Science.gov

Sample records for caspase cleavage ofmajor

  1. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    SciTech Connect

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  2. Caspase-10 triggers Bid cleavage and caspase cascade activation in FasL-induced apoptosis.

    PubMed

    Milhas, Delphine; Cuvillier, Olivier; Therville, Nicole; Clavé, Patricia; Thomsen, Mogens; Levade, Thierry; Benoist, Hervé; Ségui, Bruno

    2005-05-20

    In contrast to caspase-8, controversy exists as to the ability of caspase-10 to mediate apoptosis in response to FasL. Herein, we have shown activation of caspase-10, -3, and -7 as well as B cell lymphoma-2-interacting domain (Bid) cleavage and cytochrome c release in caspase-8-deficient Jurkat (I9-2) cells treated with FasL. Apoptosis was clearly induced as illustrated by nuclear and DNA fragmentation. These events were inhibited by benzyloxycarbonyl-VAD-fluoromethyl ketone, a broad spectrum caspase inhibitor, indicating that caspases were functionally and actively involved. Benzyloxycarbonyl-AEVD-fluoromethyl ketone, a caspase-10 inhibitor, had a comparable effect. FasL-induced cell death was not completely abolished by caspase inhibitors in agreement with the existence of a cytotoxic caspase-independent pathway. In subpopulations of I9-2 cells displaying distinct caspase-10 expression levels, cell sensitivity to FasL correlated with caspase-10 expression. A robust caspase activation, Bid cleavage, and DNA fragmentation were observed in cells with high caspase-10 levels but not in those with low levels. In vitro, caspase-10, as well as caspase-8, could cleave Bid to generate active truncated Bid (p15). Altogether, our data strongly suggest that caspase-10 can serve as an initiator caspase in Fas signaling leading to Bid processing, caspase cascade activation, and apoptosis. PMID:15772077

  3. Pripper: prediction of caspase cleavage sites from whole proteomes

    PubMed Central

    2010-01-01

    Background Caspases are a family of proteases that have central functions in programmed cell death (apoptosis) and inflammation. Caspases mediate their effects through aspartate-specific cleavage of their target proteins, and at present almost 400 caspase substrates are known. There are several methods developed to predict caspase cleavage sites from individual proteins, but currently none of them can be used to predict caspase cleavage sites from multiple proteins or entire proteomes, or to use several classifiers in combination. The possibility to create a database from predicted caspase cleavage products for the whole genome could significantly aid in identifying novel caspase targets from tandem mass spectrometry based proteomic experiments. Results Three different pattern recognition classifiers were developed for predicting caspase cleavage sites from protein sequences. Evaluation of the classifiers with quality measures indicated that all of the three classifiers performed well in predicting caspase cleavage sites, and when combining different classifiers the accuracy increased further. A new tool, Pripper, was developed to utilize the classifiers and predict the caspase cut sites from an arbitrary number of input sequences. A database was constructed with the developed tool, and it was used to identify caspase target proteins from tandem mass spectrometry data from two different proteomic experiments. Both known caspase cleavage products as well as novel cleavage products were identified using the database demonstrating the usefulness of the tool. Pripper is not restricted to predicting only caspase cut sites, but it gives the possibility to scan protein sequences for any given motif(s) and predict cut sites once a suitable cut site prediction model for any other protease has been developed. Pripper is freely available and can be downloaded from http://users.utu.fi/mijopi/Pripper. Conclusions We have developed Pripper, a tool for reading an arbitrary number

  4. Sox11 Reduces Caspase-6 Cleavage and Activity

    PubMed Central

    Waldron-Roby, Elaine; Hoerauf, Janine; Arbez, Nicolas; Zhu, Shanshan; Kulcsar, Kirsten; Ross, Christopher A.

    2015-01-01

    The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP) family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117–214 and 362–395 within sox11 as well as a nuclear localization signal (NLS) all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11. PMID:26505998

  5. Modulation of Efector Caspase Cleavage Determines Response of Breast and Lung Tumor Cell Lines to Chemotherapy

    PubMed Central

    Odonkor, Charles Amoatey; Achilefu, Samuel

    2010-01-01

    In spite of compelling evidence implicating caspases in drug-induced apoptosis, how tumors modulate caspase expression and activity to overcome the cytotoxicity of anticancer agents is not fully understood. To address this issue, we investigated the role of caspases-3 and 7 in determining the response of breast and lung tumor cell lines to chemotherapy. We found that an early and late apoptotic response correlated with weak and strong cellular caspase-activation, respectively. The results highlight an underappreciated relationship of temporal apoptotic response with caspase-activation and drug-resistance. Moreover, the extent of tumor growth restoration after drug withdrawal was dependent on the degree of endogenous blockage of caspase-3 and caspase-7 cleavages. This points to an unrecognized role of caspase modulation in tumor recurrence and suggests that targeting caspase cleavage is a rational approach to increasing potency of cancer drugs. PMID:19241192

  6. Caspase Cleavage Sites in the Human Proteome: CaspDB, a Database of Predicted Substrates

    PubMed Central

    Kumar, Sonu; van Raam, Bram J.; Salvesen, Guy S.; Cieplak, Piotr

    2014-01-01

    Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency. PMID:25330111

  7. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates.

    PubMed

    Kumar, Sonu; van Raam, Bram J; Salvesen, Guy S; Cieplak, Piotr

    2014-01-01

    Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency. PMID:25330111

  8. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates

    PubMed Central

    Cieplak, Piotr

    2015-01-01

    Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency. The CaspDB database is publicly available at http://caspdb.sanfordburnham.org for all users and no login or registering is required. PMID:25578647

  9. Cleavage at the 586aa caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo

    PubMed Central

    Graham, Rona K.; Deng, Yu; Carroll, Jeffery; Vaid, Kuljeet; Cowan, Catherine; Pouladi, Mahmoud A.; Metzler, Martina; Bissada, Nagat; Wang, Lili; Faull, Richard L. M.; Gray, Michelle; Yang, X. William; Raymond, Lynn A.; Hayden, Michael R.

    2010-01-01

    Caspase cleavage of huntingtin (htt) and nuclear htt accumulation represent early neuropathological changes in brains of patients with Huntington disease (HD). However the relationship between caspase cleavage of htt and caspase activation patterns in the pathogenesis of HD remains poorly understood. The lack of a phenotype in YAC mice expressing caspase-6-resistant (C6R) mutant htt (mhtt) highlights proteolysis of htt at the 586aa caspase-6 (casp6) site as a key mechanism in the pathology of HD. The goal of this study was to investigate how proteolysis of htt at residue 586 plays a role in the pathogenesis of HD and determine whether inhibiting casp6 cleavage of mhtt alters cell death pathways in vivo. Here we demonstrate that activation of casp6, and not caspase-3, is observed before onset of motor abnormalities in human and murine HD brain. Active casp6 levels correlate directly with CAG size and inversely with age of onset. In contrast, in vivo expression of C6R mhtt attenuates caspase activation. Increased casp6 activity and apoptotic cell death is evident in primary striatal neurons expressing caspase-cleavable, but not C6R, mhtt following NMDA application. Pretreatment with a casp6 inhibitor rescues the apoptotic cell death observed in this paradigm. These data demonstrate that activation of casp6 is an early marker of disease in HD. Furthermore, these data provide a clear link between excitotoxic pathways and proteolysis and suggest that C6R mhtt protects against neurodegeneration by influencing the activation of neuronal cell death and excitotoxic pathways operative in HD. PMID:21068307

  10. Caspase-1 cleavage of transcription factor GATA4 and regulation of cardiac cell fate

    PubMed Central

    Aries, A; Whitcomb, J; Shao, W; Komati, H; Saleh, M; Nemer, M

    2014-01-01

    Caspase-1 or interleukin-1β (IL-1β) converting enzyme is a pro-inflammatory member of the caspase family. An IL-1β-independent role for caspase-1 in cardiomyocyte cell death and heart failure has emerged but the mechanisms underlying these effects are incompletely understood. Here, we report that transcription factor GATA4, a key regulator of cardiomyocyte survival and adaptive stress response is an in vivo and in vitro substrate for caspase-1. Caspase-1 mediated cleavage of GATA4 generates a truncated protein that retains the ability to bind DNA but lacks transcriptional activation domains and acts as a dominant negative regulator of GATA4. We show that caspase-1 is rapidly activated in cardiomyocyte nuclei treated with the cell death inducing drug Doxorubicin. We also find that inhibition of caspase-1 alone is as effective as complete caspase inhibition at rescuing GATA4 degradation and myocyte cell death. Caspase-1 inhibition of GATA4 transcriptional activity is rescued by HSP70, which binds directly to GATA4 and masks the caspase recognition motif. The data identify a caspase-1 nuclear substrate and suggest a direct role for caspase-1 in transcriptional regulation. This mechanism may underlie the inflammation-independent action of caspase-1 in other organs. PMID:25501827

  11. A potent reporter applicable to the monitoring of caspase-3-dependent proteolytic cleavage.

    PubMed

    Park, Kyoungsook; Kang, Hyo-Jin; Ahn, Junhyoung; Yi, So Yeon; Han, Sang Hee; Park, Hye-Jung; Chung, Sang J; Chung, Bong Hyun; Kim, Moonil

    2008-11-01

    In this study, we developed a chimeric caspase-3 substrate (GST:DEVD:EGFP) comprised of glutathione-S transferase (GST) and enhanced green fluorescent protein (EGFP) with a specialized linker peptide harboring the caspase-3 cleavage sequence, DEVD. Using this reporter, we assessed the proteolytic cleavage of the artificial caspase-3 substrate for caspase-3. The common feature of this approach is that the presence of the DEVD sequence between GST and EGFP allows for caspase-3-dependent cleavage after the Asp (D) residue, resulting in the elimination of EGFP from the GST:DEVD:EGFP reporter. To the best of our knowledge, this study reports the first application employing a chimeric protein substrate, with the similar accuracy level compared to the conventional methods such as fluorometric assays. As a result, using this GST:DEVD:EGFP reporter, caspase-3 activation based on proteolytic properties could be monitored via a variety of bioanalytical techniques such as immunoblot analysis, glutathione-agarose bead assay, and on-chip visualization, providing both technical and economical advantages over the extensively utilized fluorogenic peptide assay. Our results convincingly showed that this versatile reporter (GST:DEVD:EGFP) constitutes a useful system for the monitoring of caspase-3 activation, potentially enabling the monitoring of the proteolytic activities of different intra-cellular proteases via the substitution of the cleavage sequence within the same schematic construct. PMID:18775457

  12. Caspases indirectly regulate cleavage of the mitochondrial fusion GTPase OPA1 in neurons undergoing apoptosis

    PubMed Central

    Loucks, F. Alexandra; Schroeder, Emily K.; Zommer, Amelia E.; Hilger, Shea; Kelsey, Natalie A.; Bouchard, Ron J.; Blackstone, Craig; Brewster, Jay L.; Linseman, Daniel A.

    2009-01-01

    The critical processes of mitochondrial fission and fusion are regulated by members of the dynamin family of GTPases. Imbalances in mitochondrial fission and fusion contribute to neuronal cell death. For example, increased fission mediated by the dynamin-related GTPase, Drp1, or decreased fusion resulting from inactivating mutations in the OPA1 GTPase, cause neuronal apoptosis and/or neurodegeneration. Recent studies indicate that post-translational processing regulates OPA1 function in non-neuronal cells and moreover, aberrant processing of OPA1 is induced during apoptosis. To date, the post-translational processing of OPA1 during neuronal apoptosis has not been examined. Here, we show that cerebellar granule neurons (CGNs) or neuroblastoma cells exposed to pro-apoptotic stressors display a novel N-terminal cleavage of OPA1 which is blocked by either pan-caspase or caspase-8 selective inhibitors. OPA1 cleavage occurs concurrently with mitochondrial fragmentation and cytochrome c release in CGNs deprived of depolarizing potassium (5K condition). Although a caspase-8 selective inhibitor prevents both 5K-induced OPA1 cleavage and mitochondrial fragmentation, recombinant caspase-8 fails to cleave OPA1 in vitro. In marked contrast, either caspase-8 or caspase-3 stimulates OPA1 cleavage in digitonin-permeabilized rat brain mitochondria, suggesting that OPA1 is cleaved by an intermembrane space protease which is regulated by active caspases. Finally, the N-terminal truncation of OPA1 induced during neuronal apoptosis removes an essential residue (K301) within the GTPase domain. These data are the first to demonstrate OPA1 cleavage during neuronal apoptosis and they implicate caspases as indirect regulators of OPA1 processing in degenerating neurons. PMID:19046944

  13. Proteinase 3–dependent caspase-3 cleavage modulates neutrophil death and inflammation

    PubMed Central

    Loison, Fabien; Zhu, Haiyan; Karatepe, Kutay; Kasorn, Anongnard; Liu, Peng; Ye, Keqiang; Zhou, Jiaxi; Cao, Shannan; Gong, Haiyan; Jenne, Dieter E.; Remold-O’Donnell, Eileen; Xu, Yuanfu; Luo, Hongbo R.

    2014-01-01

    Caspase-3–mediated spontaneous death in neutrophils is a prototype of programmed cell death and is critical for modulating physiopathological inflammatory responses; however, the underlying regulatory pathways remain ill defined. Here we determined that in aging neutrophils, the cleavage and activation of caspase-3 is independent of the canonical caspase-8– or caspase-9–mediated pathway. Instead, caspase-3 activation was mediated by serine protease proteinase 3 (PR3), which is present in the cytosol of aging neutrophils. Specifically, PR3 cleaved procaspase-3 at a site upstream of the canonical caspase-9 cleavage site. In mature neutrophils, PR3 was sequestered in granules and released during aging via lysosomal membrane permeabilization (LMP), leading to procaspase-3 cleavage and apoptosis. Pharmacological inhibition or knockdown of PR3 delayed neutrophil death in vitro and consistently delayed neutrophil death and augmented neutrophil accumulation at sites of inflammation in a murine model of peritonitis. Adoptive transfer of both WT and PR3-deficient neutrophils revealed that the delayed death of neutrophils lacking PR3 is due to an altered intrinsic apoptosis/survival pathway, rather than the inflammatory microenvironment. The presence of the suicide protease inhibitor SERPINB1 counterbalanced the protease activity of PR3 in aging neutrophils, and deletion of Serpinb1 accelerated neutrophil death. Taken together, our results reveal that PR3-mediated caspase-3 activation controls neutrophil spontaneous death. PMID:25180606

  14. Appoptosin-Mediated Caspase Cleavage of Tau Contributes to Progressive Supranuclear Palsy Pathogenesis.

    PubMed

    Zhao, Yingjun; Tseng, I-Chu; Heyser, Charles J; Rockenstein, Edward; Mante, Michael; Adame, Anthony; Zheng, Qiuyang; Huang, Timothy; Wang, Xin; Arslan, Pharhad E; Chakrabarty, Paramita; Wu, Chengbiao; Bu, Guojun; Mobley, William C; Zhang, Yun-Wu; St George-Hyslop, Peter; Masliah, Eliezer; Fraser, Paul; Xu, Huaxi

    2015-09-01

    Progressive supranuclear palsy (PSP) is a movement disorder characterized by tau neuropathology where the underlying mechanism is unknown. An SNP (rs1768208 C/T) has been identified as a strong risk factor for PSP. Here, we identified a much higher T-allele occurrence and increased levels of the pro-apoptotic protein appoptosin in PSP patients. Elevations in appoptosin correlate with activated caspase-3 and caspase-cleaved tau levels. Appoptosin overexpression increased caspase-mediated tau cleavage, tau aggregation, and synaptic dysfunction, whereas appoptosin deficiency reduced tau cleavage and aggregation. Appoptosin transduction impaired multiple motor functions and exacerbated neuropathology in tau-transgenic mice in a manner dependent on caspase-3 and tau. Increased appoptosin and caspase-3-cleaved tau were also observed in brain samples of patients with Alzheimer's disease and frontotemporal dementia with tau inclusions. Our findings reveal a novel role for appoptosin in neurological disorders with tau neuropathology, linking caspase-3-mediated tau cleavage to synaptic dysfunction and behavioral/motor defects. PMID:26335643

  15. Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif.

    PubMed

    Belizario, José E; Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João Marcelo

    2008-06-01

    The degradation is critical to activation and deactivation of regulatory proteins involved in signaling pathways to cell growth, differentiation, stress responses and physiological cell death. Proteins carry domains and sequence motifs that function as prerequisite for their proteolysis by either individual proteases or the 26S multicomplex proteasomes. Two models for entry of substrates into the proteasomes have been considered. In one model, it is proposed that the ubiquitin chain attached to the protein serves as recognition element to drag them into the 19S regulatory particle, which promotes the unfolding required to its access into the 20S catalytic chamber. In second model, it is proposed that an unstructured tail located at amino or carboxyl terminus directly track proteins into the 26S/20S proteasomes. Caspases are cysteinyl aspartate proteases that control diverse signaling pathways, promoting the cleavage at one or two sites of hundreds of structural and regulatory protein substrates. Caspase cleavage sites are commonly found within PEST motifs, which are segments rich in proline (P), glutamic acid (D), aspartic acid (E) and serine (S) or threonine (T) residues. Considering that N- and C- terminal peptide carrying PEST motifs form disordered loops in the globular proteins after caspase cleavage, it is postulated here that these exposed termini serve as unstructured initiation site, coupling caspase cleavage and ubiquitin-proteasome dependent and independent degradation of short-lived proteins. This could explain the inherent susceptibility to proteolysis among proteins containing PEST motif. PMID:18537676

  16. Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells

    PubMed Central

    Dick, Sarah A.; Chang, Natasha C.; Dumont, Nicolas A.; Bell, Ryan A. V.; Putinski, Charis; Kawabe, Yoichi; Litchfield, David W.; Rudnicki, Michael A.; Megeney, Lynn A.

    2015-01-01

    Compensatory growth and regeneration of skeletal muscle is dependent on the resident stem cell population, satellite cells (SCs). Self-renewal and maintenance of the SC niche is coordinated by the paired-box transcription factor Pax7, and yet continued expression of this protein inhibits the myoblast differentiation program. As such, the reduction or removal of Pax7 may denote a key prerequisite for SCs to abandon self-renewal and acquire differentiation competence. Here, we identify caspase 3 cleavage inactivation of Pax7 as a crucial step for terminating the self-renewal process. Inhibition of caspase 3 results in elevated Pax7 protein and SC self-renewal, whereas caspase activation leads to Pax7 cleavage and initiation of the myogenic differentiation program. Moreover, in vivo inhibition of caspase 3 activity leads to a profound disruption in skeletal muscle regeneration with an accumulation of SCs within the niche. We have also noted that casein kinase 2 (CK2)-directed phosphorylation of Pax7 attenuates caspase-directed cleavage. Together, these results demonstrate that SC fate is dependent on opposing posttranslational modifications of the Pax7 protein. PMID:26372956

  17. RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1

    PubMed Central

    Siddiqui, Mohammad Adnan; Mukherjee, Sushovita; Manivannan, Praveen; Malathi, Krishnamurthy

    2015-01-01

    Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types. However, the mechanism by which RNase L mediates crosstalk between these two pathways remains unclear. Here we show that small dsRNAs produced by RNase L promote a switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1, terminating autophagy. The caspase 3-cleaved C-terminal fragment of Beclin-1 enhances apoptosis by translocating to the mitochondria along with proapoptotic protein, Bax, and inducing release of cytochrome C to the cytosol. Cleavage of Beclin-1 determines switch to apoptosis since expression of caspase-resistant Beclin-1 inhibits apoptosis and sustains autophagy. Moreover, inhibiting RNase L-induced autophagy promotes cell death and inhibiting apoptosis prolongs autophagy in a cross-inhibitory mechanism. Our results demonstrate a novel role of RNase L generated small RNAs in cross-talk between autophagy and apoptosis that impacts the fate of cells during viral infections and cancer. PMID:26263979

  18. RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1.

    PubMed

    Siddiqui, Mohammad Adnan; Mukherjee, Sushovita; Manivannan, Praveen; Malathi, Krishnamurthy

    2015-01-01

    Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types. However, the mechanism by which RNase L mediates crosstalk between these two pathways remains unclear. Here we show that small dsRNAs produced by RNase L promote a switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1, terminating autophagy. The caspase 3-cleaved C-terminal fragment of Beclin-1 enhances apoptosis by translocating to the mitochondria along with proapoptotic protein, Bax, and inducing release of cytochrome C to the cytosol. Cleavage of Beclin-1 determines switch to apoptosis since expression of caspase-resistant Beclin-1 inhibits apoptosis and sustains autophagy. Moreover, inhibiting RNase L-induced autophagy promotes cell death and inhibiting apoptosis prolongs autophagy in a cross-inhibitory mechanism. Our results demonstrate a novel role of RNase L generated small RNAs in cross-talk between autophagy and apoptosis that impacts the fate of cells during viral infections and cancer. PMID:26263979

  19. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes.

    PubMed

    Guyenet, Stephan J; Nguyen, Hong T; Hwang, Bang H; Schwartz, Michael W; Baskin, Denis G; Thaler, Joshua P

    2013-05-28

    Astrocytes respond to multiple forms of central nervous system (CNS) injury by entering a reactive state characterized by morphological changes and a specific pattern of altered protein expression. Termed astrogliosis, this response has been shown to strongly influence the injury response and functional recovery of CNS tissues. This pattern of CNS inflammation and injury associated with astrogliosis has recently been found to occur in the energy homeostasis centers of the hypothalamus during diet-induced obesity (DIO) in rodent models, but the characterization of the astrocyte response remains incomplete. Here, we report that astrocytes in the mediobasal hypothalamus respond robustly and rapidly to purified high-fat diet (HFD) feeding by cleaving caspase-3, a protease whose cleavage is often associated with apoptosis. Although obesity develops in HFD-fed rats by day 14, caspase-3 cleavage occurs by day 3, prior to the development of obesity, suggesting the possibility that it could play a causal role in the hypothalamic neuropathology and fat gain observed in DIO. Caspase-3 cleavage is not associated with an increase in the rate of apoptosis, as determined by TUNEL staining, suggesting it plays a non-apoptotic role analogous to the response to excitotoxic neuron injury. Our results indicate that astrocytes in the mediobasal hypothalamus respond rapidly and robustly to HFD feeding, activating caspase-3 in the absence of apoptosis, a process that has the potential to influence the course of DIO. PMID:23548599

  20. Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures.

    PubMed

    Henshall, D C; Bonislawski, D P; Skradski, S L; Lan, J Q; Meller, R; Simon, R P

    2001-08-01

    The mechanism by which seizures induce neuronal death is not completely understood. Caspase-8 is a key initiator of apoptosis via extrinsic, death receptor-mediated pathways; we therefore investigated its role in mediating seizure-induced neuronal death evoked by unilateral kainic acid injection into the amygdala of the rat, terminated after 40 min by diazepam. We demonstrate that cleaved (p18) caspase-8 was detectable immediately following seizure termination coincident with an increase in cleavage of the substrate Ile-Glu-Thr-Asp (IETD)-p-nitroanilide and the appearance of cleaved (p15) Bid. Expression of Fas and FADD, components of death receptor signaling, was increased following seizures. In vivo intracerebroventricular z-IETD-fluoromethyl ketone administration significantly reduced seizure-induced activities of caspases 8, 9, and 3 as well as reducing Bid and caspase-9 cleavage, cytochrome c release, DNA fragmentation, and neuronal death. These data suggest that intervention in caspase-8 and/or death receptor signaling may confer protection on the brain from the injurious effects of seizures. PMID:11493022

  1. HIV-1 Vpu accessory protein induces caspase-mediated cleavage of IRF3 transcription factor.

    PubMed

    Park, Sang Yoon; Waheed, Abdul A; Zhang, Zai-Rong; Freed, Eric O; Bonifacino, Juan S

    2014-12-19

    Vpu is an accessory protein encoded by HIV-1 that interferes with multiple host-cell functions. Herein we report that expression of Vpu by transfection into 293T cells causes partial proteolytic cleavage of interferon regulatory factor 3 (IRF3), a key transcription factor in the innate anti-viral response. Vpu-induced IRF3 cleavage is mediated by caspases and occurs mainly at Asp-121. Cleavage produces a C-terminal fragment of ∼37 kDa that comprises the IRF dimerization and transactivation domains but lacks the DNA-binding domain. A similar cleavage is observed upon infection of the Jurkat T-cell line with vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped HIV-1. Two other HIV-1 accessory proteins, Vif and Vpr, also contribute to the induction of IRF3 cleavage in both the transfection and the infection systems. The C-terminal IRF3 fragment interferes with the transcriptional activity of full-length IRF3. Cleavage of IRF3 under all of these conditions correlates with cleavage of poly(ADP-ribose) polymerase, an indicator of apoptosis. We conclude that Vpu contributes to the attenuation of the anti-viral response by partial inactivation of IRF3 while host cells undergo apoptosis. PMID:25352594

  2. Caspase-dependent cleavage of c-Abl contributes to apoptosis.

    PubMed

    Barilà, Daniela; Rufini, Alessandra; Condò, Ivano; Ventura, Natascia; Dorey, Karel; Superti-Furga, Giulio; Testi, Roberto

    2003-04-01

    The nonreceptor tyrosine kinase c-Abl may contribute to the regulation of apoptosis. c-Abl activity is induced in the nucleus upon DNA damage, and its activation is required for execution of the apoptotic program. Recently, activation of nuclear c-Abl during death receptor-induced apoptosis has been reported; however, the mechanism remains largely obscure. Here we show that c-Abl is cleaved by caspases during tumor necrosis factor- and Fas receptor-induced apoptosis. Cleavage at the very C-terminal region of c-Abl occurs mainly in the cytoplasmic compartment and generates a 120-kDa fragment that lacks the nuclear export signal and the actin-binding region but retains the intact kinase domain, the three nuclear localization signals, and the DNA-binding domain. Upon caspase cleavage, the 120-kDa fragment accumulates in the nucleus. Transient-transfection experiments show that cleavage of c-Abl may affect the efficiency of Fas-induced cell death. These data reveal a novel mechanism by which caspases can recruit c-Abl to the nuclear compartment and to the mammalian apoptotic program. PMID:12665579

  3. Retinoid-induced apoptosis and Sp1 cleavage occur independently of transcription and require caspase activation.

    PubMed Central

    Piedrafita, F J; Pfahl, M

    1997-01-01

    Vitamin A and its derivatives, the retinoids, are essential regulators of many important biological functions, including cell growth and differentiation, development, homeostasis, and carcinogenesis. Natural retinoids such as all-trans retinoic acid can induce cell differentiation and inhibit growth of certain cancer cells. We recently identified a novel class of synthetic retinoids with strong anti-cancer cell activities in vitro and in vivo which can induce apoptosis in several cancer cell lines. Using an electrophoretic mobility shift assay, we analyzed the DNA binding activity of several transcription factors in T cells treated with apoptotic retinoids. We found that the DNA binding activity of the general transcription factor Sp1 is lost in retinoid-treated T cells undergoing apoptosis. A truncated Sp1 protein is detected by immunoblot analysis, and cytosolic protein extracts prepared from apoptotic cells contain a protease activity which specifically cleaves purified Sp1 in vitro. This proteolysis of Sp1 can be inhibited by N-ethylmaleimide and iodoacetamide, indicating that a cysteine protease mediates cleavage of Sp1. Furthermore, inhibition of Sp1 cleavage by ZVAD-fmk and ZDEVD-fmk suggests that caspases are directly involved in this event. In fact, caspases 2 and 3 are activated in T cells after treatment with apoptotic retinoids. The peptide inhibitors also blocked retinoid-induced apoptosis, as well as processing of caspases and proteolysis of Sp1 and poly(ADP-ribose) polymerase in intact cells. Degradation of Sp1 occurs early during apoptosis and is therefore likely to have profound effects on the basal transcription status of the cell. Interestingly, retinoid-induced apoptosis does not require de novo mRNA and protein synthesis, suggesting that a novel mechanism of retinoid signaling is involved, triggering cell death in a transcriptional activation-independent, caspase-dependent manner. PMID:9343396

  4. Initiation of Apoptosis by Granzyme B Requires Direct Cleavage of Bid, but Not Direct Granzyme B–Mediated Caspase Activation

    PubMed Central

    Sutton, Vivien R.; Davis, Joanne E.; Cancilla, Michael; Johnstone, Ricky W.; Ruefli, Astrid A.; Sedelies, Karin; Browne, Kylie A.; Trapani, Joseph A.

