Science.gov

Sample records for casimir force

  1. Quantized Casimir force.

    PubMed

    Tse, Wang-Kong; MacDonald, A H

    2012-12-01

    We investigate the Casimir effect between two-dimensional electron systems driven to the quantum Hall regime by a strong perpendicular magnetic field. In the large-separation (d) limit where retardation effects are essential, we find (i) that the Casimir force is quantized in units of 3ħcα(2)/8π(2)d(4) and (ii) that the force is repulsive for mirrors with the same type of carrier and attractive for mirrors with opposite types of carrier. The sign of the Casimir force is therefore electrically tunable in ambipolar materials such as graphene. The Casimir force is suppressed when one mirror is a charge-neutral graphene system in a filling factor ν=0 quantum Hall state. PMID:23368242

  2. Casimir force between liquid metals

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, R.; Escobar, J. V.

    2014-08-01

    We present a theoretical calculation of the Casimir force between liquid metals at room temperature using as case studies mercury (Hg) and eutectic indium gallium (EInGa). The surface tension of the liquids creates surfaces of zero roughness that are truly equipotential, an ideal characteristic for Casimir force experiments. As we show the dielectric properties of Au, EInGa and Hg are very similar and the difference on the Casimir force between Au and EInGa and Au and Hg is less than 4%. Based on these results, a modification of the IUPUI experiment for detecting deviations of Newtonian gravity is proposed.

  3. Repulsive Casimir force: Sufficient conditions

    SciTech Connect

    Rosa, Luigi; Lambrecht, Astrid

    2010-09-15

    In this paper the Casimir energy of two parallel plates made by materials of different penetration depth and no medium in between is derived. We study the Casimir force density and derive analytical constraints on the two penetration depths which are sufficient conditions to ensure repulsion. Compared to other methods our approach needs no specific model for dielectric or magnetic material properties and constitutes a complementary analysis.

  4. Casimir forces and graphene sheets

    SciTech Connect

    Drosdoff, D.; Woods, Lilia M.

    2010-10-15

    The Casimir force between two infinitely thin parallel sheets in a setting of N such sheets is found. The finite two-dimensional conductivities, which describe the dispersive and absorptive properties of each sheet, are taken into account, whereupon the theory is applied to interacting graphenes. By exploring similarities with in-plane optical spectra for graphite, the conductivity of graphene is modeled as a combination of Lorentz-type oscillators. We find that the graphene transparency and the existence of a universal constant conductivity e{sup 2}/(4({h_bar}/2{pi})) result in the graphene/graphene Casimir interaction at large separations to have the same distance dependence as the one for perfect conductors but with much smaller magnitude. The Casimir force is also studied when the graphene system is above a substrate or immersed in a medium. It is found that the response properties of the environmental materials can strongly affect the graphene interaction.

  5. Nonadditivity of critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Paladugu, Sathyanarayana; Callegari, Agnese; Tuna, Yazgan; Barth, Lukas; Dietrich, Siegfried; Gambassi, Andrea; Volpe, Giovanni

    2016-04-01

    In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces.

  6. Nonadditivity of critical Casimir forces.

    PubMed

    Paladugu, Sathyanarayana; Callegari, Agnese; Tuna, Yazgan; Barth, Lukas; Dietrich, Siegfried; Gambassi, Andrea; Volpe, Giovanni

    2016-01-01

    In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces. PMID:27097797

  7. Nonadditivity of critical Casimir forces

    PubMed Central

    Paladugu, Sathyanarayana; Callegari, Agnese; Tuna, Yazgan; Barth, Lukas; Dietrich, Siegfried; Gambassi, Andrea; Volpe, Giovanni

    2016-01-01

    In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces. PMID:27097797

  8. Electrostatic patch potentials in Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph; Somers, David; Munday, Jeremy

    2015-03-01

    Measurements of the Casimir force require the elimination of the electrostatic force between interacting surfaces. The force can be minimized by applying a potential to one of the two surfaces. However, electrostatic patch potentials remain and contribute an additional force which can obscure the Casimir force signal. We will discuss recent measurements of patch potentials made with Heterodyne Amplitude-Modulated Kelvin Probe Force Microscopy that suggest patches could be responsible for >1% of the signal in some Casimir force measurements, and thus make the distinction between different theoretical models of the Casimir force (e.g. a Drude-model or a plasma-model for the dielectric response) difficult to discern.

  9. Casimir-force-driven ratchets.

    PubMed

    Emig, T

    2007-04-20

    We explore the nonlinear dynamics of two parallel periodically patterned metal surfaces that are coupled by the zero-point fluctuations of the electromagnetic field between them. The resulting Casimir force generates for asymmetric patterns with a time periodically driven surface-to-surface distance a ratchet effect, allowing for directed lateral motion of the surfaces in sizable parameter ranges. It is crucial to take into account inertia effects and hence chaotic dynamics which are described by Langevin dynamics. Multiple velocity reversals occur as a function of driving, mean surface distance, and effective damping. These transport properties are shown to be stable against weak ambient noise. PMID:17501407

  10. Halving the Casimir force with conductive oxides.

    PubMed

    de Man, S; Heeck, K; Wijngaarden, R J; Iannuzzi, D

    2009-07-24

    The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of micro- and nanoelectromechanical systems. In air, however, one expects that, unless noble metals are used, the electrostatic force arising from trapped charges overcomes the Casimir attraction, leaving no room for exploitation of Casimir force engineering at ambient conditions. Here we show that, in the presence of a conductive oxide, the Casimir force can be the dominant interaction even in air, and that the use of conductive oxides allows one to reduce the Casimir force up to a factor of 2 when compared to noble metals. PMID:19659332

  11. Controlling Casimir force via coherent driving field

    NASA Astrophysics Data System (ADS)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  12. Casimir Forces On A Silicon Micromechanical Chip

    SciTech Connect

    Zou, J.; Marset, zsolt; Rodriguez, A.W.; Reid, M. T.H.; McCauley, A. P.; Kravchenko, Ivan I; Bao, Y.; Johnson, S. G.; Chan, Ho Bun

    2013-01-01

    Quantum fluctuations give rise to van der Waals and Casimir forces that dominate the interaction between electrically neutral objects at sub-micron separations. Under the trend of miniaturization, such quantum electrodynamical effects are expected to play an important role in micro- and nano-mechanical devices. Nevertheless, so far the Casimir force has been experimentally observed only in situations involving an external object manually positioned close to a micromechanical element on a silicon chip. Here, we demonstrate the Casimir effect between two silicon components on the same substrate. In addition to providing an integrated and compact platform for Casimir force measurements, this scheme also opens the possibility of tailoring the Casimir force using lithographically defined components of non-conventional shapes on a single micromechanical chip.

  13. Resource Letter CF-1: Casimir Force

    SciTech Connect

    Lamoreaux, S.K.

    1999-10-01

    This resource letter provides an introductory guide to the literature on the Casimir force. Journal articles and books are cited for the following topics: introductory articles and books, calculations, dynamical Casimir effect, mechanical analogs, applications, and experiments. {copyright} {ital 1999 American Association of Physics Teachers.}

  14. Casimir force between integrable and chaotic pistons

    SciTech Connect

    Alvarez, Ezequiel; Mazzitelli, Francisco D.; Wisniacki, Diego A.; Monastra, Alejandro G.

    2010-11-15

    We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, could be qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the transition from regular to chaotic geometries. This suggests that there could be signatures of quantum chaos in the Casimir effect.

  15. Casimir forces of metallic microstructures into cavities

    NASA Astrophysics Data System (ADS)

    Kenanakis, George; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-08-01

    A theoretical estimate of the Casimir force of a metallic structure embedded into a cubic cavity is proposed. We demonstrate that by calculating the eigenmodes of the system we can determine the Casimir force, which can be either attractive or repulsive, by simply changing the geometry of the structures relative to the walls of the cavity. In this analysis, several cases of structures are taken into account, from rectangular slabs to chiral "omega" particles, and the predicted data are consistent with recent literature. We demonstrate that the sidewalls of the studied cavity contribute decisively to the repulsive Casimir force between the system and the nearby top surface of the cavity. Finally, we provide evidence that the medium embedded into the studied cavity (and especially its permittivity) can change the intensity of the Casimir force, while its repulsive nature, once established (owing to favorable geometrical features), remains quite robust.

  16. Demonstration of the lateral casimir force.

    PubMed

    Chen, F; Mohideen, U; Klimchitskaya, G L; Mostepanenko, V M

    2002-03-11

    The lateral Casimir force between a sinusoidally corrugated gold coated plate and large sphere was measured for surface separations between 0.2 to 0.3 microm using an atomic force microscope. The measured force shows the required periodicity corresponding to the corrugations. It also exhibits the necessary inverse fourth power distance dependence. The obtained results are shown to be in good agreement with a complete theory taking into account the imperfectness of the boundary metal. This demonstration opens new opportunities for the use of the Casimir effect for lateral translation in microelectromechanical systems. PMID:11909341

  17. Monte Carlo Simulation of Critical Casimir Forces

    NASA Astrophysics Data System (ADS)

    Vasilyev, Oleg A.

    2015-03-01

    In the vicinity of the second order phase transition point long-range critical fluctuations of the order parameter appear. The second order phase transition in a critical binary mixture in the vicinity of the demixing point belongs to the universality class of the Ising model. The superfluid transition in liquid He belongs to the universality class of the XY model. The confinement of long-range fluctuations causes critical Casimir forces acting on confining surfaces or particles immersed in the critical substance. Last decade critical Casimir forces in binary mixtures and liquid helium were studied experimentally. The critical Casimir force in a film of a given thickness scales as a universal scaling function of the ratio of the film thickness to the bulk correlation length divided over the cube of the film thickness. Using Monte Carlo simulations we can compute critical Casimir forces and their scaling functions for lattice Ising and XY models which correspond to experimental results for the binary mixture and liquid helium, respectively. This chapter provides the description of numerical methods for computation of critical Casimir interactions for lattice models for plane-plane, plane-particle, and particle-particle geometries.

  18. Repulsive Casimir force between Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.; Allocca, Andrew A.; Galitski, Victor

    2015-06-01

    Weyl semimetals are a class of topological materials that exhibit a bulk Hall effect due to time-reversal symmetry breaking. We show that for the idealized semi-infinite case, the Casimir force between two identical Weyl semimetals is repulsive at short range and attractive at long range. Considering plates of finite thickness, we can reduce the size of the long-range attraction even making it repulsive for all distances when thin enough. In the thin-film limit, we study the appearance of an attractive Casimir force at shorter distances due to the longitudinal conductivity. Magnetic field, thickness, and chemical potential provide tunable nobs for this effect, controlling the Casimir force: whether it is attractive or repulsive, the magnitude of the effect, and the positions and existence of a trap and antitrap.

  19. Casimir forces in systems near jamming

    NASA Astrophysics Data System (ADS)

    Burton, Justin; Liétor-Santos, Juan-José

    Casimir forces arise when long-ranged fluctuations are geometrically confined between two surfaces. In most cases these fluctuations are quantum or thermal in nature, such as those near a classical critical point, yet this is not a requirement. The T = 0 jamming transition in frictionless, granular systems shares many properties with classical critical points, such as a diverging correlation length, although it has recently been identified as a unique example of a random first-order transition (RFOT). Here we show the existence of Casimir forces between two pinned particles immersed in systems near the frictionless jamming transition. We observe two components to the total force: a short-ranged, depletion force and a long-ranged, repulsive Casimir force. The Casimir force dominates when the pinned particles are much larger than the ambient jammed particles. In this case, we find that particles with the largest forces have the least number of contacts, and that these particles are clustered between the pinned particles, giving rise to a repulsive force which is independent of system preparation and inter-particle potential. We acknowledge support from NSF DMR-1455086.

  20. Casimir forces in the time domain: Theory

    SciTech Connect

    Rodriguez, Alejandro W.; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.

    2009-07-15

    We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain (FDTD) scheme. The method involves the time evolution of electric and magnetic fields in response to a set of current sources, in a modified medium with frequency-independent conductivity. The advantage of this approach is that it allows one to exploit existing FDTD software, without modification, to compute Casimir forces. In this paper, we focus on the derivation, implementation choices, and essential properties of the time-domain algorithm, both considered analytically and illustrated in the simplest parallel-plate geometry.

  1. Direct simulation of critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Hobrecht, Hendrik; Hucht, Alfred

    2014-06-01

    We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are moved through the system with appropriate statistical weights, and consequently are attracted or repelled from the system boundaries depending on the boundary conditions. The distribution function of the object position is utilized to obtain the residual free energy, or Casimir potential, of the configuration as well as the corresponding Casimir force. The results are in perfect agreement with known exact results. The method can easily be generalized to more complicated geometries, to higher dimensions, and also to colloidal suspensions with many particles.

  2. Casimir forces in a plasma: possible connections to Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Ninham, Barry W.; Boström, Mathias; Persson, Clas; Brevik, Iver; Buhmann, Stefan Y.; Sernelius, Bo E.

    2014-10-01

    We present theoretical and numerical results for the screened Casimir effect between perfect metal surfaces in a plasma. We show how the Casimir effect in an electron-positron plasma can provide an important contribution to nuclear interactions. Our results suggest that there is a connection between Casimir forces and nucleon forces mediated by mesons. Correct nuclear energies and meson masses appear to emerge naturally from the screened Casimir-Lifshitz effect.

  3. Casimir force in Schwarzschild metric: Progress report

    NASA Astrophysics Data System (ADS)

    Karim, Munawar

    2016-01-01

    In this paper I report progress on both theoretical and experimental aspects. I describe two approaches to calculating putative effects of gravitational curvature on the Casimir force. The work I describe continues the quest to answer the question: do virtual field excitations follow geodesics?

  4. Lateral Casimir force beyond the proximity-force approximation.

    PubMed

    Rodrigues, Robson B; Neto, Paulo A Maia; Lambrecht, Astrid; Reynaud, Serge

    2006-03-17

    We argue that the appropriate variable to study a nontrivial geometry dependence of the Casimir force is the lateral component of the Casimir force, which we evaluate between two corrugated metallic plates outside the validity of the proximity-force approximation. The metallic plates are described by the plasma model, with arbitrary values for the plasma wavelength, the plate separation, and the corrugation period, the corrugation amplitude remaining the smallest length scale. Our analysis shows that in realistic experimental situations the proximity-force approximation overestimates the force by up to 30%. PMID:16605712

  5. Probing the Casimir force with optical tweezers

    NASA Astrophysics Data System (ADS)

    Maia Neto, Paulo; Ether, Diney; Pires, Luis; Ayala, Yareni; Rosa, Felipe; Umrath, Stefan; Ingold, Gert; Viana, Nathan; Nussenzveig, Moyses

    2015-03-01

    Optical tweezers (OT) are single-beam laser traps for neutral particles, usually applied to dielectric microspheres immersed in a fluid. The stiffness is proportional to the trapping beam power, and hence can be tuned to very small values, allowing one to measure femtonewton forces, once the device is carefully calibrated. We employ OT to measure the Casimir (or retarded van der Waals) force between polystyrene beads in ethanol, for distances between 50 nanometers and 1 micrometer. The spherical beads have diameters ranging from 3 to 7 micrometers. We find a rather large correction to the widely employed Proximity Force approximation (PFA), since the ratio between distances and sphere radii is much larger than the typical values probed in recent experiments. For the comparison with experimental data, we compute the Casimir force using the scattering approach applied to the spherical geometry, including the contribution of double-layer forces. We also present experimental results for the total force between a mercury microdroplet and a polystyrene bead immersed in ethanol, with similar distances and diameters. In short, we probe the Casimir force with different materials in a regime far from the validity of PFA, such that the spherical geometry plays a non-trivial role.

  6. Repulsive Casimir force in chiral metamaterials.

    PubMed

    Zhao, R; Zhou, J; Koschny, Th; Economou, E N; Soukoulis, C M

    2009-09-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients. PMID:19792309

  7. Isotopic dependence of the Casimir force.

    PubMed

    Krause, Dennis E; Fischbach, Ephraim

    2002-11-01

    We calculate the dependence of the Casimir force on the isotopic composition of the interacting objects. This dependence arises from the subtle influence of the nuclear masses on the electronic properties of the bodies. We discuss the relevance of these results to current experiments utilizing the isoelectronic effect to search at very short separations for new weak forces suggested by various unification theories. PMID:12443107

  8. Critical Casimir forces for colloidal assembly.

    PubMed

    Nguyen, V D; Dang, M T; Nguyen, T A; Schall, P

    2016-02-01

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium. PMID:26750980

  9. Casimir force measurements from silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  10. Critical Casimir forces for colloidal assembly

    NASA Astrophysics Data System (ADS)

    Nguyen, V. D.; Dang, M. T.; Nguyen, T. A.; Schall, P.

    2016-02-01

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium.

  11. Theory of Casimir Forces without the Proximity-Force Approximation.

    PubMed

    Lapas, Luciano C; Pérez-Madrid, Agustín; Rubí, J Miguel

    2016-03-18

    We analyze both the attractive and repulsive Casimir-Lifshitz forces recently reported in experimental investigations. By using a kinetic approach, we obtain the Casimir forces from the power absorbed by the materials. We consider collective material excitations through a set of relaxation times distributed in frequency according to a log-normal function. A generalized expression for these forces for arbitrary values of temperature is obtained. We compare our results with experimental measurements and conclude that the model goes beyond the proximity-force approximation. PMID:27035293

  12. Theory of Casimir Forces without the Proximity-Force Approximation

    NASA Astrophysics Data System (ADS)

    Lapas, Luciano C.; Pérez-Madrid, Agustín; Rubí, J. Miguel

    2016-03-01

    We analyze both the attractive and repulsive Casimir-Lifshitz forces recently reported in experimental investigations. By using a kinetic approach, we obtain the Casimir forces from the power absorbed by the materials. We consider collective material excitations through a set of relaxation times distributed in frequency according to a log-normal function. A generalized expression for these forces for arbitrary values of temperature is obtained. We compare our results with experimental measurements and conclude that the model goes beyond the proximity-force approximation.

  13. Scattering theory approach to electrodynamic Casimir forces

    SciTech Connect

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten; Graham, Noah; Jaffe, Robert L.

    2009-10-15

    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, nonzero temperatures, and spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. The method is illustrated by rederiving the Lifshitz formula for infinite half-spaces, by demonstrating the Casimir-Polder to van der Waals crossover, and by computing the Casimir interaction energy of two infinite, parallel, perfect metal cylinders either inside or outside one another. Furthermore, it is used to obtain new results, namely, the Casimir energies of a sphere or a cylinder opposite a plate, all with finite permittivity and permeability, to leading order at large separation.

  14. Critical Casimir force between inhomogeneous boundaries

    NASA Astrophysics Data System (ADS)

    Dubail, Jerome; Santachiara, Raoul; Emig, Thorsten

    2015-12-01

    To study the critical Casimir force between chemically structured boundaries immersed in a binary mixture at its demixing transition, we consider a strip of Ising spins subject to alternating fixed spin boundary conditions. The system exhibits a boundary phase transition as function of the relative amount of up and down boundary spins. This transition is associated with a sign change of the asymptotic force and a diverging length that sets the scale for the crossover between different universal force amplitudes. Using conformal field theory and a mapping to Majorana fermions, we obtain the universal scaling function of this crossover, and the force at short distances.

  15. On the Relation Between Casimir Forces and Bulk Correlations

    NASA Astrophysics Data System (ADS)

    Napiórkowski, Marek; Piasecki, Jarosław

    2014-09-01

    Within a microscopic approach we show that in the case of an ideal quantum gas enclosed in a slit the Casimir force can be simply expressed in terms of the bulk one-particle density matrix. The corresponding formula, which holds both for bosons and fermions, allows to relate the range of the Casimir force to the bulk correlation length. The low-temperature behavior of the Casimir forces is derived.

  16. New features of the thermal Casimir force at small separations.

    PubMed

    Chen, F; Klimchitskaya, G L; Mohideen, U; Mostepanenko, V M

    2003-04-25

    The difference of the thermal Casimir forces at different temperatures between real metals is shown to increase with a decrease of the separation distance. This opens new opportunities for the demonstration of the thermal dependence of the Casimir force. Both configurations of two parallel plates and a sphere above a plate are considered. Different approaches to the theoretical description of the thermal Casimir force are shown to lead to different measurable predictions. PMID:12731963

  17. Optical detection of the Casimir force between macroscopic objects.

    PubMed

    Petrov, Victor; Petrov, Mikhail; Bryksin, Valeriy; Petter, Juergen; Tschudi, Theo

    2006-11-01

    We report the optical detection of mechanical deformation of a macroscopic object induced by the Casimir force. An adaptive holographic interferometer based on a photorefractive BaTiO3:Co crystal was used to measure periodical nonlinear deformations of a thin pellicle caused by an oscillating Casimir force. A reasonable agreement between the experimental and calculated values of the first and second harmonics of the Casimir force oscillations has been obtained. PMID:17041670

  18. Casimir forces in the time domain: Applications

    SciTech Connect

    McCauley, Alexander P.; Rodriguez, Alejandro W.; Joannopoulos, John D.; Johnson, Steven G.

    2010-01-15

    Our previous article [Phys. Rev. A 80, 012115 (2009)] introduced a method to compute Casimir forces in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD) scheme. In this article, we focus on the efficient implementation of our method for geometries of practical interest and extend our previous proof-of-concept algorithm in one dimension to problems in two and three dimensions, introducing a number of new optimizations. We consider Casimir pistonlike problems with nonmonotonic and monotonic force dependence on sidewall separation, both for previously solved geometries to validate our method and also for new geometries involving magnetic sidewalls and/or cylindrical pistons. We include realistic dielectric materials to calculate the force between suspended silicon waveguides or on a suspended membrane with periodic grooves, also demonstrating the application of perfectly matched layer (PML) absorbing boundaries and/or periodic boundaries. In addition, we apply this method to a realizable three-dimensional system in which a silica sphere is stably suspended in a fluid above an indented metallic substrate. More generally, the method allows off-the-shelf FDTD software, already supporting a wide variety of materials (including dielectric, magnetic, and even anisotropic materials) and boundary conditions, to be exploited for the Casimir problem.

  19. Three-body critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Mattos, T. G.; Harnau, L.; Dietrich, S.

    2015-04-01

    Within mean-field theory we calculate universal scaling functions associated with critical Casimir forces for a system consisting of three parallel cylindrical colloids immersed in a near-critical binary liquid mixture. For several geometrical arrangements and boundary conditions at the surfaces of the colloids we study the force between two colloidal particles in the direction normal to their axes, analyzing the influence of the presence of a third particle on that force. Upon changing temperature or the relative positions of the particles we observe interesting features such as a change of sign of this force caused by the presence of the third particle. We determine the three-body component of the forces acting on one of the colloids by subtracting the pairwise forces from the total force. The three-body contribution to the total critical Casimir force turns out to be more pronounced for small surface-to-surface distances between the colloids as well as for temperatures close to criticality. Moreover, we compare our results with similar ones for other physical systems such as three atoms interacting via van der Waals forces.

  20. Probing the Casimir force with optical tweezers

    NASA Astrophysics Data System (ADS)

    Ether, D. S., Jr.; Pires, L. B.; Umrath, S.; Martinez, D.; Ayala, Y.; Pontes, B.; Araújo, G. R. de S.; Frases, S.; Ingold, G.-L.; Rosa, F. S. S.; Viana, N. B.; Nussenzveig, H. M.; Neto, P. A. Maia

    2015-11-01

    We propose to use optical tweezers to probe the Casimir interaction between microspheres inside a liquid medium for geometric aspect ratios far beyond the validity of the widely employed proximity force approximation. This setup has the potential for revealing unprecedented features associated to the non-trivial role of the spherical curvatures. For a proof of concept, we measure femtonewton double-layer forces between polystyrene microspheres at distances above 400 nm by employing very soft optical tweezers, with stiffness of the order of fractions of a fN/nm. As a future application, we propose to tune the Casimir interaction between a metallic and a polystyrene microsphere in saline solution from attraction to repulsion by varying the salt concentration. With those materials, the screened Casimir interaction may have a larger magnitude than the unscreened one. This line of investigation has the potential for bringing together different fields including classical and quantum optics, statistical physics and colloid science, while paving the way for novel quantitative applications of optical tweezers in cell and molecular biology.

  1. Conformal field theory of critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Emig, Thorsten; Bimonte, Giuseppe; Kardar, Mehran

    2015-03-01

    Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two dimensional conformal field theories (CFT) we derive exact results for the Casimir interaction for a deformed strip and for two compact objects of arbitrary shape in terms of the free energy of a standard region (circular ring or flat strip) whose dimension is determined by the mutual capacitance of two conductors with the objects' shape; and a purely geometric energy that is proportional to conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details. The effect of inhomogenous boundary conditions is also discussed.

  2. Casimir force in the presence of a medium

    SciTech Connect

    Kheirandish, Fardin; Soltani, Morteza; Sarabadani, Jalal

    2010-05-15

    We investigate the Casimir effect in the presence of a medium by quantizing the electromagnetic field in the presence of a magnetodielectric medium using the path-integral technique. For a given medium with definite electric and magnetic susceptibilities, explicit expressions for the Casimir force are obtained. The Lifshitz formula is recovered and in the absence of a medium the results tend to the original Casimir force between two conducting parallel plates immersed in the quantum electromagnetic vacuum.

  3. Casimir-Polder forces on moving atoms

    SciTech Connect

    Scheel, Stefan; Buhmann, Stefan Yoshi

    2009-10-15

    Polarizable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric surface experience an additional velocity-dependent force. We present a full quantum-mechanical treatment of this force and identify a generalized Doppler effect, the time delay between photon emission and reabsorption, and the Roentgen interaction as its three sources. For ground-state atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atoms and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can occur depending on the magnitude of the atomic transition frequency relative to the surface-plasmon frequency.

  4. Membrane actuation by Casimir force manipulation

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2008-04-01

    In our laboratory, we have been developing a practical demonstration of actuation by means of the Casimir force inspired by the capacitive detection approach originally described by Arnold, Hunklinger and Dransfeld (1972 Rev. Sci. Instrum. 43 584-7). In this paper, we first describe the mathematical challenges pertaining to the electrostatic calibration of our measuring device, which has been enhanced by our recently published results regarding the computation of electrostatic fields in axial systems, such as the long-standing classical circular capacitor problem. We also discuss our computational approach to the calculation of the Casimir force in our system, including our adoption of analytical descriptions of the dielectric functions of semiconductors extended to the case of axial geometries. We will illustrate how the original AHD apparatus has been drastically improved upon, for instance by means of modern nanopositioner technology, and we shall discuss our published experimental results on the dynamics of a vibrating membrane with a central disc, which have provided the first direct verification of the mechanical resonances of such a system. The emphasis of our effort is not exclusively directed to fundamental physics research but is focused on, and ultimately motivated by, our goal of identifying viable industrial applications leading to commercially marketable products based on Casimir force actuation. Therefore we conclude this paper by briefly discussing the contribution we believe these results will offer to some current technological problems, in particular in nanotechnology, including some thoughts on the possibility that dispersion forces may enable a new and rapidly expanding industry to develop in the near future.

  5. Casimir force between parallel plates separated by anisotropic media

    NASA Astrophysics Data System (ADS)

    Deng, Gang; Tan, Bao-Hua; Pei, Ling; Hu, Ni; Zhu, Jin-Rong

    2015-06-01

    The Casimir force between two parallel plates separated by anisotropic media is investigated. We theoretically calculate the Casimir force between two parallel plates when the interspace between the plates is filled with anisotropic media. Our result shows that the anisotropy of the material between the plates can significantly affect the Casimir force, especially the direction of the force. If ignoring the anisotropy of the in-between material makes the force repulsive (attractive), by contrast taking the anisotropy into account may produce an extra attractive (repulsive) force. The physical explanation for this phenomenon is also discussed.

  6. Intermolecular Casimir-Polder forces in water and near surfaces

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E.; Parsons, Drew F.; Malthe-Sørenssen, Anders; Boström, Mathias

    2014-09-01

    The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.

  7. Casimir forces from conductive silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  8. Isoelectronic apparatus to probe the thermal Casimir force

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe

    2015-05-01

    Isoelectronic differential force measurements provide a unique opportunity to probe controversial features of the thermal Casimir effect that are still much debated in the current literature. Isolectronic setups offer two major advantages over conventional Casimir setups. On the one hand, they are immune from electrostatic forces caused by potential patches on the plates surfaces that plague present Casimir experiments, especially for separations in the micron range. On the other hand, they can strongly enhance the discrepancy between alternative theoretical models that have been proposed to estimate the thermal Casimir force for metallic and magnetic surfaces. Thanks to these two features, isoelectronic differential experiments should allow one to establish conclusively which among these models correctly describes the thermal Casimir force.

  9. Casimir Force in a One-Dimensional Cavity with Quasimode

    NASA Astrophysics Data System (ADS)

    Pan, Shu-Mei; Tian, Tian; Yang, Hui; Zheng, Tai-Yu; Zhang, Xue; Shao, Xiao-Qiang; Zheng, Li

    2014-05-01

    We calculate the Casimir force between a perfect reflective wall and a semitransparent wall in the laser cavity. Using the Fox—Li quasimode theory to describe the electromagnetic field in the laser cavity, the vacuum energy and the Casimir force are calculated. We compare our results to the force in the ideal situation and find it smaller in the dissipative cavity. We also find that the Casimir force decreases with the increase of the wall-wall distance and the decay rate of the quasimodes in the laser cavity.

  10. Nanomechanical sensing of gravitational wave-induced Casimir force perturbations

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2014-06-01

    It is shown by means of the optical medium analogy that the static Casimir force between two conducting plates is modulated by gravitational waves. The magnitude of the resulting force changes within the range of already existing small force metrology. It is suggested to enhance the effects on a Casimir force oscillator by mechanical parametric amplification driven by periodic illumination of interacting semiconducting boundaries. This represents a novel opportunity for the ground-based laboratory detection of gravitational waves on the nanoscale.

  11. Casimir-Polder Force Reversal with Metamaterials

    NASA Astrophysics Data System (ADS)

    Pappakrishnan, Venkatesh; Genov, Dentcho

    2010-10-01

    A promising system design aiming to demonstrate Casimir-Polder force (CPF) reversal is proposed. The constraints when using naturally available materials in designing the system with air as an intermediate medium is resolved by using artificial electromagnetic materials. The parametric space in terms of the plate's magnetic and dielectric plasma frequencies, gap thickness and temperature is investigated. The parametric domain for achieving CPF reversal is obtained. Furthermore, a simple analytical expression for the CPF is derived. The analytical expression accurately describes the large and short distance asymptotics and allows extraction of important parameters such as lower and upper cutoff gap distances that define the repulsive force window. This study could possibly lead us to design of quantum levitation system, frictionless bio-fluid transport devices, etc.

  12. Casimir force at a knife's edge

    SciTech Connect

    Graham, Noah; Shpunt, Alexander; Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten; Jaffe, Robert L.

    2010-03-15

    The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are available, is another case where such a calculation is possible. We compute the interaction energy of a parabolic cylinder and an infinite plate (both perfect mirrors), as a function of their separation and inclination, H and {theta}, and the cylinder's parabolic radius R. As H/R{yields}0, the proximity force approximation becomes exact. The opposite limit of R/H{yields}0 corresponds to a semi-infinite plate, where the effects of edge and inclination can be probed.

  13. Thickness dependence of the Casimir force between a magnetodielectric plate and a diamagnetic plate

    SciTech Connect

    Inui, Norio

    2011-11-15

    This paper examines the repulsive Casimir force between a magnetodielectric plate, with static permeability greater than static permittivity, and a diamagnetic plate. As the thickness of the magnetodielectric plate is decreased, the attractive component of the Casimir force decreases more than the repulsive one. This effect makes the net Casimir force repulsive, and a larger repulsive Casimir force is generated compared to the Casimir force between the plates with infinite thickness.

  14. Observing the Casimir-Lifshitz force out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe

    2015-09-01

    The thermal Casimir-Lifshitz force between two bodies held at different temperatures displays striking features that are absent in systems in thermal equilibrium. The manifestation of this force has been observed so far only in Bose-Einstein condensates close to a heated substrate, but never between two macroscopic bodies. Observation of the thermal Casimir-Lifshitz force out of thermal equilibrium with conventional Casimir setups is very difficult because for experimentally accessible separations the thermal force is small compared to the zero-temperature quantum Casimir force unless prohibitively large temperature differences among the plates are considered. We describe an apparatus that allows for direct observation of the thermal force out of equilibrium for submicron separations and for moderate temperature differences between the plates.

  15. Critical Casimir forces between planar and crenellated surfaces

    NASA Astrophysics Data System (ADS)

    Tröndle, M.; Harnau, L.; Dietrich, S.

    2015-06-01

    We study critical Casimir forces between planar walls and geometrically structured substrates within mean-field theory. As substrate structures, crenellated surfaces consisting of periodic arrays of rectangular crenels and merlons are considered. Within the widely used proximity force approximation, both the top surfaces of the merlons and the bottom surfaces of the crenels contribute to the critical Casimir force. However, for such systems the full, numerically determined critical Casimir forces deviate significantly from the pairwise addition formalism underlying the proximity force approximation. A first-order correction to the proximity force approximation is presented in terms of a step contribution arising from the critical Casimir interaction between a planar substrate and the right-angled steps of the merlons consisting of their upper and lower edges as well as their sidewalls.

  16. Critical Casimir forces in a magnetic system: An experimental protocol

    NASA Astrophysics Data System (ADS)

    Lopes Cardozo, David; Jacquin, Hugo; Holdsworth, Peter C. W.

    2014-11-01

    We numerically test an experimentally realizable method for the extraction of the critical Casimir force based on its thermodynamic definition as the derivative of the excess free energy with respect to system size. Free energy differences are estimated for different system sizes by integrating the order parameter along an isotherm. The method could be developed for experiments on magnetic systems and could give access to the critical Casimir force for any universality class. By choosing an applied field that opposes magnetic ordering at the boundaries, the Casimir force is found to increase by an order of magnitude over zero-field results.

  17. Lateral Casimir force between self-affine rough surfaces

    NASA Astrophysics Data System (ADS)

    Tajik, Fatemeh; Masoudi, Amir Ali; Khorrami, Mohammad

    2016-03-01

    The effect of self-affine roughness on the lateral Casimir force between two plates is studied using a perturbative expansion method. The PWS (pairwise summation) method is applicable only at lateral correlation lengths much larger than the separation between two plates. The effect of the roughness parameters on the lateral Casimir force is investigated, and it is seen that this effect is significant, enabling one to tailor roughness parameters so that to obtain the desirable Casimir force and increase the yield of micro- or nano-electromechanical devices based on the vacuum fluctuations.

  18. Modal approach to Casimir forces in periodic structures

    SciTech Connect

    Davids, P. S.; Intravaia, F.; Rosa, F. S. S.; Dalvit, D. A. R.

    2010-12-15

    We present a modal approach to calculate finite-temperature Casimir interactions between two periodically modulated surfaces. The scattering formula is used and the reflection matrices of the patterned surfaces are calculated by decomposing the electromagnetic field into the natural modes of the structures. The Casimir force gradient from a deeply etched silicon grating is evaluated using the modal approach and compared to experiment for validation. The Casimir force involving a two-dimensional periodic structure is computed and deviations from the proximity force approximation are examined.

  19. Casimir-Polder forces: A nonperturbative approach

    SciTech Connect

    Buhmann, Stefan Yoshi; Knoell, Ludwig; Welsch, Dirk-Gunnar; Ho Trung Dung

    2004-11-01

    Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force components that are related to the electronic density matrix elements at a chosen time. Even the force component associated with the ground state is not derivable from a potential in the ususal way, because of the position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent superposition of energy eigenstates, then temporally oscillating force components are observed, which are due to the interaction of the atom with both electric and magnetic fields.

  20. Strong Casimir force reduction through metallic surface nanostructuring.

    PubMed

    Intravaia, Francesco; Koev, Stephan; Jung, Il Woong; Talin, A Alec; Davids, Paul S; Decca, Ricardo S; Aksyuk, Vladimir A; Dalvit, Diego A R; López, Daniel

    2013-01-01

    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction. PMID:24071657

  1. Strong Casimir force reduction through metallic surface nanostructuring

    PubMed Central

    Intravaia, Francesco; Koev, Stephan; Jung, Il Woong; Talin, A. Alec; Davids, Paul S.; Decca, Ricardo S.; Aksyuk, Vladimir A.; Dalvit, Diego A. R.; López, Daniel

    2013-01-01

    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction. PMID:24071657

  2. Effect of hydrogen-switchable mirrors on the Casimir force.

    PubMed

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-03-23

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials. PMID:15024111

  3. Effect of hydrogen-switchable mirrors on the Casimir force

    PubMed Central

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-01-01

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials. PMID:15024111

  4. Quantum mechanical actuation of microelectromechanical systems by the Casimir force.

    PubMed

    Chan, H B; Aksyuk, V A; Kleiman, R N; Bishop, D J; Capasso, F

    2001-03-01

    The Casimir force is the attraction between uncharged metallic surfaces as a result of quantum mechanical vacuum fluctuations of the electromagnetic field. We demonstrate the Casimir effect in microelectromechanical systems using a micromachined torsional device. Attraction between a polysilicon plate and a spherical metallic surface results in a torque that rotates the plate about two thin torsional rods. The dependence of the rotation angle on the separation between the surfaces is in agreement with calculations of the Casimir force. Our results show that quantum electrodynamical effects play a significant role in such microelectromechanical systems when the separation between components is in the nanometer range. PMID:11239149

  5. Measuring the conductivity dependence of the Casimir force

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Schafer, Robert; Banishev, Alexandr; Mohideen, Umar

    2015-03-01

    The strength and distance dependence of the Casimir force can be controlled through the conductivity of the material bodies, with lower conductivity in general leading to lower Casimir forces. However low conductivity, large bandgap materials which are insulating, have drawbacks as any surface electrostatic charges cannot be easily compensated. This restricts experiments to metallic or highly doped semiconductor materials. We will report on measurements of the Casimir force gradient using the frequency shift technique. Improvements in the measurement technique will be discussed. Measurements of the Casimir force gradient using low and high conductivity silicon surfaces will be reported. The authors thank G.L. Klimchitskaya and V.M. Mostepanenko for help with the theory and the US National Science Foundation for funding the research.

  6. Collective behaviors of the Casimir force in microelectromechanical systems

    SciTech Connect

    Chan, H. B.; Yelton, J.

    2013-01-23

    Our goal was to explore the strong dependence of the Casimir force on the shape of the interacting bodies. We made significant progress and measured the Casimir force on silicon surface with rectangular corrugation and showed that the results agree with theoretical calculations, provided that the optical properties of silicon are taken into account. Furthermore, we performed measurement of the Casimir force within a single chip for the first time, between a doubly clamped beam and a movable, on-chip electrode at liquid helium temperature. This experiment represents a new way of studying the Casimir effect, a significant advance from the conventional approach of placing an external surface close to a force transducer.

  7. Casimir force at both nonzero temperature and finite conductivity.

    PubMed

    Bordag, M; Geyer, B; Klimchitskaya, G L; Mostepanenko, V M

    2000-07-17

    We find the combined effect of nonzero temperature and finite conductivity onto the Casimir force between real metals. Configurations of two parallel plates and a sphere (lens) above a plate are considered. Perturbation theory in two parameters (the relative temperature and the relative penetration depth of zero-point oscillations into the metal) is developed. Perturbative results are compared with computations. Recent improper computations based on the Lifshitz formula for the temperature Casimir force are discussed. PMID:10991326

  8. Opposites attract: a theorem about the Casimir Force.

    PubMed

    Kenneth, Oded; Klich, Israel

    2006-10-20

    We consider the Casimir interaction between (nonmagnetic) dielectric bodies or conductors. Our main result is a proof that the Casimir force between two bodies related by reflection is always attractive, independent of the exact form of the bodies or dielectric properties. Apart from being a fundamental property of fields, the theorem and its corollaries also rule out a class of suggestions to obtain repulsive forces, such as the two hemisphere repulsion suggestion and its relatives. PMID:17155375

  9. Controlling colloidal phase transitions with critical Casimir forces.

    PubMed

    Nguyen, Van Duc; Faber, Suzanne; Hu, Zhibing; Wegdam, Gerard H; Schall, Peter

    2013-01-01

    The critical Casimir force provides a thermodynamic analogue of the quantum mechanical Casimir force that arises from the confinement of electromagnetic field fluctuations. In its thermodynamic analogue, two surfaces immersed in a critical solvent mixture attract each other due to confinement of solvent concentration fluctuations. Here, we demonstrate the active assembly control of colloidal equilibrium phases using critical Casimir forces. We guide colloidal particles into analogues of molecular liquid and solid phases via exquisite control over their interactions. By measuring the critical Casimir pair potential directly from density fluctuations in the colloidal gas, we obtain insight into liquefaction at small scales. We apply the van der Waals model of molecular liquefaction and show that the colloidal gas-liquid condensation is accurately described by the van der Waals theory, even on the scale of a few particles. These results open up new possibilities in the active assembly control of micro and nanostructures. PMID:23481392

  10. On the shape dependence of the tangential Casimir force

    NASA Astrophysics Data System (ADS)

    Voronina, Yu. S.; Silaev, P. K.

    2013-11-01

    The normal and tangential Casimir force for the rack gear is calculated numerically in the case of ideal boundary conditions for the electromagnetic field—perfect reflection on the boundaries. The resulting tangential force appears to be essentially shape-dependent. Relatively small shape variations lead to the essential changes in tangential force, whereas normal force remains almost unchanged.

  11. Fluctuations of the Casimir-like force between two membrane inclusions.

    PubMed

    Bitbol, Anne-Florence; Dommersnes, Paul G; Fournier, Jean-Baptiste

    2010-05-01

    Although Casimir forces are inseparable from their fluctuations, little is known about these fluctuations in soft matter systems. We use the membrane stress tensor to study the fluctuations of the membrane-mediated Casimir-like force. This method enables us to recover the Casimir force between two inclusions and to calculate its variance. We show that the Casimir force is dominated by its fluctuations. Furthermore, when the distance d between the inclusions is decreased from infinity, the variance of the Casimir force decreases as -1/d2. This distance dependence shares a common physical origin with the Casimir force itself. PMID:20866178

  12. Demonstration of angle-dependent Casimir force between corrugations.

    PubMed

    Banishev, A A; Wagner, J; Emig, T; Zandi, R; Mohideen, U

    2013-06-21

    The normal Casimir force between a sinusoidally corrugated gold coated plate and a sphere was measured at various angles between the corrugations using an atomic force microscope. A strong dependence on the orientation angle of the corrugation is found. The measured forces were found to deviate from the proximity force approximation and are in agreement with the theory based on the gradient expansion including correlation effects of geometry and material properties. We analyze the role of temperature. The obtained results open new opportunities for control of the Casimir effect in micromechanical systems. PMID:23829717

  13. Isoelectronic determination of the thermal Casimir force

    NASA Astrophysics Data System (ADS)

    Bimonte, G.; López, D.; Decca, R. S.

    2016-05-01

    Differential force measurements between spheres coated with either nickel or gold and rotating disks with periodic distributions of nickel and gold are reported. The rotating samples are covered by a thin layer of titanium and a layer of gold. While titanium is used for fabrication purposes, the gold layer (nominal thicknesses of 21, 37, 47, and 87 nm) provides an isoelectronic environment, and is used to nullify the electrostatic contribution but allow the passage of long wavelength Casimir photons. A direct comparison between the experimental results and predictions from Drude and plasma models for the electrical permittivity is carried out. In the models, the magnetic permeability of nickel is allowed to change to investigate its effects. Possible sources of errors, both in the experimental and theoretical sides, are taken into account. It is found that a Drude response with magnetic properties of nickel taken into account is unequivocally ruled out. The full analysis of the data indicates that a dielectric plasma response with the magnetic properties of Ni included shows good agreement with the data. Neither a Drude nor a plasma dielectric response provide a satisfactory description if the magnetic properties of nickel are disregarded.

  14. Casimir force and in situ surface potential measurements on nanomembranes.

    PubMed

    Garcia-Sanchez, Daniel; Fong, King Yan; Bhaskaran, Harish; Lamoreaux, Steve; Tang, Hong X

    2012-07-13

    We present Casimir force measurements in a sphere-plate configuration that consists of a high quality nanomembrane resonator and a millimeter sized gold coated sphere. The nanomembrane is fabricated from stoichiometric silicon nitride metallized with gold. A Kelvin probe method is used in situ to image the surface potentials to minimize the distance-dependent residual force. Resonance-enhanced frequency-domain measurements of the nanomembrane motion allow for very high resolution measurements of the Casimir force gradient (down to a force gradient sensitivity of 3  μN/m). Using this technique, the Casimir force in the range of 100 nm to 2  μm is accurately measured. Experimental data thus obtained indicate that the device system in the measured range is best described with the Drude model. PMID:23030202

  15. The Casimir force between real materials: Experiment and theory

    SciTech Connect

    Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M.

    2009-10-15

    The physical origin of the Casimir force is connected with the existence of zero-point and thermal fluctuations. The Casimir effect is very general and finds applications in various fields of physics. This review is limited to the rapid progress at the intersection of experiment and theory that has been achieved in the last few years. It includes a critical assessment of the proposed approaches to the resolution of the puzzles arising in the applications of the Lifshitz theory of the van der Waals and Casimir forces to real materials. All the primary experiments on the measurement of the Casimir force between macroscopic bodies and the Casimir-Polder force between an atom and a wall that have been performed in the last decade are reviewed, including the theory needed for their interpretation. The methodology for the comparison between experiment and theory in the force-distance measurements is presented. The experimental and theoretical results described here provide a deeper understanding of the phenomenon of dispersion forces in real materials and offer guidance for the application of the Lifshitz theory to the interpretation of the measurement results.

  16. CasimirSim - A Tool to Compute Casimir Polder Forces for Nontrivial 3D Geometries

    SciTech Connect

    Sedmik, Rene; Tajmar, Martin

    2007-01-30

    The so-called Casimir effect is one of the most interesting macro-quantum effects. Being negligible on the macro-scale it becomes a governing factor below structure sizes of 1 {mu}m where it accounts for typically 100 kN m-2. The force does not depend on gravity, or electric charge but solely on the materials properties, and geometrical shape. This makes the effect a strong candidate for micro(nano)-mechanical devices M(N)EMS. Despite a long history of research the theory lacks a uniform description valid for arbitrary geometries which retards technical application. We present an advanced state-of-the-art numerical tool overcoming all the usual geometrical restrictions, capable of calculating arbitrary 3D geometries by utilizing the Casimir Polder approximation for the Casimir force.

  17. Apparatus for measuring the thermal Casimir force at large distances.

    PubMed

    Bimonte, Giuseppe

    2014-12-12

    We describe a Casimir apparatus based on a differential force measurement between a Au-coated sphere and a planar slab divided in two regions, one of which is made of high-resistivity (dielectric) Si, and the other of Au. The crucial feature of the setup is a semitransparent plane parallel conducting overlayer, covering both regions. The setup offers two important advantages over existing Casimir setups. On one hand, it leads to a large amplification of the difference between the Drude and the plasma prescriptions that are currently used to compute the thermal Casimir force. On the other hand, thanks to the screening power of the overlayer, it is in principle immune from electrostatic forces caused by potential patches on the plates surfaces, that plague present large distance Casimir experiments. If a semitransparent conductive overlayer with identical patch structure over the Au-Si regions of the plate can be manufactured, similar to the opaque overlayers used in recent searches of non-Newtonian gravitational forces based on the isoelectronic technique, the way will be paved for a clear observation of the thermal Casimir force up to separations of several microns, and an unambiguous discrimination between the Drude and the plasma prescriptions. PMID:25541756

  18. Apparatus for Measuring the Thermal Casimir Force at Large Distances

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe

    2014-12-01

    We describe a Casimir apparatus based on a differential force measurement between a Au-coated sphere and a planar slab divided in two regions, one of which is made of high-resistivity (dielectric) Si, and the other of Au. The crucial feature of the setup is a semitransparent plane parallel conducting overlayer, covering both regions. The setup offers two important advantages over existing Casimir setups. On one hand, it leads to a large amplification of the difference between the Drude and the plasma prescriptions that are currently used to compute the thermal Casimir force. On the other hand, thanks to the screening power of the overlayer, it is in principle immune from electrostatic forces caused by potential patches on the plates surfaces, that plague present large distance Casimir experiments. If a semitransparent conductive overlayer with identical patch structure over the Au-Si regions of the plate can be manufactured, similar to the opaque overlayers used in recent searches of non-Newtonian gravitational forces based on the isoelectronic technique, the way will be paved for a clear observation of the thermal Casimir force up to separations of several microns, and an unambiguous discrimination between the Drude and the plasma prescriptions.

  19. Casimir force in a cylinder-plane configuration

    NASA Astrophysics Data System (ADS)

    Brown-Hayes, Michael; Middleman, Scott; Kim, Woo-Joong; Dalvit, Diego; Mazzitelli, Francisco; Onofrio, Roberto

    2006-05-01

    We have developed and tested an apparatus [1] to measure the Casimir force in a cylinder-plane configuration, which is a compromise between the parallel plane and sphere-plane configurations, with intermediate advantages. Preliminary calibrations with electrostatic forces show that the Casimir forces should be detectable in a range large enough to observe the expected thermal corrections. [1] M. Brown-Hayes, D.A.R. Dalvit, F.D. Mazzitelli, W.J. Kim, and R. Onofrio, Phys. Rev. A 72, 052102 (2005).

