, E.S.

    1983-11-01

    A case-controlled, interview-based study of the risk of developing cancer from asbestos in drinking water was conducted. Cases and controls were selected from the Everett, Washington, area which has used the Sultan River as source of drinking water since 1918. Sultan River tapwater has concentrations of chrysotile asbestos around 200 million fibers/liter. Through a population based tumor registry, 382 individuals with cancer of the buccal cavity, pharynx, respiratory system, digestive system, bladder, or kidneys, diagnosed between 1977 and 1980, were identified. Data on asbestos exposure were collected based on residence and workplace history, and on individual water consumption. Logistic regression was used to estimate cancer risk. Summarizing the findings for imbibed asbestos, very few elevated risks of statistical significance were found. Considering the relative risk for each of the sites and for each of the four asbestos exposure variables, no instance was found in which the risk was elevated for both males and females. The only statistically significant elevated risks occurred for male pharynx and male stomach. 20 references.

  9. The Water Framework Directive: Can more information be extracted from groundwater data? A case study of Seewinkel, Burgenland, eastern Austria

    NASA Astrophysics Data System (ADS)

    Hatvani, István Gábor; Magyar, Norbert; Zessner, Matthias; Kovács, József; Blaschke, Alfred Paul

    2014-06-01

    Water protection is one of the most important goals in environmental protection. The Clean Water Act in the USA and the Water Framework Directive (WFD) in Europe are the legal frameworks to facilitate the achievement of this goal. The question is raised of whether more information can be extracted from WFD-related groundwater data. To answer it, a methodology has been developed that is easy to use and could be implemented into official practice. A case study is presented in which the groundwater data of a sodic area in Austria (Seewinkel) is assessed. Eighteen parameters in groundwater sampled from 23 wells (1991-2011) were analyzed. With basic statistics, trend-, cluster-, Wilks' λ and spatial sampling density analysis, local phosphorus and boron phenomena were described, along with the determining role of sulphate, groundwater flow, and the oxygen gradient in the area. As a final step, the spatial sampling density was determined. Regarding the current set of parameters, all the sampling sites are necessary and only in the case of certain parameters (Ca2+, Mg2+, K+, NO3 -, pH) could one sampling site be abandoned. The methodology applied brings a new perspective to exploring groundwater data collected according to the requirements of the WFD.

  10. Case study of the effectiveness of passive grease trap for management on domestic kitchen waste water

    NASA Astrophysics Data System (ADS)

    Nidzamuddin, M. Y.; Juffrizal, K.; Mustapha, F.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.

    2015-05-01

    Household waste, generally known as trash or garbage is mostly includes food wastes, product packaging, and other miscellaneous inorganic wastes that are coming from domestic household. Grease waste such as oil and fats can contaminate water and also clot on pipes provoking blockages. Thus, waste water from kitchen sink need a proper way of filtration. Grease trap developed in this paper is viable in trapping the grease residue. The experiments have been conducted in controlled environment and the objectives are to investigate the effectiveness of grease trap by proving the existence of retention time and the expected ratio of collected water and oil during experiment process using a prototype model.

  11. Water for Agriculture in a Vulnerable Delta: A Case Study of Indian Sundarban

    NASA Astrophysics Data System (ADS)

    Das, S.; Bhadra, T.; Hazra, S.

    2015-12-01

    Indian Sundarban lies in the south-western part of the Ganges-Brahmaputra Delta and supports a 4.43 million strong population. The agrarian economy of Sundarban is dominated by rainfed subsistence rice farming. Unavailability of upstream fresh water, high salinity of river water of up to 32ppt, soil salinity ranging between 2dSm-1 to 19dSm-1, small land holdings of per capita 840 sq. metre and inadequate irrigation facilities are serious constraints for agricultural production in Sundarban. This paper assesses Cropping Intensity, Irrigation Intensity and Man-Cropland Ratio from Agriculture Census (2010-11) data and estimates the seasonal water demand for agriculture in different blocks of Sundarban. The research exposes the ever increasing population pressure on agriculture with an average Man Cropland Ratio of 1745 person/sq.km. In 2010-2011, the average cropping intensity was 129.97% and the irrigation intensity was 20.40%. The highest cropping and irrigation intensity have been observed in the inland blocks where shallow ground water is available for agriculture on the contrary, the lowest values have been observed in the southern blocks, due to existence of saline shallow ground water. The annual water demand for agriculture in Sundarban has been estimated as 2784 mcm. Available water from 70000 freshwater tanks and around 8000 numbers of shallow tube wells are not sufficient to meet the agricultural water demand. Existing irrigation sources and rainfall of 343 mcm fall far short of the water demand of 382 mcm during peak dry Season. Unavailability of fresh water restricts the food production, which endangers the food security of 87.5% of the people in Sundarban. To ensure the food security in changing climatic condition, expansion of irrigation network and harnessing of new water sources are essential. Large scale rainwater harvesting, rejuvenation and re-connection of disconnected river channels, artificial recharge within shallow aquifer to bring down its

  12. Integrated GRASS GIS based techniques to identify thermal anomalies on water surface. Taranto case study.

    NASA Astrophysics Data System (ADS)

    Massarelli, Carmine; Matarrese, Raffaella; Felice Uricchio, Vito

    2014-05-01

    In the last years, thermal images collected by airborne systems have made the detection of thermal anomalies possible. These images are an important tool to monitor natural inflows and legal or illegal dumping in coastal waters. By the way, the potential of these kinds of data is not well exploited by the Authorities who supervises the territory. The main reason is the processing of remote sensing data that requires very specialized operators and softwares which are usually expensive and complex. In this study, we adopt a simple methodology that uses GRASS, a free open-source GIS software, which has allowed us to map surface water thermal anomalies and, consequently, to identify and locate coastal inflows, as well as manmade or natural watershed drains or submarine springs (in italian citri) in the Taranto Sea (South of Italy). Taranto sea represents a coastal marine ecosystem that has been gradually modified by mankind. One of its inlet, the Mar Piccolo, is a part of the National Priority List site identified by the National Program of Environmental Remediation and Restoration because of the size and high presence of industrial activities, past and present, that have had and continue to seriously compromise the health status of the population and the environment. In order to detect thermal anomalies, two flights have been performed respectively on March 3rd and on April 7th, 2013. A total of 13 TABI images have been acquired to map the whole Mar Piccolo with 1m of spatial resolution. TABI-320 is an airborne thermal camera by ITRES, with a continuous spectral range between 8 and 12 microns. On July 15th, 2013, an in-situ survey was carried out along the banks to retrieve clear visible points of natural or artificial inflows, detecting up to 72 of discharges. GRASS GIS (Geographic Resources Analysis Support System), is a free and open source Geographic Information System (GIS) software suite used for geospatial data management and analysis, image processing

  13. Scale Issues in Modeling the Water Resources Sector in National Economic Models: A Case study of China

    NASA Astrophysics Data System (ADS)

    Strzepek, K. M.; Kirshen, P.; Yohe, G.

    2001-05-01

    The fundamental theme of this research was to investigate tradeoffs in model resolution for modeling water resources in the context of national economic development and capital investment decisions.. Based on a case study of China, the research team has developed water resource models at relatively fine scales, then investigated how they can be aggregated to regional or national scales and for use in national level planning decisions or global scale integrated assessment models of food and/or environmental change issues. The team has developed regional water supply and water demand functions.. Simplifying and aggregating the supply and demand functions will allow reduced form functions of the water sector for inclusion in large scale national economic models. Water Supply Cost functions were developed looking at both surface and groundwater supplies. Surface Water: Long time series of flows at the mouths of the 36 major river sub-basins in China are used in conjunction with different basin reservoir storage quantities to obtain storage-yield curves. These are then combined with reservoir and transmission cost data to obtain yield-cost or surface water demand curves. The methodology to obtain the long time series of flows for each basin is to fit a simple abcd water balance model to each basin. The costs of reservoir storage have been estimated by using a methodology developed in the USA that relates marginal storage costs to existing storage, slope and geological conditions. USA costs functions have then been adjusted to Chinese costs. The costs of some actual dams in China were used to "ground-truth" the methodology. Groundwater: The purpose of the groundwater work is to estimate the recharge in each basin, and the depths and quality of water of aquifers. A byproduct of the application of the abcd water balance model is the recharge. Depths and quality of aquifers are being taken from many separate reports on groundwater in different parts of China; we have been

  14. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    Owing to increasing anthropogenic impacts, lagoons and wetlands are being exposed to environmental degradation. Therefore, the sustainable management of these environmental resources is a fundamental issue to maintain either the ecosystems and the human activity. The Massaciuccoli Lake is a coastal lake of fresh to brackish water surrounded by a marsh, which drains a total catchment of about 114 km2. Large part of the basin has been reclaimed since 1930 by means of pumping stations forcing water from the drained areas into the lake. The system is characterized by: high complexity of the hydrological setting; subsidence of the peaty soils in the reclaimed area (2 to 3 m in 70 years), that left the lake perched; reclaimed land currently devoted mainly to conventional agriculture (e.g.: maize monoculture) along with some industrial sites, two sewage treatment plants and some relevant urban settlements; social conflicts among different land users because of the impact on water quality and quantity. The interaction between such a fragile natural system and human activities leads to an altered ecological status mainly due to eutrophication and water salinisation. Hence, the present work aims at identifying and assessing the sources of nutrients (phosphorous in particular) into the lake, and characterising land use and some socio-economic aspects focusing on agricultural systems, in order to set up suitable mitigation measures. Water quantity and quality in the most intensively cultivated sub-catchment, placed 0.5 to 3 m under m.s.l. were monitored in order to underlain the interaction between water and its nutrient load. Questionnaires and interviews to farmers were conducted to obtain information about agricultural practices, farm management, risks and constraints for farming activities. The available information about the natural system and land use were collected and organised in a GIS system: a conceptual model of surface water hydrodinamics was build up and 14

  15. Integrated optimal allocation model for complex adaptive system of water resources management (II): Case study

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Xu, Chong-Yu; Liu, Dedi; Chen, Lu; Wang, Dong

    2015-12-01

    Climate change, rapid economic development and increase of the human population are considered as the major triggers of increasing challenges for water resources management. This proposed integrated optimal allocation model (IOAM) for complex adaptive system of water resources management is applied in Dongjiang River basin located in the Guangdong Province of China. The IOAM is calibrated and validated under baseline period 2010 year and future period 2011-2030 year, respectively. The simulation results indicate that the proposed model can make a trade-off between demand and supply for sustainable development of society, economy, ecology and environment and achieve adaptive management of water resources allocation. The optimal scheme derived by multi-objective evaluation is recommended for decision-makers in order to maximize the comprehensive benefits of water resources management.

  16. Bioremediation of organic solvents in ground water: A case study--Grandview, Missouri

    SciTech Connect

    Humenik, J.A. )

    1993-10-01

    Organic solvents leaking from underground storage tanks or from spillage pose a serious threat to ground-water quality. Chemicals such as styrene, ethylbenzene, toluene, and methyl-methacrylate are commonly associated with the manufacturing of plastics and fiberglass. After pump-and-treat operations were unsuccessful in remediating ground water contaminated with ethylbenzene and styrene resulting from leaking underground chemical storage tanks, bioremediation was implemented to degrade the contaminants to the Missouri Department of Natural Resources target cleanup limits. Due to low permeability clays and anaerobic subsurface conditions, the bioremediation design consisted of a ground-water recovery system, an aboveground bioreactor to treat ground water, and a recharge network to introduce acclimated microbes, nutrients, and oxygen to the subsurface. Commercially prepared microbial strains and nutrients were utilized for the close-loop system, as insufficient indigenous microbes and nutrients were present in subsurface matrix.

  17. Green Residential Demolitions: Case Study of Vacant Land Reuse in Storm Water Management in Cleveland

    EPA Science Inventory

    The demolition process impacts how vacant land might be reused for storm water management. For five residential demolition sites (Cleveland, Ohio), an enhanced green demolition process was observed in 2012, and soil physical and hydrologic characteristics were measured predemolit...

  18. Water storage under changing climates: A case study of small farm dams in New Zealand

    NASA Astrophysics Data System (ADS)

    Thompson, J.; Preston, N.; Jackson, B. M.

    2009-12-01

    In many regions of the world, climate change scenarios predict a trend towards drier conditions. In agricultural areas, less rainfall during planting and growing periods will exacerbate existing water supply issues, with communities striving to find alternative water storage options. In New Zealand, both government and agricultural interest groups are promoting the construction of storage ponds (both small-scale ponds for farm use and larger reservoirs for community use) to tackle this issue. This paper investigates the use of small farm dams as a means of providing secure water storage while also considering downstream environmental impacts. New Zealand has thousands of small stock water and irrigation dams that interrupt streamflow, primarily located on first-order streams. With climate change scenarios predicting a 3-4% decrease in annual precipitation in some regions, it is expected that dam numbers will increase in the future. However, little is known about the impact of these dams on the downstream environment in terms of water quantity, quality, sediment transfer, and stream morphology at either the local or regional scale. A combination of field-based methods and modelling is used to quantify the overall impact of farm dams on the downstream system in an agricultural catchment in the Hawke’s Bay region of New Zealand. Results show that farm dams reduce overall discharge and flood peaks, but sustain winter flows for a longer duration between rainfall events. The dams also create a lowering of water quality and a decrease in the transfer of sediment, with aggradation occurring in downstream channel reaches. Implications at the wider catchment scale are discussed, along with improved management practices which could allow for both water security and the protection of the environment. Results have implications for regions of the world which face drier conditions under changing climate regimes and need environmentally and socio-economically sustainable water

  19. Settlement of mine spoil fill from water infiltration: Case study in eastern Kentucky

    SciTech Connect

    Karem, W.A.; Kalinski, M.E.; Hancher, D.E.

    2007-09-15

    Mine spoil valley fills are a by-product of mountaintop removal mining in the Appalachian coal mining region of the United States. These fills often result in large expanses of relatively flat land covering thousands of acres, which can be used for commercial or industrial development. However, this material is susceptible to damaging settlement, and highly publicized failures of structures built on mine spoil fills have led to reluctance on the part of investors to develop these areas. A key settlement mechanism in mine spoil is water infiltration. Percolating water slakes the shaly, angular spoil material at interparticle stress points, leading to excessive deformation and settlement. A lumber processing facility in Hazard, Ky., is an example of a structure that sustained serious damage as a result of settlement caused by water infiltration. A forensic site investigation of the facility revealed that excavation of existing surface mine spoil beneath the building footprint removed the low-permeability crust that forms on the top of mature mine spoil fill deposits. The removal of the crust allowed the infiltration of surface water. This, coupled with the unique configuration of the storm water drainage system at the facility and surface water drainage toward the building, led to differential settlement up to 1:120 (vertical: horizontal) and angular distortion up to 1: 150 over a period of several months. Foundation underpinning was performed to remedy the situation. For future development on mine spoil sites, recommended mitigating measures include presaturation of the mine spoil, design of drainage systems to adequately convey surface water away from the building, and use of geosynthetic barrier layers to prevent infiltration of surface water into the mine spoil beneath the structure.

  20. Ground water chlorinated ethenes in tree trunks: Case studies, influence of recharge, and potential degradation mechanism

    USGS Publications Warehouse

    Vroblesky, D.A.; Clinton, B.D.; Vose, J.M.; Casey, C.C.; Harvey, G.J.; Bradley, P.M.

    2004-01-01

    Trichloroethene (TCE) was detected in cores of trees growing above TCE-contaminated ground at three sites: the Carswell Golf Course in Texas, Air Force Plant PJKS in Colorado, and Naval Weapons Station Charleston in South Carolina. This was true even when the depth to water was 7.9 m or when the contaminated aquifer was confined beneath ???3 m of clay. Additional ground water contaminants detected in the tree cores were cis-1,2-dichloroethene at two sites and tetrachloroethene at one site. Thus, tree coring can be a rapid and effective means of locating shallow subsurface chlorinated ethenes and possibly identifying zones of active TCE dechlorination. Tree cores collected over time were useful in identifying the onset of ground water contamination. Several factors affecting chlorinated ethene concentrations in tree cores were identified in this investigation. The factors include ground water chlorinated ethene concentrations and depth to ground water contamination. In addition, differing TCE concentrations around the trunk of some trees appear to be related to the roots deriving water from differing areas. Opportunistic uptake of infiltrating rainfall can dilute prerain TCE concentrations in the trunk. TCE concentrations in core headspace may differ among some tree species. In some trees, infestation of bacteria in decaying heartwood may provide a TCE dechlorination mechanism within the trunk.

  1. Safe water supply without disinfection in a large city case study: Berlin.

    PubMed

    Grohmann, A; Petersohn, D

    2000-01-01

    Berlin's water supplies originate exclusively from groundwater. For sustainable water management, river water is treated by flocculation and filtration and used either for artificial groundwater recharge (rivers Spree and Havel) or for bank filtration (Nordgraben and Lake Tegel). Drinking water chlorination was abandoned in Berlin (West) in 1978, and in Berlin (East) in 1992, following German unification. Chlorine consumption for the purpose of weekly performance checks in the chlorination plants of Berlin's 11 waterworks and occasional chlorination within the pipe system following pipe burst events amounts to 2500 kg per year. Based on the annual water demand of 250 million cubic metres, this is equivalent to 0.01 mg of chlorine per litre. Microbiological monitoring at the 11 waterworks and at 383 sampling points within the pipe system shows CFU at less than 10/1 ml-1 and coliforms and E. coli invariably at 0/100 ml-1. In view of the low AOX content, a multiplication of bacteria within the pipe system can be expected to occur not at all or only to a small extent. Resource protection measures, filter backwashing and pipe system maintenance in observance of the relevant technical rules will continue to ensure that the quality of Berlin's drinking water meets stringent hygiene requirements without chlorination. PMID:11225280

  2. Case studies on developing local industry by using hot spring water and geothermal energy

    SciTech Connect

    Sasaki, Akira; Umetsu, Yoshio; Narita, Eiichi

    1997-12-31

    We have investigated the new ways to develop local industries by using hot spring water, geothermal water and geothermal energy from the Matsukawa Geothermal Power Plant in Iwate Prefecture, which is the first geothermal power plant established in Japan. The new dyeing technique, called {open_quotes}Geothermal Dyeing{close_quotes} was invented in which hydrogen sulfide in the water exhibited decoloration effect. By this technique we succeeded to make beautiful color patterns on fabrics. We also invented the new way to make the light wight wood, called {open_quotes}Geo-thermal Wood{close_quotes} by using hot spring water or geothermal water. Since polysaccharides in the wood material were hydrolyzed and taken out during the treatment in the hot spring water, the wood that became lighter is weight and more porous state. On the bases of these results, we have produced {open_quotes}Wooded Soap{close_quotes} on a commercial scale which is the soap, synthesized in the pore of the treated wood in round slice. {open_quotes}Collapsible Wood Cabin{close_quotes} was also produced for enjoyable outdoor life by using the modified properties of Geothermal Wood.

  3. Rocky-shore communities as indicators of water quality: a case study in the Northwestern Mediterranean.

    PubMed

    Pinedo, Susana; García, María; Satta, Maria Paola; de Torres, Mariona; Ballesteros, Enric

    2007-01-01

    The collection of 152 samples from the upper sublittoral zone along the rocky coasts of Catalonia (Northwestern Mediterranean) was carried out in 1999 in order to test the suitability of littoral communities to be used as indicators of water quality in the frame of the European Water Framework Directive. Detrended correspondence analysis were performed to distinguish between different communities and to relate communities composition to water quality. Samples collected in reference sites were included in the analysis. Mediterranean rocky shore communities situated in the upper sublittoral zone can be used as indicators of the water quality: there is a gradient from high to bad status that comprises from dense Cystoseira mediterranea forests to green algae dominated communities. The geographical patterns in the distribution of these communities show that the best areas are situated in the Northern coast, where tourism is the main economic resource of the area, and the worst area is situated close to the metropolitan zone of Barcelona with high population and industrial development. Thus, Mediterranean sublittoral rocky shore communities are useful indicators of water quality and multivariate analysis are a suitable statistical tool for the assessment of the ecological status. PMID:17049951

  4. Algorithmic network monitoring for a modern water utility: a case study in Jerusalem.

    PubMed

    Armon, A; Gutner, S; Rosenberg, A; Scolnicov, H

    2011-01-01

    We report on the design, deployment, and use of TaKaDu, a real-time algorithmic Water Infrastructure Monitoring solution, with a strong focus on water loss reduction and control. TaKaDu is provided as a commercial service to several customers worldwide. It has been in use at HaGihon, the Jerusalem utility, since mid 2009. Water utilities collect considerable real-time data from their networks, e.g. by means of a SCADA system and sensors measuring flow, pressure, and other data. We discuss how an algorithmic statistical solution analyses this wealth of raw data, flexibly using many types of input and picking out and reporting significant events and failures in the network. Of particular interest to most water utilities is the early detection capability for invisible leaks, also a means for preventing large visible bursts. The system also detects sensor and SCADA failures, various water quality issues, DMA boundary breaches, unrecorded or unintended network changes (like a valve or pump state change), and other events, including types unforeseen during system design. We discuss results from use at HaGihon, showing clear operational value. PMID:21252425

  5. High Resolution Integrated Hydrologic Modeling for Water Resource Management: Tahoe Basin Case Study

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Niswonger, R. G.; Huntington, J. L.; Gardner, M.; Morton, C.; Maples, S.; Reeves, D. M.; Pohll, G.

    2014-12-01

    Water resources in the high altitude, snow-dominated Tahoe basin are susceptible to long-term climate change and extreme climatic events due to large inter-annual climate variations. Lake Tahoe and its contributing watersheds exhibit high climatic (precipitation, temperature) and hydrologic (streamflow, evaporation) variation that exert significant control over regional water supply on annual and sub-annual timescales. To adequately quantify these controls, a high resolution (300m) physically based integrated surface and groundwater model, GSFLOW, of the Tahoe basin has been developed to identify key hydrologic mechanisms that explain recent changes in water resources of the region. The model is parameterized using geographical datasets and maintains a balance between (a) accurate representation of spatial (e.g., geology, streams, and topography) and hydrologic (groundwater, stream, lake, and wetland flows and storages) features, and (b) computational efficiency, which is a necessity for exploring critical vulnerabilities of water-supplies in the region. The calibrated model reproduces multiple observations of streamflow, snow water equivalent, satellite derived snow covered area, lake stage, and groundwater head. Climate input uncertainty was significantly decreased in the model through incorporating additional precipitation station data and helped improve model simulations of observed fluxes more than adjusting model parameters alone. The model simulates fluxes at the outlet of the watershed, but is also consistent at simulating streamflow at internal nodes. This integrated modeling framework helped assess both surface and groundwater resources in a coupled manner in the Tahoe basin.

  6. Recommendations for water supply in arsenic mitigation: a case study from Bangladesh.

    PubMed

    Hoque, B A; Mahmood, A A; Quadiruzzaman, M; Khan, F; Ahmed, S A; Shafique, S A; Rahman, M; Morshed, G; Chowdhury, T; Rahman, M M; Khan, F H; Shahjahan, M; Begum, M; Hoque, M M

    2000-11-01

    Arsenic problems have been observed in several countries around the world. The challenges of arsenic mitigation are more difficult for developing and poor countries due to resource and other limitations. Bangladesh is experiencing the worst arsenic problem in the world, as about 30 million people are possibly drinking arsenic contaminated water. Lack of knowledge has hampered the mitigation initiatives. This paper presents experience gained during an action research on water supply in arsenic mitigation in rural Singair, Bangladesh. The mitigation has been implemented there through integrated research and development of appropriate water supply options and its use through community participation. Political leaders and women played key roles in the success of the mitigation. More than one option for safe water has been developed and/or identified. The main recommendations include: integration of screening of tubewells and supply of safe water, research on technological and social aspects, community, women and local government participation, education and training of all stakeholders, immediate and appropriate use of the available knowledge, links between intermediate/immediate and long term investment, effective coordination and immediate attention by health, nutrition, agriculture, education, and other programs to this arsenic issue. PMID:11114764

  7. Water Management Planning: A Case Study at Blue Grass Army Depot

    SciTech Connect

    Solana, Amy E.; Mcmordie, Katherine

    2006-04-03

    Executive Order 13123, Greening the Government Through Efficient Energy Management, mandates an aggressive policy for reducing potable water consumption at federal facilities. Implementation guid¬ance from the U.S. Department of Energy (DOE) set a requirement for each federal agency to “reduce potable water usage by implementing life cycle, cost-effective water efficiency programs that include a water management plan, and not less than four Federal Energy Management Program (FEMP) Best Manage¬ment Practices (BMPs).” The objective of this plan is to gain full compliance with Executive Order 13123 and associated DOE implementation guidance on behalf of Blue Grass Army Depot (BGAD), Richmond, Kentucky. In accordance with this plan, BGAD must: • Incorporate the plan as a component of the Installation energy conservation plan • Investigate the water savings potential and life-cycle cost effectiveness of the Operations and Maintenance (O&M) and retrofit/replacement options associated with the ten FEMP BMPs • Put into practice all applicable O&M options • Identify retrofit/replacement options appropriate for implementation (based upon calculation of the simple payback periods) • Establish a schedule for implementation of applicable and cost-effective retrofit/replacement options.

  8. Hyperspectral remote sensing for estimating coastal water quality: case study on coast of Black Sea, Romania

    NASA Astrophysics Data System (ADS)

    Ghezehegn, S. G.; Steef, Peters; Hommersom, Annelies; Nils, De Reus; Culcea, Oana; Krommendijk, Bram

    2014-10-01

    The North-Western part of the Black Sea is highly affected by eutrophication due to nutrient and sediment load inflow from the Danube River, which is the second largest delta in Europe. To get a general spatial picture of the water quality of the Romanian coast, it is not only time consuming, but also hard to measure with traditional in situ sampling. To solve these issues, methods have been developed to use close range spectral measurements for accurate and cheap assessments in real-time for the concentrations of Chlorophyll-a, Total Suspended Matter and water transparency. This paper presents the applicability of a state-of-the-art hand-held hyper-spectral sensor and a simple water transparency indicator for monitoring water quality. The fieldwork was conducted during the summer of 2013 on the Romanian coast of the Black Sea. The same techniques are used to calculate these parameters from satellite images (MODIS). The validation results and potential applications of the instruments will be discussed.

  9. The hydrogeological role of an aquitard in preventing drinkable water well contamination: a case study.

    PubMed

    Ponzini, G; Crosta, G; Giudici, M

    1989-11-01

    Groundwater pollution has become a worrisome phenomenon, mainly for aquifers underlying industrialized areas. In order to evaluate the risk of pollution, a model of the aquifer is needed. Herewith, we describe a quasi-tridimensional model, which we applied to a multilayered aquifer where a phreatic aquifer was coupled to a confined one by means of an aquitard. This hydrogeological scheme is often met in practice and, therefore, models a number of situations. Moreover, aquitards play and important role in the management of natural resources of this kind. The model we adopted contains some approximations: the flow within the aquifers is assumed to be horizontal, whereas leakage is assumed vertical. The effect of some wells drilled in these aquifers is also taken into account. In order to evaluate the leakage fluxes that correspond to different exploitation conditions, we numerically solve a system of quasilinear and time-dependent partial differential equations. This model has been calibrated by the hydrogeological data from a water supply station of the Milan Water Works, where water is polluted by some halocarbons. Our simulations account for several experimental facts, both from the hydrogeological and hydrogeochemical viewpoints. Maxima of computed downward leakage rates are found to correspond with measured pollutant concentration maxima. Other results show how the aquitard can help in minimizing the contamination of drinkable water. PMID:2620670

  10. Biodesalination: a case study for applications of photosynthetic bacteria in water treatment.

    PubMed

    Amezaga, Jaime M; Amtmann, Anna; Biggs, Catherine A; Bond, Tom; Gandy, Catherine J; Honsbein, Annegret; Karunakaran, Esther; Lawton, Linda; Madsen, Mary Ann; Minas, Konstantinos; Templeton, Michael R

    2014-04-01

    Shortage of freshwater is a serious problem in many regions worldwide, and is expected to become even more urgent over the next decades as a result of increased demand for food production and adverse effects of climate change. Vast water resources in the oceans can only be tapped into if sustainable, energy-efficient technologies for desalination are developed. Energization of desalination by sunlight through photosynthetic organisms offers a potential opportunity to exploit biological processes for this purpose. Cyanobacterial cultures in particular can generate a large biomass in brackish and seawater, thereby forming a low-salt reservoir within the saline water. The latter could be used as an ion exchanger through manipulation of transport proteins in the cell membrane. In this article, we use the example of biodesalination as a vehicle to review the availability of tools and methods for the exploitation of cyanobacteria in water biotechnology. Issues discussed relate to strain selection, environmental factors, genetic manipulation, ion transport, cell-water separation, process design, safety, and public acceptance. PMID:24610748

  11. REMEDIATION STRATEGIES FOR GROUND WATER CONTAMINATED WITH METALS: CHROMIUM AND ARSENIC CASE STUDIES

    EPA Science Inventory

    This departmental seminar will explore current research activities at EPA's Ground Water and Ecosystem Restoration Division. In particular, aspects of the geochemistry of chromium and arsenic will be discussed as will be mechanisms of contaminant uptake in context to ground-wate...

  12. GASOLINE-CONTAMINATED GROUND WATER AS A SOURCE OF RESIDENTIAL BENZENE EXPOSURE: A CASE STUDY

    EPA Science Inventory

    In a private residence using gasoline-contaminated water (approximately 300 ug/l benzene), a series of experiments were performed to assess the potential benzene exposures that may occur in the shower stall, bathroom, master bedroom, and living room as a result of a single 20-min...

  13. Biodesalination: A Case Study for Applications of Photosynthetic Bacteria in Water Treatment1[C

    PubMed Central

    Amezaga, Jaime M.; Amtmann, Anna; Biggs, Catherine A.; Bond, Tom; Gandy, Catherine J.; Honsbein, Annegret; Karunakaran, Esther; Lawton, Linda; Madsen, Mary Ann; Minas, Konstantinos; Templeton, Michael R.

    2014-01-01

    Shortage of freshwater is a serious problem in many regions worldwide, and is expected to become even more urgent over the next decades as a result of increased demand for food production and adverse effects of climate change. Vast water resources in the oceans can only be tapped into if sustainable, energy-efficient technologies for desalination are developed. Energization of desalination by sunlight through photosynthetic organisms offers a potential opportunity to exploit biological processes for this purpose. Cyanobacterial cultures in particular can generate a large biomass in brackish and seawater, thereby forming a low-salt reservoir within the saline water. The latter could be used as an ion exchanger through manipulation of transport proteins in the cell membrane. In this article, we use the example of biodesalination as a vehicle to review the availability of tools and methods for the exploitation of cyanobacteria in water biotechnology. Issues discussed relate to strain selection, environmental factors, genetic manipulation, ion transport, cell-water separation, process design, safety, and public acceptance. PMID:24610748

  14. QUAL2E - A CASE STUDY IN WATER QUALITY MODELING SOFTWARE

    EPA Science Inventory

    The series of computer programs known as QUAL-II has a long history in systems analysis in water quality management. The continuing cycle of testing and refinement of the computer program accounts for its many strengths as most of the weaknesses have been uncovered in this proces...

  15. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the main contributors to poor water quality in the Mississippi River and aeral increase in the hypoxic zone in the Gulf of Mexico is intensive drainage of the cropland within the watershed. Controlled drainage has been demonstrated as an approach to curb totla drainage outflow and nutrient di...

  16. Site characterization to support risk assessment of contaminated ground-water- some case studies

    EPA Science Inventory

    In the USA, “risk assessment" generally refers to an evaluation of the impact of a known concentration of a hazardous material in ground water on human health or environmental quality. This presentation is different. It deals with the impact of a spill or release of hazardous m...