    2000-01-01

    The essential upstream steps in granzyme B–mediated apoptosis remain undefined. Herein, we show that granzyme B triggers the mitochondrial apoptotic pathway through direct cleavage of Bid; however, cleavage of procaspases was stalled when mitochondrial disruption was blocked by Bcl-2. The sensitivity of granzyme B–resistant Bcl-2–overexpressing FDC-P1 cells was restored by coexpression of wild-type Bid, or Bid with a mutation of its caspase-8 cleavage site, and both types of Bid were cleaved. However, Bid with a mutated granzyme B cleavage site remained intact and did not restore apoptosis. Bid with a mutation preventing its interaction with Bcl-2 was cleaved but also failed to restore apoptosis. Rapid Bid cleavage by granzyme B (<2 min) was not delayed by Bcl-2 overexpression. These results clearly placed Bid cleavage upstream of mitochondrial Bcl-2. In granzyme B–treated Jurkat cells, endogenous Bid cleavage and loss of mitochondrial membrane depolarization occurred despite caspase inactivation with z-Val-Ala-Asp-fluoromethylketone or Asp-Glu-Val-Asp-fluoromethylketone. Initial partial processing of procaspase-3 and -8 was observed irrespective of Bcl-2 overexpression; however, later processing was completely abolished by Bcl-2. Overall, our results indicate that mitochondrial perturbation by Bid is necessary to achieve a lethal threshold of caspase activity and cell death due to granzyme B. PMID:11085743

  5. Cleavage by Caspase 8 and Mitochondrial Membrane Association Activate the BH3-only Protein Bid during TRAIL-induced Apoptosis.

    PubMed

    Huang, Kai; Zhang, Jingjing; O'Neill, Katelyn L; Gurumurthy, Channabasavaiah B; Quadros, Rolen M; Tu, Yaping; Luo, Xu

    2016-05-27

    The BH3-only protein Bid is known as a critical mediator of the mitochondrial pathway of apoptosis following death receptor activation. However, since full-length Bid possesses potent apoptotic activity, the role of a caspase-mediated Bid cleavage is not established in vivo In addition, due to the fact that multiple caspases cleave Bid at the same site in vitro, the identity of the Bid-cleaving caspase during death receptor signaling remains uncertain. Moreover, as Bid maintains its overall structure following its cleavage by caspase 8, it remains unclear how Bid is activated upon cleavage. Here, Bid-deficient (Bid KO) colon cancer cells were generated by gene editing, and were reconstituted with wild-type or mutants of Bid. While the loss of Bid blocked apoptosis following treatment by TNF-related apoptosis inducing ligand (TRAIL), this blockade was relieved by re-introduction of the wild-type Bid. In contrast, the caspase-resistant mutant Bid(D60E) and a BH3 defective mutant Bid(G94E) failed to restore TRAIL-induced apoptosis. By generating Bid/Bax/Bak-deficient (TKO) cells, we demonstrated that Bid is primarily cleaved by caspase 8, not by effector caspases, to give rise to truncated Bid (tBid) upon TRAIL treatment. Importantly, despite the presence of an intact BH3 domain, a tBid mutant lacking the mitochondrial targeting helices (α6 and α7) showed diminished apoptotic activity. Together, these results for the first time establish that cleavage by caspase 8 and the subsequent association with the outer mitochondrial membrane are two critical events that activate Bid during death receptor-mediated apoptosis. PMID:27053107

  6. Caspase Activation and Specific Cleavage of Substrates after Coxsackievirus B3-Induced Cytopathic Effect in HeLa Cells

    PubMed Central

    Carthy, Christopher M.; Granville, David J.; Watson, Kathleen A.; Anderson, Daniel R.; Wilson, Janet E.; Yang, Decheng; Hunt, David W. C.; McManus, Bruce M.

    1998-01-01

    Coxsackievirus B3 (CVB3), an enterovirus in the family Picornaviridae, induces cytopathic changes in cell culture systems and directly injures multiple susceptible organs and tissues in vivo, including the myocardium, early after infection. Biochemical analysis of the cell death pathway in CVB3-infected HeLa cells demonstrated that the 32-kDa proform of caspase 3 is cleaved subsequent to the degenerative morphological changes seen in infected HeLa cells. Caspase activation assays confirm that the cleaved caspase 3 is proteolytically active. The caspase 3 substrates poly(ADP-ribose) polymerase, a DNA repair enzyme, and DNA fragmentation factor, a cytoplasmic inhibitor of an endonuclease responsible for DNA fragmentation, were degraded at 9 h following infection, yielding their characteristic cleavage fragments. Inhibition of caspase activation by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (ZVAD.fmk) did not inhibit the virus-induced cytopathic effect, while inhibition of caspase activation by ZVAD.fmk in control apoptotic cells induced by treatment with the porphyrin photosensitizer benzoporphyrin derivative monoacid ring A and visible light inhibited the apoptotic phenotype. Caspase activation and cleavage of substrates may not be responsible for the characteristic cytopathic effect produced by picornavirus infection yet may be related to late-stage alterations of cellular homeostatic processes and structural integrity. PMID:9696873

  7. Characterization of a series of 4-aminoquinolines that stimulate caspase-7 mediated cleavage of TDP-43 and inhibit its function.

    PubMed

    Cassel, Joel A; McDonnell, Mark E; Velvadapu, Venkata; Andrianov, Vyacheslav; Reitz, Allen B

    2012-09-01

    Dysfunction of the heterogeneous ribonucleoprotein TAR DNA binding protein 43 (TDP-43) is associated with neurodegeneration in diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here we examine the effects of a series of 4-aminoquinolines with affinity for TDP-43 upon caspase-7-induced cleavage of TDP-43 and TDP-43 cellular function. These compounds were mixed inhibitors of biotinylated TG6 binding to TDP-43, binding to both free and occupied TDP-43. Incubation of TDP-43 and caspase-7 in the presence of these compounds stimulated caspase-7 mediated cleavage of TDP-43. This effect was antagonized by the oligonucleotide TG12, prevented by denaturing TDP-43, and exhibited a similar relation of structure to function as for the displacement of bt-TG6 binding to TDP-43. In addition, the compounds did not affect caspase-7 enzyme activity. In human neuroglioma H4 cells, these compounds lowered levels of TDP-43 and increased TDP-43 C-terminal fragments via a caspase-dependent mechanism. Subsequent experiments demonstrated that this was due to induction of caspases 3 and 7 leading to increased PARP cleavage in H4 cells with similar rank order of the potency among the compounds tests for displacement of bt-TG6 binding. Exposure to these compounds also reduced HDAC-6, ATG-7, and increased LC3B, consistent with the effects of TDP-43 siRNA described by other investigators. These data suggest that such compounds may be useful biochemical probes to further understand both the normal and pathological functions of TDP-43, and its cleavage and metabolism promoted by caspases. PMID:22659571

  8. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves bid cleavage

    PubMed Central

    Reiners, JJ; Caruso, JA; Mathieu, P; Chelladurai, B; Yin, X-M; Kessel, D

    2015-01-01

    Photodynamic therapy (PDT) protocols employing lysosomal sensitizers induce apoptosis via a mechanism that causes cytochrome c release prior to loss of mitochondrial membrane potential (ΔΨm). The current study was designed to determine how lysosomal photodamage initiates mitochondrial-mediated apoptosis in murine hepatoma 1c1c7 cells. Fluorescence microscopy demonstrated that the photosensitizer N-aspartyl chlorin e6 (NPe6) localized to the lysosomes. Irradiation of cultures preloaded with NPe6 induced the rapid destruction of lysosomes, and subsequent cleavage/activation of Bid, pro-caspases-9 and -3. Pro-caspase-8 was not activated. Release of cytochrome c occurred at about the time of Bid cleavage and preceded the loss of ΔΨm. Extracts of purified lysosomes catalyzed the in vitro cleavage of cytosolic Bid, but not pro-caspase-3 activation. Pharmacological inhibition of cathepsin B, L and D activities did not suppress Bid cleavage or pro-caspases-9 and -3 activation. These studies demonstrate that photodamaged lysosomes trigger the mitochondrial apoptotic pathway by releasing proteases that activate Bid. PMID:12181744

  9. Caspase-3-Dependent Proteolytic Cleavage of Tau Causes Neurofibrillary Tangles and Results in Cognitive Impairment During Normal Aging.

    PubMed

    Means, John C; Gerdes, Bryan C; Kaja, Simon; Sumien, Nathalie; Payne, Andrew J; Stark, Danny A; Borden, Priscilla K; Price, Jeffrey L; Koulen, Peter

    2016-09-01

    Mouse models of neurodegenerative diseases such as Alzheimer's disease (AD) are important for understanding how pathological signaling cascades change neural circuitry and with time interrupt cognitive function. Here, we introduce a non-genetic preclinical model for aging and show that it exhibits cleaved tau protein, active caspases and neurofibrillary tangles, hallmarks of AD, causing behavioral deficits measuring cognitive impairment. To our knowledge this is the first report of a non-transgenic, non-interventional mouse model displaying structural, functional and molecular aging deficits associated with AD and other tauopathies in humans with potentially high impact on both new basic research into pathogenic mechanisms and new translational research efforts. Tau aggregation is a hallmark of tauopathies, including AD. Recent studies have indicated that cleavage of tau plays an important role in both tau aggregation and disease. In this study we use wild type mice as a model for normal aging and resulting age-related cognitive impairment. We provide evidence that aged mice have increased levels of activated caspases, which significantly correlates with increased levels of truncated tau and formation of neurofibrillary tangles. In addition, cognitive decline was significantly correlated with increased levels of caspase activity and tau truncated by caspase-3. Experimentally induced inhibition of caspases prevented this proteolytic cleavage of tau and the associated formation of neurofibrillary tangles. Our study shows the strength of using a non-transgenic model to study structure, function and molecular mechanisms in aging and age related diseases of the brain. PMID:27220334

  10. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    SciTech Connect

    Woo, Sang Hyeok; Seo, Sung-Keum; An, Sungkwan; Choe, Tae-Boo; Hong, Seok-Il; Lee, Yun-Han; Park, In-Chul

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  11. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts.

    PubMed

    Kacena, Melissa A; Eleniste, Pierre P; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E; Mayo, Lindsey D; Bruzzaniti, Angela

    2012-05-18

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  12. Megakaryocytes Regulate Expression of Pyk2 Isoforms and Caspase-mediated Cleavage of Actin in Osteoblasts*

    PubMed Central

    Kacena, Melissa A.; Eleniste, Pierre P.; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E.; Mayo, Lindsey D.; Bruzzaniti, Angela

    2012-01-01

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  13. Caspase-mediated cleavage of raptor participates in the inactivation of mTORC1 during cell death

    PubMed Central

    Martin, R; Desponds, C; Eren, R O; Quadroni, M; Thome, M; Fasel, N

    2016-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex regulating key pathways in cell growth. Hyperactivation of mTORC1 is implicated in numerous cancers, thus making it a potential broad-spectrum chemotherapeutic target. Here, we characterized how mTORC1 responds to cell death induced by various anticancer drugs such rapamycin, etoposide, cisplatin, curcumin, staurosporine and Fas ligand. All treatments induced cleavage in the mTORC1 component, raptor, resulting in decreased raptor–mTOR interaction and subsequent inhibition of the mTORC1-mediated phosphorylation of downstream substrates (S6K and 4E-BP1). The cleavage was primarily mediated by caspase-6 and occurred at two sites. Mutagenesis at one of these sites, conferred resistance to cell death, indicating that raptor cleavage is important in chemotherapeutic apoptosis. PMID:27551516

  14. Bax siRNA promotes survival of cultured and allografted granule cell precursors through blockade of caspase-3 cleavage.

    PubMed

    Zhokhov, S S; Desfeux, A; Aubert, N; Falluel-Morel, A; Fournier, A; Laudenbach, V; Vaudry, H; Gonzalez, B J

    2008-06-01

    Transplantation of neuronal precursor cells (NPCs) into the central nervous system could represent a powerful therapeutical tool against neurodegenerative diseases. Unfortunately, numerous NPCs die shortly after transplantation, predominantly due to caspase-dependent apoptosis. Using a culture of cerebellar neuronal precursors, we have previously demonstrated protective effect of the neuropeptide PACAP, which suppresses ceramide-induced apoptosis by blockade of the mitochondrial apoptotic pathway. The main objective of this study was to determine whether Bax repression can promote survival of NPCs allotransplanted into a host animal. In vivo and ex vivo experiments revealed that C2-ceramide increases Bax expression, while PACAP reverses this effect. In vitro tests using cerebellar NPCs demonstrated that the Bax-specific small interfering RNA (siRNA) could reduce their death and caspase-3 cleavage within the first 24 h. BrdU-labelled NPCs were subjected to transfection procedure with or without siRNA introduction before using for in vivo transplantation. Twenty-four hours after, the allografted NPCs containing siRNA showed significantly reduced level of caspase-3 cleavage, and the volume of their implants was almost twofold higher than in the case of empty-transfected precursors. These data evidence an important role of Bax in life/death decision of grafted NPCs and suggest that RNA interference strategy may be applicable for maintaining NPCs survival within the critical first hours after their transplantation. PMID:18323863

  15. Caspase-3-mediated Cleavage of Cdc6 Induces Nuclear Localization of p49-truncated Cdc6 and Apoptosis

    PubMed Central

    Yim, Hyungshin; Jin, Ying Hua; Park, Byoung Duck; Choi, Hye Jin; Lee, Seung Ki

    2003-01-01

    We show that Cdc6, an essential initiation factor for DNA replication, undergoes caspase-3–mediated cleavage in the early stages of apoptosis in HeLa cells and SK-HEP-1 cells induced by etoposide, paclitaxel, ginsenoside Rh2, or tumor necrosis factor-related apoptosis-inducing ligand. The cleavage occurs at the SEVD442/G motif and generates an N-terminal truncated Cdc6 fragment (p49-tCdc6) that lacks the carboxy-terminal nuclear export sequence. Cdc6 is known to be phosphorylated by cyclin A-cyclin dependent kinase 2 (Cdk2), an event that promotes its exit from the nucleus and probably blocks it from initiating inappropriate DNA replication. In contrast, p49-tCdc6 translocation to the cytoplasm is markedly reduced under the up-regulated conditions of Cdk2 activity, which is possibly due to the loss of nuclear export sequence. Thus, truncation of Cdc6 results in an increased nuclear retention of p49-tCdc6 that could act as a dominant negative inhibitor of DNA replication and its accumulation in the nucleus could promote apoptosis. Supporting this is that the ectopic expression of p49-tCdc6 not only promotes apoptosis of etoposide-induced HeLa cells but also induces apoptosis in untreated cells. Thus, the caspase-mediated cleavage of Cdc6 creates a truncated Cdc6 fragment that is retained in the nucleus and induces apoptosis. PMID:14517333

  16. Expression of a naturally occurring angiotensin AT(1) receptor cleavage fragment elicits caspase-activation and apoptosis.

    PubMed

    Cook, Julia L; Singh, Akannsha; DeHaro, Dawn; Alam, Jawed; Re, Richard N

    2011-11-01

    Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT(1)R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT(1)R by mass spectrometry and Edman sequencing. Cleavage occurs between Leu(305) and Gly(306) at the junction of the seventh transmembrane domain and the intracellular cytoplasmic carboxy-terminal domain. To evaluate the function of the CF distinct from the holoreceptor, we generated a construct encoding the CF as an in-frame yellow fluorescent protein fusion. The CF accumulates in nuclei and induces apoptosis in CHO-K1 cells, rat aortic smooth muscle cells (RASMCs), MCF-7 human breast adenocarcinoma cells, and H9c2 rat cardiomyoblasts. All cell types show nuclear fragmentation and disintegration, as well as evidence for phosphotidylserine displacement in the plasma membrane and activated caspases. RASMCs specifically showed a 5.2-fold increase (P < 0.001) in CF-induced active caspases compared with control and a 7.2-fold increase (P < 0.001) in cleaved caspase-3 (Asp174). Poly(ADP-ribose)polymerase was upregulated 4.8-fold (P < 0.001) in CF expressing cardiomyoblasts and colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). CF expression also induces DNA laddering, the gold-standard for apoptosis in all cell types studied. CF-induced apoptosis, therefore, appears to be a general phenomenon as it is observed in multiple cell types including smooth muscle cells and cardiomyoblasts. PMID:21813711

  17. Caspase cleavage of iASPP potentiates its ability to inhibit p53 and NF-κB

    PubMed Central

    Hu, Ying; Ge, Wenjie; Wang, Xingwen; Sutendra, Gopinath; Zhao, Kunming; Dedeić, Zinaida; Slee, Elizabeth A.; Baer, Caroline; Lu, Xin

    2015-01-01

    An intriguing biological question relating to cell signaling is how the inflammatory mediator NF-kB and the tumour suppressor protein p53 can be induced by similar triggers, like DNA damage or infection, yet have seemingly opposing or sometimes cooperative biological functions. For example, the NF-κB subunit RelA/p65 has been shown to inhibit apoptosis, whereas p53 induces apoptosis. One potential explanation may be their co-regulation by common cellular factors: inhibitor of Apoptosis Stimulating p53 Protein (iASPP) is one such common regulator of both RelA/p65 and p53. Here we show that iASPP is a novel substrate of caspases in response to apoptotic stimuli. Caspase cleaves the N-terminal region of iASPP at SSLD294 resulting in a prominent 80kDa fragment of iASPP. This caspase cleavage site is conserved in various species from zebrafish to Homo sapiens. The 80kDa fragment of iASPP translocates from the cytoplasm to the nucleus via the RaDAR nuclear import pathway, independent of p53. The 80kDa iASPP fragment can bind and inhibit p53 or RelA/p65 more efficiently than full-length iASPP. Overall, these data reveal a potential novel regulation of p53 and RelA/p65 activities in response to apoptotic stimuli. PMID:26646590

  18. Drug-mediated sensitization to TRAIL-induced apoptosis in caspase-8-complemented neuroblastoma cells proceeds via activation of intrinsic and extrinsic pathways and caspase-dependent cleavage of XIAP, Bcl-xL and RIP.

    PubMed

    Mühlethaler-Mottet, Annick; Bourloud, Katia Balmas; Auderset, Katya; Joseph, Jean-Marc; Gross, Nicole

    2004-07-15

    Neuroblastoma (NB) is a childhood neoplasm which heterogeneous behavior can be explained by differential regulation of apoptosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces rapid apoptosis in most tumor cells and thus represents a promising anticancer agent. We have reported silencing of caspase-8 expression in highly malignant NB cells as a possible mechanism of resistance to TRAIL-induced apoptosis. To explore the particular contribution of caspase-8 in such resistance, retroviral-mediated stable caspase-8 expression was induced in the IGR-N91 cells. As a result, sensitivity to TRAIL was fully restored in the caspase-8-complemented cells. TRAIL-induced cell death could be further enhanced by cotreatment of IGR-N91-C8 and SH-EP cells with cycloheximide or subtoxic concentrations of chemotherapeutic drugs in a caspase-dependent manner. Sensitization to TRAIL involved enhanced death receptor DR5 expression, activation of Bid and the complete caspases cascade. Interestingly, combined treatments also enhanced the cleavage-mediated inactivation of antiapoptotic molecules, XIAP, Bcl-x(L) and RIP. Our results show that restoration of active caspase-8 expression in a caspase-8-deficient NB cell line is necessary and sufficient to fully restore TRAIL sensitivity. Moreover, the synergistic effect of drugs and TRAIL results from activation of the caspase cascade via a mitochondrial pathway-mediated amplification loop and from the inactivation of apoptosis inhibitors. PMID:15094781

  19. Caspase-3/7-mediated Cleavage of β2-spectrin is Required for Acetaminophen-induced Liver Damage

    PubMed Central

    Baek, Hye Jung; Lee, Yong Min; Kim, Tae Hyun; Kim, Joo-Young; Park, Eun Jung; Iwabuchi, Kuniyoshi; Mishra, Lopa; Kim, Sang Soo

    2016-01-01

    The ubiquitously expressed β2-spectrin (β2SP, SPTBN1) is the most common non-erythrocytic member of the β-spectrin gene family. Loss of β2-spectrin leads to defects in liver development, and its haploinsufficiency spontaneously leads to chronic liver disease and the eventual development of hepatocellular cancer. However, the specific role of β2-spectrin in liver homeostasis remains to be elucidated. Here, we reported that β2-spectrin was cleaved by caspase-3/7 upon treatment with acetaminophen which is the main cause of acute liver injury. Blockage of β2-spectrin cleavage robustly attenuated β2-spectrin-specific functions, including regulation of the cell cycle, apoptosis, and transcription. Cleaved fragments of β2-spectrin were physiologically active, and the N- and C-terminal fragments retained discrete interaction partners and activity in transcriptional regulation and apoptosis, respectively. Cleavage of β2-spectrin facilitated the redistribution of the resulting fragments under conditions of liver damage induced by acetaminophen. In contrast, downregulation of β2-spectrin led to resistance to acetaminophen-induced cytotoxicity, and its insufficiency in the liver promoted suppression of acetaminophen-induced liver damage and enhancement of liver regeneration. Conclusions: β2-Spectrin, a TGF-β mediator and signaling molecule, is cleaved and activated by caspase-3/7, consequently enhancing apoptosis and transcriptional control to determine cell fate upon liver damage. These findings have extended our knowledge on the spectrum of β2-spectrin functions from a scaffolding protein to a target and transmitter of TGF-β in liver damage. PMID:26884715

  20. Homeodomain-interacting protein kinase 2-dependent repression of myogenic differentiation is relieved by its caspase-mediated cleavage.

    PubMed

    de la Vega, Laureano; Hornung, Juliane; Kremmer, Elisabeth; Milanovic, Maja; Schmitz, M Lienhard

    2013-06-01

    Differentiation of skeletal muscle cells is accompanied by drastic changes in gene expression programs that depend on activation and repression of genes at defined time points. Here we identify the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) as a corepressor that inhibits myocyte enhancer factor 2 (MEF2)-dependent gene expression in undifferentiated myoblasts. Downregulation of HIPK2 expression by shRNAs results in elevated expression of muscle-specific genes, whereas overexpression of the kinase dampens transcription of these genes. HIPK2 is constitutively associated with a multi-protein complex containing histone deacetylase (HDAC)3 and HDAC4 that serves to silence MEF2C-dependent transcription in undifferentiated myoblasts. HIPK2 interferes with gene expression on phosphorylation and HDAC3-dependent deacetylation of MEF2C. Ongoing muscle differentiation is accompanied by elevated caspase activity, which results in caspase-mediated cleavage of HIPK2 following aspartic acids 916 and 977 and the generation of a C-terminally truncated HIPK2 protein. The short form of the kinase loses its affinity to the repressive multi-protein complex and its ability to bind HDAC3 and HDAC4, thus alleviating its repressive function for expression of muscle genes. This study identifies HIPK2 as a further protein that determines the threshold and kinetics of gene expression in proliferating myoblasts and during the initial steps of myogenesis. PMID:23620283

  1. Homeodomain-interacting protein kinase 2-dependent repression of myogenic differentiation is relieved by its caspase-mediated cleavage

    PubMed Central

    de la Vega, Laureano; Hornung, Juliane; Kremmer, Elisabeth; Milanovic, Maja; Schmitz, M. Lienhard

    2013-01-01

    Differentiation of skeletal muscle cells is accompanied by drastic changes in gene expression programs that depend on activation and repression of genes at defined time points. Here we identify the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) as a corepressor that inhibits myocyte enhancer factor 2 (MEF2)-dependent gene expression in undifferentiated myoblasts. Downregulation of HIPK2 expression by shRNAs results in elevated expression of muscle-specific genes, whereas overexpression of the kinase dampens transcription of these genes. HIPK2 is constitutively associated with a multi-protein complex containing histone deacetylase (HDAC)3 and HDAC4 that serves to silence MEF2C-dependent transcription in undifferentiated myoblasts. HIPK2 interferes with gene expression on phosphorylation and HDAC3-dependent deacetylation of MEF2C. Ongoing muscle differentiation is accompanied by elevated caspase activity, which results in caspase-mediated cleavage of HIPK2 following aspartic acids 916 and 977 and the generation of a C-terminally truncated HIPK2 protein. The short form of the kinase loses its affinity to the repressive multi-protein complex and its ability to bind HDAC3 and HDAC4, thus alleviating its repressive function for expression of muscle genes. This study identifies HIPK2 as a further protein that determines the threshold and kinetics of gene expression in proliferating myoblasts and during the initial steps of myogenesis. PMID:23620283

  2. Proteolytic cleavage of polymeric tau protein by caspase-3: implications for Alzheimer disease.

    PubMed

    Jarero-Basulto, Jose J; Luna-Muñoz, Jose; Mena, Raul; Kristofikova, Zdena; Ripova, Daniela; Perry, George; Binder, Lester I; Garcia-Sierra, Francisco

    2013-12-01

    Truncated tau protein at Asp(421) is associated with neurofibrillary pathology in Alzheimer disease (AD); however, little is known about its presence in the form of nonfibrillary aggregates. Here, we report immunohistochemical staining of the Tau-C3 antibody, which recognizes Asp(421)-truncated tau, in a group of AD cases with different extents of cognitive impairment. In the hippocampus, we found distinct nonfibrillary aggregates of Asp(421)-truncated tau. Unlike Asp(421)-composed neurofibrillary tangles, however, these nonfibrillary pathologies did not increase significantly with respect to the Braak staging and, therefore, make no significant contribution to cognitive impairment. On the other hand, despite in vitro evidence that caspase-3 cleaves monomeric tau at Asp(421), to date, this truncation has not been demonstrated to be executed by this protease in polymeric tau entities. We determined that Asp(421) truncation can be produced by caspase-3 in oligomeric and multimeric complexes of recombinant full-length tau in isolated native tau filaments in vitro and in situ in neurofibrillary tangles analyzed in fresh brain slices from AD cases. Our data suggest that generation of this pathologic Asp(421) truncation of tau in long-lasting fibrillary structures may produce further permanent toxicity for neurons in the brains of patients with AD. PMID:24226268

  3. N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress

    PubMed Central

    Gray, Josie J.; Zommer, Amelia E.; Bouchard, Ron J.; Duval, Nathan; Blackstone, Craig; Linseman, Daniel A.