  20. Nonmonotonic thermal Casimir force from geometry-temperature interplay.

    PubMed

    Weber, Alexej; Gies, Holger

    2010-07-23

    The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a nonmonotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by a reweighting of relevant fluctuations on the scale of the thermal wavelength. The essence of the phenomenon becomes transparent within the worldline picture of the Casimir effect. PMID:20867823

  1. Reversing the critical Casimir force by shape deformation

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran

    2015-04-01

    The exact critical Casimir force between periodically deformed boundaries of a 2D semi-infinite strip is obtained for conformally invariant classical systems. Only two parameters (conformal charge, dimension of a boundary changing operator), along with the solution of an electrostatic problem, determine the Casimir force, rendering the theory practically applicable to any shape. The attraction between any two mirror symmetric objects follows directly from our general result. The possibility of purely shape induced reversal of the force, as well as occurrence of stable equilibrium is demonstrated for certain conformally invariant models, including the tricritical Ising model.

  2. Nonequilibrium Casimir-like Forces in Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, T. R.; Ortiz de Zárate, J. M.; Sengers, J. V.

    2015-07-01

    In this Letter, we consider a liquid mixture confined between two thermally conducting walls subjected to a stationary temperature gradient. While in a one-component liquid nonequilibrium fluctuation forces appear inside the liquid layer, nonequilibrium fluctuations in a mixture induce a Casimir-like force on the walls. The physical reason is that the temperature gradient induces large concentration fluctuations through the Soret effect. Unlike temperature fluctuations, nonequilibrium concentration fluctuations are also present near a perfectly thermally conducting wall. The magnitude of the fluctuation-induced Casimir force is proportional to the square of the Soret coefficient and is related to the concentration dependence of the heat and volume of mixing.

  3. Casimir switch: steering optical transparency with vacuum forces

    NASA Astrophysics Data System (ADS)

    Liu, Xi-Fang; Li, Yong; Jing, H.

    2016-06-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  4. Nonmonotonic Thermal Casimir Force from Geometry-Temperature Interplay

    SciTech Connect

    Weber, Alexej; Gies, Holger

    2010-07-23

    The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a nonmonotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by a reweighting of relevant fluctuations on the scale of the thermal wavelength. The essence of the phenomenon becomes transparent within the worldline picture of the Casimir effect.

  5. Casimir switch: steering optical transparency with vacuum forces.

    PubMed

    Liu, Xi-Fang; Li, Yong; Jing, H

    2016-01-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum. PMID:27256630

  6. Casimir switch: steering optical transparency with vacuum forces

    PubMed Central

    Liu, Xi-fang; Li, Yong; Jing, H.

    2016-01-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum. PMID:27256630

  7. Casimir force induced by an imperfect Bose gas.

    PubMed

    Napiórkowski, Marek; Piasecki, Jarosław

    2011-12-01

    We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand-canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region, the force decays exponentially fast when distance D between the walls tends to infinity. When the Bose-Einstein condensation point is approached, the decay length in the exponential law diverges with critical exponent ν(IMP) = 1, which differs from the perfect gas case where ν(P) = 1/2. In the two-phase region, the Casimir force is long range and decays following the power law D(-3), with the same amplitude as in the perfect gas. PMID:22304038

  8. Quantum field theory of the Casimir force for graphene

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.

    2016-01-01

    We present theoretical description of the Casimir interaction in graphene systems which is based on the Lifshitz theory of dispersion forces and the formalism of the polarization tensor in (2+1)-dimensional space-time. The representation for the polarization tensor of graphene allowing the analytic continuation to the whole plane of complex frequencies is given. This representation is used to obtain simple asymptotic expressions for the reflection coefficients at all Matsubara frequencies and to investigate the origin of large thermal effect in the Casimir force for graphene. The developed theory is shown to be in a good agreement with the experimental data on measuring the gradient of the Casimir force between a Au-coated sphere and a graphene-coated substrate. The possibility to observe the thermal effect for graphene due to a minor modification of the already existing experimental setup is demonstrated.

  9. Interplay of critical Casimir and dispersion forces.

    PubMed

    Dantchev, Daniel; Schlesener, Frank; Dietrich, S

    2007-07-01

    Using general scaling arguments combined with mean-field theory we investigate the critical (T approximately Tc) and off-critical (T not equal Tc) behavior of the Casimir forces in fluid films of thickness L governed by dispersion forces and exposed to long-ranged substrate potentials which are taken to be equal on both sides of the film. We study the resulting effective force acting on the confining substrates as a function of T and of the chemical potential mu. We find that the total force is attractive both below and above Tc. If, however, the direct substrate-substrate contribution is subtracted, the force is repulsive everywhere except near the bulk critical point (Tc, mu(c)), where critical density fluctuations arise, or except at low temperatures and (L/a)(beta(Delta)(mu))=O(1), with Delta(mu)=mu-mu(c)<0 and a the characteristic distance between the molecules of the fluid, i.e., in the capillary condensation regime. While near the critical point the maximal amplitude of the attractive force if of order of L(-d) in the capillary condensation regime the force is much stronger with maximal amplitude decaying as L(-1). In the latter regime we observe that the long-ranged tails of the fluid-fluid and the substrate-fluid interactions further increase that amplitude in comparison with systems with short-range interactions only. Although in the critical region the system under consideration asymptotically belongs to the Ising universality class with short-ranged forces, we find deviations from the standard finite-size scaling for xi(ln)(xi/xi0(+/-)) >L even for xi, L>xi0(+/-), where xi[t=(T-Tc)/Tc-->+/-0,Delta(mu)=0]=xi0(+/-)/t/-nu, is the bulk correlation length. In this regime the dominant finite-size contributions to the free energy and to the force stem from the long-ranged algebraically decaying tails of the interactions; they are not exponentially small in L, as it is the case there in systems governed by purely short-ranged interactions, but exhibit a power

  10. Computing the Casimir force using regularized boundary integral equations

    NASA Astrophysics Data System (ADS)

    Kilen, Isak; Jakobsen, Per Kristen

    2014-11-01

    In this paper we use a novel regularization procedure to reduce the calculation of the Casimir force for 2D scalar fields between compact objects to the solution of a classical integral equation defined on the boundaries of the objects. The scalar fields are subject to Dirichlet boundary conditions on the object boundaries. We test the integral equation by comparing with what we get for parallel plates, concentric circles and adjacent circles using mode summation and the functional integral method. We show how symmetries in the shapes and configuration of boundaries can easily be incorporated into our method and that it leads to fast evaluation of the Casimir force for symmetric situations.

  11. Correlation Between Plasma and Temperature Corrections to the Casimir Force

    NASA Astrophysics Data System (ADS)

    Genet, Cyriaque; Lambrecht, Astrid; Reynaud, Serge

    When comparing experimental results with theoretical predictions of the Casimir force, the accuracy of the theory is as important as the precision of experiments. Here we evaluate the Casimir force when finite conductivity of the reflectors and finite temperature are simultaneously taken into account. We show that these two corrections are correlated, i.e. that they can not, in principle, be evaluated separately and simply multiplied. We estimate the correlation factor which measures the deviation from this common approximation. We focus our attention on the case of smooth and plane plates with a metallic optical response modeled by a plasma model.

  12. A microscopic approach to Casimir and Casimir-Polder forces between metallic bodies

    NASA Astrophysics Data System (ADS)

    Barcellona, Pablo; Passante, Roberto

    2015-04-01

    We consider the Casimir-Polder interaction energy between a metallic nanoparticle and a metallic plate, as well as the Casimir interaction energy between two macroscopic metal plates, in terms of the many-body dispersion interactions between their constituents. Expressions for two- and three-body dispersion interactions between the microscopic parts of a real metal are first obtained, both in the retarded and non-retarded limits. These expressions are then used to evaluate the overall two- and three-body contributions to the macroscopic Casimir-Polder and Casimir force, and to compare them with each other, for the two following geometries: metal nanoparticle/half-space and half-space/half-space, where all the materials are assumed perfect conductors. The above evaluation is obtained by summing up the contributions from the microscopic constituents of the bodies (metal nanoparticles). In the case of nanoparticle/half-space, our results fully agree with those that can be extracted from the corresponding macroscopic results, and explicitly show the non-applicability of the pairwise approximation for the geometry considered. In both cases, we find that, while the overall two-body contribution yields an attractive force, the overall three-body contribution is repulsive. Also, they turn out to be of the same order, consistently with the known non applicability of the pairwise approximation. The issue of the rapidity of convergence of the many-body expansion is also briefly discussed.

  13. Born-series approach to the calculation of Casimir forces

    NASA Astrophysics Data System (ADS)

    Bennett, Robert

    2014-06-01

    The Casimir force between two objects is notoriously difficult to calculate in anything other than parallel-plate geometries due to its nonadditive nature. This means that for more complicated, realistic geometries one usually has to resort to approaches such as making the crude proximity force approximation (PFA). Another issue with calculation of Casimir forces in real-world situations (such as with realistic materials) is that there are continuing doubts about the status of Lifshitz's original treatment as a true quantum theory. Here we demonstrate an alternative approach to the calculation of Casimir forces for arbitrary geometries which sidesteps both of these problems. Our calculations are based upon a Born expansion of the Green's function of the quantized electromagnetic vacuum field, interpreted as multiple scattering, with the relevant coupling strength being the difference in the dielectric functions of the various materials involved. This allows one to consider arbitrary geometries in single or multiple scattering simply by integrating over the desired shape, meaning that extension beyond the PFA is trivial. This work is mostly dedicated to illustration of the method by reproduction of known parallel-slab results—a process that turns out to be nontrivial and provides several useful insights. We also present a short example of calculation of the Casimir energy for a more complicated geometry; namely, that of two finite slabs.

  14. Experimental investigation of the Casimir force beyond the proximity-force approximation.

    PubMed

    Krause, D E; Decca, R S; López, D; Fischbach, E

    2007-02-01

    The analysis of all Casimir force experiments using a sphere-plate geometry requires the use of the proximity-force approximation (PFA) to relate the Casimir force between a sphere and a flat plate to the Casimir energy between two parallel plates. Because it has been difficult to assess the PFA's range of applicability theoretically, we have conducted an experimental search for corrections to the PFA by measuring the Casimir force and force gradient between a gold-coated plate and five gold-coated spheres with different radii using a microelectromechanical torsion oscillator. For separations z<300 nm, we find that the magnitude of the fractional deviation from the PFA in the force gradient measurement is, at the 95% confidence level, less than 0.4z/R, where R is the radius of the sphere. PMID:17358830

  15. Pseudo-Casimir force in chiral smectic liquid crystals.

    PubMed

    Markun, B; Zumer, S

    2003-08-01

    We present a theoretical study of the pseudo-Casimir force in two chiral smectic systems: a homeotropic cell and a free-standing film. We consider the interaction induced by the fluctuations of orientational order. We demonstrate how the character of the force depends on the type of fluctuation modes and on boundary conditions. We focus on the temperature dependence of the force, which is marked by the vicinity of the smectic-A*-->smectic-C* phase transition. We find that at this transition the force diverges if the system is frustrated; otherwise it remains finite. We expose the analogy between the force in these smectic systems and in previously studied nematic systems, thus demonstrating the universality of the pseudo-Casimir interaction. PMID:14524990

  16. Non-Equilibrium Casimir Force between Vibrating Plates

    PubMed Central

    Hanke, Andreas

    2013-01-01

    We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed. PMID:23326401

  17. Non-equilibrium Casimir force between vibrating plates.

    PubMed

    Hanke, Andreas

    2013-01-01

    We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed. PMID:23326401

  18. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David; Munday, Jeremy N.

    2015-06-01

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  19. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy.

    PubMed

    Garrett, Joseph L; Somers, David; Munday, Jeremy N

    2015-06-01

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models. PMID:25964997

  20. Measurement of the Casimir force between parallel metallic surfaces.

    PubMed

    Bressi, G; Carugno, G; Onofrio, R; Ruoso, G

    2002-01-28

    We report on the measurement of the Casimir force between conducting surfaces in a parallel configuration. The force is exerted between a silicon cantilever coated with chromium and a similar rigid surface and is detected by looking at the shifts induced in the cantilever frequency when the latter is approached. The scaling of the force with the distance between the surfaces was tested in the 0.5-3.0 microm range, and the related force coefficient was determined at the 15% precision level. PMID:11801108

  1. Normal and lateral Casimir forces between deformed plates

    SciTech Connect

    Emig, Thorsten; Hanke, Andreas; Golestanian, Ramin; Kardar, Mehran

    2003-02-01

    The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path-integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in the Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean plate distance H to the corrugation length {lambda}: For {lambda}<>H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of {lambda}{approx_equal}2.5 H. With increasing H/{lambda} > or approx. 0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices.

  2. La force de Casimir et les plasmons de surface

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Lambrecht, A.; Reynaud, S.

    2004-11-01

    La présence de fluctuations irréductibles de champ dans le vide est une prédiction importante de la théorie quantique. Ces fluctuations ont de nombreux effets bien connus, dont l'archétype est la force de Casimir apparaîssant entre deux miroirs placés dans le vide par suite de la pression de radiation du vide. Elle a été récemment mesurée avec une précision de l'ordre du %. De nombreux travaux sont consacrés à l'évaluation théorique de cette force en visant une précision du même ordre. Ici nous étudions la force de Casimir dans la configuration de deux miroirs métalliques plans parallèles à température nulle. En supposant les miroirs décrits par un modèle plasma nous interprétons la force de Casimir comme le résultat de l'interaction entre les plasmons de surface des deux miroirs.

  3. Finite-temperature Casimir force between perfectly metallic corrugated surfaces

    SciTech Connect

    Sarabadani, Jalal; Miri, MirFaez

    2011-09-15

    We study the Casimir force between two corrugated plates due to thermal fluctuations of a scalar field. For arbitrary corrugations and temperature T, we provide an analytical expression for the Casimir force, which is exact to second order in the corrugation amplitude. We study the specific case of two sinusoidally corrugated plates with corrugation wavelength {lambda}, lateral displacement b, and mean separation H. We find that the lateral Casimir force is F{sub l}(T,H)sin(2{pi}b/{lambda}). In other words, at all temperatures, the lateral force is a sinusoidal function of the lateral shift. In the limit {lambda}>>H, F{sub l}(T{yields}{infinity},H){proportional_to}k{sub B}TH{sup -4}{lambda}{sup -1}. In the opposite limit {lambda}<

  4. Tuning the mass of chameleon fields in Casimir force experiments.

    PubMed

    Brax, Ph; van de Bruck, C; Davis, A C; Shaw, D J; Iannuzzi, D

    2010-06-18

    We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long-range Casimir force experiments. PMID:20867290

  5. Casimir force in the rotor model with twisted boundary conditions.

    PubMed

    Bergknoff, Jonathan; Dantchev, Daniel; Rudnick, Joseph

    2011-10-01

    We investigate the three-dimensional lattice XY model with nearest neighbor interaction. The vector order parameter of this system lies on the vertices of a cubic lattice, which is embedded in a system with a film geometry. The orientations of the vectors are fixed at the two opposite sides of the film. The angle between the vectors at the two boundaries is α where 0≤α≤π. We make use of the mean field approximation to study the mean length and orientation of the vector order parameter throughout the film--and the Casimir force it generates--as a function of the temperature T, the angle α, and the thickness L of the system. Among the results of that calculation are a Casimir force that depends in a continuous way on both the parameter α and the temperature and that can be attractive or repulsive. In particular, by varying α and/or T one controls both the sign and the magnitude of the Casimir force in a reversible way. Furthermore, for the case α=π, we discover an additional phase transition occurring only in the finite system associated with the variation of the orientations of the vectors. PMID:22181114

  6. Fluctuation-induced casimir forces in granular fluids.

    PubMed

    Cattuto, C; Brito, R; Marconi, U Marini Bettolo; Nori, F; Soto, R

    2006-05-01

    We numerically investigate the behavior of driven noncohesive granular media and find that two fixed large intruder particles, immersed in a sea of small particles, experience, in addition to a short-range depletion force, a long-range repulsive force. The observed long-range interaction is fluctuation-induced and we propose a mechanism similar to the Casimir effect that generates it: The hydrodynamic fluctuations are geometrically confined between the intruders, producing an unbalanced renormalized pressure. An estimation based on computing the possible Fourier modes explains the repulsive force and is in qualitative agreement with the simulations. PMID:16712336

  7. Casimir force between dielectric media with free charges.

    PubMed

    Høye, Johan S; Brevik, Iver

    2009-07-01

    The statistical mechanical approach to Casimir problems for dielectrics separated by a vacuum gap turns out to be compact and effective. A central ingredient of this method is the effect of interacting fluctuating dipole moments of the polarizable particles. At arbitrary temperature the path-integral formulation of quantized particles, developed by Høye-Stell and others, is needed. At high temperature-the limit considered in the present paper-the classical theory is, however, sufficient. Our present theory is related to an idea put forward earlier by Jancovici and Samaj (2004), namely, to evaluate the Casimir force between parallel plates invoking an electronic plasma model and the Debye-Hückel theory for electrolytes. Their result was recently recovered by Høye (2008), using a related statistical mechanical method. In the present paper we generalize this by including a constant permittivity in the description. The present paper generalizes our earlier theory for parallel plates (1998), as well as for spherical dielectrics (2001). We also consider the Casimir force between a polarizable particle and a conductor with a small density of charges, finding agreement with the result recently derived by Pitaevskii (2008). PMID:19658650

  8. Probing the strong boundary shape dependence of the Casimir force.

    PubMed

    Emig, T; Hanke, A; Golestanian, R; Kardar, M

    2001-12-24

    We study the geometry dependence of the Casimir energy for deformed metal plates by a path integral quantization of the electromagnetic field. For the first time, we give a complete analytical result for the deformation induced change in Casimir energy delta E in an experimentally testable, nontrivial geometry, consisting of a flat and a corrugated plate. Our results show an interesting crossover for delta E as a function of the ratio of the mean plate distance H, to the corrugation length lambda: For lambdaforces, which is valid only for lambda>H. PMID:11800828

  9. First-order correction to the Casimir force within an inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Bao, Fanglin; Luo, Bin; He, Sailing

    2015-06-01

    For the Casimir piston filled with an inhomogeneous medium, we regularized and expressed the Casimir energy with cylinder kernel coefficients by using the first-order perturbation theory. When the refractive index of the medium is smoothly inhomogeneous (i.e., derivatives of all orders exist), a logarithmically cutoff-dependent term and a quadratically cutoff-dependent term in the Casimir energy are found. We show that in the piston model these terms vanish in the force and thus the Casimir force is always cutoff independent, but these terms will remain in the force in the half-space model and must be removed by additional regularizations. We give explicit benchmark solutions to the first-order corrections of both Casimir energy and Casimir force for an exponentially decaying profile. The present method can be extended to other inhomogeneous profiles. Our results should be useful for future relevant calculations and experimental studies.

  10. What is Credible and what is Incredible in the Measurements of the Casimir Force

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    We comment on progress in measurements of the Casimir force and discuss what is the actual reliability of different experiments. In this connection a more rigorous approach to the usage of such concepts as accuracy, precision, and measure of agreement between experiment and theory, is presented. We demonstrate that all measurements of the Casimir force employing spherical lenses with centimeter-size curvature radii are fundamentally flawed due to the presence of bubbles and pits on their surfaces. The commonly used formulation of the proximity force approximation is shown to be inapplicable for centimeter-size lenses. New expressions for the Casimir force are derived taking into account surface imperfections. Uncontrollable deviations of the Casimir force from the values predicted using the assumption of perfect sphericity vary by a few tens of percent within the separation region from 1 to 3μm. This makes impractical further use of centimeter-size lenses in experiments on measuring the Casimir force.

  11. What is Credible and what is Incredible in the Measurements of the Casimir Force

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2011-06-01

    We comment on progress in measurements of the Casimir force and discuss what is the actual reliability of different experiments. In this connection a more rigorous approach to the usage of such concepts as accuracy, precision, and measure of agreement between experiment and theory, is presented. We demonstrate that all measurements of the Casimir force employing spherical lenses with centimeter-size curvature radii are fundamentally flawed due to the presence of bubbles and pits on their surfaces. The commonly used formulation of the proximity force approximation is shown to be inapplicable for centimeter-size lenses. New expressions for the Casimir force are derived taking into account surface imperfections. Uncontrollable deviations of the Casimir force from the values predicted using the assumption of perfect sphericity vary by a few tens of percent within the separation region from 1 to 3 μm. This makes impractical further use of centimeter-size lenses in experiments on measuring the Casimir force.

  12. Macroscopic approach to the Casimir friction force

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. V.; Nesterenko, A. V.

    2014-07-01

    The general formula is derived for the vacuum friction force between two parallel perfectly flat planes bounding two material media separated by a vacuum gap and moving relative to each other with a constant velocity v. The material media are described in the framework of macroscopic electrodynamics whereas the nonzero temperature and dissipation are taken into account by making use of the Kubo formulas from non-equilibrium statistical thermodynamics. The formula obtained provides a rigorous basis for calculation of the vacuum friction force within the quantum field theory methods in the condensed matter physics. The revealed v dependence of the vacuum friction force proves to be the following: for zero temperature ( T = 0) it is proportional to (v/ c)3 and for T > 0 this force is linear in v/ c.

  13. How does Casimir energy fall? III. Inertial forces on vacuum energy

    NASA Astrophysics Data System (ADS)

    Shajesh, K. V.; Milton, Kimball A.; Parashar, Prachi; Wagner, Jeffrey A.

    2008-04-01

    We have recently demonstrated that Casimir energy due to parallel plates, including its divergent parts, falls like conventional mass in a weak gravitational field. The divergent parts were suitably interpreted as renormalizing the bare masses of the plates. Here, we corroborate our result regarding the inertial nature of Casimir energy by calculating the centripetal force on a Casimir apparatus rotating with constant angular speed. We show that the centripetal force is independent of the orientation of the Casimir apparatus in a frame whose origin is at the center of inertia of the apparatus.

  14. Optical Modification of Casimir Forces for Improved Function of Micro-and Nano-Scale Devices

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan

    2010-01-01

    Recently, there has been a considerable effort to study the Casimir and van der Waals forces, enabled by the improved ability to measure small forces near surfaces. Because of the continuously growing role of micro- and nanomechanical devices, the focus of this activity has shifted towards the ability to control these forces. Possible approaches to manipulating the Casimir force include development of composite materials, engineered nanostructures, mixed-phase materials, or active elements. So far, practical success has been limited. The role of geometrical factors in the Casimir force is significant. It is known, for example, that the Casimir force between two spherical shells enclosed one into the other is repulsive instead of normal attractive. Unfortunately, nanosurfaces with this topology are very difficult to make. A more direct approach to manipulating and neutralizing the Casimir force is using external mechanical or electromagnetic forces. Unfortunately, the technological overhead of such an approach is quite large. Using electromagnetic compensation instead of mechanical will considerably reduce this overhead and at the same time provide the degree of control over the Casimir force that mechanical springs cannot provide. A mechanical analog behind Casimir forces is shown.

  15. Casimir force measurements in Au-Au and Au-Si cavities at low temperature

    NASA Astrophysics Data System (ADS)

    Laurent, J.; Sellier, H.; Mosset, A.; Huant, S.; Chevrier, J.

    2012-01-01

    We report on measurements of the Casimir force in a sphere-plane geometry using a cryogenic force microscope to move the force probe in situ over different materials. We show how the electrostatic environment of the interacting surfaces plays an important role in weak force measurements and can overcome the Casimir force at large distance. After minimizing these parasitic forces, we measure the Casimir force between a gold-coated sphere and either a gold-coated or a heavily doped silicon surface in the 100-400 nm distance range. We compare the experimental data with theoretical predictions and discuss the consequence of a systematic error in the scanner calibration on the agreement between experiment and theory. The relative force over the two surfaces compares favorably with theory at short distance, showing that this Casimir force experiment is sensitive to the dielectric properties of the interacting surfaces.

  16. Boundary conditions and the critical Casimir force on an Ising model film: exact results in one and two dimensions.

    PubMed

    Rudnick, Joseph; Zandi, Roya; Shackell, Aviva; Abraham, Douglas

    2010-10-01

    Finite-size effects in certain critical systems can be understood as universal Casimir forces. Here, we compare the Casimir force for free, fixed, periodic, and antiperiodic boundary conditions in the exactly calculable case of the ferromagnetic Ising model in one and two dimensions. We employ a procedure which allows us to calculate the Casimir force with the aforementioned boundary conditions analytically in a transparent manner. Among other results, we find an attractive Casimir force for the case of periodic boundary conditions and a repulsive Casimir force in the antiperiodic case. PMID:21230249

  17. Intensifying the Casimir force between two silicon substrates within three different layers of materials

    NASA Astrophysics Data System (ADS)

    Seyedzahedi, A.; Moradian, A.; Setare, M. R.

    2016-04-01

    We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water-lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO2, mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.

  18. Demonstration of non-additivity and asymmetry in the lateral Casimir force

    NASA Astrophysics Data System (ADS)

    Chiu, Hsiang-Chih

    2009-10-01

    The Casimir effect is a purely quantum mechanical phenomenon which has drawn extensive attention in the last decade. With the rapid development of modern scientific instruments, it has been demonstrated and measured with unprecedented precision. Because of its unique dependence on the separation and geometry, the Casimir force is expected to play an important role in modern nano-electro-mechanical systems. An understanding of the shape dependence of the Casimir force and its control has become a very important research topic for the future nano-technology. Since the demonstration of the lateral Casimir force in 2002 at UC Riverside, this special effect has inspired a lot of theoretical research. The asymmetry of the lateral Casimir has been predicted and exact theories which take into account diffraction-like correlation effect between the scattered zero point photons from the boundaries have been proposed. We improved the experimental setup and experimental conditions (grating period of order of the separation distance) to study these new phenomenon. In this research, we demonstrate the asymmetrical lateral Casimir force for the first time. The experimental results show very good agreement with a recently developed exact theory based on the scattering approach with no tting parameters. The measured force also show the expected deviation from the commonly used proximity force approximation. The results provide a further understanding of the shape dependence of the Casimir force and will enhance the capabilities for its application in nano technology, especially for the frictionless transmission of lateral motion.

  19. Measurement of the Casimir force between dissimilar metals.

    PubMed

    Decca, R S; López, D; Fischbach, E; Krause, D E

    2003-08-01

    The first precise measurement of the Casimir force between dissimilar metals is reported. The attractive force, between a Cu layer evaporated on a microelectromechanical torsional oscillator and an Au layer deposited on an Al2O3 sphere, was measured dynamically with a noise level of 6 fN/sqrt[Hz]. Measurements were performed for separations in the 0.2-2 micro m range. The results agree to better than 1% in the 0.2-0.5 micro m range with a theoretical model that takes into account the finite conductivity and roughness of the two metals. The observed discrepancies, which are much larger than the experimental precision, can be attributed to a lack of a complete characterization of the optical properties of the specific samples used in the experiment. PMID:12906584

  20. Constraints on Stable Equilibria with Fluctuation-Induced (Casimir) Forces

    SciTech Connect

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten

    2010-08-13

    We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir or van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium, the former being the generic case for ordinary materials in vacuum.

  1. Massive scalar Casimir interaction beyond proximity force approximation

    NASA Astrophysics Data System (ADS)

    Teo, L. P.

    2015-09-01

    Since massive scalar field plays an important role in theoretical physics, we consider the interaction between a sphere and a plate due to the vacuum fluctuation of a massive scalar field. We consider combinations of Dirichlet and Neumann boundary conditions. There is a simple prescription to obtain the functional formulas for the Casimir interaction energies, known as TGTG formula, for the massive interactions from the massless interactions. From the TGTG formulas, we discuss how to compute the small separation asymptotic expansions of the Casimir interaction energies up to the next-to-leading order terms. Unlike the massless case, the results could not be expressed as simple algebraic expressions, but instead could only be expressed as infinite sums over some integrals. Nonetheless, it is easy to show that one can obtain the massless limits which agree with previously established results. We also show that the leading terms agree with that derive using proximity force approximation. The dependence of the leading order terms and the next-to-leading order terms on the mass of the scalar field is studied both numerically and analytically. In particular, we derive the small mass asymptotic expansions of these terms. Surprisingly, the small mass asymptotic expansions are quite complicated as they contain terms that are of odd powers in mass as well as logarithms of mass terms.

  2. Thermal fluctuations and stability of a particle levitated by a repulsive Casimir force in a liquid.

    PubMed

    Inui, Norio; Goto, Kosuke

    2013-11-01

    We study the vertical Brownian motion of a gold particle levitated by a repulsive Casimir force to a silica plate immersed in bromobenzene. The time evolution of the particle distribution starting from an equilibrium position, where the Casimir force and gravitational force are balanced, is considered by solving the Langevin equation using the Monte Carlo method. When the gold particle is very close to the silica plate, the Casimir force changes from repulsive to attractive, and the particle eventually sticks to the surface. The escape rate from a metastable position is calculated by solving the Fokker-Plank equation; it agrees with the value obtained by Kramers' escape theory. The duration of levitation increases as the particle radius increases up to around 2.3 μm. As an example, we show that a 1-μm-diameter gold particle can be levitated for a significantly long time by the repulsive Casimir force at room temperature. PMID:24329240

  3. Casimir force for absorbing media in an open quantum system framework: Scalar model

    SciTech Connect

    Lombardo, Fernando C.; Rubio Lopez, Adrian E.; Mazzitelli, Francisco D.

    2011-11-15

    In this article we compute the Casimir force between two finite-width mirrors at finite temperature, working in a simplified model in 1+1 dimensions. The mirrors, considered as dissipative media, are modeled by a continuous set of harmonic oscillators which in turn are coupled to an external environment at thermal equilibrium. The calculation of the Casimir force is performed in the framework of the theory of open quantum systems. It is shown that the Casimir interaction has two different contributions: the usual radiation pressure from the vacuum, which is obtained for ideal mirrors without dissipation or losses, and a Langevin force associated with the noise induced by the interaction between dielectric atoms in the slabs and the thermal bath. Both contributions to the Casimir force are needed in order to reproduce the analogous Lifshitz formula in 1+1 dimensions. We also discuss the relationship between the electromagnetic properties of the mirrors and the spectral density of the environment.

  4. Demonstration of the difference in the Casimir force for samples with different charge-carrier densities.

    PubMed

    Chen, F; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U

    2006-10-27

    A measurement of the Casimir force between a gold coated sphere and two Si plates of different carrier densities is performed using a high vacuum based atomic force microscope. The results are compared with the Lifshitz theory and good agreement is found. Our experiment demonstrates that by changing the carrier density of the semiconductor plate by several orders of magnitude it is possible to modify the Casimir interaction. This result may find applications in nanotechnology. PMID:17155446

  5. Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface.

    PubMed

    Toldin, Francesco Parisen; Tröndle, Matthias; Dietrich, S

    2015-06-01

    Recent experimental realizations of the critical Casimir effect have been implemented by monitoring colloidal particles immersed in a binary liquid mixture near demixing and exposed to a chemically structured substrate. In particular, critical Casimir forces have been measured for surfaces consisting of stripes with periodically alternating adsorption preferences, forming chemical steps between them. Motivated by these experiments, we analyze the contribution of such chemical steps to the critical Casimir force for the film geometry and within the Ising universality class. By means of Monte Carlo simulations, mean-field theory and finite-size scaling analysis we determine the universal scaling function associated with the contribution to the critical Casimir force due to individual, isolated chemical steps facing a surface with homogeneous adsorption preference or with Dirichlet boundary condition. In line with previous findings, these results allow one to compute the critical Casimir force for the film geometry and in the presence of arbitrarily shaped, but wide stripes. In this latter limit the force decomposes into a sum of the contributions due to the two homogeneous parts of the surface and due to the chemical steps between the stripes. We assess this decomposition by comparing the resulting sum with actual simulation data for the critical Casimir force in the presence of a chemically striped substrate. PMID:25966039

  6. Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface

    NASA Astrophysics Data System (ADS)

    Parisen Toldin, Francesco; Tröndle, Matthias; Dietrich, S.

    2015-06-01

    Recent experimental realizations of the critical Casimir effect have been implemented by monitoring colloidal particles immersed in a binary liquid mixture near demixing and exposed to a chemically structured substrate. In particular, critical Casimir forces have been measured for surfaces consisting of stripes with periodically alternating adsorption preferences, forming chemical steps between them. Motivated by these experiments, we analyze the contribution of such chemical steps to the critical Casimir force for the film geometry and within the Ising universality class. By means of Monte Carlo simulations, mean-field theory and finite-size scaling analysis we determine the universal scaling function associated with the contribution to the critical Casimir force due to individual, isolated chemical steps facing a surface with homogeneous adsorption preference or with Dirichlet boundary condition. In line with previous findings, these results allow one to compute the critical Casimir force for the film geometry and in the presence of arbitrarily shaped, but wide stripes. In this latter limit the force decomposes into a sum of the contributions due to the two homogeneous parts of the surface and due to the chemical steps between the stripes. We assess this decomposition by comparing the resulting sum with actual simulation data for the critical Casimir force in the presence of a chemically striped substrate.

  7. Casimir force in O(n) systems with a diffuse interface.

    PubMed

    Dantchev, Daniel; Grüneberg, Daniel

    2009-04-01

    We study the behavior of the Casimir force in O(n) systems with a diffuse interface and slab geometry infinity;{d-1}xL , where 2Casimir force, the free energy, and the helicity modulus will differ from those of the corresponding isotropic system, even at the bulk critical temperature, despite that these systems both belong to the same universality class. We suggest a relation between the scaling functions pertinent to the both systems. Explicit exact analytical results for the scaling functions, as a function of the temperature T , of the free energy density, Casimir force, and the helicity modulus are derived for the n-->infinity limit of O(n) models with antiperiodic boundary conditions applied along the finite dimension L of the film. We observe that the Casimir amplitude Delta_{Casimir}(dmid R:J_{ perpendicular},J_{ parallel}) of the anisotropic d -dimensional system is related to that of the isotropic system Delta_{Casimir}(d) via Delta_{Casimir}(dmid R:J_{ perpendicular},J_{ parallel})=(J_{ perpendicular}J_{ parallel});{(d-1)2}Delta_{Casimir}(d) . For d=3 we derive the exact Casimir amplitude Delta_{Casimir}(3,mid R:J_{ perpendicular},J_{ parallel})=[Cl_{2}(pi3)3-zeta(3)(6pi)](J_{ perpendicular}J_{ parallel}) , as well as the exact scaling functions of the Casimir force and of the helicity modulus Upsilon(T,L) . We obtain that beta_{c}Upsilon(T_{c},L)=(2pi;{2})[Cl_{2}(pi3)3+7zeta(3)(30pi)](J_{ perpendicular}J_{ parallel})L;{-1} , where T_{c} is the critical temperature of the bulk system. We find that the contributions in the excess free energy due to the existence of a diffuse interface result in a repulsive Casimir force in the whole temperature region. PMID:19518169

  8. Anisotropy enhancement of the Casimir-Polder force between a nanoparticle and graphene

    NASA Astrophysics Data System (ADS)

    Biehs, S.-A.; Agarwal, G. S.

    2014-10-01

    We derive the analytical expressions for the thermal Casimir-Polder energy and force between a spheroidal nanoparticle above a semi-infinite material and a graphene covered interface. We analyze in detail the Casimir-Polder force between a gold nanoparticle and a single sheet of pristine graphene focusing on the impact of anisotropy. We show that the effect of anisotropy, i.e., the shape and orientation of the spheroidal nanoparticle, has a much larger influence on the force than the tunability of graphene. The effect of tuning and anisotropy both add up such that we observe a force between the particle and the sheet of graphene which is between 20% and 50% of that between the same particle and an ideal metal plate. Hence the observed force is much larger than the results found for the Casimir force between a metal half-space and a layer of graphene.

  9. Casimir force on a surface with shallow nanoscale corrugations: geometry and finite conductivity effects.

    PubMed

    Bao, Y; Guérout, R; Lussange, J; Lambrecht, A; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S; Chan, H B

    2010-12-17

    We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with a depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 10%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material. PMID:21231564

  10. Critical Casimir forces in the presence of random surface fields

    NASA Astrophysics Data System (ADS)

    Maciołek, A.; Vasilyev, O.; Dotsenko, V.; Dietrich, S.

    2015-03-01

    We study critical Casimir forces (CCFs) fC for films of thickness L which in the three-dimensional bulk belong to the Ising universality class and which are exposed to random surface fields (RSFs) on both surfaces. We consider the case in which, in the absence of RSFs, the surfaces of the film belong to the surface universality class of the so-called ordinary transition. We carry out a finite-size scaling analysis and show that for weak disorder, CCFs still exhibit scaling, acquiring a random field scaling variable w that is zero for pure systems. We confirm these analytic predictions by Monte Carlo (MC) simulations. Moreover, our MC data show that fC varies as fC(w →0 ) -fC(w =0 ) ˜w2 . Asymptotically, for large L , w scales as w ˜L-0.26→0 , indicating that this type of disorder is an irrelevant perturbation of the ordinary surface universality class. However, for thin films such that w ≃1 , we find that the presence of RSFs with vanishing mean value increases significantly the strength of CCFs, as compared to systems without them, and it shifts the extremum of the scaling function of fC toward lower temperatures. But fC remains attractive.

  11. Gedanken experiments with Casimir forces and vacuum energy

    SciTech Connect

    Maclay, G. Jordan

    2010-09-15

    Gedanken experiments are used to explore properties of quantum vacuum energy that are currently challenging to explore experimentally. A constant lateral Casimir force is predicted to exist between two overlapping finite parallel plates at 0 K; otherwise it would be possible to extract an arbitrary amount of energy from the quantum vacuum. A rigid unpowered object cannot be accelerated by the quantum vacuum because of the translational symmetry of space. By considering systems in which vacuum energy and other forms of energy are exchanged, we demonstrate that a change {Delta}E in vacuum energy, whether positive or negative with respect to the free field, corresponds to an equivalent inertial mass and equivalent gravitational mass {Delta}M={Delta}E/c{sup 2}. We consider the possibility of a gravitational shield and show that, if it exists, the energy to operate it would have to cancel the net energy extracted from the gravitational field; otherwise we could extract an arbitrary amount of energy from the field.

  12. Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Behunin, R. O.; Dalvit, D. A. R.; Decca, R. S.; Genet, C.; Jung, I. W.; Lambrecht, A.; Liscio, A.; López, D.; Reynaud, S.; Schnoering, G.; Voisin, G.; Zeng, Y.

    2014-12-01

    Kelvin probe force microscopy at normal pressure was performed by two different groups on the same Au-coated planar sample used to measure the Casimir interaction in a sphere-plane geometry. The obtained voltage distribution was used to calculate the separation dependence of the electrostatic pressure Pres(D ) in the configuration of the Casimir experiments. In the calculation it was assumed that the potential distribution in the sphere has the same statistical properties as the measured one, and that there are no correlation effects on the potential distributions due to the presence of the other surface. The result of this calculation, using the currently available knowledge, is that Pres(D ) does not explain the magnitude or the separation dependence of the difference Δ P (D ) between the measured Casimir pressure and the one calculated using a Drude model for the electromagnetic response of Au. We discuss in the conclusions the points which have to be checked out by future work, including the influence of pressure and a more accurate determination of the patch distribution, in order to confirm these results.

  13. Results from electrostatic calibrations for measuring the Casimir force in the cylinder-plane geometry

    SciTech Connect

    Wei, Q.; Dalvit, D. A. R.; Lombardo, F. C.; Mazzitelli, F. D.; Onofrio, R.

    2010-05-15

    We report on measurements performed on an apparatus aimed to study the Casimir force in the cylinder-plane configuration. The electrostatic calibrations evidence anomalous behaviors in the dependence of the electrostatic force and the minimizing potential upon distance. We discuss analogies and differences of these anomalies with respect to those already observed in the sphere-plane configuration. At the smallest explored distances we observe frequency shifts of non-Coulombian nature preventing the measurement of the Casimir force in the same range. We also report on measurements performed in the parallel-plane configuration, showing that the dependence on distance of the minimizing potential, if present at all, is milder than in the sphere-plane or cylinder-plane geometries. General considerations on the interplay between the distance-dependent minimizing potential and the precision of Casimir force measurements in the range relevant to detect the thermal corrections for all geometries are finally reported.

  14. Lateral critical Casimir force in 2D Ising strip with inhomogeneous walls.

    PubMed

    Nowakowski, Piotr; Napiórkowski, Marek

    2014-08-14

    We analyze the lateral critical Casimir force acting between two planar, chemically inhomogeneous walls confining an infinite 2D Ising strip of width M. The inhomogeneity of each of the walls has size N1; they are shifted by the distance L along the strip. Using the exact diagonalization of the transfer matrix, we calculate the lateral critical Casimir force and discuss its properties, in particular its scaling close to the 2D bulk critical point, as a function of temperature, surface magnetic field, and the geometric parameters M, N1, L. We determine the magnetization profiles which display the formation of the bridge joining the inhomogeneities on the walls and establish the relation between the characteristic properties of the lateral Casimir force and magnetization morphologies. We check numerically that breaking of the bridge is related to the inflection point of the lateral force. PMID:25134587

  15. Critical Casimir force in the presence of random local adsorption preference.

    PubMed

    Parisen Toldin, Francesco

    2015-03-01

    We study the critical Casimir force for a film geometry in the Ising universality class. We employ a homogeneous adsorption preference on one of the confining surfaces, while the opposing surface exhibits quenched random disorder, leading to a random local adsorption preference. Disorder is characterized by a parameter p, which measures, on average, the portion of the surface that prefers one component, so that p=0,1 correspond to homogeneous adsorption preference. By means of Monte Carlo simulations of an improved Hamiltonian and finite-size scaling analysis, we determine the critical Casimir force. We show that by tuning the disorder parameter p, the system exhibits a crossover between an attractive and a repulsive force. At p=1/2, disorder allows to effectively realize Dirichlet boundary conditions, which are generically not accessible in classical fluids. Our results are relevant for the experimental realizations of the critical Casimir force in binary liquid mixtures. PMID:25871052

  16. Anomalous temperature dependence of the Casimir force for thin metal films.

    PubMed

    Yampol'skii, V A; Savel'ev, Sergey; Mayselis, Z A; Apostolov, S S; Nori, Franco

    2008-08-29

    Within the framework of the Drude dispersive model, we predict an unusual nonmonotonic temperature dependence of the Casimir force for thin metal films. For certain conditions, this force decreases with temperature due to the decrease of the metallic conductivity, whereas the force increases at high temperatures due to the increase of the thermal radiation pressure. We consider the attraction of a film to: either (i) a bulk ideal metal with a planar boundary, or (ii) a bulk metal sphere (lens). The experimental observation of the predicted decreasing temperature dependence of the Casimir force can put an end to the long-standing discussion on the role of the electron relaxation in the Casimir effect. PMID:18851637

  17. Lateral critical Casimir force in 2D Ising strip with inhomogeneous walls

    NASA Astrophysics Data System (ADS)

    Nowakowski, Piotr; Napiórkowski, Marek

    2014-08-01

    We analyze the lateral critical Casimir force acting between two planar, chemically inhomogeneous walls confining an infinite 2D Ising strip of width M. The inhomogeneity of each of the walls has size N1; they are shifted by the distance L along the strip. Using the exact diagonalization of the transfer matrix, we calculate the lateral critical Casimir force and discuss its properties, in particular its scaling close to the 2D bulk critical point, as a function of temperature, surface magnetic field, and the geometric parameters M, N1, L. We determine the magnetization profiles which display the formation of the bridge joining the inhomogeneities on the walls and establish the relation between the characteristic properties of the lateral Casimir force and magnetization morphologies. We check numerically that breaking of the bridge is related to the inflection point of the lateral force.

  18. Critical Casimir force in the presence of random local adsorption preference

    NASA Astrophysics Data System (ADS)

    Toldin, Francesco Parisen

    2015-03-01

    We study the critical Casimir force for a film geometry in the Ising universality class. We employ a homogeneous adsorption preference on one of the confining surfaces, while the opposing surface exhibits quenched random disorder, leading to a random local adsorption preference. Disorder is characterized by a parameter p , which measures, on average, the portion of the surface that prefers one component, so that p =0 ,1 correspond to homogeneous adsorption preference. By means of Monte Carlo simulations of an improved Hamiltonian and finite-size scaling analysis, we determine the critical Casimir force. We show that by tuning the disorder parameter p , the system exhibits a crossover between an attractive and a repulsive force. At p =1 /2 , disorder allows to effectively realize Dirichlet boundary conditions, which are generically not accessible in classical fluids. Our results are relevant for the experimental realizations of the critical Casimir force in binary liquid mixtures.

  19. Anomalous Temperature Dependence of the Casimir Force for Thin Metal Films

    SciTech Connect

    Yampol'skii, V. A.; Savel'ev, Sergey; Mayselis, Z. A.; Apostolov, S. S.; Nori, Franco

    2008-08-29

    Within the framework of the Drude dispersive model, we predict an unusual nonmonotonic temperature dependence of the Casimir force for thin metal films. For certain conditions, this force decreases with temperature due to the decrease of the metallic conductivity, whereas the force increases at high temperatures due to the increase of the thermal radiation pressure. We consider the attraction of a film to: either (i) a bulk ideal metal with a planar boundary, or (ii) a bulk metal sphere (lens). The experimental observation of the predicted decreasing temperature dependence of the Casimir force can put an end to the long-standing discussion on the role of the electron relaxation in the Casimir effect.

  20. Observation of the skin-depth effect on the Casimir force between metallic surfaces

    PubMed Central

    Lisanti, Mariangela; Iannuzzi, Davide; Capasso, Federico

    2005-01-01

    We have performed measurements of the Casimir force between a metallic plate and a transparent sphere coated with metallic films of different thicknesses. We have observed that, if the thickness of the coating is less than the skin-depth of the electromagnetic modes that mostly contribute to the interaction, the force is significantly smaller than that measured with a thick bulk-like film. Our results provide direct evidence of the skin-depth effect on the Casimir force between metallic surfaces. PMID:16091459

  1. Observation of the skin-depth effect on the Casimir force between metallic surfaces.

    PubMed

    Lisanti, Mariangela; Iannuzzi, Davide; Capasso, Federico

    2005-08-23

    We have performed measurements of the Casimir force between a metallic plate and a transparent sphere coated with metallic films of different thicknesses. We have observed that, if the thickness of the coating is less than the skin-depth of the electromagnetic modes that mostly contribute to the interaction, the force is significantly smaller than that measured with a thick bulk-like film. Our results provide direct evidence of the skin-depth effect on the Casimir force between metallic surfaces. PMID:16091459

  2. Distinguishing de Sitter universe from thermal Minkowski spacetime by Casimir-Polder-like force

    NASA Astrophysics Data System (ADS)

    Tian, Zehua; Jing, Jiliang

    2014-07-01

    We demonstrate that the static ground state atom, which interacts with a conformally coupled massless scalar field in the de Sitter invariant vacuum, can obtain a position-dependent energy-level shift and this shift could cause a Casimir-Polder-like force on it. Interestingly no such force arises on the inertial atom bathed in a thermal radiation in the Minkowski universe. Thus, although the energy-level shifts of the static atom for these two cases are structurally the same, whether the energy-level shift causes the Casimir-Polder-like force, in principle, could be as an indicator to distinguish de Sitter universe from the thermal Minkowski spacetime.

  3. Influence of materials' optical response on actuation dynamics by Casimir forces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Broer, W. H.; Van der Veeke, S.; Svetovoy, V. B.; Palasantzas, G.

    2015-06-01

    The dependence of the Casimir force on the frequency-dependent dielectric functions of interacting materials makes it possible to tailor the actuation dynamics of microactuators. The Casimir force is largest for metallic interacting systems due to the high absorption of conduction electrons in the far-infrared range. For less conductive systems, such as phase change materials or conductive silicon carbide, the reduced force offers the advantage of increased stable operation of MEMS devices against pull-in instabilities that lead to unwanted stiction. Bifurcation analysis with phase portraits has been used to compare the sensitivity of a model actuator when the optical properties are altered.

  4. Dynamic measurement and modeling of the Casimir force at the nanometer scale

    SciTech Connect

    Kohoutek, John; Wan, Ivy Yoke Leng; Mohseni, Hooman

    2010-02-08

    We present a dynamic method for measurement of the Casimir force with an atomic force microscope (AFM) with a conventional AFM tip. With this method, originally based on the phase of vibration of the AFM tip, we are able to verify the Casimir force at distances of nearly 6 nm with an AFM tip that has a radius of curvature of nearly 100 nm. Until now dynamic methods have been done using large metal spheres at greater distances. Also presented is a theoretical model based on the harmonic oscillator, including nonidealities. This model accurately predicts the experimental data.

  5. Repulsive Casimir forces between solid materials with high-refractive-index intervening liquids

    SciTech Connect

    Zwol, P. J. van; Palasantzas, G.