  17. Climate change impacts on marine water quality: The case study of the Northern Adriatic sea.

    PubMed

    Rizzi, J; Torresan, S; Critto, A; Zabeo, A; Brigolin, D; Carniel, S; Pastres, R; Marcomini, A

    2016-01-30

    Climate change is posing additional pressures on coastal ecosystems due to variations in water biogeochemical and physico-chemical parameters (e.g., pH, salinity) leading to aquatic ecosystem degradation. With the main aim of analyzing the potential impacts of climate change on marine water quality, a Regional Risk Assessment methodology was developed and applied to coastal marine waters of the North Adriatic. It integrates the outputs of regional biogeochemical and physico-chemical models considering future climate change scenarios (i.e., years 2070 and 2100) with site-specific environmental and socio-economic indicators. Results showed that salinity and temperature will be the main drivers of changes, together with macronutrients, especially in the area of the Po' river delta. The final outputs are exposure, susceptibility and risk maps supporting the communication of the potential consequences of climate change on water quality to decision makers and stakeholders and provide a basis for the definition of adaptation and management strategies. PMID:26152856

  18. CASE STUDY OF A MARINE DISCHARGE: COMPARISON OF EFFLUENT AND RECEIVING WATER TOXICITY

    EPA Science Inventory

    An on-site investigation was conducted in northeast Florida to evaluate the toxicity of a pulp and paper mill discharge and to determine whether there was any receiving water toxicity associated with that discharge. The species tested included the macroalga Champia parvula, the m...

  19. Conflicts about Water: A Case Study of Contest and Power in Dutch Rural Policy

    ERIC Educational Resources Information Center

    Boonstra, Wijnand; Frouws, Jaap

    2005-01-01

    The Dutch countryside forms the scene for pressing problems of management and allocation of land and water. These problems underscore the need for comprehensive rural policies. For that purpose, area-based rural policy has been initiated. This new policy is part of a larger policy shift, labelled in literature as "new rural governance". Area-based…

  20. Can Species Traits Predict the Susceptibility of Riverine Fish to Water Resource Development? An Australian Case Study

    NASA Astrophysics Data System (ADS)

    Rolls, Robert J.; Sternberg, David

    2015-06-01

    Water resource developments alter riverine environments by disrupting longitudinal connectivity, transforming lotic habitats, and modifying in-stream hydraulic conditions. Effective management of anthropogenic disturbances therefore requires an understanding of the range of potential ecosystem effects and the inherent traits symptomatic of elevated vulnerability to disturbance. Using 42 riverine fish native to South Eastern Australia as a case study, we quantified six morphological, behavioral, and life-history traits to classify species into groups reflecting potential differences in their response to ecosystem changes as a result of water resource development. Classification analysis identified five strategies based on fish life-history dispersal requirements, climbing potential, and habitat preference. These strategies in turn highlight the potential species at risk from the separate impacts of water resource development and inform management decisions to mitigate those risks. Swimming ability did not contribute to distinguishing species into functional groups, likely due to methodological inconsistencies in quantifying swimming performance that may ultimately hinder the ability of fish passage facilities to function within the physical capabilities of species at risk of habitat fragmentation. This study improves our ability to predict the performance of groups of species at risk from the multiple environmental changes imposed by humans and goes beyond broad-scale dispersal requirements as a predictor of individual species response.

  1. Water supply management using an extended group fuzzy decision-making method: a case study in north-eastern Iran

    NASA Astrophysics Data System (ADS)

    Minatour, Yasser; Bonakdari, Hossein; Zarghami, Mahdi; Bakhshi, Maryam Ali

    2015-09-01

    The purpose of this study was to develop a group fuzzy multi-criteria decision-making method to be applied in rating problems associated with water resources management. Thus, here Chen's group fuzzy TOPSIS method extended by a difference technique to handle uncertainties of applying a group decision making. Then, the extended group fuzzy TOPSIS method combined with a consistency check. In the presented method, initially linguistic judgments are being surveyed via a consistency checking process, and afterward these judgments are being used in the extended Chen's fuzzy TOPSIS method. Here, each expert's opinion is turned to accurate mathematical numbers and, then, to apply uncertainties, the opinions of group are turned to fuzzy numbers using three mathematical operators. The proposed method is applied to select the optimal strategy for the rural water supply of Nohoor village in north-eastern Iran, as a case study and illustrated example. Sensitivity analyses test over results and comparing results with project reality showed that proposed method offered good results for water resources projects.

  2. Simulation modeling of nuclear steam generator water level process--a case study

    PubMed

    Zhao; Ou; Du

    2000-01-01

    Simulation modeling of the nuclear steam generator (SG) water level process in Qinshan Nuclear Power Plant (QNPP) is described in this paper. A practical methodology was adopted so that the model is both simple and accurate for control engineering implementation. The structure of the model is in the form of a transfer function, which was determined based on first-principles analysis and expert experience. The parameters of the model were obtained by taking advantage of the recorded historical response curves under the existing closed-loop control system. The results of process dimensional data verification and experimental tests demonstrate that the simulation model depicts the main dynamic characteristics of the SG water level process and is in accordance with the field recorded response curves. The model has been successfully applied to the design and test of an advanced digital feedwater control system in QNPP. PMID:10871210

  3. Ethanolamine properties and use for feedwater pH control: A pressurized water reactor case study

    SciTech Connect

    Keeling, D.L.; Polidoroff, C.T.; Cortese, S.; Cushner, M.C.

    1995-12-31

    Ethanolamine (ETA) as a feedwater pH control additive has been recently used to minimize corrosion of secondary water components in the nuclear power industry pressurized water reactors (PWRs). The use of ETA is compared with ammonia. Relative volatility effects on various parts of the system are analyzed and chemistry changes are presented. Materials of construction and the use of existing plant equipment for ETA service are discussed. Properties of ETA as well as safety, storage and handling issues are compared with ammonia. Health d aquatic toxicity are reviewed. warnings, safety, handling guidelines, biodegradability an Diablo Canyon Power Plant used ammonia for pH control from 1985 until a change over to ETA in 1993/1994. Full flow condensate polishers that are required to protect the plant from saltwater cooling incursions limit the amount of pH additive. Iron levels in the secondary water systems are compared before and after changing to ETA and replacement of corrosion-susceptible piping. Iron reduction benefits are assessed along with other effects on the feedwater nozzles, low pressure turbine, polisher resin capacity and polisher regeneration system.

  4. The role of water and sediment connectivity in integrated flood management: a case study on the island of Saint Lucia

    NASA Astrophysics Data System (ADS)

    Jetten, Victor; van Westen, Cees; Ettema, Janneke; van den Bout, Bastian

    2016-04-01

    Disaster Risk Management combines the effects of natural hazards in time and space, with elements at risk, such as ourselves, infrastructure or other elements that have a value in our society. The risk in this case is defined as the sum of potential consequences of one or more hazards and can be expressed as potential damages. Generally, we attempt to reduce risk by better risk management, such as increase of resilience, protection and spatial planning. Caribbean islands are hit by hurricanes and tropical storms with a frequency of 1 to 2 every 10 years, with devastating consequences in terms of flash floods and landslides. The islands basically consist of a central (volcanic) mountain range, with medium and small sized catchments radiating outward towards the ocean. The coastal zone is inhabited, while the ring road network is essential for functioning of the island. An example of a case study is given for the island of Saint Lucia. Recorded rainfall intensities during tropical storms of 12 rainfall stations surpass 200 mm/h, causing immediate flash floods. Very often however, sediment is a forgotten variable in flash flood management: protection and mitigation measures as well as spatial planning all focus on the hydrology, the extent and depth of flood water, and sometimes of flood velocities. With recent developments, the opensource model LISEM includes hydrology and runoff, flooding, and erosion, transport and deposition both in runoff, channel flow and flood waters. We will discuss the practical solutions we implemented in connecting slopes, river channels and floodplains in terms of water and sediment, and the strength and weaknesses we have encountered so far. Catchment analysis shows two main effects: on the one hand in almost all cases upstream flooding serves as a temporary water storage that prevents further damage downstream, while on the other hand, erosion upstream often blocks bridges and decreases channel storage downstream, which increases the

  5. Global change and rampant land and water resource development a case study in western Canada

    NASA Astrophysics Data System (ADS)

    Byrne, J.; Kienzle, S.; Schindler, D.

    2006-12-01

    This paper reviews the impacts of global and regional change on the land and water resources in Alberta, Canada. Alberta contains most of Canada's fossil fuel energy resources, including: extensive conventional crude oil and natural gas fields; widespread coal deposits over the southern half of the province with potential for mining and coal bed methane extraction (CBM); and the Athabasca oil sands a crude oil supply of at least several hundred billion barrels entangled in extensive sand deposits lying along the Athabasca River. The province is also a focal point for intensive agriculture in the form of irrigation that has led to over allocated rivers in the south, and a booming economy associated with rapid population growth and associated urban sprawl in support of rapid resource development. All this development is occurring in a region where global climate change is expected to have substantial impacts on land and water in the next few decades. This work outlines the potential impacts of a range of human activities associated with some of the most intensive and extensive resource development plans in North America focused on one region - Alberta. Oil sands investments alone in the next few decades are forecast to exceed one hundred billion dollars! There are plans to double and triple primary and secondary agricultural production; expand coal mining in support of conventional coal fired power plants; and establish CBM well networks over much of the southern half of the province, including extensive development of CBM on the eastern slopes of the Rocky Mountains, the principal source of water for most of the semi-arid Canadian plains. The development pace and direction will likely result in widespread environmental contamination of regional and global consequence.

  6. Water Induced Hazard Mapping in Nepal: A Case Study of East Rapti River Basin

    NASA Astrophysics Data System (ADS)

    Neupane, N.

    2010-12-01

    This paper presents illustration on typical water induced hazard mapping of East Rapti River Basin under the DWIDP, GON. The basin covers an area of 2398 sq km. The methodology includes making of base map of water induced disaster in the basin. Landslide hazard maps were prepared by SINMAP approach. Debris flow hazard maps were prepared by considering geology, slope, and saturation. Flood hazard maps were prepared by using two approaches: HEC-RAS and Satellite Imagery Interpretation. The composite water-induced hazard maps were produced by compiling the hazards rendered by landslide, debris flow, and flood. The monsoon average rainfall in the basin is 1907 mm whereas maximum 24 hours precipitation is 456.8 mm. The peak discharge of the Rapati River in the year of 1993 at station was 1220 cu m/sec. This discharge nearly corresponds to the discharge of 100-year return period. The landslides, floods, and debris flows triggered by the heavy rain of July 1993 claimed 265 lives, affected 148516 people, and damaged 1500 houses in the basin. The field investigation and integrated GIS interpretation showed that the very high and high landslide hazard zones collectively cover 38.38% and debris flow hazard zone constitutes 6.58%. High flood hazard zone occupies 4.28% area of the watershed. Mitigation measures are recommendated according to Integrated Watershed Management Approach under which the non-structural and structural measures are proposed. The non-structural measures includes: disaster management training, formulation of evacuation system (arrangement of information plan about disaster), agriculture management practices, protection of water sources, slope protections and removal of excessive bed load from the river channel. Similarly, structural measures such as dike, spur, rehabilitation of existing preventive measures and river training at some locations are recommendated. The major factors that have contributed to induce high incidences of various types of mass

  7. Water Quality Changes Associated with Cassava Production: Case Study of White Volta Bain.

    PubMed

    Awotwi, Alfred; Bediako, Michael Asare; Harris, Emmanuel; Forkuo, Eric Kwabena

    2016-08-01

    The outcome reveal that as the land use in the catchment areas change from mixed agricultural to cassava cultivation, the simulated loads and concentrations of nitrogen species from cassava land-use scenario recorded reduction. The resultant concentrations of nitrate and nitrite for both current and future land-use scenarios are all below the daily limit suggested by the WHO, (World Health Organization). For the phosphate concentration, an increase of 4.21% was depicted under cassava land-use scenario. The results show that SWAT is a reliable water quality model, capable of simulating accurate information for developing environmental management plans. PMID:27626092

  8. Governance of water resources in the phase of change: a case study of the implementation of the EU Water Framework Directive in Sweden.

    PubMed

    Hammer, Monica; Balfors, Berit; Mörtberg, Ulla; Petersson, Mona; Quin, Andrew

    2011-03-01

    In this article, focusing on the ongoing implementation of the EU Water Framework Directive, we analyze some of the opportunities and challenges for a sustainable governance of water resources from an ecosystem management perspective. In the face of uncertainty and change, the ecosystem approach as a holistic and integrated management framework is increasingly recognized. The ongoing implementation of the Water Framework Directive (WFD) could be viewed as a reorganization phase in the process of change in institutional arrangements and ecosystems. In this case study from the Northern Baltic Sea River Basin District, Sweden, we focus in particular on data and information management from a multi-level governance perspective from the local stakeholder to the River Basin level. We apply a document analysis, hydrological mapping, and GIS models to analyze some of the institutional framework created for the implementation of the WFD. The study underlines the importance of institutional arrangements that can handle variability of local situations and trade-offs between solutions and priorities on different hierarchical levels. PMID:21446399

  9. Floating seaweed in the neustonic environment: A case study from Belgian coastal waters

    NASA Astrophysics Data System (ADS)

    Vandendriessche, Sofie; Vincx, Magda; Degraer, Steven

    2006-02-01

    Floating seaweeds form the most important natural component of all floating material found on the surface of oceans and seas. Notwithstanding the absence of natural rocky shores, ephemeral floating seaweed clumps are frequently encountered along the Belgian coast. From October 2002 to April 2003, seaweed samples and control samples (i.e. surface water samples from a seaweed-free area) were collected every other week. Multivariate analysis on neustonic macrofaunal abundances showed significant differences between seaweed and control samples in the fraction > 1 mm. Differences were less conspicuous in the 0.5-1 mm fraction. Seaweed samples were characterised by the presence of seaweed fauna e.g. Acari, Idotea baltica, Gammarus sp ., while control samples mainly contained Calanoida, Larvacea, Chaetognatha, and planktonic larvae of crustaceans and polychaetes. Seaweed samples (1 mm fraction) harboured considerably higher diversities (× 3), densities (× 18) and biomasses (× 49) compared to the surrounding water column (control samples). The impact of floating seaweeds on the neustonic environment was quantified by the calculation of the added values of seaweed samples considering biomass and density. These calculations resulted in mean added values of 311 ind m - 2 in density and 305 mg ADW m - 2 in biomass. The association degree per species was expressed as the mean percentage of individuals found in seaweed samples in proportion to the total density and biomass of that species (seaweed samples + control samples). Thirteen species showed an association percentage > 95%, and can therefore be considered members of the floating seaweed fauna.

  10. A Water-Damaged Home and Health of Occupants: A Case Study

    PubMed Central

    Thrasher, Jack Dwayne; Gray, Michael R.; Kilburn, Kaye H.; Dennis, Donald P.; Yu, Archie

    2012-01-01

    A family of five and pet dog who rented a water-damaged home and developed multiple health problems. The home was analyzed for species of mold and bacteria. The diagnostics included MRI for chronic sinusitis with ENT and sinus surgery, and neurological testing for neurocognitive deficits. Bulk samples from the home, tissue from the sinuses, urine, nasal secretions, placenta, umbilical cord, and breast milk were tested for the presence of trichothecenes, aflatoxins, and Ochratoxin A. The family had the following diagnosed conditions: chronic sinusitis, neurological deficits, coughing with wheeze, nose bleeds, and fatigue among other symptoms. An infant was born with a total body flare, developed multiple Cafe-au-Lait pigmented skin spots and diagnoses with NF1 at age 2. The mycotoxins were detected in bulk samples, urine and nasal secretions, breast milk, placenta, and umbilical cord. Pseudomonas aueroginosa, Acinetobacter, Penicillium, and Aspergillus fumigatus were cultured from nasal secretions (father and daughter). RT-PCR revealed A. fumigatus DNA in sinus tissues of the daughter. The dog had 72 skin lesions (sebaceous glands and lipomas) from which trichothecenes and ochratoxin A. were detected. The health of the family is discussed in relation to the most recent published literature regarding microbial contamination and toxic by-products present in water-damaged buildings. PMID:22220187

  11. A Case Study On Radiometric Sensing of Vegetation Water Content and Soil Moisture

    NASA Astrophysics Data System (ADS)

    Liu, S.-F.; Liou, Y.-A.; Wang, W.-J.; Wigneron, J.-P.

    We present the retrieval of wheat vegetation water content (VWC) and soil moisture content (SMC) profiles from the measured H- and V-polarized brightness tempera- tures at 1.4 (L-band), and 10.65 (X-band) GHz by an Error Propagation Learning Back Propagation (EPLBP) neural network. The VWC is defined as the total water content in the vegetation. The brightness temperatures were taken by the PORTOS ra- diometer over wheat fields through 3 month growth cycles in 1993 (PORTOS-93) and 1996 (PORTOS-96). Note that, through the neural network, there is no requirement of ancillary information on the complex surface parameters such as vegetation biomass, surface temperature, and surface roughness, etc. During both field campaigns, the L- band radiometer was used to measure brightness temperatures at incident angles from 0 to 50 degrees at L-band and at an incident angle of 50 degrees at X-band. The SMC profiles were measured to the depths of 10 cm in 1993 and 5 cm in 1996. The wheat was sampled approximately once a week in 1993 and 1996 to obtain its dry and wet biomass. The EPLBP neural network was trained with observations randomly chosen from the PORTOS-93 data, and evaluated by the remaining data from the same set. The trained neural network is further evaluated with data from the PORTOS-96.

  12. Influence of global temperature change on the geochemical processes in the Plitvice Lakes waters - a case study

    NASA Astrophysics Data System (ADS)

    Sironić, Andreja; Barešić, Jadranka; Horvatinčić, Nada; Brozinčević, Andrijana; Vurnek, Maja; Kapelj, Sanja

    2016-04-01

    One of the major reasons for the global air temperature increase, recorded as the highest in the last decade, is considered to be the increase of the atmospheric CO2 concentration. However, in calculation of the global carbon budget a certain unknown carbon sink is identified, and karst relief is considered to be an important candidate for it, as well as being a source of carbon. Aquatic systems on karst enable carbon exchange between karst and atmosphere, often through groundwater geochemical carbonate rock dissolution (carbon sink) and in form of secondary calcium carbonate precipitation (carbon source). Protected area of the Plitvice Lakes National Park, settled in the karst area of Croatia, was chosen as a case study of karst geochemical processes. The Lakes are also specific for its tufa precipitation in form of tufa barriers. Physical and chemical data of water collected on 8 locations (2 springs and 6 lakes) in the last 30 years were studied. The data records were not systematic for all 30 years, so first the seasonal periodicity of all data was assessed and temporal change was investigated in each calendar month, and then the change was studied by comparing two distinct periods: 1981-1986 and 2010-2014. On all selected locations we observed temporal increase of air and water temperature, Ca2+ and HCO3‑ concentrations, calcite saturation index (SIcalc) and of calcite dissolution ionic ratio (IRcalc,) and a decrease in Mg/Ca ratio, though the intensity of this changes differ locally. No statistically significant change was observed for pH and CO2(aq) and Mg2+ concentrations. Discharge rates did not show significant change in the last 30 years; however there is a change in their seasonal distribution and more extreme values were recorded in recent period. Comparison of mean monthly air and water temperature for two periods implies more influence of groundwater inflow at all locations in recent period, which is probably a result of seasonal change in water

  13. Application of cooperative and non-cooperative games in large-scale water quantity and quality management: a case study.

    PubMed

    Mahjouri, Najmeh; Ardestani, Mojtaba

    2011-01-01

    In this paper, two cooperative and non-cooperative methodologies are developed for a large-scale water allocation problem in Southern Iran. The water shares of the water users and their net benefits are determined using optimization models having economic objectives with respect to the physical and environmental constraints of the system. The results of the two methodologies are compared based on the total obtained economic benefit, and the role of cooperation in utilizing a shared water resource is demonstrated. In both cases, the water quality in rivers satisfies the standards. Comparing the results of the two mentioned approaches shows the importance of acting cooperatively to achieve maximum revenue in utilizing a surface water resource while the river water quantity and quality issues are addressed. PMID:20135217

  14. Localized sub-glacial deep karst formation due to water infiltration into glacier crevasses: A case study from Asiago, Italy

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Frehner, Marcel; Busellato, Leonardo; Grasselli, Giovanni

    2015-04-01

    In karstic plateaus, deep karst phenomena (e.g. abysses) are the preferential pathways for surface water to penetrate the Earth's crust. After percolation along diaclases and meanders, the infiltrated water often springs at the foot of the karstic plateau, potentially representing a valuable water resource. Thus, it is crucial to understand the formation and distribution of deep karst phenomena, for instance to predict karstic groundwater flow paths or to preserve water resources from pollution. The role of glaciers in enhancing the formation of deep karst is not yet clear. On the one hand, chilly water retains more CO2 which increases its acidity and efficiency in corroding carbonates. On the other hand, glaciers obliterate the soil and vegetation covering the developing karst decreasing the quantity of humic acids dissolved in the surface water. Nevertheless, ice-caps may play a key role in controlling how and where surface water can access the developing karstic system. Due to the presence of a glacier, some sub-glacial areas may not be reached by surface water, which prevents karstification, while other areas may be connected to intra- or sub-glacial flow paths possibly leading to localized kartification in these areas. Here we investigate the relationship between sub-glacial topography and the development of preferred intra-glacier flow paths and how this relationship leads to localized sub-glacial karstification. As a case study site, we use the karstic plateau of Asiago in Northern Italy. The Asiago plateau (https://goo.gl/maps/bLezx) is mainly composed of Permian to Cretaceous rocks. The northern and southern boundaries of the plateau are marked by two Alpine trusts, which uplifted the plateau during the Alpine orogeny to ~1500 m above the Po flood plain delimiting the plateau to the South. The Asiago plateau extends for ~600 km2 and contains ~2100 natural caves, including many significantly deep caves such as the deepest cave of Veneto: the 1011 m deep

  15. Comparison of sensitivity analysis methods for pollutant degradation modelling: a case study from drinking water treatment.

    PubMed

    Neumann, Marc B

    2012-09-01

    Five sensitivity analysis methods based on derivatives, screening, regression, variance decomposition and entropy are introduced, applied and compared for a model predicting micropollutant degradation in drinking water treatment. The sensitivity analysis objectives considered are factors prioritisation (detecting important factors), factors fixing (detecting non-influential factors) and factors mapping (detecting which factors are responsible for causing pollutant limit exceedances). It is shown how the applicability of methods changes in view of increasing interactions between model factors and increasing non-linearity between the model output and the model factors. A high correlation is observed between the indices obtained for the objectives factors prioritisation and factors mapping due to the positive skewness of the probability distributions of the predicted residual pollutant concentrations. The entropy-based method which uses the Kullback-Leibler divergence is found to be particularly suited when assessing pollutant limit exceedances. PMID:22842753

  16. Improving microcystin monitoring relevance in recreative waters: A regional case-study (Brittany, Western France, Europe).

    PubMed

    Pitois, Frédéric; Vezie, Chantal; Thoraval, Isabelle; Baurès, Estelle

    2016-05-01

    Cyanobacteria and their toxins are known as a health hazard in recreative and distributed waters. Monitoring data from 2004 to 2011 were collected at regional scale to characterize exposition parameters to microcystins in Brittany (Western France). The data show that cyanobacteria populations are experiencing a composition shift leading to a longer duration of cell densities higher than WHO alert levels 2 and 3. Microcystins however appear to be more frequently detected with subacute concentrations in low cell density samples than in high cell density samples or during bloom episodes. Positive relations are described between microcystin concentrations, detection frequencies and cyanobacteria biovolumes, allowing for a novel definition of alert levels and decision framework following WHO recommendations. PMID:26765088

  17. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study.

    PubMed

    Heinlaan, Margit; Muna, Marge; Knöbel, Melanie; Kistler, David; Odzak, Niksa; Kühnel, Dana; Müller, Josefine; Gupta, Govind Sharan; Kumar, Ashutosh; Shanker, Rishi; Sigg, Laura

    2016-09-01

    Engineered nanoparticles (NPs) have realistic potential of reaching natural waterbodies and of exerting toxicity to freshwater organisms. The toxicity may be influenced by the composition of natural waters as crucial NP properties are influenced by water constituents. To tackle this issue, a case study was set up in the framework of EU FP7 NanoValid project, performing an interlaboratory hazard evaluation of NPs in natural freshwater. Ag and CuO NPs were selected as model NPs because of their potentially high toxicity in the freshwater. Daphnia magna (OECD202) and Danio rerio embryo (OECD236) assays were used to evaluate NP toxicity in natural water, sampled from Lake Greifen and Lake Lucerne (Switzerland). Dissolution of the NPs was evaluated by ultrafiltration, ultracentrifugation and metal specific sensor bacteria. Ag NP size was stable in natural water while CuO NPs agglomerated and settled rapidly. Ag NP suspensions contained a large fraction of Ag(+) ions and CuO NP suspensions had low concentration of Cu(2+) ions. Ag NPs were very toxic (48 h EC50 1-5.5 μg Ag/L) to D. magna as well as to D. rerio embryos (96 h EC50 8.8-61 μg Ag/L) in both standard media and natural waters with results in good agreement between laboratories. CuO NP toxicity to D. magna differed significantly between the laboratories with 48 h EC50 0.9-11 mg Cu/L in standard media, 5.7-75 mg Cu/L in Lake Greifen and 5.5-26 mg Cu/L in Lake Lucerne. No toxicity of CuO NP to zebrafish embryos was detected up to 100 mg/L independent of the medium used. The results show that Ag and CuO NP toxicity may be higher in natural water than in the standard media due to differences in composition. NP environmental hazard evaluation can and should be carried out in natural water to obtain more realistic estimates on the toxicity. PMID:27357482

  18. Case Study: Writing a Journal Case Study

    ERIC Educational Resources Information Center

    Prud'homme-Genereux, Annie

    2016-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue describes incorporating a journal article into the classroom by first converting it into a case study.

  19. Environmental studies on river water quality with reference to suitability for agricultural purposes: Mahanadi river estuarine system, India--a case study.

    PubMed

    Sundaray, Sanjay Kumar; Nayak, Binod Bihari; Bhatta, Dinabandhu

    2009-08-01

    Hydrochemistry of surface water (pH, specific conductance, total dissolved solids, sulfate, chloride, nitrate, bicarbonate, hardness, calcium, magnesium, sodium, potassium) in the Mahanadi river estuarine system, India was used to assess the quality of water for agricultural purposes. The samples were studied for 31 different stations during six different seasons in the years 2001-2003. Chemical data were used for mathematical calculations (SAR, Na%, RSC, potential salinity, permeability index, Kelly's index, magnesium hazard, osmotic pressure and salt index) for better understanding the suitability river water quality for agricultural purposes. The river water is free from nitrate-nitrogen hazard and has much less osmotic pressure and RSC values. Further there is no complete precipitation of calcium and magnesium in the study area. The results revealed that waters of some polluted stations like Sambalpur down (D/s of Sambalpur town) and Kathjodi (Cuttack) down (D/s of Cuttack town) are unsuitable up to some extent, where as it is quite unsuitable in case of estuarine samples during the pre-monsoon and post-monsoon seasons. The results were verified by USSL and Wilcox diagrams, which show all the fresh water zone samples (low-medium salinity with low sodium) of the study area are in the 'Excellent to good' category and are suitable to irrigate all soils for semi-tolerant and tolerant as well as sensitive crops. PMID:18670901

  20. The effects of water rock interaction and the human activities on the occurrence of hexavalent chromium in waters. The case study of the Psachna basin, Central Euboea, Greece.

    NASA Astrophysics Data System (ADS)

    Vasileiou, Eleni; Perraki, Maria; Stamatis, George; Gartzos, Efthimios

    2014-05-01

    High concentrations of heavy metals, particularly of the toxic hexavalent chromium, are recorded in surface and ground waters in many areas, and constitute one of the most severe environmental problems nowadays. The natural genesis of chromium is associated with the geological environment (peridotites and serpentintites). Chromium is structured in many minerals, mainly in spinel (e.g. chromite), in silicate minerals such as phyllosilicate serpentine minerals, chlorite, talc and chain-silicate minerals of pyroxene and amphibole group. Chromium is found in two forms in soils, waters and rocks, the hexavalent and the trivalent one. The relation between Cr(III) and Cr(VI) strongly depends on pH and oxidative properties of the area; however, in most cases, Cr(III) is the dominating variant. The natural oxidation of trivalent to hexavalent chromium can be achieved by manganese oxides, H2O2, O2 gas and oxy-hydroxides of trivalent iron. Anthropogenic factors may also cause the process of chromium's oxidation. In the Psachna basin, Central Euboea, Greece, high concentrations of hexavalent chromium were recently measured in spring- and drill- waters. In this work, we study the effect of the geological environment and of the anthropogenic activities on the water quality with emphasis on chromium. A detailed geochemical, petrological and mineralogical study of rocks and soils was carried out by means of optical microscopy, XRF, XRD and SEM/EDS. Ground and surface water samples were physically characterized and hydrochemically studied by means of ICP and AAF. Combined result evaluation indicates a natural source for the trivalent chromium in waters, attributed to the alteration of Cr-bearing minerals of the ultramafic rocks. However the oxidation of trivalent to hexavalent chromium results from anthropogenic activities, mainly from intensive agricultural activities and the extensive use of fertilizers and pesticides causing nitrate pollution in groundwater. It has been shown

  1. Assessing domestic water use habits for more effective water awareness campaigns during drought periods: a case study in Alicante, eastern Spain

    NASA Astrophysics Data System (ADS)

    March, H.; Hernández, M.; Saurí, D.

    2015-05-01

    The design of water awareness campaigns could benefit from knowledge of the specific characteristics of domestic water use and the factors that may influence certain water consumption habits. This paper investigates water use in 450 households in 10 municipalities of drought-prone Alicante (Spain). We aim to increase knowledge about existing domestic water behaviors and therefore help to improve the design and implementation of future water awareness campaigns and even to consolidate reductions in water use after drought periods. The survey suggests that awareness campaigns should revise their scope and their channels of diffusion on a regular basis. In a more specific way, for the Alicante case we propose policy-oriented recommendations on the scope of action for further reductions.

  2. Probabilistic scenario-based water resource planning and management:A case study in the Yellow River Basin, China

    NASA Astrophysics Data System (ADS)

    Dong, C.; Schoups, G.; van de Giesen, N.

    2012-04-01

    Water resource planning and management is subject to large uncertainties with respect to the impact of climate change and socio-economic development on water systems. In order to deal with these uncertainties, probabilistic climate and socio-economic scenarios were developed based on the Principle of Maximum Entropy, as defined within information theory, and as inputs to hydrological models to construct probabilistic water scenarios using Monte Carlo simulation. Probabilistic scenarios provide more explicit information than equally-likely scenarios for decision-making in water resource management. A case was developed for the Yellow River Basin, China, where future water availability and water demand are affected by both climate change and socio-economic development. Climate scenarios of future precipitation and temperature were developed based on the results of multiple Global climate models; and socio-economic scenarios were downscaled from existing large-scale scenarios. Probability distributions were assigned to these scenarios to explicitly represent a full set of future possibilities. Probabilistic climate scenarios were used as input to a rainfall-runoff model to simulate future river discharge and socio-economic scenarios for calculating water demand. A full set of possible future water supply-demand scenarios and their associated probability distributions were generated. This set can feed the further analysis of the future water balance, which can be used as a basis to plan and manage water resources in the Yellow River Basin. Key words: Probabilistic scenarios, climate change, socio-economic development, water management

  3. CASE FOR DRINKING WATER SYSTEMS

    EPA Science Inventory

    The purpose of the study was to present a tool useful to water utilities that not only could analyze historical distribution system reliability data, but also provide a flexible and expandable mechanism for record-keeping enabling overall management of water work's facilities and...