    2013-01-01

    Neuronal cell death via apoptosis or necrosis underlies several devastating neurodegenerative diseases associated with aging. Mitochondrial dysfunction resulting from oxidative or nitrosative stress often acts as an initiating stimulus for intrinsic apoptosis or necrosis. These events frequently occur in conjunction with imbalances in the mitochondrial fission and fusion equilibrium, although the cause and effect relationships remain elusive. Here, we demonstrate in primary rat cerebellar granule neurons (CGNs) that oxidative or nitrosative stress induces an N-terminal cleavage of optic atrophy-1 (OPA1), a dynamin-like GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. This cleavage event is indistinguishable from the N-terminal cleavage of OPA1 observed in CGNs undergoing caspase-mediated apoptosis (Loucks et al., 2009) and results in removal of a key lysine residue (K301) within the GTPase domain. OPA1 cleavage in CGNs occurs coincident with extensive mitochondrial fragmentation, disruption of the microtubule network, and cell death. In contrast to OPA1 cleavage induced in CGNs by removing depolarizing extracellular potassium (5K apoptotic conditions), oxidative or nitrosative stress-induced OPA1 cleavage caused by complex I inhibition or nitric oxide, respectively, is caspase-independent. N-terminal cleavage of OPA1 is also observed in vivo in aged rat and mouse midbrain and hippocampal tissues. We conclude that N-terminal cleavage and subsequent inactivation of OPA1 may be a contributing factor in the neuronal cell death processes underlying neurodegenerative diseases, particularly those associated with aging. Furthermore, these data suggest that OPA1 cleavage is a likely convergence point for mitochondrial dysfunction and imbalances in mitochondrial fission and fusion induced by oxidative or nitrosative stress. PMID:23220553

  4. N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress.

    PubMed

    Gray, Josie J; Zommer, Amelia E; Bouchard, Ron J; Duval, Nathan; Blackstone, Craig; Linseman, Daniel A

    2013-02-01

    Neuronal cell death via apoptosis or necrosis underlies several devastating neurodegenerative diseases associated with aging. Mitochondrial dysfunction resulting from oxidative or nitrosative stress often acts as an initiating stimulus for intrinsic apoptosis or necrosis. These events frequently occur in conjunction with imbalances in the mitochondrial fission and fusion equilibrium, although the cause and effect relationships remain elusive. Here, we demonstrate in primary rat cerebellar granule neurons (CGNs) that oxidative or nitrosative stress induces an N-terminal cleavage of optic atrophy-1 (OPA1), a dynamin-like GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. This cleavage event is indistinguishable from the N-terminal cleavage of OPA1 observed in CGNs undergoing caspase-mediated apoptosis (Loucks et al., 2009) and results in removal of a key lysine residue (K301) within the GTPase domain. OPA1 cleavage in CGNs occurs coincident with extensive mitochondrial fragmentation, disruption of the microtubule network, and cell death. In contrast to OPA1 cleavage induced in CGNs by removing depolarizing extracellular potassium (5K apoptotic conditions), oxidative or nitrosative stress-induced OPA1 cleavage caused by complex I inhibition or nitric oxide, respectively, is caspase-independent. N-terminal cleavage of OPA1 is also observed in vivo in aged rat and mouse midbrain and hippocampal tissues. We conclude that N-terminal cleavage and subsequent inactivation of OPA1 may be a contributing factor in the neuronal cell death processes underlying neurodegenerative diseases, particularly those associated with aging. Furthermore, these data suggest that OPA1 cleavage is a likely convergence point for mitochondrial dysfunction and imbalances in mitochondrial fission and fusion induced by oxidative or nitrosative stress. PMID:23220553

  5. Translation termination factor eRF3 is targeted for caspase-mediated proteolytic cleavage and degradation during DNA damage-induced apoptosis.

    PubMed

    Hashimoto, Yoshifumi; Hosoda, Nao; Datta, Pinaki; Alnemri, Emad S; Hoshino, Shin-ichi

    2012-12-01

    Polypeptide chain release factor eRF3 plays pivotal roles in translation termination and post-termination events including ribosome recycling and mRNA decay. It is not clear, however, if eRF3 is targeted for the regulation of gene expression. Here we show that DNA-damaging agents (UV and etoposide) induce the immediate cleavage and degradation of eRF3 in a caspase-dependent manner. The effect is selective since the binding partners of eRF3, eRF1 and PABP, and an unrelated control, GAPDH, were not affected. Point mutations of aspartate residues within overlapping DXXD motifs near the amino terminus of eRF3 prevented the appearance of the UV-induced cleavage product, identifying D32 as the major cleavage site. The cleavage and degradation occurred in a similar time-dependent manner to those of eIF4G, a previously established caspase-3 target involved in the inhibition of translation during apoptosis. siRNA-mediated knockdown of eRF3 led to inhibition of cellular protein synthesis, supporting the idea that the decrease in the amount of eRF3 caused by the caspase-mediated degradation contributes to the inhibition of translation during apoptosis. This is the first report showing that eRF3 could serve as a target in the regulation of gene expression. PMID:23054082

  6. The anti-apoptotic effect of leukotriene D4 involves the prevention of caspase 8 activation and Bid cleavage.

    PubMed Central

    Wikström, Katarina; Juhas, Maria; Sjölander, Anita

    2003-01-01

    We have shown in a previous study that leukotriene D(4) (LTD(4)) signalling increases cell survival and proliferation in intestinal epithelial cells [Ohd, Wikström and Sjölander (2000) Gastroenterology 119, 1007-1018]. This is highly interesting since inflammatory conditions of the bowel are associated with an increased risk of developing colon cancer. The enzyme cyclo-oxygenase 2 (COX-2) is important in this context since it is up-regulated in colon cancer tissues and in tumour cell lines. Treatment with the COX-2-specific inhibitor N -(2-cyclohexyloxy-4-nitrophenyl)methane sulphonamide has been shown previously to cause apoptosis in intestinal epithelial cells. In the present study, we attempted to elucidate the underlying mechanisms and we can now show that a mitochondrial pathway is employed. Inhibition of COX-2 causes release of cytochrome c, as shown by both Western-blot and microscopy studies, and as with apoptosis, this is significantly decreased by LTD(4). Since previous studies showed increased Bcl-2 levels on LTD(4) stimulation, we further studied apoptotic regulation at the mitochondrial level. From this we could exclude the involvement of the anti-apoptotic protein Bcl-X(L) as well as its pro-apoptotic counterpart Bax, since they are not expressed. Furthermore, the activity of the pro-apoptotic protein Bad (Bcl-2/Bcl-X(L)-antagonist, causing cell death) was completely unaffected. However, inhibition of COX-2 caused cleavage of caspase 8 into a 41 kDa fragment associated with activation and caused the appearance of an activated 15 kDa fragment of Bid. This indicates that N -(2-cyclohexyloxy-4-nitrophenyl)methane sulphonamide-induced apoptosis is mediated by the activation of caspase 8, via generation of truncated Bid, and thereafter release of cytochrome c. Interestingly, LTD(4) not only reverses the effects induced by inhibition of COX-2 but also reduces the apoptotic potential by lowering the basal level of caspase 8 activation and truncated Bid

  7. Pannexin 1, an ATP Release Channel, Is Activated by Caspase Cleavage of Its Pore-associated C-terminal Autoinhibitory Region*♦

    PubMed Central

    Sandilos, Joanna K.; Chiu, Yu-Hsin; Chekeni, Faraaz B.; Armstrong, Allison J.; Walk, Scott F.; Ravichandran, Kodi S.; Bayliss, Douglas A.

    2012-01-01

    Pannexin 1 (PANX1) channels mediate release of ATP, a “find-me” signal that recruits macrophages to apoptotic cells; PANX1 activation during apoptosis requires caspase-mediated cleavage of PANX1 at its C terminus, but how the C terminus inhibits basal channel activity is not understood. Here, we provide evidence suggesting that the C terminus interacts with the human PANX1 (hPANX1) pore and that cleavage-mediated channel activation requires disruption of this inhibitory interaction. Basally silent hPANX1 channels localized on the cell membrane could be activated directly by protease-mediated C-terminal cleavage, without additional apoptotic effectors. By serial deletion, we identified a C-terminal region just distal to the caspase cleavage site that is required for inhibition of hPANX1; point mutations within this small region resulted in partial activation of full-length hPANX1. Consistent with the C-terminal tail functioning as a pore blocker, we found that truncated and constitutively active hPANX1 channels could be inhibited, in trans, by the isolated hPANX1 C terminus either in cells or when applied directly as a purified peptide in inside-out patch recordings. Furthermore, using a cysteine cross-linking approach, we showed that relief of inhibition following cleavage requires dissociation of the C terminus from the channel pore. Collectively, these data suggest a mechanism of hPANX1 channel regulation whereby the intact, pore-associated C terminus inhibits the full-length hPANX1 channel and a remarkably well placed caspase cleavage site allows effective removal of key inhibitory C-terminal determinants to activate hPANX1. PMID:22311983

  8. TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage.

    PubMed

    Suzuki, Hiroaki; Lee, Kikyo; Matsuoka, Masaaki

    2011-04-15

    Abnormal aggregates of transactive response DNA-binding protein-43 (TDP-43) and its hyperphosphorylated and N-terminal truncated C-terminal fragments (CTFs) are deposited as major components of ubiquitinated inclusions in most cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). The mechanism underlying the contribution of TDP-43 to the pathogenesis of these neurodegenerative diseases remains unknown. In this study, we found that a 2-5-fold increase in TDP-43 expression over the endogenous level induced death of NSC34 motor neuronal cells and primary cortical neurons. TDP-43-induced death is associated with up-regulation of Bim expression and down-regulation of Bcl-xL expression. siRNA-mediated reduction of Bim expression attenuates TDP-43-induced death. Accumulated evidence indicates that caspases are activated in neurons of ALS and FTLD-U patients, and activated caspase-mediated cleavage of TDP-43 generates CTFs of TDP-43. Here, we further found that the ER (endoplasmic reticulum) stress- or staurosporine-mediated activation of caspases leads to cleavage of TDP-43 at Asp(89) and Asp(169), generating CTF35 (TDP-43-(90-414)) and CTF27 (TDP-43-(170-414)) in cultured neuronal cells. In contrast to TDP-43, CTF27 is unable to induce death while it forms aggregates. CTF35 was weaker than full-length TDP-43 in inducing death. A cleavage-resistant mutant of TDP-43 (TDP-43-D89E/D169E) showed stronger death-inducing activity than wild-type TDP-43. These results suggest that disease-related activation of caspases may attenuate TDP-43-induced toxicity by promoting TDP-43 cleavage. PMID:21339291

  9. Mimicking Cdk2 phosphorylation of Bcl-xL at Ser73 results in caspase activation and Bcl-xL cleavage

    PubMed Central

    Seng, NS; Megyesi, J; Tarcsafalvi, A; Price, PM

    2016-01-01

    Cisplatin is a widely used chemotherapeutic agent, yet its efficacy is limited by nephrotoxicity. The severity of nephrotoxicity is associated with the extent of kidney cell death. Previously, we found that cisplatin-induced kidney cell death was dependent on Cdk2 activation, and inhibition of Cdk2 protected cells from cisplatin-induced apoptosis. Using an in vitro kination assay, we showed that Cdk2 phosphorylated Bcl-xL, an anti-apoptotic member of Bcl-2 family proteins, at serine 73. We also found that this phosphorylated Bcl-xL participated in cell death, as a phosphomimetic mutant of Bcl-xL at the serine 73 site (S73D-Bcl-xL) activated caspases. We now find that S73D-Bcl-xL was cleaved at D61 and D76, which are putative caspase cleavage sites, to generate 15-kDa and 12-kDa fragments. Unlike full-length Bcl-xL, these cleavage products of Bcl-xL were previously reported to be pro-apoptotic. We sought to determine whether these Bcl-xL fragments were necessary for the induction of cell death by S73D-Bcl-xL. Mutation of these caspase cleavage sites prevented the formation of the 15-kDa and 12-kDa Bcl-xL cleavage products, but apoptosis still persisted in a S73D modified Bcl-xL. Our findings show that Cdk2 phosphorylation of Bcl-xL at Ser73, but not the Bcl-xL cleavage products, is necessary and sufficient to induce cell death.

  10. Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation

    PubMed Central

    Chiang, Chien-Hao; Grauffel, Cédric; Wu, Lien-Szu; Kuo, Pan-Hsien; Doudeva, Lyudmila G.; Lim, Carmay; Shen, Che-Kun James; Yuan, Hanna S.

    2016-01-01

    The RNA-binding protein TDP-43 forms intracellular inclusions in amyotrophic lateral sclerosis (ALS). While TDP-43 mutations have been identified in ALS patients, how these mutations are linked to ALS remains unclear. Here we examined the biophysical properties of six ALS-linked TDP-43 mutants and found that one of the mutants, D169G, had higher thermal stability than wild-type TDP-43 and that it was cleaved by caspase 3 more efficiently, producing increased levels of the C-terminal 35 kD fragments (TDP-35) in vitro and in neuroblastoma cells. The crystal structure of the TDP-43 RRM1 domain containing the D169G mutation in complex with DNA along with molecular dynamics simulations reveal that the D169G mutation induces a local conformational change in a β turn and increases the hydrophobic interactions in the RRM1 core, thus enhancing the thermal stability of the RRM1 domain. Our results provide the first crystal structure of TDP-43 containing a disease-linked D169G mutation and a disease-related mechanism showing that D169G mutant is more susceptible to proteolytic cleavage by caspase 3 into the pathogenic C-terminal 35-kD fragments due to its increased stability in the RRM1 domain. Modulation of TDP-43 stability and caspase cleavage efficiency could present an avenue for prevention and treatment of TDP-43-linked neurodegeneration. PMID:26883171

  11. EspC, an Autotransporter Protein Secreted by Enteropathogenic Escherichia coli, Causes Apoptosis and Necrosis through Caspase and Calpain Activation, Including Direct Procaspase-3 Cleavage

    PubMed Central

    Serapio-Palacios, Antonio

    2016-01-01

    ABSTRACT Enteropathogenic Escherichia coli (EPEC) has the ability to antagonize host apoptosis during infection through promotion and inhibition of effectors injected by the type III secretion system (T3SS), but the total number of these effectors and the overall functional relationships between these effectors during infection are poorly understood. EspC produced by EPEC cleaves fodrin, paxillin, and focal adhesion kinase (FAK), which are also cleaved by caspases and calpains during apoptosis. Here we show the role of EspC in cell death induced by EPEC. EspC is involved in EPEC-mediated cell death and induces both apoptosis and necrosis in epithelial cells. EspC induces apoptosis through the mitochondrial apoptotic pathway by provoking (i) a decrease in the expression levels of antiapoptotic protein Bcl-2, (ii) translocation of the proapoptotic protein Bax from cytosol to mitochondria, (iii) cytochrome c release from mitochondria to the cytoplasm, (iv) loss of mitochondrial membrane potential, (v) caspase-9 activation, (vi) cleavage of procaspase-3 and (vii) an increase in caspase-3 activity, (viii) PARP proteolysis, and (ix) nuclear fragmentation and an increase in the sub-G1 population. Interestingly, EspC-induced apoptosis was triggered through a dual mechanism involving both independent and dependent functions of its EspC serine protease motif, the direct cleavage of procaspase-3 being dependent on this motif. This is the first report showing a shortcut for induction of apoptosis by the catalytic activity of an EPEC protein. Furthermore, this atypical intrinsic apoptosis appeared to induce necrosis through the activation of calpain and through the increase of intracellular calcium induced by EspC. Our data indicate that EspC plays a relevant role in cell death induced by EPEC. PMID:27329750

  12. Grb7 and Hax1 may colocalize partially to mitochondria in EGF-treated SKBR3 cells and their interaction can affect Caspase3 cleavage of Hax1.

    PubMed

    Qian, Lei; Bradford, Andrew M; Cooke, Peter H; Lyons, Barbara A

    2016-07-01

    Growth factor receptor bound protein 7 (Grb7) is a signal-transducing adaptor protein that mediates specific protein-protein interactions in multiple signaling pathways. Grb7, with Grb10 and Grb14, is members of the Grb7 protein family. The topology of the Grb7 family members contains several protein-binding domains that facilitate the formation of protein complexes, and high signal transduction efficiency. Grb7 has been found overexpressed in several types of cancers and cancer cell lines and is presumed involved in cancer progression through promotion of cell proliferation and migration via interactions with the erythroblastosis oncogene B 2 (human epidermal growth factor receptor 2) receptor, focal adhesion kinase, Ras-GTPases, and other signaling partners. We previously reported Grb7 binds to Hax1 (HS1 associated protein X1) isoform 1, an anti-apoptotic protein also involved in cell proliferation and calcium homeostasis. In this study, we confirm that the in vitro Grb7/Hax1 interaction is exclusive to these two proteins and their interaction does not depend on Grb7 dimerization state. In addition, we report Grb7 and Hax1 isoform 1 may colocalize partially to mitochondria in epidermal growth factor-treated SKBR3 cells and growth conditions can affect this colocalization. Moreover, Grb7 can affect Caspase3 cleavage of Hax1 isoform 1 in vitro, and Grb7 expression may slow Caspase3 cleavage of Hax1 isoform 1 in apoptotic HeLa cells. Finally, Grb7 is shown to increase cell viability in apoptotic HeLa cells in a time-dependent manner. Taken together, these discoveries provide clues for the role of a Grb7/Hax1 protein interaction in apoptosis pathways involving Hax1. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26869103

  13. Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of huntingtin.

    PubMed

    Martin, Dale D O; Heit, Ryan J; Yap, Megan C; Davidson, Michael W; Hayden, Michael R; Berthiaume, Luc G

    2014-06-15

    Huntington disease (HD) is a debilitating neurodegenerative disease characterized by the loss of motor control and cognitive ability that ultimately leads to death. It is caused by the expansion of a polyglutamine tract in the huntingtin (HTT) protein, which leads to aggregation of the protein and eventually cellular death. Both the wild-type and mutant form of the protein are highly regulated by post-translational modifications including proteolysis, palmitoylation and phosphorylation. We now demonstrate the existence of a new post-translational modification of HTT: the addition of the 14 carbon fatty acid myristate to a glycine residue exposed on a caspase-3-cleaved fragment (post-translational myristoylation) and that myristoylation of this fragment is altered in a physiologically relevant model of mutant HTT. Myristoylated HTT553-585-EGFP, but not its non-myristoylated variant, initially localized to the ER, induced the formation of autophagosomes and accumulated in abnormally large autophagolysosomal/lysosomal structures in a variety of cell types, including neuronal cell lines under nutrient-rich conditions. Our results suggest that accumulation of myristoylated HTT553-586 in cells may alter the rate of production of autophagosomes and/or their clearance through the heterotypic autophagosomal/lysosomal fusion process. Overall, our novel observations establish a role for the post-translational myristoylation of a caspase-3-cleaved fragment of HTT, highly similar to the Barkor/ATG14L autophagosome-targeting sequence domain thought to sense, maintain and/or promote membrane curvature in the regulation of autophagy. Abnormal processing or production of this myristoylated HTT fragment might be involved in the pathophysiology of HD. PMID:24459296

  14. Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of Huntingtin

    PubMed Central

    Martin, Dale D.O.; Heit, Ryan J.; Yap, Megan C.; Davidson, Michael W.; Hayden, Michael R.; Berthiaume, Luc G.

    2014-01-01

    Huntington disease (HD) is a debilitating neurodegenerative disease characterized by the loss of motor control and cognitive ability that ultimately leads to death. It is caused by the expansion of a polyglutamine tract in the huntingtin (HTT) protein, which leads to aggregation of the protein and eventually cellular death. Both the wild-type and mutant form of the protein are highly regulated by post-translational modifications including proteolysis, palmitoylation and phosphorylation. We now demonstrate the existence of a new post-translational modification of HTT: the addition of the 14 carbon fatty acid myristate to a glycine residue exposed on a caspase-3-cleaved fragment (post-translational myristoylation) and that myristoylation of this fragment is altered in a physiologically relevant model of mutant HTT. Myristoylated HTT553–585–EGFP, but not its non-myristoylated variant, initially localized to the ER, induced the formation of autophagosomes and accumulated in abnormally large autophagolysosomal/lysosomal structures in a variety of cell types, including neuronal cell lines under nutrient-rich conditions. Our results suggest that accumulation of myristoylated HTT553–586 in cells may alter the rate of production of autophagosomes and/or their clearance through the heterotypic autophagosomal/lysosomal fusion process. Overall, our novel observations establish a role for the post-translational myristoylation of a caspase-3-cleaved fragment of HTT, highly similar to the Barkor/ATG14L autophagosome-targeting sequence domain thought to sense, maintain and/or promote membrane curvature in the regulation of autophagy. Abnormal processing or production of this myristoylated HTT fragment might be involved in the pathophysiology of HD. PMID:24459296

  15. Alternative splicing and caspase-mediated cleavage generate antagonistic variants of the stress oncoprotein LEDGF/p75.

    PubMed

    Brown-Bryan, Terry A; Leoh, Lai S; Ganapathy, Vidya; Pacheco, Fabio J; Mediavilla-Varela, Melanie; Filippova, Maria; Linkhart, Thomas A; Gijsbers, Rik; Debyser, Zeger; Casiano, Carlos A

    2008-08-01

    There is increasing evidence that an augmented state of cellular oxidative stress modulates the expression of stress genes implicated in diseases associated with health disparities such as certain cancers and diabetes. Lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 autoantigen, is emerging as a survival oncoprotein that promotes resistance to oxidative stress-induced cell death and chemotherapy. We previously showed that LEDGF/p75 is targeted by autoantibodies in prostate cancer patients and is overexpressed in prostate tumors, and that its stress survival activity is abrogated during apoptosis. LEDGF/p75 has a COOH-terminally truncated splice variant, p52, whose role in stress survival and apoptosis has not been thoroughly investigated. We observed unbalanced expression of these proteins in a panel of tumor cell lines, with LEDGF/p75 generally expressed at higher levels. During apoptosis, caspase-3 cleaved p52 to generate a p38 fragment that lacked the NH(2)-terminal PWWP domain and failed to transactivate the Hsp27 promoter in reporter assays. However, p38 retained chromatin association properties and repressed the transactivation potential of LEDGF/p75. Overexpression of p52 or its variants with truncated PWWP domains in several tumor cell lines induced apoptosis, an activity that was linked to the presence of an intron-derived COOH-terminal sequence. These results implicate the PWWP domain of p52 in transcription function but not in chromatin association and proapoptotic activities. Consistent with their unbalanced expression in tumor cells, LEDGF/p75 and p52 seem to play antagonistic roles in the cellular stress response and could serve as targets for novel antitumor therapies. PMID:18708362

  16. Caspase-1, but Not Caspase-3, Promotes Diabetic Nephropathy.

    PubMed

    Shahzad, Khurrum; Bock, Fabian; Al-Dabet, Moh'd Mohanad; Gadi, Ihsan; Kohli, Shrey; Nazir, Sumra; Ghosh, Sanchita; Ranjan, Satish; Wang, Hongjie; Madhusudhan, Thati; Nawroth, Peter P; Isermann, Berend

    2016-08-01

    Glomerular apoptosis may contribute to diabetic nephropathy (dNP), but the pathophysiologic relevance of this process remains obscure. Here, we administered two partially disjunct polycaspase inhibitors in 8-week-old diabetic (db/db) mice: M-920 (inhibiting caspase-1, -3, -4, -5, -6, -7, and -8) and CIX (inhibiting caspase-3, -6, -7, -8, and -10). Notably, despite reduction in glomerular cell death and caspase-3 activity by both inhibitors, only M-920 ameliorated dNP. Nephroprotection by M-920 was associated with reduced renal caspase-1 and inflammasome activity. Accordingly, analysis of gene expression data in the Nephromine database revealed persistently elevated glomerular expression of inflammasome markers (NLRP3, CASP1, PYCARD, IL-18, IL-1β), but not of apoptosis markers (CASP3, CASP7, PARP1), in patients with and murine models of dNP. In vitro, increased levels of markers of inflammasome activation (Nlrp3, caspase-1 cleavage) preceded those of markers of apoptosis activation (caspase-3 and -7, PARP1 cleavage) in glucose-stressed podocytes. Finally, caspase-3 deficiency did not protect mice from dNP, whereas both homozygous and hemizygous caspase-1 deficiency did. Hence, these results suggest caspase-3-dependent cell death has a negligible effect, whereas caspase-1-dependent inflammasome activation has a crucial function in the establishment of dNP. Furthermore, small molecules targeting caspase-1 or inflammasome activation may be a feasible therapeutic approach in dNP. PMID:26832955

  17. M10, a caspase cleavage product of the hepatocyte growth factor receptor, interacts with Smad2 and demonstrates antifibrotic properties in vitro and in vivo.

    PubMed

    Atanelishvili, Ilia; Shirai, Yuichiro; Akter, Tanjina; Buckner, Taylor; Noguchi, Atsushi; Silver, Richard M; Bogatkevich, Galina S

    2016-04-01

    Hepatocyte growth factor receptor, also known as cellular mesenchymal-epithelial transition factor (c-MET, MET), is an important antifibrotic molecule that protects various tissues, including lung, from injury and fibrosis. The intracellular cytoplasmic tail of MET contains a caspase-3 recognition motif "DEVD-T" that on cleavage by caspase-3 generates a 10-amino acid peptide, TRPASFWETS, designated as "M10". M10 contains at its N-terminus the uncharged amino acid proline (P) directly after a cationic amino acid arginine (R) which favors the transport of the peptide through membranes. M10, when added to cell culture medium, remains in the cytoplasm and nuclei of cells for up to 24 hours. M10 effectively decreases collagen in both scleroderma and TGFβ-stimulated normal lung and skin fibroblasts. M10 interacts with the Mad Homology 2 domain of Smad2 and inhibits TGFβ-induced Smad2 phosphorylation, suggesting that the antifibrotic effects of M10 are mediated in part by counteracting Smad-dependent fibrogenic pathways. In the bleomycin murine model of pulmonary fibrosis, M10 noticeably reduced lung inflammation and fibrosis. Ashcroft fibrosis scores and lung collagen content were significantly lower in bleomycin-treated mice receiving M10 as compared with bleomycin-treated mice receiving scrambled peptide. We conclude that M10 peptide interacts with Smad2 and demonstrates strong antifibrotic effects in vitro and in vivo in an animal model of lung fibrosis and should be considered as a potential therapeutic agent for systemic sclerosis and other fibrosing diseases. PMID:26772959

  18. L-BMAA induced ER stress and enhanced caspase 12 cleavage in human neuroblastoma SH-SY5Y cells at low nonexcitotoxic concentrations.