    2010-06-15

    In order to explore repulsive Casimir or van der Waals forces between solid materials with liquid as the intervening medium, we analyze dielectric data for a wide range of materials as, for example, (p)olytetrafluoroethylene, polystyrene, silica, and more than 20 liquids. Although significant variation in the dielectric data from different sources exists, we provide a scheme based on measured static dielectric constants, refractive indices, and applying Kramers-Kronig consistency to dielectric data to create accurate dielectric functions at imaginary frequencies. The latter is necessary for more accurate force calculations via the Lifshitz theory, thereby allowing reliable predictions of repulsive Casimir forces.

  6. A Light Sail Inspired Model to Harness Casimir Forces for Propellantless Propulsion

    SciTech Connect

    DeBiase, R. L.

    2010-01-28

    The model used to calculate Casimir forces for variously shaped conducting plates in this paper assumes the vacuum energy pervades all space and that photons randomly pop into and out of existence. While they exist, they possess energy and momentum that can be transferred by reflection as in a light sail. Quantum mechanics in the model is entirely bound up in the Casimir equation of force per unit area. This model is compared with two different experiments: that of Chen and Mohideen demonstrating lateral Casimir forces for sinusoidally corrugated spherical and flat plates and Lamoreaux demonstrating normal Casimir forces between a conducting sphere and flat plate. The calculated forces using this model were compared to the forces obtained in these experiments as well as with calculations using the proximity force approximation. In both cases the results (when compared to the actual plates measured and calculated using non-corrected equations) were less than a few parts per thousand different for the range of separation distances used. When the model was used to calculate forces on the opposite plates, different force magnitudes were obtained seemingly indicating prospects for propellentless propulsion but requiring skeptical verification.

  7. Mechanical temporal fluctuation induced distance and force systematic errors in Casimir force experiments

    NASA Astrophysics Data System (ADS)

    Lamoreaux, Steve; Wong, Douglas

    2015-06-01

    The basic theory of temporal mechanical fluctuation induced systematic errors in Casimir force experiments is developed and applications of this theory to several experiments is reviewed. This class of systematic error enters in a manner similar to the usual surface roughness correction, but unlike the treatment of surface roughness for which an exact result requires an electromagnetic mode analysis, time dependent fluctuations can be treated exactly, assuming the fluctuation times are much longer than the zero point and thermal fluctuation correlation times of the electromagnetic field between the plates. An experimental method for measuring absolute distance with high bandwidth is also described and measurement data presented.

  8. Mechanical temporal fluctuation induced distance and force systematic errors in Casimir force experiments.

    PubMed

    Lamoreaux, Steve; Wong, Douglas

    2015-06-01

    The basic theory of temporal mechanical fluctuation induced systematic errors in Casimir force experiments is developed and applications of this theory to several experiments is reviewed. This class of systematic error enters in a manner similar to the usual surface roughness correction, but unlike the treatment of surface roughness for which an exact result requires an electromagnetic mode analysis, time dependent fluctuations can be treated exactly, assuming the fluctuation times are much longer than the zero point and thermal fluctuation correlation times of the electromagnetic field between the plates. An experimental method for measuring absolute distance with high bandwidth is also described and measurement data presented. PMID:25965319

  9. Critical adsorption and critical Casimir forces in the canonical ensemble.

    PubMed

    Gross, Markus; Vasilyev, Oleg; Gambassi, Andrea; Dietrich, S

    2016-08-01

    Critical properties of a liquid film between two planar walls are investigated in the canonical ensemble, within which the total number of fluid particles, rather than their chemical potential, is kept constant. The effect of this constraint is analyzed within mean-field theory (MFT) based on a Ginzburg-Landau free-energy functional as well as via Monte Carlo simulations of the three-dimensional Ising model with fixed total magnetization. Within MFT and for finite adsorption strengths at the walls, the thermodynamic properties of the film in the canonical ensemble can be mapped exactly onto a grand canonical ensemble in which the corresponding chemical potential plays the role of the Lagrange multiplier associated with the constraint. However, due to a nonintegrable divergence of the mean-field order parameter profile near a wall, the limit of infinitely strong adsorption turns out to be not well-defined within MFT, because it would necessarily violate the constraint. The critical Casimir force (CCF) acting on the two planar walls of the film is generally found to behave differently in the canonical and grand canonical ensembles. For instance, the canonical CCF in the presence of equal preferential adsorption at the two walls is found to have the opposite sign and a slower decay behavior as a function of the film thickness compared to its grand canonical counterpart. We derive the stress tensor in the canonical ensemble and find that it has the same expression as in the grand canonical case, but with the chemical potential playing the role of the Lagrange multiplier associated with the constraint. The different behavior of the CCF in the two ensembles is rationalized within MFT by showing that, for a prescribed value of the thermodynamic control parameter of the film, i.e., density or chemical potential, the film pressures are identical in the two ensembles, while the corresponding bulk pressures are not. PMID:27627242

  10. Critical adsorption and critical Casimir forces in the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Gross, Markus; Vasilyev, Oleg; Gambassi, Andrea; Dietrich, S.

    2016-08-01

    Critical properties of a liquid film between two planar walls are investigated in the canonical ensemble, within which the total number of fluid particles, rather than their chemical potential, is kept constant. The effect of this constraint is analyzed within mean-field theory (MFT) based on a Ginzburg-Landau free-energy functional as well as via Monte Carlo simulations of the three-dimensional Ising model with fixed total magnetization. Within MFT and for finite adsorption strengths at the walls, the thermodynamic properties of the film in the canonical ensemble can be mapped exactly onto a grand canonical ensemble in which the corresponding chemical potential plays the role of the Lagrange multiplier associated with the constraint. However, due to a nonintegrable divergence of the mean-field order parameter profile near a wall, the limit of infinitely strong adsorption turns out to be not well-defined within MFT, because it would necessarily violate the constraint. The critical Casimir force (CCF) acting on the two planar walls of the film is generally found to behave differently in the canonical and grand canonical ensembles. For instance, the canonical CCF in the presence of equal preferential adsorption at the two walls is found to have the opposite sign and a slower decay behavior as a function of the film thickness compared to its grand canonical counterpart. We derive the stress tensor in the canonical ensemble and find that it has the same expression as in the grand canonical case, but with the chemical potential playing the role of the Lagrange multiplier associated with the constraint. The different behavior of the CCF in the two ensembles is rationalized within MFT by showing that, for a prescribed value of the thermodynamic control parameter of the film, i.e., density or chemical potential, the film pressures are identical in the two ensembles, while the corresponding bulk pressures are not.

  11. Constraints on axion-nucleon coupling constants from measuring the Casimir force between corrugated surfaces

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Romero, C.

    2014-09-01

    We obtain stronger laboratory constraints on the coupling constants of axion-like particles to nucleons from measurements of the normal and lateral Casimir forces between sinusoidally corrugated surfaces of a sphere and a plate. For this purpose, the normal and lateral additional forces arising in the experimental configurations due to the two-axion exchange between protons and neutrons are calculated. Our constraints following from measurements of the normal and lateral Casimir forces are stronger than the laboratory constraints reported so far for masses of axion-like particles larger than 11 and 8 eV, respectively. A comparison between various laboratory constraints on the coupling constants of axion-like particles to nucleons obtained from the magnetometer measurements, Eötvos- and Cavendish-type experiments, and from the Casimir effect is performed over the wide range of masses of axion-like particles from 10-10 to 20 eV.

  12. The Casimir force between an ideal metal plate and a dissipative dielectric slab

    NASA Astrophysics Data System (ADS)

    Falinejad, H.; Bayat, F.

    2014-09-01

    In this research, a general formula for the Casimir force between ideal metal plate and a dissipative dielectric slab has been obtained. The dielectric function of the slab is assumed to be an arbitrary complex function of frequency satisfying Kramers-Kronig relations. A classical expression for the radiation pressure of the vacuum fields on the slab is presented by using the Maxwell stress tensor. With the transition to the quantum domain and using the fluctuation dissipation theorem and Kubo's formula, the resulting expression is written in terms of the imaginary part of the vector potential Green functions components of the system. Finally, by computing the Green function, the Casimir force on the slab is obtained. This formalism enables us to calculate the Casimir force without resorting to the explicit form of the field operators. The general expression is confirmed by limiting and comparing with one of the previous works.

  13. Reduction of the Casimir force from indium tin oxide film by UV treatment.

    PubMed

    Chang, C-C; Banishev, A A; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U

    2011-08-26

    A significant decrease in the magnitude of the Casimir force (from 21% to 35%) was observed after an indium tin oxide sample interacting with an Au sphere was subjected to the UV treatment. Measurements were performed by using an atomic force microscope in high vacuum. The experimental results are compared with theory and a hypothetical explanation for the observed phenomenon is proposed. PMID:21929216

  14. Tunable Casimir-Polder Forces and Spontaneous Emission Rates

    NASA Astrophysics Data System (ADS)

    Rosa, Felipe; Kort-Kamp, Wilton; Pinheiro, Felipe; Cysne, Tarik; Oliver, Diego; Farina, Carlos

    2015-03-01

    We investigate the dispersive Casimir-Polder interaction between a Rubidium atom and a graphene sheet subjected to an external magnetic field B. We demonstrate that this concrete physical system allows for a high degree of control of dispersive interactions at micro and nanoscales. Indeed, we show that the application of an external magnetic field can induce a 80 % reduction of the Casimir-Polder energy relative to its value without the field. We also show that sharp discontinuities emerge in the Casimir-Polder interaction energy for certain values of the applied magnetic field at low temperatures. In addition, we also show that atomic spontaneous emission rates can be greatly modified by the action of the magnetic field, with an order of magnitude enhancement or suppression depending on the dipole's moment orientation.

  15. Colloidal aggregation in microgravity by critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Veen, Sandra; Schall, Peter; Antoniuk, Oleg; Potenza, Marco; Alaimo, Matteo; Mazzoni, Stefano; Wegdam, Gerard

    2012-02-01

    We study aggregation and crystal growth of spherical Teflon colloids in binary liquid mixtures in microgravity by the critical Casimir effect. The critical Casimir effect induces interactions between colloids due to the confinement of bulk fluctuations (density or concentration) near the critical point of liquids. The strength and range of the interaction depends on the length scale of these fluctuations which increase as one approaches the critical point. The interaction potential can thus be tuned with temperature. We follow the growth of structures in real time with Near Field Scattering. Measurements are performed in microgravity in order to study pure diffusion limited aggregation, without disturbance by sedimentation or flow.

  16. Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion.

    PubMed

    Ashourvan, Arash; Miri, Mirfaez; Golestanian, Ramin

    2007-04-01

    The nonlinear dynamics of a cylindrical pinion that is kept at a distance from a vibrating rack is studied, and it is shown that the lateral Casimir force between the two corrugated surfaces can be rectified. The effects of friction and external load are taken into account, and it is shown that the pinion can do work against loads of up to a critical value, which is set by the amplitude of the lateral Casimir force. We present a phase diagram for the rectified motion that could help its experimental investigations, as the system exhibits a chaotic behavior in a large part of the parameter space. PMID:17500845

  17. Noncontact racK and pinion powered by the lateral Casimir force.

    PubMed

    Ashourvan, Arash; Miri, MirFaez; Golestanian, Ramin

    2007-04-01

    The lateral Casimir force is employed to propose a design for a potentially wear-proof rack and pinion with no contact, which can be miniaturized to the nanoscale. The robustness of the design is studied by exploring the relation between the pinion velocity and the rack velocity in the different domains of the parameter space. The effects of friction and added external load are also examined. It is shown that the device can hold up extremely high velocities, unlike what the general perception of the Casimir force as a weak interaction might suggest. PMID:17501261

  18. Using the Casimir Force to Measure the Gravitational Constant

    NASA Technical Reports Server (NTRS)

    Pinto, F.

    1998-01-01

    I show that the dynamics of two coupled torsion pendulums is drastically affected by their mutual Casimir surface interaction if the masses involved are relatively close to each other. The effect is directly related to the ratio of the masses used to the Planck mass.

  19. A variational size-dependent model for electrostatically actuated NEMS incorporating nonlinearities and Casimir force

    NASA Astrophysics Data System (ADS)

    Liang, Binbin; Zhang, Long; Wang, Binglei; Zhou, Shenjie

    2015-07-01

    A size-dependent model for the electrostatically actuated Nano-Electro-Mechanical Systems (NEMS) incorporating nonlinearities and Casimir force is presented by using a variational method. The governing equation and boundary conditions are derived with the help of strain gradient elasticity theory and Hamilton principle. Generalized differential quadrature (GDQ) method is employed to solve the problem numerically. The pull-in instability with Casimir force included is then studied. The results reveal that Casimir force, which is a spontaneous force between the two electrodes, can reduce the external applied voltage. With Casimir force incorporated, the pull-in instability occurs without voltage applied when the beam size is in nanoscale. The minimum gap and detachment length can be calculated from the present model for different beam size, which is important for NEMS design. Finally, discussions of size effect induced by the strain gradient terms reveal that the present model is more accurate since size effect play an important role when beam in nanoscale.

  20. Casimir forces between defects in one-dimensional quantum liquids

    SciTech Connect

    Recati, A.; Fuchs, J.N.; Peca, C.S.; Zwerger, W.

    2005-08-15

    We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.

  1. FAST TRACK COMMUNICATION: Kramers Kronig relations for plasma-like permittivities and the Casimir force

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M.

    2007-04-01

    The Kramers-Kronig relations are derived for the permittivity of the usual plasma model which neglects dissipation and of a generalized model which takes into account the interband transitions. The generalized plasma model is shown to be consistent with all precision experiments on the measurement of the Casimir force.

  2. Influence of low optical frequencies on actuation dynamics of microelectromechanical systems via Casimir forces

    NASA Astrophysics Data System (ADS)

    Sedighi, Mehdi; Palasantzas, George

    2015-04-01

    The role of the Casimir force on the analysis of microactuators is strongly influenced by the optical properties of interacting materials. Bifurcation and phase portrait analysis were used to compare the sensitivity of actuators when the optical properties at low optical frequencies were modeled using the Drude and Plasma models. Indeed, for metallic systems, which have strong Casimir attraction, the details of the modeling of the low optical frequency regime can be dramatic, leading to predictions of either stable motion or stiction instability. However, this difference is strongly minimized for weakly conductive systems as are the doped insulators making actuation modeling more certain to predict.

  3. Stable suspension and dispersion-induced transitions from repulsive Casimir forces between fluid separated eccentric cylinders

    SciTech Connect

    Dalvit, Diego A1; Rodriguez, Alejandro W; Munday, J N; Joannopoulos, J D

    2008-01-01

    Using accurate numerical methods for finite-size nonplanar objects, we demonstrate a stable mechanical suspension of a silica cylinder within a metallic cylinder separated by ethanol, via a repulsive Casimir force between the silica and the metal. We investigate cylinders with both circular and square cross sections, and show that the latter exhibit a stable orientation as well as a stable position, employing a new method to accurately compute Casimir torques for finite objects. Furthermore, the stable orientation of the square cylinder is shown to undergo an unusual 45 transition as a function of the separation lengthscale, and this transition is explained as a consequence of material dispersion.

  4. Casimir-Polder intermolecular forces in minimal length theories

    SciTech Connect

    Panella, O.

    2007-08-15

    Generalized uncertainty relations are known to provide a minimal length ({Dirac_h}/2{pi}){radical}({beta}). The effect of such minimal length in the Casimir-Polder interactions between neutral atoms (molecules) is studied. The first order correction term in the minimal uncertainty parameter is derived and found to describe an attractive potential scaling as r{sup -9}, as opposed to the well-known r{sup -7} long range retarded potential.

  5. Measurement of Casimir force with magnetic materials Alexandr Banishev, Chia-Cheng Chang, Umar Mohideen Department of Physics and Astronomy, University of California, Riverside, USA

    NASA Astrophysics Data System (ADS)

    Banishev, Alexandr; Chang, Chia-Cheng; Mohideen, Umar

    2012-02-01

    The Casimir effect is important in various fields from atomic physics to nanotechnology. According to the Lifshitz theory of the Casimir force, the interaction between two objects depends both on their dielectric permittivity and magenetic permeability. Thus the role of magnetic properties on the Casimir force is interesting particularly due to the possibility of a reduction the Casimir force. In this report we will present the results of a Casimir force measurement between a magnetic material such as nickel coated on SiO2 plate and a Au-coated sphere.

  6. Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber

    NASA Astrophysics Data System (ADS)

    Scheel, Stefan; Buhmann, Stefan Yoshi; Clausen, Christoph; Schneeweiss, Philipp

    2015-10-01

    We study the spontaneous emission of an excited atom close to an optical nanofiber and the resulting scattering forces. For a suitably chosen orientation of the atomic dipole, the spontaneous emission pattern becomes asymmetric and a resonant Casimir-Polder force parallel to the fiber axis arises. For a simple model case, we show that such a lateral force is due to the interaction of the circularly oscillating atomic dipole moment with its image inside the material. With the Casimir-Polder energy being constant in the lateral direction, the predicted lateral force does not derive from a potential in the usual way. Our results have implications for optical force measurements on a substrate as well as for laser cooling of atoms in nanophotonic traps.

  7. Nonlocal microscopic theory of Casimir forces at finite temperature

    SciTech Connect

    Despoja, V.; Marusic, L.

    2011-04-15

    The interaction energy between two metallic slabs in the retarded limit at finite temperature is expressed in terms of surface polariton propagators for separate slabs, avoiding the usual matching procedure, with both diamagnetic and paramagnetic excitations included correctly. This enables appropriate treatment of arbitrary electron density profiles and fully nonlocal electronic response, including both collective and single-particle excitations. The results are verified by performing the nonretarded and long-wavelength (local) limits and showing that they reduce to the previously obtained expressions. Possibilities for practical use of the theory are explored by applying it to calculation of various contributions to the Casimir energy between two silver slabs.

  8. Pseudo-casimir structural force drives spinodal dewetting in nematic liquid crystals

    PubMed

    Ziherl; Podgornik; Zumer

    2000-02-01

    We analyze theoretically the fluctuation-induced force in thin nematic films subject to competing surface interactions, and we find that the force is attractive at small distances and repulsive otherwise. The results provide a consistent interpretation of a recent study of spinodal dewetting of 5CB on a silicon wafer [F. Vandenbrouck et al., Phys. Rev. Lett. 82, 2693 (1999)], implying that this experiment can be regarded as the first observation of the pseudo-Casimir effect in liquid crystals. PMID:11017485

  9. Force sensor for chameleon and Casimir force experiments with parallel-plate configuration

    NASA Astrophysics Data System (ADS)

    Almasi, Attaallah; Brax, Philippe; Iannuzzi, Davide; Sedmik, René I. P.

    2015-05-01

    The search for non-Newtonian forces has been pursued following many different paths. Recently it was suggested that hypothetical chameleon interactions, which might explain the mechanisms behind dark energy, could be detected in a high-precision force measurement. In such an experiment, interactions between parallel plates kept at constant separation could be measured as a function of the pressure of an ambient gas, thereby identifying chameleon interactions by their unique inverse dependence on the local mass density. During the past years we have been developing a new kind of setup complying with the stringent requirements of the proposed experiment. In this article we present the first and most important part of this setup—the force sensor. We discuss its design, fabrication, and characterization. From the results of the latter, we derive limits on chameleon interaction parameters that could be set by the forthcoming experiment. Finally, we describe the opportunity to use the same setup to measure Casimir forces at large surface separations with unprecedented accuracy, thereby potentially giving unambiguous answers to long-standing open questions.

  10. Levitation of a metallic sphere near gas-liquid and liquid-liquid interfaces by the repulsive Casimir force

    NASA Astrophysics Data System (ADS)

    Inui, Norio

    2014-06-01

    By counteracting gravity, the repulsive Casimir force enables stable levitation of a perfectly conducting particle near a liquid-air interface if the particle exists inside the liquid. In the present study, we examine the levitation of a gold particle near a bromobenzene-air interface and calculate the levitation height using the scattering-matrix formulation. In addition, we consider the Casimir force acting on a gold sphere near the interface between bromobenzene and water. At asymptotically large separations, the Casimir force is attractive because of the large static dielectric permittivity of water. However, the Casimir force changes from attractive to repulsive as the separation decreases. We also found that the gold particle can be levitated in bromobenzene above water.

  11. Rabi interferometry and sensitive measurement of the Casimir-Polder force with ultracold gases

    SciTech Connect

    Chwedenczuk, Jan; Piazza, Francesco; Smerzi, Augusto; Pezze, Luca

    2010-09-15

    We show that Rabi oscillations of a degenerate fermionic or bosonic gas trapped in a double-well potential can be exploited for the interferometric measurement of external forces at micrometer length scales. The Rabi interferometer is less sensitive but easier to implement than the Mach-Zehnder, since it does not require dynamical beam-splitting or recombination processes. As an application we propose a measurement of the Casimir-Polder force acting between the atoms and a dielectric surface. We find that even if the interferometer is fed with a coherent state of relatively small number of atoms, and in the presence of realistic experimental noise, the force might be measured with a sensitivity sufficient to discriminate between thermal and zero-temperature regimes of the Casimir-Polder potential. Higher sensitivities can be reached with bosonic spin squeezed states.

  12. Critical Casimir force in 4He films: confirmation of finite-size scaling.

    PubMed

    Ganshin, A; Scheidemantel, S; Garcia, R; Chan, M H W

    2006-08-18

    We present new capacitance measurements of critical Casimir force-induced thinning of 4He films near the superfluid transition, focused on the region below Tlambda where the effect is the greatest. 4He films of 238, 285, and 340 A thickness are adsorbed on atomically smooth, N-doped silicon substrates. The Casimir force scaling function theta, deduced from the thinning of these three films, collapses onto a single universal curve, attaining a minimum theta=-1.30+/-0.03 at x=td1/nu=-9.7+/-0.8 A1/nu. The collapse confirms the finite-size scaling origin of the dip in the film thickness. Separately, we also confirm the presence down to 2.13 K of the Goldstone or surface fluctuation force, which makes the superfluid film approximately 2 A thinner than the normal film. PMID:17026241

  13. Measurement of the temperature dependence of the Casimir-Polder force.

    PubMed

    Obrecht, J M; Wild, R J; Antezza, M; Pitaevskii, L P; Stringari, S; Cornell, E A

    2007-02-01

    We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure 87Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole oscillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory. PMID:17358936

  14. Temperature dependence of the Casimir-like force in free-standing smectic films.

    PubMed

    de Oliveira, I N; Lyra, M L; Mirantsev, L V

    2006-04-01

    The thermal Casimir-like force in free-standing liquid crystal films close to the smectic-A-nematic transition temperature is computed using a quadratic functional approach. In the framework of a microscopic mean-field model of free-standing smectic-A films, the temperature dependence of the order parameter profiles is computed and later used to estimate the elastic coupling variability in the vicinity of first- and second-order bulk smectic-A-nematic phase transitions. The strong nonuniformity of the coupling constant profiles promotes a significant increase of the fluctuation-induced force over three orders of magnitude, especially in thin films. This result reinforces the possible predominance of the thermal Casimir force as compared to the standard van der Waals interaction in thin smectic-A liquid crystal films. PMID:16711823

  15. Nonlinear dynamics of a rack-pinion-rack device powered by the Casimir force.

    PubMed

    Miri, MirFaez; Nekouie, Vahid; Golestanian, Ramin

    2010-01-01

    Using the lateral Casimir force-a manifestation of the quantum fluctuations of the electromagnetic field between objects with corrugated surfaces-as the main force transduction mechanism, a nanomechanical device with rich dynamical behaviors is proposed. The device is made of two parallel racks that are moving in the same direction and a pinion in the middle that couples with both racks via the noncontact lateral Casimir force. The built-in frustration in the device causes it to be very sensitive and react dramatically to minute changes in the geometrical parameters and initial conditions of the system. The noncontact nature of the proposed device could help with the ubiquitous wear problem in nanoscale mechanical systems. PMID:20365429

  16. Critical Casimir force and its fluctuations in lattice spin models: exact and Monte Carlo results.

    PubMed

    Dantchev, Daniel; Krech, Michael

    2004-04-01

    We present general arguments and construct a stress tensor operator for finite lattice spin models. The average value of this operator gives the Casimir force of the system close to the bulk critical temperature T(c). We verify our arguments via exact results for the force in the two-dimensional Ising model, d -dimensional Gaussian, and mean spherical model with 2Casimir force F(C) in a slab geometry confining a critical substance in-between is k(b) TD(T) (A/ a(d-1) )(1/2), where A is the surface area of the plates, a is the lattice spacing, and D(T) is a slowly varying nonuniversal function of the temperature T. The numerical calculations demonstrate that at the critical temperature T(c) the force possesses a Gaussian distribution centered at the mean value of the force = k(b) T(c) (d-1)Delta/ (L/a)(d), where L is the distance between the plates and Delta is the (universal) Casimir amplitude. PMID:15169081

  17. Lateral critical Casimir force in two-dimensional inhomogeneous Ising strip. Exact results.

    PubMed

    Nowakowski, Piotr; Napiórkowski, Marek

    2016-06-01

    We consider two-dimensional Ising strip bounded by two planar, inhomogeneous walls. The inhomogeneity of each wall is modeled by a magnetic field acting on surface spins. It is equal to +h1 except for a group of N1 neighboring surface spins where it is equal to -h1. The inhomogeneities of the upper and lower wall are shifted with respect to each other by a lateral distance L. Using exact diagonalization of the transfer matrix, we study both the lateral and normal critical Casimir forces as well as magnetization profiles for different temperature regimes: below the wetting temperature, between the wetting and the critical temperature, and above the critical temperature. The lateral critical Casimir force acts in the direction opposite to the shift L, and the excess normal force is always attractive. Upon increasing the shift L we observe, depending on the temperature regime, three different scenarios of breaking of the capillary bridge of negative magnetization connecting the inhomogeneities of the walls across the strip. As long as there exists a capillary bridge in the system, the magnitude of the excess total critical Casimir force is almost constant, with its direction depending on L. By investigating the bridge morphologies we have found a relation between the point at which the bridge breaks and the inflection point of the force. We provide a simple argument that some of the properties reported here should also hold for different models of the strip with the same type of inhomogeneity. PMID:27276962

  18. Nonanalytic behavior of the Casimir force across a Lifshitz transition in a spin-orbit-coupled material

    NASA Astrophysics Data System (ADS)

    Allocca, Andrew A.; Wilson, Justin H.; Galitski, Victor

    2014-08-01

    The Casimir effect is a fascinating phenomenon where quantum fluctuations of the electromagnetic field give rise to measurable forces between macroscopic systems. Here we propose that the Casimir effect can be used as a tool to detect changes in electronic structures. In particular, we focus here on the Lifshitz transition—a topological change in the Fermi surface—in a planar spin-orbit-coupled semiconductor in a magnetic field and calculate the Casimir force between the semiconductor and another probe system across the magnetic-field-tuned transition. We show that the Casimir force experiences a sharp kink at the topological transition and provide numerical estimates indicating that the effect is well within experimental reach. The simplest experimental realization of the proposed effect would involve a metal-coated sphere suspended from a microcantilever above a thin layer of InSb (or another semiconductor with a large g factor).

  19. Fluctuation-Induced Interactions in external magnetic fields: Casimir force and Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul

    Thermally induced electromagnetic fields give rise to the Casimir force and the near field heat transfer between two bodies separated by a gap. These phenomena are described by Rytova's theory of fluctuating electromagnetic fields and both the Casimir force and the near field heat transfer depend on the local dielectric function of the bodies. In this work we present a theoretical calculation on the modulation of fluctuation-induced interactions in the presence of an external magnetic field. The system consists of two parallel plates separated by a gap d. Each plate is isotropic and has a local dielectric function. Applying an external magnetic field parallel to the plates, in the so called Voigt configuration, the plates become anisotropic. In particular, we consider plates of InSb. For the Casimir force the two plates are kept at the same temperature and the external field reduces the magnitude of the force. Similarly if the two plates are kept at different temperature the near field radiative heat transfer is modulated by the magnitude of the external magnetic field. The results are extended to semiconducting quantum wells. In both cases, the excitation of magnetoplasmons provides an explanation for the observed effect.

  20. Influence of dielectric properties on van der Waals/Casimir forces in solid-liquid systems

    SciTech Connect

    Zwol, P. J. van; Palasantzas, G.; De Hosson, J. Th. M.

    2009-05-15

    In this paper, we present calculations of van der Waals/Casimir forces, described by Lifshitz theory, for the solid-liquid-solid system using measured dielectric functions of all involved materials for the wavelength range from millimeters down to subnanometers. It is shown that even if the dielectric function is known over all relevant frequency ranges, the scatter in the dielectric data can lead to very large scatter in the calculated van der Waals/Casimir forces. Especially when the liquid dielectric function becomes comparable in magnitude to the dielectric function of one of the interacting solids, the associated variation in the force can be up to a factor of 2 for plate-plate separations 5-500 nm. This corresponds to an uncertainty up to 100% in the theory prediction for a specific system. As a result accuracy testing of the Lifshitz theory under these circumstances is rather questionable. Finally we discuss predictions of Lifshitz theory regarding multiple repulsive-attractive transitions with separation distance, as well as nontrivial scaling of the van der Waals/Casimir force with distance.

  1. Unified boundary conditions and Casimir forces for fields with arbitrary spin

    NASA Astrophysics Data System (ADS)

    Bennett, Robert; Stokes, Adam

    The electromagnetic Casimir effect is well-known and has been extensively studied for the last half-century. This attractive force between parallel plates arises from the imposition of boundary conditions upon the fluctuating spin-1 photon field, so a natural further question is wether fields of different spin can cause similar forces when confined in the same way. However, so far it has not been clear what the appropriate boundary conditions for physically-confined spinor fields may be. Here we present work that generalises the physically well-motivated electromagnetic boundary conditions to fields of arbitrary spin, thus arriving at physically reasonable boundary conditions and Casimir forces for a selection of interesting fields. For example, the so-called `bag model' boundary conditions from nuclear physics emerge from our generalised boundary condition as a special case, as do the linearised gravity boundary conditions suggested in a remarkable recent proposal concerning possible measurement of gravitonic Casimir forces. Supported by the UK Engineering and Physical Sciences Research Council (EPSRC).

  2. Another method to compute the thermodynamic Casimir force in lattice models

    NASA Astrophysics Data System (ADS)

    Hasenbusch, Martin

    2009-12-01

    We discuss a method that allows us to compute the thermodynamic Casimir force at a given temperature in lattice models by performing a single Monte Carlo simulation. It is analogous to the one used by de Forcrand and co-workers in the study of ‘t Hooft loops and the interface tension in SU(N) lattice gauge models in four dimensions. We test the method at the example of thin films in the XY universality class. In particular we simulate the improved two-component ϕ4 model on the simple cubic lattice. This allows us to compare with our previous study, where we have computed the Casimir force by numerically integrating energy densities over the inverse temperature.

  3. Casimir force in a critical film formed from an electrolytic solution.

    PubMed

    Mukhopadhyay, A; Law, B M

    2001-04-01

    We have studied the thickness of vapor adsorbed films of the critical binary liquid mixture acetic acid plus nonane adsorbed onto a silicon wafer substrate as a function of temperature near the critical temperature. This critical film possesses opposite boundary conditions (+-) at its two surfaces and, due to the dissociation of acetic acid, both the electrostatic force and the dispersion force affect the adsorbed film thickness. On approaching the critical temperature T(c), an increase in the film thickness L is observed, implying that the sign of the universal Casimir amplitude Delta(+-) is positive, consistent with theoretical predictions. However, we find quantitative discrepancies in the value of Delta(+-) and the form of the critical Casimir pressure scaling function vartheta(+-) compared with previous experimental results. We attribute these discrepancies to the complex nature of the critical system studied in this experiment. PMID:11308860

  4. Casimir Force for a Maxwell-Chern-Simons System via Model Transformation

    NASA Astrophysics Data System (ADS)

    de Medeiros Neto, J. F.; Ozela, Rodrigo F.; Correa, R. O.; Ramos, Rudnei O.

    2014-12-01

    We show that the Hamiltonian for a Maxwell-Chern-Simons (MCS) model can be expressed in a diagonalized equivalent form involving only a massive scalar field variable in a three-dimensional space-time. We use this mapping between the two models, the MCS and a single massive scalar field, to understand the agreement of the Casimir force between parallel lines derived in both models. Since the Casimir force is heavily dependent on the boundary conditions (BC), we show that only certain types of BC can be considered for the two models, within the method of calculation outlined here. We also discuss the behavior of the BC with respect to the gauge symmetry present in the initial model.

  5. Another method to compute the thermodynamic Casimir force in lattice models.

    PubMed

    Hasenbusch, Martin

    2009-12-01

    We discuss a method that allows us to compute the thermodynamic Casimir force at a given temperature in lattice models by performing a single Monte Carlo simulation. It is analogous to the one used by de Forcrand and co-workers in the study of 't Hooft loops and the interface tension in SU(N) lattice gauge models in four dimensions. We test the method at the example of thin films in the XY universality class. In particular we simulate the improved two-component phi4 model on the simple cubic lattice. This allows us to compare with our previous study, where we have computed the Casimir force by numerically integrating energy densities over the inverse temperature. PMID:20365131

  6. Effect of temperature variations on equilibrium distances in levitating parallel dielectric plates interacting through Casimir forces

    NASA Astrophysics Data System (ADS)

    Esteso, Victoria; Carretero-Palacios, Sol; Míguez, Hernán

    2016-04-01

    We study at thermal equilibrium the effect of temperature deviations around room temperature on the equilibrium distance (deq) at which thin films made of Teflon, silica, or polystyrene immersed in glycerol levitate over a silicon substrate due to the balance of Casimir, gravity, and buoyancy forces. We find that the equilibrium nature (stable or unstable) of deq is preserved under temperature changes, and provide simple rules to predict whether the new equilibrium position will occur closer to or further from the substrate at the new temperature. These rules depend on the static permittivities of all materials comprised in the system ( ɛ0 ( m ) ) and the equilibrium nature of deq. Our designed dielectric configuration is excellent for experimental observation of thermal effects on the Casimir force indirectly detected through the tunable equilibrium distances (with slab thickness and material properties) in levitation mode.

  7. Casimir force-induced instability in freestanding nanotweezers and nanoactuators made of cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Farrokhabadi, Amin; Abadian, Naeimeh; Kanjouri, Faramarz; Abadyan, Mohamadreza

    2014-05-01

    The quantum vacuum fluctuation i.e., Casimir attraction can induce mechanical instability in ultra-small devices. Previous researchers have focused on investigating the instability in structures with planar or rectangular cross-section. However, to the best knowledge of the authors, no attention has been paid for modeling this phenomenon in the structures made of nanowires with cylindrical geometry. In this regard, present work is dedicated to simulate the Casimir force-induced instability of freestanding nanoactuator and nanotweezers made of conductive nanowires with circular cross-section. To compute the quantum vacuum fluctuations, two approaches i.e., the proximity force approximation (for small separations) and scattering theory approximation (for large separations), are considered. The Euler-beam model is employed, in conjunction with the size-dependent modified couple stress continuum theory, to derive governing equations of the nanostructures. The governing nonlinear equations are solved via three different approaches, i.e., using lumped parameter model, modified variation iteration method (MVIM) and numerical solution. The deflection of the nanowire from zero to the final stable position is simulated as the Casimir force is increased from zero to its critical value. The detachment length and minimum gap, which prevent the instability, are computed for both nanosystems.

  8. Variable-temperature device for precision Casimir-force-gradient measurement.

    PubMed

    Castillo-Garza, R; Mohideen, U

    2013-02-01

    We present the design and use of an instrument that is based on a microcantilever to perform precision force gradient measurements. We demonstrate its performance through measurements of the Casimir pressure at various temperatures. The instrument can operate in high vacuum environments and temperatures between 5 K and 300 K. It uses an all-fiber optical interferometer to detect the resonant-frequency shift of a customized microcantilever due to the presence of a force gradient. To measure this shift we use both, a technique of frequency-modulation atomic force microscopy and the direct recording of the thermomechanical resonant frequency. PMID:23464254

  9. Stable Levitation and Alignment of Compact Objects by Casimir Spring Forces

    SciTech Connect

    Rahi, Sahand Jamal; Zaheer, Saad

    2010-02-19

    We investigate a stable Casimir force configuration consisting of an object contained inside a spherical or spheroidal cavity filled with a dielectric medium. The spring constant for displacements from the center of the cavity and the dependence of the energy on the relative orientations of the inner object and the cavity walls are computed. We find that the stability of the force equilibrium--unlike the direction of the torque--can be predicted based on the sign of the force between two slabs of the same material.

  10. Thermal noise limitations to force measurements with torsion pendulums: applications to the measurement of the Casimir force and its thermal correction.

    PubMed

    Lamoreaux, S K; Buttler, W T

    2005-03-01

    A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular we elaborate on the prospects for measuring the thermal correction. PMID:15903495

  11. Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction

    SciTech Connect

    Lamoreaux, S.K.; Buttler, W.T.

    2005-03-01

    A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular we elaborate on the prospects for measuring the thermal correction.

  12. Thermal and Nonthermal Signatures of the Unruh Effect in Casimir-Polder Forces

    NASA Astrophysics Data System (ADS)

    Marino, Jamir; Noto, Antonio; Passante, Roberto

    2014-07-01

    We show that Casimir-Polder forces between two relativistic uniformly accelerated atoms exhibit a transition from the short distance thermal-like behavior predicted by the Unruh effect to a long distance nonthermal behavior, associated with the breakdown of a local inertial description of the system. This phenomenology extends the Unruh thermal response detected by a single accelerated observer to an accelerated spatially extended system of two particles, and we identify the characteristic length scale for this crossover with the inverse of the proper acceleration of the two atoms. Our results are derived separating at fourth order in perturbation theory the contributions of vacuum fluctuations and radiation reaction field to the Casimir-Polder interaction between two atoms moving in two generic stationary trajectories separated by a constant distance and linearly coupled to a scalar field. The field can be assumed in its vacuum state or at finite temperature, resulting in a general method for the computation of Casimir-Polder forces in stationary regimes.

  13. Proximity force approximation for the Casimir energy as a derivative expansion

    NASA Astrophysics Data System (ADS)

    Fosco, César D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2011-11-01

    The proximity force approximation (PFA) has been widely used as a tool to evaluate the Casimir force between smooth objects at small distances. In spite of being intuitively easy to grasp, it is generally believed to be an uncontrolled approximation. Indeed, its validity has only been tested in particular examples, by confronting its predictions with the next-to-leading-order (NTLO) correction extracted from numerical or analytical solutions obtained without using the PFA. In this article we show that the PFA and its NTLO correction may be derived within a single framework, as the first two terms in a derivative expansion. To that effect, we consider the Casimir energy for a vacuum scalar field with Dirichlet conditions on a smooth curved surface described by a function ψ in front of a plane. By regarding the Casimir energy as a functional of ψ, we show that the PFA is the leading term in a derivative expansion of this functional. We also obtain the general form of the corresponding NTLO correction, which involves two derivatives of ψ. We show, by evaluating this correction term for particular geometries, that it properly reproduces the known corrections to PFA obtained from exact evaluations of the energy.

  14. Casimir effect for curved geometries: proximity-force-approximation validity limits.

    PubMed

    Gies, Holger; Klingmüller, Klaus

    2006-06-01

    We compute Casimir interaction energies for the sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations with Dirichlet boundary conditions. Based on a high-precision calculation using world-line numerics, we quantitatively determine the validity bounds of the proximity-force approximation (PFA) on which the comparison between all corresponding experiments and theory are based. We observe the quantitative failure of the PFA on the 1% level for a curvature parameter a/R>0.00755. Even qualitatively, the PFA fails to predict reliably the correct sign of genuine Casimir curvature effects. We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA. PMID:16803290

  15. Bulk and boundary effects on the decay of the thermodynamic Casimir force

    NASA Astrophysics Data System (ADS)

    Delfino, Gesualdo; Squarcini, Alessio

    2015-01-01

    We consider the decay of the thermodynamic Casimir force in phases with a finite correlation length. For the case of the strip, we use properties of low-energy two-dimensional field theory to show that the decay depends on the symmetry properties of the boundary conditions, in distinctive ways that we determine exactly. Features characteristic of the bulk universality class may induce modifications that we also discuss. Symmetry-breaking and symmetry-preserving boundary conditions exchange their role with respect to the decay of the force when exchanging spontaneously broken with disordered phases. Several of our arguments extend to higher dimensions.

  16. Casimir-lifshitz force out of thermal equilibrium and asymptotic nonadditivity.

    PubMed

    Antezza, Mauro; Pitaevskii, Lev P; Stringari, Sandro; Svetovoy, Vitaly B

    2006-12-01

    We investigate the force acting between two parallel plates held at different temperatures. The force reproduces, as limiting cases, the well-known Casimir-Lifshitz surface-surface force at thermal equilibrium and the surface-atom force out of thermal equilibrium recently derived by M. Antezza et al., Phys. Rev. Lett. 95, 113202 (2005)10.1103/PhysRevLett.95.113202. The asymptotic behavior of the force at large distances is explicitly discussed. In particular when one of the two bodies is a rarefied gas the force is not additive, being proportional to the square root of the density. Nontrivial crossover regions at large distances are also identified. PMID:17155801

  17. Control of the Casimir force by the modification of dielectric properties with light

    NASA Astrophysics Data System (ADS)

    Chen, F.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2007-07-01

    The experimental demonstration of the modification of the Casimir force [Proc. K. Ned. Akad. Wet. 51, 793 (1948)] between a gold coated sphere and a single-crystal Si membrane by light pulses is performed. The specially designed and fabricated Si membrane was irradiated with 514nm laser pulses of 5ms width in high vacuum, leading to a change of the charge-carrier density. The difference in the Casimir force in the presence and in the absence of laser radiation was measured by means of an atomic force microscope as a function of separation at different powers of the absorbed light. The total experimental error of the measured force differences at a separation of 100nm varies from 10% to 20% in different measurements. The experimental results are compared with theoretical computations using the Lifshitz theory [Zh. Eksp. Teor. Fiz. 29, 94 (1956) [Sov. Phys. JETP 2, 73 (1956)]; Statistical Physics (Pergamon, Oxford, 1981), Pt. II] at both zero and laboratory temperatures. The total theoretical error determined mostly by the uncertainty in the concentration of charge carriers when the light is incident is found to be about 14% at separations less than 140nm . The experimental data are consistent with the Lifshitz theory at laboratory temperature, if the static dielectric permittivity of high-resistivity Si in the absence of light is assumed to be finite. If the dc conductivity of high-resistivity Si in the absence of light is included into the model of dielectric response, the Lifshitz theory at nonzero temperature is shown to be experimentally inconsistent at 95% confidence. The demonstrated phenomenon of the modification of the Casimir force through a change of the charge-carrier density is topical for applications of the Lifshitz theory to real materials in fields ranging from nanotechnology and condensed matter physics to the theory of fundamental interactions.

  18. Modeling the influence of the Casimir force on the pull-in instability of nanowire-fabricated nanotweezers

    NASA Astrophysics Data System (ADS)

    Farrokhabadi, Amin; Mokhtari, Javad; Rach, Randolph; Abadyan, Mohamadreza

    2015-09-01

    The Casimir force can strongly interfere with the pull-in performance of ultra-small structures. The strength of the Casimir force is significantly affected by the geometries of interacting bodies. Previous investigators have exclusively studied the effect of the Casimir force on the electromechanical instability of nanostructures with planar geometries. However no work has yet considered this effect on the pull-in instability of systems with cylindrical geometries such as nanotweezers fabricated from nanotube/nanowires. In our present work, the influence of the Casimir attraction on the electrostatic response and pull-in instability of nanotweezers fabricated from cylindrical conductive nanowires/nanotubes is theoretically investigated. An asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The Euler-Bernoulli beam model is employed, in conjunction with the size-dependent modified couple stress continuum theory, to derive the governing equation of the nanotweezers. The governing nonlinear equations are solved by two different approaches, i.e., the modified Adomian-Padé method (MAD-Padé) and a numerical solution. Various aspects of the problem, i.e., the variation of pull-in parameters, effect of geometry, coupling between the Casimir force and size dependency effects and comparison with the van der Waals force regime are discussed.

  19. Experimental and theoretical investigation of the angular dependence of the Casimir force between sinusoidally corrugated surfaces

    NASA Astrophysics Data System (ADS)

    Banishev, A. A.; Wagner, J.; Emig, T.; Zandi, R.; Mohideen, U.

    2014-06-01

    In the current work we present the complete results for the measurement of normal Casimir force between a shallow and smooth sinusoidally corrugated gold coated sphere and a plate at various angles between the corrugations using an atomic force microscope. All measured data were compared with the theoretical approach using the proximity force approximation and theory based on derivative expansion. In both cases real material properties of the surfaces and nonzero temperature were taken into account. Special attention is paid to the description of electrostatic interactions between corrugated surfaces at different angles between corrugations and samples preparation and characterization. The measured forces are found to be in good agreement with the theory including correlation effects of geometry and material properties and deviate significantly from the predictions of the proximity force approximation approach. This provides the quantitative confirmation for the observation of diffraction-type effects that are disregarded within the PFA approach. The obtained results open new opportunities for control of the Casimir effect in micromechanical systems.

  20. Measurement of the temperature dependence of the Casimir-Polder force

    NASA Astrophysics Data System (ADS)

    Obrecht, John Michael

    A measurement of the temperature dependence of the Casimir-Polder force is presented along with subsequent measurements of electric fields near surfaces. These measurements were obtained by studying the effects of surface forces on the collective oscillations of a magnetically trapped 87Rb Bose-Einstein condensate (BEC). In the first part of this thesis, the measurement of the Casimir-Polder force is described. In this experiment, the BEC was placed a few microns from a dielectric substrate and excited into its dipole oscillation. Changes in the collective oscillation frequency resulted from spatial variations in the surface-atom force. The temperature dependence of this force was observed as a threefold increase in its strength as the substrate was heated from 300 K to 600 K, in agreement with theory. The second part of this thesis deals with measurements that were made of electric fields emanating from surface adsorbates. An alternating external electric field was applied that adds to (or subtracts from) the adsorbate's field in such a way as to resonantly drive the BEC into a mechanical dipole oscillation. The growth rate of the oscillation's amplitude provides information about the magnitude and sign of the adsorbate's field gradient. Using this technique, we were able to reconstruct vectorially the electric field produced by surface contaminants and account for their systematic effects. Lastly, we show that baking the substrate can reduce the electric fields emanating from adsorbates, and that the mechanism for reduction is likely surface diffusion, not desorption.

  1. Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays.

    PubMed

    Chan, H B; Bao, Y; Zou, J; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S

    2008-07-18

    We report measurements of the Casimir force between a gold sphere and a silicon surface with an array of nanoscale, rectangular corrugations using a micromechanical torsional oscillator. At distances between 150 and 500 nm, the measured force shows significant deviations from the pairwise additive formulism, demonstrating the strong dependence of the Casimir force on the shape of the interacting bodies. The observed deviation, however, is smaller than the calculated values for perfectly conducting surfaces, possibly due to the interplay between finite conductivity and geometry effects. PMID:18764238

  2. Measurement of the Casimir force between Germanium plates using a torsion balance

    SciTech Connect

    Dalvit, Diego; Kim, W J; Sushkov, A O; Lamoreaux, S K

    2008-01-01

    We report the measurement of the Casimir force between Ge plates in a sphere-plane configuration using a torsion balance. We observe that the effective contact potential between the plates varies with their separation distance, resulting in a systematic force. In addition, an unexpected 1/d force is also found in our data that persists even when the electrostatic force between the plates is experimentally minimized by applying a compensating potential. After applying corrections due to these systematic forces, likely of electrostatic origin, our result can be described by the bare permittivity of Ge without conduction, the Drude and the diffusion models for electrical and optical properties of Ge, but not by the plasma model.

  3. Dependence of the Direction of the Casimir Force on the Shape of the Boundary

    SciTech Connect

    Schaden, Martin

    2009-02-13

    The Casimir force due to a massless scalar field satisfying Dirichlet boundary conditions may draw a piston into the neck or toward the bulb of a flasklike container. In the worldline formalism this is due to competing contributions to the interaction energy from two types of Brownian bridges. Geometrical subtractions define a finite interaction energy. The procedure does not require regularization and appears well suited for numerical studies. The worldline analysis is robust with respect to variations in the shape of both piston and flask.

  4. Dependence of the direction of the Casimir force on the shape of the boundary.

    PubMed

    Schaden, Martin

    2009-02-13

    The Casimir force due to a massless scalar field satisfying Dirichlet boundary conditions may draw a piston into the neck or toward the bulb of a flasklike container. In the worldline formalism this is due to competing contributions to the interaction energy from two types of Brownian bridges. Geometrical subtractions define a finite interaction energy. The procedure does not require regularization and appears well suited for numerical studies. The worldline analysis is robust with respect to variations in the shape of both piston and flask. PMID:19257570

  5. Field-driven crossover from attractive-to-repulsive Casimir-like force in smectic films.

    PubMed

    de Oliveira, I N; Lyra, M L

    2004-11-01

    External fields have a profound effect on the fluctuations of strongly correlated fluids, such as a liquid crystal. Within a harmonic functional integral approach, we compute the fluctuation-induced force between the surfaces of a smectic liquid-crystal film under the presence of an ordering field. In particular, we show that for asymmetrically anchored films, the thermal Casimir interaction energy can be collapsed into a universal form crossing over from a repulsive to an attractive interaction as the film thickness is increased. We discuss the possible relevance of this field effect in nematic-smectic wetting transitions. PMID:15600581

  6. Calculation of nonzero-temperature Casimir forces in the time domain

    SciTech Connect

    Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.