  4. Ecogeochemistry potential in deep time biodiversity illustrated using a modern deep-water case study.

    PubMed

    Trueman, Clive N; Chung, Ming-Tsung; Shores, Diana

    2016-04-01

    The fossil record provides the only direct evidence of temporal trends in biodiversity over evolutionary timescales. Studies of biodiversity using the fossil record are, however, largely limited to discussions of taxonomic and/or morphological diversity. Behavioural and physiological traits that are likely to be under strong selection are largely obscured from the body fossil record. Similar problems exist in modern ecosystems where animals are difficult to access. In this review, we illustrate some of the common conceptual and methodological ground shared between those studying behavioural ecology in deep time and in inaccessible modern ecosystems. We discuss emerging ecogeochemical methods used to explore population connectivity and genetic drift, life-history traits and field metabolic rate and discuss some of the additional problems associated with applying these methods in deep time. PMID:26977063

  5. Assessment of metal concentrations in tap-water - from source to the tap: a case study from Szczecin, Poland

    NASA Astrophysics Data System (ADS)

    Górski, Józef; Siepak, Marcin

    2014-03-01

    The concentrations of Al, As, Cd, Cu, Pb, Zn, Ni, Fe and Mn were determined in June 2010 for 100 tap-water samples, collected directly at consumers in the older part of the city of Szczecin (Poland). Increased concentrations of metals were thus detected. This concerns mainly Fe (19% of samples showed concentrations above drinking-water quality standards) and Pb (5%). In some samples, the maximum admissible concentration levels for Mn, Cu and Ni were also exceeded. This was not the case for Al, despite the use of aluminium compounds during water treatment; the Al concentrations in treated water were, however, significantly higher than in raw water. It was also found that (1) the corrosive properties of water (low alkalinity and increased concentration of sulphates), (2) the water-treatment processes causing a decrease of the pH and an increase of the CO2, and (3) transport of the treated water over long distances (30 km) provide favourable conditions for the leaching of metals from water-pipe networks. The type of material used in domestic plumbing and the content of Ce, Fe, Mn, Ni and Cd in the tap-water at consumers show a correlation. The high content of Pb is mainly a result of lead pipes connecting the network to the buildings

  6. Ozone production in urban plumes transported over water: Photochemical model and case studies in the northeastern and midwestern United States

    NASA Astrophysics Data System (ADS)

    Sillman, Sanford; Samson, Perry J.; Masters, Jeffrey M.

    1993-07-01

    Abnormally high concentrations of O3 have been observed in rural locations on the shore of Lake Michigan and on the Atlantic coast in Maine, at a distance of 300 km or more from major anthropogenic sources. We hypothesize that this O3 is associated with transport from major urban centers and with the suppression of vertical mixing as urban plumes are transported over water. A dynamical/photochemical model is developed that represents formation of O3 in shoreline environments and is used to simulate case studies for Lake Michigan and the northeastern United States. Results suggest that a broad region with elevated O3, NOx and volatile organic carbon (VOC) forms as the Chicago plume travels over Lake Michigan, a pattern consistent with observed O3 at surface monitoring sites. Near-total suppression of dry deposition of O3 and NOx over the lake is needed to produce high O3. Results for the east coast suggest that the observed peak O3 can only be reproduced by a model that includes suppressed vertical mixing and deposition over water, 2-day transport of a plume from New York, and superposition of the New York and Boston plumes. An investigation of the sensitivity of O3 to emissions of NOx and VOC suggests that results vary greatly between cities, even when the composition of urban emissions is similar. An index for VOC versus NOx sensitivity is shown to correlate with total reactive nitrogen (NOy) at the time of peak O3.

  7. Whiting events in SW Florida coastal waters: a case study using MODIS medium-resolution data

    USGS Publications Warehouse

    Long, Jacqueline; Hu, Chuanmin; Robbins, Lisa

    2014-01-01

    Whitings, floating patches of calcium carbonate mud, have been found in both shallow carbonate banks and freshwater environments around the world. Although these events have been studied for many decades, much of their characteristics remain unknown. Recent sightings of whitings near Ten Thousand Islands, Florida suggest a phenomenon that has not previously been documented in this area. Using medium-resolution (250-m) data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) from December 2010 to November 2013, we documented whiting events and their spatial and temporal patterns in this region. Classification rules were first established, and then applied to all 474 cloud-free and sun glint-free MODIS images. Whiting occurrences were found between 25°46′N and 25°20′N and less than 40 km from the southwest Florida coastline. Over the 3-year period, whiting occurrence peaked in spring and autumn and reached a minimum during the winter and summer months. Further field and laboratory research are needed to explain driving force(s) behind these events.

  8. Case Study: Competition Nutrition Intakes During the Open Water Swimming Grand Prix Races in Elite Female Swimmer.

    PubMed

    Kumstát, Michal; Rybárová, Silvie; Thomas, Andy; Novotný, Jan

    2016-08-01

    The nutritional intake of elite open water swimmers during competition is not well established, and therefore this case study aims to provide new insights by describing the feeding strategies adopted by an elite female swimmer (28 yrs; height; 1.71 m; body mass: 60 kg; body fat: 16.0%) in the FINA open water Grand Prix 2014.Seven events of varying distances (15-88 km) and durations (3-12 hrs) were included. In all events, except one, feeds were provided from support boats. Swimmer and support staff were instructed to track in detail all foods and beverages consumed during the events. Nutritional information was gathered from the packaging and dietary supplements labels and analyzed by nutrition software. Mean carbohydrate (CHO) and protein intake reached 83 ± 5 g·h-1 and 12 ± 8 g·h-1, respectively. Fat intake was neglected (~1 g·h-1). Mean in-race energy intake reached 394 ± 26 kcal·h-1. Dietary supplements in the form of sport beverages and gels, containing multitransportable CHO, provided 40 ± 4 and 49 ± 6% of all CHO energy, respectively. Caffeine (3.6 ± 1.8 mg·kg-1 per event) and sodium (423 ± 16 mg·h-1) were additionally supplemented in all events. It was established that continuous intake of high doses of CHO and sodium and moderate dose of caffeine were an essential part of the feeding strategy for elite-level high intensity ultra-endurance open-water swimming races. A well scheduled and well-prepared nutrition strategy is believed to have ensured optimal individual performance during Grand Prix events. PMID:26731793

  9. Variable Step Integration Coupled with the Method of Characteristics Solution for Water-Hammer Analysis, A Case Study

    NASA Technical Reports Server (NTRS)

    Turpin, Jason B.

    2004-01-01

    One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.

  10. Water Quality Evaluation of PET Bottled Water by Mineral Balance in the Northeast Asian Region: A Case Study of South Korea

    PubMed Central

    Houri, Daisuke; Koo, Chung Mo

    2015-01-01

    Background The past few years have seen a demand for drinking water in contemporary society with a focus on safety and taste. Mineral water is now marketed as a popular commercial product and, partly due to health concerns, the production. Methods For the study, a comparison was carried out of water samples from 9 types of polyethylene terephthalate (PET) bottled water sold in South Korea as well as from tap water in the cities of Seoul and Chuncheon. These were compared with samples of Japanese PET bottled water in order to determine shared commonalities and identify individual characteristics. To evaluate water quality objectively, we quantified the elements contained in the water samples. Samples were assessed not with the usual sensory evaluation but with the evaluation approach advocated by Hashimoto et al. which employs the Water Index of Taste and the Water Index of Health. The levels of water quality obtained were compared with the “Prerequisites for Tasty Water” and the “Standards for Tasty Water” devised for city water. Results The PET Bottled water varieties analyzed in this study—Seoksu, Icis, Bong Pyong, Soon Soo 100, Dong Won Saem Mul, GI JANG SOO and DIAMOND—showed the Water Index of Taste ≥ 2.0 and the Water Index of Health ≥ 5.2, which we classified as tasty/healthy water. SamDaSoo and NamiNeral can be classified as tasty water due to their values of the Water Index of Taste ≥ 2.0 and the Water Index of Health < 5.2. Conclusion The South Korean PET bottled water studied here fulfills the “Water Index of Taste,” “Water Index of Health,” “Standard for Tasty Water” and “Prerequisites for Tasty Water” that Japanese people value for city water. We can conclude that bottled water which meets water quality requirements will be considered good-tasting by a majority of people. PMID:26538797

  11. Hydrogeologic Case Studies (Seattle, WA)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  12. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  13. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  14. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.

    PubMed

    Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun

    2007-01-01

    Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and

  15. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    USGS Publications Warehouse

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the

  16. Case Study Teaching

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman

    2011-01-01

    This chapter describes the history of case study teaching, types of cases, and experimental data supporting their effectiveness. It also describes a model for comparing the efficacy of the various case study methods. (Contains 1 figure.)

  17. Cost-benefit analysis of water-reuse projects for environmental purposes: a case study for Spanish wastewater treatment plants.

    PubMed

    Molinos-Senante, M; Hernández-Sancho, F; Sala-Garrido, R

    2011-12-01

    Water reuse is an emerging and promising non-conventional water resource. Feasibility studies are essential tools in the decision making process for the implementation of water-reuse projects. However, the methods used to assess economic feasibility tend to focus on internal costs, while external impacts are relegated to unsubstantiated statements about the advantages of water reuse. Using the concept of shadow prices for undesirable outputs of water reclamation, the current study developed a theoretical methodology to assess internal and external economic impacts. The proposed methodological approach is applied to 13 wastewater treatment plants in the Valencia region of Spain that reuse effluent for environmental purposes. Internal benefit analyses indicated that only a proportion of projects were economically viable, while when external benefits are incorporated all projects were economically viable. In conclusion, the economic feasibility assessments of water-reuse projects should quantitatively evaluate economic, environmental and resource availability. PMID:21856067

  18. Evaluation of water quality in surface water and shallow groundwater: a case study of a rare earth mining area in southern Jiangxi Province, China.

    PubMed

    Hao, Xiuzhen; Wang, Dengjun; Wang, Peiran; Wang, Yuxia; Zhou, Dongmei

    2016-01-01

    This study was conducted to evaluate the quality of surface water and shallow groundwater near a rare earth mining area in southern Jiangxi Province, China. Water samples from paddy fields, ponds, streams, wells, and springs were collected and analyzed. The results showed that water bodies were characterized by low pH and high concentrations of total nitrogen (total N), ammonium nitrogen (NH4 (+)-N), manganese (Mn), and rare earth elements (REEs), which was likely due to residual chemicals in the soil after mining activity. A comparison with the surface water standard (State Environmental Protection Administration & General Administration of Quality Supervision, Inspection and Quarantine of China GB3838, 2002) and drinking water sanitary standard (Ministry of Health & National Standardization Management Committee of China GB5749, 2006) of China revealed that 88 % of pond and stream water samples investigated were unsuitable for agricultural use and aquaculture water supply, and 50 % of well and spring water samples were unsuitable for drinking water. Moreover, significant cerium (Ce) negative and heavy REEs enrichment was observed after the data were normalized to the Post-Archean Australian Shales (PAAS). Principal component analysis indicated that the mining activity had a more significant impact on local water quality than terrace field farming and poultry breeding activities. Moreover, greater risk of water pollution and adverse effects on local residents' health was observed with closer proximity to mining sites. Overall, these findings indicate that effective measures to prevent contamination of surrounding water bodies from the effects of mining activity are needed. PMID:26661960

  19. Water Footprint Assessment to support water resources management in the regulatory context: a case study in the Thames River Basin, UK

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Mathews, R. E.; Frapporti, G.; Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    The economy and environment of the Hertfordshire and North London Area (H&NL Area) within Thames River Basin rely on the limited water resources in the region, especially groundwater. The water resources in the area are managed, amongst other mechanisms, through water abstraction licences and discharge permits. Current management practice is not responsive or flexible enough to address future pressures. To support improving current water management in the area, a Water Footprint Assessment (WFA) study was conducted. This is a pioneering work in the field of WFA applied in a regulatory context. The study deals with a high level of complexity in a number of aspects: 1) high spatial and temporal resolution (sub-catchment level and monthly time scale); 2) multiple water use sectors (industry, domestic and agriculture); 3) different sources of water for human use (surface and groundwater); 4) different types of human pressure on water resources (consumption and pollution); 5) integrated assessment of water use sustainability (water scarcity and water pollution level); and 6) projected water footprint (WF) with water demand and climate change scenarios. The green, blue and grey WF on surface water, the blue and grey WF on groundwater of the 35 sub-catchments within the H&NL Area have been estimated for the domestic, industrial and agricultural sectors on a monthly basis. Blue water scarcity (BWS) and water pollution level (WPL) were evaluated to assess the sustainability of the blue and grey WF respectively, distinguishing between ground and surface water. A "wet" and "dry" climate change scenario for 2060 was used to project the WF components and BWS. This study identifies sub-catchments in the area facing moderate to severe BWS and/or WPLs and illustrates the relation between the two. The results demonstrate that WFA and in particular BWS and WPLs can and should form a basis for regulatory reform for water resources management. Levels of BWS in sub-catchments can

  20. Optimization of CO2 Storage in Saline Aquifers Using Water-Alternating Gas (WAG) Scheme - Case Study for Utsira Formation

    NASA Astrophysics Data System (ADS)

    Agarwal, R. K.; Zhang, Z.; Zhu, C.

    2013-12-01

    For optimization of CO2 storage and reduced CO2 plume migration in saline aquifers, a genetic algorithm (GA) based optimizer has been developed which is combined with the DOE multi-phase flow and heat transfer numerical simulation code TOUGH2. Designated as GA-TOUGH2, this combined solver/optimizer has been verified by performing optimization studies on a number of model problems and comparing the results with brute-force optimization which requires a large number of simulations. Using GA-TOUGH2, an innovative reservoir engineering technique known as water-alternating-gas (WAG) injection has been investigated to determine the optimal WAG operation for enhanced CO2 storage capacity. The topmost layer (layer # 9) of Utsira formation at Sleipner Project, Norway is considered as a case study. A cylindrical domain, which possesses identical characteristics of the detailed 3D Utsira Layer #9 model except for the absence of 3D topography, was used. Topographical details are known to be important in determining the CO2 migration at Sleipner, and are considered in our companion model for history match of the CO2 plume migration at Sleipner. However, simplification on topography here, without compromising accuracy, is necessary to analyze the effectiveness of WAG operation on CO2 migration without incurring excessive computational cost. Selected WAG operation then can be simulated with full topography details later. We consider a cylindrical domain with thickness of 35 m with horizontal flat caprock. All hydrogeological properties are retained from the detailed 3D Utsira Layer #9 model, the most important being the horizontal-to-vertical permeability ratio of 10. Constant Gas Injection (CGI) operation with nine-year average CO2 injection rate of 2.7 kg/s is considered as the baseline case for comparison. The 30-day, 15-day, and 5-day WAG cycle durations are considered for the WAG optimization design. Our computations show that for the simplified Utsira Layer #9 model, the

  1. Technology Solutions Case Study: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida

    SciTech Connect

    2013-11-01

    Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

  2. A resilience perspective to water risk management: case-study application of the adaptation tipping point method

    NASA Astrophysics Data System (ADS)

    Gersonius, Berry; Ashley, Richard; Jeuken, Ad; Nasruddin, Fauzy; Pathirana, Assela; Zevenbergen, Chris

    2010-05-01

    start the identification and analysis of adaptive strategies at the end of PSIR scheme: impact and examine whether, and for how long, current risk management strategies will continue to be effective under different future conditions. The most noteworthy application of this approach is the adaptation tipping point method. Adaptation tipping points (ATP) are defined as the points where the magnitude of change is such that the current risk management strategy can no longer meet its objectives. In the ATP method, policy objectives, determining aspirational functioning, are taken as the starting point. Also, the current measures to achieve these objectives are described. This is followed by a sensitivity analysis to determine the optimal and critical boundary conditions (state). Lastly, the state is related to pressures in terms of future change. It should be noted that in the ATP method the driver for adopting a new risk management strategy is not future change as such, but rather failing to meet the policy objectives. In the current paper, the ATP method is applied to the case study of an existing stormwater system in Dordrecht (the Netherlands). This application shows the potential of the ATP method to reduce the complexity of implementing a resilience-focused approach to water risk management. It is expected that this will help foster greater practical relevance of resilience as a perspective for the planning of water management structures.

  3. Customizing ArcGIS for spatial decision support: case study on locating potential small water resevoirs in Benin

    NASA Astrophysics Data System (ADS)

    Laudien, R.; Thamm, H.-P.; Giertz, S.; Diekkrüger, B.; Bareth, G.

    2006-10-01

    This paper presents a software development approach to customize the GIS software ArcGIS (by ESRI) for spatial decision support. For the case study, example data of the Queme catchment in Benin (Africa) is used to program such a system which will be used to plan the establishment of potential small water reservoirs. Therefore, a new user menu in ArcGIS is introduced which allows (i) the integration of available GIS data from geo-databases, (ii) the easy application of spatial analyses by using implemented expert knowledge, and (iii) the automatic production of maps and reports for potential locations. To fulfil these requirements, the developer software Visual Basic for Applications (VBA) in combination with the ArcObjects library is used as the programming environment. ArcGIS comes with a VBA interface and with the above-mentioned library. Therefore, the software engineer is able to create a comprehensive and user friendly system for spatial decision support which includes numerous analyses tools of ArcGIS. Additionally, various user views can be realized basing on the same platform. First preliminary results show the potential capability of the above-described approach and justify the usage of the ArcGIS software to create spatial decision support systems.

  4. SRM attrition rate study of the aft motor case segments due to water impact cavity collapse loading

    NASA Technical Reports Server (NTRS)

    Crockett, C. D.

    1976-01-01

    The attrition assessment of the aft segments of Solid Rocket Motor due to water impact requires the establishment of a correlation between loading occurrences and structural capability. Each discrete load case, as identified by the water impact velocities and angle, varies longitudinally and radially in magnitude and distribution of the external pressure. The distributions are further required to be shifted forward or aft one-fourth the vehicle diameter to assure minimization of the effect of test instrumentation location for the load determinations. The asymmetrical load distributions result in large geometric nonlinearities in structural response. The critical structural response is progressive buckling of the case. Discrete stiffeners have been added to these aft segments to aid in gaining maximum structural capability for minimum weight addition for resisting these loads. This report presents the development of the attrition assessment of the aft segments and includes the rationale for eliminating all assessable conservatisms from this assessment.

  5. Evaluation of the Impacts of Land Use on Water Quality: A Case Study in The Chaohu Lake Basin

    PubMed Central

    Yan, Haiming; Wu, Feng; Deng, Xiangzheng

    2013-01-01

    It has been widely accepted that there is a close relationship between the land use type and water quality. There have been some researches on this relationship from the perspective of the spatial configuration of land use in recent years. This study aims to analyze the influence of various land use types on the water quality within the Chaohu Lake Basin based on the water quality monitoring data and RS data from 2000 to 2008, with the small watershed as the basic unit of analysis. The results indicated that there was significant negative correlation between forest land and grassland and the water pollution, and the built-up area had negative impacts on the water quality, while the influence of the cultivated land on the water quality was very complex. Besides, the impacts of the landscape diversity on the indicators of water quality within the watershed were also analyzed, the result of which indicated there was a significant negative relationship between them. The results can provide important scientific reference for the local land use optimization and water pollution control and guidance for the formulation of policies to coordinate the exploitation and protection of the water resource. PMID:23970833

  6. Farmers' attitudes toward mandatory water-saving policies: A case study in two basins in northwest China.

    PubMed

    Chang, Genying; Wang, Lu; Meng, Liuyi; Zhang, Wenxia

    2016-10-01

    China began to implement stringent water-saving policies in 2012. Mandatory water-saving measures implemented in arid inland river basins include the measures of allocating surface water among upper, middle and lower beaches, restricting household agricultural water use, closing wells, reducing farmland and increasing water prices. These measures have negative influences on the agricultural production of farmers. This study aimed to reveal the demographic and psychological correlates of farmers' attitudes toward these policies. The participants included 672 farmers in the Heihe River Basin and the Shule River Basin in northwest China. Structural equation analyses showed that farmers' awareness of the beneficial consequences of restricting household agricultural water and their perception of policy enforcement had significant relationships with their attitudes toward water-saving policies, whereas the effects of the New Ecological Paradigm and collectivism on farmers' attitudes were mediated through their awareness of beneficial consequences and their perception of policy enforcement. Multivariable regression analyses revealed that as a whole, there were no significant correlations between demographic variables and farmers' attitudes. Policy implications include propagandizing these policies among local farmers, strengthening open and fair policy enforcement, and cautiously using water prices as an instrument to control irrigation water. PMID:27420168

  7. Water quality assessment of carbonate aquifers in southern Latium region, Central Italy: a case study for irrigation and drinking purposes

    NASA Astrophysics Data System (ADS)

    Sappa, Giuseppe; Ergul, Sibel; Ferranti, Flavia

    2014-06-01

    In southern Latium region, Central Italy, groundwater and spring water resources in the carbonate aquifers are the major contributors of drinking and irrigation water supply. The aim of this study was to review hydrochemical processes that control the groundwater chemistry and to determine the suitability of springs and groundwater for irrigation and drinking purposes on the basis of the water quality indices. Physical (pH, electrical conductivity, total dissolved solids) and hydrochemical characteristics (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, and SO4 -) of springs and groundwater were determined. To assess the water quality, chemical parameters like sodium adsorption ratio (SAR), total hardness, Mg-hazard (MH), sodium percentage (Na %), salinity hazard, permeability index, and Kelly's ratio were calculated based on the analytical results. A Durov diagram plot revealed that the groundwater has been evolved from Ca to HCO3 recharge water, followed by mixing and reverse ion exchange processes, due to the respective dominance of Na-Cl and Ca-Cl water types. According to Gibbs's diagram plots, chemical weathering of rock forming minerals is the major driving force controlling water chemistry in this area. Groundwater and spring samples were grouped into six categories according to irrigation water quality assessment diagram of US Salinity Laboratory classification and most of the water samples distributed in category C2-S1 and C3-S1 highlighting medium to high salinity hazard and low sodium content class. The results of hydrochemical analyses and the calculated water quality parameters suggest that most of the water samples are suitable for irrigation and drinking purposes, except for the samples influenced by seawater and enhanced water-rock interaction. High values of salinity, Na %, SAR, and MH at certain sites, restrict the suitability for agricultural uses.

  8. Artificial Injection of Fresh Water into a Confined Saline Aquifer: A Case Study at the Nakdong River Delta Area, Korea

    NASA Astrophysics Data System (ADS)

    Chung, S. Y.; Senapathi, V.; Rajendran, R.; Khakimov, E.

    2015-12-01

    Injection test in a confined saline aquifer was performed to assess the potential of artificial recharge as a means of replacing saline water with fresh water, thereby securing fresh groundwater resources for the Nakdong Delta area of Busan City, Korea. The study area comprises a confined aquifer, in which a 10~21m thick clay layer overlies 31.5~36.5 m thick of sand and a 2.8~11m thick layer of gravel. EC logging of five monitoring wells yielded a value of 7~44 mS/cm, with the transition between saline and fresh water occurring at a depth of 15-38 m. Above 5 m depth, water temperature was 10~15.5°C, whereas between 5 and 50 m depth, the temperature was 15.5~17℃ and pH was 7.15~7.49. The quality of injected fresh water was 388 μS/cm with the temperature of 6.2℃, and pH was 7.70. Approximately 950 m3 of fresh water was injected into the OW-5 injection well at a rate of 370 m3/day for 62 hours, after which the fresh water zone was detected by a CTD Diver installed at a depth of 40 m. The persistence of the fresh water zone was determined via EC and temperature logging at 1 day, 21 days, 62days and 95 days after injection. The contact between fresh and saline water in the injection well was represented by a sharp boundary rather than a transitional boundary. It was concluded that the injected fresh water occupied a specific space and served to maintain the original water quality throughout the observation period. Moreover, we suggest that artificial recharge via long-term injection could help secure a new alternative water resource in this saline coastal aquifer.

  9. Use of MODIS Terra Imagery to Estimate Surface Water Quality Standards, Using Lake Thonotosassa, Florida, as a Case Study

    NASA Technical Reports Server (NTRS)

    Moreno, Max J.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Rickman, Douglas L.

    2010-01-01

    Lake Thonotosassa is a highly eutrophied lake located in an area with rapidly growing population in the Tampa Bay watershed, Florida. The Florida Administrative Code has designated its use for "recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife." Although this lake has been the subject of efforts to improve water quality since 1970, overall water quality has remained below the acceptable state standards, and has a high concentration of nutrients. This condition is of great concern to public health since it has favored episodic blooms of Cyanobacteria. Some Cyanobacterial species release toxins that can reach humans through drinking water, fish consumption, and direct contact with contaminated water. The lake has been historically popular for fishing and water sports, and its overflow water drains into the Hillsborough River, the main supply of municipal water for the City of Tampa, this explains why it has being constantly monitored in situ for water quality by the Environmental Protection Commission of Hillsborough County (EPC). Advances in remote sensing technology, however, open the possibility of facilitating similar types of monitoring in this and similar lakes, further contributing to the implementation of surveillance systems that would benefit not just public health, but also tourism and ecosystems. Although traditional application of this technology to water quality has been focused on much larger coastal water bodies like bays and estuaries, this study evaluates the feasibility of its application on a 46.6 km2 freshwater lake. Using surface reflectance products from Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra, this study evaluates associations between remotely sensed data and in situ data from the EPC. The parameters analyzed are the surface water quality standards used by the State of Florida and general indicators of trophic status.

  10. Estimation of high resolution shallow water bathymetry via two-media-photogrammetry - a case study at the Pielach River

    NASA Astrophysics Data System (ADS)

    Wimmer, Michael; Mandlburger, Gottfried; Ressl, Camillo; Pfeifer, Norbert

    2016-04-01

    partial texture degradation because of water turbidity are dealt with. Additional emphasis is placed on the effects of sun glint, overhanging vegetation, and similar obstacles restricting identification of homologous points in submerged areas. One of the most critical parts is the extraction of the water surface which is needed for refraction correction. This can hardly be done in a reliable manner using aerial photography, especially in case of vegetation obscuring the water-land boundary. Hence, the comparably accurate water surface determined based on ALB data is used in order not to introduce errors hindering the evaluation of the refraction correction procedure itself. Finally, the photogrammetric determined water depths are compared to those of the active ALB system in terms of accuracy and completeness.

  11. Vision and perception of community on the use of recycled water for household laundry: a case study in Australia.

    PubMed

    Mainali, Bandita; Pham, Thi Thu Nga; Ngo, Huu Hao; Guo, Wenshan; Miechel, Clayton; O'Halloran, Kelly; Muthukaruppan, Muthu; Listowski, Adnrzej

    2013-10-01

    This study investigates the community perception of household laundry as a new end use of recycled water in three different locations of Australia through a face to face questionnaire survey (n=478). The study areas were selected based on three categories of (1) non-user, (2) perspective user and (3) current user of recycled water. The survey results indicate that significantly higher number (70%) of the respondents supported the use of recycled water for washing machines (χ(2)=527.40, df=3; p=0.000). Significant positive correlation between the overall support for the new end use and the willingness of the respondents to use recycled water for washing machine was observed among all users groups (r=0.43, p=0.000). However, they had major concerns regarding the effects of recycled water on the aesthetic appearance of cloth, cloth durability, machine durability, odour of the recycled water and cost along with the health issues. The perspective user group had comparatively more reservations and concerns about the effects of recycled water on washing machines than the non-users and the current users (χ(2)=52.73, df=6; p=0.000). Overall, community from all three study areas are willing to welcome this new end use as long as all their major concerns are addressed and safety is assured. PMID:23842537

  12. Association between Changing Mortality of Digestive Tract Cancers and Water Pollution: A Case Study in the Huai River Basin, China

    PubMed Central

    Ren, Hongyan; Wan, Xia; Yang, Fei; Shi, Xiaoming; Xu, Jianwei; Zhuang, Dafang; Yang, Gonghuan

    2014-01-01

    The relationship between the ever-increasing cancer mortality and water pollution is an important public concern in China. This study aimed to explore the association between serious water pollution and increasing digestive cancer mortality in the Huai River Basin (HRB) in China. A series of frequency of serious pollution (FSP) indices including water quality grade (FSPWQG), biochemical oxygen demand (FSPBOD), chemical oxygen demand (FSPCOD), and ammonia nitrogen (FSPAN) were used to characterize the surface water quality between 1997 and 2006. Data on the county-level changing mortality (CM) due to digestive tract cancers between 1975 and 2006 were collected for 14 counties in the study area. Most of investigated counties (eight) with high FSPWQG (>50%) distributed in the northern region of the HRB and had larger CMs of digestive tract cancers. In addition to their similar spatial distribution, significant correlations between FSP indices and CMs were observed by controlling for drinking water safety (DWS), gross domestic product (GDP), and population (POP). Furthermore, the above-mentioned partial correlations were clearly increased when only controlling for GDP and POP. Our study indicated that county-level variations of digestive cancer mortality are remarkably associated with water pollution, and suggested that continuous measures for improving surface water quality and DWS and hygienic interventions should be effectively implemented by local governments. PMID:25546281

  13. Association between changing mortality of digestive tract cancers and water pollution: a case study in the Huai River Basin, China.

    PubMed

    Ren, Hongyan; Wan, Xia; Yang, Fei; Shi, Xiaoming; Xu, Jianwei; Zhuang, Dafang; Yang, Gonghuan

    2015-01-01

    The relationship between the ever-increasing cancer mortality and water pollution is an important public concern in China. This study aimed to explore the association between serious water pollution and increasing digestive cancer mortality in the Huai River Basin (HRB) in China. A series of frequency of serious pollution (FSP) indices including water quality grade (FSPWQG), biochemical oxygen demand (FSPBOD), chemical oxygen demand (FSPCOD), and ammonia nitrogen (FSPAN) were used to characterize the surface water quality between 1997 and 2006. Data on the county-level changing mortality (CM) due to digestive tract cancers between 1975 and 2006 were collected for 14 counties in the study area. Most of investigated counties (eight) with high FSPWQG (>50%) distributed in the northern region of the HRB and had larger CMs of digestive tract cancers. In addition to their similar spatial distribution, significant correlations between FSP indices and CMs were observed by controlling for drinking water safety (DWS), gross domestic product (GDP), and population (POP). Furthermore, the above-mentioned partial correlations were clearly increased when only controlling for GDP and POP. Our study indicated that county-level variations of digestive cancer mortality are remarkably associated with water pollution, and suggested that continuous measures for improving surface water quality and DWS and hygienic interventions should be effectively implemented by local governments. PMID:25546281

  14. Economic value of safe water for the infrastructurally disadvantaged urban household: A case study in Delhi, India

    NASA Astrophysics Data System (ADS)

    Dasgupta, Purnamita; Dasgupta, Rajib

    2004-11-01

    Delhi has witnessed rapid urbanization during the past 50 years, with ever increasing growth in population and economic activity leading to water stress in several parts of the city. This paper looks at the valuation of water as an economic resource in the context of a low-income, infrastructurally disadvantaged urban household, through the results of a primary survey. In doing so, it examines several issues, often interlinked, concerning the quality and quantity of water being "accessed" by households. While there is no one perfect way of estimating household demand for improved water services, the study uses the contingent valuation approach and evaluates the findings in terms of the health benefits from safe water and the costs of provision of safe supplies.