    PubMed

    Okle, Oliver; Stemmer, Kerstin; Deschl, Ulrich; Dietrich, Daniel R

    2013-01-01

    The cyanobacterial β-N-methylamino-L-alanine (L-BMAA) is described as a low-potency excitotoxin, possibly a factor in the increased incidence of amyotrophic lateral sclerosis (ALS) and Parkinsonism-dementia complex (PDC) in Guam. The latter association is intensively disputed, as L-BMAA concentrations required for toxic effects exceed those assumed to occur via food. The question thus was raised whether L-BMAA leads to neurodegeneration at nonexcitotoxic conditions. Using human SH-SY5Y neuroblastoma cells, L-BMAA-transport, incorporation into proteins, and subsequent impairment of cellular protein homeostasis were investigated. Binding of L-BMAA to intracellular proteins, but no clear protein incorporation was detected in response to (14)C-L-BMAA exposures. Nevertheless, low L-BMAA concentrations (≥ 0.1mM, 48 h) increased protein ubiquitination, 20S proteasomal and caspase 12 activity, expression of the endoplasmic reticulum (ER) stress marker CHOP, and enhanced phosphorylation of elf2α in SH-SY5Y cells. In contrast, high L-BMAA concentrations (≥ 1mM, 48 h) increased reactive oxygen species and protein oxidization, which were partially ameliorated by coincubation with vitamin E. L-BMAA-mediated cytotoxicity was observable 48 h following ≥ 2mM L-BMAA treatment. Consequently, the data presented here suggest that low L-BMAA concentrations result in a dysregulation of the cellular protein homeostasis with ensuing ER stress that is independent from high-concentration effects such as excitotoxicity and oxidative stress. Thus, the latter could be a contributing factor in the onset and slow progression of ALS/PDC in Guam. PMID:23047912

  19. Caspase-8 and caspase-7 sequentially mediate proteolytic activation of acid sphingomyelinase in TNF-R1 receptosomes

    PubMed Central

    Edelmann, Bärbel; Bertsch, Uwe; Tchikov, Vladimir; Winoto-Morbach, Supandi; Perrotta, Cristiana; Jakob, Marten; Adam-Klages, Sabine; Kabelitz, Dieter; Schütze, Stefan

    2011-01-01

    We previously demonstrated that tumour necrosis factor (TNF)-induced ceramide production by endosomal acid sphingomyelinase (A-SMase) couples to apoptosis signalling via activation of cathepsin D and cleavage of Bid, resulting in caspase-9 and caspase-3 activation. The mechanism of TNF-mediated A-SMase activation within the endolysosomal compartment is poorly defined. Here, we show that TNF-induced A-SMase activation depends on functional caspase-8 and caspase-7 expression. The active forms of all three enzymes, caspase-8, caspase-7 and A-SMase, but not caspase-3, colocalize in internalized TNF receptosomes. While caspase-8 and caspase-3 are unable to induce activation of purified pro-A-SMase, we found that caspase-7 mediates A-SMase activation by direct interaction resulting in proteolytic cleavage of the 72-kDa pro-A-SMase zymogen at the non-canonical cleavage site after aspartate 253, generating an active 57 kDa A-SMase molecule. Caspase-7 down modulation revealed the functional link between caspase-7 and A-SMase, confirming proteolytic cleavage as one further mode of A-SMase activation. Our data suggest a signalling cascade within TNF receptosomes involving sequential activation of caspase-8 and caspase-7 for induction of A-SMase activation by proteolytic cleavage of pro-A-SMase. PMID:21157428

  20. Proteome-wide Substrate Analysis Indicates Substrate Exclusion as a Mechanism to Generate Caspase-7 Versus Caspase-3 Specificity*

    PubMed Central

    Demon, Dieter; Van Damme, Petra; Berghe, Tom Vanden; Deceuninck, Annelies; Van Durme, Joost; Verspurten, Jelle; Helsens, Kenny; Impens, Francis; Wejda, Magdalena; Schymkowitz, Joost; Rousseau, Frederic; Madder, Annemieke; Vandekerckhove, Joël; Declercq, Wim; Gevaert, Kris; Vandenabeele, Peter

    2009-01-01

    Caspase-3 and -7 are considered functionally redundant proteases with similar proteolytic specificities. We performed a proteome-wide screen on a mouse macrophage lysate using the N-terminal combined fractional diagonal chromatography technology and identified 46 shared, three caspase-3-specific, and six caspase-7-specific cleavage sites. Further analysis of these cleavage sites and substitution mutation experiments revealed that for certain cleavage sites a lysine at the P5 position contributes to the discrimination between caspase-7 and -3 specificity. One of the caspase-7-specific substrates, the 40 S ribosomal protein S18, was studied in detail. The RPS18-derived P6–P5′ undecapeptide retained complete specificity for caspase-7. The corresponding P6–P1 hexapeptide still displayed caspase-7 preference but lost strict specificity, suggesting that P′ residues are additionally required for caspase-7-specific cleavage. Analysis of truncated peptide mutants revealed that in the case of RPS18 the P4–P1 residues constitute the core cleavage site but that P6, P5, P2′, and P3′ residues critically contribute to caspase-7 specificity. Interestingly, specific cleavage by caspase-7 relies on excluding recognition by caspase-3 and not on increasing binding for caspase-7. PMID:19759058

  1. Distinct MAPK signaling pathways, p21 up-regulation and caspase-mediated p21 cleavage establishes the fate of U937 cells exposed to 3-hydrogenkwadaphnin: Differentiation versus apoptosis

    SciTech Connect

    Moosavi, Mohammad Amin; Yazdanparast, Razieh

    2008-07-01

    Despite the depth of knowledge concerning the pathogenesis of acute myeloblastic leukemia (AML), long-term survival remains unresolved. Therefore, new agents that act more selectively and more potently are required. In that line, we have recently characterized a novel diterpene ester, called 3-hydrogenkwadaphnin (3-HK), with capability to induce both differentiation and apoptosis in various leukemia cell lines. These effects of 3-HK were mediated through inhibition of inosine 5'-monophosphate dehydrogenase, a selective up-regulated enzyme in cancerous cells, especially leukemia. However, it remains elusive to understand how cells display different fates in response to 3-HK. Here, we report the distinct molecular signaling pathways involved in forcing of 3-HK-treated U937 cells to undergo differentiation and apoptosis. After 3-HK (15 nM) treatment, a portion of U937 cells adhered to the culture plates and showed macrophage criteria while others remained in suspension and underwent apoptosis. The differentiated cells arrested in G{sub 0}/G{sub 1} phase of cell cycle and showed early activation of ERK1/2 pathway (3 h) along with ERK-dependent p21{sup Cip/WAF1} (p21) up-regulation and expression of p27{sup Kip1} and Bcl-2. In contrast, the suspension cells underwent apoptosis through Fas/FasL and mitochondrial pathways. The occurrence of apoptosis in these cells were accompanied with caspase-8-mediated p21 cleavage and delayed activation (24 h) of JNK1/2 and p38 MAPK. Taken together, these results suggest that distinct signaling pathways play a pivotal role in fates of drug-treated leukemia cells, thus this may pave some novel therapeutical utilities.

  2. SfDredd, a Novel Initiator Caspase Possessing Activity on Effector Caspase Substrates in Spodoptera frugiperda

    PubMed Central

    Liu, Hao; Wu, Andong; Mei, Long; Liu, Qingzhen

    2016-01-01

    Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells. PMID:26977926

  3. Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12.

    PubMed

    García de la Cadena, Selene; Massieu, Lourdes

    2016-07-01

    Caspases are cysteine proteases, which play important roles in different processes including, apoptosis and inflammation. Caspase-12, expressed in mouse and human, is classified as an inflammatory caspase. However, in humans caspase-12 gene has acquired different mutations that result in the expression of different variants. Caspase-12 is generally recognized as a negative regulator of the inflammatory response induced by infections, because it inhibits the activation of caspase-1 in inflammasome complexes, the production of the pro-inflammatory cytokines IL-1β and IL-18 and the overall response to sepsis. In contrast, caspase-4, the human paralog of caspase-12, exerts a positive modulatory action of the inflammatory response to infectious agents. The role of caspase-12 and caspase-4 in inflammation associated with cerebral ischemia, a condition that results from a transient or permanent reduction of cerebral blood flow, is still unknown. Among the mechanisms involved in ischemic brain injury, apoptosis and inflammation have important roles. Under these conditions, disturbances in the homeostasis of the endoplasmic reticulum (ER) take place, leading to ER stress, caspase activation and apoptosis. Caspase-12 up-regulation and processing has been observed after the ischemic episode but its role in apoptosis is controversial. Cleavage of caspase-4 also occurs during ER stress but its role in ischemic brain injury is unknown. Throughout this review evidence supporting a role of caspase-12 and caspase-4 on the modulation of the inflammatory response to infection and their potential contribution to ER stress-induced apoptosis, is discussed. Understanding the actions of rodent caspase-12 and human caspase-4 will help us to elucidate their role in different pathological conditions, which to date is not well understood. PMID:27142195

  4. Targeting caspase-6 and caspase-8 to promote neuronal survival following ischemic stroke

    PubMed Central

    Shabanzadeh, A P; D'Onofrio, P M; Monnier, P P; Koeberle, P D

    2015-01-01

    Previous studies show that caspase-6 and caspase-8 are involved in neuronal apoptosis and regenerative failure after trauma of the adult central nervous system (CNS). In this study, we evaluated whether caspase-6 or -8 inhibitors can reduce cerebral or retinal injury after ischemia. Cerebral infarct volume, relative to appropriate controls, was significantly reduced in groups treated with caspase-6 or -8 inhibitors. Concomitantly, these treatments also reduced neurological deficits, reduced edema, increased cell proliferation, and increased neurofilament levels in the injured cerebrum. Caspase-6 and -8 inhibitors, or siRNAs, also increased retinal ganglion cell survival at 14 days after ischemic injury. Caspase-6 or -8 inhibition also decreased caspase-3, -6, and caspase-8 cleavage when assayed by western blot and reduced caspase-3 and -6 activities in colorimetric assays. We have shown that caspase-6 or caspase-8 inhibition decreases the neuropathological consequences of cerebral or retinal infarction, thereby emphasizing their importance in ischemic neuronal degeneration. As such, caspase-6 and -8 are potential targets for future therapies aimed at attenuating the devastating functional losses that result from retinal or cerebral stroke. PMID:26539914

  5. Inclusion Complex of Zerumbone with Hydroxypropyl- β -Cyclodextrin Induces Apoptosis in Liver Hepatocellular HepG2 Cells via Caspase 8/BID Cleavage Switch and Modulating Bcl2/Bax Ratio.

    PubMed

    Muhammad Nadzri, Nabilah; Abdul, Ahmad Bustamam; Sukari, Mohd Aspollah; Abdelwahab, Siddig Ibrahim; Eid, Eltayeb E M; Mohan, Syam; Kamalidehghan, Behnam; Anasamy, Theebaa; Ng, Kuan Beng; Syam, Suvitha; Arbab, Ismail Adam; Rahman, Heshu Sulaiman; Ali, Hapipah Mohd

    2013-01-01

    Zerumbone (ZER) isolated from Zingiber zerumbet was previously encapsulated with hydroxypropyl- β -cyclodextrin (HP β CD) to enhance ZER's solubility in water, thus making it highly tolerable in the human body. The anticancer effects of this new ZER-HP β CD inclusion complex via apoptosis cell death were assessed in this study for the first time in liver hepatocellular cells, HepG2. Apoptosis was ascertained by morphological study, nuclear stain, and sub-G1 cell population accumulation with G2/M arrest. Further investigations showed the release of cytochrome c and loss of mitochondrial membrane potential, proving mitochondrial dysfunction upon the ZER-HP β CD treatment as well as modulating proapoptotic and anti-apototic Bcl-2 family members. A significant increase in caspase 3/7, caspase 9, and caspase 8 was detected with the depletion of BID cleaved by caspase 8. Collectively, these results prove that a highly soluble inclusion complex of ZER-HP β CD could be a promising anticancer agent for the treatment of hepatocellular carcinoma in humans. PMID:23737847

  6. Inclusion Complex of Zerumbone with Hydroxypropyl-β-Cyclodextrin Induces Apoptosis in Liver Hepatocellular HepG2 Cells via Caspase 8/BID Cleavage Switch and Modulating Bcl2/Bax Ratio

    PubMed Central

    Abdul, Ahmad Bustamam; Sukari, Mohd Aspollah; Abdelwahab, Siddig Ibrahim; Eid, Eltayeb E. M.; Kamalidehghan, Behnam; Anasamy, Theebaa; Ng, Kuan Beng; Syam, Suvitha; Arbab, Ismail Adam; Rahman, Heshu Sulaiman; Ali, Hapipah Mohd

    2013-01-01

    Zerumbone (ZER) isolated from Zingiber zerumbet was previously encapsulated with hydroxypropyl-β-cyclodextrin (HPβCD) to enhance ZER's solubility in water, thus making it highly tolerable in the human body. The anticancer effects of this new ZER-HPβCD inclusion complex via apoptosis cell death were assessed in this study for the first time in liver hepatocellular cells, HepG2. Apoptosis was ascertained by morphological study, nuclear stain, and sub-G1 cell population accumulation with G2/M arrest. Further investigations showed the release of cytochrome c and loss of mitochondrial membrane potential, proving mitochondrial dysfunction upon the ZER-HPβCD treatment as well as modulating proapoptotic and anti-apototic Bcl-2 family members. A significant increase in caspase 3/7, caspase 9, and caspase 8 was detected with the depletion of BID cleaved by caspase 8. Collectively, these results prove that a highly soluble inclusion complex of ZER-HPβCD could be a promising anticancer agent for the treatment of hepatocellular carcinoma in humans. PMID:23737847

  7. Inactivation of the human vitamin D receptor by caspase-3.

    PubMed

    Malloy, Peter J; Feldman, David

    2009-02-01

    Calcitriol actions are mediated by the vitamin D receptor (VDR), a nuclear transcription factor of the steroid-retinoid-thyroid nuclear receptor gene superfamily. Calcitriol inhibits the growth of many cells including cancer cells by inducing cell cycle arrest. In some cancer cell lines, calcitriol also induces apoptosis. In the LNCaP prostate cancer cell line, induction of apoptosis and caspase-3/7 activities by staurosporine (STS) abolished [(3)H]1,25-dihydroxy vitamin D(3) binding and VDR protein, suggesting that the VDR may be targeted for inactivation by caspases during apoptosis. A potential caspase-3 site (D(195)MMD(198)S) was identified in the human VDR ligand-binding domain. Mutations D195A, D198A, and S199A were generated in the putative capase-3 cleavage site. In transfected COS-7 cells, STS treatment resulted in the cleavage of the wild-type (WT) VDR and S199A mutant VDR but not the D195A or D198A mutants. In in vitro assays, the WT VDR and S199A mutant VDR were cleaved by caspase-3, although the D195A and D198A mutants were resistant to caspase-3. In vitro, the WT VDR was also cleaved by caspase-6 and caspase-7 and in extracts of STS-treated LNCaP cells. In STS-treated LNCaP cells and human skin fibroblasts, the proteasome inhibitor MG-132 protected the VDR caspase cleavage fragment from further degradation by the 26S proteasome. The rat VDR that does not contain the caspase-3 cleavage site was not cleaved in STS-treated COS-7 cells. In conclusion, our results demonstrate that the human VDR is a target of caspase-3 and suggest that activation of caspase-3 may limit VDR activity. PMID:18832097

  8. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism.

    PubMed

    Dubey, Megha; Nagarkoti, Sheela; Awasthi, Deepika; Singh, Abhishek K; Chandra, Tulika; Kumaravelu, J; Barthwal, Manoj K; Dikshit, Madhu

    2016-01-01

    Neutrophils play an indispensable role in killing of invading pathogens by enhancing reactive oxygen species (ROS) and NO generation, and subsequently undergoing apoptosis. Unlike ROS/NOX2, role of NO/NOS still remains undefined in the apoptosis of neutrophils (PMNs) and the present study attempts to decipher the importance of NO/NOS in the neutrophil apoptosis. Prolonged treatment of human PMNs or mice bone marrow derived neutrophils (BMDN) with NO led to enhanced ROS generation, caspase-8/caspase-3 cleavage, reduced mitochondrial membrane potential and finally cellular apoptosis. NO-induced ROS generation led to caspase-8 deglutathionylation and activation, which subsequently activated mitochondrial death pathway via BID (Bcl-2 family protein) cleavage. NO-mediated augmentation of caspase-8 and BID cleavage was significantly prevented in BMDN from neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice, implying the involvement of NOX2 in NO-induced apoptosis of PMNs. Furthermore, ROS, NO generation and inducible nitric oxide synthase (iNOS) expression were enhanced in a time-dependent manner in human PMNs and mice BMDN undergoing spontaneous apoptosis. Pharmacological and genetic ablation of iNOS in human PMNs and mice BMDN significantly reduced the levels of apoptosis. Impaired apoptosis of BMDN from iNOS KO mice was due to reduced caspase-8 activity which subsequently prevented caspase-3 and -9 activation. Altogether, our results suggest a crucial role of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 mediated activation of mitochondrial death pathway. PMID:27584786

  9. Essential myosin light chain as a target for caspase-3 in failing myocardium

    PubMed Central

    Moretti, Alessandra; Weig, Hans-Jörg; Ott, Thomas; Seyfarth, Melchior; Holthoff, Hans-Peter; Grewe, Diana; Gillitzer, Angelika; Bott-Flügel, Lorenz; Schömig, Albert; Ungerer, Martin; Laugwitz, Karl-Ludwig

    2002-01-01

    Programmed cell death involves the activation of caspase proteases that can mediate the cleavage of vital cytoskeletal proteins. We have recently reported that, in failing cardiac myocytes, caspase-3 activation is associated with a reduction in contractile performance. In this study we used a modified yeast two-hybrid system to screen for caspase-3 interacting proteins of the cardiac cytoskeleton. We identified ventricular essential myosin light chain (vMLC1) as a target for caspase-3. By sequencing and site-directed mutagenesis, a noncanonical cleavage site for caspase-3 was mapped to the C-terminal DFVE135G motif. We demonstrated that vMLC1 cleavage in failing myocardium in vivo is associated with a morphological disruption of the organized vMLC1 staining of sarcomeres, and with a reduction in myocyte contractile performance. Adenoviral gene transfer of the caspase inhibitor p35 in vivo prevented caspase-3 activation and vMLC1 cleavage, with positive impact on contractility. These data suggest that direct cleavage of vMLC1 by activated caspase-3 may contribute to depression of myocyte function by altering cross-bridge interaction between myosin and actin molecules. Therefore, activation of apoptotic pathways in the heart may lead to contractile dysfunction before cell death. PMID:12186978

  10. Caspase Exploitation by Legionella pneumophila.

    PubMed

    Krause, Kathrin; Amer, Amal O

    2016-01-01

    Legionella pneumophila remains a major health concern, especially for hospitalized patients. L. pneumophila in the environment can survive extracellular or as protozoan parasite within amoeba. After human infection it efficiently replicates in alveolar macrophages without activating inflammasome assembly and cleavage of caspase-1. In contrast murine macrophages actively recognize intracellular L. pneumophila via inflammasome components which initiate pro-inflammatory cytokine secretion, phagosomal maturation and pyroptotic cell death thereby leading to bacterial restriction. During this process flagellin-dependent and -independent signaling pathways trigger the canonical as well as the non-canonical inflammasome. This review describes the current knowledge about L. pneumophila-induced inflammasome pathways in permissive and restrictive host cells. PMID:27148204

  11. Caspase Exploitation by Legionella pneumophila

    PubMed Central

    Krause, Kathrin; Amer, Amal O.

    2016-01-01

    Legionella pneumophila remains a major health concern, especially for hospitalized patients. L. pneumophila in the environment can survive extracellular or as protozoan parasite within amoeba. After human infection it efficiently replicates in alveolar macrophages without activating inflammasome assembly and cleavage of caspase-1. In contrast murine macrophages actively recognize intracellular L. pneumophila via inflammasome components which initiate pro-inflammatory cytokine secretion, phagosomal maturation and pyroptotic cell death thereby leading to bacterial restriction. During this process flagellin-dependent and -independent signaling pathways trigger the canonical as well as the non-canonical inflammasome. This review describes the current knowledge about L. pneumophila-induced inflammasome pathways in permissive and restrictive host cells. PMID:27148204

  12. A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation.

    PubMed

    Méthot, Nathalie; Vaillancourt, John P; Huang, JingQi; Colucci, John; Han, Yongxin; Ménard, Stéphane; Zamboni, Robert; Toulmond, Sylvie; Nicholson, Donald W; Roy, Sophie

    2004-07-01

    Apoptotic markers consist of either caspase substrate cleavage products or phenotypic changes that manifest themselves as a consequence of caspase-mediated substrate cleavage. We have shown recently that pharmacological inhibitors of caspase activity prevent the appearance of two such apoptotic manifestations, alphaII-spectrin cleavage and DNA fragmentation, but that blockade of the latter required a significantly higher concentration of inhibitor. We investigated this phenomenon through the use of a novel radiolabeled caspase inhibitor, [(125)I]M808, which acts as a caspase active site probe. [(125)I]M808 bound to active caspases irreversibly and with high sensitivity in apoptotic cell extracts, in tissue extracts from several commonly used animal models of cellular injury, and in living cells. Moreover, [(125)I]M808 detected active caspases in septic mice when injected intravenously. Using this caspase probe, an active site occupancy assay was developed and used to measure the fractional inhibition required to block apoptosis-induced DNA fragmentation. In thymocytes, occupancy of up to 40% of caspase active sites had no effect on DNA fragmentation, whereas inhibition of half of the DNA cleaving activity required between 65 and 75% of active site occupancy. These results suggest that a high and persistent fractional inhibition will be required for successful caspase inhibition-based therapies. PMID:15067000

  13. Substrate-induced conformational changes occur in all cleaved forms of caspase-6

    PubMed Central

    Vaidya, Sravanti; Velázquez-Delgado, Elih M.; Abbruzzese, Genevieve; Hardy, Jeanne A.

    2010-01-01

    Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington’s and Alzheimer’s Diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases, however the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60’s and 130’s helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergo a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants including a novel constitutively two-chain form and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and linker present is the most stable indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Most importantly, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases. PMID:21111746

  14. Substrate-Induced Conformational Changes Occur in All Cleaved Forms of Caspase-6

    SciTech Connect

    S Vaidya; E Velazquez-Delgado; G Abbruzzese; J Hardy

    2011-12-31

    Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergo a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants, including a novel constitutively two-chain form, and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and the linker present is the most stable, indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Moreover, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases.

  15. A cloning method to identify caspases and their regulators in yeast: Identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1

    PubMed Central

    Hawkins, Christine J.; Wang, Susan L.; Hay, Bruce A.

    1999-01-01

    Site-specific proteases play critical roles in regulating many cellular processes. To identify novel site-specific proteases, their regulators, and substrates, we have designed a general reporter system in Saccharomyces cerevisiae in which a transcription factor is linked to the intracellular domain of a transmembrane protein by protease cleavage sites. Here, we explore the efficacy of this approach by using caspases, a family of aspartate-specific cysteine proteases, as a model. Introduction of an active caspase into cells that express a caspase-cleavable reporter results in the release of the transcription factor from the membrane and subsequent activation of a nuclear reporter. We show that known caspases activate the reporter, that an activator of caspase activity stimulates reporter activation in the presence of an otherwise inactive caspase, and that caspase inhibitors suppress caspase-dependent reporter activity. We also find that, although low or moderate levels of active caspase expression do not compromise yeast cell growth, higher level expression leads to lethality. We have exploited this observation to isolate clones from a Drosophila embryo cDNA library that block DCP-1 caspase-dependent yeast cell death. Among these clones, we identified the known cell death inhibitor DIAP1. We showed, by using bacterially synthesized proteins, that glutathione S-transferase–DIAP1 directly inhibits DCP-1 caspase activity but that it had minimal effect on the activity of a predomainless version of a second Drosophila caspase, drICE. PMID:10077606

  16. Etoposide sensitizes neuroblastoma cells expressing caspase 8 to TRAIL.

    PubMed

    Kim, Hye Ryung; Lee, Myoung Woo; Kim, Dae Seong; Jo, Ha Yeong; Lee, Soo Hyun; Chueh, Hee Won; Jung, Hye Lim; Yoo, Keon Hee; Sung, Ki Woong; Koo, Hong Hoe

    2012-01-01

    TRAIL [TNF (tumour necrosis factor)-related apoptosis-inducing ligand] is a promising agent for clinical use since it kills a wide range of tumour cells without affecting normal cells. We provide evidence that pretreatment with etoposide significantly enhanced TRAIL-mediated apoptosis via up-regulation of DR5 (death receptor 5 or TRAIL-R2) expression in the caspase 8 expressing neuroblastoma cell line, SK-N-MC. In addition, sequential treatment with etoposide and TRAIL increased caspases 8, 9 and 3 activation, Mcl-1 cleavage and Bid truncation, which suggests that the ability of etoposide and TRAIL to induce apoptosis is mediated through activation of an intrinsic signalling pathway. Although TRAIL-R2 expression increased in IMR-32 cells in response to etoposide treatment, cell death was not increased by concurrent treatment with TRAIL compared with etoposide alone, because the cells lacked caspase 8 expression. Restoration of caspase 8 expression by exposure to IFNγ (interferon γ) sensitizes IMR-32 cells to TRAIL. Moreover, pretreatment with etoposide increased TRAIL-induced apoptosis in caspase 8 restored IMR-32 cells through activation of a caspase cascade that included caspases 8, 9 and 3. These results indicate that the etoposide-mediated sensitization of neuroblastoma cells to TRAIL is associated with an increase in TRAIL-R2 expression and requires caspase 8 expression. These observations support the potential use of a combination of etoposide and TRAIL in future clinical trials. PMID:23124518

  17. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    SciTech Connect

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J.

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via

  18. Activation of caspases in intestinal villus epithelial cells of normal and nematode infected rats

    PubMed Central

    Hyoh, Y; Ishizaka, S; Horii, T; Fujiwara, A; Tegoshi, T; Yamada, M; Arizono, N

    2002-01-01

    Background: Small intestinal epithelial cells (IEC) show apoptosis in physiological turnover of cells and in certain inflammatory diseases. Aims: To investigate the role of caspases in the progression of IEC apoptosis in vivo. Methods: IEC were separated along the villus-crypt axis from the jejunum of normal and Nippostrongylus brasiliensis infected rats at 4°C. Caspases were examined by a fluorometric assay method, histochemistry, and immunoblotting. Results: Villus cell rich IEC from normal rats exhibited a high level of caspase-3-like activity whereas activities of caspase-1, -8, and -9 were negligible. Immunoblotting analysis of villus cell rich IEC revealed partial cleavage of procaspase-3 into a 17 kDa molecule as well as cleavage of a caspase-3 substrate, poly(ADP-ribose) polymerase (PARP), whereas in crypt cell rich IEC, caspase-3 cleavage was less significant. Caspase-3 activity was also observed histochemically in villus epithelium on frozen sections of the normal small intestine. IEC prepared at 4°C did not reveal nuclear degradation whereas subsequent incubation in a suspension at 37°C induced intense nuclear degradation within one hour in accordance with increases in active caspase-3. This apoptosis was partially suppressed by the caspase inhibitor Z-VAD-fmk. Nematode infected animals showed villus atrophy together with significant increases in levels of caspase-3 in IEC but not of caspase-1, -8, or -9. Conclusion: Caspase-3 may have an important role in the physiological replacement of IEC as well as in progression of IEC apoptosis induced by nematode infection. PMID:11772970

  19. Tyrosine Phosphorylation of Caspase-8 Abrogates Its Apoptotic Activity and Promotes Activation of c-Src

    PubMed Central

    Tsang, Jennifer LY; Jia, Song Hui; Parodo, Jean; Plant, Pamela; Lodyga, Monika; Charbonney, Emmanuel; Szaszi, Katalin; Kapus, Andras; Marshall, John C.

    2016-01-01

    Src family tyrosine kinases (SFKs) phosphorylate caspase-8A at tyrosine (Y) 397 resulting in suppression of apoptosis. In addition, the phosphorylation of caspase-8A at other sites including Y465 has been implicated in the regulation of caspase-8 activity. However, the functional consequences of these modifications on caspase-8 processing/activity have not been elucidated. Moreover, various Src substrates are known to act as potent Src regulators, but no such role has been explored for caspase-8. We asked whether the newly identified caspase-8 phosphorylation sites might regulate caspase-8 activation and conversely, whether caspase-8 phosphorylation might affect Src activity. Here we show that Src phosphorylates caspase-8A at multiple tyrosine sites; of these, we have focused on Y397 within the linker region and Y465 within the p12 subunit of caspase-8A. We show that phosphomimetic mutation of caspase-8A at Y465 prevents its cleavage and the subsequent activation of caspase-3 and suppresses apoptosis. Furthermore, simultaneous phosphomimetic mutation of caspase-8A at Y397 and Y465 promotes the phosphorylation of c-Src at Y416 and increases c-Src activity. Finally, we demonstrate that caspase-8 activity prevents its own tyrosine phosphorylation by Src. Together these data reveal that dual phosphorylation converts caspase-8 from a pro-apoptotic to a pro-survival mediator. Specifically, tyrosine phosphorylation by Src renders caspase-8 uncleavable and thereby inactive, and at the same time converts it to a Src activator. This novel dynamic interplay between Src and caspase-8 likely acts as a potent signal-integrating switch directing the cell towards apoptosis or survival. PMID:27101103

  20. Caspase-11 Controls Interleukin-1β Release through Degradation of TRPC1

    PubMed Central

    Py, Bénédicte F.; Jin, Mingzhi; Desai, Bimal N.; Penumaka, Anirudh; Zhu, Hong; Kober, Maike; Dietrich, Alexander; Lipinski, Marta M.; Henry, Thomas; Clapham, David E.; Yuan, Junying

    2014-01-01

    SUMMARY Caspase-11 is a highly inducible caspase that controls both inflammatory responses and cell death. Caspase-11 controls interleukin 1β (IL-1β) secretion by potentiating caspase-1 activation and induces caspase-1-independent pyroptosis downstream of noncanonical NLRP3 inflammasome activators such as lipopolysaccharide (LPS) and Gram-negative bacteria. However, we still know very little about the downstream mechanism of caspase-11 in regulating inflammation because the known substrates of caspase-11 are only other caspases. Here, we identify the cationic channel subunit transient receptor potential channel 1 (TRPC1) as a substrate of caspase-11. TRPC1 deficiency increases the secretion of IL-1β without modulating caspase-1 cleavage or cell death in cultured macrophages. Consistently, trpc1−/− mice show higher IL-1β secretion in the sepsis model of intraperitoneal LPS injection. Altogether, our data suggest that caspase-11 modulates the cationic channel composition of the cell and thus regulates the unconventional secretion pathway in a manner independent of caspase-1. PMID:24630989

  1. Caspase-8 and c-FLIPL Associate in Lipid Rafts with NF-κB Adaptors during T Cell Activation*

    PubMed Central

    Misra, Ravi S.; Russell, Jennifer Q.; Koenig, Andreas; Hinshaw-Makepeace, Jennifer A.; Wen, Renren; Wang, Demin; Huo, Hairong; Littman, Dan R.; Ferch, Uta; Ruland, Jurgen; Thome, Margot; Budd, Ralph C.