    2011-04-15

    We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.

  7. Mesoscopic Electrical Transmission Line in the Charge-Anticharge Framework:. Spectral Properties and Casimir Forces

    NASA Astrophysics Data System (ADS)

    Flores, J. C.

    In the charge-anticharge framework, we solve explicitly the nonlinear quantum evolution equation for the charge operator of the direct transmission line with discrete charge. The associated spectrum is completely consistent with the well-known limit of continuous charge. In the zero point charge fluctuations state, the attraction between plates is compared with the corresponding Casimir force (related to field fluctuations) which, now, could be interpreted in terms of virtual charge fluctuations. The spectrum of the dual transmission line (left-handed) is also found. Some aspects related to quantum dots (coulomb blockade), structure fine constant and thermodynamics properties are also touched upon.

  8. Van der Waals, Casimir, and Lifshitz forces in soft matter

    NASA Astrophysics Data System (ADS)

    Kats, E. I.

    2015-09-01

    E M Lifshitz's theory of fluctuation molecular forces (Zh. Eksp. Teor. Fiz., Vol. 29, p. 94, 1955 [Sov. Phys. JETP, Vol. 2, 73, 1956]) and related problems are introduced from a historical perspective. Applications of the theory to soft matter physics are discussed, together with some new predictions (for example, the stability of smectic or cholesteric liquid crystal films).

  9. Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical electromagnetism techniques

    SciTech Connect

    Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, J. D.; Johnson, Steven G.; Iannuzzi, Davide

    2007-09-15

    We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit fast methods developed for classical computational electromagnetism, since it only involves repeated evaluation of the Green's function for imaginary frequencies (equivalently, real frequencies in imaginary time). We develop the approach by systematically examining various formulations of Casimir forces from the previous decades and evaluating them according to their suitability for numerical computation. We illustrate our approach with a simple finite-difference frequency-domain implementation, test it for known geometries such as a cylinder and a plate, and apply it to new geometries. In particular, we show that a pistonlike geometry of two squares sliding between metal walls, in both two and three dimensions with both perfect and realistic metallic materials, exhibits a surprising nonmonotonic ''lateral'' force from the walls.

  10. On the use of the proximity force approximation for deriving limits to short-range gravitational-like interactions from sphere-plane Casimir force experiments

    SciTech Connect

    Dalvit, Diego A. R.; Onofrio, Roberto

    2009-09-15

    We discuss the role of the proximity force approximation in deriving limits to the existence of Yukawian forces--predicted in the submillimeter range by many unification models--from Casimir force experiments using the sphere-plane geometry. Two forms of this approximation are discussed, the first used in most analyses of the residuals from the Casimir force experiments performed so far, and the second recently discussed in this context in R. Decca et al.[Phys. Rev. D 79, 124021 (2009)]. We show that the former form of the proximity force approximation overestimates the expected Yukawa force and that the relative deviation from the exact Yukawa force is of the same order of magnitude, in the realistic experimental settings, as the relative deviation expected between the exact Casimir force and the Casimir force evaluated in the proximity force approximation. This implies both a systematic shift making the actual limits to the Yukawa force weaker than claimed so far, and a degree of uncertainty in the {alpha}-{lambda} plane related to the handling of the various approximations used in the theory for both the Casimir and the Yukawa forces. We further argue that the recently discussed form for the proximity force approximation is equivalent, for a geometry made of a generic object interacting with an infinite planar slab, to the usual exact integration of any additive two-body interaction, without any need to invoke approximation schemes. If the planar slab is of finite size, an additional source of systematic error arises due to the breaking of the planar translational invariance of the system, and we finally discuss to what extent this may affect limits obtained on power-law and Yukawa forces.

  11. Casimir force in the O(n→∞) model with free boundary conditions.

    PubMed

    Dantchev, Daniel; Bergknoff, Jonathan; Rudnick, Joseph

    2014-04-01

    We present results for the temperature behavior of the Casimir force for a system with a film geometry with thickness L subject to free boundary conditions and described by the n→∞ limit of the O(n) model. These results extend over all temperatures, including the critical regime near the bulk critical temperature Tc, where the critical fluctuations determine the behavior of the force, and temperatures well below it, where its behavior is dictated by the Goldstone mode contributions. The temperature behavior when the absolute temperature, T, is a finite distance below Tc, up to a logarithmic-in-L proximity of the bulk critical temperature, is obtained both analytically and numerically; the critical behavior follows from numerics. The results resemble-but do not duplicate-the experimental curve behavior for the force obtained for He4 films. PMID:24827202

  12. A microscopic approach to Casimir and Casimir–Polder forces between metallic bodies

    SciTech Connect

    Barcellona, Pablo Passante, Roberto

    2015-04-15

    We consider the Casimir–Polder interaction energy between a metallic nanoparticle and a metallic plate, as well as the Casimir interaction energy between two macroscopic metal plates, in terms of the many-body dispersion interactions between their constituents. Expressions for two- and three-body dispersion interactions between the microscopic parts of a real metal are first obtained, both in the retarded and non-retarded limits. These expressions are then used to evaluate the overall two- and three-body contributions to the macroscopic Casimir–Polder and Casimir force, and to compare them with each other, for the two following geometries: metal nanoparticle/half-space and half-space/half-space, where all the materials are assumed perfect conductors. The above evaluation is obtained by summing up the contributions from the microscopic constituents of the bodies (metal nanoparticles). In the case of nanoparticle/half-space, our results fully agree with those that can be extracted from the corresponding macroscopic results, and explicitly show the non-applicability of the pairwise approximation for the geometry considered. In both cases, we find that, while the overall two-body contribution yields an attractive force, the overall three-body contribution is repulsive. Also, they turn out to be of the same order, consistently with the known non applicability of the pairwise approximation. The issue of the rapidity of convergence of the many-body expansion is also briefly discussed.

  13. Theoretical modeling of the Casimir force-induced instability in freestanding nanowires with circular cross-section

    NASA Astrophysics Data System (ADS)

    Farrokhabadi, Amin; Abadian, Naeime; Rach, Randolph; Abadyan, Mohamadreza

    2014-09-01

    The Casimir force can induce instability and adhesion in freestanding nanostructures. Previous research efforts in this area have exclusively focused on modeling the instability in structures with planar or rectangular cross-section, while, to the best knowledge of the authors, no attention has been paid to investigate this phenomenon for nanowires with circular cross-section. In this study, effects of the Casimir force on the instability and adhesion of freestanding Cylinder-Plate and Cylinder-Cylinder geometries are investigated, which are commonly encountered in real nanodevices. To compute the Casimir force, two approaches, i.e. the proximity force approximation (PFA) for small separations and Dirichlet asymptotic approximation (scattering theory) for large separations, are considered. A continuum mechanics theory is employed, in conjunction with the Euler-beam model, to obtain constitutive equations of the systems. The governing nonlinear constitutive equations of the nanostructures are solved using two different approaches, i.e. the analytical modified Adomian decomposition (MAD) and the numerical finite difference method (FDM). The detachment length and minimum gap, both of which prevent the Casimir force-induced adhesion, are computed for both configurations.

  14. Influence of ultrathin water layer on the van der Waals/Casimir force between gold surfaces

    SciTech Connect

    Palasantzas, G.; Zwol, P. J. van; Svetovoy, V. B.

    2009-06-15

    In this paper we investigate the influence of ultrathin water layer ({approx}1-1.5 nm) on the van der Waals/Casimir force between gold surfaces. Adsorbed water is inevitably present on gold surfaces at ambient conditions as jump-up-to contact during adhesion experiments demonstrate. Calculations based on the Lifshitz theory give very good agreement with the experiment in the absence of any water layer for surface separations d > or approx. 10 nm. However, a layer of thickness h < or approx. 1.5 nm is allowed by the error margin in force measurements. At shorter separations, d < or approx. 10 nm, the water layer can have a strong influence as calculations show for flat surfaces. Nonetheless, in reality the influence of surface roughness must also be considered, and it can overshadow any water layer influence at separations comparable to the total sphere-plate rms roughness w{sub shp}+w.

  15. Analysis of zero-point electromagnetic energy and Casimir forces in conducting rectangular cavities

    NASA Astrophysics Data System (ADS)

    Maclay, G. Jordan

    2000-05-01

    The goal in this effort is twofold: (1) to develop an understanding of Casimir forces in geometries more complicated than the usual parallel-plate geometry and (2) to provide extensive numerical computations to elucidate quantitative and qualitative aspects of the vacuum fluctuation energy and Casimir forces for the rectangular cavity. We review geometries for which Casimir forces and vacuum energy have been computed, and point out some of the difficulties with the ideal-conductor boundary conditions and ideal-shape boundary conditions, e.g., infinitely sharp edges. We investigate the vacuum electromagnetic stress-energy tensor at 0 K for a perfectly conducting three-dimensional rectangular cavity with sides a1×a2×a3. The elements of the tensor are averaged over the appropriate spatial coordinates of the cavity. We first consider the average energy density T00=e(a)/V from the viewpoint of symmetry, where e(a1,a2,a3)=e(a) is the finite change in the zero-point energy from the free-field case. The vacuum energy e(a) and the total vacuum force on the wall normal to the i direction, Fi=-∂e/∂ai, are both homogeneous functions of the cavity dimensions. Because of this symmetry, the energy and forces are related by the equation e(a)=a.F(a). We compute the vacuum forces and energy numerically for cavities with a broad range of dimensions. The implications of the perfect-conductor boundary conditions and the effects of the edges of the cavity are both considered. The C3v symmetry of the constant-energy surfaces is apparent. The zero-energy surface, which is invariant under dilations and therefore extends to infinity, separates the nested, concave, positive-energy surfaces from the open, negative-energy surfaces. The positive- (negative-) energy surfaces are mapped into each other by scale changes. The force F(a) is normal to the constant-energy surface at a. The surfaces corresponding to zero forces, Fi(a)=0, are invariant under dilations and are therefore infinite

  16. Electromagnetic energy, absorption, and Casimir forces: Uniform dielectric media in thermal equilibrium

    SciTech Connect

    Rosa, F. S. S.; Dalvit, D. A. R.; Milonni, P. W.

    2010-03-15

    The derivation of Casimir forces between dielectrics can be simplified by ignoring absorption, calculating energy changes due to displacements of the dielectrics, and only then admitting absorption by allowing permittivities to be complex. As a first step toward a better understanding of this situation we consider in this article the model of a dielectric as a collection of oscillators, each of which is coupled to a reservoir giving rise to damping and Langevin forces on the oscillators and a noise polarization acting as a source of a fluctuating electromagnetic field in the dielectric. The model leads naturally to expressions for the quantized electric and magnetic fields that are consistent with those obtained in approaches that diagonalize the coupled system of oscillators for the dielectric medium, the reservoir, and the electromagnetic field. It also results in a fluctuation-dissipation relation between the noise polarization and the imaginary part of the permittivity; comparison with the Rytov fluctuation-dissipation relation employed in the well-known Lifshitz theory for the van der Waals (or Casimir) force shows that the Lifshitz theory is actually a classical stochastic electrodynamical theory. The approximate classical expression for the energy density in a band of frequencies at which absorption in a dielectric is negligible is shown to be exact as a spectral thermal equilibrium expectation value in quantum electrodynamic theory. Our main result is the derivation of an expression for the QED energy density of a uniform dispersive, absorbing media in thermal equilibrium. The spectral density of the energy is found to have the same form with or without absorption. We also show how the fluctuation-dissipation theorem ensures a detailed balance of energy exchange between the (absorbing) medium, the reservoir, and the electromagnetic field in thermal equilibrium.

  17. Constraints on non-Newtonian gravity from measuring the Casimir force in a configuration with nanoscale rectangular corrugations

    SciTech Connect

    Bezerra, V. B.; Romero, C.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2011-04-01

    We report constraints on the parameters of Yukawa-type corrections to Newtonian gravity from measurements of the gradient of the Casimir force in the configuration of an Au-coated sphere above a Si plate covered with corrugations of trapezoidal shape. For this purpose, the exact expression for the gradient of Yukawa force in the experimental configuration is derived and compared with that obtained using the proximity force approximation. The reported constraints are of almost the same strength as those found previously from several different experiments on the Casimir force and extend over a wide interaction range from 30 to 1260 nm. It is discussed how to make them stronger by replacing the material of the plate.

  18. Casimir force between a half-space and a plate of finite thickness

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Brevik, Iver

    2016-05-01

    Zero-frequency Casimir theory is analyzed from different viewpoints, with the aim of obtaining further insight into the delicate Drude-plasma issue that turns up when one considers thermal corrections to the Casimir force. The problem is essentially that the plasma model, physically inferior in comparison to the Drude model since it leaves out dissipation in the material, apparently gives the best results when comparing with recent experiments. Our geometric setup is quite conventional, namely, a dielectric plate separated from a dielectric half-space by a vacuum gap, both media being made of the same material. Our investigation is divided into the following categories: (1) Making use of the statistical-mechanical method developed by J. S. Høye and I. Brevik [Physica A (Amsterdam, Neth.) 259, 165 (1998), 10.1016/S0378-4371(98)00249-0], implying that the quantized electromagnetic field is replaced by interaction between dipole moments oscillating in harmonic potentials, we first verify that the Casimir force is in agreement with the Drude prediction. No use of Fresnel's reflection coefficients is made at this stage. (2) Then turning to the field-theoretic description implying use of the reflection coefficients, we derive results in agreement with the forgoing when first setting the frequency equal to zero, before letting the permittivity become large. With the plasma relation the reflection coefficient for TE zero-frequency modes depends on the component of the wave vector parallel to the surfaces and lies between 0 and 1. This contradicts basic electrostatic theory. (3) Turning to high-permeability magnetic materials, the TE zero-frequency mode describes the static magnetic field in the same way the TM zero-frequency modes describe the static electric fields in electrostatics. With the plasma model magnetic fields, except for a small part, cannot pass through metals; that is, metals effectively become superconductors. However, recent experimental results clearly

  19. Microscopic theory of the Casimir force at thermal equilibrium: large-separation asymptotics.

    PubMed

    Buenzli, P R; Martin, Ph A

    2008-01-01

    We present an entirely microscopic calculation of the Casimir force f(d) between two metallic plates in the limit of large separation d . The models of metals consist of mobile quantum charges in thermal equilibrium with the photon field at positive temperature T . Fluctuations of all degrees of freedom, matter and field, are treated according to the principles of quantum electrodynamics and statistical physics without recourse to approximations or intermediate assumptions. Our main result is the correctness of the asymptotic universal formula f(d) approximately -zeta(3)kBT/8pid3, d-->infinity. This supports the fact that, in the framework of the Lifshitz theory of electromagnetic fluctuations, transverse electric modes do not contribute in this regime. Moreover, the microscopic origin of universality is seen to rely on perfect screening sum rules that hold in great generality for conducting media. PMID:18351825

  20. Thermal effects on the casimir force in the 0.1- 5 &mgr;m range

    PubMed

    Bostrom; Sernelius

    2000-05-15

    The vacuum stresses between a metal half-space and a metal sphere were recently measured at room temperature, in the 0.6-6 &mgr;m range, with an estimated accuracy of 5%. In the interpretation it was assumed that the accuracy was not good enough for observing any thermal effects. We claim that thermal effects are important in this separation range and back up this claim with numerical calculations of the Casimir force at zero temperature and at 300 K, based on tabulated optical data of gold, copper, and aluminum. The effects of dissipation and temperature are investigated and we demonstrate the importance of considering these two corrections together. PMID:10990789

  1. From Casimir-Polder Force to Dicke Physics: Interaction between Atoms and a Topological Insulator

    NASA Astrophysics Data System (ADS)

    Fuchs, Sebastian; Buhmann, Stefan

    We apply the theory of macroscopic quantum electrodynamics in dispersing and absorbing media to study the Casimir-Polder force between an atom and a topological insulator. The electromagnetic response of a topological insulator surface leads to a mixing of electric and magnetic fields, breaking the time-reversal symmetry. The coupling of these fields to an atom causes shifts of the atom's eigenenergies and modified decay rates near the surface of the topological insulator. Energy shifts and modified decay rates cannot only be triggered by the presence of a material, but can be caused by other atoms in close proximity as well. The collective dynamics of atoms (Dicke Physics) leads to a superradiant burst. Combining macroscopic QED and Dicke physics opens the door to the investigation of cooperative atom-surface interactions.

  2. Low-frequency character of the Casimir force between metallic films.

    PubMed

    Torgerson, J R; Lamoreaux, S K

    2004-10-01

    The frequency spectrum of the finite temperature correction to the Casimir force can be determined by use of the Lifshitz formalism for metallic plates of finite conductivity. We show that the correction for the TE electromagnetic modes is dominated by frequencies so low that the plates cannot be modeled as ideal dielectrics. We also address issues relating to the behavior of electromagnetic fields at the surfaces and within metallic conductors, and calculate the surface modes using appropriate low-frequency metallic boundary conditions. Our result brings the thermal correction into agreement with experimental results that were previously obtained. We suggest a series of measurements that will test the veracity of our analysis. PMID:15600565

  3. Electromagnetic Casimir forces of parabolic cylinder and knife-edge geometries

    SciTech Connect

    Graham, Noah; Shpunt, Alexander; Kardar, Mehran; Emig, Thorsten; Rahi, Sahand Jamal; Jaffe, Robert L.

    2011-06-15

    An exact calculation of electromagnetic scattering from a perfectly conducting parabolic cylinder is employed to compute Casimir forces in several configurations. These include interactions between a parabolic cylinder and a plane, two parabolic cylinders, and a parabolic cylinder and an ordinary cylinder. To elucidate the effect of boundaries, special attention is focused on the 'knife-edge' limit in which the parabolic cylinder becomes a half-plane. Geometrical effects are illustrated by considering arbitrary rotations of a parabolic cylinder around its focal axis, and arbitrary translations perpendicular to this axis. A quite different geometrical arrangement is explored for the case of an ordinary cylinder placed in the interior of a parabolic cylinder. All of these results extend simply to nonzero temperatures.

  4. Computation and Visualization of Casimir Forces in Arbitrary Geometries: Nonmonotonic Lateral-Wall Forces and the Failure of Proximity-Force Approximations

    SciTech Connect

    Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, J. D.; Johnson, Steven G.; Iannuzzi, Davide; Capasso, Federico

    2007-08-24

    We present a method of computing Casimir forces for arbitrary geometries, with any desired accuracy, that can directly exploit the efficiency of standard numerical-electromagnetism techniques. Using the simplest possible finite-difference implementation of this approach, we obtain both agreement with past results for cylinder-plate geometries, and also present results for new geometries. In particular, we examine a pistonlike problem involving two dielectric and metallic squares sliding between two metallic walls, in two and three dimensions, respectively, and demonstrate nonadditive and nonmonotonic changes in the force due to these lateral walls.

  5. Computation and visualization of Casimir forces in arbitrary geometries: nonmonotonic lateral-wall forces and the failure of proximity-force approximations.

    PubMed

    Rodriguez, Alejandro; Ibanescu, Mihai; Iannuzzi, Davide; Capasso, Federico; Joannopoulos, J D; Johnson, Steven G

    2007-08-24

    We present a method of computing Casimir forces for arbitrary geometries, with any desired accuracy, that can directly exploit the efficiency of standard numerical-electromagnetism techniques. Using the simplest possible finite-difference implementation of this approach, we obtain both agreement with past results for cylinder-plate geometries, and also present results for new geometries. In particular, we examine a pistonlike problem involving two dielectric and metallic squares sliding between two metallic walls, in two and three dimensions, respectively, and demonstrate nonadditive and nonmonotonic changes in the force due to these lateral walls. PMID:17930932

  6. Measurement of the Casimir force between a spherical gold tip and Si(111)-(7 × 7) surfaces

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki; Higashino, Kazuhiko; Sueoka, Kazuhisa

    2016-08-01

    We have performed the measurement of Casimir force between a spherical Au tip and an atomically flat Si(111)-(7 × 7) surface at tip–sample distances ranging from 15 to 50 nm in an ultrahigh vacuum of 1.5 × 10‑8 Pa by frequency-modulation atomic force microscopy. Atomically flat Si(111) surfaces provided by the ultrahigh-vacuum condition and a degassed Au tip reduce the contact potential difference that must be compensated. These experimental conditions led to the elucidation of the distance dependence of the Casimir force down to the distance of 15 nm. The observed distance dependence still follows a theory provided by Chen et al. [Phys. Rev. A 74, 022103 (2006)] within these distances.

  7. Casimir-Polder force for a polarizable molecule near a dielectric substrate out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Yu, Hongwei

    2015-05-01

    We demonstrate that the Casimir-Polder force for a molecule near the surface of a real dielectric substrate out of thermal equilibrium displays distinctive behaviors as compared to that at thermal equilibrium. In particular, when the molecule-substrate separation is much less than the molecular transition wavelength, the CP force in the high-temperature limit can be dramatically manipulated by varying the relative magnitude of the temperatures of the substrate and the environment so that the attractive-to-repulsive transition can occur beyond a certain threshold temperature of either the substrate or the environment depending on which one is higher for molecules both in the ground and excited states. More remarkably, when the separation is comparable to the wavelength, such transitions which are impossible at thermal equilibrium may happen for longitudinally polarizable molecules with a small permittivity, while for isotropically polarizable ones the transitions can even occur at room temperature for some dielectric substrates such as sapphire and graphite which is much lower than the temperature for the transition to take place in the thermal equilibrium case, thus making the experimental demonstration of such force transitions easier.

  8. Energy shift and Casimir-Polder force for an atom out of thermal equilibrium near a dielectric substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Yu, Hongwei

    2014-09-01

    We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982), 10.1051/jphys:0198200430110161700; J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular, we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete region where this behavior holds.

  9. Demonstration of the Casimir force between ferromagnetic surfaces of a Ni-coated sphere and a Ni-coated plate.

    PubMed

    Banishev, A A; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U

    2013-03-29

    We demonstrate the Casimir interaction between two ferromagnetic boundary surfaces using the dynamic atomic force microscope. The experimental data are found to be in excellent agreement with the predictions of the Lifshitz theory for magnetic boundary surfaces combined with the plasma model approach. It is shown that for magnetic materials the role of hypothetical patch potentials is opposite to that required for reconciliation of the data with the Drude model. PMID:23581368

  10. The movement of molecules and nanoparticles in potential field with the Casimir force in nano volumes with different optical boundaries

    NASA Astrophysics Data System (ADS)

    Uvarova, L. A.; Babarin, S. S.

    2014-09-01

    This work is devoted to the problem of dynamics of molecules and nanoparticles in fields in following potentials: the Casimir force, the van der Waals interactions, the Coulomb potential for charged particles, the potential energies for bonds, and the electric potential. In the general case, molecules or nanoparticles move in nano volumes with walls of different optical properties. In particular, the matter at boundary can be with zero refracted index (Vesseur E J R et al 2013 Phys. Rev. Lett. 110 013902; Uvarova L A 2005 AIP congress). Current model can be used to investigate dynamical and configuration properties of particle systems, and to determine influences of molecules interactions with the walls. It is accepted that the Casimir force affects the velocity distribution function, the total energy, and equilibrium properties that produce rise of temperature, pressure and energy deviations. In many-atom molecules or nanoparticles interactions with the Casimir force are more complex, but they give opportunity to control admixtures and modification of system under the influence of electromagnetic waves.

  11. Comment on "Low-frequency character of the Casimir force between metallic films".

    PubMed

    Bimonte, Giuseppe

    2006-04-01

    In Phys. Rev. E 70, 047102 (2004), Torgerson and Lamoreaux investigated for the first time the real-frequency spectrum of the finite temperature correction to the Casimir force, for metallic plates of finite conductivity. The very interesting result of this study is that the large correction from the TE mode is dominated by low frequencies, for which the dielectric description of the metal is invalid, and the authors correctly point out that a more realistic description is provided by low-frequency metallic boundary conditions. However, their subsequent analysis uses an incorrect form of metallic boundary conditions for TE modes. After correcting this error, we find that their main conclusion was nevertheless qualitatively correct: contrary to the result of the dielectric model, the thermal TE mode correction leads to an increase in the TE mode force of attraction between the plates. The correction found by us, however, has a magnitude about 20 times larger than that quoted by Torgerson and Lamoreaux. PMID:16711965

  12. Casimir-Lifshitz force out of thermal equilibrium between dielectric gratings

    NASA Astrophysics Data System (ADS)

    Noto, Antonio; Messina, Riccardo; Guizal, Brahim; Antezza, Mauro

    2014-08-01

    We calculate the Casimir-Lifshitz pressure in a system consisting of two different one-dimensional dielectric lamellar gratings having two different temperatures and immersed in an environment having a third temperature. The calculation of the pressure is based on the knowledge of the scattering operators, deduced using the Fourier modal method. The behavior of the pressure is characterized in detail as a function of the three temperatures of the system as well as the geometrical parameters of the two gratings. We show that the interplay between nonequilibrium effects and geometrical periodicity offers a rich scenario for the manipulation of the force. In particular, we find regimes where the force can be strongly reduced for large ranges of temperatures. Moreover, a repulsive pressure can be obtained, whose features can be tuned by controlling the degrees of freedom of the system. Remarkably, the transition distance between attraction and repulsion can be decreased with respect to the case of two slabs, implying an experimental interest for the observation of repulsion.

  13. Generating large steady-state optomechanical entanglement by the action of Casimir force

    NASA Astrophysics Data System (ADS)

    Nie, WenJie; Lan, YueHeng; Li, Yong; Zhu, ShiYao

    2014-12-01

    In this paper, we study an optomechanical device consisting of a Fabry-Pérot cavity with two dielectric nanospheres trapped near the cavity mirrors by an external driving laser. In the condition where the distances between the nanospheres and cavity mirrors are small enough, the Casimir force helps the optomechanical coupling to induce a steady-state optomechanical entanglement of the mechanical and optical modes in a certain regime of parameters. We investigate in detail the dependence of the steady-state optomechanical entanglement on external control parameters of the system, i.e., the effective detuning, the pump powers of the cavity, the cavity decay rate and the wavelength of the driving field. It is found that the large steady-state optomechanical entanglement, i.e. E N = 5.76, can be generated with experimentally feasible parameters, i.e. the pump power P = 18.2 μW, the cavity decay rate κ = 0.5 MHz and the wavelength of the laser λ L=1064 nm, which should be checked by optical measurement.

  14. Pronounced minimum of the thermodynamic Casimir forces of O(n) symmetric film systems: Analytic theory

    NASA Astrophysics Data System (ADS)

    Dohm, Volker

    2014-09-01

    Thermodynamic Casimir forces of film systems in the O(n) universality classes with Dirichlet boundary conditions are studied below bulk criticality. Substantial progress is achieved in resolving the long-standing problem of describing analytically the pronounced minimum of the scaling function observed experimentally in He4 films (n=2) by Garcia and Chan [Phys. Rev. Lett. 83, 1187 (1999), 10.1103/PhysRevLett.83.1187] and in Monte Carlo simulations for the three-dimensional Ising model (n =1) by O. Vasilyev et al. [Europhys. Lett. 80, 60009 (2007), 10.1209/0295-5075/80/60009]. Our finite-size renormalization-group approach describes the film systems as the limit of finite-slab systems with vanishing aspect ratio. This yields excellent agreement with the depth and the position of the minimum for n =1 and semiquantitative agreement with the minimum for n =2. Our theory also predicts a pronounced minimum for the n =3 Heisenberg universality class.

  15. Comment on "Casimir force in the O (n →∞ ) model with free boundary conditions"

    NASA Astrophysics Data System (ADS)

    Diehl, H. W.; Grüneberg, Daniel; Hasenbusch, Martin; Hucht, Alfred; Rutkevich, Sergei B.; Schmidt, Felix M.

    2015-02-01

    In a recent paper by D. Dantchev, J. Bergknoff, and J. Rudnick [Phys. Rev. E 89, 042116 (2014), 10.1103/PhysRevE.89.042116], the problem of the Casimir force in the O (n ) model on a slab with free boundary conditions, investigated earlier by us [Europhys. Lett. 100, 10004 (2012), 10.1209/0295-5075/100/10004], is reconsidered using a mean-spherical model with separate constraints for each layer. The authors (i) question the applicability of the Ginzburg-Landau-Wilson approach to the low-temperature regime, arguing for the superiority of their model compared to the family of ϕ4 models A and B whose numerically exact solutions we determined both for values of the coupling constant 0

  16. Comment on "Casimir force in the O(n→∞) model with free boundary conditions".

    PubMed

    Diehl, H W; Grüneberg, Daniel; Hasenbusch, Martin; Hucht, Alfred; Rutkevich, Sergei B; Schmidt, Felix M

    2015-02-01

    In a recent paper by D. Dantchev, J. Bergknoff, and J. Rudnick [Phys. Rev. E 89, 042116 (2014)], the problem of the Casimir force in the O(n) model on a slab with free boundary conditions, investigated earlier by us [Europhys. Lett. 100, 10004 (2012)], is reconsidered using a mean-spherical model with separate constraints for each layer. The authors (i) question the applicability of the Ginzburg-Landau-Wilson approach to the low-temperature regime, arguing for the superiority of their model compared to the family of ϕ(4) models A and B whose numerically exact solutions we determined both for values of the coupling constant 0

  17. Thermal Fluctuations of a Metal Disk Levitated by the Casimir Force above a Liquid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Inui, Norio; Goto, Kosuke

    2015-04-01

    The thermal fluctuations in the tilt angles of a disk levitated above a liquid-liquid interface by a repulsive Casimir force are compared with those of a disk suspended by surface tension at the interface. By using a proximity force approximation, the probability density function of the tilt angle of a copper disk immersed in cyclohexane in contact with water is calculated. We show that the tilt angle of the levitated disk of micron-order radius exhibits comparatively large fluctuations. Observance of the difference in the amplitude of the fluctuations could be helpful in determining the position of the disk relative to the liquid-liquid interface.

  18. Casimir-Polder force on a V -type three-level atom near a structure containing left-handed materials

    NASA Astrophysics Data System (ADS)

    Xu, Jingping; Chang, Shenglong; Yang, Yaping; Al-amri, M.

    2016-01-01

    The Casimir-Polder (CP) force acting on a V -type three-level atom which is initially prepared in two different kinds of superposition states, i.e., subradiant and superradiant states, is investigated. The influence of quantum interference on force evolution due to two-dipole transitions is analyzed in detail. It is found that the orientation of the atomic dipole moment has significant influence on the Casimir-Polder force and consequently its evolution. For the ideal degenerate V -type atom with two parallel dipoles, quantum interference leads to population trapping as well as the cancellation of the CP force when the atom is prepared initially in a subradiant state. However, the result changes when we consider the practical Zeeman V -type atom whose two dipole moments are perpendicular to each other. Since quantum interference in such an atom must occur in an anisotropic environment, it is possible to trap atomic population and enhance the CP force simultaneously by preparing the atom initially in sub-radiant states. In principle, our results can be found in an arbitrary anisotropic environment, and here we describe a structure containing left-handed materials to highlight our findings.

  19. Relaxation of the thermal Casimir force between net neutral plates containing Brownian charges

    NASA Astrophysics Data System (ADS)

    Dean, David S.; Podgornik, Rudolf

    2014-03-01

    We investigate the dynamics of thermal Casimir interactions between plates described within a living conductor model, with embedded mobile anions and cations, whose density field obeys a stochastic partial differential equation which can be derived starting from the Langevin equations of the individual particles. This model describes the thermal Casimir interaction in the same way that the fluctuating dipole model describes van der Waals interactions. The model is analytically solved in a Debye-Hückel-like approximation. We identify several limiting dynamical regimes where the time dependence of the thermal Casimir interactions can be obtained explicitly. Most notably we find a regime with diffusive scaling, even though the charges are confined to the plates and do not diffuse into the intervening space, which makes the diffusive scaling difficult to anticipate and quite unexpected on physical grounds.

  20. Relaxation of the thermal Casimir force between net neutral plates containing Brownian charges.

    PubMed

    Dean, David S; Podgornik, Rudolf

    2014-03-01

    We investigate the dynamics of thermal Casimir interactions between plates described within a living conductor model, with embedded mobile anions and cations, whose density field obeys a stochastic partial differential equation which can be derived starting from the Langevin equations of the individual particles. This model describes the thermal Casimir interaction in the same way that the fluctuating dipole model describes van der Waals interactions. The model is analytically solved in a Debye-Hückel-like approximation. We identify several limiting dynamical regimes where the time dependence of the thermal Casimir interactions can be obtained explicitly. Most notably we find a regime with diffusive scaling, even though the charges are confined to the plates and do not diffuse into the intervening space, which makes the diffusive scaling difficult to anticipate and quite unexpected on physical grounds. PMID:24730800

  1. Classical and fluctuation-induced electromagnetic interactions in micron-scale systems: designer bonding, antibonding, and Casimir forces

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alejandro W.; Hui, Pui-Chuen; Woolf, David P.; Johnson, Steven G.; Lončar, Marko; Capasso, Federico

    2015-01-01

    Whether intentionally introduced to exert control over particles and macroscopic objects, such as for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in otherwise neutral bodies, leading to unwanted stiction between nearby mechanical parts, electromagnetic interactions play a fundamental role in many naturally occurring processes and technologies. In this review, we survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange of electromagnetic momentum, their dramatically different origins, involving either real or virtual photons, lead to different physical manifestations and design principles. Specifically, we describe recent predictions and measurements of attractive and repulsive optomechanical forces, based on the bonding and antibonding interactions of evanescent waves, as well as predictions of modified and even repulsive Casimir forces between nanostructured bodies. Finally, we discuss the potential impact and interplay of these forces in emerging experimental regimes of micromechanical devices.

  2. Nanolevitation Phenomena in Real Plane-Parallel Systems Due to the Balance between Casimir and Gravity Forces

    PubMed Central

    2015-01-01

    We report on the theoretical analysis of equilibrium distances in real plane-parallel systems under the influence of Casimir and gravity forces at thermal equilibrium. Due to the balance between these forces, thin films of Teflon, silica, or polystyrene in a single-layer configuration and immersed in glycerol stand over a silicon substrate at certain stable or unstable positions depending on the material and the slab thickness. Hybrid systems containing silica and polystyrene, materials which display Casimir forces and equilibrium distances of opposite nature when considered individually, are analyzed in either bilayer arrangements or as composite systems made of a homogeneous matrix with small inclusions inside. For each configuration, equilibrium distances and their stability can be adjusted by fine-tuning of the volume occupied by each material. We find the specific conditions under which nanolevitation of realistic films should be observed. Our results indicate that thin films of real materials in plane-parallel configurations can be used to control suspension or stiction phenomena at the nanoscale. PMID:26405466

  3. Reply to "Comment on 'Casimir force in the O(n→∞) model with free boundary conditions' ".

    PubMed

    Dantchev, Daniel; Bergknoff, Jonathan; Rudnick, Joseph

    2015-02-01

    The preceding Comment raises a few points concerning our paper [Phys. Rev. E 89, 042116 (2014)]. In this Reply we stress that although Diehl et al. [Europhys. Lett. 100, 10004 (2012) and Phys. Rev. E 89, 062123 (2014)] use three different models to study the Casimir force for the O(n→∞) model with free boundary conditions we study a single model over the entire range of temperatures from above the bulk critical temperature T(c) to absolute temperatures down to T=0. The use of a single model renders more transparent the crossover from effects dominated by critical fluctuations in the vicinity of the bulk transition temperature to effects controlled by Goldstone modes at low temperatures. Contrary to the assertion in the Comment, we make no claim for the superiority of our model over any of those considered by Diehl et al. [Europhys. Lett. 100, 10004 (2012) and Phys. Rev. E 89, 062123 (2014)]. We also present additional evidence supporting our conclusion in Dantchev et al. [Phys. Rev. E 89, 042116 (2014)] that the temperature range in which our low-temperature analytical expansion for the Casimir force increases as L grows and remains accurate for values of the ratio T/T(c) that become closer and closer to unity, whereas T remains well outside of the critical region. PMID:25768643

  4. Vacuum Fluctuation Force on a Rigid Casimir Cavity in de Sitter and Schwarzschild-De Sitter Space-Time

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    2012-11-01

    We investigate the net force on a rigid Casimir cavity generated by vacuum fluctuations of electromagnetic field in three cases: de Sitter space-time, de Sitter space-time with weak gravitational field and Schwarzschild-de Sitter space-time. In de Sitter space-time the resulting net force follows the square inverse law but unfortunately it is too weak to be measurable due to the large universe radius. By introducing a weak gravitational field into the de Sitter space-time, we find that the net force can now be split into two parts, one is the gravitational force due to the induced effective mass between the two plates and the other one is generated by the metric structure of de Sitter space-time. In order to investigate the vacuum fluctuation force on the rigid cavity under strong gravitational field, we perform a similar analysis in Schwarzschild-de Sitter space-time and results are obtained in three different limits. The most interesting one is when the cavity gets closer to the horizon of a blackhole, square inverse law is recovered and the repulsive force due to negative energy/mass of the cavity now has an observable strength. More importantly the force changes from being repulsive to attractive when the cavity crosses the event horizon, so that the energy/mass of the cavity switches the sign, which suggests the unusual time direction inside the event horizon.

  5. Enhanced Casimir effect for doped graphene

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Fialkovskiy, I.; Vassilevich, D.

    2016-02-01

    We analyze the Casimir interaction of doped graphene. To this end we derive a simple expression for the finite-temperature polarization tensor with a chemical potential. It is found that doping leads to a strong enhancement of the Casimir force, reaching almost 60 % in quite realistic situations. This result should be important for planning and interpreting Casimir measurements, especially taking into account that the Casimir interaction of undoped graphene is rather weak.

  6. Vacuum-induced phonon transfer between two solid dielectric materials: Illustrating the case of Casimir force coupling

    NASA Astrophysics Data System (ADS)

    Ezzahri, Younès; Joulain, Karl

    2014-09-01

    The natural transition from the radiative regime to the conductive regime of heat transfer between two identical isotropic nonmagnetic dielectric solid materials is questioned by investigating the possibility of induced phonon transfer in vacuum. We describe the process in a general way assuming a certain phonon coupling mechanism between the two identical solids, then we particularly illustrate the case of coupling through the Casimir force. We analyze how this mechanism of heat transfer compares and competes with the near field thermal radiation using a local model of the dielectric function. We show that the former mechanism can be very effective and even surpass the latter mechanism depending on the nature of the solid dielectric materials, the distance gap between them, as well as the operating temperature regime.

  7. Casimir-Polder force between anisotropic nanoparticles and gently curved surfaces

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran

    2015-07-01

    The Casimir-Polder interaction between an anisotropic particle and a surface is orientation dependent. We study novel orientational effects that arise due to curvature of the surface for distances much smaller than the radii of curvature by employing a derivative expansion. For nanoparticles we derive a general short distance expansion of the interaction potential in terms of their dipolar polarizabilities. Explicit results are presented for nano-spheroids made of SiO2 and gold, both at zero and at finite temperatures. The preferred orientation of the particle is strongly dependent on curvature, temperature, as well as material properties.

  8. Reply to "Comment on `Casimir force in the O (n →∞ ) model with free boundary conditions' "

    NASA Astrophysics Data System (ADS)

    Dantchev, Daniel; Bergknoff, Jonathan; Rudnick, Joseph

    2015-02-01

    The preceding Comment raises a few points concerning our paper [Phys. Rev. E 89, 042116 (2014), 10.1103/PhysRevE.89.042116]. In this Reply we stress that although Diehl et al. [Europhys. Lett. 100, 10004 (2012), 10.1209/0295-5075/100/10004 and Phys. Rev. E 89, 062123 (2014), 10.1103/PhysRevE.89.062123] use three different models to study the Casimir force for the O (n →∞ ) model with free boundary conditions we study a single model over the entire range of temperatures from above the bulk critical temperature Tc to absolute temperatures down to T =0 . The use of a single model renders more transparent the crossover from effects dominated by critical fluctuations in the vicinity of the bulk transition temperature to effects controlled by Goldstone modes at low temperatures. Contrary to the assertion in the Comment, we make no claim for the superiority of our model over any of those considered by Diehl et al. [Europhys. Lett. 100, 10004 (2012), 10.1209/0295-5075/100/10004 and Phys. Rev. E 89, 062123 (2014), 10.1103/PhysRevE.89.062123]. We also present additional evidence supporting our conclusion in Dantchev et al. [Phys. Rev. E 89, 042116 (2014), 10.1103/PhysRevE.89.042116] that the temperature range in which our low-temperature analytical expansion for the Casimir force increases as L grows and remains accurate for values of the ratio T /Tc that become closer and closer to unity, whereas T remains well outside of the critical region.

  9. Noncontact Casimir rack and pinion as an excitable system

    NASA Astrophysics Data System (ADS)

    Etesami, Zahra; Miri, MirFaez

    2015-10-01

    We study the influence of thermal noise on the rack and pinion coupled by the lateral Casimir force. The pinion position versus time exhibits a sequence of spikes. We identify the Casimir machine as an excitable system equivalent to the Adler system. We show that the interspike time distribution can be analyzed to access the Casimir and friction forces. The inherent susceptibility of nanomachines to the thermal noise can be utilized to measure weak Casimir forces.

  10. From optical lattice clocks to the measurement of forces in the Casimir regime

    SciTech Connect

    Wolf, Peter; Lemonde, Pierre; Bize, Sebastien; Landragin, Arnaud; Clairon, Andre; Lambrecht, Astrid

    2007-06-15

    We describe an experiment based on atoms trapped close to a macroscopic surface, to study the interactions between the atoms and the surface at very small separations (0.6-10 {mu}m). In this range the dominant potential is the QED interaction (Casimir-Polder and van der Waals) between the surface and the atom. Additionally, several theoretical models suggest the possibility of Yukawa-type potentials with sub-millimeter range, arising from new physics related to gravity. The proposed setup is very similar to neutral atom optical lattice clocks, but with the atoms trapped in lattice sites close to the reflecting mirror. A sequence of pulses of the probe laser at different frequencies is then used to create an interferometer with a coherent superposition between atomic states at different distances from the mirror (in different lattice sites). Assuming atom interferometry state-of-the-art measurement of the phase difference and a duration of the superposition of about 0.1 s, we expect to be able to measure the potential difference between separated states with an uncertainty of {approx_equal}10{sup -4} Hz. An analysis of systematic effects for different atoms and surfaces indicates no fundamentally limiting effect at the same level of uncertainty, but does influence the choice of atom and surface material. Based on those estimates, we expect that such an experiment would improve the best existing measurements of the atom-wall QED interaction by {>=} 2 orders of magnitude, while gaining up to four orders of magnitude on the best present limits on new interactions in the range between 100 nm and 100 {mu}m.

  11. Reply to comment on ""Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry

    SciTech Connect

    Dalvit, Diego A; Kim, W J; Borwn-hayes, M; Brownell, J H; Onofrio, R

    2008-01-01

    In a recent Comment, Decca et al. [Phys. Rev. A 79, 026101 (2009)] discussed the origin of the anomalies recently reported by us in Phys. Rev. A 78, 036102(R) (2008). Here we restate our view corroborated by their considerations that quantitative geometrical and electrostatic characterizations of the conducting surfaces (a topic not discussed explicitly in the literature until very recently) are critical for the assessment of precision and accuracy of the demonstration of the Casimir force and for deriving meaningful limits on the existence of Yukawian components possibly superimposed to the Newtonian gravitational interaction.

  12. The frequency spectrum of the Casimir effect

    SciTech Connect

    Lang, Andrew S.I.D.

    2005-10-01

    The frequency spectrum of the Casimir effect between parallel plates is studied. Calculations are performed for both the massless scalar field and the electromagnetic field cases, first using a spectral weight function, and then via the Fourier transform of the renormalized expectation of the Casimir energy-momentum operator. The Casimir force is calculated using the spectrum for two plates which are perfectly transparent in a frequency band. The result of this calculation suggests a way to detect the frequency spectrum of the Casimir effect.

  13. Fermions on the low-buckled honey-comb structured lattice plane and classical Casimir-Polder force

    NASA Astrophysics Data System (ADS)

    Goswami, Partha

    2016-05-01

    We start with the well-known expression for the vacuum polarization and suitably modify it for 2+1-dimensional spin-orbit coupled (SOC) fermions on the low-buckled honey-comb structured lattice plane described by the low-energy Liu-Yao-Feng-Ezawa (LYFE) model Hamiltonian involving the Dirac matrices in the chiral representation obeying the Clifford algebra. The silicene and germanene fit this description suitably. They have the Dirac cones similar to those of graphene and SOC is much stronger. The system could be normal or ferromagnetic in nature. The silicene turns into the latter type if there is exchange field arising due to the proximity coupling to a ferromagnet (FM) such as depositing Fe atoms to the silicene surface. For the silicene, we find that the many-body effects considerably change the bare Coulomb potential by way of the dependence of the Coulomb propagator on the real-spin, iso-spin and the potential due to an electric field applied perpendicular to the silicene plane. The computation aspect of the Casimir-Polder force (CPF) needs to be investigated in this paper. An important quantity in this process is the dielectric response function (DRF) of the material. The plasmon branch was obtained by finding the zeros of DRF in the long-wavelength limit. This leads to the plasmon frequencies. We find that the collective charge excitations at zero doping, i.e., intrinsic plasmons, in this system, are absent in the Dirac limit. The valley-spin-split intrinsic plasmons, however, come into being in the case of the massive Dirac particles with characteristic frequency close to 10 THz. Our scheme to calculate the Casimir-Polder interaction (CPI) of a micro-particle with a sheet involves replacing the dielectric constant of the sample in the CPI expression obtained on the basis of the Lifshitz theory by the static DRF obtained using the expressions for the polarization function we started with. Though the approach replaces a macroscopic constant by a microscopic

  14. Mode Contributions to the Casimir Effect

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Henkel, C.

    2010-04-01

    Applying a sum-over-modes approach to the Casimir interaction between two plates with finite conductivity, we isolate and study the contributions of surface plasmons and Foucault (eddy current) modes. We show in particular that for the TE-polarization eddy currents provide a repulsive force that cancels, at high temperatures, the Casimir free energy calculated with the plasma model.

  15. Bulk Casimir densities and vacuum interaction forces in higher dimensional brane models

    SciTech Connect

    Saharian, Aram A.

    2006-03-15

    Vacuum expectation value of the energy-momentum tensor and the vacuum interaction forces are evaluated for a massive scalar field with general curvature coupling parameter satisfying Robin boundary conditions on two codimension one parallel branes embedded in (D+1)-dimensional background spacetime AdS{sub D{sub 1}}{sub +1}x{sigma} with a warped internal space {sigma}. The vacuum energy-momentum tensor is presented as a sum of boundary-free, single brane-induced, and interference parts. The latter is finite everywhere including the points on the branes and is exponentially small for large interbrane distances. Unlike to the purely anti-de Sitter (AdS) bulk, the part induced by a single brane, in addition to the distance from the brane, depends also on the position of the brane in the bulk. The asymptotic behavior of this part is investigated for the points near the brane and for the position of the brane close to the AdS horizon and AdS boundary. The contribution of Kaluza-Klein modes along {sigma} is discussed in various limiting cases. The vacuum forces acting on the branes are presented as a sum of the self-action and interaction terms. The first one contains well-known surface divergences and needs a further renormalization. The interaction forces between the branes are finite for all nonzero interbrane distances and are investigated as functions of the brane positions and the length scale of the internal space. We show that there is a region in the space of parameters in which these forces are repulsive for small distances and attractive for large distances. As an example, the case {sigma}=S{sup D{sub 2}} is considered. An application to the higher dimensional generalization of the Randall-Sundrum brane model with arbitrary mass terms on the branes is discussed. Taking the limit with infinite curvature radius for the AdS bulk, from the general formulas we derive the results for two parallel Robin plates on background of R{sup (D{sub 1},1)}x{sigma} spacetime.

  16. Pseudo-Casimir forces in nematics with disorders in the bulk.

    PubMed

    Karimi Pour Haddadan, Fahimeh

    2016-10-12

    A nematic liquid-crystalline slab is considered in which some rod-like particles are randomly distributed. The particles are locally elongated either homeotropic or planar with respect to the confining substrates of the cell. We consider thermal fluctuations of a nematic director which is aligned perpendicular to the confining substrates due to strong homeotropic anchoring at the substrates. The resulting fluctuation-induced force across the cell is analyzed for an annealed disorder in the anchoring of the nematic director at the dispersed mesoscopic particles. Within the saddle-point approximation to free energy of the system, the effect of the disorder is renormalization of the strength of the mean anchoring which is assumed to be homeotropic. By increasing the variance of the disorder, the modes become less massive and deviations from the mean behavior become larger, so that the disorder-free universal long-range attraction, due to the soft modes, is approached. PMID:27537426

  17. Casimir experiments showing saturation effects

    SciTech Connect

    Sernelius, Bo E.

    2009-10-15

    We address several different Casimir experiments where theory and experiment disagree. First out is the classical Casimir force measurement between two metal half spaces; here both in the form of the torsion pendulum experiment by Lamoreaux and in the form of the Casimir pressure measurement between a gold sphere and a gold plate as performed by Decca et al.; theory predicts a large negative thermal correction, absent in the high precision experiments. The third experiment is the measurement of the Casimir force between a metal plate and a laser irradiated semiconductor membrane as performed by Chen et al.; the change in force with laser intensity is larger than predicted by theory. The fourth experiment is the measurement of the Casimir force between an atom and a wall in the form of the measurement by Obrecht et al. of the change in oscillation frequency of a {sup 87}Rb Bose-Einstein condensate trapped to a fused silica wall; the change is smaller than predicted by theory. We show that saturation effects can explain the discrepancies between theory and experiment observed in all these cases.