  15. Assessing The Ecosystem Service Freshwater Production From An Integrated Water Resources Management Perspective. Case Study: The Tormes Water Resources System (Spain)

    NASA Astrophysics Data System (ADS)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel

    2014-05-01

    The Ecosystem Services are defined as the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil human life. A strongly related concept is the Integrated Water Resources Management. It is a process which promotes the coordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. From these definitions, it is clear that in order to cover so many water management and ecosystems related aspects the use of integrative models is increasingly necessary. In this study, we propose to link a hydrologic model and a water allocation model in order to assess the Freshwater Production as an Ecosystem Service in anthropised river basins. First, the hydrological model allows determining the volume of water generated by each sub-catchment; that is, the biophysical quantification of the service. This result shows the relevance of each sub-catchment as a source of freshwater and how this could change if the land uses are modified. On the other hand, the water management model allocates the available water resources among the different water uses. Then, it is possible to provide an economic value to the water resources through the use of demand curves, or other economic concepts. With this second model, we are able to obtain the economical quantification of the Ecosystem Service. Besides, the influence of water management and infrastructures on the service provision can be analysed. The methodology is applied to the Tormes Water Resources System, in Spain. The software used are EVALHID and SIMGES, for hydrological and management aspects, respectively. Both models are included in the Decision Support System Shell AQUATOOL for water resources planning and management. A scenario approach is presented to illustrate the potential of the methodology, including the current

  16. Assessing the implications of water harvesting intensification on upstream-downstream ecosystem services: A case study in the Lake Tana basin.

    PubMed

    Dile, Yihun Taddele; Karlberg, Louise; Daggupati, Prasad; Srinivasan, Raghavan; Wiberg, David; Rockström, Johan

    2016-01-15

    Water harvesting systems have improved productivity in various regions in sub-Saharan Africa. Similarly, they can help retain water in landscapes, build resilience against droughts and dry spells, and thereby contribute to sustainable agricultural intensification. However, there is no strong empirical evidence that shows the effects of intensification of water harvesting on upstream-downstream social-ecological systems at a landscape scale. In this paper we develop a decision support system (DSS) for locating and sizing water harvesting ponds in a hydrological model, which enables assessments of water harvesting intensification on upstream-downstream ecosystem services in meso-scale watersheds. The DSS was used with the Soil and Water Assessment Tool (SWAT) for a case-study area located in the Lake Tana basin, Ethiopia. We found that supplementary irrigation in combination with nutrient application increased simulated teff (Eragrostis tef, staple crop in Ethiopia) production up to three times, compared to the current practice. Moreover, after supplemental irrigation of teff, the excess water was used for dry season onion production of 7.66 t/ha (median). Water harvesting, therefore, can play an important role in increasing local- to regional-scale food security through increased and more stable food production and generation of extra income from the sale of cash crops. The annual total irrigation water consumption was ~4%-30% of the annual water yield from the entire watershed. In general, water harvesting resulted in a reduction in peak flows and an increase in low flows. Water harvesting substantially reduced sediment yield leaving the watershed. The beneficiaries of water harvesting ponds may benefit from increases in agricultural production. The downstream social-ecological systems may benefit from reduced food prices, reduced flooding damages, and reduced sediment influxes, as well as enhancements in low flows and water quality. The benefits of water

  17. Feasibility, safety, and economic implications of whey-recovered water in cleaning-in-place systems: A case study on water conservation for the dairy industry.

    PubMed

    Meneses, Yulie E; Flores, Rolando A

    2016-05-01

    Water scarcity is threatening food security and business growth in the United States. In the dairy sector, most of the water is used in cleaning applications; therefore, any attempt to support water conservation in these processes will have a considerable effect on the water footprint of dairy products. This study demonstrates the viability for recovering good quality water from whey, a highly pollutant cheese-making by-product, to be reused in cleaning-in-place systems. The results obtained in this study indicate that by using a combined ultrafiltration and reverse osmosis system, 47% of water can be recovered. This system generates protein and lactose concentrates, by-products that once spray-dried fulfill commercial standards for protein and lactose powders. The physicochemical and microbiological quality of the recovered permeate was also analyzed, suggesting suitable properties to be reused in the cleaning-in-place system without affecting the quality and safety of the product manufactured on the cleaned equipment. A cost analysis was conducted for 3 cheese manufacturing levels, considering an annual production of 1, 20, and 225 million liters of whey. Results indicate the feasibility of this intervention in the dairy industry, generating revenues of $0.18, $3.05, and $33.4 million per year, respectively. The findings provide scientific evidence to promote the safety of reuse of reconditioned water in food processing plants, contributing to building a culture of water conservation and sustainable production throughout the food supply chain. PMID:26923044

  18. Projections of water stress based on an ensemble of socioeconomic growth and climate change scenarios: A case study in Asia

    DOE PAGESBeta

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John; Ebi, Kristie L.

    2016-03-30

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify themore » primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Lastly, tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.« less

  19. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    PubMed

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  20. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia

    PubMed Central

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  1. Isotope Tracers as Tools for Identifying Water Sources in Developing Regions: Case of Study in Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Mosquera, G.; Lazo, P.; Crespo, P.; Célleri, R.

    2014-12-01

    Páramo ecosystems are widely recognized for their high water regulation capacity and as the main source of runoff generation in the Andean region. Understanding the hydrological functioning of the fragile wet Andean páramo ecosystems is critical in the mountainous regions of South America given their high susceptibility to global and local stressors such as land use change and climate change and variability . Despite this, most of the basins in the Andean mountain range are still ungauged, resulting in a currently hindered hydrologic analysis of the water sources contributing to runoff generation in the high-elevation páramo ecosystems. To improve this situation and provide a baseline for future tracer-based hydrologic studies, the isotopic signature of water samples collected within the Zhurucay River experimental basin (7.53 km2) was analyzed. The study area is located in the southern Ecuador and stretches over an altitudinal range of 3200 and 3900 m a.s.l. Water samples in rainfall, streamflow, and soils were collected between May 2011 and May 2013. Streamflow hydrometric and isotopic information within the study site was collected using a nested monitoring system. The main soils in the study site are the Andosols mainly located in the steep slopes, and the Histosols (Andean páramo wetlands) predominantly located at the bottom of the valley. Results reveal that the Andosols drain the infiltrated rainfall water to the Histosols. The Histosols on their turn feed creeks and small rivers. Pre-event water stored in the Histosols is the primary source of runoff generation throughout the year. Defining the water sources contributing to runoff generation is the first step towards the establishment of scientifically-based programs of management and conservation of water resources in the Andean region; and the monitoring of isotopic information has proven useful to improve the understanding of the ecosystem's hydrologic behavior.

  2. Can product water footprints indicate the hydrological impact of primary production? - A case study of New Zealand kiwifruit

    NASA Astrophysics Data System (ADS)

    Deurer, M.; Green, S. R.; Clothier, B. E.; Mowat, A.

    2011-10-01

    SummaryWater footprints have been discussed as indicators for the influence of primary products on water scarcity and water quality. We assessed the impact of New Zealand kiwifruit on the scarcity and quality of freshwater resources and evaluated how the green-, blue- and grey-water footprints represented this impact. Water scarcity relates to the freshwater stored in soil and groundwater over a yearly timeframe. We found a negligible net change in soil water, as the freshwater in the soil is replenished every year by rain. The dynamics of freshwater in soil is indicated by the green-water footprint. Kiwifruit production has no impact on freshwater scarcity in soils, and we suggest, therefore, discarding the green-water footprint in this and similar studies. The groundwater recharge below kiwifruit orchards showed a large regional variation. A net depletion of groundwater resources occurs only in two kiwifruit growing regions, and only when the orchards are over-irrigated. The blue-water footprint indicates the status of the freshwater resources stored in the groundwater. We compared two different concepts. Our hydrologically based concept (Approach 1) quantifies the net change in the resources, whereas the Water Footprint Network (Approach 2) only accounts for the consumption. The blue-water footprint calculated by Approach 1 could explain 97% and by Approach 2 only 63% of the regional variation of net groundwater recharge below kiwifruit orchards. The values of the blue-water footprints are, on a regional average, about -500 L and 100 L per tray of kiwifruit with Approaches 1 and 2, respectively. According to Approach 1, a tray of kiwifruit delivers a net groundwater recharge of 500 L per tray, whereas according to Approach 2 the production of a tray of kiwifruit consumes 100 L of groundwater. Only Approach 1 contains all the hydrological processes making up the water balance that relates to groundwater. We assessed the impact of regional kiwifruit production on

  3. Water quality improvement after shifting of idol immersion site: a case study of Upper Lake, Bhopal, India.

    PubMed

    Vyas, Anju; Bajpai, Avinash; Verma, Neelam

    2008-10-01

    Most of freshwater bodies all over the world are becoming polluted, thus decreasing the portability of the water. In India religious practices have deep relationship with water bodies. They also patronized religious practices and constructed numerous relatively small water bodies along with temples throughout the country. Today, with the rapid pace of urban development, most of these water bodies have become sinks for waste discharge, resulting in deterioration of their water quality. Upper Lake of Bhopal, constructed in the eleventh century, is typical example of urban water bodies and a major source of potable water for the people of Bhopal. Till the middle of the last century, the water of Upper Lake did not require any treatment before supply for drinking purposes. Idol worship is common in India. Idols are usually made up of wood, bamboo, straw, jute ropes, clay, and plaster of Paris and are painted with bright synthetic colors, which often contain heavy metals. Other materials, such as straw, jute ropes, flowers, leaves and germinated grains cause short-term deterioration of water quality on their decay, while heavy metals in the paints pose health hazards in the long-run. Religious issues are extremely sensitive and hence it was felt necessary to use the regard that the citizens had for the lake to build a consensus in support of change. The Bhoj Wetland Project was implemented with the aid of Japanese Bank of International Cooperation (JBIC) to take action for preserving the Upper Lake of Bhopal (called Bhoj Wetlands). Our study is highlighted to water quality parameters like turbidity, total hardness, DO (Dissolved oxygen), BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand) and heavy metals in the year 1999 and 2005 i.e. before implementation of project and completion of project. PMID:18228154

  4. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  5. The impact of climate change on water provision under a low flow regime: a case study of the ecosystems services in the Francoli river basin.

    PubMed

    Marquès, Montse; Bangash, Rubab Fatima; Kumar, Vikas; Sharp, Richard; Schuhmacher, Marta

    2013-12-15

    Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and with high probability to face acute water scarcity problem in the coming years. Francolí River basin (NE Spain), located in this vulnerable region is selected as a case study to evaluate the impact of climate change on the delivery of water considering the IPCC scenarios A2 and B1 for the time spans 2011-2040, 2041-2070 and 2071-2100. InVEST model is applied in a low flow river as a new case study, which reported successful results after its model validation. The studied hydrological ecosystem services will be highly impacted by climate change at Francolí River basin. Water yield is expected to be reduced between 11.5 and 44% while total drinking water provisioning will decrease between 13 and 50% having adverse consequences on the water quality of the river. Focusing at regional scale, Prades Mountains and Brugent Tributary provide most of the provision of water and also considered highly vulnerable areas to climate change. However, the most vulnerable part is the northern area which has the lowest provision of water. Francolí River basin is likely to experience desertification at this area drying Anguera and Vallverd tributaries. PMID:23958138

  6. CLOSED-LOOP TREATMENT OF ELECTROLYTIC AND ELECTROLESS NICKEL RINSE WATER BY POINT-OF-USE ION EXCHANGE: A CASE STUDY.

    EPA Science Inventory

    Closed-Loop Treatment of Electrolytic and Electroless Nickel Rinse Water by Point-Of-Use Ion Exchange: A Case Study.

    Dave Szlag1, Joe Leonhardt2, Albert Foster1, Mike Goss1 and Paul Bolger1.
    1 U.S. EPA, National Risk Management Research Laboratory, 26 W. M. L. King D...

  7. Perspectives and Challenges for Water Desalination - A Socio-Economic Multi-Regional Analysis and a Case Study for Texas

    NASA Astrophysics Data System (ADS)

    Ziolkowska, J. R.; Scanlon, B. R.; Young, M.

    2013-12-01

    Water desalination is anticipated to become a prospective solution for mitigating future water shortages in Texas. As of 2010, 46 municipal brackish water desalination plants were operating in Texas with an estimated total desalination capacity of about 120 million gallons per day (2.3% of state water use) (TWDB 2010; TWDB 2013). In 2011, 99% of the State of Texas suffered extreme drought, with large portions suffering through exceptional drought. This event was classified as the one-year drought of record. Moreover, the growing population of Texas and the subsequent growing water demand create an immediate need for long-term planning for a reliable and efficient water supply. Desalination, even though acknowledged as a reliable option in many countries in the world, requires high investment costs and energy inputs. Current costs of desalinated water can range between US1.09/1,000 gallons and US3.7/1,000 gallons (Arroyo and Shirazi 2012), which are about two to three times higher than water costs from conventional sources (San Antonio Water System 2012; AustinTexas.gov 2013). Economic efficiency is still the main factor determining future developments of desalination investments in Texas, and the technology is still emerging. While currently only investment, maintenance and total capital costs per unit water are considered as factors determining viability of a desalination plant, this study aims at depicting a broader picture of socio-economic impacts related to the construction project itself, both in the immediate region and adjacent communities and interlinked sectors. This study presents an Input-Output model for the brackish water desalination plant in San Antonio, with the first stage expected to be completed in 2016. By using multi-regional and sectoral multipliers, the analysis shows that constructing the desalination plant can create 2,050 jobs in the San Antonio region, while it will add 316 more jobs in other regions in Texas by 2016. Construction will

  8. The impact of poor governance on water and sediment quality: a case study in the Pitimbu River, Brazil

    NASA Astrophysics Data System (ADS)

    Moreira, L.; Adamowski, J.; Gaskin, S.; Saraiva, A.

    2014-09-01

    Applying a collaborative approach under a power-sharing institutional structure, coupled with a shift in paradigms, sustainable water resources management often requires political-institutional reform to achieve its goals. Most of Brazil's river basins are subject to rapid urbanization; however, basin stakeholders generally lack sufficient institutional capacity to address the attending water resource issues. Subject to urbanisation, the Pitimbu River basin supplies potable water to approximately 280 000 people in Brazil's Natal region. This study investigated how current institutional models influence both water management and fluvial contamination by metals. Sediment samples collected at eight sites along the river revealed elevated levels of Pb, Fe, Al, Ni and Zn, whose sources were linked to industries, vehicles, as well as agricultural and construction wastes. Aluminium enrichment of surface waters was mainly linked to inadequate sanitation infrastructure. In light of this, the region's poor institutional capacity must be addressed through institutional reform, including a new management structure open to public collective water management planning. In so doing, Brazil's water policies should acknowledge capacity building as a critical element of institutional reform.

  9. An integrative case study approach between game theory and Pareto frontier concepts for the transboundary water resources allocations

    NASA Astrophysics Data System (ADS)

    Kucukmehmetoglu, Mehmet

    2012-07-01

    SummaryIn the context of transboundary issues, this paper introduces a composite water resources allocation approach that integrates both game theory and Pareto frontier concepts over the case of the Euphrates and Tigris Rivers. The proposed approach searches for an acceptable and viable solution set over the Pareto Frontier Surface via game theory based rationality constraints. For this purpose, the used base model is the Euphrates and Tigris River Basin Model, which is a linear programming model maximizing net economic benefits while optimally allocating scarce water resources in the basin. Results indicate that game theory based strategies and associated constraints provide a determinative backbone for an efficient and effective use of generated Pareto Frontier Surfaces. Additionally, estimated marginal values imply that the upstream countries have upper hand positions regarding their geographic and climatic contexts. After all the generation schemes, it appears that Turkey is the critical partner for inclusion into any form of coalition in the Euphrates and Tigris River Basin.

  10. Water balance: case study of a constructed wetland as part of the bio-ecological drainage system (BIOECODS).

    PubMed

    Ayub, Khairul Rahmah; Zakaria, Nor Azazi; Abdullah, Rozi; Ramli, Rosmaliza

    2010-01-01

    The Bio-ecological Drainage System, or BIOECODS, is an urban drainage system located at the Engineering Campus, Universiti Sains Malaysia. It consists of a constructed wetland as a part of the urban drainage system to carry storm water in a closed system. In this closed system, the constructed wetland was designed particularly for further treatment of storm water. For the purpose of studying the water balance of the constructed wetland, data collection was carried out for two years (2007 and 2009). The results show that the constructed wetland has a consistent volume of water storage compared to the outflow for both years with correlation coefficients (R(2)) of 0.99 in 2007 and 0.86 in 2009. PMID:20962410

  11. Operational NIR-red Algorithms for Estimating Chlorophyll-a Concentration in Coastal Waters - The Azov Sea Case Study

    NASA Astrophysics Data System (ADS)

    Moses, W.; Gitelson, A. A.; Berdnikov, S.; Saprygin, V.; Bowles, J. H.; Povazhnyi, V.

    2012-12-01

    We present here results that strongly support the use of MERIS-based NIR-red algorithms as standard tools for estimating chlorophyll-a (chl-a) concentration in turbid productive waters. The study was carried out as one of the steps in testing the potential of the universal applicability of previously developed NIR-red algorithms, which were originally calibrated using a limited set of MERIS imagery and in situ data from the Azov Sea and the Taganrog Bay, Russia, and data that were synthetically generated using a radiative transfer model. We used an extensive set of MERIS imagery and in situ data collected over a period of three years in the Azov Sea and the Taganrog Bay for this validation task. We found that the NIR-red algorithms gave consistently highly accurate estimates of chl-a concentration, with the root mean square error as low as 5.92 mg m-3 for the two-band algorithm and 5.91 mg m-3 for the three-band algorithm for the dataset with chl-a concentrations ranging from 1.09 mg m-3 to 107.82 mg m-3. This obviates the need for case-specific reparameterization of the algorithms, as long as the specific absorption coefficient of phytoplankton in the water does not change drastically, and presents a strong case for the use of NIR-red algorithms as standard algorithms that can be routinely applied for near-real-time quantitative monitoring of chl-a concentration in the Azov Sea and the Taganrog Bay, and potentially elsewhere, which will be a real boon to ecologists, natural resource managers and environmental decision-makers. We also present a temporal series of chl-a maps generated using the NIR-red algorithms from images acquired by the space-borne hyperspectral sensor HICO over the Taganrog Bay. The fine spatial resolution (96 m) of HICO images allows for a detailed analysis of the spatial distribution pattern of chl-a, and the fine spectral resolution (5.7 nm) offers a great potential for phytoplankton species discrimination. With the recent demise of MERIS

  12. Case Studies Behavior Modification.

    ERIC Educational Resources Information Center

    Wark, David M.

    The case histories of five students enrolled in a university course in how to study are reported. The students ranged in age from 18 to 35, included two males and three females, and varied in school experience from no college in one case and some college in two cases to college degrees in two cases. Students were initially taught to chart their…

  13. How effective is river restoration in re-establishing groundwater-surface water interactions? - A case study

    NASA Astrophysics Data System (ADS)

    Kurth, A.-M.; Weber, C.; Schirmer, M.

    2015-06-01

    In this study, we investigated whether river restoration was successful in re-establishing groundwater-surface water interactions in a degraded urban stream. Restoration measures included morphological changes to the river bed, such as the installation of gravel islands and spur dykes, as well as the planting of site-specific riparian vegetation. Standard distributed temperature sensing (DTS) and novel active and passive DTS approaches were employed to study groundwater-surface water interactions in two reference streams and an experimental reach of an urban stream before and after its restoration. Radon-222 analyses were utilized to validate the losing stream conditions of the urban stream in the experimental reach. Our results indicated that river restoration at the study site was indeed successful in increasing groundwater-surface water interactions. Increased surface water downwelling occurred locally at the tip of a gravel island created during river restoration. Hence, the installation of in-stream structures increased the vertical connectivity and thus groundwater-surface water interactions. With the methods presented in this publication, it would be possible to routinely investigate the success of river restorations in re-establishing vertical connectivity, thereby gaining insight into the effectiveness of specific restoration measures. This, in turn, would enable the optimization of future river restoration projects, rendering them more cost-effective and successful.

  14. Health risk assessment of heavy metals and bacterial contamination in drinking water sources: a case study of Malakand Agency, Pakistan.

    PubMed

    Nawab, Javed; Khan, Sardar; Ali, Sharafat; Sher, Hassan; Rahman, Ziaur; Khan, Kifayatullah; Tang, Jianfeng; Ahmad, Aziz

    2016-05-01

    Human beings are frequently exposed to pathogens and heavy metals through ingestion of contaminated drinking water throughout the world particularly in developing countries. The present study aimed to assess the quality of water used for drinking purposes in Malakand Agency, Pakistan. Water samples were collected from different sources (dug wells, bore wells, tube wells, springs, and hand pumps) and analyzed for different physico-chemical parameters and bacterial pathogens (fecal coliform bacteria) using standard methods, while heavy metals were analyzed using atomic absorption spectrophotometry (AAS-PEA-700). In the study area, 70 % of water sources were contaminated with F. coliform representing high bacterial contamination. The heavy metals, such as Cd (29 and 8 %), Ni (16 and 78 %), and Cr (7 %), exceeded their respective safe limits of WHO (2006) and Pak-EPA (2008), respectively, in water sources, while Pb (9 %) only exceeded from WHO safe limit. The risk assessment tools such as daily intake of metals (DIMs) and health risk indexes (HRIs) were used for health risk estimation and were observed in the order of Ni > Cr > Mn > Pb > Cd and Cd > Ni > Pb > Mn > Cr, respectively. The HRI values of heavy metals for both children and adults were <1, showing lack of potential health risk to the local inhabitants of the study area. PMID:27075311

  15. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    SciTech Connect

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  16. Spatially distributed modelling of surface water-groundwater exchanges during overbank flood events - a case study at the Garonne River

    NASA Astrophysics Data System (ADS)

    Bernard-Jannin, Léonard; Brito, David; Sun, Xiaoling; Jauch, Eduardo; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José-Miguel

    2016-08-01

    Exchanges between surface water (SW) and groundwater (GW) are of considerable importance to floodplain ecosystems and biogeochemical cycles. Flood events in particular are important for riparian water budget and element exchanges and processing. However SW-GW exchanges present complex spatial and temporal patterns and modelling can provide useful knowledge about the processes involved at the scale of the reach and its adjacent floodplain. This study used a physically-based, spatially-distributed modelling approach for studying SW-GW exchanges. The modelling in this study is based on the MOHID Land model, combining the modelling of surface water flow in 2D with the Saint-Venant equation and the modelling of unsaturated groundwater flow in 3D with the Richards' equation. Overbank flow during floods was also integrated, as well as water exchanges between the two domains across the entire floodplain. Conservative transport simulations were also performed to study and validate the simulation of the mixing between surface water and groundwater. The model was applied to the well-monitored study site of Monbéqui (6.6 km²) in the Garonne floodplain (south-west France) for a five-month period and was able to represent the hydrology of the study area. Infiltration (SW to GW) and exfiltration (SW to GW) were characterised over the five-month period. Results showed that infiltration and exfiltration exhibited strong spatiotemporal variations, and infiltration from overbank flow accounted for 88% of the total simulated infiltration, corresponding to large flood periods. The results confirmed that overbank flood events played a determinant role in floodplain water budget and SW-GW exchanges compared to smaller (below bankfull) flood events. The impact of floods on water budget appeared to be similar for flood events exceeding a threshold corresponding to the five-year return period event due to the study area's topography. Simulation of overbank flow during flood events was an

  17. Construction of a novel water quality index and quality indicator for reservoir water quality evaluation: A case study in the Amazon region

    NASA Astrophysics Data System (ADS)

    Lobato, T. C.; Hauser-Davis, R. A.; Oliveira, T. F.; Silveira, A. M.; Silva, H. A. N.; Tavares, M. R. M.; Saraiva, A. C. F.

    2015-03-01

    A novel Quality Indicator (QI) and Water Quality Index (WQI) were constructed in the present study for the evaluation of the water quality of a Hydroelectric Plant reservoir in the Amazon area, Brazil, taking into account the specific characteristics of the Amazon area. Factor analyses were applied in order to select the relevant parameters to be included in the construction of both indices. Quality curves for each selected parameter were then created and the constructed QI and WQI were then applied to investigate the water quality at the reservoir. The hydrological cycle was shown by the indices to directly affect reservoir water quality, and the WQI was further useful in identifying anthropogenic impacts in the area, since water sampling stations suffering different anthropogenic impacts were categorized differently, with poorer water quality, than stations near the dam and the environmental preservation area, which suffer significantly less anthropogenic impacts, and were categorized as presenting better water quality. The constructed indices are thus helpful in investigating environmental conditions in areas that show well-defined hydrological cycles, in addition to being valuable tools in the detection of anthropogenic impacts. The statistical techniques applied in the construction of these indices may also be used to construct other indices in different geographical areas, taking into account the specificities for each area.

  18. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    PubMed

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. PMID:22672956

  19. Water Framework Directive catchment planning: a case study apportioning loads and assessing environmental benefits of programme of measures.

    PubMed

    Crabtree, Bob; Kelly, Sarah; Green, Hannah; Squibbs, Graham; Mitchell, Gordon

    2009-01-01

    Complying with proposed Water Framework Directive (WFD) water quality standards for 'good ecological status' in England and Wales potentially requires a range of Programmes of Measures (PoMs) to control point and diffuse sources of pollution. There is an urgent need to define the benefits and costs of a range of potential PoMs. Water quality modelling can be used to understand where the greatest impact in a catchment can be achieved through 'end of pipe' and diffuse source reductions. This information can be used to guide cost-effective investment by private water companies and those with responsibilities for agricultural, industrial and urban diffuse inputs. In the UK, river water quality modelling with the Environment Agency SIMCAT model is regarded as the best current approach to support decision making for river water quality management and planning. The paper describes how a SIMCAT model has been used to conduct a trial WFD integrated catchment planning study for the River Ribble catchment in the North West of England. The model has been used to assess over 80 catchment planning scenarios. The results are being used support a national assessment of the cost-effectiveness of proposed PoMs. PMID:19213994

  20. Future Proofing Water Policy and Catchment Management for a Changing Climate: A Case Study of Competing Demands and Water Scarcity in the River Thames and Catchment

    NASA Astrophysics Data System (ADS)

    Whitehead, P. G.; Crossman, J.; Jin, L.

    2011-12-01

    The River Thames Catchment is the major water supply system in Southern England and supplies all of London's water supply from either the River Lee (a tributary of the Thames) or the main river abstraction site at Teddington (see Figure 1) or from groundwater sources in London. There has been a measurable change in rainfall patterns over the past 250 years with reducing summer rainfall and, hence flows, over the past 40 years. In 1976, following 3 dry winters, the London Reservoirs were more or less empty and the river flow direction was reversed to ensure a supply of water for London. Recent climate change studies in the Thames catchments suggest an increasing threat to water supply and also damage to river water quality and ecology. In addition to a changing climate, population levels in London have risen in recent years and the catchment is increasingly vulnerable to land use change. Since the 1920s changes in land use have increased the levels of nitrogen and phosphorus in the catchment and this trend is predicted to be exacerbated as climate change reduces freshwater dilution. Also land use is predicted to change as agriculture becomes more intensive as farmers react to higher grain and food prices. At the same time rising water temperatures has exposed the river to the potential for toxic algal blooms, such as cyanobacteria. This doom and gloom story is being managed however using a range of policy instruments, led by central government and public and private organisations such as Thames Water and the Environment Agency. Measures such as new reservoirs, a water transfer scheme from Wales and water metering to reduce demand are all being actively pursued, as are land management measures to control diffuse pollution. In order to assess the effects of climate change on the Thames catchment a major modelling study has been undertaken. The Integrated Catchment Model (INCA) has been set up for the Thames to model flow, nitrogen, phosphorus and ecology. Climate

  1. Engaging Remote Sensing and Citizen Science into Water Quality Monitoring: A Case Study in Nhue-Day River Basin, Vietnam

    NASA Astrophysics Data System (ADS)

    Thi Van Le, Khoa; Minkman, Ellen; Nguyen Thi Phuong, Thuy; Rutten, Martine; Bastiaanssen, Wim

    2016-04-01

    Remote sensing and citizen science can be utilized to fulfill the gap of conventional monitoring methods. However, how to engage these techniques, principally taking advantage of local capacities and of globally accessible data for satisfying the continuous data requirements and uncertainties are exciting challenges. Previous studies in Vietnam showed that official documents regulated towards responding the vital need of upgrading national water monitoring infrastructures do not put the huge potentials of free satellite images and crowd-based data collection into account, this factor also limits publications related to these techniques. In this research, a new water monitoring approach will be developed friendly with areas suffering poor quality monitoring works. Particularly, algorithms respecting to the relationship between temperature, total suspended sediment (TSS), chlorophyll and information collected by sensors onboard Landsat-8 and Sentinel-2 MSI satellites are built in the study area in Northern Vietnam; additionally, undergraduate student volunteers were sent to the sites with all the measurement activities are designed to coincide with the time when the study area captured by the satellites to compare the results. While conventional techniques are proving their irreplaceable role in the water monitoring network, the utilization of remote sensing techniques and citizen science in this study will demonstrate highly supportive values, saving monitoring costs and time; advantaging local human resources to science; providing an inclusive assessment of water quality changes along with land-use change in the study area, these approaches are excellent alternatives to meet the demand of real-time, continuous data nationwide.

  2. Influence of contaminated drinking water on perfluoroalkyl acid levels in human serum--A case study from Uppsala, Sweden.

    PubMed

    Gyllenhammar, Irina; Berger, Urs; Sundström, Maria; McCleaf, Philip; Eurén, Karin; Eriksson, Sara; Ahlgren, Sven; Lignell, Sanna; Aune, Marie; Kotova, Natalia; Glynn, Anders

    2015-07-01

    In 2012 a contamination of drinking water with perfluoroalkyl acids (PFAAs) was uncovered in the City of Uppsala, Sweden. The aim of the present study was to determine how these substances have been distributed from the contamination source through the groundwater to the drinking water and how the drinking water exposure has influenced the levels of PFAAs in humans over time. The results show that PFAA levels in groundwater measured 2012-2014 decreased downstream from the point source, although high ΣPFAA levels (>100ng/L) were still found several kilometers from the point source in the Uppsala aquifer. The usage of aqueous film forming fire-fighting foams (AFFF) at a military airport in the north of the city is probably an important contamination source. Computer simulation of the distribution of PFAA-contaminated drinking water throughout the City using a hydraulic model of the pipeline network suggested that consumers in the western and southern parts of Uppsala have received most of the contaminated drinking water. PFAA levels in blood serum from 297 young women from Uppsala County, Sweden, sampled during 1996-1999 and 2008-2011 were analyzed. Significantly higher concentrations of perfluorobutane sulfonic acid (PFBS) and perfluorohexane sulfonic acid (PFHxS) were found among women who lived in districts modeled to have received contaminated drinking water compared to unaffected districts both in 1996-1999 and 2008-2011, indicating that the contamination was already present in the late 1990s. Isomer-specific analysis of PFHxS in serum showed that women in districts with contaminated drinking water also had an increased percentage of branched isomers. Our results further indicate that exposure via contaminated drinking water was the driving factor behind the earlier reported increasing temporal trends of PFBS and PFHxS in blood serum from young women in Uppsala. PMID:26079316

  3. The contribution of informal water development in improving livelihood in Swaziland: A case study of Mdonjane community

    NASA Astrophysics Data System (ADS)

    Manyatsi, A. M.; Mwendera, E. J.