    2015-01-01

    Humans and mice lacking functional caspase-8 in T cells manifest a profound immunodeficiency syndrome due to defective T cell antigen receptor (TCR)-induced NF-κB signaling and proliferation. It is unknown how caspase-8 is activated following T cell stimulation, and what is the caspase-8 substrate(s) that is necessary to initiate T cell cycling. We observe that following TCR ligation, a small portion of total cellular caspase-8 and c-FLIPL rapidly migrate to lipid rafts where they associate in an active caspase complex. Activation of caspase-8 in lipid rafts is followed by rapid cleavage of c-FLIPL at a known caspase-8 cleavage site. The active caspase·c-FLIP complex forms in the absence of Fas (CD95/APO1) and associates with the NF-κB signaling molecules RIP1, TRAF2, and TRAF6, as well as upstream NF-κB regulators PKCθ, CARMA1, Bcl-10, and MALT1, which connect to the TCR. The lack of caspase-8 results in the absence of MALT1 and Bcl-10 in the active caspase complex. Consistent with this observation, inhibition of caspase activity attenuates NF-κB activation. The current findings define a link among TCR, caspases, and the NF-κB pathway that occurs in a sequestered lipid raft environment in T cells. PMID:17462996

  2. Mechanisms for ribotoxin-induced ribosomal RNA cleavage.

    PubMed

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10ng/ml) and ribosome-inactivating protein ricin (≥300ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. PMID:23022514

  3. Mechanisms for Ribotoxin-induced Ribosomal RNA Cleavage

    PubMed Central

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J.

    2012-01-01

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10 ng/ml) and ribosome-inactivating protein ricin (≥300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspase 8, 9 and 3 concurrently with apoptosis further suggested rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors cathepsin L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. PMID:23022514

  4. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes.

    PubMed

    Viganò, Elena; Diamond, Catherine Emma; Spreafico, Roberto; Balachander, Akhila; Sobota, Radoslaw M; Mortellaro, Alessandra

    2015-01-01

    Monocytes promote the early host response to infection releasing key pro-inflammatory cytokines, such as IL-1β. The biologically inactive IL-1β precursor is processed to active form by inflammasomes, multi-protein complexes activating caspase-1. Human monocytes exhibit an unconventional one-step pathway of inflammasome activation in response to lipopolysaccharide (LPS) alone. Although this lineage-restricted mechanism is likely to contribute to the pathology of endotoxin shock, signalling pathways regulating this mechanism are currently unknown. Here we report that caspase-4 and caspase-5 mediate IL-1α and IL-1β release from human monocytes after LPS stimulation. Although caspase-4 remains uncleaved, caspase-5 undergoes rapid processing upon LPS treatment. We also identify an additional caspase-5 cleavage product in LPS-stimulated monocytes, which correlates with IL-1 secretion. This one-step pathway requires Syk activity and Ca(2+) flux instigated by CD14/TLR4-mediated LPS internalization. Identification of caspase-4/5 as the key determinants of one-step inflammasome activation in human monocytes provides potential targets for therapeutic intervention in endotoxin shock. PMID:26508369

  5. Caspase-dependent Regulation of Histone Deacetylase 4 Nuclear-Cytoplasmic Shuttling Promotes Apoptosis

    PubMed Central

    Paroni, Gabriela; Mizzau, Michela; Henderson, Clare; Del Sal, Giannino; Schneider, Claudio; Brancolini, Claudio

    2004-01-01

    Histone deacetylases (HDACs) are important regulators of gene expression as part of transcriptional corepressor complexes. Here, we demonstrate that caspases can repress the activity of the myocyte enhancer factor (MEF)2C transcription factor by regulating HDAC4 processing. Cleavage of HDAC4 occurs at Asp 289 and disjoins the carboxy-terminal fragment, localized into the cytoplasm, from the amino-terminal fragment, which accumulates into the nucleus. In the nucleus, the caspase-generated fragment of HDAC4 is able to trigger cytochrome c release from mitochondria and cell death in a caspase-9–dependent manner. The caspase-cleaved amino-terminal fragment of HDAC4 acts as a strong repressor of the transcription factor MEF2C, independently from the HDAC domain. Removal of amino acids 166–289 from the caspase-cleaved fragment of HDAC4 abrogates its ability to repress MEF2 transcription and to induce cell death. Caspase-2 and caspase-3 cleave HDAC4 in vitro and caspase-3 is critical for HDAC4 cleavage in vivo during UV-induced apoptosis. After UV irradiation, GFP-HDAC4 translocates into the nucleus coincidentally/immediately before the retraction response, but clearly before nuclear fragmentation. Together, our data indicate that caspases could specifically modulate gene repression and apoptosis through the proteolyic processing of HDAC4. PMID:15075374

  6. Allosteric modulation of caspases.

    PubMed

    Häcker, Hans-Georg; Sisay, Mihiret Tekeste; Gütschow, Michael

    2011-11-01

    Caspases are proteolytic enzymes mainly involved in the induction and execution phases of apoptosis. This type of programmed cell death is an essential regulatory process required to maintain the integrity and homeostasis of multicellular organisms. Inappropriate apoptosis is attributed a key role in many human diseases, including neurodegenerative disorders, ischemic damage, autoimmune diseases and cancer. Allosteric modulation of the function of a protein occurs when the regulatory trigger, such as the binding of a small effector or inhibitor molecule, takes place some distance from the protein's active site. In recent years, several caspases have been identified that possess allosteric sites and binding of small molecule to these sites resulted in the modulation of enzyme activities. Regulation of caspase activity by small molecule allosteric modulators is believed to be of great therapeutic importance. In this review we give brief highlights on recent developments in identifying and characterizing natural and synthetic allosteric inhibitors as well as activators of caspases and discuss their potential in drug discovery and protein engineering. PMID:21807025

  7. Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury.

    PubMed

    Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S

    2005-10-28

    Sialic acid binding immunoglobulin like lectin (Siglec)-8 crosslinking with specific antibodies causes human eosinophil apoptosis. Mechanisms by which Siglec-8 crosslinking induces apoptosis are not known. Peripheral blood eosinophils were examined for caspase, mitochondria and reactive oxygen species (ROS) involvement after incubating the cells with anti-Siglec-8 crosslinking Abs or control Abs, in the presence or absence of selective inhibitors. Siglec-8 crosslinking induced rapid cleavage of caspase-3, caspase-8, and caspase-9 in eosinophils. Selective caspase-8 and/or caspase-9 inhibitors inhibited this apoptosis. Siglec-8 crosslinking on eosinophils increased dissipation of mitochondrial membrane potential upstream of caspase activation. Rotenone and antimycin, inhibitors of mitochondrial respiratory chain components, completely inhibited apoptosis. Additional experiments with an inhibitor of ROS, diphenyleneiodonium, demonstrated that ROS was also essential for Siglec-8-mediated apoptosis and preceded Siglec-8-mediated mitochondrial dissipation. These experiments show that Siglec-8-induced apoptosis occurs through the sequential production of ROS, followed by induction of mitochondrial injury and caspase cleavage. PMID:16157303

  8. Caspase-1 and IL-1β processing in a teleost fish.

    PubMed

    Reis, Marta I R; do Vale, Ana; Pereira, Pedro J B; Azevedo, Jorge E; Dos Santos, Nuno M S

    2012-01-01

    Interleukine-1β (IL-1β) is the most studied pro-inflammatory cytokine, playing a central role in the generation of systemic and local responses to infection, injury, and immunological challenges. In mammals, IL-1β is synthesized as an inactive 31 kDa precursor that is cleaved by caspase-1 generating a 17.5 kDa secreted active mature form. The caspase-1 cleavage site strictly conserved in all mammalian IL-1β sequences is absent in IL-1β sequences reported for non-mammalian vertebrates. Recently, fish caspase-1 orthologues have been identified in sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) but very little is known regarding their processing and activity. In this work it is shown that sea bass caspase-1 auto-processing is similar to that of the human enzyme, resulting in active p24/p10 and p20/p10 heterodimers. Moreover, the presence of alternatively spliced variants of caspase-1 in sea bass is reported. The existence of caspase-1 isoforms in fish and in mammals suggests that they have been evolutionarily maintained and therefore are likely to play a regulatory role in the inflammatory response, as shown for other caspases. Finally, it is shown that sea bass and avian IL-1β are specifically cleaved by caspase-1 at different but phylogenetically conserved aspartates, distinct from the cleavage site of mammalian IL-1β. PMID:23226286

  9. Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection

    USGS Publications Warehouse

    Vojtech, Lucia N.; Scharping, Nichole; Woodson, James C.; Hansen, John D.

    2012-01-01

    The interleukin-1 family of cytokines are essential for the control of pathogenic microbes but are also responsible for devastating autoimmune pathologies. Consequently, tight regulation of inflammatory processes is essential for maintaining homeostasis. In mammals, interleukin-1 beta (IL-1β) is primarily regulated at two levels, transcription and processing. The main pathway for processing IL-1β is the inflammasome, a multiprotein complex that forms in the cytosol and which results in the activation of inflammatory caspase (caspase 1) and the subsequent cleavage and secretion of active IL-1β. Although zebrafish encode orthologs of IL-1β and inflammatory caspases, the processing of IL-1β by activated caspase(s) has never been examined. Here, we demonstrate that in response to infection with the fish-specific bacterial pathogen Francisella noatunensis, primary leukocytes from adult zebrafish display caspase-1-like activity that results in IL-1β processing. Addition of caspase 1 or pancaspase inhibitors considerably abrogates IL-1β processing. As in mammals, this processing event is concurrent with the secretion of cleaved IL-1β into the culture medium. Furthermore, two putative zebrafish inflammatory caspase orthologs, caspase A and caspase B, are both able to cleave IL-1β, but with different specificities. These results represent the first demonstration of processing and secretion of zebrafish IL-1β in response to a pathogen, contributing to our understanding of the evolutionary processes governing the regulation of inflammation.                   

  10. Identification and Evaluation of Novel Small Molecule Pan-Caspase Inhibitors in Huntington’s Disease Models

    PubMed Central

    Leyva, Melissa J.; DeGiacomo, Francesco; Kaltenbach, Linda S.; Holcomb, Jennifer; Zhang, Ningzhe; Gafni, Juliette; Park, Hyunsun; Lo, Donald C.; Salvesen, Guy S.; Ellerby, Lisa M.; Ellman, Jonathan A.

    2010-01-01

    SUMMARY Huntington’s Disease (HD) is characterized by a mutation in the huntingtin gene encoding an expansion of glutamine repeats on the N-terminus of the huntingtin (Htt) protein. Numerous studies have identified Htt proteolysis as a critical pathological event in post mortem human tissue and mouse HD models, and proteases known as caspases have emerged as attractive HD targets. We report the use of the substrate activity screening method against caspases-3 and -6 to identify three novel, pan-caspase inhibitors that block proteolysis of Htt at caspase-3 and -6 cleavage sites. In HD models, these irreversible inhibitors suppressed Hdh111Q/111Q-mediated toxicity and rescued rat striatal and cortical neurons from cell death. In this study the identified nonpeptidic caspase inhibitors were used to confirm the role of caspase-mediated Htt proteolysis in HD. These results further implicate caspases as promising targets for HD therapeutic development. PMID:21095569

  11. Zinc-mediated regulation of caspases activity: dose-dependent inhibition or activation of caspase-3 in the human Burkitt lymphoma B cells (Ramos).

    PubMed

    Schrantz, N; Auffredou, M T; Bourgeade, M F; Besnault, L; Leca, G; Vazquez, A

    2001-02-01

    Divalent cations, including Zinc and Manganese ions, are important modulators of cell activation. We investigated the ability of these two divalent cations to modulate apoptosis in human Burkitt lymphoma B cells line (Ramos). We found that Zinc (from 10 to 50 microM) inhibited Manganese-induced caspase-3 activation and apoptosis of Ramos cells. Higher concentration of Zinc (50 to 100 microM) did not prevent Manganese-mediated apoptosis but rather increased cell death among Ramos cells. This Zinc-mediated cell death was associated with apoptotic features such as cell shrinkage, the presence of phosphatidylserine residues on the outer leaflet of the cells, chromatin condensation, DNA fragmentation and decrease of mitochondrial transmembrane potential. Zinc-mediated apoptosis was associated with caspase-9 and caspase-3 activation as revealed by the appearance of active p35 fragment of caspase-9 and p19 and p17 of caspase-3 as well as in vivo cleavage of PARP and of a cell-permeable fluorogenic caspase-3 substrate (Phiphilux-G(1)D(2)). Both Zinc-mediated apoptosis and caspase-3 activation were prevented by the cell-permeable, broad-spectrum inhibitor of caspases (zVAD-fmk) or overexpression of bcl-2. In addition, we show that Zinc-induced loss of transmembrane mitochondrial potential is a caspase-independent event, since it is not modified by the presence of zVAD-fmk, which is inhibited by overexpression of bcl-2. These results indicate that depending on its concentration, Zinc can exert opposite effects on caspase-3 activation and apoptosis in human B lymphoma cells: concentrations below 50 microM inhibit caspase-3 activation and apoptosis whereas higher concentrations of Zinc activate a death pathway associated with apoptotic-like features and caspase-3 activation. PMID:11313717

  12. Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction.

    PubMed

    Guyenet, Stephan J; Mookerjee, Shona S; Lin, Amy; Custer, Sara K; Chen, Sylvia F; Sopher, Bryce L; La Spada, Albert R; Ellerby, Lisa M

    2015-07-15

    The neurodegenerative disorder spinocerebellar ataxia type 7 (SCA7) is caused by a polyglutamine (polyQ) expansion in the ataxin-7 protein, categorizing SCA7 as one member of a large class of heritable neurodegenerative proteinopathies. Cleavage of ataxin-7 by the protease caspase-7 has been demonstrated in vitro, and the accumulation of proteolytic cleavage products in SCA7 patients and mouse models has been identified as an early pathological change. However, it remains unknown whether a causal relationship exists between ataxin-7 proteolysis and in vivo SCA7 disease progression. To determine whether caspase cleavage is a critical event in SCA7 disease pathogenesis, we generated transgenic mice expressing polyQ-expanded ataxin-7 with a second-site mutation (D266N) to prevent caspase-7 proteolysis. When we compared SCA7-D266N mice with SCA7 mice lacking the D266N mutation, we found that SCA7-D266N mice exhibited improved motor performance, reduced neurodegeneration and substantial lifespan extension. Our findings indicate that proteolysis at the D266 caspase-7 cleavage site is an important mediator of ataxin-7 neurotoxicity, suggesting that inhibition of caspase-7 cleavage of polyQ-ataxin-7 may be a promising therapeutic strategy for this untreatable disorder. PMID:25859008

  13. Targets and Intracellular Signaling Mechanisms for Deoxynivalenol-Induced Ribosomal RNA Cleavage

    PubMed Central

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J.

    2012-01-01

    The trichothecene mycotoxin deoxynivalenol (DON), a known translational inhibitor, induces ribosomal RNA (rRNA) cleavage. Here, we characterized this process relative to (1) specific 18S and 28S ribosomal RNA cleavage sites and (2) identity of specific upstream signaling elements in this pathway. Capillary electrophoresis indicated that DON at concentrations as low as 200 ng/ml evoked selective rRNA cleavage after 6 h and that 1000 ng/ml caused cleavage within 2 h. Northern blot analysis revealed that DON exposure induced six rRNA cleavage fragments from 28S rRNA and five fragments from 18S rRNA. When selective kinase inhibitors were used to identify potential upstream signals, RNA-activated protein kinase (PKR), hematopoietic cell kinase (Hck), and p38 were found to be required for rRNA cleavage, whereas c-Jun N-terminal kinase and extracellular signal-regulated kinase were not. Furthermore, rRNA fragmentation was suppressed by the p53 inhibitors pifithrin-α and pifithrin-μ as well as the pan caspase inhibitor Z-VAD-FMK. Concurrent apoptosis was confirmed by acridine orange/ethidium bromide staining and flow cytometry. DON activated caspases 3, 8, and 9, thus suggesting the possible coinvolvement of both extrinsic and intrinsic apoptotic pathways in rRNA cleavage. Satratoxin G (SG), anisomycin, and ricin also induced specific rRNA cleavage profiles identical to those of DON, suggesting that ribotoxins might share a conserved rRNA cleavage mechanism. Taken together, DON-induced rRNA cleavage is likely to be closely linked to apoptosis activation and appears to involve the sequential activation of PKR/Hck →p38→p53→caspase 8/9→caspase 3. PMID:22491426

  14. Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage.

    PubMed

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J

    2012-06-01

    The trichothecene mycotoxin deoxynivalenol (DON), a known translational inhibitor, induces ribosomal RNA (rRNA) cleavage. Here, we characterized this process relative to (1) specific 18S and 28S ribosomal RNA cleavage sites and (2) identity of specific upstream signaling elements in this pathway. Capillary electrophoresis indicated that DON at concentrations as low as 200 ng/ml evoked selective rRNA cleavage after 6 h and that 1000 ng/ml caused cleavage within 2 h. Northern blot analysis revealed that DON exposure induced six rRNA cleavage fragments from 28S rRNA and five fragments from 18S rRNA. When selective kinase inhibitors were used to identify potential upstream signals, RNA-activated protein kinase (PKR), hematopoietic cell kinase (Hck), and p38 were found to be required for rRNA cleavage, whereas c-Jun N-terminal kinase and extracellular signal-regulated kinase were not. Furthermore, rRNA fragmentation was suppressed by the p53 inhibitors pifithrin-α and pifithrin-μ as well as the pan caspase inhibitor Z-VAD-FMK. Concurrent apoptosis was confirmed by acridine orange/ethidium bromide staining and flow cytometry. DON activated caspases 3, 8, and 9, thus suggesting the possible coinvolvement of both extrinsic and intrinsic apoptotic pathways in rRNA cleavage. Satratoxin G (SG), anisomycin, and ricin also induced specific rRNA cleavage profiles identical to those of DON, suggesting that ribotoxins might share a conserved rRNA cleavage mechanism. Taken together, DON-induced rRNA cleavage is likely to be closely linked to apoptosis activation and appears to involve the sequential activation of PKR/Hck →p38→p53→caspase 8/9→caspase 3. PMID:22491426

  15. Revisiting caspases in sepsis

    PubMed Central

    Aziz, M; Jacob, A; Wang, P

    2014-01-01

    Sepsis is a life-threatening illness that occurs due to an abnormal host immune network which extends through the initial widespread and overwhelming inflammation, and culminates at the late stage of immunosupression. Recently, interest has been shifted toward therapies aimed at reversing the accompanying periods of immune suppression. Studies in experimental animals and critically ill patients have demonstrated that increased apoptosis of lymphoid organs and some parenchymal tissues contributes to this immune suppression, anergy and organ dysfunction. Immediate to the discoveries of the intracellular proteases, caspases for the induction of apoptosis and inflammation, and their striking roles in sepsis have been focused elaborately in a number of original and review articles. Here we revisited the different aspects of caspases in terms of apoptosis, pyroptosis, necroptosis and inflammation and focused their links in sepsis by reviewing several recent findings. In addition, we have documented striking perspectives which not only rewrite the pathophysiology, but also modernize our understanding for developing novel therapeutics against sepsis. PMID:25412304

  16. Caspase-11 Modulates Inflammation and Attenuates Toxoplasma gondii Pathogenesis

    PubMed Central

    Coutermarsh-Ott, Sheryl L.; Doran, John T.; Campbell, Caroline; Williams, Tere M.; Lindsay, David S.; Allen, Irving C.

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasite that is the etiologic agent responsible for toxoplasmosis. Infection with T. gondii results in activation of nucleotide binding domain and leucine rich repeat containing receptors (NLRs). NLR activation leads to inflammasome formation, the activation of caspase-1, and the subsequent cleavage of IL-1β and IL-18. Recently, a noncanonical inflammasome has been characterized which functions through caspase-11 and appears to augment many biological functions previously considered to be dependent upon the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome in toxoplasmosis, we utilized Asc−/− and Casp11−/− mice and infected these animals with T. gondii. Our data indicates that caspase-11 modulates the innate immune response to T. gondii through a mechanism which is distinct from that currently described for the canonical inflammasome. Asc−/− mice demonstrated increased disease pathogenesis during the acute phase of T. gondii infection, whereas Casp11−/− mice demonstrated significantly attenuated disease pathogenesis and reduced inflammation. This attenuated host response was associated with reduced local and systemic cytokine production, including diminished IL-1β. During the chronic phase of infection, caspase-11 deficiency resulted in increased neuroinflammation and tissue cyst burden in the brain. Together, our data suggest that caspase-11 functions to protect the host by enhancing inflammation during the early phase of infection in an effort to minimize disease pathogenesis during later stages of toxoplasmosis. PMID:27378827

  17. Blockade of processing/activation of caspase-3 by hypoxia

    SciTech Connect

    Han, Sang Hee; Kim, Moonil; Park, Kyoungsook; Kim, Tae-Hyoung; Seol, Dai-Wu

    2008-10-31

    Tumor hypoxia, which is caused by the rapid proliferation of tumor cells and aberrant vasculature in tumors, results in inadequate supplies of oxygen and nutrients to tumor cells. Paradoxically, these unfavorable growth conditions benefit tumor cell survival, although the mechanism is poorly understood. We have demonstrated for the first time that hypoxia inhibits TRAIL-induced apoptosis by blocking translocation of Bax from cytosol to the mitochondria in tumor cells. However, it is largely unknown how hypoxia-inhibited Bax translocation attenuates TRAIL-induced apoptosis. Here, we demonstrate that despite its inhibitory activity in TRAIL-induced apoptosis, hypoxia does not affect TRAIL-triggered proximal apoptotic signaling events, including caspase-8 activation and Bid cleavage. Instead, hypoxia inhibited processing of caspase-3, leading to incomplete activation of the caspase. Importantly, hypoxia-blocked translocation of Bax to the mitochondria significantly inhibited releasing the mitochondrial factors, such as cytochrome c and Smac/DIABLO, to the cytosol in response to TRAIL. It is well-known that complete processing/activation of caspase-3 requires Smac/DIABLO released from mitochondria. Therefore, our data indicate that an engagement of the apoptotic mitochondrial events leading to caspase-3 activation is blocked by hypoxia. Our data shed new light on understanding of the apoptotic signal transduction and targets regulated by tumor hypoxia.

  18. Caspase-11 Modulates Inflammation and Attenuates Toxoplasma gondii Pathogenesis.

    PubMed

    Coutermarsh-Ott, Sheryl L; Doran, John T; Campbell, Caroline; Williams, Tere M; Lindsay, David S; Allen, Irving C

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasite that is the etiologic agent responsible for toxoplasmosis. Infection with T. gondii results in activation of nucleotide binding domain and leucine rich repeat containing receptors (NLRs). NLR activation leads to inflammasome formation, the activation of caspase-1, and the subsequent cleavage of IL-1β and IL-18. Recently, a noncanonical inflammasome has been characterized which functions through caspase-11 and appears to augment many biological functions previously considered to be dependent upon the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome in toxoplasmosis, we utilized Asc (-/-) and Casp11 (-/-) mice and infected these animals with T. gondii. Our data indicates that caspase-11 modulates the innate immune response to T. gondii through a mechanism which is distinct from that currently described for the canonical inflammasome. Asc (-/-) mice demonstrated increased disease pathogenesis during the acute phase of T. gondii infection, whereas Casp11 (-/-) mice demonstrated significantly attenuated disease pathogenesis and reduced inflammation. This attenuated host response was associated with reduced local and systemic cytokine production, including diminished IL-1β. During the chronic phase of infection, caspase-11 deficiency resulted in increased neuroinflammation and tissue cyst burden in the brain. Together, our data suggest that caspase-11 functions to protect the host by enhancing inflammation during the early phase of infection in an effort to minimize disease pathogenesis during later stages of toxoplasmosis. PMID:27378827

  19. Huntingtin inhibits caspase-3 activation

    PubMed Central

    Zhang, Yu; Leavitt, Blair R; van Raamsdonk, Jeremy M; Dragatsis, Ioannis; Goldowitz, Dan; MacDonald, Marcy E; Hayden, Michael R; Friedlander, Robert M

    2006-01-01

    Huntington's disease results from a mutation in the HD gene encoding for the protein huntingtin. The function of huntingtin, although beginning to be elucidated, remains largely unclear. To probe the prosurvival function of huntingtin, we modulate levels of wild-type huntingtin in a number of cellular and in vivo models. Huntingtin depletion resulted in caspase-3 activation, and overexpression of huntingtin resulted in caspase-3 inhibition. Additionally, we demonstrate that huntingtin physically interacts with active caspase-3. Interestingly, mutant huntingtin binds active caspase-3 with a lower affinity and lower inhibitory effect on active caspase-3 than does wild-type huntingtin. Although reduction of huntingtin levels resulted in caspase-3 activation in all conditions examined, the cellular response was cell-type specific. Depletion of huntingtin resulted in either overt cell death, or in increased vulnerability to cell death. These data demonstrate that huntingtin inhibits caspase-3 activity, suggesting a mechanism whereby caspase-mediated huntingtin depletion results in a detrimental amplification cascade leading to further caspase-3 activation, resulting in cell dysfunction and cell death. PMID:17124493

  20. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  1. ARTEMIS nuclease facilitates apoptotic chromatin cleavage.

    PubMed

    Britton, Sébastien; Frit, Philippe; Biard, Denis; Salles, Bernard; Calsou, Patrick

    2009-10-15

    One hallmark of apoptosis is DNA degradation that first appears as high molecular weight fragments followed by extensive internucleosomal fragmentation. During apoptosis, the DNA-dependent protein kinase (DNA-PK) is activated. DNA-PK is involved in the repair of DNA double-strand breaks (DSB) and its catalytic subunit is associated with the nuclease ARTEMIS. Here, we report that, on initiation of apoptosis in human cells by agents causing DNA DSB or by staurosporine or other agents, ARTEMIS binds to apoptotic chromatin together with DNA-PK and other DSB repair proteins. ARTEMIS recruitment to chromatin showed a time and dose dependency. It required DNA-PK protein kinase activity and was blocked by antagonizing the onset of apoptosis with a pan-caspase inhibitor or on overexpression of the antiapoptotic BCL2 protein. In the absence of ARTEMIS, no defect in caspase-3, poly(ADP-ribose) polymerase-1, and XRCC4 cleavage or in H2AX phosphorylation was observed and DNA-PK catalytic subunit was still phosphorylated on S2056 in response to staurosporine. However, DNA fragmentation including high molecular weight fragmentation was delayed in ARTEMIS-deficient cells compared with cells expressing ARTEMIS. In addition, ARTEMIS enhanced the kinetics of MLL gene cleavage at a breakage cluster breakpoint that is frequently translocated in acute or therapy-related leukemias. These results show a facilitating role for ARTEMIS at least in early, site-specific chromosome breakage during apoptosis. PMID:19808974

  2. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  3. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  4. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin.