  18. Casimir stress in an inhomogeneous medium

    SciTech Connect

    Philbin, T.G. Xiong, C.; Leonhardt, U.

    2010-03-15

    The Casimir effect in an inhomogeneous dielectric is investigated using Lifshitz's theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous dielectrics. The result for the Casimir stress is infinite everywhere inside the inhomogeneous region, a divergence that does not occur for piece-wise homogeneous dielectrics with planar boundaries. A Casimir force per unit volume can be extracted from the infinite stress but it diverges on the boundaries between the inhomogeneous medium and the homogeneous dielectrics. An alternative regularization of the vacuum stress is considered that removes the contribution of the inhomogeneity over small distances, where macroscopic electromagnetism is invalid. The alternative regularization yields a finite Casimir stress inside the inhomogeneous region, but the stress and force per unit volume diverge on the boundaries with the homogeneous dielectrics. The case of inhomogeneous dielectrics with planar boundaries thus falls outside the current understanding of the Casimir effect.

  19. Casimir piston for massless scalar fields in three dimensions

    SciTech Connect

    Edery, Ariel

    2007-05-15

    We study the Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in a three-dimensional cavity with sides of arbitrary lengths a, b, and c where a is the plate separation. We obtain an exact expression for the Casimir force on the piston valid for any values of the three lengths. As in the electromagnetic case with perfect-conductor conditions, we find that the Casimir force is negative (attractive) regardless of the values of a, b, and c. Though cases exist where the interior contributes a positive (repulsive) Casimir force, the total Casimir force on the piston is negative when the exterior contribution is included. We also obtain an alternative expression for the Casimir force that is useful computationally when the plate separation a is large.

  20. Theoretical ingredients of a Casimir analog computer

    PubMed Central

    Rodriguez, Alejandro W.; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.

    2010-01-01

    We derive a correspondence between the contour integration of the Casimir stress tensor in the complex-frequency plane and the electromagnetic response of a physical dissipative medium in a finite real-frequency bandwidth. The consequences of this correspondence are at least threefold: First, the correspondence makes it easier to understand Casimir systems from the perspective of conventional classical electromagnetism, based on real-frequency responses, in contrast to the standard imaginary-frequency point of view based on Wick rotations. Second, it forms the starting point of finite-difference time-domain numerical techniques for calculation of Casimir forces in arbitrary geometries. Finally, this correspondence is also key to a technique for computing quantum Casimir forces at micrometer scales using antenna measurements at tabletop (e.g., centimeter) scales, forming a type of analog computer for the Casimir force. Superficially, relationships between the Casimir force and the classical electromagnetic Green’s function are well known, so one might expect that any experimental measurement of the Green’s function would suffice to calculate the Casimir force. However, we show that the standard forms of this relationship lead to infeasible experiments involving infinite bandwidth or exponentially growing fields, and a fundamentally different formulation is therefore required. PMID:20460309

  1. Three-dimensional Casimir piston for massive scalar fields

    SciTech Connect

    Lim, S.C. Teo, L.P.

    2009-08-15

    We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a{sup 4} when a{yields}0{sup +} and decays exponentially when a{yields}{infinity}. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.

  2. Nonequilibrium Tuning of the Thermal Casimir Effect

    NASA Astrophysics Data System (ADS)

    Dean, David S.; Lu, Bing-Sui; Maggs, A. C.; Podgornik, Rudolf

    2016-06-01

    In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.

  3. Nonequilibrium Tuning of the Thermal Casimir Effect.

    PubMed

    Dean, David S; Lu, Bing-Sui; Maggs, A C; Podgornik, Rudolf

    2016-06-17

    In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory. PMID:27367374

  4. The Proximity Force Approximation for the Casimir Energy of Plate-Sphere and Sphere-Sphere Systems in the Presence of One Extra Compactified Universal Dimension

    NASA Astrophysics Data System (ADS)

    Cheng, Hongbo

    2015-08-01

    The Casimir energies for plate-sphere system and sphere-sphere systems under PFA in the presence of one extra compactified universal dimension are analyzed. We find that the Casimir energy between a plate and a sphere in the case of sphere-based PFA is divergent. The Casimir energy of plate-sphere system in the case of plate-based PFA is finite and keeps negative. The extra-dimension corrections to the Casimir energy will be more manifest if the sphere is larger or farther away from the plate. It is shown that the negative Casimir energy for two spheres is also associated with the sizes of spheres and extra space. The larger spheres and the longer distance between them make the influence from the additional dimension stronger.

  5. Casimir effect in swimmer suspensions.

    PubMed

    Parra-Rojas, C; Soto, R

    2014-07-01

    We show that the Casimir effect can emerge in microswimmer suspensions. In principle, two effects conspire against the development of Casimir effects in swimmer suspensions. First, at low Reynolds number, the force on any closed volume vanishes, but here the relevant effect is the drag by the flow produced by the swimmers, which can be finite. Second, the fluid velocity and the pressure are linear on the swimmer force dipoles, and averaging over the swimmer orientations would lead to a vanishing effect. However, being that the suspension is a discrete system, the noise terms of the coarse-grained equations depend on the density, which itself fluctuates, resulting in effective nonlinear dynamics. Applying the tools developed for other nonequilibrium systems to general coarse-grained equations for swimmer suspensions, the Casimir drag is computed on immersed objects, and it is found to depend on the correlation function between the rescaled density and dipolar density fields. By introducing a model correlation function with medium-range order, explicit expressions are obtained for the Casimir drag on a body. When the correlation length is much larger than the microscopic cutoff, the average drag is independent of the correlation length, with a range that depends only on the size of the immersed bodies. PMID:25122386

  6. Casimir effect in swimmer suspensions

    NASA Astrophysics Data System (ADS)

    Parra-Rojas, C.; Soto, R.

    2014-07-01

    We show that the Casimir effect can emerge in microswimmer suspensions. In principle, two effects conspire against the development of Casimir effects in swimmer suspensions. First, at low Reynolds number, the force on any closed volume vanishes, but here the relevant effect is the drag by the flow produced by the swimmers, which can be finite. Second, the fluid velocity and the pressure are linear on the swimmer force dipoles, and averaging over the swimmer orientations would lead to a vanishing effect. However, being that the suspension is a discrete system, the noise terms of the coarse-grained equations depend on the density, which itself fluctuates, resulting in effective nonlinear dynamics. Applying the tools developed for other nonequilibrium systems to general coarse-grained equations for swimmer suspensions, the Casimir drag is computed on immersed objects, and it is found to depend on the correlation function between the rescaled density and dipolar density fields. By introducing a model correlation function with medium-range order, explicit expressions are obtained for the Casimir drag on a body. When the correlation length is much larger than the microscopic cutoff, the average drag is independent of the correlation length, with a range that depends only on the size of the immersed bodies.

  7. The quantum casimir effect may be a universal force organizing the bilayer structure of the cell membrane.

    PubMed

    Pawlowski, Piotr H; Zielenkiewicz, Piotr

    2013-05-01

    A mathematic-physical model of the interaction between cell membrane bilayer leaflets is proposed based on the Casimir effect in dielectrics. This model explains why the layers of a lipid membrane gently slide one past another rather than penetrate each other. The presented model reveals the dependence of variations in the free energy of the system on the membrane thickness. This function is characterized by the two close minima corresponding to the different levels of interdigitation of the lipids from neighbor layers. The energy barrier of the compressing transition between the predicted minima is estimated to be 5.7 kT/lipid, and the return energy is estimated to be 3.1 kT/lipid. The proposed model enables estimation of the value of the membrane elastic thickness modulus of compressibility, which is 1.7 × 10⁹ N/m², and the value of the interlayer friction coefficient, which is 1.9 × 10⁸ Ns/m³. PMID:23612889

  8. Effect of the Casimir-Polder force on the collective oscillations of a trapped Bose-Einstein condensate

    SciTech Connect

    Antezza, Mauro; Stringari, Sandro; Pitaevskii, Lev P.

    2004-11-01

    We calculate the effect of the interaction between an optically active material and a Bose-Einstein condensate on the collective oscillations of the condensate. We provide explicit expressions for the frequency shift of the center-of-mass oscillation in terms of the potential generated by the substrate and of the density profile of the gas. The form of the potential is discussed in detail and various regimes (van der Waals-London, Casimir-Polder, and thermal regimes) are identified as a function of the distance of atoms from the surface. Numerical results for the frequency shifts are given for the case of a sapphire dielectric substrate interacting with a harmonically trapped condensate of {sup 87}Rb atoms. We find that at distances of 4-8 {mu}m, where thermal effects become visible, the relative frequency shifts produced by the substrate are of the order 10{sup -4} and hence accessible experimentally. The effects of nonlinearities due to the finite amplitude of the oscillation are explicitly discussed. Predictions are also given for the radial breathing mode.

  9. Critical Casimir Forces and Colloidal Phase Transitions in a Near-Critical Solvent: A Simple Model Reveals a Rich Phase Diagram

    NASA Astrophysics Data System (ADS)

    Edison, John R.; Tasios, Nikos; Belli, Simone; Evans, Robert; van Roij, René; Dijkstra, Marjolein

    2015-01-01

    From experimental studies, it is well known that colloidal particles suspended in a near-critical binary solvent exhibit interesting aggregation phenomena, often associated with colloidal phase transitions and assumed to be driven by long-ranged solvent-mediated (SM) interactions (critical Casimir forces), set by the (diverging) correlation length of the solvent. We present the first simulation and theoretical study of an explicit model of a ternary mixture that mimics this situation. Both the effective SM pair interactions and the full ternary phase diagram are determined for Brownian disks suspended in an explicit two-dimensional supercritical binary liquid mixture. Gas-liquid and fluid-solid transitions are observed in a region that extends well away from criticality of the solvent reservoir. We discuss to what extent an effective pair-potential description can account for the phase behavior we observe. Our study provides a fresh perspective on how proximity to the critical point of the solvent reservoir might influence colloidal self-assembly.

  10. Critical casimir forces and colloidal phase transitions in a near-critical solvent: a simple model reveals a rich phase diagram.

    PubMed

    Edison, John R; Tasios, Nikos; Belli, Simone; Evans, Robert; van Roij, René; Dijkstra, Marjolein

    2015-01-23

    From experimental studies, it is well known that colloidal particles suspended in a near-critical binary solvent exhibit interesting aggregation phenomena, often associated with colloidal phase transitions and assumed to be driven by long-ranged solvent-mediated (SM) interactions (critical Casimir forces), set by the (diverging) correlation length of the solvent. We present the first simulation and theoretical study of an explicit model of a ternary mixture that mimics this situation. Both the effective SM pair interactions and the full ternary phase diagram are determined for Brownian disks suspended in an explicit two-dimensional supercritical binary liquid mixture. Gas-liquid and fluid-solid transitions are observed in a region that extends well away from criticality of the solvent reservoir. We discuss to what extent an effective pair-potential description can account for the phase behavior we observe. Our study provides a fresh perspective on how proximity to the critical point of the solvent reservoir might influence colloidal self-assembly. PMID:25659025

  11. Stress tensor for a scalar field in a spatially varying background potential: Divergences, "renormalization", anomalies, and Casimir forces

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.; Fulling, Stephen A.; Parashar, Prachi; Kalauni, Pushpa; Murphy, Taylor

    2016-04-01

    Motivated by a desire to understand quantum fluctuation energy densities and stress within a spatially varying dielectric medium, we examine the vacuum expectation value for the stress tensor of a scalar field with arbitrary conformal parameter, in the background of a given potential that depends on only one spatial coordinate. We regulate the expressions by incorporating a temporal-spatial cutoff in the (imaginary) time and transverse-spatial directions. The divergences are captured by the zeroth- and second-order WKB approximations. Then the stress tensor is "renormalized" by omitting the terms that depend on the cutoff. The ambiguities that inevitably arise in this procedure are both duly noted and restricted by imposing certain physical conditions; one result is that the renormalized stress tensor exhibits the expected trace anomaly. The renormalized stress tensor exhibits no pressure anomaly, in that the principle of virtual work is satisfied for motions in a transverse direction. We then consider a potential that defines a wall, a one-dimensional potential that vanishes for z <0 and rises like zα, α >0 , for z >0 . Previously, the stress tensor had been computed outside of the wall, whereas now we compute all components of the stress tensor in the interior of the wall. The full finite stress tensor is computed numerically for the two cases where explicit solutions to the differential equation are available, α =1 and 2. The energy density exhibits an inverse linear divergence as the boundary is approached from the inside for a linear potential, and a logarithmic divergence for a quadratic potential. Finally, the interaction between two such walls is computed, and it is shown that the attractive Casimir pressure between the two walls also satisfies the principle of virtual work (i.e., the pressure equals the negative derivative of the energy with respect to the distance between the walls).

  12. Graphene Casimir Interactions and Some Possible Applications

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.

    Scientific development requires profound understandings of micromechanical and nanomechanical systems (MEMS/NEMS) due to their applications not only in the technological world, but also for scientific understanding. At the micro- or nano-scale, when two objects are brought close together, the existence of stiction or adhesion is inevitable and plays an important role in the behavior operation of these systems. Such effects are due to surface dispersion forces, such as the van der Waals or Casimir interactions. The scientific understanding of these forces is particularly important for low-dimensional materials. In addition, the discovery of materials, such as graphitic systems has provided opportunities for new classes of devices and challenging fundamental problems. Therefore, investigations of the van der Waals or Caismir forces in graphene-based systems, in particular, and the solution generating non-touching systems are needed. In this study, the Casimir force involving 2D graphene is investigated under various conditions. The Casimir interaction is usually studied in the framework of the Lifshitz theory. According to this theory, it is essential to know the frequency-dependent reflection coefficients of materials. Here, it is found that the graphene reflection coefficients strongly depend on the optical conductivity of graphene, which is described by the Kubo formalism. When objects are placed in vacuum, the Casimir force is attractive and leads to adhesion on the surface. We find that the Casimir repulsion can be obtained by replacing vacuum with a suitable liquid. Our studies show that bromobenzene is the liquid providing this effect. We also find that this long-range force is temperature dependent and graphene/bromobenzene/metal substrate configuration can be used to demonstrate merely thermal Casimir interaction at room temperature and micrometer distances. These findings would provide good guidance and predictions for practical studies.

  13. Critical and near-critical phase behavior and interplay between the thermodynamic Casimir and van der Waals forces in a confined nonpolar fluid medium with competing surface and substrate potentials

    NASA Astrophysics Data System (ADS)

    Valchev, Galin; Dantchev, Daniel

    2015-07-01

    We study, using general scaling arguments and mean-field type calculations, the behavior of the critical Casimir force and its interplay with the van der Waals force acting between two parallel slabs separated at a distance L from each other, confining some fluctuating fluid medium, say a nonpolar one-component fluid or a binary liquid mixture. The surfaces of the slabs are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials ensuring the so-called (+,+) boundary conditions. The slabs, on the other hand, influence the fluid by long-range competing dispersion potentials, which represent irrelevant interactions in renormalization-group sense. Under such conditions, one usually expects attractive Casimir force governed by universal scaling function, pertinent to the extraordinary surface universality class of Ising type systems, to which the dispersion potentials provide only corrections to scaling. We demonstrate, however, that below a given threshold thickness of the system Lcrit for a suitable set of slabs-fluid and fluid-fluid coupling parameters the competition between the effects due to the coatings and the slabs can result in sign change of the Casimir force acting between the surfaces confining the fluid when one changes the temperature T , the chemical potential of the fluid μ , or L . The last implies that by choosing specific materials for the slabs, coatings, and the fluid for L ≲Lcrit one can realize repulsive Casimir force with nonuniversal behavior which, upon increasing L , gradually turns into an attractive one described by a universal scaling function, depending only on the relevant scaling fields related to the temperature and the excess chemical potential, for L ≫Lcrit . We present arguments and relevant data for specific substances in support of the experimental feasibility of the predicted behavior of the force. It can

  14. Critical and near-critical phase behavior and interplay between the thermodynamic Casimir and van der Waals forces in a confined nonpolar fluid medium with competing surface and substrate potentials.

    PubMed

    Valchev, Galin; Dantchev, Daniel

    2015-07-01

    We study, using general scaling arguments and mean-field type calculations, the behavior of the critical Casimir force and its interplay with the van der Waals force acting between two parallel slabs separated at a distance L from each other, confining some fluctuating fluid medium, say a nonpolar one-component fluid or a binary liquid mixture. The surfaces of the slabs are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials ensuring the so-called (+,+) boundary conditions. The slabs, on the other hand, influence the fluid by long-range competing dispersion potentials, which represent irrelevant interactions in renormalization-group sense. Under such conditions, one usually expects attractive Casimir force governed by universal scaling function, pertinent to the extraordinary surface universality class of Ising type systems, to which the dispersion potentials provide only corrections to scaling. We demonstrate, however, that below a given threshold thickness of the system L(crit) for a suitable set of slabs-fluid and fluid-fluid coupling parameters the competition between the effects due to the coatings and the slabs can result in sign change of the Casimir force acting between the surfaces confining the fluid when one changes the temperature T, the chemical potential of the fluid μ, or L. The last implies that by choosing specific materials for the slabs, coatings, and the fluid for L≲L(crit) one can realize repulsive Casimir force with nonuniversal behavior which, upon increasing L, gradually turns into an attractive one described by a universal scaling function, depending only on the relevant scaling fields related to the temperature and the excess chemical potential, for L≫L(crit). We present arguments and relevant data for specific substances in support of the experimental feasibility of the predicted behavior of the force. It can

  15. Casimir effect on graphene resonator

    NASA Astrophysics Data System (ADS)

    Inui, Norio

    2016-03-01

    We theoretically investigated the influence of the Casimir effect on mechanical properties of a graphene resonator, where a graphene sheet is located in parallel with a perfectly conducting plate. The Casimir force arising from this effect strongly attracts a graphene sheet to a perfectly conducting plate and increases the tension of a graphene sheet as the separation distance between them decreases. The maximum vertical displacement of a graphene sheet to the substrate increases obeying a power law of a separation distance with an exponent of 4/3 as the separation distance decreases. For small separation distances, the Casimir force is excessively strong for the graphene sheet to maintain a free-standing shape, consequently resulting in the adhesion of the sheet to the substrate below a critical separation distance. The resonant frequency increases over a wide range as the separation distance decreases for large separation distances. However, it then rapidly decreases for small separations and converges to zero at a critical separation. These various behaviors enable the control of a graphene resonator.

  16. Casimir-like force arising from quantum fluctuations in a slowly moving dilute Bose-Einstein condensate.

    PubMed

    Roberts, D C; Pomeau, Y

    2005-09-30

    We calculate a force due to zero-temperature quantum fluctuations on a stationary object in a moving superfluid flow. We model the object by a localized potential varying only in the flow direction and model the flow by a three-dimensional weakly interacting Bose-Einstein condensate at zero temperature. We show that this force exists for any arbitrarily small flow velocity and discuss the implications for the stability of superfluid flow. PMID:16241666

  17. Thermal and dissipative effects in Casimir physics

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Joong; Brown-Hayes, Michael; Brownell, Hayden; Dalvit, Diego; Lombardo, Fernando; Mazzitelli, Francisco; Onofrio, Roberto

    2007-03-01

    We have developed an apparatus to assess the thermal effects in Casimir force measurement of a cylinder-plane geometry. Preliminary electrostatic calibrations imply sensitivity sufficient to observe the Casimir force with submicron separation between reflecting surfaces. Work is in progress to improve the sensitivity in order to distinguish the thermal contributions up to 3 microns separation. Another project currently underway at Dartmouth addresses an experimental strategy to verify the dynamical Casimir effect, a dissipative feature of motion in quantum vacuum. In this scheme, Casimir photons generated inside a high-Q cavity with one of the walls driven at GHz frequency [2] would stimulate superradiant emission from ultracold sodium atoms injected into the cavity. We are modeling this system in order to identify the signal features distinguishing Casimir induced superradiance from sodium superflourescence. [1] M. Brown-Hayes, D. A. R Dalvit, F. D. Mazzitelli, W. J. Kim, and R. Onofrio, Phys. Rev. A 72, 051102 (2005). [2] W. J. Kim, J. H. Brownell, and R. Onofrio, Phys. Rev. Lett. 96, 200402 (2006).

  18. First-principles study of Casimir repulsion in metamaterials.

    PubMed

    Yannopapas, Vassilios; Vitanov, Nikolay V

    2009-09-18

    We examine theoretically the Casimir effect between a metallic plate and several types of magnetic metamaterials in pursuit of Casimir repulsion, by employing a rigorous multiple-scattering theory for the Casimir effect. We first examine metamaterials in the form of two-dimensional lattices of inherently nonmagnetic spheres such as spheres made from materials possessing phonon-polariton and exciton-polariton resonances. Although such systems are magnetically active in infrared and optical regimes, the force between finite slabs of these materials and metallic slabs is plainly attractive since the effective electric permittivity is larger than the magnetic permeability for the studied spectrum. When lattices of magnetic spheres made from superparamagnetic composites are employed, we achieve not only Casimir repulsion but almost total suppression of the Casimir effect itself in the micrometer scale. PMID:19792414

  19. Repulsive and attractive Casimir interactions in liquids

    SciTech Connect

    Phan, Anh D.; Viet, N. A.

    2011-12-15

    The Casimir interactions in solid-liquid-solid systems as a function of separation distance have been studied by the Lifshitz theory. The dielectric permittivity functions for a wide range of materials are described by Drude, Drude-Lorentz, and oscillator models. We find that the Casimir forces between gold and silica or MgO materials are both repulsive and attractive. We also find the stable forms for the systems. Our studies would provide good guidance for future experimental studies on dispersion interactions.

  20. Ontological aspects of the Casimir Effect

    NASA Astrophysics Data System (ADS)

    Simpson, William M. R.

    2014-11-01

    The role of the vacuum, in the Casimir Effect, is a matter of some dispute: the Casimir force has been variously described as a phenomenon resulting "from the alteration, by the boundaries, of the zero-point electromagnetic energy" (Bordag, Mohideen, & Mostepanenko, 2001), or a "van der Waals force between the metal plates" that can be "computed without reference to zero point energies" (Jaffe, 2005). Neither of these descriptions is grounded in a consistently quantum mechanical treatment of matter interacting with the electromagnetic field. However, the Casimir Effect has been canonically described within the framework of macroscopic quantum electrodynamics (Philbin, 2010). On this general account, the force is seen to arise due to the coupling of fluctuating currents to the zero-point radiation, and it is in this restricted sense that the phenomenon requires the existence of zero-point fields. The conflicting descriptions of the Casimir Effect, on the other hand, appear to arise from ontologies in which an unwarranted metaphysical priority is assigned either to the matter or the fields, and this may have a direct bearing on the problem of the cosmological constant.

  1. An ``Anatomic approach" to study the Casimir effect

    NASA Astrophysics Data System (ADS)

    Intravaia, Francesco; Haakh, Harald; Henkel, Carsten

    2010-03-01

    The Casimir effect, in its simplest definition, is a quantum mechanical force between two objects placed in vacuum. In recent years the Casimir force has been the object of an exponentially growing attention both from theorists and experimentalists. A new generation of experiments paved the way for new challenges and spotted some shadows in the comparison to theory. Here we are going to isolate different contributions to the Casimir interaction and perform a detailed study to shine new light on this phenomenon. As an example, the contributions of Foucault (eddy current) modes will be discussed in different configurations. This ``anatomic approach'' allows to clearly put into evidence special features and to explain unusual behaviors. This brings new physical understanding on the undergoing physical mechanisms and suggests new ways to engineer the Casimir effect.

  2. Weak Gravitational Wave and Casimir Energy of a Scalar Field

    NASA Astrophysics Data System (ADS)

    Tavakoli, F.; Pirmoradian, R.; Parsabod, I.

    2016-09-01

    In this paper, we calculate the effect of a weak gravitational field on the Casimir force between two ideal plates subjected to a massless minimally coupled field. It is the aim of this work to study the Casimir energy under a weak perturbation of gravity. Moreover, the fluctuations of the stress-energy tensor for a scalar field in de Sitter space-time are computed as well.

  3. Perfect magnetic conductor Casimir piston in d+1 dimensions

    SciTech Connect

    Edery, Ariel; Marachevsky, Valery

    2008-07-15

    Perfect magnetic conductor (PMC) boundary conditions are dual to the more familiar perfect electric conductor (PEC) conditions and can be viewed as the electromagnetic analog of the boundary conditions in the bag model for hadrons in QCD. Recent advances and requirements in communication technologies have attracted great interest in PMC's, and Casimir experiments involving structures that approximate PMC's may be carried out in the not-too-distant future. In this paper, we make a study of the zero-temperature PMC Casimir piston in d+1 dimensions. The PMC Casimir energy is explicitly evaluated by summing over p+1-dimensional Dirichlet energies where p ranges from 2 to d inclusively. We derive two exact d-dimensional expressions for the Casimir force on the piston and find that the force is negative (attractive) in all dimensions. Both expressions are applied to the case of 2+1 and 3+1 dimensions. A spin-off from our work is a contribution to the PEC literature: we obtain a useful alternative expression for the PEC Casimir piston in 3+1 dimensions and also evaluate the Casimir force per unit area on an infinite strip, a geometry of experimental interest.

  4. Casimir effect for massive scalar field

    NASA Astrophysics Data System (ADS)

    Mobassem, S.

    2014-10-01

    The energy-momentum tensor is used to introduce the Casimir force of the massive scalar field acting on a nonpenetrating surface. This expression can be used to evaluate the vacuum force by employing the appropriate field operators. To simplify our formalism, we also relate the vacuum force expression to the imaginary part of the Green function via the fluctuation-dissipation theorem and Kubo's formula. This allows one to evaluate the vacuum force without resorting to the process of field quantization. These two approaches are used to calculate the attractive force between two nonpenetrating plates. Special attention is paid to the generalization of the formalism to D+1 spacetime dimensions.

  5. Casimir energy in Kerr space-time

    NASA Astrophysics Data System (ADS)

    Sorge, F.

    2014-10-01

    We investigate the vacuum energy of a scalar massless field confined in a Casimir cavity moving in a circular equatorial orbit in the exact Kerr space-time geometry. We find that both the orbital motion of the cavity and the underlying space-time geometry conspire in lowering the absolute value of the (renormalized) Casimir energy ⟨ɛvac⟩ren , as measured by a comoving observer, with respect to whom the cavity is at rest. This, in turn, causes a weakening in the attractive force between the Casimir plates. In particular, we show that the vacuum energy density ⟨ɛvac⟩ren→0 when the orbital path of the Casimir cavity comes close to the corotating or counter-rotating circular null orbits (possibly geodesic) allowed by the Kerr geometry. Such an effect could be of some astrophysical interest on relevant orbits, such as the Kerr innermost stable circular orbits, being potentially related to particle confinement (as in some interquark models). The present work generalizes previous results obtained by several authors in the weak field approximation.

  6. Exact solution for the Casimir stress in a spherically symmetric medium

    NASA Astrophysics Data System (ADS)

    Leonhardt, Ulf; Simpson, William M. R.

    2011-10-01

    We calculated the stress of the quantum vacuum, the Casimir stress, in a spherically symmetric medium, Maxwell’s fish eye, surrounded by a perfect mirror and derived an exact analytic solution. Our solution questions the idea that the Casimir force of a spherical mirror is repulsive—we found an attractive stress in the medium that diverges at the mirror.

  7. Onsager-Casimir relations revisited

    SciTech Connect

    Hubmer, G.F.; Titulaer, U.M.

    1987-10-01

    The authors study the fate of the Onsager-Casimir reciprocity relations for a continuous system when some of its variables are eliminated adiabatically. Just as for discrete systems, deviations appear in correction terms to the reduced evolution equation that are of higher order in the time scale ratio. The deviations are not removed by including correction terms to the coarse-grained thermodynamic potential. However, via a reformulation of the theory, in which the central role of the thermodynamic potential is taken over by an associated Lagrangian-type expression, they arrive at a modified form of the Onsager-Casimir relations that survives the adiabatic elimination procedure. There is a simple relation between the time evolution of the redefined thermodynamic forces and that of the basic thermodynamic variables; this relation also survives the adiabatic elimination. The formalism is illustrated by explicit calculations for the Klein-Kramers equation, which describes the phase space distribution of Brownian particles, and for the corrected Smoluchowski equation derived from it by adiabatic elimination of the velocity variable. The symmetry relation for the latter leads to a simple proof that the reality of the eigenvalues of the simple Smoluchowski equation is not destroyed by the addition of higher order corrections, at least not within the framework of a formal perturbation expansion in the time scale ratio.

  8. Optical and Casimir effects in topological materials

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.

    Two major electromagnetic phenomena, magneto-optical effects and the Casimir effect, have seen much theoretical and experimental use for many years. On the other hand, recently there has been an explosion of theoretical and experimental work on so-called topological materials, and a natural question to ask is how such electromagnetic phenomena change with these novel materials. Specifically, we will consider are topological insulators and Weyl semimetals. When Dirac electrons on the surface of a topological insulator are gapped or Weyl fermions in the bulk of a Weyl semimetal appear due to time-reversal symmetry breaking, there is a resulting quantum anomalous Hall effect (2D in one case and bulk 3D in the other, respectively). For topological insulators, we investigate the role of localized in-gap states which can leave their own fingerprints on the magneto-optics and can therefore be probed. We have shown that these states resonantly contribute to the Hall conductivity and are magneto-optically active. For Weyl semimetals we investigate the Casimir force and show that with thickness, chemical potential, and magnetic field, a repulsive and tunable Casimir force can be obtained. Additionally, various values of the parameters can give various combinations of traps and antitraps. We additionally probe the topological transition called a Lifshitz transition in the band structure of a material and show that in a Casimir experiment, one can observe a non-analytic "kink'' in the Casimir force across such a transition. The material we propose is a spin-orbit coupled semiconductor with large g-factor that can be magnetically tuned through such a transition. Additionally, we propose an experiment with a two-dimensional metal where weak localization is tuned with an applied field in order to definitively test the effect of diffusive electrons on the Casimir force---an issue that is surprisingly unresolved to this day. Lastly, we show how the time-continuous coherent state

  9. Casimir interactions between graphene sheets and metamaterials

    SciTech Connect

    Drosdoff, D.; Woods, Lilia M.

    2011-12-15

    The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.

  10. Casimir entropy for magnetodielectrics

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Korikov, C. C.

    2015-06-01

    We find the analytic expressions for the Casimir free energy, entropy and pressure at low temperature in the configuration of two parallel plates made of magnetodielectic material. The cases of constant and frequency-dependent dielectic permittivity and magnetic permeability of the plates are considered. Special attention is paid to the account of dc conductivity. It is shown that in the case of finite static dielectric permittivity and magnetic permeability the Nernst heat theorem for the Casimir entropy is satisfied. If the dc conductivity is taken into account, the Casimir entropy goes to a positive nonzero limit depending on the parameters of a system when the temperature vanishes, i.e. the Nernst theorem is violated. The experimental situation is also discussed.

  11. Casimir Repulsion between Metallic Objects in Vacuum

    SciTech Connect

    Levin, Michael; McCauley, Alexander P.; Rodriguez, Alejandro W.; Reid, M. T. Homer; Johnson, Steven G.

    2010-08-27

    We give an example of a geometry in which two metallic objects in vacuum experience a repulsive Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with numerical calculations for both perfect and realistic metals. The system does not support stable levitation, as the particle is unstable to displacements away from the symmetry axis.

  12. The Casimir Effect at Finite Temperature in a Six-Dimensional Vortex Scenario

    NASA Astrophysics Data System (ADS)

    Cheng, Hongbo

    2016-03-01

    The Casimir effect for parallel plates satisfying the Dirichlet boundary condition in the context of effective QED coming from a six-dimensional Nielsen-Olesen vortex solution of the Abelian Higgs model with fermions coupled to gravity is studied at finite temperature. We find that the sign of the Casimir energy remains negative under the thermal influence. It is also shown that the Casimir force between plates will be weaker in the higher-temperature surroundings while keeps attractive. This Casimir effect involving the thermal influence is still inconsistent with the known experiments. We find that the thermal correction can not compensate or even reduce the modification from this kind of vortex model to make the Casimir force to be in less conflict with the measurements.

  13. Achieving a Strongly Temperature-Dependent Casimir Effect

    SciTech Connect

    Rodriguez, Alejandro W.; Woolf, David; Capasso, Federico; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.

    2010-08-06

    We propose a method of achieving large temperature T sensitivity in the Casimir force that involves measuring the stable separation between dielectric objects immersed in a fluid. We study the Casimir force between slabs and spheres using realistic material models, and find large >2 nm/K variations in their stable separations (hundreds of nanometers) near room temperature. In addition, we analyze the effects of Brownian motion on suspended objects, and show that the average separation is also sensitive to changes in T. Finally, this approach also leads to rich qualitative phenomena, such as irreversible transitions, from suspension to stiction, as T is varied.

  14. Enhancing Casimir repulsion via topological insulator multilayers

    NASA Astrophysics Data System (ADS)

    Zeng, Ran; Chen, Liang; Nie, Wenjie; Bi, Meihua; Yang, Yaping; Zhu, Shiyao

    2016-08-01

    We propose to observe the enhanced Casimir repulsion between two parallel multilayer walls made of alternating layers of a topological insulator (TI) and a normal insulator. Based on the transfer matrix method, the Fresnel coefficients matrix is generalized to apply to the TI multilayer structure. The Casimir repulsion under the influence of the magnetization orientation in the magnetic coatings on TI layer surfaces, the layer thicknesses, and the topological magnetoelectric polarizability, is investigated. We show that, for the multilayer structures with parallel magnetization on the TI layer surfaces, it is possible to enhance the repulsion by increasing the TI layer number, which is due to the accumulation of the contribution to the repulsion from the polarization rotation effect occurring on each TI layer surface. Generally, in the distance region where there is Casimir attraction between semi-infinite TIs, the force may turn into repulsion in TI multilayer structure, and in the region of repulsion for semi-infinite TI, the repulsive force can be enhanced in magnitude, the enhancement tends to a maximum while the structure contains sufficiently many layers.

  15. Casimir effect with rough metallic mirrors

    SciTech Connect

    Neto, Paulo A. Maia; Lambrecht, Astrid; Reynaud, Serge

    2005-07-15

    We calculate the second-order roughness correction to the Casimir energy for two parallel metallic mirrors. Our results may also be applied to the plane-sphere geometry used in most experiments. The metallic mirrors are described by the plasma model, with arbitrary values for the plasma wavelength, the mirror separation, and the roughness correlation length, with the roughness amplitude remaining the smallest length scale for perturbation theory to hold. From the analysis of the intracavity field fluctuations, we obtain the Casimir energy correction in terms of generalized reflection operators, which account for diffraction and polarization coupling in the scattering by the rough surfaces. We present simple analytical expressions for several limiting cases, as well as numerical results that allow for a reliable calculation of the roughness correction in real experiments. The correction is larger than the result of the proximity force approximation, which is obtained from our theory as a limiting case (very smooth surfaces)

  16. Casimir effect with uniformly moving mirrors

    SciTech Connect

    Bordag, M.; Dittes, F.; Robaschik, D.

    1986-06-01

    We study a simple example of quantum electrodynamics with nonstationary boundary conditions in (3+1) dimensions: the problem of two parallel mirrors moving relative to each other with constant speed v. The Green functions are constructed using the reflection principle. The behavior of physical quantities like the Casimir force and the vacuum expectation value of the energy-momentum tensor are discussed. If the motion of an arbitrary point between the mirrors is described by a straight world line, then in the local rest frame at the point in question the energy-momentum tensor has the same structure as in the standard Casimir problem with stationary mirrors. In particular, all physical quantities are smooth functions of v, so that the limit v..-->..0 leads to the expected results.

  17. Casimir effect and radiative heat transfer between Chern Insulators

    NASA Astrophysics Data System (ADS)

    Rodriguez Lopez, Pablo; Grushin, Adolfo; Tse, Wang-Kong; Dalvit, Diego

    2015-03-01

    Chern Insulators are a class of two-dimensional topological materials. Their electronic properties are different from conventional materials, and lead to interesting new physics as quantum Hall effect in absence of an external magnetic field. Here we will review some of their special properties and, in particular, we will discuss the radiative heat transfer and the Casimir effect between two planar Chern Insulators sheets. Finally, we will see how to control the intensity and sign of this Casimir force and the requirements to observe a repulsive Casimir force in the lab with those materials. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 302005.

  18. Casimir free energy at high temperatures: Grounded versus isolated conductors

    NASA Astrophysics Data System (ADS)

    Fosco, C. D.; Lombardo, F. C.; Mazzitelli, F. D.

    2016-06-01

    We evaluate the difference between the Casimir free energies corresponding to either grounded or isolated perfect conductors, at high temperatures. We show that a general and simple expression for that difference can be given, in terms of the electrostatic capacitance matrix for the system of conductors. For the case of close conductors, we provide approximate expressions for that difference, by evaluating the capacitance matrix using the proximity force approximation. Since the high-temperature limit for the Casimir free energy for a medium described by a frequency-dependent conductivity diverging at zero frequency coincides with that of an isolated conductor, our results may shed light on the corrections to the Casimir force in the presence of real materials.

  19. On the possibility of Casimir repulsion using metamaterials

    SciTech Connect

    Da Rosa, Felipe S

    2008-01-01

    It is well known that the Casimir force between two half-spaces is dictated by their electromagnetic properties. In particular, when one of the half-spaces is mainly metallic or dielectric and the other is mainly magnetic, it is possible to show that the force is repulsive. This has attracted lots of interest towards the study of metamaterials (MMs) in the context of Casimir effect, as their magnetic activity might help bring the idea of Casimir repulsion from the theoretical realm to experimental verification. In this paper we investigate the possibility of repulsion when the MM magnetic permeability is given not by a Drude-Lorentz behavior, but by a model put forward by Pendry et al. [16]. After introducing the model and deriving the necessary formulas, we show that it is impossible to achieve repulsion with such a model and present a qualitative discussion of why this is so.

  20. Interplay between geometry and temperature for inclined Casimir plates

    SciTech Connect

    Weber, Alexej; Gies, Holger

    2009-09-15

    We provide further evidence for the nontrivial interplay between geometry and temperature in the Casimir effect. We investigate the temperature dependence of the Casimir force between an inclined semi-infinite plate above an infinite plate in D dimensions using the worldline formalism. Whereas the high-temperature behavior is always found to be linear in T in accordance with dimensional-reduction arguments, different power-law behaviors at small temperatures emerge. Unlike the case of infinite parallel plates, which shows the well-known T{sup D} behavior of the force, we find a T{sup D-1} behavior for inclined plates, and a {approx}T{sup D-0.3} behavior for the edge effect in the limit where the plates become parallel. The strongest temperature dependence {approx}T{sup D-2} occurs for the Casimir torque of inclined plates. Numerical as well as analytical worldline results are presented.

  1. Casimir dynamics: Interactions of surfaces with codimension >1 due to quantum fluctuations

    SciTech Connect

    Scardicchio, A.

    2005-09-15

    We study the Casimir force between defects (branes) of codimension larger than 1 due to quantum fluctuations of a scalar field {phi} living in the bulk. We show that the Casimir force is attractive and that it diverges as the distance between the branes approaches a critical value L{sub c}. Below this critical distance L{sub c} the vacuum state {phi}=0 of the theory is unstable, due to the birth of a tachyon, and the field condenses.

  2. Tunable Stable Levitation Based on Casimir Interaction between Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Zhang, Zhuomin M.

    2016-03-01

    Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.

  3. Casimir energy in a spherical surface within surface impedance approach: The Drude model

    NASA Astrophysics Data System (ADS)

    Rosa, Luigi; Trozzo, Lucia

    2016-09-01

    The Casimir Energy of a spherical cavity whose surface is characterized by means of its surface impedance is calculated. The material properties of the boundary are described by means of the Drude model, so that a generalization of a previous result, based on plasma model, is obtained. The limits of the proposed approach are analyzed and a possible solution is suggested. The possibility of modulating the sign of the Casimir force from positive (repulsion) to negative (attraction) is studied.

  4. ``Casimir effect'' with active swimmers

    NASA Astrophysics Data System (ADS)

    Ray, Dipanjan; Lopatina, Lena; Olson Reichhardt, Cynthia; Reichhardt, Charles

    2014-03-01

    In recent years, active matter has increasingly found applications in nanoengineering.[1] Here we show using molecular dynamics simulations that the natural motion of ``run-and-tumble'' bacteria will push together two parallel walls arranged in a Casimir geometry. This effect is robust as long as the wall separation is comparable to or smaller than the bacterial run-length, so that the bacterial motion is not Brownian on the length scale of the walls. The magnitude of the attractive force between the walls exhibits an unusual exponential dependence on the wall separation. The attraction arises from a depleted concentration of bacteria in the region between the plates; this is caused by the tendency of the bacteria to slide along the walls, which breaks time-reversal symmetry and allows a density difference to develop. The same mechanism was used recently to explain bacterial rectification.[2] The inclusion of steric interactions between the bacteria reduces the attraction between the plates but does not eliminate it.

  5. Critical Casimir interactions between Janus particles.

    PubMed

    Labbé-Laurent, M; Dietrich, S

    2016-08-21

    Recently there has been strong experimental and theoretical interest in studying the self-assembly and the phase behavior of patchy and Janus particles, which form colloidal suspensions. Although in this quest a variety of effective interactions have been proposed and used in order to achieve a directed assembly, the critical Casimir effect stands out as being particularly suitable in this respect because it provides both attractive and repulsive interactions as well as the potential of a sensitive temperature control of their strength. Specifically, we have calculated the critical Casimir force between a single Janus particle and a laterally homogeneous substrate as well as a substrate with a chemical step. We have used the Derjaguin approximation and compared it with results from full mean field theory. A modification of the Derjaguin approximation turns out to be generally reliable. Based on this approach we have derived the effective force and the effective potential between two Janus cylinders as well as between two Janus spheres. PMID:27444691

  6. Casimir Effect Under Quasi-Periodic Boundary Condition Inspired by Nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Chao-Jun; Li, Xin-Zhou; Zhai, Xiang-Hua

    2014-01-01

    When one studies the Casimir effect, the periodic (anti-periodic) boundary condition is usually taken to mimic a periodic (anti-periodic) structure for a scalar field living in a flat space with a non-Euclidean topology. However, there could be an arbitrary phase difference between the value of the scalar field on one endpoint of the unit structure and that on the other endpoint, such as the structure of nanotubes. Then, in this paper, a periodic condition on the ends of the system with an additional phase factor, which is called the "quasi-periodic" condition, is imposed to investigate the corresponding Casimir effect. And an attractive or repulsive Casimir force is found, whose properties depend on the phase angle value. Especially, the Casimir effect disappears when the phase angle takes a particular value. High dimensional spacetime case is also investigated.

  7. Casimir interaction between a sphere and a cylinder

    NASA Astrophysics Data System (ADS)

    Teo, L. P.

    2013-02-01

    We study the Casimir interaction between a sphere and a cylinder both subjected to Dirichlet, Neumann, or perfectly conducting boundary conditions. Generalizing the operator approach developed by Wittman [IEEE Trans. Antennas Propag. 36, 1078 (1988)IETPAK0018-926X], we compute the scalar and vector translation matrices between a sphere and a cylinder, and thus write down explicitly the exact TGTG formula for the Casimir interaction energy. In the scalar case, the formula shows manifestly that the Casimir interaction force is attractive at all separations. The large separation leading term of the Casimir interaction energy is computed directly from the exact formula. It is of order ˜ℏcR1/[L2ln⁡(L/R2)], ˜ℏcR13R22/L6, and ˜ℏcR13/[L4ln⁡(L/R2)], respectively, for Dirichlet, Neumann, and perfectly conducting boundary conditions, where R1 and R2 are, respectively, the radii of the sphere and the cylinder, and L is the distance between their centers.

  8. Casimir potential of a compact object enclosed by a spherical cavity

    SciTech Connect

    Zaheer, Saad; Rahi, Sahand Jamal; Emig, Thorsten; Jaffe, Robert L.

    2010-11-15

    We study the electromagnetic Casimir interaction of a compact object contained inside a closed cavity of another compact object. We express the interaction energy in terms of the objects' scattering matrices and translation matrices that relate the coordinate systems appropriate to each object. When the enclosing object is an otherwise empty metallic spherical shell, much larger than the internal object, and the two are sufficiently separated, the Casimir force can be expressed in terms of the static electric and magnetic multipole polarizabilities of the internal object, which is analogous to the Casimir-Polder result. Although it is not a simple power law, the dependence of the force on the separation of the object from the containing sphere is a universal function of its displacement from the center of the sphere, independent of other details of the object's electromagnetic response. Furthermore, we compute the exact Casimir force between two metallic spheres contained one inside the other at arbitrary separations. Finally, we combine our results with earlier work on the Casimir force between two spheres to obtain data on the leading-order correction to the proximity force approximation for two metallic spheres both outside and within one another.

  9. Casimir Effect in Hemisphere Capped Tubes

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.

    2016-02-01

    In this paper we investigate the vacuum densities for a massive scalar field with general curvature coupling in background of a (2 + 1)-dimensional spacetime corresponding to a cylindrical tube with a hemispherical cap. A complete set of mode functions is constructed and the positive-frequency Wightman function is evaluated for both the cylindrical and hemispherical subspaces. On the base of this, the vacuum expectation values of the field squared and energy-momentum tensor are investigated. The mean field squared and the normal stress are finite on the boundary separating two subspaces, whereas the energy density and the parallel stress diverge as the inverse power of the distance from the boundary. For a conformally coupled field, the vacuum energy density is negative on the cylindrical part of the space. On the hemisphere, it is negative near the top and positive close to the boundary. In the case of minimal coupling the energy density on the cup is negative. On the tube it is positive near the boundary and negative at large distances. Though the geometries of the subspaces are different, the Casimir pressures on the separate sides of the boundary are equal and the net Casimir force vanishes. The results obtained may be applied to capped carbon nanotubes described by an effective field theory in the long-wavelength approximation.

  10. Casimir energies of cylinders: Universal function

    SciTech Connect

    Abalo, E. K.; Milton, K. A.; Kaplan, L.

    2010-12-15

    New exact results are given for the interior Casimir energies of infinitely long waveguides of triangular cross section (equilateral, hemiequilateral, and isosceles right triangles). Results for cylinders of rectangular cross section are rederived. In particular, results are obtained for interior modes belonging to Dirichlet and Neumann boundary conditions (TM and TE modes). These results are expressed in rapidly convergent series using the Chowla-Selberg formula, and in fact may be given in closed form, except for general rectangles. The energies are finite because only the first three heat-kernel coefficients can be nonzero for the case of polygonal boundaries. What appears to be a universal behavior of the Casimir energy as a function of the shape of the regular or quasiregular cross-sectional figure is presented. Furthermore, numerical calculations for arbitrary right triangular cross sections suggest that the universal behavior may be extended to waveguides of general polygonal cross sections. The new exact and numerical results are compared with the proximity force approximation (PFA).

  11. Effect of the heterogeneity of metamaterials on the Casimir-Lifshitz interaction

    SciTech Connect

    Azari, Arash; Golestanian, Ramin; Miri, MirFaez

    2010-09-15

    The Casimir-Lifshitz interaction between metamaterials is studied using a model that takes into account the structural heterogeneity of the dielectric and magnetic properties of the bodies. A recently developed perturbation theory for the Casimir-Lifshitz interaction between arbitrary material bodies is generalized to include nonuniform magnetic permeability profiles and used to study the interaction between the magneto-dielectric heterostructures within the leading order. The metamaterials are modeled as two-dimensional arrays of domains with varying permittivity and permeability. In the case of two semi-infinite bodies with flat boundaries, the patterned structure of the material properties is found to cause the normal Casimir-Lifshitz force to develop an oscillatory behavior when the distance between the two bodies is comparable to the wavelength of the patterned features in the metamaterials. The nonuniformity also leads to the emergence of lateral Casimir-Lifshitz forces, which tend to strengthen as the gap size becomes smaller. Our results suggest that the recent studies on Casimir-Lifshitz forces between metamaterials, which have been performed with the aim of examining the possibility of observing the repulsive force, should be revisited to include the effect of the patterned structure at the wavelength of several hundred nanometers that coincides with the relevant gap size in the experiments.

  12. Casimir effect: An avatar of the quantum vacuum

    NASA Astrophysics Data System (ADS)

    Shajesh, Kuloth V.