    A study was undertaken to determine the technologies used by households to abstract and convey water for irrigation and domestic uses, as well as the contribution of the water in improving their livelihood. The Mdonjane area, where the study was carried is situated in the rural upper middleveld of Swaziland, below steep hills that have several springs with streams draining to the Usuthu River. The study involved conducting a field survey to determine the water use activities within the area as well as water abstraction and conveyance methods. A questionnaire was developed and administered to homesteads to ascertain information on their utilisation of water and the contribution of irrigation to their livelihood. A total of 210 homesteads were identified within the community, and interviews were conducted to all the homesteads. The results showed that treated domestic water was not available to all the homesteads. About 32% of the homesteads used pipes to convey water for domestic purposes from streams and springs located at altitudes higher than the homesteads. Thirty one percent and 16 percent of the homesteads obtained water for domestic purposes directly from springs and streams, respectively. A total of 101 homesteads (48%) practised irrigated agriculture. Over 74% of homesteads that irrigated some crops did so on land holdings less than a quarter of a hectare. The dominant crops irrigated were spinach (96 homesteads), cabbages (69 homesteads), beetroots (60 homesteads) and tomatoes (36 homesteads). The majority of the homesteads (53 homesteads) sold their agricultural produce within the farms, with 15 homesteads selling theirs on market stalls situated along the main road. The results also showed that irrigation contributed to poverty alleviation by generating income and provision of food to households. About 25% of the homesteads (52 homesteads) obtained more than 50% of their household food production from irrigation, with nine percent (18 homesteads) getting

  4. Biological, chemical and physical drinking water quality from shallow wells in Malawi: Case study of Blantyre, Chiradzulu and Mulanje

    NASA Astrophysics Data System (ADS)

    Pritchard, M.; Mkandawire, T.; O'Neill, J. G.

    A study was conducted in Blantyre, Chiradzulu and Mulanje districts in Malawi to determine the biological, chemical and physical drinking water quality from shallow wells. An in situ membrane filtration test kit (Paqualab 50) was used to determine the microbiological quality of water and a photometer was used for the chemical analyses. Water samples were collected from 21 covered/protected and five open/unprotected shallow wells at four different times in a year to determine the change in quality with different seasons. The results of microbiological analysis show that the drinking water quality is very poor, i.e. grossly polluted with faecal matter. Total coliform (TC) and faecal coliform (FC) values in the wet season (February and April, 2006) were much higher than those in the dry season (August and October, 2005). In terms of total coliform, the results show that approximately 80% of the shallow wells tested in the dry season and 100% of the wells in the wet season did not meet the drinking water quality temporary guidelines, set by the Ministry of Water Development - MoWD (2003) [Ministry of Water Development - MoWD, 2003. Government of Malawi, Devolution of functions of assemblies, Guidelines and standards], of a maximum of 50 TC/100 ml for untreated water. Approximately 50% of the wells failed to meet the faecal coliform drinking water guideline of 50 FC/100 ml in the dry season while this figure had increased to 94% of the wells failing to meet the standard in the wet season. Covered wells were not as grossly contaminated as open wells but all of the wells tested failed the MoWD standards in at least one sample. Chemical analyses results were within the drinking water guideline and variations during seasons were insignificant. pH values were within the guidelines in the dry season except for Mulanje district where on average 45% of the wells had pH values below the lower limit of 6.0. In the wet season 50% of the samples had pH values below 6.0. Turbidity

  5. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  6. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  7. Water resources under future scenarios of climate change and biofuel development: A case study for Yakima River basin

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.

    2013-12-01

    In recent years, biofuel has become an important renewable energy source with a potential to help mitigate climate change. However, agriculture productivity and its potential use for sustainable production of biofuel are strongly dependent on climate and water conditions that may change in response to future changes in climate and/or socio-economic conditions. For instant in 2012, the US has experienced the most severe drought that results in a 12% decrease in corn production - the main feedstock used for biofuel in US - indicating the vulnerability of biofuel development and policies to change in climate and associated extreme weather conditions. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have applied a SWAT watershed model which integrates future scenarios of climate change and biofuel development and simulates the associated impacts on watershed hydrology, water quality, soil erosion, and agriculture productivity. The study is applied to the Yakima River basin (YRB), which has higher biomass resources in Washington State and represents a region where forestry and agriculture intersect with considerable water shortage as well as spatial variations in annual precipitation. Unlike earlier studies, which commonly define biofuel and climate change scenarios independently, in this study the decision on alternative biofuel feedstock mixes and associated change in land use and management take into account the anticipated climate change. The resulted spatial and temporal distributions of water budget, nutrient loads, and sediment erosion is analyzed to evaluate the effectiveness of biofuel policies under constraints of climate change and water resources in the region.

  8. Participatory Planning for the improvement of water management in uncertain conditions: Case study of the Souss-Massa basin in Morocco

    NASA Astrophysics Data System (ADS)

    Imani, Yasmina; Lahlou, Ouiam; Slimani, Imane; Joyce, Brian

    2016-04-01

    Due to its geographical location and to the natural features of its climate, Morocco is known as a drought prone and water scarce country. However, the country now faces, in the current context of Climate Change, an increasing and alarming water scarcity due to the combined effects of a strong decline of precipitations and a growing pressure on water resources induced by the economic development and demographic growth. Aware of this pressing issue, Morocco implemented a national water strategy based on the decentralization of water management at the river basin level and the establishment of Integrated Water Resources Management master plans for each basin. Unfortunately, these plans often underestimate the impact of uncertainty and this may lead to inefficient and unsustainable water management strategies. In this context, the aim of this study is to develop an innovative approach for robust decision making in uncertain conditions by coupling the WEAP (Water Evaluation and Planning System) model and the "XLRM" robust decision making framework to support the evaluation of management options and promote long-term sustainable integrated water management strategies at the basin level. The Souss-Massa basin, located in the south-western part of the country was retained as a case study because of its strategic importance but also because it now faces, as a consequence of the irrational use of water resources during the last decades significant water resources management challenges mainly due to the overexploitation of ground water resources, the increased of water demand due to the irrigation development, the urban and industrial growth and the expansion of tourism. Thus, in this study, a three step methodology was developed. First, the WEAP model were developed and calibrated for the Souss-Massa basin. In a second step, a XLRM participatory workshop gathering the basin main stakeholders were organized in order to identify the EXogenous factors (key uncertainties

  9. Soil-plant water status and wine quality: the case study of Aglianico wine (the ZOViSA project)

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Manna, Piero; Albrizio, Rossella; Basile, Angelo; Agrillo, Antonietta; De Mascellis, Roberto; Caputo, Pellegrina; Delle Cave, Aniello; Gambuti, Angelita; Giorio, Pasquale; Guida, Gianpiero; Minieri, Luciana; Moio, Luigi; Orefice, Nadia; Terribile, Fabio

    2014-05-01

    The terroir analysis, aiming to achieve a better use of environmental features with respect to plant requirement and wine production, needs to be strongly rooted on hydropedology. In fact, the relations between wine quality and soil moisture regime during the cropping season is well established. The ZOViSA Project (Viticultural zoning at farm scale) tests a new physically oriented approach to terroir analysis based on the relations between the soil-plant water status and wine quality. The project is conducted in southern Italy in the farm Quintodecimo of Mirabella Eclano (AV) located in the Campania region, devoted to quality Aglianico red wine production (DOC). The soil spatial distribution of study area (about 3 ha) was recognized by classical soil survey and geophysics scan by EM38DD; then the soil-plant water status was monitored for three years in two experimental plots from two different soils (Cambisol and Calcisol). Daily climate variables (temperature, solar radiation, rainfall, wind), daily soil water variables (through TDR probes and tensiometers), crop development (biometric and physiological parameters), and grape must and wine quality were monitored. The agro-hydrological model SWAP was calibrated and applied in the two experimental plots to estimate soil-plant water status in different crop phenological stages. The effects of crop water status on crop response and wine quality was evaluated in two different pedo-systems, comparing the crop water stress index with both: crop physiological measurements (leaf gas exchange, leaf water potential, chlorophyll content, LAI measurement), grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and wine quality (aromatic response). Finally a "spatial application" of the model was carried out and different terroirs defined.

  10. Modeling the hydrologic effects of land and water development interventions: a case study of the upper Blue Nile river basin

    NASA Astrophysics Data System (ADS)

    Haregeweyn, Nigussie; Tsunekawa, Atsushi; Tsubo, Mitsuru; Meshesha, Derege; Adgo, Enyew; Poesen, Jean; Schütt, Brigitta

    2014-05-01

    Over 67% of the Ethiopian landmass has been identified as very vulnerable to climate variability and land degradation. These problems are more prevalent in the Upper Blue Nile (UBN, often called Abay) river basin covering a drainage area of about 199,800 km2. The UBN River runs from Lake Tana (NW Ethiopia) to the Ethiopia-Sudan border. To enhance the adaptive capacity to the high climate variability and land degradation in the basin, different land and water management measures (stone/soil bunds, runoff collector trenches, exclosures) have been extensively implemented, especially since recent years. Moreover, multipurpose water harvesting schemes including the Grand Ethiopian Renaissance Dam (GERD, reservoir area of ca. 4000 km2) and 17 other similar projects are being or to be implemented by 2025. However, impact studies on land and water management aspects rarely include detailed hydrological components especially at river basin scale, although it is generally regarded as a major determinant of hydrological processes. The main aim of this study is therefore to model the significance of land and water management interventions in surface runoff response at scale of UBN river basin and to suggest some recommendations. Spatially-distributed annual surface runoff was simulated for both present-day and future (2025) land and water management conditions using calibrated values of the proportional loss model in ArcGIS environment. Average annual rainfall map (1998-2012) was produced from calibrated TRMM satellite source and shows high spatial variability of rainfall ranging between ca. 1000 mm in the Eastern part of the basin to ca. 2000 mm in the southern part of the basin. Present-day land use day condition was obtained from Abay Basin Master Plan study. The future land use map was created taking into account the land and water development interventions to be implemented by 2025. Under present-day conditions, high spatial variability of annual runoff depth was observed

  11. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  12. The use of Jatropha curcas to achieve a self sufficient water distribution system: A case study in rural Senegal

    NASA Astrophysics Data System (ADS)

    Archer, Alexandra

    The use of Jatropha curcas as a source of oil for fueling water pumps holds promise for rural communities struggling to achieve water security in arid climates. The potential for use in developing communities as an affordable, sustainable fuel source has been highly recommended for many reasons: it is easily propagated, drought resistant, grows rapidly, and has high-oil-content seeds, as well as medicinal and economic potential. This study uses a rural community in Senegal, West Africa, and calculates at what level of Jatropha curcas production the village is able to be self-sufficient in fueling their water system to meet drinking, sanitation and irrigation requirements. The current water distribution system was modelled to represent irrigation requirements for nine different Jatropha curcas cultivation and processing schemes. It was found that a combination of using recycled greywater for irrigation and a mechanical press to maximize oil recovered from the seeds of mature Jatropha curcas trees, would be able to operate the water system with no diesel required.

  13. Transport of Mass and Water Vapor in Cumulus Topped Boundary Layer: A Case-Study from Arm Darwin Facility

    NASA Astrophysics Data System (ADS)

    Ghate, V. P.; Jensen, M. P.

    2014-12-01

    Shallow cumulus clouds are intimately tied to the turbulence in the boundary layer and transport momentum and enthalpy upwards from the surface. These clouds have a significant impact on the Earth's radiation budget as they reflect more incoming solar radiation back to space compared to the underlying surface. They form when water vapor is transported upwards from the surface above the lifting condensation level at which point the water vapor condenses to form cloud droplets. These clouds typically have a life-time of less than an hour after which they evaporate, with the active cumuli venting the boundary layer moisture into the free troposphere. We use data collected during a 24-hour period at the Atmospheric Radiation Measurement (ARM) observing facility at Darwin, Australia to study the turbulent transport of mass and water vapor associated with shallow cumulus clouds. The instruments at the site include a vertically pointing Doppler cloud radar, Doppler Lidar, ceilometer among others. Three balloon borne radiosondes were also launched during the study period. Data from the cloud radar and Doppler Lidar were combined to retrieve the vertical velocity structure of the entire boundary layer at a high resolution (2 sec; 30 m). Additionally, high resolution (10 s; 37 m) retrievals of water vapor mixing ratio were also performed using the data collected by the collocated Raman Lidar. We will use the high resolution observations of vertical velocity and water vapor to characterize the second order turbulent transport terms of water vapor and vertical velocity. These turbulent transport terms will then be used together with a parcel model to calculate entrainment rates of individual cloud elements. The contrast in the entrainment rates of forced, active and passive cumuli will be presented together with the moisture and dynamic structure of surrounding environmental air.

  14. Prediction of Water Quality Parameters Using Statistical Methods: A Case Study in a Specially Protected Area, Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Alp, E.; Yücel, Ö.; Özcan, Z.

    2014-12-01

    Turkey has been making many legal arrangements for sustainable water management during the harmonization process with the European Union. In order to make cost effective and efficient decisions, monitoring network in Turkey has been expanding. However, due to time and budget constraints, desired number of monitoring campaigns can not be carried. Hence, in this study, independent parameters that can be measured easily and quickly are used to estimate water quality parameters in Lake Mogan and Eymir using linear regression. Nonpoint sources are one of the major pollutant components in Eymir and Mogan lakes. In this paper, a correlation between easily measurable parameters, DO, temperature, electrical conductivity, pH, precipitation and dependent variables, TN, TP, COD, Chl-a, TSS, Total Coliform is investigated. Simple regression analysis is performed for each season in Eymir and Mogan lakes by using SPSS Statistical program using the water quality data collected between 2006-2012. Regression analysis demonstrated significant linear relationship between measured and simulated concentrations for TN (R2=0.86), TP (R2=0.85), TSS (R2=0.91), Chl-a (R2=0.94), COD (R2=0.99), T. Coliform (R2=0.97) which are the best results in each season for Eymir and Mogan Lakes. The overall results of this study shows that by using easily measurable parameters even in ungauged situation the water quality of lakes can be predicted. Moreover, the outputs obtained from the regression equations can be used as an input for water quality models such as phosphorus budget model which is used to calculate the required reduction in the external phosphorus load to Lake Mogan to meet the water quality standards.

  15. Oil-in-water nanocontainers as low environmental impact cleaning tools for works of art: two case studies.

    PubMed

    Carretti, Emiliano; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2007-05-22

    A novel class of p-xylene-in-water microemulsions mainly based on nonionic surfactants and their application as low impact cleaning tool in cultural heritage conservation is presented. Alkyl polyglycosides (APG) and Triton X-100 surfactants allow obtaining very effective low impact oil-in-water (o/w) microemulsions as alternatives to pure organic solvents for the removal of polymers (particularly Paraloid B72 and Primal AC33) applied during previous conservation treatments. The ternary APG/p-xylene/water microemulsions have been characterized by quasi elastic light scattering to obtain the hydrodynamic radius and the polydispersity of the microemulsion droplets. Laplace inversion of the correlation function CONTIN analysis provided evidence of acrylic copolymers solubilization into the oil nanodroplets. Contact angle, Fourier transform infrared (FTIR), and scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) data confirmed that microemulsions were effective in removing polymer coatings. The phase diagram of APG microemulsions showed that a reduction >90% (compared to the conventional cleaning methods) of the organic solvent can be achieved by using o/w microemulsions. The microemulsions were successfully tested in two real cases: (1) the APG based microemulsion was used in a Renaissance painting by Vecchietta in Santa Maria della Scala, Siena, Italy, degraded by the presence of a polyacrylate coating applied during a previous restoration and (2) a Triton X-100 oil-in-water microemulsion containing (NH4)2CO3 in the water continuous phase. The association of ammoniun carbonate to the microemusion led to the swelling of an organic deposit (mainly asphaltenes deposited on the fresco in the Oratorio di San Nicola al Ceppo in Florence, still contamined by the water of the Arno river during the 1966 flood) and a very efficient removal of highly insoluble inorganic deposits (mainly gypsum) strongly associated to asphaltenes. These innovative systems are

  16. Modeling land subsidence due to shallow-water hydrocarbon production: A case study in the northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Gambolati, G.; Castelletto, N.; Ferronato, M.; Janna, C.; Teatini, P.

    2012-12-01

    One major environmental concern of subsurface fluid withdrawal is land subsidence. The issue of a reliable estimate and prediction of the expected anthropogenic land subsidence is particularly important whenever the production of hydrocarbon (oil and gas) occurs from large reservoirs located close to deltaic zones (e.g., Mississippi, Po, Nile, Niger, Yellow rivers) or shallow-water with low-lying coastlands (e.g., Northern Caspian sea, Dutch Wadden Sea). In such cases even a small reduction of the ground elevation relative to the mean sea level may impact seriously on human settlements and natural environment. The monitoring of the ongoing land subsidence has been significantly improved over the last decade by SAR-based interferometry. These measurements can be quite effectively used to map the process and calibrate geomechanical models for predicting the future event. However, this powerful methodology cannot be implemented off-shore. Although permanent GPS stations can be established to monitor the movement of the production facilities usually installed above the gravity center of a reservoir, an accurate characterization of the settlement bowl affecting the sea bottom, with a possible migration toward the shore, is a challenge still today. In the present communication the case study of the Riccione gas reservoir is discussed. The field is located in the near-shore northern Adriatic Sea, approximately 15 km far from the coastline, where the seawater height is about 20 m. The gas-bearing strata are 1100 m deep and are hydraulically connected to a relatively weak aquifer. Production of 70% of the cumulative reserves as of 2006 yielded a pore pressure decrease of 60 bars. Reliable geometry and geomechanical properties of the depleted formations were detected with the aid of a 3D seismic survey and a borehole equipped with radioactive markers, respectively. The latter pointed out that the Riccione formations are characterized by an unusually high oedometer

  17. Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water--a case study.

    PubMed

    Leme, Daniela Morais; Marin-Morales, Maria Aparecida

    2008-01-31

    In the present study, we applied Chromosome Aberration (CA) and Micronucleus (MN) tests to Allium cepa root cells, in order to evaluate the water quality of Guaecá river. This river, located in the city of São Sebastião, SP, Brazil, had been affected by an oil pipeline leak. Chemical analyses of Total Petroleum Hydrocarbons (TPHs) and Polycyclic Aromatic Hydrocarbons (PAHs) were also carried out in water samples, collected in July 2005 (dry season) and February 2006 (rainy season) in 4 different river sites. The largest CA and MN incidence in the meristematic cells of A. cepa was observed after exposure to water sample collected during the dry season, at the spring of the river, where the oil leak has arisen. The F(1) cells from roots exposed to such sample (non-merismatic region) were also analyzed for the incidence of MN, showing a larger frequency of irregularities, indicating a possible development of CA into MN. Lastly, our study reveals a direct correlation between water chemical analyses (contamination by TPHs and PAHs) and both genotoxic and mutagenic effects observed in exposed A. cepa cells. PMID:18068420

  18. Using seasonal forecasts in a drought forecasting system for water management: case-study of the Arzal dam in Brittany

    NASA Astrophysics Data System (ADS)

    Crochemore, Louise; Ramos, Maria-Helena; Perrin, Charles; Penasso, Aldo

    2014-05-01

    The Arzal dam is located at the outlet of the Vilaine River basin (10,000 km2) in Brittany, France. It controls a reservoir (50 hm3) managed for multiple water uses: drinking water, flood control, irrigation, sailing and fish by-passing. Its location in the estuary creates a physical divide between upstream freshwater and downstream saline water. The reservoir thus plays an essential role in the regional water management system. Its operational management during the summer season poses several challenges, mainly related to the quantification of future water inflows and the risks of having restricted water availability for its different uses. Indeed, the occurrence of severe drought periods between May and October may increase the risk of salt intrusion and drinking water contamination due to lock operations. Therefore it is important to provide decision-makers with reliable low-flow forecasts and risk-based visualization tools, which will support their choice of the best strategy for allocation of water among different users and stakeholders. This study focuses on an integrated hydro-meteorological forecasting system developed to forecast low flows upstream the Arzal dam and based on a lumped hydrological model. Medium-range meteorological forecasts from the ECMWF ensemble prediction system (51 scenarios up to 9 days ahead) are combined with seasonal meteorological forecasts also from ECMWF to provide extended streamflow forecasts for the summer period. The performance of the forecasts obtained by this method is compared with the performance of two benchmarks: (i) flow forecasts obtained using an ensemble of past observed precipitation series as precipitation scenarios, i.e. without any use of forecasts from meteorological models and (ii) flow forecasts obtained using the seasonal forecasts only, i.e. without medium-term information. First, the performance of ensemble forecasts is evaluated and compared by means of probabilistic scores. Then, a risk

  19. Site-specific water quality criteria for aquatic ecosystems: A case study of pentachlorophenol for Tai Lake, China.

    PubMed

    Chen, Yi; Yu, Shuangying; Tang, Song; Li, Yabing; Liu, Hongling; Zhang, Xiaohui; Su, Guanyong; Li, Bing; Yu, Hongxia; Giesy, John P

    2016-01-15

    Given the widely varying types of aquatic ecosystems and bioavailability of chemicals, it is important to develop site-specific water quality criteria (WQC) to ensure criteria are neither over- nor under-protective. In the study, using pentachlorophenol (PCP) as an example, several approaches to derive site-specific WQC were investigated, including the conventional species sensitivity distribution (SSD), weighted SSD based on the proportion of each trophic level, and water effect ratio (WER) method. When corrected to a pH of 7.8, the conventional SSD approach resulted in criteria maximum concentration (CMC) and criteria continuous concentration (CCC) of 18.11 and 1.74 μg/L, respectively. If SSD was weighted according to the current species composition in Tai Lake, the CMC and CCC were 32.81 and 4.48 μg/L, respectively. However, available data suggest that many sensitive species inhabiting Tai Lake during 1980s were disappeared. Considering the species composition of the healthier ecosystem in 1980s, the CMC and CCC were 10.99 and 0.38 μg/L, respectively, which provide more protective water quality standards. Water effect ratio (WER) was further used to correct for co-occurrence of other toxicants and factors affecting bioavailability of PCP. A final WER of 4.72 was applied to adjust the criteria derived by using the weighted SSD for the 1980s aquatic community, and the final CMC and CCC obtained were 51.87 and 1.79 μg/L, respectively, at a pH of 7.8. Water quality criteria derived using the 1980s species composition and adjusted with WER were deemed the most appropriate WQC for water management and aquatic life protection. Merits of the various approaches for developing WQC for protection of aquatic species were discussed. PMID:26398452

  20. Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water--a case study.

    PubMed

    Yadav, R K; Goyal, B; Sharma, R K; Dubey, S K; Minhas, P S

    2002-12-01

    Long-term irrigation with sewage water adds large amounts of carbon, major and micro- nutrients to the soil. We compared the spatial distribution of N, P, K and other micronutrients and toxic elements in the top 0.6 m of an alluvial soil along with their associated effects on the composition of crops and ground waters after about three decades of irrigation with domestic sewage effluent as a function of distance from the disposal point. Use of sewage for irrigation in various proportions improved the organic matter to 1.24-1.78% and fertility status of soils especially down to a distance of 1 km along the disposal channel. Build up in total N was up to 2908 kg ha(-1), available P (58 kg ha(-1)), total P (2115 kg ha(-1)), available K (305 kg ha(-1)) and total K (4712 kg ha(-1)) in surface 0.15 m soil. Vertical distribution of these parameters also varied, with most accumulations occurring in surface 0.3 m. Traces of NO3-N (up to 2.8 mg l(-1)), Pb (up to 0.35 mg l(-1)) and Mn (up to 0.23 mg l(-1)) could also be observed in well waters near the disposal point thus indicating initiation of ground water contamination. However, the contents of heavy metals in crops sampled from the area were below the permissible critical levels. Though the study confirms that the domestic sewage can effectively increase water resource for irrigation but there is a need for continuous monitoring of the concentrations of potentially toxic elements in soil, plants and ground water. PMID:12503913

  1. Decomposition analysis of water footprint changes in a water-limited river basin: a case study of the Haihe River basin, China

    NASA Astrophysics Data System (ADS)

    Zhi, Y.; Yang, Z. F.; Yin, X. A.

    2014-05-01

    Decomposition analysis of water footprint (WF) changes, or assessing the changes in WF and identifying the contributions of factors leading to the changes, is important to water resource management. Instead of focusing on WF from the perspective of administrative regions, we built a framework in which the input-output (IO) model, the structural decomposition analysis (SDA) model and the generating regional IO tables (GRIT) method are combined to implement decomposition analysis for WF in a river basin. This framework is illustrated in the WF in Haihe River basin (HRB) from 2002 to 2007, which is a typical water-limited river basin. It shows that the total WF in the HRB increased from 4.3 × 1010 m3 in 2002 to 5.6 × 1010 m3 in 2007, and the agriculture sector makes the dominant contribution to the increase. Both the WF of domestic products (internal) and the WF of imported products (external) increased, and the proportion of external WF rose from 29.1 to 34.4%. The technological effect was the dominant contributor to offsetting the increase of WF. However, the growth of WF caused by the economic structural effect and the scale effect was greater, so the total WF increased. This study provides insights about water challenges in the HRB and proposes possible strategies for the future, and serves as a reference for WF management and policy-making in other water-limited river basins.

  2. Using multi-component hydrochemical pattern for water balance calculations of intricate water resources in semi-arid regions - a case study in Wadi Al Arab, Jordan.

    NASA Astrophysics Data System (ADS)

    Siebert, Christian; Rödiger, Tino; Geyer, Stefan; Subah, Ali; Guttman, Yossi

    2013-04-01

    Groundwater harvesting in the semi-arid Wadi al Arab, located in the NW most corner of the Kingdom of Jordan, is supposed to be sustainable. However, since implementation of intense well fields, which take water from the Cretaceous A7/B2 aquifer, springs along the wadi course dried out and groundwater table dropped locally tremendous. To overcome the uncertainties in qualitatively and quantitatively characterising that water resource, a multi-component hydrochemical study was carried out within the SMART-project, which was also used to provide reliable boundary conditions to build up a transient numerical flow model. Wadi Al Arab represents a multi-aquifer system, with unknown interactions between the Cenozoic and Cretaceous aquifers. The exact identification and qualitatively characterization of the different groundwater bodies, the definition of their flow regimes and the recharge rate is a necessary step to calculate a reliable water balance and a rational policy of water management. Inter-aquifer flow prevents the benchmark treatment of the groundwater bodies and its detection by classical methods is an almost impossible task. In order to overcome these difficulties, the main known components of the multi-aquifer system were analysed for REY (REE+ Yttrium) abundance, major elements and for stable isotopes of water (δ18O and δD). The different waters in the area were than classified considering these parameters. This enabled identifying their respective replenishment areas and to elucidate the mixing processes controlled by structural features. This study shows that REY patterns are a powerful tool to decipher the lithology of the catchment area and the intricate patterns of flow paths of the aquifer systems. These information allow the correct definition of boundary conditions for a successful hydraulic modelling.

  3. Assessing food security in water scarce regions by Life Cycle Analysis: a case study in the Gaza strip

    NASA Astrophysics Data System (ADS)

    Recanati, Francesca; Castelletti, Andrea; Melià, Paco; Dotelli, Giovanni

    2013-04-01

    Food security is a major issue in Palestine for both political and physical reasons, with direct effects on the local population living conditions: the nutritional level of people in Gaza is classified by FAO as "insecure". As most of the protein supply comes from irrigated agricultural production and aquaculture, freshwater availability is a limiting factor to food security, and the primary reason for frequent conflicts among food production processes (e.g. aquaculture, land livestock or different types of crops). In this study we use Life Cycle Analysis to assess the environmental impacts associated to all the stages of water-based protein production (from agriculture and aquaculture) in the Gaza strip under different agricultural scenarios and hydroclimatic variability. As reported in several recent studies, LCA seems to be an appropriate methodology to analyze agricultural systems and assess associated food security in different socio-economic contexts. However, we argue that the inherently linear and static nature of LCA might prove inadequate to tackle with the complex interaction between water cycle variability and the food production system in water-scarce regions of underdeveloped countries. Lack of sufficient and reliable data to characterize the water cycle is a further source of uncertainty affecting the robustness of the analysis. We investigate pros and cons of LCA and LCA-based option planning in an average size farm in Gaza strip, where farming and aquaculture are family-based and integrated by reuse of fish breeding water for irrigation. Different technological solutions (drip irrigation system, greenhouses etc.) are evaluated to improve protein supply and reduce the pressure on freshwater, particularly during droughts. But this use of technology represent also a contribution in increasing sustainability in agricultural processes, and therefore in economy, of Gaza Strip (reduction in chemical fertilizers and pesticides etc.).

  4. Preliminary Studies on Membrane Filtration for the Production of Potable Water: A Case of Tshaanda Rural Village in South Africa

    PubMed Central

    Molelekwa, Gomotsegang F.; Mukhola, Murembiwa S.; Van der Bruggen, Bart; Luis, Patricia

    2014-01-01

    Ultrafiltration (UF) systems have been used globally for treating water from resources including rivers, reservoirs, and lakes for the production of potable water in the past decade. UF membranes with a pore size of between 0.1 and 0.01 micrometres provide an effective barrier for bacteria, viruses, suspended particles, and colloids. The use of UF membrane technology in treating groundwater for the supply of potable water in the impoverished and rural village, Tshaanda (i.e., the study area) is demonstrated. The technical and administrative processes that are critical for the successful installation of the pilot plant were developed. Given the rural nature of Tshaanda, the cultural and traditional protocols were observed. Preliminary results of the water quality of untreated water and the permeate are presented. Escherichia coli in the untreated water during the dry season (i.e., June and July) was 2 cfu/100 ml and was <1 cfu/100 ml (undetected) following UF, which complied with the WHO and South African National Standards and Guidelines of <1 cfu/100 ml. During the wet/rainy season (February) total coliform was unacceptably high (>2419.2 cfu/100 ml) before UF. Following UF, it dramatically reduced to acceptable level (7 cfu/100 ml) which is within the WHO recommended level of <10 cfu/100 ml. Additionally, during the wet/rainy season E. coli and enterococci were unacceptably high (40.4 cfu/100 ml and 73.3 cfu/100 ml, respectively) before UF but were completely removed following UF, which are within the WHO and SANS recommended limit. The values for electrical conductivity (EC) and turbidity were constantly within the WHO recommended limits of 300 µS/cm corrected at 25°C and <5 NTU, respectively, before and after UF, during dry season and wet season. This suggests that there is no need for pre-treatment of the water for suspended particles and colloids. Considering these data, it can be concluded that the water is suitable for human consumption, following UF. PMID

  5. The case study of drillbit and borehole frozen water of the subglacial Lake Vostok, East Antarctica for microbial content

    NASA Astrophysics Data System (ADS)

    Bulat, Sergey; Doronin, Maxim; Dominique, Marie; Lipenkov, Vladimir; Lukin, Valery; Karlov, Denis; Demchenko, Leonid; Khilchenko, Margarita

    The objective was to estimate microbial content and diversity in the subglacial Lake Vostok (buried beneath 4-km thick East Antarctic ice sheet) by studying the uppermost water layer which entered the borehole upon lake entry (February 5, 2012) and then shortly frozen within. The samples of so-called drillbit water frozen on a drill bit upon lake enter (RAE57) along with re-drilled so-called borehole-frozen water (RAE58) were provided for the study with the ultimate goal to discover the life in this extreme icy environment. The comprehensive analyses (constrained by Ancient DNA research criteria) of the first lake water samples - drillbit- (one sample) and borehole-frozen (3 different depths 5G-2N-3425, 3429 et 3450m), are nearly got finished. If the drillbit water sample was heavily polluted with drill fluid (at ratio 1:1), re-drilled borehole-frozen samples were proved to be rather clean but still strongly smelling kerosene and containing numerous micro-droplets of drill fluid making the ice non-transparent. The cell concentrations measured by flow cytofluorometry showed 167 cells per ml in the drillbit water sample while in borehole-frozen samples ranged from 5.5 (full-cylinder 3429m deep frozen water ice core) to 38 cells per ml (freeze-centre of 3450m deep moon-shape ice core). DNA analyses came up with total 44 bacterial phylotypes discovered by sequencing of different regions (v3-v5, v4-v8, v4-v6 et full-gene) of 16S rRNA genes. Amongst them all but two were considered to be contaminants (were present in our contaminant library, including drill fluid findings). The 1st remaining phylotype successfully passing all contamination criteria proved to be hitherto-unknown type of bacterium (group of clones, 3 allelic variants) showing less than 86% similarity with known taxa. Its phylogenetic assignment to bacterial divisions or lineages was also unsuccessful despite of the RDP has classified it belonging to OD1 uncultured Candidate Division. The 2nd phylotype was

  6. The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: A case study

    NASA Astrophysics Data System (ADS)

    Zhang, Meimei; Li, Zhen; Tian, Bangsen; Zhou, Jianmin; Tang, Panpan

    2016-03-01

    A full understanding of the backscattering characteristics of wetlands is necessary for the analysis of the hydrological conditions. In this study, a temporal set of synthetic aperture radar (SAR) imagery, acquired at different frequencies, polarizations and incidence angles over the coastal wetlands of the Liaohe River Delta, China, were used to characterize seasonal variations in radar backscattering coefficient for reed marshes and rice fields. The combination of SAR backscattering intensity and an optical-based normalized difference vegetation index (NDVI) for long time series can provide additional insight into vegetation structural and its hydrological states. After identifying the factors that induce the backscattering and scattering mechanism changes, detailed analysis of L-band ALOS PALSAR interferometric SAR (InSAR) imagery was conducted to study water-level changes under different environmental conditions. In addition, ENVISAT altimetry was used to validate the accuracy of the water-level changes estimated using the InSAR technique-this is an effective tool instead of sparsely distributed gauge stations for the validation. Our study demonstrates that L-band SAR data with horizontal polarization is particularly suitable for the extraction of water-level changes in the study area; however, vertically-polarized C-band data may also be useful where the density of herbaceous vegetation is low at the initial stage. It is also shown that integrated analysis of the backscattering mechanism and interferometric characteristics using multi-mode SAR can considerably enhance the reliability of the water-level retrieval scheme and better capture the spatial distribution of hydrological patterns.