    PubMed

    Ehrnhoefer, Dagmar E; Skotte, Niels H; Ladha, Safia; Nguyen, Yen T N; Qiu, Xiaofan; Deng, Yu; Huynh, Khuong T; Engemann, Sabine; Nielsen, Signe M; Becanovic, Kristina; Leavitt, Blair R; Hasholt, Lis; Hayden, Michael R

    2014-02-01

    Activation of caspase-6 in the striatum of both presymptomatic and affected persons with Huntington's disease (HD) is an early event in the disease pathogenesis. However, little is known about the role of caspase-6 outside the central nervous system (CNS) and whether caspase activation might play a role in the peripheral phenotypes, such as muscle wasting observed in HD. We assessed skeletal muscle tissue from HD patients and well-characterized mouse models of HD. Cleavage of the caspase-6 specific substrate lamin A is significantly increased in skeletal muscle obtained from HD patients as well as in muscle tissues from two different HD mouse models. p53, a transcriptional activator of caspase-6, is upregulated in neuronal cells and tissues expressing mutant huntingtin. Activation of p53 leads to a dramatic increase in levels of caspase-6 mRNA, caspase-6 activity and cleavage of lamin A. Using mouse embryonic fibroblasts (MEFs) from YAC128 mice, we show that this increase in caspase-6 activity can be mitigated by pifithrin-α (pifα), an inhibitor of p53 transcriptional activity, but not through the inhibition of p53's mitochondrial pro-apoptotic function. Remarkably, the p53-mediated increase in caspase-6 expression and activation is exacerbated in cells and tissues of both neuronal and peripheral origin expressing mutant huntingtin (Htt). These findings suggest that the presence of the mutant Htt protein enhances p53 activity and lowers the apoptotic threshold, which activates caspase-6. Furthermore, these results suggest that this pathway is activated both within and outside the CNS in HD and may contribute to both loss of CNS neurons and muscle atrophy. PMID:24070868

  6. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function

    PubMed Central

    Guey, Baptiste; Bodnar, Mélanie; Manié, Serge N.; Tardivel, Aubry; Petrilli, Virginie

    2014-01-01

    Inflammasomes are caspase-1–activating multiprotein complexes. The mouse nucleotide-binding domain and leucine rich repeat pyrin containing 1b (NLRP1b) inflammasome was identified as the sensor of Bacillus anthracis lethal toxin (LT) in mouse macrophages from sensitive strains such as BALB/c. Upon exposure to LT, the NLRP1b inflammasome activates caspase-1 to produce mature IL-1β and induce pyroptosis. Both processes are believed to depend on autoproteolysed caspase-1. In contrast to human NLRP1, mouse NLRP1b lacks an N-terminal pyrin domain (PYD), indicating that the assembly of the NLRP1b inflammasome does not require the adaptor apoptosis-associated speck-like protein containing a CARD (ASC). LT-induced NLRP1b inflammasome activation was shown to be impaired upon inhibition of potassium efflux, which is known to play a major role in NLRP3 inflammasome formation and ASC dimerization. We investigated whether NLRP3 and/or ASC were required for caspase-1 activation upon LT stimulation in the BALB/c background. The NLRP1b inflammasome activation was assessed in both macrophages and dendritic cells lacking either ASC or NLRP3. Upon LT treatment, the absence of NLRP3 did not alter the NLRP1b inflammasome activity. Surprisingly, the absence of ASC resulted in IL-1β cleavage and pyroptosis, despite the absence of caspase-1 autoprocessing activity. By reconstituting caspase-1/caspase-11−/− cells with a noncleavable or catalytically inactive mutant version of caspase-1, we directly demonstrated that noncleavable caspase-1 is fully active in response to the NLRP1b activator LT, whereas it is nonfunctional in response to the NLRP3 activator nigericin. Taken together, these results establish variable requirements for caspase-1 cleavage depending on the pathogen and the responding NLR. PMID:25404286

  7. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function.

    PubMed

    Guey, Baptiste; Bodnar, Mélanie; Manié, Serge N; Tardivel, Aubry; Petrilli, Virginie

    2014-12-01

    Inflammasomes are caspase-1-activating multiprotein complexes. The mouse nucleotide-binding domain and leucine rich repeat pyrin containing 1b (NLRP1b) inflammasome was identified as the sensor of Bacillus anthracis lethal toxin (LT) in mouse macrophages from sensitive strains such as BALB/c. Upon exposure to LT, the NLRP1b inflammasome activates caspase-1 to produce mature IL-1β and induce pyroptosis. Both processes are believed to depend on autoproteolysed caspase-1. In contrast to human NLRP1, mouse NLRP1b lacks an N-terminal pyrin domain (PYD), indicating that the assembly of the NLRP1b inflammasome does not require the adaptor apoptosis-associated speck-like protein containing a CARD (ASC). LT-induced NLRP1b inflammasome activation was shown to be impaired upon inhibition of potassium efflux, which is known to play a major role in NLRP3 inflammasome formation and ASC dimerization. We investigated whether NLRP3 and/or ASC were required for caspase-1 activation upon LT stimulation in the BALB/c background. The NLRP1b inflammasome activation was assessed in both macrophages and dendritic cells lacking either ASC or NLRP3. Upon LT treatment, the absence of NLRP3 did not alter the NLRP1b inflammasome activity. Surprisingly, the absence of ASC resulted in IL-1β cleavage and pyroptosis, despite the absence of caspase-1 autoprocessing activity. By reconstituting caspase-1/caspase-11(-/-) cells with a noncleavable or catalytically inactive mutant version of caspase-1, we directly demonstrated that noncleavable caspase-1 is fully active in response to the NLRP1b activator LT, whereas it is nonfunctional in response to the NLRP3 activator nigericin. Taken together, these results establish variable requirements for caspase-1 cleavage depending on the pathogen and the responding NLR. PMID:25404286

  8. Tumor promotion by caspase-resistant retinoblastoma protein

    PubMed Central

    Borges, Helena L.; Bird, Jeff; Wasson, Katherine; Cardiff, Robert D.; Varki, Nissi; Eckmann, Lars; Wang, Jean Y. J.

    2005-01-01

    The retinoblastoma (RB) protein regulates cell proliferation and cell death. RB is cleaved by caspase during apoptosis. A mutation of the caspase-cleavage site in the RB C terminus has been made in the mouse Rb-1 locus; the resulting Rb-MI mice are resistant to endotoxin-induced apoptosis in the intestine. The Rb-MI mice do not exhibit increased tumor incidence, because the MI mutation does not disrupt the Rb tumor suppressor function. In this study, we show that Rb-MI can promote the formation of colonic adenomas in the p53-null genetic background. Consistent with this tumor phenotype, Rb-MI reduces colorectal epithelial apoptosis and ulceration caused by dextran sulfate sodium. By contrast, Rb-MI does not affect the lymphoma phenotype of p53-null mice, in keeping with its inability to protect thymocytes and splenocytes from apoptosis. The Rb-MI protein is expressed and phosphorylated in the tumors, thereby inactivating its growth suppression function. These results suggest that RB tumor suppressor function, i.e., inhibition of proliferation, is inactivated by phosphorylation, whereas RB tumor promoting function, i.e., inhibition of apoptosis, is inactivated by caspase cleavage. PMID:16227443

  9. Matrin 3 is a Ca2+/calmodulin-binding protein cleaved by caspases.

    PubMed

    Valencia, C Alexander; Ju, Wujian; Liu, Rihe

    2007-09-21

    Matrin 3 is a nuclear matrix protein that has been implicated in interacting with other nuclear proteins to anchor hyperedited RNAs to the nuclear matrix, in modulating the activity of proximal promoters, and as the main PKA substrate following NMDA receptor activation. In our proteome-wide selections for calmodulin (CaM) binding proteins and for caspase substrates using mRNA-displayed human proteome libraries, matrin 3 was identified as both a Ca(2+)-dependent CaM-binding protein and a downstream substrate of caspases. We report here, the in vitro characterization of the CaM-binding motif and the caspase cleavage site on matrin 3. Significantly, the Ca(2+)/CaM-binding motif is partially overlapped by the RRM of matrin 3 and is also very close to the bipartite NLS that is essential for its nuclear localization. The caspase cleavage site is downstream of the NLS but upstream of the second U1-like zinc finger. Our results suggest that the functions of matrin 3 could be regulated by both Ca(2+)-dependent interaction with CaM and caspase-mediated cleavage. PMID:17658460

  10. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17.

    PubMed

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E; Alberts, David; Bowden, G Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M; Surh, Young-Joon; Cho, Yong-Yeon; Dong, Zigang

    2015-11-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17. PMID:26271098

  11. The Caspase-8 Homolog Dredd Cleaves Imd and Relish but Is Not Inhibited by p35*

    PubMed Central

    Kim, Chan-Hee; Paik, Donggi; Rus, Florentina; Silverman, Neal

    2014-01-01

    In Drosophila, the Imd pathway is activated by diaminopimelic acid-type peptidoglycan and triggers the humoral innate immune response, including the robust induction of antimicrobial peptide gene expression. Imd and Relish, two essential components of this pathway, are both endoproteolytically cleaved upon immune stimulation. Genetic analyses have shown that these cleavage events are dependent on the caspase-8 like Dredd, suggesting that Imd and Relish are direct substrates of Dredd. Among the seven Drosophila caspases, we find that Dredd uniquely promotes Imd and Relish processing, and purified recombinant Dredd cleaves Imd and Relish in vitro. In addition, interdomain cleavage of Dredd is not required for Imd or Relish processing and is not observed during immune stimulation. Baculovirus p35, a suicide substrate of executioner caspases, is not cleaved by purified Dredd in vitro. Consistent with this biochemistry but contrary to earlier reports, p35 does not interfere with Imd signaling in S2* cells or in vivo. PMID:24891502

  12. MALDI-MS Patterning of Caspase Activities and Its Application in the Assessment of Drug Resistance.

    PubMed

    Hu, Junjie; Liu, Fei; Ju, Huangxian

    2016-06-01

    Mass spectrometry (MS) has been widely used for enzyme activity assays. Herein, we propose a MALDI-MS patterning strategy for the convenient visual presentation of multiple enzyme activities with an easy-to-prepare chip. The array-based caspase-activity patterned chip (Casp-PC) is fabricated by hydrophobically assembling different phospholipid-tagged peptide substrates on a modified ITO slide. The advantages of amphipathic phospholipids lead to high-quality mass spectra for imaging analysis. Upon the respective cleavage of these substrates by different caspases, such as caspase-1, -2, -3, and -8, to produce a mass shift, the enzyme activities can be directly evaluated by MALDI-MS patterning by m/z-dependent imaging of the cleavage products. The ability to identify drug-sensitive/resistant cancer cells and assess the curative effects of anticancer drugs is demonstrated, indicating the applicability of the method and the designed chip. PMID:27101158

  13. Geminin is cleaved by caspase-3 during apoptosis in Xenopus egg extracts

    SciTech Connect

    Auziol, Camille; Mechali, Marcel; Maiorano, Domenico. E-Mail: maiorano@igh.cnrs.fr

    2007-09-21

    Geminin is an important cell cycle regulator having a dual role in cell proliferation and differentiation. During proliferation, Geminin controls DNA synthesis by interacting with the licensing factor Cdt1 and interferes with the onset of differentiation by inhibiting the activity of transcription factors such as Hox and Six3. During early development Geminin also functions as neural inducer. Thus differential interaction of Geminin with Cdt1 or development-specific transcription factors influence the balance between proliferation and differentiation. Here, we report an additional feature of Geminin showing that it is a novel substrate of caspase-3 during apoptosis in in vitro Xenopus egg extracts. We also show that cleavage of Geminin occurs both in solution and on chromatin with distinct kinetics. In addition we show that cleavage of Geminin by caspase-3 is not relevant to its function as regulator of DNA synthesis, suggesting that its cleavage may be relevant to its role in differentiation.

  14. Caspase-8 Binding to Cardiolipin in Giant Unilamellar Vesicles Provides a Functional Docking Platform for Bid

    PubMed Central

    Perry, Mark; Granjon, Thierry; Gonzalvez, François; Gottlieb, Eyal; Ayala-Sanmartin, Jesus; Klösgen, Beate; Schwille, Petra; Petit, Patrice X.

    2013-01-01

    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria. PMID:23418437

  15. Doxorubicin/heparin composite nanoparticles for caspase-activated prodrug chemotherapy.

    PubMed

    Khaliq, Nisar Ul; Sandra, Febrina Carolina; Park, Dal Yong; Lee, Jae Young; Oh, Keun Sang; Kim, Dongkyu; Byun, Youngro; Kim, In-San; Kwon, Ick Chan; Kim, Sang Yoon; Yuk, Soon Hong

    2016-09-01

    Caspase-activated prodrug chemotherapy is introduced and demonstrated using the composite nanoparticles (NPs), which deliver doxorubicin (DOX) and DEVD-S-DOX together to the tumor tissue. DEVD-S-DOX, DOX linked to a peptide moiety (DEVD), is a prodrug that is cleaved into free DOX by caspase-3 upon apoptosis. DEVD-S-DOX has no therapeutic efficacy, but it changes into free DOX with the expression of caspase-3. With the accumulation of the composite NPs in the tumor tissue by the enhanced permeation and retention (EPR) effect, a small exposure of DOX in the tumor cells initiated apoptosis in a localized area of the tumor tissue, which induced caspase-3 activation. Cleavage of DEVD-S-DOX into free DOX by caspase-3 continued with repetitive activation of caspase-3 and cleavage of DEVD-S-DOX at the tumor site. The composite NPs were characterized with transmittance electron microscopy (TEM) and particle size analyzer. We then evaluated the nanoparticle drug release, therapeutic efficacy, and in vivo biodistribution for tumor targeting using a non-invasive live animal imaging technology and the quantification of DOX with high performance liquid chromatography. DOX-induced apoptosis-targeted chemotherapy (DIATC) was verified by in vitro/in vivo DEVD-S-DOX response to free DOX and cellular uptake behavior of the composite NPs with flow cytometry analysis. Significant antitumor efficacy with minimal cardiotoxicity was also observed, which supported DIATC for improved chemotherapy. PMID:27286189

  16. Caspase-3 serves as an intracellular immune receptor specific for lipopolysaccharide in oyster Crassostrea gigas.

    PubMed

    Xu, Jiachao; Jiang, Shuai; Li, Yiqun; Li, Meijia; Cheng, Qi; Zhao, Depeng; Yang, Bin; Jia, Zhihao; Wang, Lingling; Song, Linsheng

    2016-08-01

    Apoptosis is a form of programmed cell death process controlled by a family of cysteine proteases called caspases, which plays a crucial role in the immune system homeostasis. The apoptosis and the detailed regulation mechanism have been well studied in vertebrate, but the information in lower animals, especially invertebrates, is still very limited. In the present study, Caspase-3 in the Pacific oyster Crassostrea gigas (designated CgCaspase-3) was enriched by lipopolysaccharide (LPS) affinity chromatography and further identified by MALDI-TOF/TOF-mass spectrometry. The binding activity of CgCaspase-3 to LPS was confirmed by enzyme-linked immunosorbent assay, and surface plasmon resonance analysis revealed its high binding specificity and moderate binding affinity (KD = 1.08 × 10(-6) M) to LPS. The recombinant CgCaspase-3 exhibited high proteolytic activity to substrate Ac-DEVD-pNA and relatively weak activity to substrate Ac-DMQD-pNA and Ac-VDQQD-pNA. The binding of CgCaspase-3 to LPS significantly inhibited its proteolytic activity toward AC-DEVD-pNA in vitro. The over-expression of CgCaspase-3 leaded to the phosphatidylserine exposure on the external plasma membrane and the cleavage of poly (ADP-ribose) polymerase, which reduced cell viability, and finally induced cell apoptosis. But the cell apoptosis mediated by CgCaspase-3 in vivo was significantly inhibited by the treatment of LPS. These results collectively indicated that CgCaspase-3 could serve as an intracellular LPS receptor, and the interaction of LPS with CgCaspase-3 specifically inhibited the cell apoptosis induced by CgCaspase-3. PMID:26993662

  17. Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury.

    PubMed

    Lau, Anthony; Arundine, Mark; Sun, Hong-Shuo; Jones, Michael; Tymianski, Michael

    2006-11-01

    In traumatic brain injury (TBI), neurons surviving the primary insult may succumb through poorly understood secondary mechanisms. In vitro, cortical neurons exposed to stretch injury exhibited enhanced vulnerability to NMDA, apoptotic-like DNA fragmentation, peroxynitrite (PN) formation, and cytoplasmic cytochrome c accumulation. Surprisingly, caspase-3 activity was undetectable by both immunoblotting and fluorogenic activity assays. Therefore, we hypothesized that PN directly inhibits caspases in these neurons. Consistent with this, stretch injury in cultured neurons elicited tyrosine nitration of procaspase-3, but not caspase-9 or Apaf-1, suggesting a direct interaction of PN with caspase-3. In an ex vivo system, PN inhibited the activity of caspase-3, and this inhibition was reversible with the addition of the sulfhydryl reducing agent dithiothreitol, indicating that PN inhibits caspases by cysteinyl oxidation. Moreover, in cultures, the PN donor 3-morpholinosydnonimine (SIN-1) blocked staurosporine-induced caspase-3 activation and its downstream effects including PARP-1 [poly-(ADP-ribose) polymerase-1] cleavage and phosphotidylserine inversion, suggesting that peroxynitrite can inhibit caspase-3-mediated apoptosis. To examine these mechanisms in vivo, rats were exposed to a lateral fluid percussion injury (FPI). FPI caused increased neuronal protein nitration that colocalized with TUNEL staining, indicating that PN was associated with neurodegeneration. Caspase-3 activity was inhibited in brain lysates harvested after FPI and was restored by adding dithiothreitol. Our data show that caspase-mediated apoptosis is inhibited in neurons subjected to stretch in vitro and to TBI in vivo, mostly because of cysteinyl oxidation of caspase-3 by PN. However, this is insufficient to prevent cell death, indicating that the TBI therapy may, at a minimum, require a combination of both anti-apoptotic and anti-oxidant strategies. PMID:17093075

  18. Chemotherapeutic Drugs Induce ATP Release via Caspase-gated Pannexin-1 Channels and a Caspase/Pannexin-1-independent Mechanism*

    PubMed Central

    Boyd-Tressler, Andrea; Penuela, Silvia; Laird, Dale W.; Dubyak, George R.

    2014-01-01

    Anti-tumor immune responses have been linked to the regulated release of ATP from apoptotic cancer cells to engage P2 purinergic receptor signaling cascades in nearby leukocytes. We used the Jurkat T cell acute lymphocytic leukemia model to characterize the role of pannexin-1 (Panx1) channels in the release of nucleotides during chemotherapeutic drug-induced apoptosis. Diverse pro-apoptotic drugs, including topoisomerase II inhibitors, kinase inhibitors, and proteosome inhibitors, induced functional activation of Panx1 channels via caspase-3-mediated cleavage of the Panx1 autoinhibitory C-terminal domain. The caspase-activated Panx1 channels mediated efflux of ATP, but also ADP and AMP, with the latter two comprising >90% of the released adenine nucleotide pool as cells transitioned from the early to late stages of apoptosis. Chemotherapeutic drugs also activated an alternative caspase- and Panx1-independent pathway for ATP release from Jurkat cells in the presence of benzyloxycarbonyl-VAD, a pan-caspase inhibitor. Comparison of Panx1 levels indicated much higher expression in leukemic T lymphocytes than in normal, untransformed T lymphoblasts. This suggests that signaling roles for Panx1 may be amplified in leukemic leukocytes. Together, these results identify chemotherapy-activated pannexin-1 channels and ATP release as possible mediators of paracrine interaction between dying tumor cells and the effector leukocytes that mediate immunogenic anti-tumor responses. PMID:25112874

  19. Effects of inhibitors on the synergistic interaction between calpain and caspase-3 during post-mortem aging of chicken meat.

    PubMed

    Chen, Lin; Feng, Xian Chao; Zhang, Wan Gang; Xu, Xing Lian; Zhou, Guang Hong

    2012-08-29

    Calpain has been considered to be the most important protease involved in tenderization during the conversion of muscle into meat. However, recent evidence suggests the possible involvement of the key apoptosis protease, caspase, on post-mortem tenderization. This study used inhibitors of calpain and caspase-3 to treat chicken muscle immediately after slaughter and followed the changes in caspase-3 and calpain activities together with their expression during 5 days of aging. Addition of calpain inhibitors to the system resulted in significantly higher caspase-3 activities (p < 0.01) during storage. Western blot analysis of pro-caspase-3 and α-spectrin cleavage of the 120 kDa peptide (SBDP 120) showed that the addition of calpain inhibitors resulted in the formation of higher amounts of the active form of caspase-3 compared with the control (p < 0.01). Inclusion of inhibitors of caspase-3 led to lower calpain activities (p < 0.01) and dramatically reduced the expression of calpain-1 and calpain-2 (p < 0.01). Concomitantly, this inhibition resulted in greater calpastatin expression compared with the control (p < 0.01). The findings of this investigation show that calpain prevented the activation of caspase-3, whereas caspase-3 appeared to enhance the calpain activity during post-mortem aging through inhibition of calpastatin. It is therefore suggested that there is a relationship between caspase-3 and calpain which contributes to the tenderizing process during the conversion of muscle tissue into meat. PMID:22720745

  20. Dietary and behavioral interventions protect against age related activation of caspase cascades in the canine brain.

    PubMed

    Snigdha, Shikha; Berchtold, Nicole; Astarita, Giuseppe; Saing, Tommy; Piomelli, Daniele; Cotman, Carl W

    2011-01-01

    Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX) or behavioral enrichment with social, cognitive, and exercise components (ENR), can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON--control environment/control diet, AOX--control environment/antioxidant diet, ENR--enriched environment/control diet, AOX/ENR--enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX) reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular health and are the

  1. Opposing roles for caspase and calpain death proteases in L-glutamate-induced oxidative neurotoxicity

    SciTech Connect

    Elphick, Lucy M.; Hawat, Mohammad; Toms, Nick J.; Meinander, Annika; Mikhailov, Andrey; Eriksson, John E.; Kass, George E.N.

    2008-10-15

    Oxidative glutamate toxicity in HT22 murine hippocampal cells is a model for neuronal death by oxidative stress. We have investigated the role of proteases in HT22 cell oxidative glutamate toxicity. L-glutamate-induced toxicity was characterized by cell and nuclear shrinkage and chromatin condensation, yet occurred in the absence of either DNA fragmentation or mitochondrial cytochrome c release. Pretreatment with the selective caspase inhibitors either benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (pan-caspase), N-acetyl-Leu-Glu-His-Asp-aldehyde (caspase 9) or N-acetyl-Ile-Glu-Thr-Asp-aldehyde (caspase 8), significantly increased L-glutamate-induced cell death with a corresponding increase in observed nuclear shrinkage and chromatin condensation. This enhancement of glutamate toxicity correlated with an increase in L-glutamate-dependent production of reactive oxygen species (ROS) as a result of caspase inhibition. Pretreating the cells with N-acetyl-L-cysteine prevented ROS production, cell shrinkage and cell death from L-glutamate as well as that associated with the presence of the pan-caspase inhibitor. In contrast, the caspase-3/-7 inhibitor N-acetyl-Asp-Glu-Val-Asp aldehyde was without significant effect. However, pretreating the cells with the calpain inhibitor N-acetyl-Leu-Leu-Nle-CHO, but not the cathepsin B inhibitor CA-074, prevented cell death. The cytotoxic role of calpains was confirmed further by: 1) cytotoxic dependency on intracellular Ca{sup 2+} increase, 2) increased cleavage of the calpain substrate Suc-Leu-Leu-Val-Tyr-AMC and 3) immunoblot detection of the calpain-selective 145 kDa {alpha}-fodrin cleavage fragment. We conclude that oxidative L-glutamate toxicity in HT22 cells is mediated via calpain activation, whereas inhibition of caspases-8 and -9 may exacerbate L-glutamate-induced oxidative neuronal damage through increased oxidative stress.

  2. Mollugin induces apoptosis in human Jurkat T cells through endoplasmic reticulum stress-mediated activation of JNK and caspase-12 and subsequent activation of mitochondria-dependent caspase cascade regulated by Bcl-xL

    SciTech Connect

    Kim, Sun Mi; Park, Hae Sun; Jun, Do Youn; Woo, Hyun Ju; Woo, Mi Hee; Yang, Chae Ha; Kim, Young Ho

    2009-12-01

    Exposure of Jurkat T cells to mollugin (15-30 muM), purified from the roots of Rubia cordifolia L., caused cytotoxicity and apoptotic DNA fragmentation along with mitochondrial membrane potential disruption, mitochondrial cytochrome c release, phosphorylation of c-Jun N-terminal kinase (JNK), activation of caspase-12, -9, -7, -3, and -8, cleavage of FLIP and Bid, and PARP degradation, without accompanying necrosis. While these mollugin-induced cytotoxicity and apoptotic events including activation of caspase-8 and mitochondria-dependent activation of caspase cascade were completely prevented by overexpression of Bcl-xL, the activation of JNK and caspase-12 was prevented to much lesser extent. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk), the caspase-9 inhibitor (z-LEHD-fmk), the caspase-3 inhibitor (z-DEVD-fmk) or the caspase-12 inhibitor (z-ATAD-fmk) at the minimal concentration to prevent mollugin-induced apoptosis appeared to completely block the activation of caspase-7 and -8, and PARP degradation, but failed to block the activation of caspase-9 and -3 with allowing a slight enhancement in the level of JNK phosphorylation. Both FADD-positive wild-type Jurkat clone A3 and FADD-deficient Jurkat clone I2.1 exhibited a similar susceptibility to the cytotoxicity of mollugin, excluding involvement of Fas/FasL system in triggering mollugin-induced apoptosis. Normal peripheral T cells were more refractory to the cytotoxicity of mollugin than were Jurkat T cells. These results demonstrated that mollugin-induced cytotoxicity in Jurkat T cells was mainly attributable to apoptosis provoked via endoplasmic reticulum (ER) stress-mediated activation of JNK and caspase-12, and subsequent mitochondria-dependent activation of caspase-9 and -3, leading to activation of caspase-7 and -8, which could be regulated by Bcl-xL.

  3. Detection of Mitochondrial Caspase Activity in Real Time In Situ in Live Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yingpei; Haskins, Catherine; Lopez-Cruzan, Marisa; Zhang, Jianhua; Centonze, Victoria E.; Herman, Brian

    2004-08-01

    Apoptosis plays an important role in many physiological and pathological processes. The initiation and execution of the cell death program requires activation of multiple caspases in a stringently temporal order. Here we describe a method that allows real-time observation of caspase activation in situ in live cells based on fluorescent resonance energy transfer (FRET) measurement using the prism and reflector imaging spectroscopy system (PARISS). When a fusion protein consisting of CFP connected to YFP via an intervening caspase substrate that has been targeted to a specific subcellular location is excited with a light source whose wavelength matches the cyan fluorescent protein (CFP) excitation peak, the energy absorbed by the CFP fluorophore is not emitted as fluorescence. Instead, the excitation energy is absorbed by the nearby yellow fluorescent protein (YFP) fluorophore that is covalently linked to CFP through a short peptide containing the caspase substrate. Cleavage of the linker peptide by caspases results in loss of FRET due to the separation of CFP and YFP fluorophores. Using a mitochondrially targeted CFP caspase 3 substrate YFP construct (mC3Y), we demonstrate for the first time that there is caspase-3-like activity in the mitochondrial matrix of some cells at very late stage of apoptosis.