    In this dissertation we study the Casimir effect, which is demonstrated to be a manifestation of the quantum vacuum. The boundary conditions are imposed by constructing delta-function potentials, so-called semitransparent boundaries. The coupling to the delta-function potential reduces to the Dirichlet boundary condition in the strong coupling limit. In the case of electrodynamics the strong coupling limit corresponds to metallic plates, and the weak coupling limit corresponds to tenuous dielectrics. In chapter 1 we derive the expression for the vacuum energy in the presence of a background for the case of scalar fields. The vacuum energy, or the Casimir energy, is expressed in terms of the trace of the logarithm of Green's functions. Thus the problem is reduced to solving a second order differential equation for the Green's function in the presence of a background potential. The Casimir energy is compared to the alternate expression derived from the energy-momentum tensor associated with the field in the presence of a background. The Casimir force is interpreted as the force between two objects arising due to the change in energy when the distance between their center of masses is varied. The Casimir force is also identified in terms of the divergence of the energy-momentum tensor. In Chapter 2 we study the differential equations satisfied by Green's function and present solutions to the Green's functions which will be used in this thesis. Using the expressions derived in chapters 1 and 2 we derive the Casimir energy associated with a single plate, and two parallel plates, in chapter 3. The infinite energy associated with the vacuum in the absence of a potential, or the plates, which is a divergent quantity, is isolated. The Casimir energy associated with a single plate is shown to be divergent. The Casimir energy for two parallel plates is written as a sum of three terms. Two of these terms correspond to the energy associated with the two single plates

  13. Perturbative Casimir Energies of Spheres

    NASA Astrophysics Data System (ADS)

    Barton, G.

    The Casimir energies of single bodies (as opposed to the interaction between mutually disjoint bodies) have accumulated deceptive folklore which this talk will try to exorcise, by mean of calculations for atomic solids that, though optically dilute, are realistically dispersive. This is easy, because quantum electrodynamics then yields identically the same energy as one gets from the properly retarded interatomic potentials. The problem of regularizing (nominal) divergences turns out to be quite distinct from the appropriate process of renormalization: simply discarding all nominally divergent contributions would prevent one from understanding the physics. Contrary to legend, the pertinent Casimir energies for dielectric spheres are attractive.

  14. The Casimir effect for fields with arbitrary spin

    SciTech Connect

    Stokes, Adam; Bennett, Robert

    2015-09-15

    The Casimir force arises when a quantum field is confined between objects that apply boundary conditions to it. In a recent paper we used the two-spinor calculus to derive boundary conditions applicable to fields with arbitrary spin in the presence of perfectly reflecting surfaces. Here we use these general boundary conditions to investigate the Casimir force between two parallel perfectly reflecting plates for fields up to spin-2. We use the two-spinor calculus formalism to present a unified calculation of well-known results for spin-1/2 (Dirac) and spin-1 (Maxwell) fields. We then use our unified framework to derive new results for the spin-3/2 and spin-2 fields, which turn out to be the same as those for spin-1/2 and spin-1. This is part of a broader conclusion that there are only two different Casimir forces for perfectly reflecting plates—one associated with fermions and the other with bosons.

  15. Critical Casimir effect for colloids close to chemically patterned substrates

    SciTech Connect

    Troendle, M.; Kondrat, S.; Harnau, L.; Dietrich, S.; Gambassi, A.

    2010-08-21

    Colloids immersed in a critical or near-critical binary liquid mixture and close to a chemically patterned substrate are subject to normal and lateral critical Casimir forces of dominating strength. For a single colloid, we calculate these attractive or repulsive forces and the corresponding critical Casimir potentials within mean-field theory. Within this approach we also discuss the quality of the Derjaguin approximation and apply it to Monte Carlo simulation data available for the system under study. We find that the range of validity of the Derjaguin approximation is rather large and that it fails only for surface structures which are very small compared to the geometric mean of the size of the colloid and its distance from the substrate. For certain chemical structures of the substrate, the critical Casimir force acting on the colloid can change sign as a function of the distance between the particle and the substrate; this provides a mechanism for stable levitation at a certain distance which can be strongly tuned by temperature, i.e., with a sensitivity of more than 200 nm/K.

  16. Dynamical Casimir-Polder interaction between a chiral molecule and a surface

    NASA Astrophysics Data System (ADS)

    Barcellona, Pablo; Passante, Roberto; Rizzuto, Lucia; Buhmann, Stefan Yoshi

    2016-03-01

    We develop a dynamical approach to study the Casimir-Polder force between an initially bare molecule and a magnetodielectric body at finite temperature, valid for arbitrary magnetodielectric properties and also in the presence of chiral effects. Switching on the interaction between the molecule and the field at a particular time, we study the resulting temporal evolution of the Casimir-Polder interaction. The dynamical self-dressing of the molecule and its population-induced dynamics are accounted for and discussed. In particular, we find that the Casimir-Polder force between a molecule and a surface oscillates in time with a frequency related to the molecular transition frequency. We verify that the dynamical force converges to the static result for time much larger than the inverse of the transition frequency, and it is particularly strong around the back-reaction time t =2 d /c , the time needed for the molecule to emit and reabsorb a photon reflected by the surface.

  17. Casimir effect for parallel metallic plates in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Grigoryan, A. Kh

    2012-09-01

    We evaluate the renormalized vacuum expectation values (VEVs) of electric and magnetic field squared and the energy-momentum tensor for the electromagnetic field in the geometry of two parallel conducting plates on the background of cosmic string spacetime. On the basis of these results, the Casimir-Polder force acting on a polarizable particle and the Casimir forces acting on the plates are investigated. The VEVs are decomposed into the pure string and plate-induced parts. The VEV of the electric field squared is negative for points with the radial distance to the string smaller than the distance to the plates, and positive for the opposite situation. On the other hand, the VEV for the magnetic field squared is negative everywhere. The boundary-induced part in the VEV of the energy-momentum tensor is different from zero in the region between the plates only. Moreover, this part only depends on the distance from the string. The boundary-induced part in the vacuum energy density is positive for points with a distance to the string smaller than the distance to the plates and negative in the opposite situation. The Casimir stresses on the plates depend non-monotonically on the distance from the string. We show that the Casimir forces acting on the plates are always attractive. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  18. Numerical and semiclassical analysis of some generalized Casimir pistons

    SciTech Connect

    Schaden, M.

    2009-05-15

    The Casimir force due to a scalar field in a cylinder of radius r with a spherical cap of radius R>r is computed numerically in the world-line approach. A geometrical subtraction scheme gives the finite interaction energy that determines the Casimir force. The spectral function of convex domains is obtained from a probability measure on convex surfaces that is induced by the Wiener measure on Brownian bridges the convex surfaces are the hulls of. Due to reflection positivity, the vacuum force on the piston by a scalar field satisfying Dirichlet boundary conditions is attractive in these geometries, but the strength and short-distance behavior of the force depend strongly on the shape of the piston casing. For a cylindrical casing with a hemispherical head, the force on the piston does not depend on the dimension of the casing at small piston elevation a<force is due to short, closed, and nonperiodic trajectories that reflect just once off the piston near its periphery. A semiclassical estimate reproduces the numerical results for the small-distance behavior of the force within statistical errors, whereas the proximity force approximation is off by one order of magnitude when R{approx}r.

  19. Casimir interactions of an object inside a spherical metal shell

    SciTech Connect

    Zaheer, Saad; Rahi, Sahand Jamal; Emig, Thorsten; Jaffe, Robert L.

    2010-03-15

    We investigate the electromagnetic Casimir interactions of an object contained within an otherwise empty, perfectly conducting spherical shell. For a small object we present analytical calculations of the force, which is directed away from the center of the cavity, and the torque, which tends to align the object opposite to the preferred alignment outside the cavity. For a perfectly conducting sphere as the interior object, we compute the corrections to the proximity force approximation (PFA) numerically. In both cases the results for the interior configuration match smoothly onto those for the corresponding exterior configuration.

  20. Casimir rack and pinion as a miniaturized kinetic energy harvester.

    PubMed

    Miri, MirFaez; Etesami, Zahra

    2016-08-01

    We study a nanoscale machine composed of a rack and a pinion with no contact, but intermeshed via the lateral Casimir force. We adopt a simple model for the random velocity of the rack subject to external random forces, namely, a dichotomous noise with zero mean value. We show that the pinion, even when it experiences random thermal torque, can do work against a load. The device thus converts the kinetic energy of the random motions of the rack into useful work. PMID:27627286

  1. Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons

    SciTech Connect

    Elizalde, E.; Odintsov, S. D.; Saharian, A. A.

    2009-03-15

    We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background spacetime with an arbitrary internal space. The most general case of different Robin coefficients on the two separate plates is considered. With independence of the geometry of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and Neumann boundary conditions on the other. For Robin boundary conditions, the Casimir forces can be either attractive or repulsive, depending on the Robin coefficients and the separation between the plates, what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by the presence of the extra dimensions. Applications of these properties in braneworld models are discussed. Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.

  2. Comparison of hydrodynamic model of graphene with recent experiment on measuring the Casimir interaction

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2015-01-01

    We obtain the reflection coefficients from a graphene sheet deposited on a material substrate under a condition that graphene is described by the hydrodynamic model. Using these coefficients, the gradient of the Casimir force in the configuration of a recent experiment is calculated in the framework of the Lifshitz theory. It is shown that the hydrodynamic model is excluded by the measurement data at a 99% confidence level over a wide range of separations. From the fact that the same data are in very good agreement with theoretical predictions of the Dirac model of graphene, the low-energy character of the Casimir interaction is confirmed.

  3. L'effet Casimir : théorie et expériences

    NASA Astrophysics Data System (ADS)

    Lambrecht, A.; Genet, C.; Intravaia, F.; Reynaud, S.

    2004-11-01

    L'existence de fluctuations irréductibles de champ dans le vide est une prédiction importante de la théorie quantique. Ces fluctuations ont de nombreuses conséquences observables comme l'effet Casimir, qui est maintenant mesuré avec une bonne précision et un bon accord avec la théorie, pourvu que celle-ci tienne compte des différences entre les expériences rélles et la situation idéale considérée par H.G.B. Casimir. Nous présenterons quelqu'unes des expériences récentes et discuterons les principales corrections à la force de Casimir liées à la situation expérimentale.

  4. Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions

    SciTech Connect

    Eab, C. H.; Lim, S. C.; Teo, L. P.

    2007-08-15

    This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed.

  5. Casimir interaction between a microscopic dipole oscillator and a macroscopic solenoid

    NASA Astrophysics Data System (ADS)

    Blanco, R.; Dechoum, K.; França, H. M.; Santos, E.

    1998-02-01

    We discuss the interaction between a microscopic electric dipole oscillator and a long solenoid which are separated by a small distance. The solenoid belongs to a simple RLC circuit and the zero point and thermal current fluctuations within the solenoid coils are taken into account. We describe how they affect the equilibrium state and the excited states of the oscillator, thus providing a description of the Casimir interaction of the system. We calculate the modification in the lifetime of the oscillator excited states as a function of the parameters of the circuit, the dipole orientation, and the distance between the dipole and the solenoid. The Casimir force between the solenoid and the electric dipole is calculated, and it is shown that this Casimir interaction always exists, that is, it occurs even when the macroscopic current in the solenoid is zero. We suggest experiments which can exhibit these effects related to the electromagnetic interactions between atoms or molecules and simple circuits.

  6. Determination of the Contact Angle Based on the Casimir Effect

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2015-01-01

    In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.

  7. Nonequilibrium critical Casimir effect in binary fluids.

    PubMed

    Furukawa, Akira; Gambassi, Andrea; Dietrich, Siegfried; Tanaka, Hajime

    2013-08-01

    Colloids immersed in a critical binary liquid mixture are subject to critical Casimir forces (CCFs) because they confine its concentration fluctuations and influence the latter via effective surface fields. To date, CCFs have been primarily studied in thermodynamic equilibrium. However, due to the critical slowing down, the order parameter around a particle can easily be perturbed by any motion of the colloid or by solvent flow. This leads to significant but largely unexplored changes in the CCF. Here we study the drag force on a single colloidal particle moving in a near-critical fluid mixture and the relative motion of two colloids due to the CCF acting on them. In order to account for the kinetic couplings among the order parameter field, the solvent velocity field, and the particle motion, we use a fluid particle dynamics method. These studies extend the understanding of CCFs from thermal equilibrium to nonequilibrium processes, which are relevant to current experiments, and show the emergence of significant effects near the critical point. PMID:23952419

  8. Direct Measurement of Intermediate-Range Casimir-Polder Potentials

    SciTech Connect

    Bender, H.; Courteille, Ph. W.; Marzok, C.; Zimmermann, C.; Slama, S.

    2010-02-26

    We present the first direct measurements of Casimir-Polder forces between solid surfaces and atomic gases in the transition regime between the electrostatic short-distance and the retarded long-distance limit. The experimental method is based on ultracold ground-state Rb atoms that are reflected from evanescent wave barriers at the surface of a dielectric glass prism. Our novel approach does not require assumptions about the potential shape. The experimental data are compared to the theoretical predictions valid in the different regimes. They agree best with a full QED calculation.

  9. Supersymmetry Breaking Casimir Warp Drive

    SciTech Connect

    Obousy, Richard K.; Cleaver, Gerald

    2007-01-30

    This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead of general relativity.

  10. Supersymmetry Breaking Casimir Warp Drive

    NASA Astrophysics Data System (ADS)

    Obousy, Richard K.; Cleaver, Gerald

    2007-01-01

    This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead of general relativity.

  11. Casimir Interaction from Magnetically Coupled Eddy Currents

    SciTech Connect

    Intravaia, Francesco; Henkel, Carsten

    2009-09-25

    We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.

  12. Dynamical Casimir effect and quantum cosmology

    NASA Astrophysics Data System (ADS)

    Brevik, I.; Milton, K. A.; Odintsov, S. D.; Osetrin, K. E.

    2000-09-01

    We apply the background field method and the effective action formalism to describe the four-dimensional dynamical Casimir effect. Our picture corresponds to the consideration of quantum cosmology for an expanding FRW universe (the boundary conditions act as a moving mirror) filled by a quantum massless GUT which is conformally invariant. We consider cases in which the static Casimir energy is attractive and repulsive. Inserting the simplest possible inertial term, we find, in the adiabatic (and semiclassical) approximation, the dynamical evolution of the scale factor and the dynamical Casimir stress analytically and numerically [for SU(2) super Yang-Mills theory]. Alternative kinetic energy terms are explored in the Appendix.

  13. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  14. PREFACE: International Workshop '60 Years of the Casimir Effect'

    NASA Astrophysics Data System (ADS)

    Barton, Gabriel; Carugno, Giovanni; Dodonov, Victor; Man'ko, Margarita

    2009-07-01

    In 1948 Hendrick Casimir published a short article predicting that (neutral) ideal metallic plates attract each other. This attraction is widely ascribed to the quantum vacuum fluctuations of the electromagnetic field (even though away from the limit of ideal metals it depends demonstrably on the physics of the charge carriers vanishing when they cease to carry). Casimir's remarkable discovery, nowadays called the Casimir effect, has charmed several generations of physicists. In the last decade alone, more than a thousand publications have addressed its many consequences, generalizations, and possible applications in different areas from particle physics to cosmology. Interest in the field is still growing driven by impressive progress in experimental skills and its importance for the recently opened-up area of micro- and nano-electromechanical systems: according to the Thompson ISI Web of Science database, in 2005 the number of papers related to the Casimir effect or to Casimir forces jumped to over 125, compared to approximately 60 in 2000 and 30 in 1995. The increase continues, with more than 170 papers in 2008. The International Workshop '60 Years of the Casimir Effect' took place on 23-27June 2008, in Brasilia (Brazil) organized by the International Center for Condensed Matter Physics (ICCMP). The purpose was to celebrate this anniversary of Casimir's pioneering paper by inviting the leading specialists in the area, both theorists and experimentalists, together with young researchers and post-graduate students interested in hearing about the most recent achievements in the field. The Workshop was attended by 65 participants from 14 countries, who presented 41 talks and 12 posters. These Proceedings contain extended versions of almost all the talks and some posters, plus several papers by authors who had planned to attend but for various reasons could not. The contributions are divided (with some inevitable arbitrariness) into four groups. The largest one

  15. Casimir Energy Associated With Fractional Derivative Field

    SciTech Connect

    Lim, S. C.

    2007-04-28

    Casimir energy associated with fractional derivative scalar massless field at zero and positive temperature can be obtained using the regularization based on generalized Riemann zeta function of Epstein-Hurwitz type.

  16. Casimir energy for perturbed surfaces of revolution

    NASA Astrophysics Data System (ADS)

    Morales-Almazan, Pedro

    2016-03-01

    In this paper, we explore the zeta function arising from a small perturbation on a surface of revolution and the effect of this on the functional determinant and on the change of the Casimir energy associated with the surface.

  17. Special features of the thermal Casimir effect across a uniaxial anisotropic film

    NASA Astrophysics Data System (ADS)

    Mostepanenko, V. M.

    2015-07-01

    We investigate the thermal Casimir force between two parallel plates made of different isotropic materials which are separated by a uniaxial anisotropic film. Numerical computations of the Casimir pressure at T =300 K are performed using the complete Lifshitz formula adapted for an anisotropic intervening layer and in the nonrelativistic limit. It is shown that the standard (nonrelativistic) theory of the van der Waals force is not applicable in this case, because the effects of retardation contribute significantly even for film thicknesses of a few nanometers. We have also obtained simple analytic expressions for the classical Casimir free energy and pressure for large film thicknesses (high temperatures). Unlike the case of isotropic intervening films, for two metallic plates the classical Casimir free energy and pressure are shown to depend on the static dielectric permittivities of an anisotropic film. One further interesting feature is that the classical limit is achieved at much shorter separations between the plates than for a vacuum gap. Possible applications of the obtained results are discussed.

  18. Casimir interaction in smectic-A liquid crystals caused by coupled fluctuations of positional and orientational order

    NASA Astrophysics Data System (ADS)

    Markun, B.; Žumer, S.

    2006-03-01

    A theoretical study of the Casimir interaction in smectic-A systems, considering fluctuations of both types of smectic ordering—positional and orientational—including the coupling between them, is presented. Two model systems with plan-parallel geometry are studied: homeotropic cell and free-standing film. At large thicknesses of the system the behavior of the Casimir force is found to be primarily determined by positional fluctuations, whereas at small thicknesses also the orientational degrees of freedom greatly contribute to the interaction. The influence of different coupling strengths between orientational and positional order is presented. The dependence of the Casimir force on the director anchoring and surface-tension parameters is studied. The possibilities of experimental detection of the interaction are discussed.

  19. Weak localization as a definitive test of diffusive models in the Casimir effect

    NASA Astrophysics Data System (ADS)

    Allocca, Andrew; Wilson, Justin; Galitski, Victor

    2015-03-01

    Results from many measurements of the Casimir effect suggest that the metallic plates in these experiments should be modeled with the plasma model of free electrons as opposed to the naive diffusive Drude model, while other experiments seem to indicate the exact opposite, with results more in line with a diffusive model. We study the Casimir effect at low temperatures between a thick disordered plate and purely two-dimensional disordered system where the Drude conductivity decreases logarithmically at low temperatures due to weak localization. This effect can be tuned with either temperature or applied magnetic field leading to a measurable change in the Casimir force. On the other hand, a ballistic model cannot experience such an effect and is only weakly dependent on temperature and magnetic field. As a result, we propose that an experiment would unambiguously differentiate between diffusive and ballistic models by measuring the effect at low temperatures with an applied magnetic field. Additionally, we calculate the impact that fluctuations in the disorder distribution have on the Casimir effect. Assuming the validity of a diffusive model, we find that the Drude model is a good approximation of a more exact treatment of disorder. This work was supported by the DOE-BES (Grant No. DESC0001911) (A.A. and V.G.), the JQI-PFC (J.W.), and the Simons Foundation.

  20. Normal and lateral Casimir interactions between semi-infinite conductors in the presence of a dispersive medium

    SciTech Connect

    Soltani, Morteza; Sarabadani, Jalal; Kheirandish, Fardin; Rabbani, Hasan

    2010-10-15

    Path-integral formalism is employed to study normal and lateral Casimir interactions in a system composed of a dispersive medium surrounded by two semi-infinite ideal conductors. The dispersive medium is modeled by a continuum of harmonic oscillators, and it is shown that for smooth conductors, the normal force at small distances in the presence of a dispersive medium coincides with the original Casimir force, while at large distances, it tends to the original form with a renormalized coefficient. The correction to the normal force because of the roughness on one of the conductors is calculated. When the inner surfaces of both conductors have roughness, the lateral Casimir interaction occurs because of translational symmetry breaking, which is studied. It is shown that both normal and lateral Casimir forces in the presence of a dispersive medium are weaker in comparison with the original one and are proportional to the roughness amplitude squared. The dependence of the normal and lateral interactions on the memory and strength of the dispersive medium is considered.

  1. Casimir-Polder effect with thermally excited surfaces

    NASA Astrophysics Data System (ADS)

    Laliotis, A.; Ducloy, M.

    2015-05-01

    We take a closer look at the fundamental Casimir-Polder (CP) interaction between quantum particles and dispersive dielectric surfaces with surface polariton or plasmon resonances. Linear response theory shows that in the near-field, van der Waals regime the free-energy shift of a particle contains a thermal component that depends exclusively on the excitation of the evanescent surface polariton (plasmon or phonon) modes. Our work makes evident the link between particle surface interaction and near-field thermal emission and demonstrates how this can be used to engineer Casimir-Polder forces. We also examine how the exotic effects of surface waves are washed out as the distance from the surface increases. In the case of molecules or excited-state atoms, far-field approximations result in a classical dipole-dipole interaction which depends on the surface reflectivity and the mean number of photons at the frequency of the atomic or molecular transition. Finally we present numerical results for the CP interaction between Cs atoms and various dielectric surfaces with a single polariton resonance and discuss the implications of temperature and retardation effects for specific spectroscopic experiments.

  2. Critical Casimir effect in the Ising strips with standard normal and ordinary boundary conditions and the grain boundary

    NASA Astrophysics Data System (ADS)

    Borjan, Z.

    2016-09-01

    We consider critical Casimir force in the Ising strips with boundary conditions defined by standard normal and ordinary surface universality classes containing also the internal grain boundary. Using exact variational approach of Mikheev and Fisher we have elaborated on behaviors of Casimir amplitudes Δ++(g) , ΔOO(g) and Δ+O(g) , corresponding to normal-normal, ordinary-ordinary and mixed normal-ordinary boundary conditions, respectively, with g as a strength of the grain boundary. Closed analytic results describe Casimir amplitudes Δ++(g) and ΔOO(g) as continuous functions of the grain boundary's strength g, changing the character of the Casimir force from repulsive to attractive and vice versa for certain domains of g. Present results reveal a new type of symmetry between Casimir amplitudes Δ++(g) and ΔOO(g) . Unexpectedly simple constant result for the Casimir amplitude Δ+O(g) = π/12 we have comprehensively interpreted in terms of equilibrium states of the present Ising strip as a complex interacting system comprising two sub-systems. Short-distance expansions of energy density profiles in the vicinity of the grain boundary reveal new distant-wall correction amplitudes that we examined in detail. Analogy of present considerations with earlier more usual short-distance expansions near one of the (N), (O) and (SB) boundaries, as well as close to surfaces with variable boundary conditions refers to the set of scaling dimensions appearing in the present calculations but also to the discovery of the de Gennes-Fisher distant wall correction amplitudes.

  3. Supersymmetric Casimir energy and the anomaly polynomial

    NASA Astrophysics Data System (ADS)

    Bobev, Nikolay; Bullimore, Mathew; Kim, Hee-Cheol

    2015-09-01

    We conjecture that for superconformal field theories in even dimensions, the supersymmetric Casimir energy on a space with topology S 1 × S D-1 is equal to an equivariant integral of the anomaly polynomial. The equivariant integration is defined with respect to the Cartan subalgebra of the global symmetry algebra that commutes with a given supercharge. We test our proposal extensively by computing the supersymmetric Casimir energy for large classes of superconformal field theories, with and without known Lagrangian descriptions, in two, four and six dimensions.

  4. Experiments on Sphere Cylinder Geometry Dependence in the Electromagnetic Casimir Effect

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Noruzifar, Ehsan; Wagner, Jeffrey; Zandi, Roya; Mohideen, Umar

    2013-03-01

    We report on ongoing experimental investigations on the geometry dependence of the electromagnetic Casimir force in the sphere-cylinder configuration. A gold coated hollow glass sphere which forms one surface is attached to a Silicon AFM cantilever. The cylinder, which is constructed from tapered optical fiber is also gold coated. The resonance frequency shift of the cantilever is measured as a function of the sphere-cylinder surface separation. The sphere-cylinder electrostatic force is used for alignment of the sphere and the cylinder and also for calibrating the system. The results are compared to numerical simulations in the framework of the Proximity Force Approximation (PFA).

  5. Nonlinear Actuation Dynamics of Driven Casimir Oscillators with Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Broer, Wijnand; Waalkens, Holger; Svetovoy, Vitaly B.; Knoester, Jasper; Palasantzas, George

    2015-11-01

    At separations below 100 nm, Casimir-Lifshitz forces strongly influence the actuation dynamics of microelectromechanical systems (MEMS) in dry vacuum conditions. For a micron-size plate oscillating near a surface, which mimics a frequently used setup in experiments with MEMS, we show that the roughness of the surfaces significantly influences the qualitative dynamics of the oscillator. Via a combination of analytical and numerical methods, it is shown that surface roughness leads to a clear increase of initial conditions associated with chaotic motion, that eventually lead to stiction between the surfaces. Since stiction leads to a malfunction of MEMS oscillators, our results are of central interest for the design of microdevices. Moreover, stiction is of significance for fundamentally motivated experiments performed with MEMS.

  6. Casimir microsphere diclusters and three-body effects in fluids

    SciTech Connect

    Varela, Jaime; McCauley, Alexander P.; Rodriguez, Alejandro W.; Johnson, Steven G.

    2011-04-15

    Our previous paper [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was illustrated via a dicluster configuration of nontouching objects consisting of two spheres immersed in a fluid and suspended against gravity above a plate. Here, we examine these predictions from the perspective of a practical experiment and consider the influence of nonadditive, three-body, and nonzero-temperature effects on the stability of the two spheres. We conclude that the presence of Brownian motion reduces the set of experimentally realizable silicon-teflon spherical diclusters to those consisting of layered microspheres, such as the hollow core (spherical shells) considered here.

  7. Electromagnetic thermal corrections to Casimir energy

    NASA Astrophysics Data System (ADS)

    Nazari, Borzoo

    2016-07-01

    In [B. Nazari, Mod. Phys. Lett. A 31, 1650007 (2016)], we calculated finite temperature corrections to the energy of the Casimir effect of two conducting parallel plates in a general weak gravitational field. The calculations was done for the case a scalar field was present between the plates. Here we find the same results in the presence of an electromagnetic field.

  8. Casimir energies of cavities: The geometry question

    NASA Astrophysics Data System (ADS)

    Abalo, Iroko Komi Elom

    The question of how the Casimir effect relates to a system's geometry is of fundamental interest. In this thesis, we present new results for interior Casimir self-energies of various integrable geometries and show interesting systematic relations between these energies. In particular, we consider prisms with triangular cross sections (equilateral, hemiequilateral, and right isosceles triangles), triangular polygons of the same cross sections, and three tetrahedra. The triangular prisms are of infinite or finite lengths. These geometries are integrable and unique in the sense that the Laplacian eigenvalues may be found using the method of images. We obtain interior Casimir energies for these cavities subject to Dirichlet and Neumann boundary conditions. In addition to these boundary conditions, we also obtain electromagnetic Casimir energies for the infinite prisms. These energies are regularized using various consistent methods, one of which is regularization by point-splitting. Summing these modes explicitly using a cylinder kernel formulation, we show that the correct Weyl divergences are obtained. We also give closed-form results for the infinite triangular prisms. In order to understand the geometry dependence of these energies, we rederive well-known results for rectangular parallelepipeds (including the cube) and infinite rectangular prisms. The analysis of these self-energies yields intriguing results. By plotting the scaled energies against the appropriately chosen isoperimetric or isoareal quotients, we observe interesting patterns, which hint towards a systematic functional dependence. In addition to the calculation of new Casimir energies, this constitutes a significant contribution to the theoretical understanding of self-energies and has interesting implications.

  9. Curved Casimir Operators and the BGG Machinery

    NASA Astrophysics Data System (ADS)

    Cap, Andreas; Soucek, Vladimír

    2007-11-01

    We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on various special types of natural bundles. As a first application, we give a very general construction of splitting operators for parabolic geometries. Then we discuss the curved Casimir operators on differential forms with values in a tractor bundle, which nicely relates to the machinery of BGG sequences. This also gives a nice interpretation of the resolution of a finite dimensional representation by (spaces of smooth vectors in) principal series representations provided by a BGG sequence.

  10. Does the transverse electric zero mode contribute to the Casimir effect for a metal?

    PubMed

    Høye, J S; Brevik, I; Aarseth, J B; Milton, K A

    2003-05-01

    The finite-temperature Casimir free energy, entropy, and internal energy are considered anew for a conventional parallel-plate configuration, in the light of current discussions in the literature. In the case of an "ideal" metal, characterized by a refractive index equal to infinity for all frequencies, we recover, via a somewhat unconventional method, conventional results for the temperature dependence, meaning that the zero-frequency transverse electric mode contributes the same as the transverse magnetic mode. For a real metal, however, approximately obeying the Drude dispersive model at low frequencies, we find that the zero-frequency transverse electric mode does not contribute at all. This would appear to lead to an observable temperature dependence and a violation of the third law of thermodynamics. It had been suggested that the source of the difficulty was the behavior of the reflection coefficient for perpendicular polarization but we show that this is not the case. By introducing a simplified model for the Casimir interaction, consisting of two harmonic oscillators interacting via a third one, we illustrate the behavior of the transverse electric field. Numerical results are presented based on the refractive index for gold. A linear temperature correction to the Casimir force between parallel plates is indeed found which should be observable in room-temperature experiments, but this does not entail any thermodynamic inconsistency. PMID:12786229

  11. An experimental apparatus for Casimir torque measurements

    NASA Astrophysics Data System (ADS)

    Somers, David A. T.; Munday, Jeremy N.

    We have developed an experiment to measure the Casimir torque. In our experiment, a solid birefringent crystal causes a nematic liquid crystal director to rotate such that the extraordinary axes are aligned. A transparent and isotropic dielectric spacer layer is used to separate the two birefringent materials and an all-optical technique is used for detection. In this talk, we report on the progress of this experiment. Department of Physics, Institute for Research in Electronics and Applied Physics.

  12. Nonequilibrium Casimir-Polder plasmonic interactions

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Messina, Riccardo; Dalvit, Diego A. R.; Intravaia, Francesco

    2016-04-01

    We investigate how the combination of nonequilibrium effects and material properties impacts on the Casimir-Polder interaction between an atom and a surface. By addressing systems with temperature inhomogeneities and laser interactions, we show that nonmonotonous energetic landscapes can be produced where barriers and minima appear. Our treatment provides a self-consistent quantum theoretical framework for investigating the properties of a class of nonequilibrium atom-surface interactions.

  13. Casimir effect of massive vector fields

    SciTech Connect

    Teo, L. P.

    2010-11-15

    We study the Casimir effect due to a massive vector field in a system of two parallel plates made of real materials, in an arbitrary magnetodielectric background. The plane waves satisfying the Proca equations are classified into transverse modes and longitudinal modes which have different dispersion relations. Transverse modes are further divided into type I and type II corresponding to TE and TM modes in the massless case. For general magnetodielectric media, we argue that the correct boundary conditions are the continuities of H{sub ||}, {phi}, A, and {partial_derivative}{sub x}A{sub x}, where x is the direction normal to the plates. Although there are type I transverse modes that satisfy all the boundary conditions, it is impossible to find type II transverse modes or longitudinal modes that satisfy all the boundary conditions. To circumvent this problem, type II transverse modes and longitudinal modes have to be considered together. We call the contribution to the Casimir energy from type I transverse modes TE contribution, and the contribution from the superposition of type II transverse modes and longitudinal modes TM contribution. Their massless limits give, respectively, the TE and TM contributions to the Casimir energy of a massless vector field. The limit where the plates become perfectly conducting is discussed in detail. For the special case where the background has a unity refractive index, it is shown that the TM contribution to the Casimir energy can be written as a sum of contributions from two different types of modes, corresponding to type II discrete modes and type III continuum modes discussed by Barton and Dombey [G. Barton and N. Dombey, Ann. Phys. (N.Y.) 162, 231 (1985).]. For general background, this splitting does not work. The limit where both plates become infinitely permeable and the limit where one plate becomes perfectly conducting and one plate becomes infinitely permeable are also investigated.

  14. Determination of the Contact Angle Based on the Casimir Effect

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Volz, Martin P.

    2015-01-01

    On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.

  15. An improved model for the cantilever NEMS actuator including the surface energy, fringing field and Casimir effects

    NASA Astrophysics Data System (ADS)

    Farrokhabadi, Amin; Mohebshahedin, Abed; Rach, Randolph; Duan, Jun-Sheng

    2016-01-01

    The influence of the surface energy on the instability of nano-structures under the electrostatic force has been investigated in recent years by different researchers. It appears that in all prior research, the response of all structures becomes softer due to the surface effects. In the present study, the pull-in instability of a NEMS device incorporating the electrostatic force and Casimir intermolecular attraction for different values of the surface parameter is investigated by the Duan-Rach method of determined coefficients (MDC) in order to identify the remarkable effect of the surface energy. Although the obtained results verify the behavior of such structures in presence of the fringing field and the Casimir attraction same as the previous investigations, however the incremental effects of the surface energy cause the aforementioned structures to behave more stiffly in contrast.

  16. Scalar cylinder-plate and cylinder-cylinder Casimir interaction in higher dimensional spacetime

    NASA Astrophysics Data System (ADS)

    Teo, Lee-Peng

    2015-07-01

    We study the cylinder-plate and the cylinder-cylinder Casimir interaction in the (D +1 )-dimensional Minkowski spacetime due to the vacuum fluctuations of massless scalar fields. Different combinations of Dirichlet (D) and Neumann (N) boundary conditions are imposed on the two interacting objects. For the cylinder-cylinder interaction, we consider the case where one cylinder is inside the other and the case where the two cylinders are outside each other. By computing the transition matrices of the objects and the translation matrices that relate different coordinate systems, the explicit formulas for the Casimir interaction energies are derived. From these formulas, we compute the large separation and small separation asymptotic behaviors of the Casimir interaction. For the cylinder-plate interaction with R ≪L , where R is the radius of the cylinder and L is the distance from the center of the cylinder to the plate, the order of decay of the Casimir interaction only depends on the boundary conditions imposed on the cylinder. The orders are L-D +1/ln (L ) and L-D -1/ln L , respectively, for the Dirichlet and Neumann boundary conditions on the cylinder. For two cylinders with radii R1 and R2 lying parallelly outside each other, the orders of decay of the Casimir interaction energies when R1+R2≪L are L-D +1/(ln L )2, L-D -1/ln L , and L-D -3, respectively, for DD, DN/ND, and NN boundary conditions, where L is the distance between the centers of the cylinders. The more interesting and important characteristic of Casimir interaction appears at small separation. Using the perturbation technique, we compute the small separation asymptotic expansions of the Casimir interaction energies up to the next-to-leading-order terms. The leading terms coincide with the respective results obtained using the proximity force approximation, which is of order d-D +1 /2 , where d is the distance between the two objects. The results on the next-to-leading-order terms are more

  17. Electromagnetic Casimir effect for conducting plates in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Kotanjyan, A. S.; Saharian, A. A.; Nersisyan, H. A.

    2015-06-01

    Two-point functions, the mean field squared and the vacuum expectation value (VEV) of the energy-momentum tensor are investigated for the electromagnetic field in the geometry of parallel plates on background of (D+1)-dimensional dS spacetime. We assume that the field is prepared in the Bunch-Davies vacuum state and on the plates a boundary condition is imposed that is a generalization of the perfectly conducting boundary condition for an arbitrary number of spatial dimensions. It is shown that for D≥slant 4 the background gravitational field essentially changes the behavior of the VEVs at separations between the plates larger than the curvature radius of dS spacetime. At large separations, the Casimir forces are proportional to the inverse fourth power of the distance for all values of spatial dimension D≥slant 3. For D≥slant 4 this behavior is in sharp contrast with the case of plates in Minkowski bulk where the force decays as the inverse (D+1)th power of the distance.

  18. Casimir entropy for ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Korikov, C. C.

    2016-01-01

    We describe recent results concerning the compatibility of the Lifshitz theory of dispersion forces with thermodynamics. It is shown that for ferromagnetic metals described by the plasma model and for ferromagnetic dielectrics with omitted dc conductivity the Lifshitz theory satisfies the Nernst heat theorem. At the same time, for magnetic metals described by the Drude model and for ferromagnetic dielectrics with account of dc conductivity the Nernst heat theorem is violated.

  19. The repulsive Casimir effect in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Wilson, Justin; Allocca, Andrew; Galitski, Victor

    2015-03-01

    Weyl semimetals are a proposed topological material with broken time-reversal symmetry. Due to this, they experience a particular bulk Hall effect as well as a weak longitudinal conductance. In such a situation, one can see a repulsive Casimir effect between two Weyl semimetals (similar to what has been studied for topological insulators and quantum hall materials), and the effect can be tuned from attractive to repulsive with chemical potential or magnetic field. We consider, separately, a simplified bulk description and a thin film geometry taking into account the band structure. This work is supported by JQI-PFC.

  20. Ultrastrong optomechanics incorporating the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Nation, P. D.; Suh, J.; Blencowe, M. P.

    2016-02-01

    We propose a superconducting circuit comprising a dc superconducting quantum interference device with a mechanically compliant arm embedded in a coplanar microwave cavity that realizes an optomechanical system with a degenerate or nondegenerate parametric interaction generated via the dynamical Casimir effect. For experimentally feasible parameters, this setup is capable of reaching the single-photon ultrastrong-coupling regime while simultaneously possessing a parametric coupling strength approaching the renormalized cavity frequency. This opens up the possibility of observing the interplay between these two fundamental nonlinearities at the single-photon level.

  1. How to confirm and exclude different models of material properties in the Casimir effect.

    PubMed

    Mostepanenko, V M

    2015-06-01

    We formulate a method allowing us to confirm or exclude the alternative models of material properties at some definite confidence level in experiments on measuring the Casimir force. The method is based on the consideration of differences between the theoretical and mean measured quantities and the confidence intervals for these differences found at sufficiently high or low confidence probabilities. The developed method is applied to the data of four recent experiments on measuring the gradient of the Casimir force by means of a dynamic atomic force microscope. It is shown that in experiments with Au-Au and Ni-Ni test bodies, where the Drude model approach is excluded at a 95% confidence level, the plasma model approach agrees with the data at higher than 90% confidence. In experiments using an Au sphere interacting with either a Ni plate or a graphene-coated substrate, the measurement data agree with the common prediction of the Drude and plasma model approaches and theory using the polarization tensor at 90% and 80% confidence levels, respectively. PMID:25965072

  2. Dynamics of colloidal aggregation in microgravity by critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Potenza, M. A. C.; Manca, A.; Veen, S. J.; Weber, B.; Mazzoni, S.; Schall, P.; Wegdam, G. H.

    2014-06-01

    By combining static and dynamic structure factor measurements under microgravity conditions, we obtain for the first time direct insight into the internal structure of colloidal aggregates formed over a wide range of particle attractions under ideal diffusion-limited conditions. By means of near-field scattering we measure the time-dependent density-density correlation function as the aggregation process evolves, and we determine the ratio of the hydrodynamic and gyration radius to elucidate the aggregate's internal structure as a function of its fractal dimension. Surprisingly, we find that despite the large variation of particle interactions, the mass is always evenly distributed in all objects with fractal dimension ranging from 2.55 for shallow potentials to 1.78 for deep ones.

  3. Casimir interactions between magnetic flux tubes in a dense lattice

    NASA Astrophysics Data System (ADS)

    Mazur, Dan; Heyl, Jeremy S.

    2015-03-01

    We use the worldline numerics technique to study a cylindrically symmetric model of magnetic flux tubes in a dense lattice and the nonlocal Casimir forces acting between regions of magnetic flux. Within a superconductor the magnetic field is constrained within magnetic flux tubes and if the background magnetic field is on the order the quantum critical field strength, Bk=m/2 e =4.4 ×1013 Gauss, the magnetic field is likely to vary rapidly on the scales where QED effects are important. In this paper, we construct a cylindrically symmetric toy model of a flux tube lattice in which the nonlocal influence of QED on neighboring flux tubes is taken into account. We compute the effective action densities using the worldline numerics technique. The numerics predict a greater effective energy density in the region of the flux tube, but a smaller energy density in the regions between the flux tubes compared to a locally constant-field approximation. We also compute the interaction energy between a flux tube and its neighbors as the lattice spacing is reduced from infinity. Because our flux tubes exhibit compact support, this energy is entirely nonlocal and predicted to be zero in local approximations such as the derivative expansion. This Casimir-Polder energy can take positive or negative values depending on the distance between the flux tubes, and it may cause the flux tubes in neutron stars to form bunches. In addition to the above results we also discuss two important subtleties of determining the statistical uncertainties within the worldline numerics technique. Firstly, the distributions generated by the worldline ensembles are highly non-Gaussian, and so the standard error in the mean is not a good measure of the statistical uncertainty. Secondly, because the same ensemble of worldlines is used to compute the Wilson loops at different values of T and xcm, the uncertainties associated with each computed value of the integrand are strongly correlated. We recommend a

  4. Observability of the bulk Casimir effect: Can the dynamical Casimir effect be relevant to sonoluminescence?

    SciTech Connect

    Milton, K.A.; Jack Ng, Y.

    1998-05-01

    The experimental observation of intense light emission by acoustically driven, periodically collapsing bubbles of air in water (sonoluminescence) has yet to receive an adequate explanation. One of the most intriguing ideas is that the conversion of acoustic energy into photons occurs quantum mechanically, through a dynamical version of the Casimir effect. We have argued elsewhere that in the adiabatic approximation, which should be reliable here, Casimir or zero-point energies cannot possibly be large enough to be relevant. (About 10 MeV of energy is released per collapse.) However, there are sufficient subtleties involved that others have come to opposite conclusions. In particular, it has been suggested that bulk energy, that is, simply the naive sum of (1) /(2) {h_bar}{omega}, which is proportional to the volume, could be relevant. We show that this cannot be the case, based on general principles as well as specific calculations. In the process we further illuminate some of the divergence difficulties that plague Casimir calculations, with an example relevant to the bag model of hadrons. {copyright} {ital 1998} {ital The American Physical Society}

  5. Radiative dark-bright instability and the critical Casimir effect in DQW exciton condensates

    NASA Astrophysics Data System (ADS)

    Hakioğlu, T.; Özgün, Ege

    2011-07-01

    It is already well known that radiative interband interaction in the excitonic normal liquid in semiconducting double quantum wells is responsible for a negligible splitting between the energies of the dark and bright excitons enabling us to consider a four fold spin degeneracy. This has also lead many workers to naively consider the same degeneracy in studying the condensate. On the other hand, the non-perturbative aspects of this interaction in the condensed phase, e.g. its consequences on the order parameter and the dark-bright mixture in the ground state have not been explored. In this work, we demonstrate that the ground state concentrations of the dark and the bright exciton condensates are dramatically different beyond a sharp interband coupling threshold where the contribution of the bright component in the ground state vanishes. This shows that the effect of the radiative interband interaction on the condensate is nonperturbative. We also observe in the free energy a discontinuous derivative with respect to the layer separation at the entrance to the condensed phase, indicating a strong critical Casimir force. An estimate of its strength shows that it is measurable. Measuring the Casimir force is challenging, but at the same time it has a conclusive power about the presence of the long sought for condensed phase.

  6. Casimir Effect for the Piecewise Uniform String

    NASA Astrophysics Data System (ADS)

    Brevik, Iver

    The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculated. In its simplest version the string consists of two parts I and II having in general different tension and mass density, but is always obeying the condition that the velocity of sound is equal to the velocity of light. The model, first introduced by Brevik and Nielsen in 1990, possesses attractive formal properties implying that it becomes easily regularizable by several methods, the most powerful one being the contour integration method.We also consider the case where the string is divided into 2N pieces, of alternating type-I and type-II material. The free energy at finite temperature, as well as the Hagedorn temperature, are found. Finally, we make some remarks on the relationship between this kind of theory and the theory of quantum star graphs, recently considered by Fulling et al..

  7. Casimir free energy and pressure for magnetic metal films

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2016-07-01

    We examine the Casimir free energy and pressure of magnetic metal films, which are free standing in vacuum, sandwiched between two dielectric plates and deposited on either nonmagnetic or magnetic metallic plates. All calculations are performed using both the Drude and plasma model approaches to the Lifshitz theory. According to our results, the Casimir free energies and pressures calculated using both theoretical approaches are significantly different in the magnitude and sign even for thin films of several tens of nanometers thickness. Thus, for the Ni film of 47 nm thickness deposited on a Fe plate the obtained magnitudes of the Casimir free energy differ by the factor of 5866. We show that the Casimir free energy and pressure of a magnetic film calculated using the plasma model approach do not possess the classical limit but exponentially fast drop to zero with increasing film thickness. If the Drude model approach is used, the classical limit is reached for magnetic films of about 150 nm thickness, but the Casimir free energy remains nonzero in the limit of ideal metal, contrary to expectations. For the plasma model approach the Casimir free energy of a film vanishes in this case. Numerical computations are performed for the magnetic films made of Ni, nonmagnetic plates made of Cu and Al, and magnetic plates made of Fe using the tabulated optical data for the complex indexes of refraction of all metals. The obtained results can be used for a discrimination between the plasma and Drude model approaches in the Casimir physics and in the investigation of stability of thin films.

  8. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  9. Remarks on a gravitational analogue of the Casimir effect

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Mota, H. F.; Muniz, C. R.

    2016-06-01

    We consider the Casimir effect, by calculating the Casimir energy and its corrections for nonzero temperatures, of a massless scalar field in the spacetime with topology S3 × R1 (Einstein universe) containing an idealized cosmic string. The obtained results confirm the role played by the identifications imposed on the quantum field by boundary conditions arising from the topology of the gravitational field under consideration and illustrate a realization of a gravitational analogue of the Casimir effect. In this backgorund, we show that the vacuum energy can be written as a term which corresponds to the vacuum energy of the massless scalar field in the Einstein universe added by another term that formally corresponds to the vacuum energy of the electromagnetic field in the Einstein universe, multiplied by a parameter associated with the presence of the cosmic string, namely, λ = (1/α) ‑ 1, where α is a constant related to the cosmic string tension, Gμ.

  10. Analytic results for the Casimir free energy between ferromagnetic metals

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Korikov, C. C.

    2015-03-01

    We derive perturbation analytic expressions for the Casimir free energy and entropy between two dissimilar ferromagnetic plates which are applicable at arbitrarily low temperature. The dielectric properties of metals are described using either the nondissipative plasma model or the Drude model taking into account the dissipation of free charge carriers. Both cases of constant and frequency-dependent magnetic permeability are considered. It is shown that for ferromagnetic metals described by the plasma model the Casimir entropy goes to zero when the temperature vanishes, i.e., the Nernst heat theorem is satisfied. For ferromagnetic metals with perfect crystal lattices described by the Drude model the Casimir entropy goes to a nonzero constant depending on the parameters of a system with vanishing temperature, i.e., the Nernst heat theorem is violated. This constant can be positive which is quite different from the earlier investigated case of two nonmagnetic metals.

  11. Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions

    NASA Astrophysics Data System (ADS)

    Hasenbusch, Martin

    2010-09-01

    We study the thermodynamic Casimir force for films in the three-dimensional Ising universality class with symmetry-breaking boundary conditions. To this end we simulate the improved Blume-Capel model on the simple cubic lattice. We study the two cases ++ , where all spins at the boundary are fixed to +1 and +- , where the spins at one boundary are fixed to +1 while those at the other boundary are fixed to -1 . An important issue in analyzing Monte Carlo and experimental data are corrections to scaling. Since we simulate an improved model, leading corrections to scaling, which are proportional to L0-ω , where L0 is the thickness of the film and ω≈0.8 , can be ignored. This allows us to focus on corrections to scaling that are caused by the boundary conditions. The analysis of our data shows that these corrections can be accounted for by an effective thickness L0,eff=L0+Ls . Studying the correlation length of the films, the energy per area, the magnetization profile, and the thermodynamic Casimir force at the bulk critical point we find Ls=1.9(1) for our model and the boundary conditions discussed here. Using this result for Ls we find a nice collapse of the finite-size scaling curves obtained for the thicknesses L0=8.5 , 16.5, and 32.5 for the full range of temperatures that we consider. We compare our results for the finite-size scaling functions θ++ and θ+- of the thermodynamic Casimir force with those obtained in a previous Monte Carlo study, by the de Gennes-Fisher local-functional method, field theoretic methods, and an experiment with a classical binary liquid mixture.

  12. Comment on ``Casimir energies with finite-width mirrors''

    NASA Astrophysics Data System (ADS)

    Fialkovsky, Ignat; Pis'Mak, Yuriy; Markov, Vladimir

    2009-01-01

    We comment on a recent publication by Fosco, Lombardo, and Mazzitelli on Casimir energies for material slabs (“finite-width mirrors”) and report a discrepancy between results obtained there for a single mirror and some previous calculations. We provide a simple consistency check which proves that the method used by Fosco et al. is not reliable when applied to approximations of piecewise constant profile of the mirror. We also present an alternative method for calculation of the Casimir energy in such systems based on earlier work of ours. Our results coincide both with perturbation theory and with some older and more recent calculations, but differ from those of Fosco et al.