  7. Bioconcentration of some macrominerals in soil, forage and buffalo hair continuum: A case study on pasture irrigated with sewage water

    PubMed Central

    Khan, Zafar Iqbal; Ahmad, Kafeel; Ashraf, Iqra; Gondal, Sumaira; Sher, Muhammad; Hayat, Zafar; Laudadio, Vito; Tufarelli, Vincenzo

    2014-01-01

    The present study aimed to evaluate the bioaccumulation of some macrominerals in grazing buffaloes fed forage irrigated with sewage water or canal water. In particular, the transfer of sodium (Na), magnesium (Mg), potassium (K) and calcium (Ca) from soil to plant and in turn to animals was evaluated under sub-tropical environmental conditions. Samples of soil, forage and buffalo hair were collected and digested by wet method. Sodium and K concentrations were significantly higher in the soil but lower in the forages; however, Mg and Ca concentrations in both soil and forages were higher. The correlation between soil, forage and hair showed an imbalanced flow of Na, Mg and K and a balanced flow of Ca from soil to forage and then to animals. Based on the findings, the highest rates of transfer of minerals were found for sewage water treatment, whereas lowest rates were found for canal water treatment, except for Na. As the transfer of minerals depends on their bioavailability, the highest values may be due to the high rates of mineral uptake by plants. Thus, the high transfer rate of some elements by plants could become toxic in future causing detrimental effect to grazing livestock. PMID:25972745

  8. Bioconcentration of some macrominerals in soil, forage and buffalo hair continuum: A case study on pasture irrigated with sewage water.

    PubMed

    Khan, Zafar Iqbal; Ahmad, Kafeel; Ashraf, Iqra; Gondal, Sumaira; Sher, Muhammad; Hayat, Zafar; Laudadio, Vito; Tufarelli, Vincenzo

    2015-05-01

    The present study aimed to evaluate the bioaccumulation of some macrominerals in grazing buffaloes fed forage irrigated with sewage water or canal water. In particular, the transfer of sodium (Na), magnesium (Mg), potassium (K) and calcium (Ca) from soil to plant and in turn to animals was evaluated under sub-tropical environmental conditions. Samples of soil, forage and buffalo hair were collected and digested by wet method. Sodium and K concentrations were significantly higher in the soil but lower in the forages; however, Mg and Ca concentrations in both soil and forages were higher. The correlation between soil, forage and hair showed an imbalanced flow of Na, Mg and K and a balanced flow of Ca from soil to forage and then to animals. Based on the findings, the highest rates of transfer of minerals were found for sewage water treatment, whereas lowest rates were found for canal water treatment, except for Na. As the transfer of minerals depends on their bioavailability, the highest values may be due to the high rates of mineral uptake by plants. Thus, the high transfer rate of some elements by plants could become toxic in future causing detrimental effect to grazing livestock. PMID:25972745

  9. The case study approach

    PubMed Central

    2011-01-01

    The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports. PMID:21707982

  10. Cave Water Studies.

    ERIC Educational Resources Information Center

    O'Keefe, Elizabeth S.

    1996-01-01

    Describes a comparative study project where seventh grade students tested water samples from 10 cave sites that had been tested 24 years ago in a study that had attempted to determine if pollution in the environment had reached cave water. Discusses lab skills and some results of the study. (JRH)

  11. Understanding farmers' intention and behavior regarding water conservation in the Middle-East and North Africa: a case study in Iran.

    PubMed

    Yazdanpanah, Masoud; Hayati, Dariush; Hochrainer-Stigler, Stefan; Zamani, Gholam Hosein

    2014-03-15

    There is a high risk of serious water shortages in Middle-East and North African countries. To decrease this threat water conservation strategies are gaining overall importance and one main focus is now on farmer's behavior. Among other dimensions it is assumed that normative issues play an important role in predicting environmental oriented intentions and actual actions. To empirically test the possible interactions the Theory of Planned Behavior was used, revised and expanded for the specific case on water management issues and applied to Iranian farmers. The results could not validate the TPB framework which emphasizes the importance of perceived behavioral control for intention and actual behavior and findings are much more in line with the Theory of Reasoned Action. Normative inclinations as well as perception of risk are found to be important for intention as well as actual water conservation behavior. Additionally, the importance and linkages of the dimensions are found to be different between sub-groups of farmers, especially between traditional water management farmers and those who already using advanced water management strategies. This raises the question if one-fits-all behavioral models are adequate for practical studies where sub-groups may very much differ in their actions. Still, our study suggests that in the context of water conservation, normative inclination is a key dimension and it may be useful to consider the role of positive, self-rewarding feelings for farmers when setting up policy measures in the region. PMID:24513405

  12. A universal calibrated model for the evaluation of surface water and groundwater quality: Model development and a case study in China.

    PubMed

    Yu, Chunxue; Yin, Xin'an; Li, Zuoyong; Yang, Zhifeng

    2015-11-01

    Water quality evaluation is an important issue in environmental management. Various methods have been used to evaluate the quality of surface water and groundwater. However, all previous studies have used different evaluation models for surface water and groundwater, and the models must be recalibrated due to changes in monitoring indicators in each evaluation. Water quality managers would benefit from a universal and effective model based on a simple expression that would be suitable for all cases of surface water and groundwater, and which could therefore serve as a standard method for a region or country. To meet this requirement, we attempted to develop a universal calibrated model based on the radial basis function neural network. In the new model, the units and values of the evaluation indicators for surface water and groundwater are normalized simultaneously to make the data directly comparable. The model's training inputs comprise the normalized value in each of a water quality indicator's grades (e.g., the nitrate contents defined in a regulatory standard for grades I to V) for all evaluation indicators. The central vector of the Gaussian function is used as the average of the evaluation indicators' normalized standard values for the five grades. The final calibrated model is expressed as an equation rather than in a programming language, and is therefore easier to use. We used the model in a Chinese case study, and found that the model was feasible (it compared well with the results of other models) and simple to use for the evaluation of surface water and groundwater quality. PMID:26280125

  13. The role of environmental variables on the efficiency of water and sewerage companies: a case study of Chile.

    PubMed

    Molinos-Senante, María; Sala-Garrido, Ramón; Lafuente, Matilde

    2015-07-01

    This paper evaluates the efficiency of water and sewerage companies (WaSCs) by introducing the lack of service quality as undesirable outputs. It also investigates whether the production frontier of WaSCs is overall constant returns to scale (CRS) or variable returns to scale (VRS) by using two different data envelopment analysis models. In a second-stage analysis, we study the influence of exogenous and endogenous variables on WaSC performance by applying non-parametric hypothesis tests. In a pioneering approach, the analysis covers 18 WaSCs from Chile, representing about 90% of the Chilean urban population. The results evidence that the technology of the sample studied is characterized overall by CRS. Peak water demand, the percentage of external workers, and the percentage of unbilled water are the factors affecting the efficiency of WaSCs. From a policy perspective, the integration of undesirable outputs into the assessment of WaSC performance is crucial not to penalize companies that provide high service quality to customers. PMID:25701244

  14. Decomposition analysis of water footprint changes in a water-limited river basin: a case study of the Haihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhi, Y.; Yang, Z. F.; Yin, X. A.

    2013-12-01

    Decomposition analysis of water footprint (WF) changes, or assessing the changes in WF and identifying the contributions of factors leading to the changes, is important to water resource management. However, conventional studies focus on WF from the perspective of administrative region rather than river basin. Decomposition analysis of WF changes from the perspective of the river basin is more scientific. To address this perspective, we built a framework in which the input-output (IO) model and the Structural Decomposition Analysis (SDA) model for WF could be implemented in a river basin by computing IO data for the river basin with the Generating Regional IO Tables (GRIT) method. This framework is illustrated in the Haihe River Basin (HRB), which is a typical water-limited river basin. It shows that the total WF in the HRB increased from 4.3 × 1010 m3 in 2002 to 5.6 × 1010 m3 in 2007, and the agriculture sector makes the dominant contribution to the increase. Both the WF of domestic products (internal) and the WF of imported products (external) increased, and the proportion of external WF rose from 29.1% to 34.4%. The technological effect was the dominant contributor to offsetting the increase of WF; however, the growth of WF caused by the economic structural effect and the scale effect was greater, so the total WF increased. This study provides insights about water challenges in the HRB and proposes possible strategies for the future, and serves as a reference for WF management and policy making in other water-limited river basins.

  15. Eco-environmental vulnerability assessment for large drinking water resource: a case study of Qiandao Lake Area, China

    NASA Astrophysics Data System (ADS)

    Gu, Qing; Li, Jun; Deng, Jinsong; Lin, Yi; Ma, Ligang; Wu, Chaofan; Wang, Ke; Hong, Yang

    2015-09-01

    The Qiandao Lake Area (QLA) is of great significance in terms of drinking water supply in East Coast China as well as a nationally renowned tourist attraction. A series of laws and regulations regarding the QLA environment have been enacted and implemented throughout the past decade with the aim of negating the harmful effects associated with expanding urbanization and industrialization. In this research, an assessment framework was developed to analyze the eco-environmental vulnerability of the QLA from 1990-2010 by integrating fuzzy analytic hierarchy process (FAHP) and geographical information systems (GIS) in an attempt to gain insights into the status quo of the QLA so as to review and evaluate the effectiveness of the related policies. After processing and analyzing the temporal and spatial variation of eco-environmental vulnerability and major environmental issues in the QLA, we found that the state of eco-environmental vulnerability of the QLA was acceptable, though a moderate deterioration was detected during the study period. Furthermore, analysis of the combination of vulnerability and water quality indicated that the water quality showed signs of declination, though the overall status remained satisfactory. It was hence concluded that the collective protection and treatment actions were effective over the study period, whereas immediately stricter measures would be required for protecting the drinking water quality from domestic sewage and industrial wastewater. Finally, the spatial variation of the eco-environmental vulnerability assessment also implied that specifically more targeted measures should be adopted in respective regions for long-term sustainable development of the QLA.

  16. Land Use Change Impacts on Water, Salt, and Nutrient Cycles: Case Study Semiarid Southern High Plains, Texas, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Reedy, R. C.; Gates, J. B.

    2009-12-01

    Land use change can have large scale impacts on the salt and nutrient cycles by changing partitioning of water at the land surface, applying irrigation and fertilizers to the system, and transporting salts and nutrients to underlying aquifers. The objective of this study was to evaluate impacts of land-use change on salt and nutrient cycles by quantifying water fluxes and salt and nutrient inventories under natural ecosystems (3 boreholes) and rain-fed agroecosystem (19 boreholes) and irrigated agroecosystem (13 boreholes) in the Southern High Plains, Texas. Salt and nutrient inventories were estimated by measuring water-extractable anion concentrations in sampled boreholes and water fluxes were estimated using the chloride mass balance approach. Large salt inventories accumulated under natural ecosystems from bulk precipitation since the Pleistocene (median chloride: 2,200 kg/ha/m; perchlorate: 46 g/ha/m; sulfate: 5,600 kg/ha/m). Conversion of natural ecosystems to rainfed agroecosystems flushed these pre-existing salt reservoirs towards and into the underlying Ogallala aquifer as a result of increased recharge rates (median of 19 profiles: 24 mm/yr). The flushed zone of rain-fed profiles are characterized by extremely low inventories of salts (chloride: 15 kg/ha/m; perchlorate: 6.3 g/ha/m; sulfate, 750 kg/ha/m). Cultivation also resulted in mineralization and nitrification of soil organic nitrogen, creating nitrate reservoirs at the leading edge of the front that represent 74% of profile nitrate-N and that are being mobilized into the aquifer. Irrigation has the greatest impact on nonpoint source contaminants by adding salts and nutrients to the system. Chloride inventories under irrigated agroecosystems (median 1,600 kg/ha/m) are similar to those under natural ecosystems (median 2,200 kg/ha/m) but accumulated over decades rather than millennia typical of natural ecosystems. Peak Cl concentrations in profiles represent evapoconcentration factors of 12-42 relative

  17. Retrieval of lake water temperature based on LandSat TM imagery: A case study in East Lake of Wuhan

    NASA Astrophysics Data System (ADS)

    Cao, Bo; Kang, Ling; Yang, Shengmei

    2013-10-01

    Lake water temperature is one of the most important parameters determining ecological conditions in lake water. With the recent development of satellite remote sensing, remotely sensed data instead of traditional sampling measurement can be used to retrieve the lake surface temperature. The East Lake located in the Wuhan city was selected as research region in this paper. The mono window algorithm has been applied to retrieve the lake water temperature of East lake basin with Landsat TM data. Through three groups of field survey data, the outcome shows that the retrieval results using the mono window model are quite approximate to the same period of the experimental region historical temperature data. So, it is feasible to utilize the remote sensing method to obtain the lake temperature. Meanwhile, the retrieval results also demonstrate that the East Lake surface temperatures from different years have the similar distribution regularity. Generally speaking, the temperature of the lake center is higher than the surrounding area. The west of lake is mostly higher than the east mainly due to the vegetation density and urbanization distribution condition. This conclusion is important to the further study on monitoring the East Lake temperature particularly in large scale.

  18. Analysis of radon in shallow-well water: a case study at Phichit subdistrict in Songkhla province, Thailand

    NASA Astrophysics Data System (ADS)

    Charoensri, A.; Siriboonprapob, S.; Sastri, N.

    2015-05-01

    Radon levels were measured in shallow-well water samples collected from Phichit subdistrict in Songkhla province, Thailand. A total of 35 water samples from shallow-wells were collected and measured for the radon concentration. The measurements were performed using a RAD7 portable radon detector. The radon concentrations varied from 0.18 ± 0.07 to 98.1 ± 5.92 Bq/L with a mean value of 16.76 ± 2.33 Bq/L. These recorded values were compared with the safe limit values recommended for drinking water by various health and environmental protection agencies. Thirty-four percent of the recorded values were within the safe limit of 11 Bq/L recommended by the US Environmental Protection Agency. The annual effective dose from ingestion and inhalation of radon was also evaluated. The estimated total effective dose varied from 0.48 to 262.91 μSv/year. The total effective dose in most of the samples (∼90%) in this study was within the safe limit (0.1 mSv/year) recommended by the World Health Organization (WHO) and the European Council.

  19. Estimation of Agricultural Water Consumption from Meteorological and Yield Data: A Case Study of Hebei, North China

    PubMed Central

    Yuan, Zaijian; Shen, Yanjun

    2013-01-01

    Over-exploitation of groundwater resources for irrigated grain production in Hebei province threatens national grain food security. The objective of this study was to quantify agricultural water consumption (AWC) and irrigation water consumption in this region. A methodology to estimate AWC was developed based on Penman-Monteith method using meteorological station data (1984–2008) and existing actual ET (2002–2008) data which estimated from MODIS satellite data through a remote sensing ET model. The validation of the model using the experimental plots (50 m2) data observed from the Luancheng Agro-ecosystem Experimental Station, Chinese Academy of Sciences, showed the average deviation of the model was −3.7% for non-rainfed plots. The total AWC and irrigation water (mainly groundwater) consumption for Hebei province from 1984–2008 were then estimated as 864 km3 and 139 km3, respectively. In addition, we found the AWC has significantly increased during the past 25 years except for a few counties located in mountainous regions. Estimations of net groundwater consumption for grain food production within the plain area of Hebei province in the past 25 years accounted for 113 km3 which could cause average groundwater decrease of 7.4 m over the plain. The integration of meteorological and satellite data allows us to extend estimation of actual ET beyond the record available from satellite data, and the approach could be applicable in other regions globally where similar data are available. PMID:23516537

  20. Effects of Weathering at Waste Rock Dump on Water Quality Inside the Mine Wastes; A Case Study in Korea

    NASA Astrophysics Data System (ADS)

    Yim, G.; Cheong, Y.; Park, H.; Ji, S.; Lee, H.

    2008-05-01

    This study was carried out to investigate the route of acid rock drainage production and some of the important factors at the abandoned Geo-pung copper mine in Okcheon, Korea. In this research area, planting and remediation have been carried out to prevent environmental pollution, but these effects turned out to be a failure and that acid rock drainage is observed around waste rock dump and planted vegetation is dying. Currently, the slope of mine waste rock dump in the study site is about 40°. It is composed of particles with a variety of shapes, with the surface exposure to atmosphere being transformed to oxide minerals due to weathering. Since groundwater level underneath the mine wastes is directly related to rainfall, a comparative evaluation of weather records and groundwater level data obtained using on-site measuring device (CTD diver) would allow estimation of locational media-specific pattern of rainfall effect in term of infiltration flux and time of threshold impact on groundwater. Sampling and analysis of there borehole water were conducted in July and September, 2007. It was found that all of the borehole water had highly variable levels of Fe (0.4-588 mg/l), Al (8.2-41.9 mg/l), Cu (6.0-32.2 mg/l), Zn (22.2-226.7 mg/l) and other elements. Also, in general, pH of the borehole waters decreased while electric conducivity measured. Such a high variance in the water quality among different borehole water suggests that geochemical environment inside the mine wastes is largely dependent on the local variation in rainfall infiltration of waste rock dump and underneath groundwater level. Vadose zone which has vertical variation of 2-4 m is directly impacted by amount of rainfall and maintains oxidizing condition due to diffusion of oxygen carred by rainfall. Therefore, sulfide minerals within in the zone continued to be oxidized, producing acid rock drainage. To prevent production of acid rock drainage of mine waste, it is necessary to control infiltration of

  1. [Qualitative case study].

    PubMed

    Debout, Christophe

    2016-06-01

    The qualitative case study is a research method which enables a complex phenomenon to be explored through the identification of different factors interacting with each other. The case observed is a real situation. In the field of nursing science, it may be a clinical decision-making process. The study thereby enables the patient or health professional experience to be conceptualised. PMID:27338694

  2. SETDA Case Studies 2012

    ERIC Educational Resources Information Center

    State Educational Technology Directors Association, 2012

    2012-01-01

    The State Educational Technology Directors Association (SETDA) published a series of case studies from 28 states to showcase examples of how ARRA EETT ("American Recovery and Reinvestment Act of 2009 Enhancing Education Through Technology") grant funds have impacted teaching and learning. SETDA collected data for the case studies through a variety…

  3. A semi-analytical total suspended sediment retrieval model in turbid coastal waters: a case study in Changjiang River Estuary.

    PubMed

    Chen, Jun; D'Sa, Eurico; Cui, Tingwei; Zhang, Xunhua

    2013-06-01

    A simple semi-analytical model to estimate total suspended sediment matter (3S) was established for estimating TSM concentrations in Changjiang River Estuary. The results indicate that 3S model with near-infrared wavelengths provide good estimates of TSM concentrations in the study region. Furthermore, the applicability of 3S model was evaluated using an independent data set taken from Oujiang river estuary during September 2012. The results indicate that providing an available atmospheric correction scheme for satellite imagery, the 3S model could be used for quantitative monitoring of TSM concentration in coastal waters, even though local bio-optical information is still needed to reinitialize the model. PMID:23736555

  4. The influence of tillage on field scale water fluxes and maize yields in semi-arid environments: A case study of Potshini catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Kosgei, J. R.; Jewitt, G. P. W.; Kongo, V. M.; Lorentz, S. A.

    Water is a limiting resource to crop production in arid and semi-arid lands (ASALs) and is responsible for substantial yield losses annually. These lands are often occupied by resource poor smallholder rainfed farmers who have little capacity to establish conventional irrigation infrastructure to mitigate recurrent droughts and dry spells. In situ water harvesting techniques in the form of conservation agriculture practices have been identified and promoted as measures that can improve soil water availability and thus enhance crop yields. Land use practices e.g. tillage influences mechanisms of lateral flow, infiltration, storage, redistribution and residence times of water at field scale. Such alterations in flow paths have not been adequately studied in ASALs where small perturbations at field scale upstream of a catchment may have significant effects downstream. Quantifying these fluxes enables better understanding of productive and non-productive water transition processes and thus to evaluate cropping and management systems. On this study the effects of tillage on water fluxes, soil physical properties and maize ( Zea mays L.) yields were examined at three sites in the Potshini catchment, South Africa. Measurements were made on plots under no-till ( NT) and conventional till ( CT) practices. Seasonal analysis indicated that nearly twice as much runoff was generated from CT treatments when compared to NT plots. However, this was not the case at the beginning of the season. The moisture content in the root zone was significantly higher in NT treatments. Maize yield was also higher in NT compared to CT plots.

  5. Correction of interstitial water changes in calibration methods applied to XRF core-scanning major elements in long sediment cores: Case study from the South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Kissel, Catherine; Govin, Aline; Liu, Zhifei; Xie, Xin

    2016-05-01

    Fast and nondestructive X-ray fluorescence (XRF) core scanning provides high-resolution element data that are widely used in paleoclimate studies. However, various matrix and specimen effects prevent the use of semiquantitative raw XRF core-scanning intensities for robust paleoenvironmental interpretations. We present here a case study of a 50.8 m-long piston Core MD12-3432 retrieved from the northern South China Sea. The absorption effect of interstitial water is identified as the major source of deviations between XRF core-scanning intensities and measured element concentrations. The existing two calibration methods, i.e., normalized median-scaled calibration (NMS) and multivariate log-ratio calibration (MLC), are tested with this sequence after the application of water absorption correction. The results indicate that an improvement is still required to appropriately correct the influence of downcore changes in interstitial water content in the long sediment core. Consequently, we implement a new polynomial water content correction in NMS and MLC methods, referred as NPS and P_MLC calibrations. Results calibrated by these two improved methods indicate that the influence of downcore water content changes is now appropriately corrected. We therefore recommend either of the two methods to be applied for robust paleoenvironmental interpretations of major elements measured by XRF-scanning in long sediment sequences with significant downcore interstitial water content changes.

  6. Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area.

    PubMed

    Qiu, Zhongfeng; Zheng, Lufei; Zhou, Yan; Sun, Deyong; Wang, Shengqiang; Wu, Wei

    2015-09-21

    An innovative algorithm is developed and validated to estimate the turbidity in Zhejiang coastal area (highly turbid waters) using data from the Geostationary Ocean Color Imager (GOCI). First, satellite-ground synchronous data (n = 850) was collected from 2014 to 2015 using 11 buoys equipped with a Yellow Spring Instrument (YSI) multi-parameter sonde capable of taking hourly turbidity measurements. The GOCI data-derived Rayleigh-corrected reflectance (R(rc)) was used in place of the widely used remote sensing reflectance (R(rs)) to model turbidity. Various band characteristics, including single band, band ratio, band subtraction, and selected band combinations, were analyzed to identify correlations with turbidity. The results indicated that band 6 had the closest relationship to turbidity; however, the combined bands 3 and 6 model simulated turbidity most accurately (R(2) = 0.821, p<0.0001), while the model based on band 6 alone performed almost as well (R(2) = 0.749, p<0.0001). An independent validation data set was used to evaluate the performances of both models, and the mean relative error values of 42.5% and 51.2% were obtained for the combined model and the band 6 model, respectively. The accurate performances of the proposed models indicated that the use of R(rc) to model turbidity in highly turbid coastal waters is feasible. As an example, the developed model was applied to 8 hourly GOCI images on 30 December 2014. Three cross sections were selected to identify the spatiotemporal variation of turbidity in the study area. Turbidity generally decreased from near-shore to offshore and from morning to afternoon. Overall, the findings of this study provide a simple and practical method, based on GOCI data, to estimate turbidity in highly turbid coastal waters at high temporal resolutions. PMID:26406748

  7. Iron Isotope Variations in Reduced Groundwater and in Drinking Water Supplies: A Case Study of Hanoi, Vietnam

    NASA Astrophysics Data System (ADS)

    Teutsch, N.; Berg, M.; von Gunten, U.; Halliday, A.

    2004-12-01

    In reduced groundwater iron is involved in biotic and abiotic transformation processes, both of which could lead to iron isotope fractionation. The reduced groundwater aquifers in the area of the Vietnamese capital of Hanoi are the main drinking water sources for the city. These groundwaters contain arsenic, which imposes a serious health threat to millions of people. Dissolved arsenic is related to the reducing conditions prevalent in the groundwater, and iron and arsenic contents are correlated in the sediments. We are employing iron isotope composition as a tool to better understand the processes leading to the transformation of iron in the groundwater and its role in various biogeochemical processes in reduced environments. Drinking water is supplied to the city of Hanoi from several water treatment plants (WTP) which pump the raw groundwater from a lower aquifer, while the rural surroundings pump untreated groundwater from an upper aquifer by private tubewells. Surface water from the Red River delta is the main source of recharge to these two aquifers. Due to high content of particulate natural organic matter (NOM) in the sediment leading to extensive microbial activity, the groundwaters are anoxic and rich in dissolved iron(II). The iron(II) removal in the WTPs is carried by a multi-step treatment including aeration, settling, filtration, and chlorination. We have collected natural groundwater samples for isotopic analysis from two aquifers at several locations, a groundwater depth profile and its corresponding sediment phases from the upper aquifer and the underlying aquitard, raw and treated water from several WTPs, as well as the corresponding iron(III) precipitates. The iron concentrations of groundwaters analysed in this study range from 3 to 28 mg/L and δ 57Fe (57/54 deviation from IRMM 014) values vary between -1.2 and +1.5 ‰ . The sediment depth profile has a δ 57Fe around +0.3 ‰ , which implies that the high values obtained in the groundwater

  8. The KULTURisk Regional Risk Assessment methodology for water-related natural hazards - Part 2: Application to the Zurich case study

    NASA Astrophysics Data System (ADS)

    Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A.

    2014-07-01

    The main objective of the paper is the application of the KULTURisk Regional Risk Assessment (KR-RRA) methodology, presented in the companion paper (Part 1, Ronco et al., 2014), to the Sihl River valley, in Switzerland. Through a tuning process of the methodology to the site-specific context and features, flood related risks have been assessed for different receptors lying on the Sihl River valley including the city of Zurich, which represents a typical case of river flooding in urban area. After characterizing the peculiarities of the specific case study, risk maps have been developed under a 300 years return period scenario (selected as baseline) for six identified relevant targets, exposed to flood risk in the Sihl valley, namely: people, economic activities (including buildings, infrastructures and agriculture), natural and semi-natural systems and cultural heritage. Finally, the total risk index map, which allows to identify and rank areas and hotspots at risk by means of Multi Criteria Decision Analysis tools, has been produced to visualize the spatial pattern of flood risk within the area of study. By means of a tailored participative approach, the total risk maps supplement the consideration of technical experts with the (essential) point of view of the relevant stakeholders for the appraisal of the specific scores and weights related to the receptor-relative risks. The total risk maps obtained for the Sihl River case study are associated with the lower classes of risk. In general, higher relative risks are concentrated in the deeply urbanized area within and around the Zurich city centre and areas that rely just behind to the Sihl River course. Here, forecasted injuries and potential fatalities are mainly due to high population density and high presence of old (vulnerable) people; inundated buildings are mainly classified as continuous and discontinuous urban fabric; flooded roads, pathways and railways, the majority of them referring to the Zurich main

  9. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    PubMed

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake. PMID:21516445

  10. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir.

    PubMed

    Liang, Shidong; Jia, Haifeng; Xu, Changqing; Xu, Te; Melching, Charles

    2016-08-01

    Facing increasingly serious water pollution, the Chinese government is changing the environmental management strategy from solely pollutant concentration control to a Total Maximum Daily Load (TMDL) program, and water quality models are increasingly being applied to determine the allowable pollutant load in the TMDL. Despite the frequent use of models, few studies have focused on how parameter uncertainty in water quality models affect the allowable pollutant loads in the TMDL program, particularly for complicated and high-dimension water quality models. Uncertainty analysis for such models is limited by time-consuming simulation and high-dimensionality and nonlinearity in parameter spaces. In this study, an allowable pollutant load calculation platform was established using the Environmental Fluid Dynamics Code (EFDC), which is a widely applied hydrodynamic-water quality model. A Bayesian approach, i.e. the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is a high-efficiency, multi-chain Markov Chain Monte Carlo (MCMC) method, was applied to assess the effects of parameter uncertainty on the water quality model simulations and its influence on the allowable pollutant load calculation in the TMDL program. Miyun Reservoir, which is the most important surface drinking water source for Beijing, suffers from eutrophication and was selected as a case study. The relations between pollutant loads and water quality indicators are obtained through a graphical method in the simulation platform. Ranges of allowable pollutant loads were obtained according to the results of parameter uncertainty analysis, i.e. Total Organic Carbon (TOC): 581.5-1030.6t·yr(-1); Total Phosphorus (TP): 23.3-31.0t·yr(-1); and Total Nitrogen (TN): 480-1918.0t·yr(-1). The wide ranges of allowable pollutant loads reveal the importance of parameter uncertainty analysis in a TMDL program for allowable pollutant load calculation and margin of safety (MOS) determination. The sources

  11. Application of MODIS Products to Infer Possible Relationships Between Basin Land Cover and Coastal Waters Turbidity Using the Magdalena River, Colombia, as a Case Study

    NASA Technical Reports Server (NTRS)

    Madrinan, Max Jacobo Moreno; Cordova, Africa Flores; Olivares, Francisco Delgado; Irwin, Dan

    2012-01-01

    Basin development and consequent change in basin land cover have been often associated with an increased turbidity in coastal waters because of sediment yield and nutrients loading. The later leads to phytoplankton abundance further exacerbating water turbidity. This subsequently affects biological and physical processes in coastal estuaries by interfering with sun light penetration to coral reefs and sea grass, and even affecting public health. Therefore, consistent estimation of land cover changes and turbidity trend lines is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Ground solely methods to estimate land cover change would be unpractical and traditional methods of monitoring in situ water turbidity can be very expensive and time consuming. Accurate monitoring on the status and trends of basin land cover as well as the water quality of the receiving water bodies are required for analysis of relationships between the two variables. Use of remote sensing (RS) technology provides a great benefit for both fields of study, facilitating monitoring of changes in a timely and cost effective manner and covering wide areas with long term measurements. In this study, the Magdalena River basin and fixed geographical locations in the estuarine waters of its delta are used as a case to study the temporal trend lines of both, land cover change and the reflectance of the water turbidity using satellite technology. Land cover data from a combined product between sensors Terra and Aqua (MCD12Q1) from MODIS will be adapted to the conditions in the Magdalena basin to estimate changes in land cover since year 2000 to 2009. Surface reflectance data from a MODIS, Terra (MOD09GQ), band 1, will be used in lieu of in situ water turbidity for the time period between 2000 and present. Results will be compared with available existing data.