  4. Nuclear localization of the caspase-3-cleaved form of p73 in anoikis

    PubMed Central

    Alsafadi, Samar; Tourpin, Sophie; Bessoltane, Nadia; Salomé-Desnoulez, Sophie; Vassal, Gilles; André, Fabrice; Ahomadegbe, Jean-Charles

    2016-01-01

    The transcription factor p73 is a homologue of p53 that can be expressed as pro- or anti-apoptotic isoforms. Unlike p53, p73 is rarely mutated or lost in cancers and it is found to replace defective p53 inducing apoptosis. Here, we investigated the p73 involvement in anoikis, a type of apoptosis caused by inadequate cell-matrix interactions. Breast cancer cell lines with different p53 status were treated with doxorubicin (DOX) or docetaxel (DOC) and cells detached from the extracellular matrix were analyzed. We demonstrate for the first time that DOX-induced cell detachment is associated with p73 cleavage and caspase activation, independently of the p53 status. However, we did not detect p73 cleavage or caspase activation in detached cells under DOC treatment. Overexpressing the apoptotic isoform of p73 led to cell detachment associated with p73 cleavage and caspase activation. Interestingly, p73 cleaved forms localize to the nucleus during the late phase of cell death indicating an increase in the transcriptional activity. Our study suggests that the cleavage of p73 on specific sites may release its pro-apoptotic function and contribute to cell death. PMID:26575022

  5. Acinus integrates AKT1 and subapoptotic caspase activities to regulate basal autophagy

    PubMed Central

    Nandi, Nilay; Tyra, Lauren K.; Stenesen, Drew

    2014-01-01

    How cellular stresses up-regulate autophagy is not fully understood. One potential regulator is the Drosophila melanogaster protein Acinus (Acn), which is necessary for autophagy induction and triggers excess autophagy when overexpressed. We show that cell type–specific regulation of Acn depends on proteolysis by the caspase Dcp-1. Basal Dcp-1 activity in developing photoreceptors is sufficient for this cleavage without a need for apoptosis to elevate caspase activity. On the other hand, Acn was stabilized by loss of Dcp-1 function or by the presence of a mutation in Acn that eliminates its conserved caspase cleavage site. Acn stability also was regulated by AKT1-mediated phosphorylation. Flies that expressed stabilized forms of Acn, either the phosphomimetic AcnS641,731D or the caspase-resistant AcnD527A, exhibited enhanced basal autophagy. Physiologically, these flies showed improvements in processes known to be autophagy dependent, including increased starvation resistance, reduced Huntingtin-induced neurodegeneration, and prolonged life span. These data indicate that AKT1 and caspase-dependent regulation of Acn stability adjusts basal autophagy levels. PMID:25332163

  6. Caspase-3 is required in the apoptotic disintegration of the nuclear matrix

    SciTech Connect

    Kivinen, Katri; Kallajoki, Markku; Taimen, Pekka . E-mail: pekka.taimen@utu.fi

    2005-11-15

    Apoptotic breakdown of cellular structures is largely mediated by caspases. One target of degradation is a proteinaceous framework of the nucleus termed the nuclear matrix. We compared the apoptotic changes of the nuclear matrix in staurosporine-treated caspase-3-deficient MCF-7 cells transfected with intact CASP-3 gene (MCF-7c3) or an empty vector (MCF-7v) as a control. Nuclear Mitotic Apparatus protein (NuMA), lamin A/C and lamin B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. In both cell lines, staurosporine induced rapid cytoplasmic shrinkage and partial chromatin condensation. MCF-7c3 cells formed apoptotic bodies, whereas MCF-7v cells did not. NuMA and lamins were actively cleaved in MCF-7c3 cells following caspase-3 activation, but only minimal or no cleavage was detected in MCF-7v cells. Interestingly, lamin B but not lamin A/C was relocated into cytoplasmic granules in apoptotic MCF-7v cells. Pancaspase inhibitor, z-VAD-fmk, prevented the apoptotic changes, while caspase-3 inhibitor, z-DEVD-fmk, induced lamin B granules in both cell lines. These results show that caspase-3 is involved in the cleavage of NuMA and lamins either directly or by activating other proteases. This may be essential for disintegration of the nuclear structure during apoptosis.

  7. Old, new and emerging functions of caspases

    PubMed Central

    Shalini, S; Dorstyn, L; Dawar, S; Kumar, S

    2015-01-01

    Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases. PMID:25526085

  8. Activation of caspase-3 and its correlation with shear force in bovine skeletal muscles during postmortem conditioning.

    PubMed

    Cao, J-X; Ou, C-R; Zou, Y-F; Ye, K-P; Zhang, Q-Q; Khan, M A; Pan, D-D; Zhou, G

    2013-09-01

    The study was aimed at exploring the mechanism of tenderization by establishing a correlation between caspase-3 activity and shear force, verifying the activation occurring by analyzing active caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP) fragments, and understanding the pathways involved in activation of caspase-3 by evaluating its correlation with caspase-8 and -9 activities in LM, semitendinosus (STN), and psoas minor (PM) muscles. The results indicated that shear force decreased at 48 h in PM (P < 0.01), LM (P < 0.01), and STN (P < 0.05). We detected p22, p23, p20, and p18 caspase fragments as well as distinctive PARP fragments of 24 kDa by caspase-3 and 36 kDa by µ-calpain. Caspase-3 activity correlated with shear force negatively at 24 and 48 h in STN (P < 0.01 at 24 h; P < 0.01 at 48 h), PM (P < 0.001 at 24 h; P < 0.01 at 48 h), and LM muscles (P < 0.05 at 24 h; P < 0.01 at 48 h). The greatest activities of caspase-8 (P < 0.001 in PM and STN; P < 0.01 in LM) and caspase-9 (P < 0.001 in muscles) appeared at 4 h whereas that of caspase-3 was at 24 h (P < 0.001 in muscles). Caspase-9 activity correlated positively with caspase-3 at 4, 24, and 48 h in STN (P < 0.01 at 4 h; P < 0.05 at 24 h; P < 0.001 at 48 h) and at 4 and 96 h in PM (P < 0.001 at 4 h; P < 0.05 at 96 h) and LM muscles (P < 0.001 at 4 h; P < 0.001 at 96 h). The caspase-8 activity correlated with caspase-3 at 4, 48, and 96 h in STN (P < 0.05 at 4 h; P < 0.001 at 48 h; P < 0.05 at 96 h), at 4 and 24 h in PM (P < 0.001 at 4 h; P < 0.05 at 24 h), and at 4 and 96 h in LM (P < 0.001 at 4 h; P < 0.01 at 96 h). We concluded that caspase-3 was associated with the decline of shear force; the activation of caspase-3 was mediated by caspases -8 and -9 in muscles. However, more detailed studies are needed to define the precise mechanism for the cleavage of pro-caspases -8 and -9 during conditioning. PMID:23893998

  9. Functional and biochemical characterization of the baculovirus caspase inhibitor MaviP35

    PubMed Central

    Brand, I L; Green, M M; Civciristov, S; Pantaki-Eimany, D; George, C; Gort, T R; Huang, N; Clem, R J; Hawkins, C J

    2011-01-01

    Many viruses express proteins which prevent the host cell death that their infection would otherwise provoke. Some insect viruses suppress host apoptosis through the expression of caspase inhibitors belonging to the P35 superfamily. Although a number of P35 relatives have been identified, Autographa californica (Ac) P35 and Spodoptera littoralis (Spli) P49 have been the most extensively characterized. AcP35 was found to inhibit caspases via a suicide substrate mechanism: the caspase cleaves AcP35 within its ‘reactive site loop' then becomes trapped, irreversibly bound to the cleaved inhibitor. The Maruca vitrata multiple nucleopolyhedrovirus encodes a P35 family member (MaviP35) that exhibits 81% identity to AcP35. We found that this relative shared with AcP35 the ability to inhibit mammalian and insect cell death. Caspase-mediated cleavage within the MaviP35 reactive site loop occurred at a sequence distinct from that in AcP35, and the inhibitory profiles of the two P35 relatives differed. MaviP35 potently inhibited human caspases 2 and 3, DCP-1, DRICE and CED-3 in vitro, but (in contrast to AcP35) only weakly suppressed the proteolytic activity of the initiator human caspases 8, 9 and 10. Although MaviP35 inhibited the AcP35-resistant caspase DRONC in yeast, and was sensitive to cleavage by DRONC in vitro, MaviP35 failed to inhibit the proteolytic activity of bacterially produced DRONC in vitro. PMID:22170098

  10. Functional and biochemical characterization of the baculovirus caspase inhibitor MaviP35.

    PubMed

    Brand, I L; Green, M M; Civciristov, S; Pantaki-Eimany, D; George, C; Gort, T R; Huang, N; Clem, R J; Hawkins, C J

    2011-01-01

    Many viruses express proteins which prevent the host cell death that their infection would otherwise provoke. Some insect viruses suppress host apoptosis through the expression of caspase inhibitors belonging to the P35 superfamily. Although a number of P35 relatives have been identified, Autographa californica (Ac) P35 and Spodoptera littoralis (Spli) P49 have been the most extensively characterized. AcP35 was found to inhibit caspases via a suicide substrate mechanism: the caspase cleaves AcP35 within its 'reactive site loop' then becomes trapped, irreversibly bound to the cleaved inhibitor. The Maruca vitrata multiple nucleopolyhedrovirus encodes a P35 family member (MaviP35) that exhibits 81% identity to AcP35. We found that this relative shared with AcP35 the ability to inhibit mammalian and insect cell death. Caspase-mediated cleavage within the MaviP35 reactive site loop occurred at a sequence distinct from that in AcP35, and the inhibitory profiles of the two P35 relatives differed. MaviP35 potently inhibited human caspases 2 and 3, DCP-1, DRICE and CED-3 in vitro, but (in contrast to AcP35) only weakly suppressed the proteolytic activity of the initiator human caspases 8, 9 and 10. Although MaviP35 inhibited the AcP35-resistant caspase DRONC in yeast, and was sensitive to cleavage by DRONC in vitro, MaviP35 failed to inhibit the proteolytic activity of bacterially produced DRONC in vitro. PMID:22170098

  11. Pharmacological caspase inhibitors: research towards therapeutic perspectives.

    PubMed

    Kudelova, J; Fleischmannova, J; Adamova, E; Matalova, E

    2015-08-01

    Caspases are key molecules of apoptosis and the inflammatory response. Up-regulation of the caspase cascade contributes to human pathologies such as neurodegenerative and immune disorders. Thus, blocking the excessive apoptosis by pharmacological inhibitors seems promising for therapeutic interventions in such diseases. Caspase inhibitors, both natural and artificial, have been used as research tools and have helped to define the role of the individual caspases in apoptosis and in non-apoptotic processes. Moreover, some caspase inhibitors have demonstrated their therapeutic efficiency in the reduction of cell death and inflammation in animal models of human diseases. However, no drug based on caspase inhibition has been approved on the market until now. Thus, the development of therapeutic approaches that specifically target caspases remains a great challenge and is now the focus of intense biological and clinical interest. Here, we provide a brief review of recent knowledge about pharmacological caspase inhibitors with special focus on their proposed clinical applications. PMID:26348072

  12. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation.

    PubMed

    Zhu, Liang-Zhen; Hou, Ya-Jun; Zhao, Ming; Yang, Ming-Feng; Fu, Xiao-Ting; Sun, Jing-Yi; Fu, Xiao-Yan; Shao, Lu-Rong; Zhang, Hui-Fang; Fan, Cun-Dong; Gao, Hong-Li; Sun, Bao-Liang

    2016-08-01

    Caudatin as one species of C-21 steroidal from Cynanchum bungei decne displays potential anticancer activity. However, the underlying mechanisms remain elusive. In the present study, the growth suppressive effect and mechanism of caudatin on human glioma U251 and U87 cells were evaluated in vitro. The results indicated that caudatin significantly inhibited U251 and U87 cell growth in both a time- and dose-dependent manner. Flow cytometry analysis revealed that caudatin-induced cell growth inhibition was achieved by induction of cell apoptosis, as convinced by the increase of Sub-G1 peak, PARP cleavage and activation of caspase-3, caspase-7 and caspase-9. Caudatin treatment also resulted in mitochondrial dysfunction which correlated with an imbalance of Bcl-2 family members. Further investigation revealed that caudatin triggered U251 cell apoptosis by inducing reactive oxygen species (ROS) generation through disturbing the redox homeostasis. Moreover, pretreatment of caspase inhibitors apparently weakens caudatin-induced cell killing, PARP cleavage and caspase activation and eventually reverses caudatin-mediated apoptosis. Importantly, caudatin significantly inhibited U251 tumour xenografts in vivo through induction of cell apoptosis involving the inhibition of cell proliferation and angiogenesis, which further validate its value in combating human glioma in vivo. Taken together, the results described above all suggest that caudatin inhibited human glioma cell growth by induction of caspase-dependent apoptosis with involvement of mitochondrial dysfunction and ROS generation. PMID:27184666

  13. Imaging of activated caspase-3 in living cell by fluorescence resonance energy transfer during photosensitization-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Xing, Da; Chen, Qun; Tang, Yonghong

    2005-01-01

    Photodynamic therapy (PDT) is a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in cell, and activation of caspase-3 is considered to be the final step in many apoptosis pathways. The changes of caspase-3 activation in cell during TNFα- and photodynamic therapy-induced apoptosis was measured by fluorescence resonance energy transfer (FRET) analysis. FRET probe consisting of fusions of an enhanced cyan fluorescent protein (ECFP), Venus and a linker peptide containing the caspase-3 cleavage sequence DEVD was utilized. Therefore, activated caspase-3 cleaved the linker peptide of FRET probe and disrupted the FRET signal. Human lung adenocarcinoma cell line (ASTC-a-1) were stably transfected with the plasmid (ECFP-DEVD-Venus) and then were treated by TNF-α and PDT, respectively. Experimental results indicated that caspase-3 activation resulted in cleavage of linker peptide and subsequent disruption of the FRET signal during TNFα- and photodynamic therapy-induced apoptosis, and that the activation of caspase-3 induced by photodynamic therapy was faster than that induce by TNF-α. The study supports that using FRET technique and different recombinant substrates as FRET probes could be used to detect the process of PDT-induced apoptosis and provide a new means to investigate apoptotic mechanism of PDT.

  14. Small-molecule caspase inhibitors

    NASA Astrophysics Data System (ADS)

    Zhenodarova, S. M.

    2010-02-01

    The review considers low-molecular weight inhibitors of caspases, cysteine proteases being key contributors to apoptosis (programmed cell death). The inhibitors with aspartic acid residues or various heterocyclic systems (both synthetic and natural) are covered. Their possible mechanisms of action are discussed. Data on inhibitor structure-activity relationship studies are systematically surveyed. The interactions of the non-peptide fragments of an inhibitor with the enzymes are examined. Examples of the use of some inhibitors for apoptosis suppression are provided.

  15. A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis

    SciTech Connect

    Walters, Jad; Pop, Cristina; Scott, Fiona L.; Drag, Marcin; Swartz, Paul; Mattos, Carla; Salvesen, Guy S.; Clark, A.Clay

    2010-03-12

    The caspase-3 zymogen has essentially zero activity until it is cleaved by initiator caspases during apoptosis. However, a mutation of V266E in the dimer interface activates the protease in the absence of chain cleavage. We show that low concentrations of the pseudo-activated procaspase-3 kill mammalian cells rapidly and, importantly, this protein is not cleaved nor is it inhibited efficiently by the endogenous regulator XIAP (X-linked inhibitor of apoptosis). The 1.63 {angstrom} (1 {angstrom} = 0.1 nm) structure of the variant demonstrates that the mutation is accommodated at the dimer interface to generate an enzyme with substantially the same activity and specificity as wild-type caspase-3. Structural modelling predicts that the interface mutation prevents the intersubunit linker from binding in the dimer interface, allowing the active sites to form in the procaspase in the absence of cleavage. The direct activation of procaspase-3 through a conformational switch rather than by chain cleavage may lead to novel therapeutic strategies for inducing cell death.

  16. Cleavage-quasi cleavage in ferritic and martensitic steels

    SciTech Connect

    Odette, G.R.; Edsinger, K.V.; Lucas, G.E.

    1997-12-31

    Confocal microscopy-fracture reconstruction and SEM were used to characterize the sequence-of-events leading to cleavage in a low alloy pressure vessel steel and two 8--12 Cr martensitic steels as a function of temperature. While differences between the steels were observed, they shared some common characteristics that differ from the conventional view of cleavage. Most notably cleavage does not occur as a single weakest link event; rather it is the consequence of a critical condition when a previously nucleated dispersion of microcracks suddenly coalesce to form a large, rapidly propagating macroscopic crack. It is argued that the critical event can be treated as a bridging instability. The stabilizing effect of the ductile ligaments separating the cleavage facets increases with increasing temperature. Indeed, even in the ductile tearing regime cleavage facets form a significant fraction of nuclei for larger microvoids.

  17. MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity

    PubMed Central

    Yang, Wu; Guastella, John; Huang, Jin-Cheng; Wang, Yan; Zhang, Li; Xue, Dong; Tran, Minhtam; Woodward, Richard; Kasibhatla, Shailaja; Tseng, Ben; Drewe, John; Cai, Sui Xiong

    2003-01-01

    Caspases play a critical role in apoptosis, and are considered to be key targets for the design of cytoprotective drugs. As part of our antiapoptotic drug-discovery effort, we have synthesized and characterized Z-VD-fmk, MX1013, as a potent, irreversible dipeptide caspase inhibitor. MX1013 inhibits caspases 1, 3, 6, 7, 8, and 9, with IC50 values ranging from 5 to 20 nM. MX1013 is selective for caspases, and is a poor inhibitor of noncaspase proteases, such as cathepsin B, calpain I, or Factor Xa (IC50 values >10 μM). In several cell culture models of apoptosis, including caspase 3 processing, PARP cleavage, and DNA fragmentation, MX1013 is more active than tetrapeptide- and tripeptide-based caspase inhibitors, and blocked apoptosis at concentrations as low as 0.5 μM. MX1013 is more aqueous soluble than tripeptide-based caspase inhibitors such as Z-VAD-fmk. At a dose of 1 mg kg−1 i.v., MX1013 prevented liver damage and the lethality caused by Fas death receptor activation in the anti-Fas mouse-liver apoptosis model, a widely used model of liver failure. At a dose of 20 mg kg−1 (i.v. bolus) followed by i.v. infusion for 6 or 12 h, MX1013 reduced cortical damage by approximately 50% in a model of brain ischemia/reperfusion injury. At a dose of 20 mg kg−1 (i.v. bolus) followed by i.v. infusion for 12 h, MX1013 reduced heart damage by approximately 50% in a model of acute myocardial infarction. Based on these studies, we conclude that MX1013, a dipeptide pan-caspase inhibitor, has a good combination of in vitro and in vivo properties. It has the ability to protect cells from a variety of apoptotic insults, and is systemically active in three animal models of apoptosis, including brain ischemia. PMID:12970077

  18. TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis

    SciTech Connect

    Polek, Tara C.; Talpaz, Moshe; Spivak-Kroizman, Taly R. . E-mail: tspivakk@mdanderson.org

    2006-10-27

    Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects.

  19. Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stress-mediated caspase-8 activation that stimulates mitochondria-dependent or -independent caspase cascade.

    PubMed

    Jun, Do Y; Kim, Jun S; Park, Hae S; Han, Cho R; Fang, Zhe; Woo, Mi H; Rhee, In K; Kim, Young H

    2007-06-01

    To isolate pharmacologically safe compounds that can induce apoptosis of tumor cells, leaves of an aromatic plant (Zanthoxylum schinifolium), which are widely used as a food flavor and herbal medicine in Korea and Japan, were sequentially extracted by organic solvents. An apoptogenic ingredient in the methylene chloride extract was further purified by silica gel column chromatography and identified as auraptene (AUR). The IC(50) value of AUR against Jurkat T cells was 16.5 microg/ml. After the treatment of Jurkat T cells with AUR, the endoplasmic reticulum (ER) stress-mediated activation of caspase-12 and -8 and subsequent apoptotic events including c-Jun N-terminal kinase (JNK) activation, cleavage of FLICE inhibitory protein and Bid, mitochondrial cytochrome c release, activation of caspase-9 and -3, degradation of poly (ADP-ribose) polymerase and apoptotic DNA fragmentation were induced in a dose-dependent manner. The cytotoxicity of AUR was not blocked by the anti-Fas neutralizing antibody ZB-4. The AUR-induced cytotoxicity and apoptotic events were abrogated by ectopic over-expression of Bcl-xL or addition of the pan-caspase inhibitor z-VAD-fmk. The individual or simultaneous addition of the m-calpain inhibitor (E64d), JNK inhibitor (SP600125) and mitochondrial permeability transition pore inhibitor (CsA) failed to prevent apoptotic events including caspase-8 activation and Bid cleavage, unless the caspase-8 inhibitor (z-IETD-fmk) was combined, whereas AUR-induced caspase-12 activation was sustained even in the concomitant presence of z-IETD-fmk. These results demonstrated that the apoptotic effect of AUR on Jurkat T cells was exerted by the ER stress-mediated activation of caspase-8, and the subsequent induction of mitochondria-dependent or -independent activation of caspase cascade, which could be suppressed by Bcl-xL. PMID:17301064

  20. N,N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells

    SciTech Connect

    Kim, Byeong Mo; Choi, Yun Jung; Han, Youngsoo; Yun, Yeon-Sook; Hong, Sung Hee

    2009-08-15

    N,N-dimethyl phytosphingosine (DMPS) blocks the conversion of sphingosine to sphingosine-1-phosphate (S1P) by the enzyme sphingosine kinase (SK). In this study, we elucidated the apoptotic mechanisms of DMPS action on a human leukemia cell line using functional pharmacologic and genetic approaches. First, we demonstrated that DMPS-induced apoptosis is evidenced by nuclear morphological change, distinct internucleosomal DNA fragmentation, and an increased sub-G1 cell population. DMPS treatment led to the activation of caspase-9 and caspase-3, accompanied by the cleavage of poly(ADP-ribose) polymerase (PARP) and led to cytochrome c release, depolarization of the mitochondrial membrane potential, and downregulation of the anti-apoptotic members of the bcl-2 family. Ectopic expression of bcl-2 and bcl-xL conferred resistance of HL-60 cells to DMPS-induced cell death, suggesting that DMPS-induced apoptosis occurs predominantly through the activation of the intrinsic mitochondrial pathway. We also observed that DMPS activated the caspase-8-Bid-Bax pathway and that the inhibition of caspase-8 by z-IETD-fmk or small interfering RNA suppressed the cleavage of Bid, cytochrome c release, caspase-3 activation, and apoptotic cell death. In addition, cells subjected to DMPS exhibited significantly increased reactive oxygen species (ROS) generation, and ROS scavengers, such as quercetin and Tiron, but not N-acetylcysteine (NAC), inhibited DMPS-induced activations of caspase-8, -3 and subsequent apoptotic cell death, indicating the role of ROS in caspase-8-mediated apoptosis. Taken together, these results indicate that caspase-8 acts upstream of caspase-3, and that the caspase-8-mediated mitochondrial pathway is important in DMPS-induced apoptosis. Our results also suggest that ROS are critical regulators of caspase-8-mediated apoptosis in DMPS-treated leukemia cells.

  1. Cordycepin induces apoptosis of C6 glioma cells through the adenosine 2A receptor-p53-caspase-7-PARP pathway.

    PubMed

    Chen, Ying; Yang, Shih-Hung; Hueng, Dueng-Yuan; Syu, Jhih-Pu; Liao, Chih-Chen; Wu, Ya-Chieh

    2014-06-01

    Cordycepin, 3'-deoxyadenosine from Cordyceps sinensis, has been shown to exert anti-tumor effects in several cancer cell lines. This study investigated the effect of cordycepin on a rat glioma cell line. Cordycepin caused apoptosis in C6 glioma cells in a time- and concentration-dependent manner, but did not affect the survival of primary cultured rat astrocytes. Cordycepin increased the total protein levels of p53 and phosphorylated p53 in the C6 cells. Levels of cleaved caspase-7 and poly (ADP-ribose) polymerase (PARP), but not cleaved caspase-3, were also increased after cordycepin treatment. Specific inhibitors for p53 and caspases abrogated cordycepin-induced caspase-7 and PARP cleavage, and prevented cordycepin-induced apoptosis. Moreover, siRNA knockdown of p53 blocked cordycepin-induced cleavage of caspase-7 and PARP. Both adenosine 2A receptor (A2AR) antagonist and small interference RNA (siRNA) knockdown of A2AR blocked cordycepin-induced apoptosis, p53 activation, and caspase-7 and PARP cleavage. These may provide a new strategy of cordycepin for glioma therapy in the future. PMID:24704558

  2. Phylogenomics of caspase-activated DNA fragmentation factor

    SciTech Connect

    Eckhart, Leopold . E-mail: leopold.eckhart@meduniwien.ac.at; Fischer, Heinz; Tschachler, Erwin

    2007-04-27

    The degradation of nuclear DNA by DNA fragmentation factor (DFF) is a key step in apoptosis of mammalian cells. Using comparative genomics, we have here determined the evolutionary history of the genes encoding the two DFF subunits, DFFA (also known as ICAD) and DFFB (CAD). Orthologs of DFFA and DFFB were identified in Nematostella vectensis, a representative of the primitive metazoan clade cnidarians, and in various vertebrates and insects, but not in representatives of urochordates, echinoderms, and nematodes. The domains mediating the interaction of DFFA and DFFB, a caspase cleavage site in DFFA, and the amino acid residues critical for endonuclease activity of DFFB were conserved in Nematostella. These findings suggest that DFF has been a part of the primordial apoptosis system of the eumetazoan common ancestor and that the ancient cell death machinery has degenerated in several evolutionary lineages, including the one leading to the prototypical apoptosis model, Caenorhabditis elegans.

  3. Structural and functional definition of the specificity of a novel caspase-3 inhibitor, Ac-DNLD-CHO

    PubMed Central

    Yoshimori, Atsushi; Sakai, Junichi; Sunaga, Satoshi; Kobayashi, Takanobu; Takahashi, Satoshi; Okita, Naoyuki; Takasawa, Ryoko; Tanuma, Sei-ichi

    2007-01-01

    Background The rational design of peptide-based specific inhibitors of the caspase family members using their X-ray crystallographies is an important strategy for chemical knockdown to define the critical role of each enzyme in apoptosis and inflammation. Recently, we designed a novel potent peptide inhibitor, Ac-DNLD-CHO, for caspase-3 using a new computational screening system named the Amino acid Positional Fitness (APF) method (BMC Pharmacol. 2004, 4:7). Here, we report the specificity of the DNLD sequence against caspase-3 over other major caspase family members that participate in apoptosis by computational docking and site-directed mutagenesis studies. Results Ac-DNLD-CHO inhibits caspases-3, -7, -8, and -9 activities with Kiapp values of 0.68, 55.7, >200, and >200 nM, respectively. In contrast, a well-known caspase-3 inhibitor, Ac-DEVD-CHO, inhibits all these caspases with similar Kiapp values. The selective recognition of a DNLD sequence by caspase-3 was confirmed by substrate preference studies using fluorometric methylcoumarin-amide (MCA)-fused peptide substrates. The bases for its selectivity and potency were assessed on a notable interaction between the substrate Asn (N) and the caspase-3 residue Ser209 in the S3 subsite and the tight interaction between the substrate Leu (L) and the caspase-3 hydrophobic S2 subsite, respectively, in computational docking studies. Expectedly, the substitution of Ser209 with alanine resulted in loss of the cleavage activity on Ac-DNLD-MCA and had virtually no effect on cleaving Ac-DEVD-MCA. These findings suggest that N and L residues in Ac-DNLD-CHO are the determinants for the selective and potent inhibitory activity against caspase-3. Conclusion On the basis of our results, we conclude that Ac-DNLD-CHO is a reliable, potent and selective inhibitor of caspase-3. The specific inhibitory effect on caspase-3 suggests that this inhibitor could become an important tool for investigations of the biological function of

  4. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  6. Ribavirin and alpha interferon enhance death receptor-mediated apoptosis and caspase activation in human hepatoma cells.