  13. Computing the Casimir energy using the point-matching method

    SciTech Connect

    Lombardo, F. C.; Mazzitelli, F. D.; Vazquez, M.; Villar, P. I.

    2009-09-15

    We use a point-matching approach to numerically compute the Casimir interaction energy for a two perfect-conductor waveguide of arbitrary section. We present the method and describe the procedure used to obtain the numerical results. At first, our technique is tested for geometries with known solutions, such as concentric and eccentric cylinders. Then, we apply the point-matching technique to compute the Casimir interaction energy for new geometries such as concentric corrugated cylinders and cylinders inside conductors with focal lines.

  14. Repulsive Casimir-Polder potential by a negative reflecting surface

    NASA Astrophysics Data System (ADS)

    Yuan, Qi-Zhang

    2015-07-01

    We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.

  15. Worldline numerics for energy-momentum tensors in Casimir geometries

    NASA Astrophysics Data System (ADS)

    Schäfer, Marco; Huet, Idrish; Gies, Holger

    2016-04-01

    We develop the worldline formalism for computations of composite operators such as the fluctuation induced energy-momentum tensor. As an example, we use a fluctuating real scalar field subject to Dirichlet boundary conditions. The resulting worldline representation can be evaluated by worldline Monte-Carlo methods in continuous spacetime. We benchmark this worldline numerical algorithm with the aid of analytically accessible single-plate and parallel-plate Casimir configurations, providing a detailed analysis of statistical and systematic errors. The method generalizes straightforwardly to arbitrary Casimir geometries and general background potentials.

  16. Topological thermal Casimir effect for spinor and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mota, H. F.; Bezerra, V. B.

    2015-12-01

    We obtain the thermal corrections to the Casimir energy for the neutrino and electromagnetic fields in Einstein and closed Friedmann universes containing a static, infinitely straight and thin cosmic string. The Casimir free energy is also obtained as well as their low and high temperature limits. It is shown that the vacuum energies associated with these fields, in the background considered, are given simply by the vacuum energies in the absence of the cosmic string multiplied by a factor that codifies the presence of this topological defect.

  17. Casimir invariants and characteristic identities for gl(∞)

    NASA Astrophysics Data System (ADS)

    Gould, M. D.; Stoilova, N. I.

    1997-09-01

    A full set of (higher-order) Casimir invariants for the Lie algebra gl(∞) is constructed and shown to be well defined in the category OFS generated by the highest weight (unitarizable) irreducible representations with only a finite number of nonzero weight components. Moreover, the eigenvalues of these Casimir invariants are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from gl(∞) are also determined and generalize those previously obtained for gl(n) by Bracken and Green [A. J. Bracken and H. S. Green, J. Math. Phys. 12, 2099 (1971); H. S. Green, ibid. 12, 2106 (1971)].

  18. Casimir invariants for systems undergoing collective motion

    SciTech Connect

    Bishop, C. Allen; Byrd, Mark S.; Wu Lianao

    2011-06-15

    Dicke states are an important class of states which exhibit collective behavior in many-body systems. They are interesting because (1) the decay rates of these states can be quite different from a set of independently evolving particles and (2) a particular class of these states are decoherence-free or noiseless with respect to a set of errors. These noiseless states, or more generally subsystems, avoid certain types of errors in quantum-information-processing devices. Here we provide a method for determining a set of transformations of these states which leave the states in their subsystems but still enable them to evolve in particular ways. For subsystems of particles undergoing collective motions, these transformations can be calculated by using essentially the same construction which is used to determine the famous Casimir invariants for quantum systems. Such invariants can be used to determine a complete set of commuting observables for a class of Dicke states as well as to identify possible logical operations for decoherence-free-noiseless subsystems. Our method is quite general and provides results for cases where the constituent particles have more than two internal states.

  19. Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces

    SciTech Connect

    Crosse, J. A.; Clements, Kate; Buhmann, Stefan Y.; Scheel, Stefan; Ellingsen, Simen A.

    2010-07-15

    The Casimir-Polder (CP) potential and transition rates of a Rydberg atom above a plane metal surface at finite temperature are discussed. As an example, the CP potential and transition rates of a rubidium atom above a copper surface at 300 K are computed. Close to the surface we show that the quadrupole correction to the force is significant and increases with increasing principal quantum number n. For both the CP potential and decay rates one finds that the dominant contribution comes from the longest wavelength transition and the potential is independent of temperature. We provide explicit scaling laws for potential and decay rates as functions of atom-surface distance and principal quantum number of the initial Rydberg state.

  20. Casimir-Lifshitz interaction between dielectrics of arbitrary geometry: A dielectric contrast perturbation theory

    SciTech Connect

    Golestanian, Ramin

    2009-07-15

    The general theory of electromagnetic-fluctuation-induced interactions in dielectric bodies as formulated by Dzyaloshinskii, Lifshitz, and Pitaevskii is rewritten as a perturbation theory in terms of the spatial contrast in (imaginary) frequency dependent dielectric function. The formulation can be used to calculate the Casimir-Lifshitz forces for dielectric objects of arbitrary geometry, as a perturbative expansion in the dielectric contrast, and could thus complement the existing theories that use perturbation in geometrical features. We find that expansion in dielectric contrast recasts the resulting Lifshitz energy into a sum of the different many-body contributions. The limit of validity and convergence properties of the perturbation theory is discussed using the example of parallel semi-infinite objects for which the exact result is known.

  1. Casimir-Polder interaction between an atom and an infinite boundary in a thermal bath

    SciTech Connect

    She Wuying; Yu Hongwei; Zhu Zhiying

    2010-01-15

    We study the energy level shift of a static two-level atom interacting with a massless scalar field in a thermal bath with the presence of a plane boundary, which gives rise to the Casimir-Polder force. We separately calculate contributions of both thermal fluctuations and radiation reaction using the formalism suggested by J. Dalibard, J. Dupont-Roc, and C. Cohen-Tannoudji [J. Phys. (France) 43, 1617 (1982); 45, 673 (1984)] and analyze in detail the behaviors of the total energy level shifts in three distinct distance regimes in both the low- and high-temperature limits. A comparison of our results with those of a uniformly accelerated atom reveals that uniformly accelerated atoms, in general, do not behave the same as static ones in a thermal bath at the Unruh temperature in terms of the atomic energy level shifts.

  2. Dynamics of the Vacuum and Casimir Analogs to the Hydrogen Atom

    NASA Technical Reports Server (NTRS)

    White, Harold; Vera, Jerry; Bailey, Paul; March, Paul; Lawrence, Tim; Sylvester, Andre; Brady, David

    2015-01-01

    This paper will discuss the current viewpoint of the vacuum state and explore the idea of a "natural" vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for all primary quantum numbers to show consistency with observation at the level of Bohr theory. A comparison with the Casimir force per unit area will be made, and an explicit function for the spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit function will be numerically modeled using the industry multi-physics tool, COMSOL(trademark), and the eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.

  3. CALL FOR PAPERS: Topical issue on the nonstationary Casimir effect and quantum systems with moving boundaries

    NASA Astrophysics Data System (ADS)

    Barton, Gabriel; Dodonov, Victor V.; Man'ko, Vladimir I.

    2004-05-01

    The past few years have seen a growing interest in quantum mechanical systems with moving boundaries. One of its manifestations was the First International Workshop on Problems with Moving Boundaries organized by Professor J Dittrich in Prague in October 2003. Another event in this series will be the (first) International Workshop on the Dynamical Casimir Effect in Padua in June 2004, organized by Professor G Carugno (see webpage www.pd.infn.it/casimir/ for details). As Guest Editors we invite researchers working in any area related to moving boundaries to contribute to a Topical Issue of Journal of Optics B: Quantum and Semiclassical Optics on the nonstationary Casimir effect and quantum systems with moving boundaries. Our intention is to cover a wide range of topics. In particular, we envisage possible contributions in the following areas: Theoretical and experimental studies on quantum fields in cavities with moving boundaries and time-dependent media. This area includes, in particular, various manifestations of the nonstationary (dynamical) Casimir effect, such as creation of quanta and modifications of Casimir force due to the motion of boundaries. Other relevant subjects are: generation and evolution of nonclassical states of fields and moving mirrors; interaction between quantized fields and atoms in cavities with moving boundaries; decoherence and entanglement due to the motion of boundaries; field quantization in nonideal cavities with moving boundaries taking into account losses and dispersion; nano-devices with moving boundaries. Quantum particles in domains confined with moving boundaries. This area includes: new exact and approximate solutions of the evolution equations (Schrödinger, Klein-Gordon, Dirac, Fokker-Planck, etc); quantum carpets and revivals; escape and tunnelling through moving barriers; evolution of quantum packets in the presence of moving boundaries; ultracold atoms (ions) in traps with moving boundaries. The topical issue is scheduled

  4. Dynamical Casimir effect and minimal temperature in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Benenti, Giuliano; Strini, Giuliano

    2015-02-01

    We study the fundamental limitations of cooling to absolute zero for a qubit, interacting with a single mode of the electromagnetic field. Our results show that the dynamical Casimir effect, which is unavoidable in any finite-time thermodynamic cycle, forbids the attainability of the absolute zero of temperature, even in the limit of an infinite number of cycles.

  5. On the dynamic instability of nanowire-fabricated electromechanical actuators in the Casimir regime: Coupled effects of surface energy and size dependency

    NASA Astrophysics Data System (ADS)

    Keivani, Maryam; Mardaneh, Mohamadreza; Koochi, Ali; Rezaei, Morteza; Abadyan, Mohamadreza

    2016-02-01

    Herein, the dynamic pull-in instability of cantilever nanoactuator fabricated from conductive cylindrical nanowire with circular cross-section is studied under the presence of Casimir force. The Gurtin-Murdoch surface elasticity in combination with the couple stress theory is employed to incorporate the coupled effects of surface energy and size phenomenon. Using Green-Lagrange strain, the higher order surface stress components are incorporated in the governing equation. The Dirichlet mode is considered and an asymptotic solution, based on the path integral approach, is applied to consider the effect of the Casimir attraction. Furthermore, the influence of structural damping is considered in the model. The nonlinear governing equation is solved using analytical reduced order method (ROM). The effects of various parameters on the dynamic pull-in parameters, phase planes and stability threshold of the actuator are demonstrated.

  6. Effect of intermolecular force on the static/dynamic behaviour of M/NEM devices

    NASA Astrophysics Data System (ADS)

    Kim, Namjung; Aluru, N. R.

    2014-12-01

    Advances made in the fabrication of micro/nano-electromechanical (M/NEM) devices over the last ten years necessitate the understanding of the attractive force that arises from quantum fluctuations (generally referred to as Casimir effects) [Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793]. The fundamental mechanisms underlying quantum fluctuations have been actively investigated through various theoretical and experimental approaches. However, the effect of the force on M/NEM devices has not been fully understood yet, especially in the transition region involving gaps ranging from 10 nm to 1 μm, due to the complexity of the force. Here, we numerically calculate the Casimir effects in M/NEM devices by using the Lifshitz formula, the general expression for the Casimir effects [Lifshitz E 1956 Sov. Phys. JETP 2 73]. Since the Casimir effects are highly dependent on the permittivity of the materials, the Kramer-Kronig relation [Landau L D, Lifshitz E M and Pitaevskii L P 1984 Electrodynamics of Continuous Media (New York: Pergamon Press)] and the optical data for metals and dielectrics are used in order to obtain the permittivity. Several simplified models for the permittivity of the materials, such as the Drude and Lorentz models [Jackson J D 1975 Classical Electrodynamics (New York: Wiley)], are also used to extrapolate the optical data. Important characteristic values of M/NEM devices, such as the pull-in voltage, pull-in gap, detachment length, etc, are calculated for devices operating in the transition region. Our results show that accurate predictions for the pull-in behaviour are possible when the Lifshitz formula is used instead of the idealized expressions for Casimir effects. We expand this study into the dynamics of M/NEM devices, so that the time and frequency response of M/NEM devices with Casimir effects can be explored.

  7. Symmetry reduction for central force problems

    NASA Astrophysics Data System (ADS)

    McLachlan, Robert I.; Modin, Klas; Verdier, Olivier

    2016-09-01

    We given an elementary illustration of symmetry reduction for central force problems, drawing phase portraits of the reduced dynamics as the intersection of Casimir and energy level sets in three dimensions. These systems form a classic example of symplectic reduction which can usefully be compared to the more commonly seen case of the free rigid body. Dedicated to the memory of Jerry Marsden, 1942–2010.

  8. Casimir-Polder effect for a stack of conductive planes

    NASA Astrophysics Data System (ADS)

    Khusnutdinov, Nail; Kashapov, Rashid; Woods, Lilia M.

    2016-07-01

    The Casimir-Polder interaction between an atom and a multilayered system composed of infinitely thin planes is considered using the ζ -function regularization approach with zero-point energies summation. As a prototype material, each plane is represented by a graphene sheet, an atomically thin layer of carbon atoms organized in a hexagonal lattice, whose optical response is described by a constant conductivity or Drude-Lorentz model conductivity. Asymptotic expressions for various separations are derived and compared to numerical calculations. We distinguish between large atom-plane distance limit, where retardation effects are prominent, and small atom-plane distance limit, where the typical van der Waals coefficient is found to be dependent on the number of graphenes and characteristic separations. The calculated energies for different atoms and graphene conductivity models brings forward the basic science of the Casimir-Polder effect and suggests ways to manipulate this interaction experimentally.

  9. Casimir effect for a scalar field via Krein quantization

    SciTech Connect

    Pejhan, H.; Tanhayi, M.R.; Takook, M.V.

    2014-02-15

    In this work, we present a rather simple method to study the Casimir effect on a spherical shell for a massless scalar field with Dirichlet boundary condition by applying the indefinite metric field (Krein) quantization technique. In this technique, the field operators are constructed from both negative and positive norm states. Having understood that negative norm states are un-physical, they are only used as a mathematical tool for renormalizing the theory and then one can get rid of them by imposing some proper physical conditions. -- Highlights: • A modification of QFT is considered to address the vacuum energy divergence problem. • Casimir energy of a spherical shell is calculated, through this approach. • In this technique, it is shown, the theory is automatically regularized.

  10. One-loop radiative corrections to the QED Casimir energy

    NASA Astrophysics Data System (ADS)

    Moazzemi, Reza; Mojavezi, Amirhosein

    2016-05-01

    In this paper, we investigate one-loop radiative corrections to the Casimir energy in the presence of two perfectly conducting parallel plates for QED theory within the renormalized perturbation theory. In fact, there are three contributions for radiative corrections to the Casimir energy, up to order α . Only the two-loop diagram, which is of order α , has been computed by Bordag et. al (Ann. Phys. 165:192, 1985), approximately. Here, up to this order, we consider corrections due to two one-loop terms, i.e., photonic and fermionic loop corrections resulting from renormalized QED Lagrangian, more precisely. Our results show that only the fermionic loop has a very minor correction and the correction of photonic loop vanishes.

  11. Formation probabilities in quantum critical chains and Casimir effect

    NASA Astrophysics Data System (ADS)

    Rajabpour, M. A.

    2015-12-01

    We find a connection between logarithmic formation probabilities of two disjoint intervals of quantum critical spin chains and the Casimir energy of two aligned needles in two-dimensional classical critical systems. Using this connection we provide a formula for the logarithmic formation probability of two disjoint intervals in generic (1 + 1)-dimensional critical systems. The quantity is depenedent on the full structure of the underlying conformal field theory and so useful to find the universality class of the critical system. The connection that we find also provides a very efficient numerical method to calculate the Casimir energy between needles using quantum critical chains. The agreement between numerical results performed on the critical transverse-field Ising model and the XX chain with our exact results is very good. We also comment on the mutual Rényi information of two disjoint intervals.

  12. Low Temperature Atomic Force Microscopy: the Electrostatic Casimir Force Across the Superconducting Phase Transition

    NASA Astrophysics Data System (ADS)

    Dunckle, Christopher Gregory

    Time Reversal can be used to time reverse and propagate the measured scattered wave- forms to a point in both time and space, ideally to a delta function delta( r⃗ )delta(t). This is commonly referred to as time reversal focusing and has led to time reversal being applied in a wide variety of fields such as medicine, communications, nondestructive evaluation (NDE), and seismology. In practice, time reversal is not optimal for generating a delta function focus if certain conditions are not upheld. For time reversal to work perfectly, the following four conditions must be present: (1) one must record for an infinitely long period of time; (2) Green's functions must be assumed to contain infinite bandwidth; (3) attenuation must be absent within the medium; and (4) one must have full coverage of the wavefield. Due to the need for these conditions, much research is being carried out in order to enhance the time reversal process in practice. We introduce deconvolution, a simple and robust approach, in order to calculate an optimal signal for back propagation designed to give an improved focus. We demonstrate experimentally that deconvolution is able to dramatically improve the temporal focus com- pared to time reversal. Through a joint project with Los Alamos National Laboratory, we compared time reversal to deconvolution. The results showed that deconvolution was able to dramatically improve the temporal focus for a source and a receiver which were both located on the surface of our object. We then continued our experimental studies of deconvolution by doing a joint project with researcher Dr. Ernst Niederleithinger from the Federal Institute for Materials Research and Testing (BAM). For this experiment, we placed multiple sources within a concrete block and recorded the source wavefields on the surface with a single re- ceiver. This experiment was designed to further test the robust nature of deconvolution and compare its temporal focusing capability to that of time reversal. All of these experimental studies show that deconvolution was able to improve the temporal focus compared to time reversal. We continued our comparison study between time reversal and deconvolution and demon- strated theoretically, experimentally, and numerically that deconvolution also improves spa- tial focusing. We give a proof explaining why one would expect improved spatial focusing when there is improved temporal focusing for both a acoustic and elastic media. We then demonstrate in our experiments the improved spatial focus achieved using deconvolution by scanning around the source location with a laser vibrometer at the time of focus for an acoustic case. Finally, we use deconvolution to locate synthetic microseismic events to prove numerically that improved temporal focusing leads to improved spatial focusing for both acoustic and elastic media.

  13. A remembrance of Hendrik Casimir in the 60th anniversary of his discovery, with some basic considerations on the Casimir effect

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio

    2009-04-01

    When the number and importance of the applications of the Casimir effect are flourishing, and on the occasion of the 60th anniversary of his beautiful discovery, as a tribute to the memory of Hendrik Brugt Gerhard Casimir I discuss here some fundamental issues related with the effect that need to be recalled from time to time, as well as on some of my personal impressions of Prof. Casimir. This article may also serve as an easy introduction for the non-specialist willing to learn something about the quantum vacuum.

  14. An improved proximity force approximation for electrostatics

    SciTech Connect

    Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  15. Van der Waals and Casimir-Polder interactions between neutrons

    NASA Astrophysics Data System (ADS)

    Babb, James F.; Hussein, Mahir S.

    2016-03-01

    We investigate the van der Waals interaction between neutrons using the theory of Casimir and Polder, wherein the potential for asymptotically large separations falls off as the inverse seventh power, and compare it to the similar interaction between a neutron and a proton, for which the asymptotic interaction falls off as the inverse fourth power. Modifications of the formalism to extend the validity to smaller separations using dynamic electric and magnetic dipole polarizability data are discussed.

  16. Scattering Theory Calculations of Casimir Energies at High Curvature

    NASA Astrophysics Data System (ADS)

    Graham, Noah; Emig, Thorsten; Forrow, Aden; Jaffe, Robert; Kardar, Mehran; Maghrebi, Mohammad; Rahi, Jamal; Shpunt, Alex

    2013-03-01

    Scattering theory provides a powerful tool for capturing the response of an object to electromagnetic charge and field fluctuations. Techniques based on scattering theory have made possible a wide range of new calculations of Casimir energies. In this approach, the Casimir interaction energy for a collection of objects can be expressed in terms of the scattering T-matrices for each object individually, combined with universal translation matrices describing the objects' relative positions and orientations. These translation matrices are derived from an expansion of the free Green's function in an appropriate coordinate system, independent of the details of the objects themselves. This method proves particularly valuable for geometries involving high curvature, such as edges and tips. I will describe this approach in general terms and then give results from several problems to which it has been applied successfully. I will also discuss new developments in scattering theory that have been motivated by these problems. I would like to request that this abstract be part of a session on Casimir physics. Supported by the National Science Foundation, the US Department of Energy, the Defense Advanced Research Projects Agency, and the Deutsche Forschungsgemeinschaft

  17. Casimir bag energy in the stochastic approximation to the pure QCD vacuum

    SciTech Connect

    Fosco, C. D.; Oxman, L. E.

    2007-01-15

    We study the Casimir contribution to the bag energy coming from gluon field fluctuations, within the context of the stochastic vacuum model of pure QCD. After formulating the problem in terms of the generating functional of field strength cumulants, we argue that the resulting predictions about the Casimir energy are compatible with the phenomenologically required bag energy term.

  18. The Casimir Effect in Biology: The Role of Molecular Quantum Electrodynamics in Linear Aggregations of Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Bradonjić, K.; Swain, J. D.; Widom, A.; Srivastava, Y. N.

    2009-04-01

    Despite the fact that red blood cells carry negative charges, under certain conditions they form cylindrical stacks, or "rouleaux". It is shown here that a form of the Casimir effect, generalizing the more well-known van der Waals forces, can provide the necessary attractive force to balance the electrostatic repulsion. Erythrocytes in plasma are modelled as negatively charged dielectric disks in an ionic solution, allowing predictions to be made about the conditions under which rouleaux will form. The results show qualitative agreement with observations which suggest that the basic idea is worth further pursuit. In addition to revealing a mechanism which may be widespread in biology at the cellular level, it also suggest new experiments and further applications to other biological systems, colloid chemistry and nanotechnology.

  19. Large-n approach to thermodynamic Casimir effects in slabs with free surfaces

    NASA Astrophysics Data System (ADS)

    Diehl, H. W.; Grüneberg, Daniel; Hasenbusch, Martin; Hucht, Alfred; Rutkevich, Sergei B.; Schmidt, Felix M.

    2014-06-01

    The classical n-vector ϕ4 model with O (n) symmetrical Hamiltonian H is considered in a ∞2×L slab geometry bounded by a pair of parallel free surface planes at separation L. Standard quadratic boundary terms implying Robin boundary conditions are included in H. The temperature-dependent scaling functions of the excess free energy and the thermodynamic Casimir force are computed in the large-n limit for temperatures T at, above, and below the bulk critical temperature Tc. Their n =∞ limits can be expressed exactly in terms of the spectrum and eigenfunctions of a self-consistent one-dimensional Schrödinger equation. This equation is solved by numerical means for two distinct discretized versions of the model: in the first ("model A"), only the coordinate z across the slab is discretized and the integrations over momenta conjugate to the lateral coordinates are regularized dimensionally; in the second ("model B"), a simple cubic lattice with periodic boundary conditions along the lateral directions is used. Renormalization-group ideas are invoked to show that, in addition to corrections to scaling ∝L-1, anomalous ones ∝L-1lnL should occur. They can be considerably decreased by taking an appropriate g →∞ (Tc→∞) limit of the ϕ4 interaction constant g. Depending on the model A or B, they can be absorbed completely or to a large extent in an effective thickness Leff=L+δL. Excellent data collapses and consistent high-precision results for both models are obtained. The approach to the low-temperature Goldstone values of the scaling functions is shown to involve logarithmic anomalies. The scaling functions exhibit all qualitative features seen in experiments on the thinning of wetting layers of 4He and Monte Carlo simulations of XY models, including a pronounced minimum of the Casimir force below Tc. The results are in conformity with various analytically known exact properties of the scaling functions.

  20. Thermal Casimir drag in fluctuating classical fields

    NASA Astrophysics Data System (ADS)

    Démery, Vincent; Dean, David S.

    2011-07-01

    A uniformly moving inclusion which locally suppresses the fluctuations of a classical thermally excited field is shown to experience a drag force that depends on the dynamics of the field. It is shown that in a number of cases the linear friction coefficient is dominated by short distance fluctuations and takes a very simple form. Examples where this drag can occur are for stiff objects, such as proteins, nonspecifically bound to more flexible ones such as polymers and membranes.

  1. A measurable force driven by an excitonic condensate

    SciTech Connect

    Hakioğlu, T.; Özgün, Ege; Günay, Mehmet

    2014-04-21

    Free energy signatures related to the measurement of an emergent force (≈10{sup −9}N) due to the exciton condensate (EC) in Double Quantum Wells are predicted and experiments are proposed to measure the effects. The EC-force is attractive and reminiscent of the Casimir force between two perfect metallic plates, but also distinctively different from it by its driving mechanism and dependence on the parameters of the condensate. The proposed experiments are based on a recent experimental work on a driven micromechanical oscillator. Conclusive observations of EC in recent experiments also provide a strong promise for the observation of the EC-force.

  2. Attractive Casimir effect in an infrared modified gluon bag model

    SciTech Connect

    Oxman, L.E.; Amaral, R.L.P.G.

    2005-12-15

    In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy.

  3. Graviton production in brane worlds by the dynamical Casimir effect

    SciTech Connect

    Durrer, Ruth; Ruser, Marcus; Vonlanthen, Marc; Wittwer, Peter

    2009-05-01

    If our Universe is a 3+1 brane in a warped 4+1 dimensional bulk so that its expansion can be understood as the motion of the brane in the bulk, the time dependence of the boundary conditions for arbitrary bulk fields can lead to particle creation via the dynamical Casimir effect. In this talk I report results for the simplest such scenario, when the only particle in the bulk is the graviton and the bulk is the 5 dimensional anti-de Sitter spacetime.

  4. Positive Casimir and Central Characters of Split Real Quantum Groups

    NASA Astrophysics Data System (ADS)

    Ip, Ivan C. H.

    2016-06-01

    We describe the generalized Casimir operators and their actions on the positive representations {mathcal{P}_λ} of the modular double of split real quantum groups {mathcal{U}_{qtilde{q}}(mathfrak{g}_mathbb{R})}. We introduce the notion of virtual highest and lowest weights, and show that the central characters admit positive values for all parameters {λ}. We show that their image defines a semi-algebraic region bounded by real points of the discriminant variety independent of q, and we discuss explicit examples in the lower rank cases.

  5. Positive Casimir and Central Characters of Split Real Quantum Groups

    NASA Astrophysics Data System (ADS)

    Ip, Ivan C. H.

    2016-05-01

    We describe the generalized Casimir operators and their actions on the positive representations {{P}_λ} of the modular double of split real quantum groups {{U}_{qtilde{q}}({g}_{R})} . We introduce the notion of virtual highest and lowest weights, and show that the central characters admit positive values for all parameters {λ} . We show that their image defines a semi-algebraic region bounded by real points of the discriminant variety independent of q, and we discuss explicit examples in the lower rank cases.

  6. Casimir Torque between Topological Insulators: a Physical Implication of the Surface State Hexagonal Warping Effect

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Chang, Kai

    We use a variation of the Lifshitz formula to calculate the anisotropic Casimir energy density between two topological insulators in the vacuum. We find that the hexagonal warping effect can induce a Casimir torque between the two topological insulators, Tc ~ sin (6 θ) with twisted angle θ. The maximal Casimir torque at θ = π / 12 is estimated to be ~10-19 N . m / rad for Bi2Te3 on the [111] surface when the distance between the two topological insulators is about 20 nm and the surface areas are taken to be ~ 1 cm2 .

  7. Selective decay by Casimir dissipation in inviscid fluids

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Holm, Darryl D.

    2013-02-01

    The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional (2D) incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in three-dimensional flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in Sadourny and Basdevant (1981 C. R. Acad. Sci. Paris 292 1061-4, 1985 J. Atm. Sci. 2.0.CO2"42 1353-63). Several examples are given and a general theory of selective decay is developed that uses the Lie-Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parametrizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies.

  8. Casimir interaction between holes in a plate

    NASA Astrophysics Data System (ADS)

    Kabat, Daniel; Karabali, Dimitra; Nair, V. P.

    2010-07-01

    We study the leading long-distance attractive force between two holes in a plate arising from a scalar field with Dirichlet boundary conditions on the plate. We use a formalism in which the interaction is governed by a nonlocal field theory which lives on the two holes. The interaction energy is proportional to Q1Q2/r7 at large separation r, where Q1 and Q2 are certain charges associated with the holes. We compute these charges for round and rectangular holes. We show that the 1/r7 behavior is universal for separations large compared to the linear dimensions of the holes, irrespective of the spin or interactions of the bosonic field. We also study the interaction between two long thin slits, for which the energy falls off as 1/r6.

  9. Casimir Effect Near the Future Singularity in Kaluza Klein Viscous Cosmology

    NASA Astrophysics Data System (ADS)

    Khadekar, G. S.

    2016-02-01

    In this paper we investigate the analytical properties of the scalar expansion θ in the cosmic fluid close to the future singularity, when the fluid possesses a constant bulk viscosity ζ in the framework of Kaluza-Klein theory of gravitation. In addition, we assume the viscous cosmology theories in the sense that the Casimir contributions to the energy density and pressure are both proportional to 1/ a 4, where a being scale factor. We also worked out the series expansion for the scalar expansion θ under the condition that the Casimir influence is small. However, near to the big rip singularity the Casimir term has to fade away and we obtain the same singularity behavior for the scalar expansion θ, energy density ρ, the scale factor a as in the Casimir-free viscous case.

  10. Casimir-Polder interaction between an atom and a periodic nanostructure

    SciTech Connect

    Yannopapas, V.; Vitanov, N. V.

    2010-04-15

    We present a theory for the calculation of the Casimir-Polder potential experienced by an atom near the surface of a nanostructure. The potential is found by means of the electrodynamic Green's tensor based on a layer-multiple-scattering method. We calculate the distance law of the Casimir-Polder potential for a monolayer of metallic and dielectric nanospheres arranged periodically on a square lattice. We find, in particular, that the Casimir-Polder potential for a metallic nanostructure is practically independent of the type of the metal from which the nanostructure is made. Also, the Casimir-Polder potential shows an exponential decay close to the nanostructure and an inverse power-law decrease away from it wherein the exponent depends on the size of the spheres of the nanostructure.

  11. Optomechanical Rydberg-atom excitation via dynamic Casimir-Polder coupling.

    PubMed

    Antezza, Mauro; Braggio, Caterina; Carugno, Giovanni; Noto, Antonio; Passante, Roberto; Rizzuto, Lucia; Ruoso, Giuseppe; Spagnolo, Salvatore

    2014-07-11

    We study the optomechanical coupling of a oscillating effective mirror with a Rydberg atomic gas, mediated by the dynamical atom-mirror Casimir-Polder force. This coupling may produce a near-field resonant atomic excitation whose probability scales as ∝(d(2)an(4)t)(2)/z(0)(8), where z(0) is the average atom-surface distance, d the atomic dipole moment, a the mirror's effective oscillation amplitude, n the initial principal quantum number, and t the time. We propose an experimental configuration to realize this system with a cold atom gas trapped at a distance ∼2×10  μm from a semiconductor substrate whose dielectric constant is periodically driven by an external laser pulse, hence realizing an effective mechanical mirror motion due to the periodic change of the substrate from transparent to reflecting. For a parabolic gas shape, this effect is predicted to excite about ∼10(2) atoms of a dilute gas of 10(3) trapped Rydberg atoms with n=75 after about 0.5  μs, which is high enough to be detected in typical Rydberg gas experimental conditions. PMID:25062178

  12. Optomechanical Rydberg-Atom Excitation via Dynamic Casimir-Polder Coupling

    NASA Astrophysics Data System (ADS)

    Antezza, Mauro; Braggio, Caterina; Carugno, Giovanni; Noto, Antonio; Passante, Roberto; Rizzuto, Lucia; Ruoso, Giuseppe; Spagnolo, Salvatore

    2014-07-01

    We study the optomechanical coupling of a oscillating effective mirror with a Rydberg atomic gas, mediated by the dynamical atom-mirror Casimir-Polder force. This coupling may produce a near-field resonant atomic excitation whose probability scales as ∝(d2an4t)2/z08, where z0 is the average atom-surface distance, d the atomic dipole moment, a the mirror's effective oscillation amplitude, n the initial principal quantum number, and t the time. We propose an experimental configuration to realize this system with a cold atom gas trapped at a distance ˜2×10 μm from a semiconductor substrate whose dielectric constant is periodically driven by an external laser pulse, hence realizing an effective mechanical mirror motion due to the periodic change of the substrate from transparent to reflecting. For a parabolic gas shape, this effect is predicted to excite about ˜102 atoms of a dilute gas of 103 trapped Rydberg atoms with n =75 after about 0.5 μs, which is high enough to be detected in typical Rydberg gas experimental conditions.

  13. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    SciTech Connect

    Biswas, Shyamal

    2015-05-15

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over {sup 4}He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.

  14. The quantum Casimir operators of {U}_q{(\\mathfrak {gl}_{n})} and their eigenvalues

    NASA Astrophysics Data System (ADS)

    Li, Junbo

    2010-08-01

    We show that the quantum Casimir operators of the quantum linear group constructed in early work of Bracken, Gould and Zhang together with one obvious central element generate the entire center of {U}_q{(\\mathfrak {gl}_{n})}. As a byproduct of the proof, we obtain intriguing new formulae for eigenvalues of these quantum Casimir operators, which are expressed in terms of the characters of a class of finite-dimensional irreducible representations of the classical general linear algebra.

  15. Entangling polaritons via dynamical Casimir effect in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Rossatto, D. Z.; Felicetti, S.; Eneriz, H.; Rico, E.; Sanz, M.; Solano, E.

    2016-03-01

    We investigate theoretically how the dynamical Casimir effect can entangle quantum systems in different coupling regimes of circuit quantum electrodynamics, and show the robustness of such entanglement generation against dissipative effects, considering experimental parameters of current technology. We consider two qubit-resonator systems, which are coupled by a SQUID driven with an external magnetic field, and explore the entire range of coupling regimes between each qubit and its resonator. In this scheme, we derive a semianalytic explanation for the entanglement generation between both superconducting qubits when they are coupled to their resonators in the strong coupling regime. For the ultrastrong and deep strong coupling regimes, we design experimentally feasible theoretical protocols to generate maximally entangled polaritonic states.

  16. Microscopic background of the Onsager-Casimir reciprocity relations

    SciTech Connect

    Titulaer, U.M.

    1988-10-01

    It has been known for some time that small deviations from the Onsager-Casimir symmetry relations are introduced when one passes from a given description of a system to a less detailed one by adiabatic elimination of fast variables. Exact validity is preserved, however, for a slightly modified form of these relations. In this paper the question is considered whether this modified Onsager symmetry is also preserved by the transition from a microscopic to a mesoscopic description, the step that introduces manifest irreversibility into the equations of motion. This question is examined in detail for a system of a few heavy oscillators coupled to a bath, a model discussed in a recent paper by van Kampen. The modified Onsager symmetry survives the transition to an irreversible description via the dense spectrum approximation. This is shown explicitly by inspection of the results obtained by van Kampen; some arguments favoring a more general validity are also briefly discussed.

  17. Quantum simulation of the dynamical Casimir effect with trapped ions

    NASA Astrophysics Data System (ADS)

    Trautmann, N.; Hauke, P.

    2016-04-01

    Quantum vacuum fluctuations are a direct manifestation of Heisenberg’s uncertainty principle. The dynamical Casimir effect (DCE) allows for the observation of these vacuum fluctuations by turning them into real, observable photons. However, the observation of this effect in a cavity QED experiment would require the rapid variation of the length of a cavity with relativistic velocities, a daunting challenge. Here, we propose a quantum simulation of the DCE using an ion chain confined in a segmented ion trap. We derive a discrete model that enables us to map the dynamics of the multimode radiation field inside a variable-length cavity to radial phonons of the ion crystal. We perform a numerical study comparing the ion-chain quantum simulation under realistic experimental parameters to an ideal Fabry–Perot cavity, demonstrating the viability of the mapping. The proposed quantum simulator, therefore, allows for probing the photon (respectively phonon) production caused by the DCE on the single photon level.

  18. Hydrodynamic fluctuation-induced forces in confined fluids.

    PubMed

    Monahan, Christopher; Naji, Ali; Horgan, Ronald; Lu, Bing-Sui; Podgornik, Rudolf

    2016-01-14

    We study thermal, fluctuation-induced hydrodynamic interaction forces in a classical, compressible, viscous fluid confined between two rigid, planar walls with no-slip boundary conditions. We calculate hydrodynamic fluctuations using the linearized, stochastic Navier-Stokes formalism of Landau and Lifshitz. The mean fluctuation-induced force acting on the fluid boundaries vanishes in this system, so we evaluate the two-point, time-dependent force correlations. The equal-time correlation function of the forces acting on a single wall gives the force variance, which we show to be finite and independent of the plate separation at large inter-plate distances. The equal-time, cross-plate force correlation, on the other hand, decays with the inverse inter-plate distance and is independent of the fluid viscosity at large distances; it turns out to be negative over the whole range of plate separations, indicating that the two bounding plates are subjected to counter-phase correlations. We show that the time-dependent force correlations exhibit damped temporal oscillations for small plate separations and a more irregular oscillatory behavior at large separations. The long-range hydrodynamic correlations reported here represent a "secondary Casimir effect", because the mean fluctuation-induced force, which represents the primary Casimir effect, is absent. PMID:26477742

  19. Casimir-Foucault interaction: Free energy and entropy at low temperature

    NASA Astrophysics Data System (ADS)

    Intravaia, Francesco; Ellingsen, Simen Å.; Henkel, Carsten

    2010-09-01

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.130405 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.

  20. Casimir free energy of metallic films: Discriminating between Drude and plasma model approaches

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2015-10-01

    We investigate the Casimir free energy of a metallic film either sandwiched between two dielectric plates or in vacuum. It is shown that even for a thin film of several tens of nanometer thickness the Casimir free energy and pressure calculated with the Lifshitz theory using the Drude model and the plasma model approaches take significantly different values and can be easily discriminated. According to our results, the classical limit is already achieved for films of about 100-nm thickness if the Drude model approach is used in calculations. In this case the classical expressions for the Casimir free energy and pressure are common for both configurations considered. If the plasma model approach is used, the classical limit is not achieved for any film thickness. Instead, the Casimir free energy and pressure are decreasing exponentially to zero. When the plasma frequency goes to infinity, the Casimir free energy obtained using the Drude model approach goes to a nonzero limit in contradiction with expectations. If the plasma model approach is used the free energy of metallic film goes to zero in the limit of infinitely large plasma frequency. All analytic results are accompanied by numerical computations performed for an Au film and sapphire plates. The possibilities to observe the predicted effects discriminating between the Drude and plasma model approaches are discussed.

  1. Characteristic properties of the Casimir free energy for metal films deposited on metallic plates

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2016-04-01

    The Casimir free energy and pressure of thin metal films deposited on metallic plates are considered using the Lifshitz theory and the Drude and plasma model approaches to the role of conduction electrons. The bound electrons are taken into account by using the complete optical data of film and plate metals. It is shown that for films of several tens of nanometers thickness the Casimir free energy and pressure calculated using these approaches differ by hundreds and thousands percent and can be easily discriminated experimentally. According to our results, the free energy of a metal film does not vanish in the limiting case of ideal metal if the Drude model approach is used in contradiction with the fact that the fluctuating field cannot penetrate in its interior. Numerical computations of the Casimir free energy and pressure of Ag and Au films deposited on Cu and Al plates have been performed using both theoretical approaches. It is shown that the free energy of a film can be both negative and positive depending on the metals used. For a Au film on a Ag plate and vice versa the Casimir energy of a film changes its sign with increasing film thickness. Applications of the obtained results for resolving the Casimir puzzle and the problem of stability of thin films are discussed.

  2. Giant vacuum forces via transmission lines

    PubMed Central

    Shahmoon, Ephraim; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry and in emerging technologies involving, e.g., microelectromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension, we find a much stronger and longer-range interaction than in free space. This enhancement may have profound implications on many-particle and bulk systems and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line. PMID:25002503

  3. Light-induced optomechanical forces in graphene waveguides

    NASA Astrophysics Data System (ADS)

    Guizal, Brahim; Antezza, Mauro

    2016-03-01

    We show that the electromagnetic forces generated by the excitations of a mode in graphene-based optomechanical systems are highly tunable by varying the graphene chemical potential, and orders of magnitude stronger than usual non-graphene-based devices, in both attractive and repulsive regimes. We analyze coupled waveguides made of two parallel graphene sheets, either suspended or supported by dielectric slabs, and study the interplay between the light-induced force and the Casimir-Lifshitz interaction. These findings pave the way to advanced possibilities of control and fast modulation for optomechanical devices and sensors at the nano- and microscales.

  4. A Green's function approach to the Casimir effect on topological insulators with planar symmetry

    NASA Astrophysics Data System (ADS)

    Martín-Ruiz, A.; Cambiaso, M.; Urrutia, L. F.

    2016-03-01

    We investigate the Casimir stress on a topological insulator (TI) between two metallic plates. The TI is assumed to be joined to one of the plates and its surface in front of the other is covered by a thin magnetic layer, which turns the TI into a full insulator. We also analyze the limit where one of the plates is sent to infinity yielding the Casimir stress between a conducting plate and a TI. To this end we employ a local approach in terms of the stress-energy tensor of the system, its vacuum expectation value being subsequently evaluated in terms of the appropriate Green's function. Finally, the construction of the renormalised vacuum stress-energy tensor in the region between the plates yields the Casimir stress. Numerical results are also presented.

  5. CASIMIR Effect in a Supersymmetry-Breaking Brane-World as Dark Energy

    SciTech Connect

    Chen, P

    2004-09-29

    A new model for the origin of dark energy is proposed based on the Casimir effect in a supersymmetry-breaking brane-world. Supersymmetry is assumed to be preserved in the bulk while broken on a 3-brane. Due to the boundary conditions imposed on the compactified extra dimensions, there is an effective Casimir energy induced on the brane. The net Casimir energy contributed from the graviton and the gravitino modes as a result of supersymmetry-breaking on the brane is identified as the observed dark energy, which in our construction is a cosmological constant. We show that the smallness of the cosmological constant, which results from the huge contrast in the extra-dimensional volumes between that associated with the 3-brane and that of the bulk, is attainable under very relaxed condition.

  6. Apparent Endless Extraction of Energy from the Vacuum by Cyclic Manipulation of Casimir Cavity Dimensions

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1999-01-01

    In 1983, Ambjorn and Wolfram produced plots of the energy density of the quantum mechanical electromagnetic fluctuations in a volume of vacuum bounded by perfectly conducting walls in the shape of a rectangular cavity of dimensions a(1), a(2), and a(3), as a function of the ratios a(2)/a(1) and a(3)/a(1). Portions of these plots are double-valued, in that they allow rectangular cavities with the same, value of a(2)/a(1), but different values of a(3)/a(1), to have the saint total energy. Using these double-valued regions of the plots, I show that it is possible to define a "Casimir Vacuum Energy Extraction Cycle" which apparently would allow for the endless extraction of energy from the vacuum in the Casimir cavity by cyclic manipulation of the Casimir cavity dimensions.

  7. Mode Summation Approach to Casimir Effect Between Two Objects

    NASA Astrophysics Data System (ADS)

    Teo, L. P.

    2012-10-01

    In the last few years, several approaches have been developed to compute the exact Casimir interaction energy between two nonplanar objects, all lead to the same functional form, which is called the TGTG formula. In this paper, we explore the TGTG formula from the perspective of mode summation approach. Both scalar fields and electromagnetic fields are considered. In this approach, one has to first solve the equation of motion to find a wave basis for each object. The two T's in the TGTG formula are T-matrices representing the Lippmann-Schwinger T-operators, one for each of the objects. Each T-matrix can be found by matching the boundary conditions imposed on the object, and it is independent of the other object. However, it depends on whether the object is interacting with an object outside it, or an object inside it. The two G's in the TGTG formula are the translation matrices, relating the wave basis of an object to the wave basis of the other object. These translation matrices only depend on the wave basis chosen for each object, and they are independent of the boundary conditions on the objects. After discussing the general theory, we apply the prescription to derive the explicit formulas for the Casimir energies for the sphere-sphere, sphere-plane, cylinder-cylinder and cylinder-plane interactions. First the T-matrices for a plane, a sphere and a cylinder are derived for the following cases: the object is imposed with Dirichlet, Neumann or general Robin boundary conditions; the object is semitransparent; and the object is a magnetodielectric object immersed in a magnetodielectric media. Then the operator approach developed by R. C. Wittman [IEEE Trans. Antennas Propag.36, 1078 (1988)] is used to derive the translation matrices. From these, the explicit TGTG formula for each of the scenarios can be written down. On the one hand, we have summarized all the TGTG formulas that have been derived so far for the sphere-sphere, cylinder-cylinder, sphere-plane and

  8. Test of Zero-point Energy Emission from Gases Flowing Through Casimir Cavities

    NASA Astrophysics Data System (ADS)

    Dmitriyeva, Olga; Moddel, Garret

    A recently issued patent [1] describes a method by which vacuum energy is extracted from gas flowing through a Casimir cavity. According to stochastic electrodynamics, the electronic orbitals in atoms are supported by the ambient zero-point (ZP) field. When the gas atoms are pumped into a Casimir cavity, where long-wavelength ZP field modes are excluded, the electrons spin down into lower energy orbitals and release energy in the process. This energy is collected in a local absorber. When the electrons exit the Casimir cavity they are re-energized to their original orbitals by the ambient ZP fields. The process is repeated to produce continuous power. In this way, the device functions like a heat pump for ZP energy, extracting it globally from the electromagnetic quantum vacuum and collecting it in a local absorber. This energy can be used for heating, or converted to electric power. We carried out a series of experiments to test whether energy is, in fact, radiated from Casimir cavities when the appropriate gas flows through them. The Casimir cavity devices we tested were nanopore polycarbonate membranes with submicron pores having a density of 3x108pores/cm2. Gas was pumped through the membranes in a stainless steel vacuum system, and emitted energy was measured using a broadband pyroelectric detector and lock-in amplifier. Emission in the infrared was clearly observed. We analyzed the emission from different gases and cavities to determine its origin. None of the conventional thermodynamic models we applied to our data fully explain it, leaving open the possibility that it is due to Casimir-cavity-induced emission from ZP fields.

  9. Anisotropic particles near surfaces: Propulsion force and friction

    NASA Astrophysics Data System (ADS)

    Müller, Boris; Krüger, Matthias

    2016-03-01

    We theoretically study the phenomenon of propulsion through Casimir forces in thermal nonequilibrium. Using fluctuational electrodynamics, we derive a formula for the propulsion force for an arbitrary small object in two scenarios: (i) for the object being isolated, and (ii) for the object being close to a planar surface. In the latter case, the propulsion force (i.e., the force parallel to the surface) increases with decreasing distance, i.e., it couples to the near field. We numerically calculate the lateral force acting on a hot spheroid near a surface and show that it can be as large as the gravitational force, thus being potentially measurable in fly-by experiments. We close by linking our results to well-known relations of linear-response theory in fluctuational electrodynamics: Looking at the friction of the anisotropic object for constant velocity, we identify a correction term that is additional to the typically used approach.

  10. Hamiltonian magnetohydrodynamics: Helically symmetric formulation, Casimir invariants, and equilibrium variational principles

    SciTech Connect

    Andreussi, T.; Morrison, P. J.; Pegoraro, F.

    2012-05-15

    The noncanonical Hamiltonian formulation of magnetohydrodynamics (MHD) is used to construct variational principles for continuously symmetric equilibrium configurations of magnetized plasma, including flow. In particular, helical symmetry is considered, and results on axial and translational symmetries are retrieved as special cases of the helical configurations. The symmetry condition, which allows the description in terms of a magnetic flux function, is exploited to deduce a symmetric form of the noncanonical Poisson bracket of MHD. Casimir invariants are then obtained directly from the Poisson bracket. Equilibria are obtained from an energy-Casimir principle and reduced forms of this variational principle are obtained by the elimination of algebraic constraints.

  11. Contractions and deformations of quasiclassical Lie algebras preserving a nondegenerate quadratic Casimir operator

    SciTech Connect

    Campoamor-Stursberg, R.

    2008-05-15

    By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.

  12. An Exact Evaluation Of The Casimir Energy In Two Planar Models

    NASA Astrophysics Data System (ADS)

    Kamath, S. G.

    2009-07-01

    The method of images is used to calculate the Casimir energy in Euclidean space with Dirichlet boundary conditions for two planar models, namely: i. the non-relativistic Landau problem for a charged particle of mass m for which—irrespective of the sign of the charge—the energy is negative, and ii. the model of a real, massive, noninteracting relativistic scalar field theory in 2+1 dimensions, for which the Casimir energy density is non-negative and is expressed in terms of the Lerch transcendent Φ(λ,n,1/2) and thepolylogarithm Lin(λ) with 0<λ<1 and n = 2, 3.

  13. Phononic Thermal Conduction Engineering for Bolometers: From Phononic Crystals to Radial Casimir Limit

    NASA Astrophysics Data System (ADS)

    Maasilta, I. J.; Puurtinen, T. A.; Tian, Y.; Geng, Z.

    2016-07-01

    We discuss two alternative and complementary means of controlling radial phonon conduction for bolometers in two dimensions: by using phononic crystals or by roughening the surface of the membranes (Casimir limit). For phononic crystals, we present new experiments with a modified geometry and a larger hole periodicity than before, achieving a low thermal conductance {˜ }2 pW/K at 150 mK. Calculations in the Casimir limit, on the other hand, show that for small detector dimensions thermal conductance below 1 fW/K seems achievable.