  12. An evaluation method of the sustainability of water resource in karst region: a case study of Zunyi, China

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wang, Ganlu; Ding, Hanghang; Chen, Yulong

    2015-11-01

    Water resource is of great significance to the survival and development of human. However, the water resource system in karst regions is sensitive to external interference owing to the special geological processes which cause soil impoverishment, severe rocky desertification and large topographic height difference. Therefore, evaluating the sustainability of the water resource in karst regions is beneficial to reasonably use and protect water resource. This paper puts forward to evaluate the water resource from four aspects, including water resources system, water requirement system, ecosystem and social economic system. Moreover, on this basis, 18 evaluation indexes were selected to construct the sustainability evaluation index system and method. This method was used to evaluate the sustainability of the water resource in the typical karst region—Zunyi, Guizhou province, China, and was verified according to the actual situation in the research area. All these provide reference for the evaluation of the sustainability of the water resource in similar regions.

  13. Spatiotemporal Water body Change Detection Using Multi-temporal Landsat Imagery: Case Studies of Lake Enriquillo and Lake Azuei

    NASA Astrophysics Data System (ADS)

    Moknatian, M.; Piasecki, M.

    2015-12-01

    One of the most valuable sources of data is Landsat imagery when in-situ data is absent. The Landsat satellite observations are also among the most widely used sources of data in remote sensing of water resources. The purpose of this study is to investigate the water body changes of the two biggest lakes of Hispaniola Island for the past 30 years, using remote sensing techniques when there are no in-situ measurements available. Lake Azuei in Haiti and Lake Enriquillo in the Dominican Republic both have been changing constantly in their quality and quantity. Unexpected growth of the two lakes has been observed since 2003, leaving the area with many ecological and socio-economic complications affecting thousands of local peoples' lives during the past 12 years. Such phenomena are expected to be due to the influence of climate change on the lakes. One of the main key components to investigate this hypothesis is first to detect and map the patterns of changes of the lakes over time. 100 Landsat 4-5 TM and 192 Landsat 7-ETM+ scenes acquired from 1984 to 2014 were analyzed to investigate the surface area changes for each lake. Almost 60% of the images are fully or partially cloudy which makes it difficult to picture the full extent of the lakes and consequently calculate their surface area. Moreover, 65% of images have gaps due to the failure of the ETM+ scan line corrector (SLC) since 2003 which adds to the problem. To solve this problem, we developed an algorithm to identify and classify clouds and cloud shadows using blue and Thermal bands; remove them from the scene and then detect water body using Normalized Difference Water Index (NDWI) using Green and NIR bands. The next step was to fill the gaps which were created after removing clouds and stripes from the scenes. Toward this end, we decided to complete each image using the previous or next available image. 95% of the images have been processed and surface area has been calculated for both lakes. Using the

  14. Assessing the regional spatio-temporal pattern of water stress: A case study in Zhangye City of China

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Liu, Bing; Zhang, Weige; Jin, Gui; Li, Zhaohua

    Water scarcity and stress have attracted increasing attention as water has become increasingly regarded as one of the most critical resources in the world's sustainable development. The Water Poverty Index (WPI), an interdisciplinary but straightforward measure that considers water availability from both the bio-geophysical perspective and the socio-economic perspective of people's capacity to access water, has been successfully applied at national, regional, and local levels around the world. However, the general assessment of water stress at a macro level over only a snapshot limits the understanding of the geographic differences in and dynamics of water stress; this will, in turn, mislead decision-makers and may result in improper water strategies being implemented. In addition, to date, the typologies and trajectories of water stress have been underexplored. To fill this knowledge gap, we examine the spatio-temporal patterns, trajectories, and typologies of water stress using an adapted WPI for six counties in Zhangye City, which lies within an arid region of China, in order to provide policy priorities for each county. The results of our assessment indicate that water stress has become more severe over time (2005-2011) in most of the counties in Zhangye City. The results also show a distinct spatial variation in water scarcity and stress. Specifically, the results for Shandan county reflect its progressive policies on water access and management, and this county is regarded as engaging in good water governance. In contrast, Ganzhou district has faced more severe water pressure and is regarded as practicing poor water governance. Typology results show that each county faces its own particular challenges and opportunities in the context of water scarcity and stress. In addition, the trajectory map reveals that none of the counties has shown substantial improvement in both water access and management, a finding that should draw decision-makers' close attention.

  15. A population-based case-control study of drinking-water nitrate and congenital anomalies using Geographic Information Systems (GIS) to develop individual-level exposure estimates.

    PubMed

    Holtby, Caitlin E; Guernsey, Judith R; Allen, Alexander C; Vanleeuwen, John A; Allen, Victoria M; Gordon, Robert J

    2014-02-01

    Animal studies and epidemiological evidence suggest an association between prenatal exposure to drinking water with elevated nitrate (NO3-N) concentrations and incidence of congenital anomalies. This study used Geographic Information Systems (GIS) to derive individual-level prenatal drinking-water nitrate exposure estimates from measured nitrate concentrations from 140 temporally monitored private wells and 6 municipal water supplies. Cases of major congenital anomalies in Kings County, Nova Scotia, Canada, between 1988 and 2006 were selected from province-wide population-based perinatal surveillance databases and matched to controls from the same databases. Unconditional multivariable logistic regression was performed to test for an association between drinking-water nitrate exposure and congenital anomalies after adjusting for clinically relevant risk factors. Employing all nitrate data there was a trend toward increased risk of congenital anomalies for increased nitrate exposure levels though this was not statistically significant. After stratification of the data by conception before or after folic acid supplementation, an increased risk of congenital anomalies for nitrate exposure of 1.5-5.56 mg/L (2.44; 1.05-5.66) and a trend toward increased risk for >5.56 mg/L (2.25; 0.92-5.52) was found. Though the study is likely underpowered, these results suggest that drinking-water nitrate exposure may contribute to increased risk of congenital anomalies at levels below the current Canadian maximum allowable concentration. PMID:24503976

  16. An integrated environmental decision support system for water pollution control based on TMDL--A case study in the Beiyun River watershed.

    PubMed

    Zhang, Shanghong; Li, Yueqiang; Zhang, Tianxiang; Peng, Yang

    2015-06-01

    This paper details the development and application of an integrated environmental decision support system (EDSS) for water pollution control based on total maximum daily load (TMDL). The system includes an infrastructure, simulation, and application platforms. Using the water pollution control of Beiyun River in China as a case study, the key development processes and technologies of the EDSS are discussed including relations and links between various environmental simulation models, and model integration, visualization and real-time simulation methods. A loose coupling method is used to connect the environmental models, and an XML file is used to complete data exchange between different models. Project configuration and scheme configuration are used for simulation data organization. The integration approach is easy to implement and enables different development languages and reuse of existing models. The EDSS has been applied to water environment management of Beiyun River, and can be applied to other geographic regions. PMID:25791234

  17. Measuring turbidity, and indicator to evaluate drinkability of waters in Southern countries? Approaches from Burkina Faso, Sudan and Argentina case studies

    NASA Astrophysics Data System (ADS)

    Lavie, Emilie; Robert, Elodie

    2013-04-01

    The relationship between proportion of suspended solids, dissolved oxygen and bacteriology has long been proven (Brock, 1966; Lechevallier et al., 1985; Bustina and Levallois, 2003; Chang and Liao, 2012), bacteria need coarse elements to hang on and develop. However, water bacteriology analyses are difficult to implement in southern countries. They are expensive and require sterile equipment, transport in cold conditions and a nearby laboratory, which remains difficult in remote areas under these hot latitudes. Yet, simple measurement devices allow to know in a few minutes the water turbidity. Is turbidity an efficient tool to evaluate the drinkability of water when no bacteriological analyses are possible? The results proposed here are taken from three different studies whose purposes were to measure different physical, chemical and bacteriological parameters of water used for human and/or animal consumption. One of the finalities was to propose a method, at lower cost, to evaluate the drinkability of water for consumption. Four case studies were chosen: the basin of the Doubegue River in Burkina Faso is a rural area of a developing country, where drinking water is taken from the alluvial aquifer close to the surface. Furthermore, the laundry is washed and the children play in running streams. Major expansion of the cultivated lands since 1980s has brought important soils losses, thus a chronicle contamination of surface water with suspended solids (Robert, 2012). The Mendoza and Tunuyán Rivers Basins in Argentina, an emerging country, have snow-glaciar regimes with naturally turbid waters. They supply drinking water to two towns, Mendoza and Tunuyán cities, respectively 1 million and 40,000 inhabitants. However, these two streams -whose watersheds are common- do not present the same managements: the Mendoza River has been equipped with large hydraulic infrastructures, moving the turbid waters into clear and erosive ones (Lavie, 2009), while the Tunuyán River

  18. Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

  19. Impacts of Climate and Land-cover Changes on Water Resources in a Humid Subtropical Watershed: a Case Study from East Texas, USA

    NASA Astrophysics Data System (ADS)

    Heo, J.

    2015-12-01

    This study investigates an interconnected system of climate change - land cover - water resources for a watershed in humid subtropical climate from 1970 to 2009. A 0.7°C increase in temperature and a 16.3% increase in precipitation were observed in our study area where temperature had no obvious increase trend and precipitation showed definite increasing trend compared to previous studies. The main trend of land-cover change was conversion of vegetation and barren lands to developed and crop lands affected by human intervention, and forest and grass to bush/shrub which considered to be caused by natural climate system. Precipitation contribution to the other hydrologic parameters for a humid subtropical basin is estimated to be 51.9% of evapotranspiration, 16.3% of surface runoff, 0.9% of groundwater discharge, 19.3% of soil water content, and 11.6% of water storage. It shows little higher evapotranspiration and considerably lower surface runoff compare to other humid climate area due to vegetation dominance of land cover. Hydrologic responses to climate and land cover changes are increases of surface runoff, soil water content, evapotranspiration by 15.0%, 2.7%, and 20.1%, respectively, and decrease of groundwater discharge decreased by 9.2%. Surface runoff is relatively stable with precipitation while groundwater discharge and soil water content are sensitive to land cover changes especially human intervention. If temperature is relatively stable, it is considered to be land cover plays important role in evapotranspiration. Citation: Heo, J., J. Yu, J. R. Giardino, and H. Cho (2015), Impacts of climate and land-cover changes on water resources in a humid subtropical watershed: a case study from East Texas, USA, Water Environ. J., 29, doi:10.1111/wej.12096

  20. Impacts of Urban Water Conservation Strategies on Energy, Greenhouse Gas Emissions, and Health: Southern California as a Case Study

    PubMed Central

    Sokolow, Sharona; Godwin, Hilary

    2016-01-01

    Objectives. To determine how urban water conservation strategies in California cities can affect water and energy conservation efforts, reduce greenhouse gas emissions, and benefit public health. Methods. We expanded upon our 2014 health impact assessment of California's urban water conservation strategies by comparing the status quo to 2 options with the greatest potential impact on the interrelated issues of water and energy in California: (1) banning landscape irrigation and (2) expanding alternative water sources (e.g., desalination, recycled water). Results. Among the water conservation strategies evaluated, expanded use of recycled water stood out as the water conservation strategy with potential to reduce water use, energy use, and greenhouse gas emissions, with relatively small negative impacts for the public’s health. Conclusions. Although the suitability of recycled water for urban uses depends on local climate, geography, current infrastructure, and finances, analyses similar to that presented here can help guide water policy decisions in cities across the globe facing challenges of supplying clean, sustainable water to urban populations. PMID:26985606

  1. [Calculation model of urban water resources ecological footprint and its application: a case study in Shenyang City of Northeast China].

    PubMed

    Wang, Jian; Zhang, Chao-Xing; Yu, Ying-Tan; Li, Fa-Yun; Ma, Fang

    2012-08-01

    Water resources ecological footprint can directly reflect the pressure of human social and economic activities to water resources, and provide important reference for the rational utilization of water resources. Based on the existing ecological footprint models and giving full consideration of the water resources need of urban ecological system, this paper established a new calculation model of urban water resources ecological footprint, including domestic water account, process water account, public service water account, and ecological water requirement account. According to the actual situation of Shenyang City, the key parameters of the model were determined, and the water resources ecological footprint and ecological carrying capacity of the City were calculated and analyzed. From 2000 to 2009, the water resources ecological footprint per capita of the City presented an overall decreasing trend, but still had an annual ecological deficit. As compared to that in 2000, the water resources ecological footprint per capita was decreased to 0.31 hm2 in 2005, increased slightly in 2006 and 2007, and remained stable in 2008 and 2009, which suggested that the sustainable utilization of water resources in Shenyang City had definite improvement, but was still in an unsustainable development situation. PMID:23189707

  2. Assessing domestic water use habits for more effective water awareness campaigns during drought periods: a case study in Alicante, Eastern Spain

    NASA Astrophysics Data System (ADS)

    March, H.; Hernández, M.; Saurí, D.

    2014-11-01

    The design of water awareness campaigns could benefit from knowledge on the specific characteristics of domestic water use and of the factors that may influence certain water consumption habits. This paper investigates water use in 450 households of 10 municipalities of drought prone Alicante (Spain) with the objective of increasing knowledge about existing domestic water behavior and therefore help to improve the design and implementation of future water awareness campaigns. The survey results indicate that users already follow many of the conservation practices mentioned in messages. Moreover, campaigns need to take into account the differences in water use and habits derived from differences in urban models (concentrated or disperse).

  3. A Climate Change Screening Tool for Assessment of Adaptation in Water Sector: a case study in the Haihe River Basin(China)

    NASA Astrophysics Data System (ADS)

    Li, H.; Xia, Jun; Wang, Jinxia; Zhang, Yongyong

    2009-04-01

    The impending of climate changes has already presented risks to the efficiency and effectiveness of development investments globally. In order to minimize negative impacts and maximize opportunities, adaptations to climate changes play a crucial role in development planning and project management increasingly. But before the adaptation designing and implementation, it should be evaluated. An interdisciplinary screening frame work was developed to evaluate the adaptations in this paper. It includes 6 parts, which are project description, problems analysis, identifying climate-sensitive components, semi-quantitative analysis, benefit-cost analysis and multi criteria analysis. In this paper, we selected the "Water Conservation Project of China" funded by World Bank as case study. One of the main objectives of this project is to reduce the scarcity in Haihe River Basin in North China. The applying of modified CAPSIM-PODIUM illustrated, in 2030, climate change will significantly impact on water demand, supply and scarcity in Haihe River Basin. To rebalance the water scarcity caused by climate change, a mixing price policy, which is easier to bring into effect than other price policy was selected. The result of evaluation showed it will be both economic efficiency based on benefit-cost analysis, and technologic possible when we take irrigation efficiency into consideration in future. For "do nothing policy" is also a choice responding to climate change, we used multi criteria analysis, which is an important compensation of Benefit-Cost analysis , to compare it with "mix water pricing policy". The score of "mix water pricing policy" was higher than "do nothing policy" in this case study, which means it's a feasible policy to reduce water scarcity caused by economic development and climate change in Haihe River Basin.

  4. Distribution of hydro-biological parameters in coastal waters off Rushikulya Estuary, East Coast of India: a premonsoon case study.

    PubMed

    Baliarsingh, S K; Srichandan, S; Naik, S; Sahu, K C; Lotliker, Aneesh A; Kumar, T S

    2013-08-15

    The hydro-biological parameters of coastal waters off Rushikulya estuary was investigated during premonsoon 2011. Important hydro-biological parameters such as water temperature, salinity, pH, DO, NO2, NO3, NH4, PO4, SiO4, TSM, Chl-a, phytoplankton and zooplankton were measured during the present study. Temperature established a strong positive correlation with salinity and pH during the present study. Chl-a found in positive relation with NO3, SiO, and TSM. Analysis of variance revealed significant monthly variation in pH, salinity and TSM. Significant station wise variation was observed in DO and most of the nutrients i.e., NO3, NH4, PO4, SiO4. A total of 119 species of phytoplankton were identified of which 84 species are of diatoms, 22 species of dinoflagellates, 7 species of green algae, 5 species of cyanobacteria (blue green algae) and 1 species of cocolithophore. Phytoplankton abundance varied between 25543 (Nos. L(-1)) and 36309 (Nos. L(-1)). Diatoms dominated the phytoplankton community followed by dinoflagellates in all the months. Diatoms contributed to 82-89% of the total phytoplankton population density whereas dinoflagellates contributed to 6-12%. The regression between Chl-a and phytoplankton abundance resulted with weak relation (R(2) = 0.042). Zooplankton fauna composed of 134 species of holoplankton and 20 types of meroplankton were encountered during the study period. Zooplankton population dominated by copepod during all months and accounted for 74 to 85% to the total zooplankton. The population density ranged from 6959 to 35869 Nos./10 m(3). Analysis of variance explained no significant variation in total zooplankton abundance and also for different groups of zooplankton. PMID:24498830

  5. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa

    USGS Publications Warehouse

    Yang, X.; Jin, W.

    2010-01-01

    Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.

  6. Validation of the Atmospheric Infrared Sounder Water Vapor Retrievals Using Global Positioning System: Case Study in South Korea

    NASA Astrophysics Data System (ADS)

    Won, Jihye; Park, Kwan-Dong; Kim, Dusik; Ha, Jihyun

    2011-12-01

    The atmospheric infrared sounder (AIRS) sensor loaded on the Aqua satellite observes the global vertical structure of atmosphere and enables verification of the water vapor distribution over the entire area of South Korea. In this study, we performed a comparative analysis of the accuracy of the total precipitable water (TPW) provided as the AIRS level 2 standard retrieval product by Jet Propulsion Laboratory (JPL) over the South Korean area using the global positioning system (GPS) TPW data. The analysis TPW for the period of one year in 2008 showed that the accuracy of the data produced by the combination of the Advanced Microwave Sounding Unit sensor with the AIRS sensor to correct the effect of clouds (AIRS-X) was higher than that of the AIRS IR-only data (AIRS-I). The annual means of the root mean square error with reference to the GPS data were 5.2 kg/m2 and 4.3 kg/m2 for AIRS-I and AIRS-X, respectively. The accuracy of AIRS-X was higher in summer than in winter while measurement values of AIRS-I and AIRS-X were lower than those of GPS TPW to some extent.

  7. Quantification and multivariate analysis of water erosion in the Mediterranean region. A case study of the Isser basin. northern Algeria

    NASA Astrophysics Data System (ADS)

    Zeggane, Houari; Boutoutaou, Djamel

    2016-07-01

    In the Mediterranean region, the specifisity of erosion stems from a particularly contrasted climate, drought, and from summer and autumn severe thunderstorms. The process of erosion generates substantial loss of soil and affects any kind of crop. The adopted approach aims to establish regression models in order to highlight the relationship between solid and liquid flows at four measurement stations in the Isser catchement area, northern Ageria. The Power Model seems to explain this relationship. The quantification and temporal analysis of solid matter transport showed that the rates of erosion are high along the study area. The annual mean solid matter transport for the whole basin is about 2 200 t/km2.year, of which the main part is recorded in autumn during peak flows. The different factors involved in the process of water erosion are determined in advance in order to establish a model between the predictand variable, which is the specific erosion, and other predictors. Besides, a functional relationship has been highlighted between water erosion and the mean slope, the drainage density and the lithology index.

  8. Inferring the interconnections between surface water bodies, tile-drains and an unconfined aquifer-aquitard system: A case study

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Di Giuseppe, D.; Faccini, B.; Ferretti, G.; Mastrocicco, M.; Coltorti, M.

    2016-06-01

    Shallow lenses in reclaimed coastal areas are precious sources of freshwater for crop development, but their seasonal behaviour is seldom known in tile-drained fields. In this study, field monitoring and numerical modelling provide a robust conceptual model of these complex environments. Crop and meteorological data are used to implement an unsaturated flow model to reconstruct daily recharge. Groundwater fluxes and salinity, water table elevation, tile-drains' discharge and salinity are used to calibrate a 2D density-dependent numerical model to quantify non-reactive solute transport within the aquifer-aquitard system. Results suggest that lateral fluxes in low hydraulic conductivity sediments are limited, while water table fluctuation is significant. The use of depth-integrated monitoring to calibrate the model results in poor efficiency, while multi-level soil profiles are crucial to define the mixing zone between fresh and brackish groundwater. Measured fluxes and chloride concentrations from tile-drains not fully compare with calculated ones due to preferential flow through cracks.

  9. Complex Bedforms and Complex Water Masses: A Case Study from the Tertiary to Present-day, Pelotas Basin, Offshore Uruguay

    NASA Astrophysics Data System (ADS)

    Thompson, P.; Badalini, G.; Wrigley, S.; Walker, R.; Argent, J.; Hernandez-Molina, J.; de Santa Ana, H.; Soto, M.; Tomasini, J.

    2015-12-01

    Contour currents are commonly associated with bedform development on modern seabeds yet there is a general paucity of published examples from the ancient record. Recently acquired 3D seismic data, covering over 13000km2 of the Pelotas Basin, offshore Uruguay, provides a unique opportunity to study the architecture and development of a variety of bedform. The data shows that, throughout the Tertiary, contour currents were the dominant control on sedimentation along the Uruguayan margin. The first evidence of contour current activity is during the Early Tertiary in the form of a major regional unconformity that, even though it was fully subaqueous, does not show any major features associated with downslope sedimentation. In the mid-slope region, the unconformity coincides with an extensive (1500km2) intra-slope scour-field orientated parallel to the slope. Individual scours are up to 40m deep, 500m wide and 3km long. Coeval with these scours are a group of coalesced basin floor scours, which run parallel to the base of slope and extend over 400km2. Individual scours exhibit an asymmetric shape - similar to giant flute marks - that are up to 150m deep, 20km wide and extend for at least 40km along slope. The development of these scoured areas shows clear evidence of two major north-flowing water masses. Directly above this regional unconformity are a series of ribbon-like bedforms that developed oblique to the slope. Individual bedforms are up to 40km in length with wavelengths of 5km and heights up to 100m. These bedforms are overlain by a set of barchan-like dunes, up to 30km in length with wavelengths of 10km. Individual dunes are in the order of 100m thick and stack to form an overall package up to 500m thick. These features show a clear change from erosion/bypass to deposition/reworking that is linked to a decrease in ocean current velocity and/ or sediment supply. The features observed suggest a complex oceanic regime was present throughout the Tertiary that

  10. AN APPROACH TO IDENTIFY AND SELECT APPROPRIATE BMPS FOR SOURCE WATER PROTECTION: A CASE STUDY IN COLUMBUS, OH

    EPA Science Inventory

    Nonpoint source pollution is the leading cause of impairment to our nations water resources. Both drinking and wastewater utilities are challenged to comply with existing and proposed federal Safe Drinking Water Act (SDWA) and Clean Water Act (CWA) regulations. Federal and state ...

  11. Extending stakeholder theory to promote resource management initiatives to key stakeholders: a case study of water transfers in Alberta, Canada.

    PubMed

    Lafreniere, Katherine C; Deshpande, Sameer; Bjornlund, Henning; Hunter, M Gordon

    2013-11-15

    Many attempts to implement resource management initiatives in Canadian and international communities have been resisted by stakeholders despite inclusion of their representatives in the decision-making process. Managers' failure to understand stakeholders' perspectives when proposing initiatives is a potential cause of this resistance. Our study uses marketing thought to enhance stakeholder theory by bringing in an audience-centric perspective. We attempt to understand how stakeholders perceive their interests in an organization and consequently decide how to influence that organization. By doing so, we investigate whether a disconnect exists between the perceptions of managers and those of stakeholders. Natural resource managers can utilize this knowledge to garner stakeholder support for the organization and its activities. We support this claim with findings from a water transfer plebiscite held in the Canadian province of Alberta. Sixteen personal interviews employing narrative inquiry were conducted to document voters' (i.e., irrigators') interpretations. PMID:23895936

  12. A critical review of the water quality classification system in Turkey: A case study on Meric Basin

    NASA Astrophysics Data System (ADS)

    Ince, Nilsun; Yenigün, Orhan

    1995-07-01

    An 11-year period of water quality data, collected by the Directorate of Sate Water Works of Turkey are thoroughly analyzed for the purpose of implementing water quality classes to water resources in the Meric Basin, located on the European land mass of Turkey. Water quality parameters are divided into four groups as physical, organic, inorganic, and bacteriological. The quality class of each group is evaluated by taking into account the poorest quality of any parameter in the group, after which a quality rank is assigned to the sampling station and the waterbody in question. This method of water quality classification imposed by the Turkish Water Quality Act, is then criticized with respect to a statistical approach.

  13. Laos case study

    PubMed Central

    2012-01-01

    Peuan Mit is a Lao organization working to address the needs of children and youth living and working on the streets. This case study outlines how a trusted and strong relationship with local police provides mutual benefit. PMID:22769869

  14. Urban water-quality modelling: implementing an extension to Multi-Hydro platform for real case studies

    NASA Astrophysics Data System (ADS)

    Hong, Yi; Giangola-Murzyn, Agathe; Bonhomme, Celine; Chebbo, Ghassan; Schertzer, Daniel

    2015-04-01

    During the last few years, the physically based and fully distributed numerical platform Multi-Hydro (MH) has been developed to simulate hydrological behaviours in urban/peri-urban areas (El-Tabach et al. , 2009 ; Gires et al., 2013 ; Giangola-Murzyn et al., 2014). This hydro-dynamical platform is open-access and has a modular structure, which is designed to be easily scalable and transportable, in order to simulate the dynamics and complex interactions of the water cycle processes in urban or peri-urban environment (surface hydrology, urban groundwater infrastructures and infiltration). Each hydrological module relies on existing and widely validated open source models, such as TREX model (Velleux, 2005) for the surface module, SWMM model (Rossman, 2010) for the drainage module and VS2DT model (Lappala et al., 1987) for the soil module. In our recent studies, an extension of MH has been set up by connecting the already available water-quality computational components among different modules, to introduce a pollutant transport modelling into the hydro-dynamical platform. As for the surface module in two-dimensions, the concentration of particles in flow is expressed by sediment advection equation, the settling of suspended particles is calculated with a simplified settling velocity formula, while the pollutant wash-off from a given land-use is represented as a mass rate of particle removal from the bottom boundary over time, based on transport capacity, which is computed by a modified form of Universal Soil Loss Equation (USLE). Considering that the USLE is originally conceived to predict soil losses caused by runoff in agriculture areas, several adaptations were needed to use it for urban areas, such as the alterations of USLE parameters according to different criterions, the definition of the appropriate initial dust thickness corresponding to various land-uses, etc. Concerning the drainage module, water quality routing within pipes assumes that the conduit

  15. KULTURisk regional risk assessment methodology for water-related natural hazards - Part 2: Application to the Zurich case study

    NASA Astrophysics Data System (ADS)

    Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A.

    2015-03-01

    The aim of this paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1, Ronco et al., 2014), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying on the Sihl River valley including Zurich, which represents a typical case of river flooding in an urban area, by calibrating the methodology to the site-specific context and features. Risk maps and statistics have been developed using a 300-year return period scenario for six relevant targets exposed to flood risk: people; economic activities: buildings, infrastructure and agriculture; natural and semi-natural systems; and cultural heritage. Finally, the total risk index map has been produced to visualize the spatial pattern of flood risk within the target area and, therefore, to identify and rank areas and hotspots at risk by means of multi-criteria decision analysis (MCDA) tools. Through a tailored participatory approach, risk maps supplement the consideration of technical experts with the (essential) point of view of relevant stakeholders for the appraisal of the specific scores weighting for the different receptor-relative risks. The total risk maps obtained for the Sihl River case study are associated with the lower classes of risk. In general, higher (relative) risk scores are spatially concentrated in the deeply urbanized city centre and areas that lie just above to river course. Here, predicted injuries and potential fatalities are mainly due to high population density and to the presence of vulnerable people; flooded buildings are mainly classified as continuous and discontinuous urban fabric; flooded roads, pathways and railways, most of them in regards to the Zurich central station (Hauptbahnhof) are at high risk of inundation, causing severe indirect damage. Moreover, the risk pattern for agriculture, natural and semi-natural systems and cultural heritage is relatively

  16. Intra-permafrost water and hydrological chronology; a case study of aufeis and spring hydrology in continuous permafrost regions

    NASA Astrophysics Data System (ADS)

    Yoshikawa, K.; Romanovsky, V.; Hinzman, L.; Zheleznyak, M.; Romanovsky, N.; Buldovich, S.

    2006-12-01

    The purpose of this study is to identify and characterize groundwater infiltration and discharge processes in continuous permafrost regions between the Lena River in Siberia and the Mackenzie River in Canada. The source and heat content of the intra-, or sub- permafrost groundwater is being studied. Intra permafrost (30- 40m below ground surface) taliks, which serve as groundwater reservoirs, are widely observed in the cold continuous permafrost regions of Siberia, Alaska and Canada. These talik formations are often located at favorable sites in glacial outwash or sandy flood plains. The areas have densely-distributed closed system pingos and/or alas formations, which are useful to understand the subsurface talik environments. Stable isotope results from these alas lakes provide indications of aquifer connections to the intra-, or sub- permafrost groundwater. Radio active isotopes (36Cl, 14C, 3H, and 129I), stable isotopes (18O, 2H, 13C, 87/86Sr), chemical compositions and discharge measurements were used to detect areas of infiltration of surface water, residence time and bedrock interactions. The residence time of the groundwater was determined to be several months to several decades depending on study site. The same infiltration process was observed for the last 20 years in the headwaters of the Mackenzie River. The preliminary results show a large amount of the groundwater could be held in storage in the intra permafrost talik layers. Talik permeability is an important parameter for an existing aquifer system in cold permafrost. Conclusions from this study were that the perennial intra permafrost groundwater has four different types of flow: 1) sub-alas talik network flow in sandy sediments, 2) relict stream talik flow, 3) relict aquifer flow systems in glaciated areas, and 4) limestone related bedrock controlled flow systems. Each of these flow paths plays a critical role in aufeis and spring formations in permafrost-dominated watersheds. This study presents

  17. Theoretical study on the hydrophobic and hydrophilic hydration on large solutes: The case of phthalocyanines in water

    NASA Astrophysics Data System (ADS)

    Martín, Elisa I.; Martínez, José M.; Sánchez Marcos, Enrique

    2015-07-01

    A theoretical study on the hydration phenomena of three representative Phthalocyanines (Pcs): the metal-free, H2Pc, and the metal-containing, Cu-phthalocyanine, CuPc, and its soluble sulphonated derivative, [CuPc(SO3)4]4-, is presented. Structural and dynamic properties of molecular dynamics trajectories of these Pcs in solution were evaluated. The hydration shells of the Pcs were defined by means of spheroids adapted to the solute shape. Structural analysis of the axial region compared to the peripheral region indicates that there are no significant changes among the different macrocycles, but that of [CuPc(SO3)4]4-, where the polyoxoanion presence induces a typically hydrophilic hydration structure. The analyzed water dynamic properties cover mean residence times, translational and orientational diffusion coefficients, and hydrogen bond network. These properties allow a thorough discussion about the simultaneous existence of hydrophobic and hydrophilic hydration in these macrocycles, and indicate the trend of water structure to well define shells in the environment of hydrophobic solutes. The comparison between the structural and dynamical analysis of the hydration of the amphipathic [CuPc(SO3)4]4- and the non-soluble Cu-Pc shows a very weak coupling among the hydrophilic and hydrophobic fragments of the macrocycle. Quantitative results are employed to revisit the iceberg model proposed by Frank and Evans, leading to conclude that structure and dynamics support a non-strict interpretation of the iceberg view, although the qualitative trends pointed out by the model are supported.