  14. Anti-de Sitter-Space/Conformal-Field-Theory Casimir Energy for Rotating Black Holes

    SciTech Connect

    Gibbons, G.W.; Perry, M.J.; Pope, C.N.

    2005-12-02

    We show that, if one chooses the Einstein static universe as the metric on the conformal boundary of Kerr-anti-de Sitter spacetime, then the Casimir energy of the boundary conformal field theory can easily be determined. The result is independent of the rotation parameters, and the total boundary energy then straightforwardly obeys the first law of thermodynamics. Other choices for the metric on the conformal boundary will give different, more complicated, results. As an application, we calculate the Casimir energy for free self-dual tensor multiplets in six dimensions and compare it with that of the seven-dimensional supergravity dual. They differ by a factor of 5/4.

  15. Effective field theory of thermal Casimir interactions between anisotropic particles

    NASA Astrophysics Data System (ADS)

    Haussman, Robert C.; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  16. Electrodynamic Casimir effect in a medium-filled wedge.

    PubMed

    Brevik, Iver; Ellingsen, Simen A; Milton, Kimball A

    2009-04-01

    We re-examine the electrodynamic Casimir effect in a wedge defined by two perfect conductors making dihedral angle alpha=pi/p. This system is analogous to the system defined by a cosmic string. We consider the wedge region as filled with an azimuthally symmetric material, with permittivity and permeability epsilon1, micro1 for distance from the axis ra. The results are closely related to those for a circular-cylindrical geometry, but with noninteger azimuthal quantum number mp. Apart from a zero-mode divergence, which may be removed by choosing periodic boundary conditions on the wedge, and may be made finite if dispersion is included, we obtain finite results for the free energy corresponding to changes in a for the case when the speed of light is the same inside and outside the radius a , and for weak coupling, |epsilon1-epsilon2|<1, for purely dielectric media. We also consider the radiation produced by the sudden appearance of an infinite cosmic string, situated along the cusp line of the pre-existing wedge. PMID:19518186

  17. Effective field theory of thermal Casimir interactions between anisotropic particles.

    PubMed

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies. PMID:25019720

  18. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    NASA Astrophysics Data System (ADS)

    Ranjit, Gambhir; Atherton, David P.; Stutz, Jordan H.; Cunningham, Mark; Geraci, Andrew A.

    2015-05-01

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual-beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum optomechanics.

  19. Generalized plasma-like permittivity and thermal Casimir force between real metals

    NASA Astrophysics Data System (ADS)

    Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2007-11-01

    The physical reasons why the Drude dielectric function is not compatible with the Lifshitz formula, as opposed to the generalized plasma-like permittivity, are presented. Essentially, the problem is connected with the finite size of metal plates. It is shown that the Lifshitz theory combined with the generalized plasma-like permittivity is thermodynamically consistent.

  20. Demonstration of the Casimir Force in the 0.6 to 6{mu}m Range

    SciTech Connect

    Lamoreaux, S.

    1997-01-01

    The vacuum stress between closely spaced conducting surfaces, due to the modification of the zero-point fluctuations of the electromagnetic field,has been conclusively demonstrated. The measurement employed an electromechanical system based on a torsion pendulum. Agreement with theory at the level of 5{percent} is obtained. {copyright} {ital 1996} {ital The American Physical Society}

  1. Photon emission from translational energy in atomic collisions: A dynamic Casimir-Polder effect

    SciTech Connect

    Westlund, Per-Olof; Wennerstroem, H.

    2005-06-15

    It is demonstrated, using a Liouville formalism, that the relative motion of two atoms can result in the emission of photons and conversely that photons can be absorbed to excite the relative translational motion. The mechanism responsible for the energy transfer between the radiation field and the translational motion of the atoms is a dynamic version of the long-range Casimir-Polder interaction between two fixed atoms. The phenomenon is analogous to the dynamic Casimir effect discussed for moving macro- (or meso)scopic objects and we term it the dynamic Casimir-Polder effect. The absorption or emission is a two-photon process and we find that the transition probability is proportional to the spectral density of a correlation function involving the relative translational motion of two atoms. An energy transfer only occurs for photons with energies smaller than or of the same magnitude as the thermal energy. The effect provides a microscopic mechanism for establishing thermal equilibrium between the radiation field and a gas. A sufficiently large volume of gas would be perceived as a black-body radiator. Applications of the dynamic Casimir-Polder effect might be found in the microscopic description of the cosmic low-temperature black-body radiation.

  2. Casimir problem of spherical dielectrics: numerical evaluation for general permittivities.

    PubMed

    Brevik, I; Aarseth, J B; Høye, J S

    2002-08-01

    The Casimir mutual free energy F for a system of two dielectric concentric nonmagnetic spherical bodies is calculated, at arbitrary temperatures. The present paper is a continuation of an earlier investigation [Phys. Rev. E 63, 051101 (2001)], in which F was evaluated in full only for the case of ideal metals (refractive index n= infinity ). Here, analogous results are presented for dielectrics, for some chosen values of n. Our basic calculational method stems from quantum statistical mechanics. The Debye expansions for the Riccati-Bessel functions when carried out to a high order are found to be very useful in practice (thereby overflow/underflow problems are easily avoided), and also to give accurate results even for the lowest values of l down to l=1. Another virtue of the Debye expansions is that the limiting case of metals becomes quite amenable to an analytical treatment in spherical geometry. We first discuss the zero-frequency TE mode problem from a mathematical viewpoint and then, as a physical input, invoke the actual dispersion relations. The result of our analysis, based upon the adoption of the Drude dispersion relation at low frequencies, is that the zero-frequency TE mode does not contribute for a real metal. Accordingly, F turns out in this case to be only one-half of the conventional value at high temperatures. The applicability of the Drude model in this context has, however, been questioned recently, and we do not aim at a complete discussion of this issue here. Existing experiments are low-temperature experiments, and are so far not accurate enough to distinguish between the different predictions. We also calculate explicitly the contribution from the zero-frequency mode for a dielectric. For a dielectric, this zero-frequency problem is absent. PMID:12241249

  3. Reply to "Comment on `Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors' "

    NASA Astrophysics Data System (ADS)

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2016-08-01

    We reply to the "Comment on `Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors.' " We believe the comment misrepresents our papers, and fails to provide a plausible resolution to the conflict between theory and experiment.

  4. Sensing dispersive and dissipative forces by an optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Suchoi, Oren; Buks, Eyal

    2016-07-01

    We experimentally study an optomechanical cavity that is formed between a mechanical resonator, which serves as a movable mirror, and a stationary on-fiber dielectric mirror. A significant change in the behavior of the system is observed when the distance between the fiber's tip and the mechanical resonator is made smaller than about 1 μ \\text{m} . The combined influence of Casimir force, Coulomb interaction due to trapped charges, and optomechanical coupling is theoretically analyzed. The comparison between experimental results and theory yields a partial agreement.

  5. Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, J.; MacDonald, K. F.; Zheludev, N. I.

    2012-05-01

    On the mesoscopic scale, electromagnetic forces are of fundamental importance to an enormously diverse range of systems, from optical tweezers to the adhesion of gecko toes. Here we show that a strong light-driven force may be generated when a plasmonic metamaterial is illuminated in close proximity to a dielectric or metal surface. This near-field force can exceed radiation pressure and Casimir forces to provide an optically controlled adhesion mechanism mimicking the gecko toe: At illumination intensities of just a few tens of nW/μm2 it is sufficient to overcome the Earth's gravitational pull.

  6. Pull-in instability of paddle-type and double-sided NEMS sensors under the accelerating force

    NASA Astrophysics Data System (ADS)

    Keivani, M.; Khorsandi, J.; Mokhtari, J.; Kanani, A.; Abadian, N.; Abadyan, M.

    2016-02-01

    Paddle-type and double-sided nanostructures are potential for use as accelerometers in flying vehicles and aerospace applications. Herein the pull-in instability of the cantilever paddle-type and double-sided sensors in the Casimir regime are investigated under the acceleration. The D'Alembert principle is employed to transform the accelerating system into an equivalent static system by incorporating the accelerating force. Based on the couple stress theory (CST), the size-dependent constitutive equations of the sensors are derived. The governing nonlinear equations are solved by two approaches, i.e. modified variational iteration method and finite difference method. The influences of the Casimir force, geometrical parameters, acceleration and the size phenomenon on the instability performance have been demonstrated. The obtained results are beneficial to design and fabricate paddle-type and double-sided accelerometers.

  7. Comment on "Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors"

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2016-08-01

    Recently Guérout et al. [Phys. Rev. E 93, 022108 (2016), 10.1103/PhysRevE.93.022108] advocated that the lossless plasma model has to be redefined as the limit of the Drude model when the relaxation parameter goes to zero. It was claimed that the previously used plasma model cannot correctly describe the Casimir pressure between two plates made of both nonmagnetic and magnetic metals and has to be replaced with the redefined one. We show that the suggested redefinition does not satisfy necessary physical requirements imposed on the dielectric permittivity. We also present a plausible explanation for the fact that the lossless plasma model describes the Casimir pressure correctly even though it does not match the optical and electrical properties of metals.

  8. Radiative corrections to the Casimir Pressure under the influence of temperature and external fields

    SciTech Connect

    Robaschik, D.; Scharonhorst, K.; Wieczorek, E.

    1987-03-01

    Generalizing the quantum field theory (QFT) with boundary conditions in covariant gauge to the case of finite temperature, we develop the quantum electrodynamics (QED) with boundary conditions in the Matsubara approach as well as in the thermofield formulation. We rederive the known results of the free-field theory for the pressure and the free energy of the Casimir problem. For infinitely thin plates we calculate the radiative corrections in second-order perturbation theory at finite temperature. Thereby it turns out that the calculation in of the vacuum energy at the vanishing temperature via the Z functional is much simplier than the calculation via the energy momentum tensor. This observation allows determination of the influence of static electromagnetic fields on the Casimir problem. copyright 1987 Academic Press, Inc.

  9. Casimir energy between two parallel plates and projective representation of the Poincaré group

    NASA Astrophysics Data System (ADS)

    Akita, Takamaru; Matsunaga, Mamoru

    2016-06-01

    The Casimir effect is a physical manifestation of zero point energy of quantum vacuum. In a relativistic quantum field theory, Poincaré symmetry of the theory seems, at first sight, to imply that nonzero vacuum energy is inconsistent with translational invariance of the vacuum. In the setting of two uniform boundary plates at rest, quantum fields outside the plates have (1 +2 )-dimensional Poincaré symmetry. Taking a massless scalar field as an example, we have examined the consistency between the Poincaré symmetry and the existence of the vacuum energy. We note that, in quantum theory, symmetries are represented projectively in general and show that the Casimir energy is connected to central charges appearing in the algebra of generators in the projective representations.

  10. Spontaneous decay rate and Casimir-Polder potential of an atom near a lithographed surface

    NASA Astrophysics Data System (ADS)

    Bennett, Robert

    2015-08-01

    Radiative corrections to an atom are calculated near a half-space that has arbitrarily shaped small depositions upon its surface. The method is based on calculation of the classical Green's function of the macroscopic Maxwell equations near an arbitrarily perturbed half-space using a Born-series expansion about the bare half-space Green's function. The formalism of macroscopic quantum electrodynamics is used to carry this over into the quantum picture. The broad utility of the calculated Green's function is demonstrated by using it to calculate two quantities: the spontaneous decay rate of an atom near a sharp surface feature and the Casimir-Polder potential of a finite grating deposited on a substrate. Qualitatively different behavior is found for the latter case where it is observed that the periodicity of the Casimir-Polder potential persists even outside the immediate vicinity of the grating.

  11. New aspects of the Casimir energy theory for a piecewise uniform string

    SciTech Connect

    Brevik, I.; Elizalde, E. )

    1994-05-15

    The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculated. The string consists of two parts (I and II) each having in general different tension and mass density but adjusted in such a way that the velocity of sound always equals the velocity of light. This model was introduced by Brevik and Nielsen, and the present paper contains new developments of the theory, in particular, a very simple regularization of the energy density. Using the technique introduced by van Kampen, Nijboer, and Schram, the Casimir energy is written as a contour integral, from which the energy can be readily calculated, for arbitrary length [ital s]=[ital L][sub II]/[ital L][sub I] and tension [ital x]=[ital T][sub I]/[ital T][sub II] ratios. Also, the finite temperature version of the theory is constructed.

  12. Disorder in Quantum Vacuum: Casimir-Induced Localization of Matter Waves

    SciTech Connect

    Moreno, G. A.; Messina, R.; Dalvit, D. A. R.; Lambrecht, A.; Reynaud, S.; Maia Neto, P. A.

    2010-11-19

    Disordered geometrical boundaries such as rough surfaces induce important modifications to the mode spectrum of the electromagnetic quantum vacuum. In analogy to Anderson localization of waves induced by a random potential, here we show that the Casimir-Polder interaction between a cold atomic sample and a rough surface also produces localization phenomena. These effects, that represent a macroscopic manifestation of disorder in quantum vacuum, should be observable with Bose-Einstein condensates expanding in proximity of rough surfaces.

  13. Functional determinants and Casimir energy in higher dimensional spherically symmetric background potentials

    NASA Astrophysics Data System (ADS)

    Fucci, Guglielmo; Kirsten, Klaus

    2016-07-01

    In this paper we analyze the spectral zeta function associated with a Laplace operator acting on scalar functions on an N-dimensional Euclidean space in the presence of a spherically symmetric background potential. The obtained analytic continuation of the spectral zeta function is then used to derive very simple results for the functional determinant of the operator and the Casimir energy of the scalar field.

  14. Derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors

    NASA Astrophysics Data System (ADS)

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2014-10-01

    We carefully reexamine the conditions of validity for the consistent derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors. We recover the usual expression for the lossy Drude model but not for the lossless plasma model. We give an interpretation of this new result in terms of the modes associated with the Foucault currents, which play a role in the limit of vanishing losses, in contrast to common expectations.

  15. Derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors.

    PubMed

    Guérout, R; Lambrecht, A; Milton, K A; Reynaud, S

    2014-10-01

    We carefully reexamine the conditions of validity for the consistent derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors. We recover the usual expression for the lossy Drude model but not for the lossless plasma model. We give an interpretation of this new result in terms of the modes associated with the Foucault currents, which play a role in the limit of vanishing losses, in contrast to common expectations. PMID:25375456

  16. Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states

    NASA Astrophysics Data System (ADS)

    Slater, Paul B.

    2016-05-01

    Milz and Strunz (J Phys A 48:035306, 2015) recently studied the probabilities that two-qubit and qubit-qutrit states, randomly generated with respect to Hilbert-Schmidt (Euclidean/flat) measure, are separable. They concluded that in both cases, the separability probabilities (apparently exactly 8/33 in the two-qubit scenario) hold constant over the Bloch radii (r) of the single-qubit subsystems, jumping to 1 at the pure state boundaries (r=1 ). Here, firstly, we present evidence that in the qubit-qutrit case, the separability probability is uniformly distributed, as well, over the generalized Bloch radius (R) of the qutrit subsystem. While the qubit (standard) Bloch vector is positioned in three-dimensional space, the qutrit generalized Bloch vector lives in eight-dimensional space. The radii variables r and R themselves are the lengths/norms (being square roots of quadratic Casimir invariants) of these ("coherence") vectors. Additionally, we find that not only are the qubit-qutrit separability probabilities invariant over the quadratic Casimir invariant of the qutrit subsystem, but apparently also over the cubic one—and similarly the case, more generally, with the use of random induced measure. We also investigate two-qutrit (3 × 3 ) and qubit-qudit (2 × 4 ) systems—with seemingly analogous positive partial transpose-probability invariances holding over what has been termed by Altafini the partial Casimir invariants of these systems.

  17. All-optical dynamical Casimir effect in a three-dimensional terahertz photonic band gap

    NASA Astrophysics Data System (ADS)

    Hagenmüller, David

    2016-06-01

    We identify an architecture for the observation of all-optical dynamical Casimir effect in realistic experimental conditions. We suggest that by integrating quantum wells in a three-dimensional (3D) photonic band-gap material made out of large-scale (˜200 -μ m ) germanium logs, it is possible to achieve ultrastrong light-matter coupling at terahertz frequencies for the cyclotron transition of a two-dimensional electron gas interacting with long-lived optical modes, in which vacuum Rabi splitting is comparable to the Landau level spacing. When a short, intense electromagnetic transient of duration ˜250 fs and carrying a peak magnetic field ˜5 T is applied to the structure, the cyclotron transition can be suddenly tuned on resonance with a desired photon mode, switching on the light-matter interaction and leading to a Casimir radiation emitted parallel to the quantum well plane. The radiation spectrum consists of sharp peaks with frequencies coinciding with engineered optical modes within the 3D photonic band gap, and its characteristics are extremely robust to the nonradiative damping which can be large in our system. Furthermore, the absence of continuum with associated low-energy excitations for both electromagnetic and electronic quantum states can prevent the rapid absorption of the photon flux which is likely to occur in other proposals for all-optical dynamical Casimir effect.

  18. Casimir scaling and string breaking in G{sub 2} gluodynamics

    SciTech Connect

    Wellegehausen, Bjoern H.; Wipf, Andreas; Wozar, Christian

    2011-01-01

    We study the potential energy between static charges in G{sub 2} gluodynamics in three and four dimensions. Our work is based on an efficient local hybrid Monte Carlo algorithm and a multilevel Luescher-Weisz algorithm with exponential error reduction to accurately measure expectation values of Wilson and Polyakov loops. Both in three and four dimensions we show that at intermediate scales the string tensions for charges in various G{sub 2} representations scale with the second order Casimir. In three dimensions Casimir scaling is confirmed within 4% for charges in representations of dimensions 7, 14, 27, 64, 77, 77{sup '}, 182, and 189 and in four dimensions within 5% for charges in representations of dimensions 7, 14, 27, and 64. In three dimensions we detect string breaking for charges in the two fundamental representations. The scale for string breaking agrees very well with the mass of the created pair of glue lumps. Close to the string breaking distance Casimir scaling between adjoint and defining representation is violated by 2.5%. The analytical prediction for the continuum string tension is confirmed for the defining representation in three dimensions.

  19. Magnetic field corrections to the repulsive Casimir effect at finite temperature

    NASA Astrophysics Data System (ADS)

    Erdas, Andrea

    2016-02-01

    I investigate the finite temperature Casimir effect for a charged and massless scalar field satisfying mixed (Dirichlet-Neumann) boundary conditions on a pair of plane parallel plates of infinite size. The effect of a uniform magnetic field, perpendicular to the plates, on the Helmholtz free energy and Casimir pressure is studied. The ζ-function regularization technique is used to obtain finite results. Simple analytic expressions are obtained for the zeta function and the free energy, in the limits of small plate distance, high temperature and strong magnetic field. The Casimir pressure is obtained in each of the three limits and the situation of a magnetic field present between and outside the plates, as well as that of a magnetic field present only between the plates is examined. It is discovered that, in the small plate distance and high temperature limits, the repulsive pressure is less when the magnetic field is present between the plates but not outside, than it is when the magnetic field is present between and outside the plates.

  20. Recent advances in the surface forces apparatus (SFA) technique

    NASA Astrophysics Data System (ADS)

    Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K.; Zeng, H.

    2010-03-01

    The surface forces apparatus (SFA) has been used for many years to measure the physical forces between surfaces, such as van der Waals (including Casimir) and electrostatic forces in vapors and liquids, adhesion and capillary forces, forces due to surface and liquid structure (e.g. solvation and hydration forces), polymer, steric and hydrophobic interactions, bio-specific interactions as well as friction and lubrication forces. Here we describe recent developments in the SFA technique, specifically the SFA 2000, its simplicity of operation and its extension into new areas of measurement of both static and dynamic forces as well as both normal and lateral (shear and friction) forces. The main reason for the greater simplicity of the SFA 2000 is that it operates on one central simple-cantilever spring to generate both coarse and fine motions over a total range of seven orders of magnitude (from millimeters to ångstroms). In addition, the SFA 2000 is more spacious and modulated so that new attachments and extra parts can easily be fitted for performing more extended types of experiments (e.g. extended strain friction experiments and higher rate dynamic experiments) as well as traditionally non-SFA type experiments (e.g. scanning probe microscopy and atomic force microscopy) and for studying different types of systems.

  1. Nonlinear oscillation of nanoelectro-mechanical resonators using energy balance method: considering the size effect and the van der Waals force

    NASA Astrophysics Data System (ADS)

    Ghalambaz, Mohammad; Ghalambaz, Mehdi; Edalatifar, Mohammad

    2016-03-01

    The energy balance method is utilized to analyze the oscillation of a nonlinear nanoelectro-mechanical system resonator. The resonator comprises an electrode, which is embedded between two substrates. Two types of clamped-clamped and cantilever nano-resonators are studied. The effects of the van der Waals attractions, Casimir force, the small size, the fringing field, the mid-plane stretching, and the axial load are taken into account. The governing partial differential equation of the resonator is reduced using the Galerkin method. The energy method is applied to obtain an analytical solution without considering any linearization or small parameter. The results of the present study are compared with the results available in the literature. In addition, the results of the present analytical solution are compared with the Runge-Kutta numerical results. An excellent agreement between the present analytical solution, numerical solution, and the results available in the literature was found. The influences of the van der Waals force, Casimir force, size effect, and fringing field effect on the oscillation frequency of resonators are studied. The results indicate that the presence of the intermolecular forces (van der Waals), Casimir force, and fringing field effect decreases the oscillation frequency of the resonator. In contrast, the presence of the size effect increases the oscillation frequency of the resonator.

  2. New Asymptotic Behavior of the Surface-Atom Force out of Thermal Equilibrium

    SciTech Connect

    Antezza, Mauro; Pitaevskii, Lev P.; Stringari, Sandro

    2005-09-09

    The Casimir-Polder-Lifshitz force felt by an atom near the surface of a substrate is calculated out of thermal equilibrium in terms of the dielectric function of the material and of the atomic polarizability. The new force decays like 1/z{sup 3} at large distances (i.e., slower than at equilibrium), exhibits a sizable temperature dependence, and is attractive or repulsive depending on whether the temperature of the substrate is higher or smaller than the one of the environment. Our predictions can be relevant for experiments with ultracold atomic gases. Both dielectric and metal substrates are considered.

  3. Non-additivity of molecule-surface van der Waals potentials from force measurements

    NASA Astrophysics Data System (ADS)

    Tautz, Stefan

    2014-03-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Their description as an inherently quantum mechanical phenomenon was developed for single atoms and homogeneous macroscopic bodies by London, Casimir, and Lifshitz. For intermediate-sized objects like organic molecules an atomistic description is required, but explicit first principles calculations are very difficult since correlations between many interacting electrons have to be considered. Hence, semi-empirical correction schemes are often used that simplify the vdW interaction to a sum over atom-pair potentials. A similar gap exists between successful measurements of vdW and Casimir forces for single atoms on the one hand and macroscopic bodies on the other, as comparable experiments for molecules are absent. I will present experiments in which long-range vdW potentials between a series of related molecules and a metal surface have been determined experimentally. The experiments rely on the extremely sensitive force detection of an atomic force microscope in combination with its molecular manipulation capabilities. The results allow us to confirm the asymptotic force law and to quantify the non-additive part of the vdW interaction which is particularly challenging for theory. In the present case, cooperative effects account for 10% of the total interaction. This effect is of general validity in molecules and thus relevant at the intersection of chemistry, physics, biology, and materials science.

  4. Differential Casimir measurements on an engineered sample: Some experimental details

    NASA Astrophysics Data System (ADS)

    Decca, R. S.

    2016-01-01

    An experimental technique has been recently developed to measure forces differentially between two samples with similar but not identical compositions. The implementation of this approach, with the important reduction in common background effects is reported. An Au-covered rotating sample composed of Au and Ni sectors interacts with either Au-or Ni- covered spheres. Emphasis is paid to the discussion of remnant systematic effects and their impact on the measurements. It is observed that a residual impulsive motion of the axis of rotation of the apparatus remain, contributing at the 0.1 fN level. Apparently random oscillations of the axis of rotation also increase the minimum detectable force by a factor near two. Finally, the remnant magnetic interaction between not completely demagnetized Ni is reduced beyond detection by using a spatial and temporal averaging of the contribution.

  5. Nuclear forces

    SciTech Connect

    Machleidt, R.

    2013-06-10

    These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

  6. Ultrasensitive force detection with a nanotube mechanical resonator.

    PubMed

    Moser, J; Güttinger, J; Eichler, A; Esplandiu, M J; Liu, D E; Dykman, M I; Bachtold, A

    2013-07-01

    Since the advent of atomic force microscopy, mechanical resonators have been used to study a wide variety of phenomena, including the dynamics of individual electron spins, persistent currents in normal metal rings and the Casimir force. Key to these experiments is the ability to measure weak forces. Here, we report on force sensing experiments with a sensitivity of 12 zN Hz(-1/2) at a temperature of 1.2 K using a resonator made of a carbon nanotube. An ultrasensitive method based on cross-correlated electrical noise measurements, in combination with parametric downconversion, is used to detect the low-amplitude vibrations of the nanotube induced by weak forces. The force sensitivity is quantified by applying a known capacitive force. This detection method also allows us to measure the Brownian vibrations of the nanotube down to cryogenic temperatures. Force sensing with nanotube resonators offers new opportunities for detecting and manipulating individual nuclear spins as well as for magnetometry measurements. PMID:23748195

  7. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  8. Self-adjointness and the Casimir effect with confined quantized spinor matter

    NASA Astrophysics Data System (ADS)

    Sitenko, Yurii A.

    2016-01-01

    A generalization of the MIT bag boundary condition for spinor matter is proposed basing on the requirement that the Dirac hamiltonian operator be self-adjoint. An influence of a background magnetic field on the vacuum of charged spinor matter confined between two parallel material plates is studied. Employing the most general set of boundary conditions at the plates in the case of the uniform magnetic field directed orthogonally to the plates, we find the pressure from the vacuum onto the plates. In physically plausible situations, the Casimir effect is shown to be repulsive, independently of a choice of boundary conditions and of a distance between the plates.

  9. Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors

    NASA Astrophysics Data System (ADS)

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2016-02-01

    We examine the conditions of validity for the Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic plane mirrors. As in the previously studied case of nonmagnetic materials [Guérout et al., Phys. Rev. E 90, 042125 (2014), 10.1103/PhysRevE.90.042125], we recover the usual expression for the lossy model of optical response, but not for the lossless plasma model. We also show that the modes associated with the Foucault currents play a crucial role in the limit of vanishing losses, in contrast to expectations.

  10. Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors.

    PubMed

    Guérout, R; Lambrecht, A; Milton, K A; Reynaud, S

    2016-02-01

    We examine the conditions of validity for the Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic plane mirrors. As in the previously studied case of nonmagnetic materials [Guérout et al., Phys. Rev. E 90, 042125 (2014)], we recover the usual expression for the lossy model of optical response, but not for the lossless plasma model. We also show that the modes associated with the Foucault currents play a crucial role in the limit of vanishing losses, in contrast to expectations. PMID:26986289

  11. Quasi-polaritons in Bose-Einstein condensates induced by Casimir-Polder interaction with graphene.

    PubMed

    Terças, H; Ribeiro, S; Mendonça, J T

    2015-06-01

    We consider the mechanical coupling between a two-dimensional Bose-Einstein condensate and a graphene sheet via the vacuum fluctuations of the electromagnetic field which are at the origin of the so-called Casimir-Polder potential. By deriving a self-consistent set of equations governing the dynamics of the condensate and the flexural (out-of-plane) modes of the graphene, we can show the formation of a new type of purely acoustic quasi-particle excitation, a quasi-polariton resulting from the coherent superposition of quanta of flexural and Bogoliubov modes. PMID:25966318

  12. Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio

    2012-07-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.

  13. Zeta Function Regularization in Casimir Effect Calculations and J. S. DOWKER's Contribution

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio

    2012-06-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so-called operator regularization procedure are presented.

  14. Quantum Gravitational Force Between Polarizable Objects

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark; Ford, Larry; Karouby, Johanna

    2016-03-01

    Since general relativity is a consistent low energy effective field theory, it is possible to compute quantum corrections to classical forces. Here we compute a quantum correction to the gravitational potential between a pair of polarizable objects. We study two distant bodies and compute a quantum force from their induced quadrupole moments due to two graviton exchange. The effect is in close analogy to the Casimir-Polder and London-van der Waals forces between a pair of atoms from their induced dipole moments due to two photon exchange. The new effect is computed from the shift in vacuum energy of metric fluctuations due to the polarizability of the objects. We compute the potential energy at arbitrary distances compared to the wavelengths in the system, including the far and near regimes. In the far distance, or retarded, regime, the potential energy takes on a particularly simple form: V (r) = - 3987 ℏ cG2α1 Sα2 S / (4 πr11) , where α1 S ,α2 S are the static gravitational quadrupole polarizabilities of each object. We provide estimates of this effect.

  15. Quantum Gravitational Force Between Polarizable Objects

    NASA Astrophysics Data System (ADS)

    Ford, L. H.; Hertzberg, Mark P.; Karouby, J.

    2016-04-01

    Since general relativity is a consistent low energy effective field theory, it is possible to compute quantum corrections to classical forces. Here we compute a quantum correction to the gravitational potential between a pair of polarizable objects. We study two distant bodies and compute a quantum force from their induced quadrupole moments due to two-graviton exchange. The effect is in close analogy to the Casimir-Polder and London-van der Waals forces between a pair of atoms from their induced dipole moments due to two photon exchange. The new effect is computed from the shift in vacuum energy of metric fluctuations due to the polarizability of the objects. We compute the potential energy at arbitrary distances compared to the wavelengths in the system, including the far and near regimes. In the far distance, or retarded, regime, the potential energy takes on a particularly simple form: V (r )=-3987 ℏc G2α1 Sα2 S/(4 π r11) , where α1 S , α2 S are the static gravitational quadrupole polarizabilities of each object. We provide estimates of this effect.

  16. Quantum Gravitational Force Between Polarizable Objects.

    PubMed

    Ford, L H; Hertzberg, Mark P; Karouby, J

    2016-04-15

    Since general relativity is a consistent low energy effective field theory, it is possible to compute quantum corrections to classical forces. Here we compute a quantum correction to the gravitational potential between a pair of polarizable objects. We study two distant bodies and compute a quantum force from their induced quadrupole moments due to two-graviton exchange. The effect is in close analogy to the Casimir-Polder and London-van der Waals forces between a pair of atoms from their induced dipole moments due to two photon exchange. The new effect is computed from the shift in vacuum energy of metric fluctuations due to the polarizability of the objects. We compute the potential energy at arbitrary distances compared to the wavelengths in the system, including the far and near regimes. In the far distance, or retarded, regime, the potential energy takes on a particularly simple form: V(r)=-3987ℏcG^{2}α_{1S}α_{2S}/(4πr^{11}), where α_{1S}, α_{2S} are the static gravitational quadrupole polarizabilities of each object. We provide estimates of this effect. PMID:27127955

  17. Measurements of the Critical Casimir Effect and Superfluid Density in Saturated Helium-4 Films near T(lambda)

    NASA Astrophysics Data System (ADS)

    Abraham, John Bishoy Sam

    Saturated thick films of 4Helium adsorbed on a copper substrate are studied experimentally. The film thickness is measured with an ultra-sensitive capacitance bridge capable of resolving sub-Angstrom changes in film thickness. Through the use of this capacitance bridge, the critical Casimir effect in the films is studied in the vicinity of the lambda transition. Additionally, the copper substrate assembly is used to generate and detect third sound in the film. Measurements are made of the third sound speed and attenuation in thick film from 1.6 K to the Kosterlitz-Thouless transition in the films. The position of the Kosterlitz-Thouless transition relative to the critical Casimir effect in the films is identifieded. It is discovered that the Kosterlitz-Thouless transition occurs at the beginning of the dip in film thickness due to the critical Casimir effect. When the temperature of the system is swept extremely slowly across the lambda transition, a step in film thickness is observed. This step is possibly a non-universal critical Casimir effect. A model of thermal second sound excitations is developed to describe this new observation.

  18. Electromagnetic semitransparent δ-function plate: Casimir interaction energy between parallel infinitesimally thin plates

    NASA Astrophysics Data System (ADS)

    Parashar, Prachi; Milton, Kimball A.; Shajesh, K. V.; Schaden, M.

    2012-10-01

    We derive boundary conditions for electromagnetic fields on a δ-function plate. The optical properties of such a plate are shown to necessarily be anisotropic in that they only depend on the transverse properties of the plate. We unambiguously obtain the boundary conditions for a perfectly conducting δ-function plate in the limit of infinite dielectric response. We show that a material does not “optically vanish” in the thin-plate limit. The thin-plate limit of a plasma slab of thickness d with plasma frequency ωp2=ζp/d reduces to a δ-function plate for frequencies (ω=iζ) satisfying ζd≪ζpd≪1. We show that the Casimir interaction energy between two parallel perfectly conducting δ-function plates is the same as that for parallel perfectly conducting slabs. Similarly, we show that the interaction energy between an atom and a perfect electrically conducting δ-function plate is the usual Casimir-Polder energy, which is verified by considering the thin-plate limit of dielectric slabs. The “thick” and “thin” boundary conditions considered by Bordag are found to be identical in the sense that they lead to the same electromagnetic fields.

  19. Interference phenomena in the dynamical Casimir effect for a single mirror with Robin conditions

    NASA Astrophysics Data System (ADS)

    Silva, Jeferson D. Lima; Braga, Alessandra N.; Rego, Andreson L. C.; Alves, Danilo T.

    2015-07-01

    In the literature, the interference phenomenon in the particle creation via the dynamical Casimir effect is investigated for cavities with two moving mirrors. Here, considering the Robin boundary condition (BC), we investigate the interference phenomenon produced by just a single moving mirror. Specifically, we consider a real massless scalar field in 1 +1 dimensions submitted to a Robin BC with a time-dependent Robin parameter at the instantaneous position of a moving mirror, and compute the expressions for the spectral distribution and the rate of created particles. These expressions, which include interference terms, generalize those found in the literature related to the isolated effects of a Robin BC with a time-dependent Robin parameter for a fixed mirror, or a Robin BC with a time-independent Robin parameter for a moving mirror. Differently from models where the problem of interference in the dynamical Casimir effect is considered for cavities with two Dirichlet moving mirrors, in the present model the spectrum is a continuum, and the interference pattern exhibits new features, in the sense that different regions of the spectrum can be affected in different manners by constructive or destructive effects. Furthermore, we also investigate interference in the context of superconducting circuits.

  20. Pseudo-Casimir stresses and elasticity of a confined elastomer film.

    PubMed

    Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf

    2016-05-11

    Investigations of the elastic behavior of bulk elastomers have traditionally proceeded on the basis of classical rubber elasticity, which regards chains as thermally fluctuating but disregards the thermal fluctuations of the cross-links. Herein, we consider an incompressible and flat elastomer film of an axisymmetric shape confined between two large hard co-planar substrates, with the axis of the film perpendicular to the substrates. We address the impact that thermal fluctuations of the cross-links have on the free energy of elastic deformation of the system, subject to the requirement that the fluctuating elastomer cannot detach from the substrates. We examine the behavior of the deformation free energy for one case where a rigid pinning boundary condition is applied to a class of elastic fluctuations at the confining surfaces, and another case where the same elastic fluctuations are subjected to soft "gluing" potentials. We find that there can be significant departures (both quantitative and qualitative) from the prediction of classical rubber elasticity theory when elastic fluctuations are included. Finally, we compare the character of the attractive part of the elastic fluctuation-induced, or pseudo-Casimir, stress with the standard thermal Casimir stress in confined but non-elastomeric systems, finding the same power law decay behavior when a rigid pinning boundary condition is applied; for the case of the gluing potential, we find that the leading order correction to the attractive part of the fluctuation stress decays inversely with the inter-substrate separation. PMID:27079513

  1. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  2. One Force

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald R.

    2002-04-01

    There is only one entity that can extend force and couple through space; and it should be apparent that Electromagnetism is that entity. In the cases of the nuclear strong force and the nuclear weak force, this is the same fundamental Electromagnetism manifesting itself in two different ways in the nucleus. It remains the same basic Electromagnetism. On the other hand, General Relativity fails to produce force at a distance, fails the Cavendish experiment, and does not allow an apple to fall to the ground. The result shows there is only Electromagnetism that functions through physical nature providing gravity, actions in the nucleus, as well as all other physical actions universally, including Gravity and Gravitation. There are many direct proofs of this, the same proofs as in NUCLEAR QUANTUM GRAVITATION. In contrast, General Relativity plainly relies on fallacy abstract and incoherent proofs; proofs which have now been mostly disproved. In the past it was deemed necessary by some to have an "ether" to propagate Electromagnetic waves. The fallacy concept of time space needs "space distortions" in order to cause gravity. However, Electromagnetic gravity does not have this problem. Clearly there is only ONE FORCE that causes Gravity, Electromagnetism, the Nuclear Strong Force, and the Nuclear Weak Force, and that ONE FORCE is Electromagnetism.

  3. In situ ion gun cleaning of surface adsorbates and its effect on electrostatic forces

    NASA Astrophysics Data System (ADS)

    Schafer, Robert; Xu, Jun; Mohideen, Umar

    2016-01-01

    To obtain precise measurements of the Casimir force, it is crucial to take into account the electrostatic interactions that exist between the two boundaries. Two otherwise grounded conductors will continue to have residual electrostatic effects from patch potentials existing on the surfaces. In this paper, we look at the effect of in situ cleaning of adsorbate patches, and the resultant effect on the net electrostatic potential difference between two surfaces. We find a significant reduction in the residual potential due to in situ Ar+ cleaning for the samples used.

  4. Vertical electrostatic force in MEMS cantilever IR sensor

    NASA Astrophysics Data System (ADS)

    Rezadad, Imen; Boroumand Azad, Javaneh; Smith, Evan M.; Alhasan, Ammar; Peale, Robert E.

    2014-06-01

    A MEMS cantilever IR detector that repetitively lifts from the surface under the influence of a saw-tooth electrostatic force, where the contact duty cycle is a measure of the absorbed IR radiation, is analyzed. The design is comprised of three parallel conducting plates. Fixed buried and surface plates are held at opposite potential. A moveable cantilever is biased the same as the surface plate. Calculations based on energy methods with position-dependent capacity and electrostatic induction coefficients demonstrate the upward sign of the force on the cantilever and determine the force magnitude. 2D finite element method calculations of the local fields confirm the sign of the force and determine its distribution across the cantilever. The upward force is maximized when the surface plate is slightly larger than the other two. The electrostatic repulsion is compared with Casimir sticking force to determine the maximum useful contact area. MEMS devices were fabricated and the vertical displacement of the cantilever was observed in a number of experiments. The approach may be applied also to MEMS actuators and micromirrors.

  5. Measured long-range repulsive Casimir–Lifshitz forces

    PubMed Central

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  6. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  7. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  8. Vacuum polarization and Casimir energy of a Dirac field induced by a scalar potential in one spatial dimension

    NASA Astrophysics Data System (ADS)

    Gousheh, S. S.; Mousavi, S. S.; Shahkarami, L.

    2014-08-01

    We investigate the vacuum polarization and Casimir energy of a Dirac field coupled to a scalar potential in one spatial dimension. Both of these effects have a common cause, which is the distortion of the spectrum of the Dirac field due to its coupling with the background field. Choosing the potential to be a symmetrical square well renders the problem exactly solvable, and we can obtain the whole spectrum of the system analytically. We show that the total number of states and the total density remain unchanged as compared with the free case, as one expects. Furthermore, since there is a reflection symmetry between positive- and negative-energy eigenstates of the fermion, the total density and the total number of negative and positive states remain unchanged, separately. This, along with the fact that there is no zero mode, mandate that the vacuum polarization in this model is zero for any choice of the parameters of the potential. It is important to note that although the vacuum polarization is zero due to the symmetries of the model, the Casimir energy of the system is not zero in general. In the graph of the Casimir energy as a function of the depth of the well, there is a maximum approximately when the bound energy levels change direction and move back towards their continuum of origin. The Casimir energy for a fixed value of the depth is an almost linear increasing function of the width. Moreover, the Casimir energy density (the energy density of all the negative-energy states) and the energy density of all the positive-energy states are exactly the mirror images of each other. Finally, we compute the total energy of a valence fermion present in the lowest positive-energy fermionic bound state. We find that taking into account the Casimir energy does not result in the appearance of any local minima in the graphs of the total energy as a function of the parameters of the model, and this is in sharp contrast to the cases where there are levels crossing the line

  9. Casimir effect mechanism of pairing between fermions in the vicinity of a magnetic quantum critical point

    NASA Astrophysics Data System (ADS)

    Kharkov, Yaroslav; Oleg P Sushkov Team

    We consider two spin 1 / 2 fermions in a two-dimensional magnetic system that is close to the O (3) magnetic quantum critical point (QCP) which separates magnetically ordered and disordered phases. Focusing on the disordered phase in the vicinity of the QCP, we demonstrate that the criticality results in a strong long range attraction between the fermions, with potential V (r) ~ - 1 /rα , α ~ 0 . 75 , where r is separation between the fermions. The mechanism of the enhanced attraction is similar to Casimir effect and corresponds to multi-magnon exchange processes between the fermions. While we consider a model system, the problem is originally motivated by recent experimental establishment of magnetic QCP in hole doped cuprates under the superconducting dome at doping of about 10%. We suggest the mechanism of magnetic critical enhancement of pairing in cuprates.

  10. Two schemes for characterization and detection of the squeezed light: dynamical Casimir effect and nonlinear materials

    NASA Astrophysics Data System (ADS)

    Lotfipour, H.; Allameh, Z.; Roknizadeh, R.; Heydari, H.

    2016-03-01

    Using two different schemes, a non-classical-squeezed state of light is detected and characterized. In the first scheme, in a one-dimensional cavity with a moving mirror (non-stationary Casimir effect) in the principal mode, we study the photon generation rate for two modes (squeezed and coherent state) of a driving field. Since the cavity with the moving mirror (similar to an optomechanical system) can be considered an analogue to a Kerr-like medium, in the second scheme, the probability amplitude for multi-photon absorption in a nonlinear (Kerr) medium will be quantum mechanically calculated. It is shown that because of the presence of nonlinear effects, the responses of these two systems to the squeezed versus coherent state are considerably distinguishable. The drastic difference between the results of these two states of light can be viewed as a proposal for detecting non-classical states.

  11. Quantum control and long-range quantum correlations in dynamical Casimir arrays

    NASA Astrophysics Data System (ADS)

    Stassi, Roberto; De Liberato, Simone; Garziano, Luigi; Spagnolo, Bernardo; Savasta, Salvatore

    2015-07-01

    The recent observation of the dynamical Casimir effect in a modulated superconducting waveguide, culminating thirty years of worldwide research, empowered the quantum technology community with a tool to create entangled photons on chip. In this work we show how, going beyond the single waveguide paradigm using a scalable array, it is possible to create multipartite nonclassical states, with the possibility to control the long-range quantum correlations of the emitted photons. In particular, our finite-temperature theory shows how maximally entangled NOON states can be engineered in a realistic setup. The results presented here open the way to new kinds of quantum fluids of light, arising from modulated vacuum fluctuations in linear systems.

  12. Casimir interaction between mobile impurities in one-dimensional quantum liquids

    NASA Astrophysics Data System (ADS)

    Schecter, Michael; Kamenev, Alex

    2014-03-01

    At zero temperature virtual phonons of a quantum liquid scatter off impurities and mediate a long-range interaction, analogous to the Casimir effect. At finite temperature, moving impurities also experience a correlated friction due to coherent exchange of real phonons. In one dimension the effect is universal and the induced interaction decays as 1 /r3 , much slower than the van der Waals interaction ~ 1 /r6 where r is the impurity separation. The magnitude of the effect is characterized by the product of impurity-phonon scattering amplitudes, which are seen to vanish for the class of integrable impurity models. By tuning the parameters near integrability one can thus observe an attractive interaction turned into a repulsive one.

  13. Phonon-Mediated Casimir Interaction between Mobile Impurities in One-Dimensional Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Schecter, Michael; Kamenev, Alex

    2014-04-01

    Virtual phonons of a quantum liquid scatter off impurities and mediate a long-range interaction, analogous to the Casimir effect. In one dimension the effect is universal and the induced interaction decays as 1/r3, much slower than the van der Waals interaction ˜1/r6, where r is the impurity separation. The sign of the effect is characterized by the product of impurity-phonon scattering amplitudes, which take a universal form and have been seen to vanish for several integrable impurity models. Thus, if the impurity parameters can be independently tuned to lie on opposite sides of such integrable points, one can observe an attractive interaction turned into a repulsive one.

  14. Irreversible dynamics, Onsager-Casimir symmetry, and an application to turbulence.

    PubMed

    Ottinger, Hans Christian

    2014-10-01

    Irreversible contributions to the dynamics of nonequilibrium systems can be formulated in terms of dissipative, or irreversible, brackets. We discuss the structure of such irreversible brackets in view of a degeneracy implied by energy conservation, where we consider different types of symmetries of the bracket corresponding to the Onsager and Casimir symmetries of linear irreversible thermodynamics. Slip and turbulence provide important examples of antisymmetric irreversible brackets and offer guidance for the more general modeling of irreversible dynamics without entropy production. Conversely, turbulence modeling could benefit from elucidating thermodynamic structure. The examples suggest constructing antisymmetric irreversible brackets in terms of completely antisymmetric functions of three indices. Irreversible brackets without well-defined symmetry properties can arise for rare events, causing big configurational changes. PMID:25375452

  15. Efficient near-field energy transfer and relieved Casimir stiction between sub-wavelength gratings

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Zhao, Bo; Zhang, Zhuomin

    2015-03-01

    The promising applications of near-field heat transfer in thermophotovoltaic devices, thermal imaging, thermal rectifiers, and local thermal management have motivated the search for nanostructures capable of supporting higher efficiency or greater heat flux than simple planar substances. In this work, efficient and delocalized radiative heat transfer between two aligned 1D sub-wavelength gratings is demonstrated based on the scattering theory using the rigorous coupled-wave analysis (RCWA). It is shown that the heat flux can be greatly enhanced and the accurate prediction may differ significantly from that of the geometry-based Derjaguin's proximity approximation (PA). The underlying mechanism is attributed to the excitation of hyperbolic modes that increase the energy transmission by supporting propagation of waves with large parallel wavevectors and. Besides efficient energy transport, the performance is robust, insensitive to the relative lateral shift. In addition, the Casimir stiction considering both quantum and thermal fluctuations is found to be relieved compared with bulks.

  16. Coupled-oscillator theory of dispersion and Casimir-Polder interactions

    SciTech Connect

    Berman, P. R.; Ford, G. W.; Milonni, P. W.

    2014-10-28

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength. However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r{sup −4}, a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called “remarkable formula” for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.

  17. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  18. Controlling dispersion forces between small particles with artificially created random light fields

    NASA Astrophysics Data System (ADS)

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-06-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir-Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems.

  19. Snap-through buckling of initially curved microbeam subject to an electrostatic force

    PubMed Central

    Chen, X.; Meguid, S. A.

    2015-01-01

    In this paper, the snap-through buckling of an initially curved microbeam subject to an electrostatic force, accounting for fringing field effect, is investigated. The general governing equations of the curved microbeam are developed using Euler–Bernoulli beam theory and used to develop a new criterion for the snap-through buckling of that beam. The size effect of the microbeam is accounted for using the modified couple stress theory, and intermolecular effects, such as van der Waals and Casimir forces, are also included in our snap-through formulations. The snap-through governing equations are solved using Galerkin decomposition of the deflection. The results of our work enable us to carefully characterize the snap-through behaviour of the initially curved microbeam. They further reveal the significant effect of the beam size, and to a much lesser extent, the effect of fringing field and intermolecular forces, upon the snap-through criterion for the curved beam.

  20. Casimir theory of the relativistic composite string revisited, and a formally related problem in scalar QFT

    NASA Astrophysics Data System (ADS)

    Brevik, Iver

    2012-09-01

    The main part of this paper is to present an updated review of the Casimir energy at zero and finite temperature for the transverse oscillations of a piecewise uniform closed string. We make use of three different regularizations: the cutoff method, the complex contour integration method and the zeta-function method. The string model is relativistic, in the sense that the velocity of sound is for each string piece set equal to the velocity of light. In this sense the theory is analogous to the electromagnetic theory in a dielectric medium in which the product of permittivity and permeability is equal to unity (an isorefractive medium). We demonstrate how the formalism works for a two-piece string, and for a 2N-piece string, and show how in the latter case a compact recursion relation serves to facilitate the formalism considerably. The Casimir energy turns out to be negative, and the more so the larger the number of pieces in the string. The two-piece string is quantized in D-dimensional spacetime, in the limit when the ratio between the two tensions is very small. We calculate the free energy and other thermodynamic quantities, demonstrate scaling properties, and comment finally on the meaning of the Hagedorn critical temperature for the two-piece string. Thereafter, as a novel development we present a scalar field theory for a real field in three-dimensional space in a potential rising linearly with a longitudinal coordinate z in the interval 0 < z < 1, and which is thereafter held constant on a horizontal plateau. The potential is taken as a rough model of the two-piece string potential under simplifying conditions, when the length ratio between the pieces is replaced formally with the mentioned length parameter z. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.