  18. Geochemistry of urban sediments from small urban areas and potential impact on surface waters: a case study in Northern Portugal

    NASA Astrophysics Data System (ADS)

    Reis, Anabela; Oliveira, Ana Isabel; Pinto, João; Parker, Andrew

    2015-04-01

    Urban sediments are an important source of contaminants in urban catchments with impact on river ecosystems. Surface runoff from impermeable surfaces transfers sediments and associated contaminants to water bodies affecting the quality of both water and sediment compartments. This study aims to evaluate the metal contents in urban sediments (road deposited sediments) in a small sized urban area, located in a rural mountainous region with no significant industrial units, or mining activities in the vicinity, and subsequently have an insight on the potential contribution to the metal loads transported by fluvial sediments in the streams from the surrounding drainage network. The area under investigation locates in the northeast Portugal, in the Trás-os-Montes region (NE Portugal). Vila Real is a rural city, with 52781 inhabitants, and in the urban area there are dispersed parks with forest and gardens; locally and in the surroundings of the city there are agricultural terrains. The industry is concentrated, in general, in the industry park. Major pollutant activities can be considered the agriculture (pollution by sediments, metals and use of fertilizers) and urban activities such as atmospheric deposition, vehicular traffic, residential activities, soil erosion and industrial activities. According to the aim of the study, road deposited sediment samples were collected in urban and periurban areas as well as in public playgrounds and in the industrial area. The samples were decomposed with aqua regia, and the concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn and V were obtained by ICP-AES. The total concentrations of As, Cr, Cu, Fe, Mn, Ni, Pb, Zn and V, in road-deposited sediments, indicate relative enrichments in samples collected in the main streets and roads, showing spatial variability. The association of Cu, Pb and Zn is observed in samples collected in the streets with high traffic density and industrial activity; in general, higher relative contents

  19. Trends in long-term carbon and water fluxes - a case study from a temperate Norway spruce site

    NASA Astrophysics Data System (ADS)

    Babel, Wolfgang; Lüers, Johannes; Hübner, Jörg; Serafimovich, Andrei; Thomas, Christoph; Foken, Thomas

    2016-04-01

    In this study we analyse eddy-covariance flux measurements of carbon dioxide and water vapour from 18 years at Waldstein-Weidenbrunnen (DE-Bay), a Norway spruce forest site in the Fichtelgebirge, Germany. Standard flux partitioning algorithms have been applied for separation of net ecosystem exchange NEE into gross ecosystem uptake GEE and ecosystem respiration Reco, and gap-filling. The annual NEE shows a positive trend, which is related to a strong increase in GEE, while Reco enhances slightly. Annual evapotranspiration increases as well, while atmospheric demand, i.e. potential evapotranspiration, shows inter-annual variability, but no trend. Comparisons with studies from other warm temperate needle-leaved forests show, that NEE is at the upper range of the distribution, and evapotranspiration in Budyko space is in a similar range, but with a large inter-annual variability. While this trends are generally in agreement with findings from other locations and expectations to climate change, the specific history at this site clearly has a large impact on the results: The forest was in the first years very much affected due to forest decline and convalesced after a liming. In the last ten years the site was much affected by beetles and windthrow. Thus the more recent positive trends may be related to increased heterogeneity at the site. As FLUXNET stations, built 10-20 years ago, often started with "ideal forest sites", increasing heterogeneity might be a more general problem for trend analysis of long-term data sets.

  20. Effects of peatland drainage on water quality: a case study of the shallow blanket bogs of Exmoor, UK

    NASA Astrophysics Data System (ADS)

    Grand-Clement, E.; Luscombe, D.; Le Feuvre, N.; Smith, D.; Anderson, K.; Brazier, R. E.

    2012-04-01

    Peatlands are widely represented in the South West of England (i.e. Exmoor, Dartmoor and Bodmin moors), but their existence is currently under threat due to both climate change and the impact of historical human activities. Peat cutting and intensive drainage for agricultural reclamation in the 19th and 20th century, have modified the hydrological behaviour of these shallow peats and dried out the upper layers, causing oxidation, erosion and vegetation change. Such anthropogenic impacts directly affect the storage of carbon, but also the provision of other ecosystem services, such as the supply of drinking water, and the support of specific and rare habitats. Blocking drainage ditches to restore the hydrological behaviour of peatlands has mostly been undertaken in the North of England, but to date, little is still known about the consequences of such management approaches on the overall Carbon stocks. The need to monitor restoration of peatlands in the South West of England arises due to the specific characteristics of the peat - it is often shallower than more northerly peat and dominated by Purple Moor Grass. In addition, and in part because of the shallowness of the resource, the peat has been damaged differently, often with very dense networks of hand-cut ditches which behave as highly efficient drainage networks. Most importantly, their location at the southernmost margin of the UK peatlands' geographical extent makes them extremely vulnerable to climate change, and so it is hypothesised that monitoring of these peatlands may provide an 'early warning system' for climatic impacts that affect more northerly sites in years to come. This study focuses upon the current impact of peatland degradation on water quality on Exmoor. Our experimental approach employs detailed, high resolution monitoring of selected ditches that are representative of damaged conditions on Exmoor, from small- (30 x 30cm ditches) through medium- (50x50cm), large- (1-2m ditches) and finally

  1. Preparing for Future Water Resources Conflicts through Climate Change Adaptation Planning: A Case Study in Eastern Europe and Central Asia

    NASA Astrophysics Data System (ADS)

    Boehlert, B. B.; Neumann, J. E.; Strzepek, K.; Sutton, W.; Srivastava, J.

    2011-12-01

    Uncertainties posed by climate change and rapidly rising global water demand suggest that existing conflicts over water resources are likely to be exacerbated and new conflicts will appear where little or no conflict occurs today. Successfully planning for and preventing conflicts first requires a sound scientific understanding of the timing, location, and magnitude of water resource shortfalls, identification of the most appropriate climate adaptation options based on multiple criteria, and development of broad, multi-level consensus within the affected community. We recently applied this approach in a World Bank-funded adaptation assessment for the agricultural sectors of four countries in Eastern Europe and Central Asia-Albania, Macedonia, Moldova, and Uzbekistan. For each major basin, we first used a hydrological model to project changes in water availability through 2050 under country-specific high, medium, and low climate impact scenarios. Next, under the three climate scenarios, we projected changes in agricultural water demand using a crop model (i.e., AquaCrop and DSSAT), and changes in water demand in other sectors based on population projections and sectoral forecasts of changes in per capita use. We incorporated these water availability and demand projections-along with other characteristics of the water system such as water supply priorities, environmental and transboundary flow requirements, irrigation efficiency, and reservoir locations and volumes-into a monthly integrated water resource planning tool (the Water Evaluation And Planning tool, or WEAP) to generate projected unmet water demand under each climate scenario and to each sector through 2050. The findings suggest that the agricultural sector in each country (except the relatively water-rich Albania) would experience significant unmet water demands, up to 52 percent in the Syr Darya and Amu Darya River basins of Uzbekistan. Potential adaptation responses to address unmet water demands-such as

  2. The challenge of integration in the implementation of Zimbabwe’s new water policy: case study of the catchment level institutions surrounding the Pungwe-Mutare water supply project

    NASA Astrophysics Data System (ADS)

    Tapela, Barbara Nompumelelo

    Integrated water resources management (IWRM) is viewed by policy makers and practitioners as facilitating the achievement of a balance between water resource use and resource protection, and the resolution of water-related conflicts. The IWRM approach has found particular use in the new water policies of Southern African countries such as Zimbabwe, where water scarcity, after the land question, is perceived to be a major threat to political, economic, social, military and environmental security. Ultimately, IWRM is seen as providing a framework towards ensuring broader security at the local, national, regional and global levels. However, the pilot phase implementation of the new water policy in the various regional countries has revealed that although the legal and institutional frameworks have been put in place, the implementation of the IWRM approach has tended to be problematic (J. Latham, 2001; GTZ, 2000; Leestemaker, 2000; Savenige and van der Zaag, 2000; Sithole, 2000). This paper adopts a case study approach and empirically examines the institutional challenges of implementing the IWRM approach in the post-pilot phase of Zimbabwe’s new water policy. The focus is mainly on the institutional arrangements surrounding the Pungwe-Mutare Water Supply Project located within the Save Catchment Area in Eastern Zimbabwe. The major findings of the study are that, while there persist some problems associated with the traditional management approach, there have also emerged new challenges to IWRM. These mainly relate to the transaction costs of the water sector reforms, institutional resilience, stakeholder participation, and the achievement of the desired outcomes. There have also been problems emanating from unexpected political developments at the local and national levels, particularly with regard to the government’s “fast track” land resettlement programme. The paper concludes that there is a need for a more rigorous effort towards integrating the management

  3. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is a joint military activity and the U.S. Department of Defense?s (DOD) oldest and largest retailer. The Exchange is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization?s overall sustainability plan and objectives.

  4. E.O.-based estimation of transpiration and crop water requirements for vineyards: a case study in southern Italy

    NASA Astrophysics Data System (ADS)

    D'Urso, Guido; Maltese, Antonino; Palladino, Mario

    2014-10-01

    An efficient use of water for irrigation is a challenging task. From an agronomical point of view, it requires establishing the optimal amount of water to be supplied, at the correct time, based on phenological phase and water stress spatial distribution. Indeed, the knowledge of the actual water stress is essential for agronomic decisions, vineyards need to be managed to maintain a moderate water stress, thus allowing to optimize berries quality and quantity. Methods for quickly quantifying where, when and in what extent, vines begin to experience water stress are beneficial. Traditional point based methodologies, such those based on Scholander pressure chamber, even if well established are time expensive and do not give a comprehensive picture of the vineyard water deficit. Earth Observation (E.O.) based methodologies promise to achieve a synoptic overview of the water stress. Some E.O. data, indeed, sense the territory in the thermal part of the spectrum and, as it is well recognized, leaf radiometric temperature is related to the plant water status. However, current satellite sensors have not detailed enough spatial resolution to detect pure canopy pixels; thus, the pixel radiometric temperature characterizes the whole soil-vegetation system, and in variable proportions. On the other hand, due to limits in the actual crop dusters, there is no need to characterize the water stress distribution at plant scale, and a coarser spatial characterization would be sufficient. The research aims to assess to what extent: 1) E.O. based canopy radiometric temperature can be used, straightforwardly, to detected plant water status; 2) E.O. based canopy transpiration, would be more suitable (or not) to describe the spatial variability in plant water stress. To these aims: 1) radiometric canopy temperature measured in situ, and derived from a two-source energy balance model applied on airborne data, were compared with in situ leaf water potential from freshly cut leaves; 2) two

  5. Gains from trans-boundary water quality management in linked catchment and coastal socio-ecological systems: a case study for the Minho region

    NASA Astrophysics Data System (ADS)

    Roebeling, P. C.; Brito, A. G.; Rocha, J.; Alves, H.; Mamede, J.

    2012-04-01

    Worldwide, aquatic and coastal ecosystems are affected by point and diffuse source water pollution originating from rural, urban and industrial land uses in catchments, even though these ecosystems are of vital importance from an environmental and economic perspective. Integrated Catchment and Coastal Zone Management (ICCZM) specifically takes into account this inherent relationship between terrestrial land use, surface and ground water pollution, aquatic and coastal ecosystem state, and associated environmental values. To warrant sustainable regional economic development, we need to balance the marginal costs from terrestrial water pollution abatement and the associated marginal benefits from aquatic and coastal resource appreciation. In doing so, however, we need to differentiate between intra- and trans-boundary catchments because benefactors and beneficiaries from water quality improvement are not one and the same. In trans-boundary catchments, private (national) welfare maximizing rates of water quality improvement differ across nations as benefits from water quality improvement generally accrue to one nation while the costs are paid by multiple nations. While approaches for water quality management in linked catchment and coastal socio-ecological systems are fairly recent though existent, water quality management in trans-boundary catchments poses additional challenges. The objective of this paper is to develop and apply a deterministic optimal control approach that allows us to explore private and social welfare maximizing rates of water pollution abatement in linked catchment and coastal socio-ecological systems. For a case study of the Minho region in the Iberian Peninsula, we estimate nation-specific water pollution abatement cost (based on management practice adoption) and benefit (based on aquatic and coastal environmental values) functions, to determine as well as compare private (national) and social (trans-national) welfare maximizing rates of water

  6. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Chen, Kun-lun; Cheng, Sheng-gao; Wang, Xu

    With the excessive development of social economy, water scarcity and water environment deterioration become a common phenomenon in metropolis. As a crucial component of urban water environment system, urban lake is mainly influenced by social economic system and tourism system. In this paper, a framework for quantitatively evaluating development sustainability of urban lake was established by a multi-objective model that represented water ecological carrying capacity (WECC). And nine key indicators including population, irrigation area, tourist quantity, the average number of hotel daily reception, TP, TN, CODMn, BOD5 were chosen from urban social-economy system and natural resilience aspects, with their index weight was determined by using the Structure Entropy Weight method. Then, we took Wuhan East Lake, the largest urban lake in China as a case study, and selected five time sections including 2002, 2004, 2007, 2009 and 2012 to synthetically evaluate and comparatively analyze the dynamic change of WECC. The results showed that: firstly, the water ecological carrying capacity values of the East Lake in five time sections were 1.17, 1.07, 1.64, 1.53 and 2.01 respectively, which all exceeded 1 and increased fluctuation. The rapid growth of population and GDP lead to sharply increasing demand for water quantity. However, a large amount of the domestic sewage and industrial waste led by economic development increases pressure on ecological environment of urban lakes. Secondly, the carrying capacity of the East Lake for tourist activities was still low. The value in 2012 was only 0.22, keeping at a slowly increasing phase, which indicates that the East Lake has large opportunity and space for developing the water resource carrying capacity and could make further efforts to attract tourists. Moreover, the WECC of the East Lake was mainly affected by rapid social and economic development and water environment damage caused by organic pollutants. From the view of urban

  7. Case study of odor and indoor air quality assessment in the dewatering building at the Stickney Water Reclamation Plant.

    PubMed

    Sharma, Manju; O'Connell, Susan; Garelli, Brett; Sattayatewa, Chakkrid; Moschandreas, Demetrios; Pagilla, Krishna

    2012-01-01

    Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies. The results showed that air quality in the building complies with occupational safety and health guidelines; however, nuisance odors that can increase stress and productivity loss still persist. Excess roof fan capacity induced odor dispersion to the upper levels. Lack of a local air exhaust system of sufficient capacity and optimum design was found to be the contributor to occasional less than adequate indoor air quality and odors. Overall, air ventilation rate in the building has less effect on persistence of odors in the building. Odor/odorant emission rates from centrifuge drops were approximately 100 times higher than those from the open conveyors. Based on measurements and modeling, the key control strategies recommended include increasing local air exhaust system capacity and relocation of exhaust hoods closer to the centrifuge drops. PMID:22277239

  8. Designing and assessing weather-based financial hedging contracts to mitigate water conflicts at the river basin scale. A case study in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Bellagamba, Laura; Denaro, Simona; Kern, Jordan; Giuliani, Matteo; Castelletti, Andrea; Characklis, Gregory

    2016-04-01

    Growing water demands and more frequent and severe droughts are increasingly challenging water management in many regions worldwide, exacerbating water disputes and reducing the space for negotiated agreements at the catchment scale. In the lack of a centralized controller, the design and deployment of coordination and/or regulatory mechanisms is a way to improve system-wide efficiency while preserving the distributed nature of the decision making setting, and facilitating cooperation among institutionally independent decision-makers. Recent years have witnessed an increased interest in index-based insurance contracts as mechanisms for sharing hydro-meteorological risk in complex and heterogeneous decision making context (e.g. multiple stakeholders and institutionally independent decision makers). In this study, we explore the potential for index-based insurance contracts to mitigate the conflict in a water system characterized by (political) power asymmetry between hydropower companies upstream and farmers downstream. The Lake Como basin in the Italian Alps is considered as a case study. We generated alternative regulatory mechanisms in the form of minimum release constraints to the hydropower facilities, and designed an insurance contract for hedging against hydropower relative revenue losses. The fundamental step in designing this type of insurance contracts is the identification of a suitable index, which triggers the payouts as well as the payout function, defined by strike level and slope (e.g., euros/index unit). A portfolio of index-based contracts was designed for the case study and evaluated in terms of revenue floor, basis risk and revenue fluctuation around the mean, both with and without insurance. Over the long term, the insurance proved to be capable to keep the minimum revenue above a specified level while providing a greater certainty on the revenue trend. This result shows the possibility to augment farmer's supply with little loss for hydropower

  9. Management of a toxic cyanobacterium bloom (Planktothrix rubescens) affecting an Italian drinking water basin: a case study.

    PubMed

    Bogialli, Sara; Nigro di Gregorio, Federica; Lucentini, Luca; Ferretti, Emanuele; Ottaviani, Massimo; Ungaro, Nicola; Abis, Pier Paolo; Cannarozzi de Grazia, Matteo

    2013-01-01

    An extraordinary bloom of Planktothrix rubescens, which can produce microcystins (MCs), was observed in early 2009 in the Occhito basin, used even as a source of drinking water in Southern Italy. Several activities, coordinated by a task force, were implemented to assess and manage the risk associated to drinking water contaminated by cyanobacteria. Main actions were: evaluation of analytical protocols for screening and confirmatory purpose, monitoring the drinking water supply chain, training of operators, a dedicated web site for risk communication. ELISA assay was considered suitable for health authorities as screening method for MCs and to optimize frequency of sampling according to alert levels, and as internal control for the water supplier. A liquid chromatography-tandem mass spectrometric method able to quantify 9 MCs was optimized with the aim of supporting health authorities in a comprehensive risk evaluation based on the relative toxicity of different congeners. Short, medium, and long-term corrective actions were implemented to mitigate the health risk. Preoxidation with chlorine dioxide followed by flocculation and settling have been shown to be effective in removing MCs in the water treatment plant. Over two years, despite the high levels of cyanobacteria (up to 160 × 10(6) cells/L) and MCs (28.4 μg/L) initially reached in surface waters, the drinking water distribution was never limited. PMID:23167492

  10. Climate change impact on water resources for several river basins: a European, Asian and African case study.

    NASA Astrophysics Data System (ADS)

    Mariotti, L.; Coppola, E.; Gao, X.; Im, E. S.; Giorgi, F.

    2009-04-01

    Changes in temperature and precipitation patterns resulting from changes in climate are expected to impact the spatial and temporal distribution of water resources (IPCC 2007). Because climate change doesn't occur uniformly throughout the globe, climate change is expected to impact each region differently. Few examples are reported where a possible change in water availability could heavily effects the life of peoples: • The Volta River in Africa is responsible for 70% of the electricity production in Ghana. • More than the 80% of the northern Italian GDP (Gross Domestic Product) is connected to the Po River. • The Miyun Reservoir in China is the major water supply for Beijing and already in the last decades Beijing suffered from water storage deficiency. • The Soyang, Chungju, and Daecheong Basins in Korea provide municipal, industrial, and irrigational water to downstream users, as well as control flooding and generate hydropower. The Soyang and Chungju dams supply water to Seoul the largest metropolitan areas in Korea. These River Basins have been reconstructed using the CHYM hydrological model and by coupling CHYM with the regional climate model RegCM3 the possible impact on water resources has been quantified.

  11. Organic carbon, water repellency and soil stability to slaking under different crops and managements: a case study at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán, A.; García-Moreno, J.; Gordillo-Rivero, Á. J.; Zavala, L. M.; Cerdà, A.

    2014-08-01

    This research studies the distribution of organic C and intensity of water repellency in soil aggregates with different size and in the interior of aggregates from Mediterranean soils under different crops (apricot, citrus and wheat) and management (conventional tilling and no tilling/mulching). For this, undisturbed aggregates were sampled and carefully divided in size fractions (0.25-0.5, 0.5-1, 1-2, 2-5, 5-10 and 10-15 mm) or peeled to obtain separated aggregate layers (exterior, transitional and interior). Organic C content in the fine earth fraction of soils under different crops did not show important variations, although it increased significantly from conventionally tilled to mulched soils. The distribution of organic C content in aggregates with different size varied among soils under different crops, generally increasing with decreasing size. At the intra-aggregate level, organic C concentrated preferably in the exterior layer of aggregates from conventionally tilled soils, probably because of recent organic inputs or leachates. In the case of mulched soils, higher concentrations were observed, but no significant differences among aggregate regions were found. The intensity of water repellency, determined by the ethanol method, did not show great variations among crops, but increased significantly from conventionally tilled to mulched soils. Coarser aggregates were generally wettable, while finer aggregates showed slight water repellency. Regardless of variations in the distribution of organic C in aggregate layers from conventionally tilled soils, great or significant differences in the distribution of water repellency at the intra-aggregate level were not found in any case. Finally, the intensity of water repellency was much more important than the concentration of organic C in the stability to slaking of aggregates.

  12. Ecohydrological effects of stream-aquifer water interaction: a case study of the Heihe River basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Zeng, Yujin; Xie, Zhenghui; Yu, Yan; Liu, Shuang; Wang, Linying; Jia, Binghao; Qin, Peihua; Chen, Yaning

    2016-06-01

    A scheme describing the process of stream-aquifer interaction was combined with the land model CLM4.5 to investigate the effects of stream water conveyance over riparian banks on ecological and hydrological processes. Two groups of simulations for five typical river cross sections in the middle reaches of the arid-zone Heihe River basin were conducted. The comparisons between the simulated results and the measurements from water wells, the FLUXNET station, and remote sensing data showed good performance of the coupled model. The simulated riparian groundwater table at a propagation distance of less than 1 km followed the intra-annual fluctuation of the river water level, and the correlation was excellent (R2 = 0.9) between the river water level and the groundwater table at the distance 60 m from the river. The correlation rapidly decreased as distance increased. In response to the variability of the water table, soil moisture at deep layers also followed the variation of river water level all year, while soil moisture at the surface layer was more sensitive to the river water level in the drought season than in the wet season. With increased soil moisture, the average gross primary productivity and respiration of riparian vegetation within 300 m from the river in a typical section of the river increased by approximately 0.03 and 0.02 mg C m-2 s-1, respectively, in the growing season. Consequently, the net ecosystem exchange increased by approximately 0.01 mg C m-2 s-1, and the evapotranspiration increased by approximately 3 mm day-1. Furthermore, the length of the growing season of riparian vegetation also increased by 2-3 months due to the sustaining water recharge from the river. Overall, the stream-aquifer water interaction plays an essential role in the controlling of riparian hydrological and ecological processes.

  13. Application of time-lapse ERT to Characterize Soil-Water-Disease Interactions of Citrus Orchard - Case Study

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; Suradhaniwar, S.; J, P. A.; R M, G.

    2015-12-01

    Vidarbha region in Maharashtra, India (home for mandarin Orange) experience severe climatic uncertainties resulting in crop failure. Phytopthora are the soil-borne fungal species that accumulate in the presence of moisture, and attack the root / trunk system of Orange trees at any stage. A scientific understanding of soil-moisture-disease relations within the active root zone under different climatic, irrigation, and crop cycle conditions can help in practicing management activities for improved crop yield. In this study, we developed a protocol for performing 3-D time-lapse electrical resistivity tomography (ERT) at micro scale resolution to monitor the changes in resistivity distribution within the root zone of Orange trees. A total of 40 electrodes, forming a grid of 3.5 m x 2 m around each Orange tree were used in ERT survey with gradient and Wenner configurations. A laboratory test on un-disturbed soil samples of the region was performed to plot the variation of electrical conductivity with saturation. Curve fitting techniques were applied to get the modified Archie's model parameters. The calibrated model was further applied to generate the 3-D soil moisture profiles of the study area. The point estimates of soil moisture were validated using TDR probe measurements at 3 different depths (10, 20, and 40 cm) near to the root zone. In order to understand the effect of soil-water relations on plant-disease relations, we performed ERT analysis at two locations, one at healthy and other at Phytopthora affected Orange tree during the crop cycle, under dry and irrigated conditions. The degree to which an Orange tree is affected by Phytopthora under each condition is evaluated using 'grading scale' approach following visual inspection of the canopy features. Spatial-temporal distribution of moisture profiles is co-related with grading scales to comment on the effect of climatic and irrigation scenarios on the degree and intensity of crop disease caused by Phytopthora.

  14. On the development and implementation of ecosystem management plans for water resources in the Great Lakes: A case study of the RAP initiative

    SciTech Connect

    MacKenzie, S.H.

    1991-01-01

    The ecosystem approach to water resource management is deceptively simple: one must recognize the interrelationships among water, land, air, and all living things and undertake resource planning in such a way that the integrity of the natural system is preserved. Significant features of the ecosystem approach include its watershed boundaries, its holistic orientation, and its assumption that humans should be viewed as part of, rather than apart from, the natural system. A theme of environmental ethics and education underlies the approach. Although it seems straightforward, the ecosystem approach has important implications for water management. In 1985, the International Joint Commission challenged government agencies to utilize the ecosystem approach to develop Remedial Action Plans to rehabilitate forty-two hotspots across the Great Lakes Basin. This initiative represented a first effort to implement the ecosystem approach in the Great Lakes. The research questions were: what does ecosystem management mean in the context of the RAP process, and how can one increase the likelihood of successful implementation of ecosystem management plans The research proposition suggests that there are three preconditions to ecosystem management: participation; decision making; and legitimacy. Comparative case studies of Green Bay, Wisconsin; Saginaw Bay, Michigan; and Hamilton Harbor, Ontario were undertaken. Thirty-five RAP participants were chosen for on-site indepth interviews. Data were arrayed by respondent, question, and case, and were analyzed for content.

  15. Role of Pb mining in Contamination of Groundwater and Surface water, Case study: Bastam drainage basin, Northeastern Iran

    NASA Astrophysics Data System (ADS)

    Jafarian, Abdolreza

    2015-04-01

    Groundwater will normally look clear and clean because the ground naturally filters out particulate matter. But, natural and human-induced chemicals can be found in groundwater. As groundwater flows through the ground, metals such as Lead and Cd are dissolved and may later be found in high concentrations in the water. Because water is "Universal Solvent" it can contain lots of dissolved chemicals. And since groundwater moves through rocks and subsurface soil, it has a lot of opportunity to dissolve substances as it moves. For that reason, groundwater will often have more dissolved substances than surface water will. Bastam watershed with ca 1250 km2 area and ca 600 km stream networks, contains around 100 spring, ca 300 irrigation wells, and ca 100 Qanat ( one of a series of well-like vertical shafts, connected by gently sloping tunnels). This watershed is one of the largest drainage basins in northeastern Iran and also it provides drinking water for 3 town and several villages. An abandoned Pb mine located at northwest of this watershed. To determine contamination of these metals in groundwater and surface water, 8 water samples around this mine, from wells, springs and streams were collected and analyzed for heavy metal (Pb, Cd, and Zn) by AAs method. Pb, Cd, and Zn concentration in these samples are range of 0.11 to 0.18 mg/L, 0.010 to 0.021 mg/L, and 0.0079 to 0.0485 mg/L respectively. Comparison between these results and regulation guidelines of WHO, and United State EPA, reveal high level concentration of Pb and Cd in groundwater and surface water in this water resources. Based on regulation guidelines of WHO maximum contaminant level (MCL) for lead, and Cadmium are 0.015 mg/L, and 0.005 mg/L respectively. As a result, these water resource are affected by high level contaminate of Pb (ca 10 fold of WHO regulation guideline) and Cd (ca 3 fold of WHO regulation guidelines) maybe derived from Galena and other Pb rock minerals from this mining area. To reduce

  16. Case study for delineating a contributing area to a water-supply well in a fractured crystalline-bedrock aquifer, Stewartstown, Pennsylvania

    USGS Publications Warehouse

    Barton, Gary J.; Risser, Dennis W.; Galeone, Daniel G.; Conger, Randall W.

    1999-01-01

    The Trouts Lane well field in Stewartstown, Pa., was selected as a case study for delineating a contributing area in a fractured crystalline-bedrock aquifer. The study emphasized the importance of refining the understanding of boundary conditions and major heterogeneities that affect ground-water movement to the supply well by conducting (1) fracture-trace mapping, (2) borehole logging and flow measurements, (3) ground-water level monitoring, (4) aquifer testing, and (5) geochemical sampling. Methods and approach used in this study could be applicable for other wells in crystalline-bedrock terranes in southeastern Pennsylvania. Methods of primary importance for refining the understanding of hydrology at the Trouts Lane well field were the aquifer tests, water-level measurements, and geophysical logging. Results from the constant-discharge aquifer test helped identify a major north-south trending hydraulic connection between supply well SW6 and a domestic-supply well. Aquifer-test results also indicated fractures that transmit most water to the supply well are hydraulically well-connected to the shallow regolith and highly weathered schist. Results from slug tests provided estimates of transmissivity and the nonuniform distribution of transmissivity throughout the well field, indicating the water-producing fractures are not evenly distributed and ground-water velocities must vary considerably throughout the well field.Water levels, which were easy to measure, provided additional evidence of hydraulic connections among wells. More importantly, they allowed the water-table configuration to be mapped. Borehole geophysics and flow measurements within the well were very useful because results indicated water entered supply well SW6 through bedrock fractures at very shallow depths?less than 60 ft below land surface; therefore, the area providing recharge to the well is probably in the immediate vicinity. Preliminary delineations of the contributing area and the 90-day

  17. Groundwater Depletion, Irreversible Damages and the Energy-Food-Water Nexus: A Case Study from Gujarat, India

    NASA Astrophysics Data System (ADS)

    Narula, K. K.; Modi, V.; Lall, U.; Fishman, R.; Siegfried, T. U.

    2009-12-01

    The northern regions of the Indian state of Gujarat are experiencing perhaps the most dramatic instances of groundwater depletion in the country. Due to unsustainable water use patterns in agriculture, which is central to the state’s economy, there is serious concern that the region may soon face significant water problems with devastating consequences. We show that water tables have already declined over 80 meters in the last 30 years, and future declines could eventually cause irreversible salinization. We argue that the recent stabilization of water tables should not reduce public alarm, as it is likely related to recent abundant rainfall, a part of a multi-decadal cycle. Livelihoods are also negatively affected; we estimate that many farmers are no longer able to generate net incomes that exceed the cost of subsidized electricity supplied to them. In other words, the net economic impact of their farming is negative to the state. Solving the water-use problem will ultimately require a range of solutions, including a restructuring of the supply chain, a shift in cropping patterns, and the creation of incentives for capital investments in devices that improve water-use efficiency. A first step in this direction could be the restructuring of the subsidy program to incorporate an alternate mechanism that compensates farmers for saving energy and water. Such a system would improve the efficiency of water use, give farmers the potential to increase their incomes, and be revenue-neutral for the state. While the situation in Gujarat is more pressing than in other parts of the country, adopting a change such as this also creates an opportunity to provide the state with a first-mover advantage in implementing the types of transformations that will eventually be needed elsewhere.

  18. Are participants in markets for water rights more efficient in the use of water than non-participants? A case study for Limarí Valley (Chile).

    PubMed

    Molinos-Senante, María; Donoso, Guillermo; Sala-Garrido, Ramon

    2016-06-01

    The need to increase water productivity in agriculture has been stressed as one of the most important factors to achieve greater agricultural productivity and sustainability. The main aim of this paper is to investigate whether there are differences in water use efficiency (WUE) between farmers who participate in water markets and farmers who do not participate in them. Moreover, the use of a non-radial data envelopment analysis model allows to compute global efficiency (GE), WUE as well the efficiency in the use of other i