    PubMed

    Schlosser, Stephan F; Schuler, Markus; Berg, Christoph P; Lauber, Kirsten; Schulze-Osthoff, Klaus; Schmahl, Friedrich Wilhelm; Wesselborg, Sebastian

    2003-06-01

    The molecular mechanisms underlying the clinical effects of alpha interferon (IFN) and ribavirin are not understood. Elimination of infected cells occurs in part by cytotoxic T lymphocytes (CTLs) expressing CD95 ligand and thereby attacking target cells which are positive for the death receptor CD95. Since many viruses have evolved mechanisms to inhibit apoptosis, the opposite, namely, promotion of apoptosis, could be a strategy to strengthen the host antiviral response. In the present study, we have asked whether the antiviral substances IFN and ribavirin could support CD95-mediated apoptosis by interfering with the activation of caspases, a family of proteases known for their essential role in apoptosis. HepG2 cells, stimulated with the agonistic anti-CD95 antibody, served as a minimal model to mimic the CD95 stimulation occurring during a CTL attack of target cells in vivo. Apoptosis was quantitated by flow cytometric detection of hypodiploid nuclei. Caspase activity was measured by cytofluorometry, immunocytochemistry, and immunoblot analysis. IFN and ribavirin sensitized HepG2 cells for CD95-mediated apoptosis. This effect was correlated with an increase in CD95-mediated caspase activation and enhanced cleavage of the caspase substrate poly(ADP-ribose) polymerase. Furthermore, the positive effect on CD95-mediated caspase activation by IFN and ribavirin was confirmed by immunocytochemistry for activated caspase-3 and by immunoblot detection of activated caspase-3, caspase-7, and caspase-8. Our data demonstrate that the antiviral substances IFN and ribavirin are able to sensitize for CD95-mediated apoptosis. IFN and ribavirin also enhance CD95-mediated caspase activation, which might in part be responsible for the apoptosis-promoting effect of these antiviral compounds. PMID:12760867

  7. Combined inhibition of DNA methyltransferase and histone deacetylase restores caspase-8 expression and sensitizes SCLC cells to TRAIL.

    PubMed

    Kaminskyy, Vitaliy O; Surova, Olga V; Vaculova, Alena; Zhivotovsky, Boris

    2011-10-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising drug for the treatment of tumors; however, a number of cancer cells are resistant to this cytokine. Among the mechanisms of resistance of small cell lung carcinomas (SCLCs) to TRAIL is the lack of caspase-8 expression. Although methylation of the caspase-8 promoter has been suggested as the main mechanism of caspase-8 silencing, we showed that reduction of the enzymes involved in DNA methylation, DNA methyltransferases (DNMT) 1, 3a and 3b, was not sufficient to significantly restore caspase-8 expression in SCLC cells, signifying that other mechanisms are involved in caspase-8 silencing. We found that combination of the DNMT inhibitor decitabine with an inhibitor of histone deacetylase (HDAC) significantly increased caspase-8 expression in SCLC cells at the RNA and protein levels. Among all studied HDAC inhibitors, valproic acid (VPA) and CI-994 showed prolonged effects on histone acetylation, while combination with decitabine produced the most prominent effects on caspase-8 re-expression. Moreover, a significant reduction of survivin and cIAP-1 proteins level was observed after treatment with VPA. The combination of two drugs sensitized SCLC cells to TRAIL-induced apoptosis, involving mitochondrial apoptotic pathway and was accompanied by Bid cleavage, activation of Bax, and release of cytochrome c. Both initiator caspase-8 and -9 were required for the sensitization of SCLC cells to TRAIL. Thus, efficient restoration of caspase-8 expression in SCLC cells is achieved when a combination of DNMT and HDAC inhibitors is used, suggesting a combination of decitabine and VPA or CI-994 as a potential treatment for sensitization of SCLC cells lacking caspase-8 to TRAIL. PMID:21771726

  8. The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles.

    PubMed

    Orme, Mariam H; Liccardi, Gianmaria; Moderau, Nina; Feltham, Rebecca; Wicky-John, Sidonie; Tenev, Tencho; Aram, Lior; Wilson, Rebecca; Bianchi, Katiuscia; Morris, Otto; Monteiro Domingues, Celia; Robertson, David; Tare, Meghana; Wepf, Alexander; Williams, David; Bergmann, Andreas; Gstaiger, Matthias; Arama, Eli; Ribeiro, Paulo S; Meier, Pascal

    2016-01-01

    Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events. PMID:26960254

  9. The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles

    PubMed Central

    Orme, Mariam H.; Liccardi, Gianmaria; Moderau, Nina; Feltham, Rebecca; Wicky-John, Sidonie; Tenev, Tencho; Aram, Lior; Wilson, Rebecca; Bianchi, Katiuscia; Morris, Otto; Monteiro Domingues, Celia; Robertson, David; Tare, Meghana; Wepf, Alexander; Williams, David; Bergmann, Andreas; Gstaiger, Matthias; Arama, Eli; Ribeiro, Paulo S.; Meier, Pascal

    2016-01-01

    Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events. PMID:26960254

  10. Characterization and expression analysis of a caspase-2 in an invertebrate echinoderm sea cumber Apostichopus japonicus.

    PubMed

    Ye, Shigen; Gao, Yang; Wang, Shengnan; Li, Qiang; Li, Ruijun; Li, Hua

    2016-01-01

    Caspase-2 is the most evolutionarily conserved member of the caspase family which mediates the programmed cell death and plays crucial roles in key cellular processes. In this study, a caspase-2 homolog was identified and functionally characterized in sea cucumber Apostichopus japonicus, which we named AjCASP. The full-length cDNA consists of 2100 bp with an ORF encoding a protein of 378 amino acids. The deduced amino acid sequence shows that AjCASP consists of a conserved CARD-CASP2 domain and a CASs domain containing two active residues, two proteolytic cleavage residues, a substrate pocket and a dimer interface as well. In addition, a p20 large subunit with a characteristic five-peptide motif (QACRG) and a p10 small subunit in C-terminal were identified in CASs domain. Above data demonstrated that AjCASP is similar to CED-3 (the caspase-2 homolog of nematode Caenorhabditis elegans), which is further confirmed by phylogenetic tree analysis. AjCASP was ubiquitously expressed in sea cucumber and the obviously higher expression level was observed in coelomocyte, respiratory tree and intestine. Real-time PCR analyses further demonstrated that AjCASP was significantly induced by LPS. Taken together, these results strongly suggest that AjCASP is a caspase-2 homolog and it may be involved in invertebrate immune response, especially in eliminating and degrading invading pathogens. PMID:26687532

  11. Bacterial secreted effectors and caspase-3 interactions

    PubMed Central

    Wall, Daniel M; McCormick, Beth A

    2014-01-01

    Apoptosis is a critical process that intrinsically links organism survival to its ability to induce controlled death. Thus, functional apoptosis allows organisms to remove perceived threats to their survival by targeting those cells that it determines pose a direct risk. Central to this process are apoptotic caspases, enzymes that form a signalling cascade, converting danger signals via initiator caspases into activation of the executioner caspase, caspase-3. This enzyme begins disassembly of the cell by activating DNA degrading enzymes and degrading the cellular architecture. Interaction of pathogenic bacteria with caspases, and in particular, caspase-3, can therefore impact both host cell and bacterial survival. With roles outside cell death such as cell differentiation, control of signalling pathways and immunomodulation also being described for caspase-3, bacterial interactions with caspase-3 may be of far more significance in infection than previously recognized. In this review, we highlight the ways in which bacterial pathogens have evolved to subvert caspase-3 both through effector proteins that directly interact with the enzyme or by modulating pathways that influence its activation and activity. PMID:25262664

  12. Cellular Mechanisms Controlling Caspase Activation and Function

    PubMed Central

    Parrish, Amanda B.; Freel, Christopher D.; Kornbluth, Sally

    2013-01-01

    Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death. PMID:23732469

  13. Annexin A1 processing is associated with caspase-dependent apoptosis in BZR cells.

    PubMed

    Debret, R; El Btaouri, H; Duca, L; Rahman, I; Radke, S; Haye, B; Sallenave, J M; Antonicelli, F

    2003-07-10

    Annexins are widely distributed and have been described in lung as well as in other cells and tissues. Annexin I (ANX AI) is a member of the calcium-dependent phospholipid binding protein family. Besides its anti-inflammatory function, ANX AI has been involved in several mechanisms such as the Erk repression pathway or apoptosis. To investigate the role of ANX AI on apoptosis in broncho-alveolar cells, we have constructed a plasmid containing the ANX AI full length cDNA. Transfected BZR cells displayed a higher level of both forms of ANX AI (37 and 33 kDa) as well as a decrease in cell viability (two-fold versus cells transfected with an empty vector). In order to analyse the endogenous ANX AI processing during stimulus-induced apoptosis, BZR cells were treated with a commonly used inducer, i.e. C2 ceramides. In these conditions, microscopic analysis revealed chromatin condensation in dying cells and the Bcl-2, Bcl-x(L)/Bax mRNA balance was altered. Caspase-3 is one of the key executioners of apoptosis, being responsible for the cleavage of many proteins such as the nuclear enzyme poly(ADP-ribose) polymerase (PARP). We demonstrate that caspase-3 was activated after 4 h treatment in the presence of ceramide leading to the cleavage of PARP. Dose-response experiments revealed that cell morphology and viability modifications following ceramide treatment were accompanied by an increase in endogenous ANX AI processing. Interestingly, in both ceramide and transfection experiments, the ANX AI cleaved form was enhanced whereas pre-treatment with the caspase inhibitor Z-VAD-fmk abolished ANX AI cleavage. In conclusion, this study demonstrates a complex regulatory role of caspase-dependent apoptosis where ANX AI is processed at the N-terminal region which could give susceptibility to apoptosis upon ceramide treatment. PMID:12832039

  14. Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes.

    PubMed

    Cuvillier, O; Rosenthal, D S; Smulson, M E; Spiegel, S

    1998-01-30

    Ceramide, a sphingolipid generated by the hydrolysis of membrane-associated sphingomyelin, appears to play a role as a gauge of apoptosis. A further metabolite of ceramide, sphingosine 1-phosphate (SPP), prevents ceramide-mediated apoptosis, and it has been suggested that the balance between intracellular ceramide and SPP levels may determine the cell fate (Cuvillier, O., Pirianov, G, Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, J. S., and Spiegel, S. (1996) Nature 381, 800-803). Here, we investigated the role of SPP and the protein kinase C activator, phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), in the caspase cascade leading to the proteolysis of poly(ADP-ribose) polymerase (PARP) and lamins. In Jurkat T cells, Fas ligation or addition of exogenous C2-ceramide induced activations of caspase-3/CPP32 and caspase-7/Mch3 followed by PARP cleavage, effects that can be blocked either by SPP or TPA. Furthermore, both SPP and TPA inhibit the activation of caspase-6/Mch2 and subsequent lamin B cleavage. Ceramide, in contrast to Fas ligation, did not induce activation of caspase-8/FLICE and neither SPP nor TPA were able to prevent this activation. Thus, SPP, likely generated via protein kinase C-mediated activation of sphingosine kinase, suppresses the apoptotic pathway downstream of FLICE but upstream of the executioner caspases, caspase-3, -6, and -7. PMID:9446602

  15. BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori.

    PubMed

    Yi, Hua-Shan; Pan, Cai-Xia; Pan, Chun; Song, Juan; Hu, Yan-Fen; Wang, La; Pan, Min-Hui; Lu, Cheng

    2014-02-28

    In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a (169)QACRG(173) sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells. PMID:24491540

  16. Dose-dependent effects of the caspase inhibitor Q-VD-OPh on different apoptosis-related processes.

    PubMed

    Kuželová, Kateřina; Grebeňová, Dana; Brodská, Barbora

    2011-11-01

    The effects of the pan-caspase inhibitor Q-VD-OPh on caspase activity, DNA fragmentation, PARP cleavage, 7A6 exposition, and cellular adhesivity to fibronectin were analyzed in detail in three different apoptotic systems involving two cell lines (JURL-MK1 and HL60) and two apoptosis inducers (imatinib mesylate and suberoylanilide hydroxamic acid). Q-VD-OPh fully inhibited caspase-3 and -7 activity at 0.05  µM concentration as indicated both by the measurement of the rate of Ac-DEVD-AFC cleavage and anti-caspase immunoblots. Caspase-8 was also inhibited at low Q-VD-OPh concentrations. On the other hand, significantly higher Q-VD-OPh dose (10 µM) was required to fully prevent the cleavage of PARP-1. DNA fragmentation and disruption of the cell membrane functionality (Trypan blue exclusion test) were both prevented at 2 µM Q-VD-OPh while 10 µM inhibitor was needed to inhibit the drug-induced loss of cellular adhesivity to fibronectin which was observed in JURL-MK1 cells. The exposition of the mitochondrial antigen 7A6 occurred independently of Q-VD-OPh addition and may serve to the detection of cumulative incidence of the cells which have initiated the apoptosis. Our results show that Q-VD-OPh efficiency in the inhibition of caspase-3 activity and DNA fragmentation in the whole-cell environment is about two orders of magnitude higher than that of z-VAD-fmk. This difference is not due to a slow permeability of the latter through the cytoplasmic membrane. PMID:21751237

  17. Apoptosis induced in rats by 4-vinylcyclohexene diepoxide is associated with activation of the caspase cascades.

    PubMed

    Hu, X; Christian, P J; Thompson, K E; Sipes, I G; Hoyer, P B

    2001-07-01

    Previous studies have shown that ovotoxicity induced in rats by dosing with 4-vinylcyclohexene diepoxide (VCD) is likely via acceleration of the normal rate of atresia (apoptosis). The present study was designed to investigate the apoptosis-related caspase cascades as a component of this phenomenon in isolated ovarian small follicles. Female F344 rats were given a single dose of VCD (80 mg/kg, i.p., on Day 1; a time when ovotoxicity has not been initiated), or dosed daily for 15 days (80 mg/kg, i.p., on Day 15; a time when significant ovotoxicity is underway). Ovaries were collected after the final dose. Small preantral follicles (25-100 microm in diameter) were isolated, cellular fractions were prepared, and cleavage activity or protein expression levels of caspases-3, -8, and -9 were measured. Cytosolic caspase-3 activity was increased in small follicles (P < 0.01) by VCD treatment (Day 1, 2.86 +/- 0.23; Day 15, 3.25 +/- 0.64, VCD/control, n = 3). This activation was not seen in large or antral follicles (not targeted by VCD). Procaspase-3 protein was increased(P < 0.05) by VCD treatment 212% over controls in small ovarian follicles in Day 15, but not Day 1-dosed rats. Immunofluorescence staining intensity was evaluated by confocal microscopy. Caspase-3 protein, located in the cytosolic compartment of oocytes and granulosa cells of preantral follicles in various stages of development, was selectively increased (P < 0.05) in primordial and small primary follicles from Day 15 VCD-dosed rats. Caspase-8 activity was increased in small follicles in Day 15, but not in Day 1-treated rats; whereas caspase-9 activity was increased by VCD on Day 1 in the mitochondrial fraction. Thus, these data provide evidence that accelerated atresia induced in small ovarian follicles in rats by VCD is associated with activation of a caspase-mediated cascade. PMID:11420227

  18. Caspase-3 Activity in the Rat Amygdala Measured by Spectrofluorometry After Myocardial Infarction

    PubMed Central

    Gilbert, Kim; Godbout, Roger; Rousseau, Guy

    2016-01-01

    Myocardial infarction (MI) has dramatic mid- and long-term consequences at the physiological and behavioral levels, but the mechanisms involved are still unclear. Our laboratory has developed a rat model of post-MI syndrome that displays impaired cardiac functions, neuronal loss in the limbic system, cognitive deficits and behavioral signs of depression. At the neuronal level, caspase-3 activation mediates post-MI apoptosis in different limbic regions, such as the amygdala – peaking at 3 days post-MI. Cognitive and behavioral impairments appear 2-3 weeks post-MI and these correlate statistically with measures of caspase-3 activity. The protocol described here is used to induce MI, collect amygdala tissue and measure caspase-3 activity using spectrofluorometry. To induce MI, the descending coronary artery is occluded for 40 min. The protocol for evaluation of caspase-3 activation starts 3 days after MI: the rats are sacrificed and the amygdala isolated rapidly from the brain. Samples are quickly frozen in liquid nitrogen and kept at -80 °C until actual analysis. The technique performed to assess caspase-3 activation is based on cleavage of a substrate (DEVD-AMC) by caspase-3, which releases a fluorogenic compound that can be measured by spectrofluorometry. The methodology is quantitative and reproducible but the equipment required is expensive and the procedure for quantifying the samples is time-consuming. This technique can be applied to other tissues, such as the heart and kidneys. DEVD-AMC can be replaced by other substrates to measure the activity of other caspases. PMID:26862955

  19. Bax translocation mediated mitochondrial apoptosis and caspase dependent photosensitizing effect of Ficus religiosa on cancer cells.

    PubMed

    Haneef, Jazir; Parvathy, Muraleedharan; M, Parvathy; Thankayyan R, Santhosh Kumar; Sithul, Hima; Sreeharshan, Sreeja

    2012-01-01

    The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE) in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide) double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9). Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS) by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and partial Caspase

  20. Bax Translocation Mediated Mitochondrial Apoptosis and Caspase Dependent Photosensitizing Effect of Ficus religiosa on Cancer Cells

    PubMed Central

    Thankayyan R, Santhosh Kumar; Sithul, Hima; Sreeharshan, Sreeja

    2012-01-01

    The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE) in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide) double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9). Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS) by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and partial Caspase

  1. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3

    NASA Astrophysics Data System (ADS)

    Murthy, Aditya; Li, Yun; Peng, Ivan; Reichelt, Mike; Katakam, Anand Kumar; Noubade, Rajkumar; Roose-Girma, Merone; Devoss, Jason; Diehl, Lauri; Graham, Robert R.; van Lookeren Campagne, Menno

    2014-02-01

    Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.

  2. The caspase proteolytic system in callipyge and normal lambs in longissimus, semimembranosus, and infraspinatus muscles during postmortem storage.

    PubMed

    Kemp, C M; King, D A; Shackelford, S D; Wheeler, T L; Koohmaraie, M

    2009-09-01

    The objective of this experiment was to determine whether the caspase proteolytic system has a role in postmortem tenderization. Six ewes and 6 wethers that were noncarriers and 6 ewes and 6 wethers that were expressing the callipyge gene were used for this study. Caspase activities were determined in LM at 7 different time points during the postmortem storage period: 0 h, 4 h, 8 h, 24 h, 2 d, 7 d, and 21 d and in semimembranosus (SM) and infraspinatus (IS) muscles at 0 h, 8 h, 24 h, and 7 d from callipyge and noncallipyge (normal) lambs. Calpastatin activity was determined at 0 h, 2 d, 7 d, and 21 d and slice shear force measured at 2, 7, and 21 d in the LM. Calpastatin activity and slice shear force were greater in LM from callipyge lambs than normal lambs at each time point (P < 0.001 and P < 0.0001, respectively). Caspases 3 and 7 are executioner caspases, and their combined activity was found to decrease during the postmortem storage period in LM, SM, and IS muscles from callipyge and normal lambs. Similarly, activity of the initiator caspase (caspase 9) decreased (P < 0.05) in all 3 muscles across the postmortem storage period in callipyge and normal lambs, and its decrease in activity preceded that of the executioner caspases 3/7. A positive relationship also was detected between caspase 9 and caspase 3/7 in LM, SM, and IS muscles (P < 0.0001, r = 0.85, r = 0.86, r = 0.84, respectively), which is consistent with caspase 9 being responsible for the cleavage and activation of the executioner caspases (caspase 3/7) downstream. Caspase 3/7 and caspase 9 activities at 8 h in SM were greater in normal lamb than callipyge lamb (P < 0.05), with a trend for caspase 3/7 activity to be greater at 24 h postmortem (P = 0.0841). There also was a trend for caspase 3/7 activity to be greater in LM at 21 d in normal lamb than in callipyge lamb (P = 0.053), although there were no differences detected in caspase activities between genotypes in the IS muscle, which is not

  3. Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis.

    PubMed

    Imre, Gergely; Heering, Jan; Takeda, Armelle-Natsuo; Husmann, Matthias; Thiede, Bernd; zu Heringdorf, Dagmar Meyer; Green, Douglas R; van der Goot, F Gisou; Sinha, Bhanu; Dötsch, Volker; Rajalingam, Krishnaraj

    2012-05-30

    Bacterial pathogens modulate host cell apoptosis to establish a successful infection. Pore-forming toxins (PFTs) secreted by pathogenic bacteria are major virulence factors and have been shown to induce various forms of cell death in infected cells. Here we demonstrate that the highly conserved caspase-2 is required for PFT-mediated apoptosis. Despite being the second mammalian caspase to be identified, the role of caspase-2 during apoptosis remains enigmatic. We show that caspase-2 functions as an initiator caspase during Staphylococcus aureus α-toxin- and Aeromonas aerolysin-mediated apoptosis in epithelial cells. Downregulation of caspase-2 leads to a strong inhibition of PFT-mediated apoptosis. Activation of caspase-2 is PIDDosome-independent, and endogenous caspase-2 is recruited to a high-molecular-weight complex in α-toxin-treated cells. Interestingly, prevention of PFT-induced potassium efflux inhibits the formation of caspase-2 complex, leading to its inactivation, thus resisting apoptosis. These results revealed a thus far unknown, obligatory role for caspase-2 as an initiator caspase during PFT-mediated apoptosis. PMID:22531785

  4. B cell receptor cross-linking triggers a caspase-8-dependent apoptotic pathway that is independent of the death effector domain of Fas-associated death domain protein.

    PubMed

    Besnault, L; Schrantz, N; Auffredou, M T; Leca, G; Bourgeade, M F; Vazquez, A

    2001-07-15

    We have previously reported that B cell receptors, depending on the degree to which they are cross-linked, can promote apoptosis in various human B cell types. In this study, we show that B cell receptors can trigger two apoptotic pathways according to cross-linking and that these pathways control mitochondrial activation in human Burkitt's lymphoma cells. Whereas soluble anti-mu Ab triggers caspase-independent mitochondrial activation, cross-linked anti-mu Ab induces an apoptotic response associated with a caspase-dependent loss of mitochondrial transmembrane potential. This B cell receptor-mediated caspase-dependent mitochondrial activation is associated with caspase-8 activation. We show here that caspase-8 inhibitors strongly decrease cross-linking-dependent B cell receptor-mediated apoptosis in Burkitt's lymphoma BL41 cells. These inhibitors act upstream from the mitochondria as they prevented the loss of mitochondrial membrane potential observed in B cell receptor-treated BL41 cells. Caspase-8 activation in these cells was also evident from the detection of cleaved fragments of caspase-8 and the cleavage of specific substrates, including Bid. Our data show that cross-linked B cell receptors induced an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and the activation of caspase-9 and caspase-3. Cells expressing a dominant negative mutant of Fas-associated death domain protein were sensitive to cross-linked B cell receptor-induced caspase-8 activation and apoptosis; therefore, this caspase-8 activation was independent of the death effector domain of Fas-associated death domain protein. PMID:11441077

  5. Assessment of calpain and caspase systems activities during ageing of two bovine muscles by degradation patterns of αII spectrin and PARP-1.

    PubMed

    Saccà, Elena; Pizzutti, Nicoletta; Corazzin, Mirco; Lippe, Giovanna; Piasentier, Edi

    2016-03-01

    The activities of calpain and caspase systems during ageing in Longissimus lumborum (LL) and Infraspinatus (IS) muscles of Italian Simmental young bulls (Bos taurus) were assessed. Samples from 10 animals were collected within 20 min of exsanguination (T0), after 48 h (T1) and 7 days (T2) post mortem. Calpain and caspase activity were evaluated based on the formation of αII spectrin cleavage products of 145 kDa (SBDP145) and 120 kDa (SBDP120), respectively. Caspase activity was also assessed by the presence of poly (adenosine diphosphate-ribose) polymerase-1 (PARP-1) cleavage product. At T0, LL showed higher levels of SBDP145 than IS (P < 0.01), while SBDP120 and PARP-1 degradation products were similar between muscles. At T1, no difference was found in the level of SBDP145 between muscles, while SBDP120 and PARP-1 cleavage products were not detected. At T2 neither αII spectrin nor PARP-1 cleavage products were found. LL and IS showed different proteolysis after slaughter that was influenced more by calpain than caspase activity, which was detectable only in the early post mortem period. PMID:26950517

  6. A designed redox-controlled caspase

    PubMed Central

    Witkowski, Witold A; Hardy, Jeanne A

    2011-01-01

    Caspases are a powerful class of cysteine proteases. Introduction of activated caspases in healthy or cancerous cells results in induction of apoptotic cell death. In this study, we have designed and characterized a version of caspase-7 that can be inactivated under oxidizing extracellular conditions and then reactivated under reducing intracellular conditions. This version of caspase-7 is allosterically inactivated when two of the substrate-binding loops are locked together via an engineered disulfide. When this disulfide is reduced, the protein regains its full function. The inactive loop-locked version of caspase-7 can be readily observed by immunoblotting and mass spectrometry. The reduced and reactivated form of the enzyme observed crystallographically is the first caspase-7 structure in which the substrate-binding groove is properly ordered even in the absence of an active-site ligand. In the reactivated structure, the catalytic-dyad cysteine–histidine are positioned 3.5 Å apart in an orientation that is capable of supporting catalysis. This redox-controlled version of caspase-7 is particularly well suited for targeted cell death in concert with redox-triggered delivery vehicles. PMID:21674661

  7. A designed redox-controlled caspase

    SciTech Connect

    Witkowski, Witold A.; Hardy, Jeanne A.

    2011-09-15

    Caspases are a powerful class of cysteine proteases. Introduction of activated caspases in healthy or cancerous cells results in induction of apoptotic cell death. In this study, we have designed and characterized a version of caspase-7 that can be inactivated under oxidizing extracellular conditions and then reactivated under reducing intracellular conditions. This version of caspase-7 is allosterically inactivated when two of the substrate-binding loops are locked together via an engineered disulfide. When this disulfide is reduced, the protein regains its full function. The inactive loop-locked version of caspase-7 can be readily observed by immunoblotting and mass spectrometry. The reduced and reactivated form of the enzyme observed crystallographically is the first caspase-7 structure in which the substrate-binding groove is properly ordered even in the absence of an active-site ligand. In the reactivated structure, the catalytic-dyad cysteine-histidine are positioned 3.5 {angstrom} apart in an orientation that is capable of supporting catalysis. This redox-controlled version of caspase-7 is particularly well suited for targeted cell death in concert with redox-triggered delivery vehicles.

  8. A Huntingtin-based peptide inhibitor of caspase-6 provides protection from mutant Huntingtin-induced motor and behavioral deficits

    PubMed Central

    Aharony, Israel; Ehrnhoefer, Dagmar E.; Shruster, Adi; Qiu, Xiaofan; Franciosi, Sonia; Hayden, Michael R.; Offen, Daniel

    2015-01-01

    Over the past decade, increasing evidence has implied a significant connection between caspase-6 activity and the pathogenesis of Huntington's disease (HD). Consequently, inhibiting caspase-6 activity was suggested as a promising therapeutic strategy to reduce mutant Huntingtin toxicity, and to provide protection from mutant Huntingtin-induced motor and behavioral deficits. Here, we describe a novel caspase-6 inhibitor peptide based on the huntingtin caspase-6 cleavage site, fused with a cell-penetrating sequence. The peptide reduces mutant Huntingtin proteolysis by caspase-6, and protects cells from mutant Huntingtin toxicity. Continuous subcutaneous administration of the peptide protected pre-symptomatic BACHD mice from motor deficits and behavioral abnormalities. Moreover, administration of the peptide in an advanced disease state resulted in the partial recovery of motor performance, and an alleviation of depression-related behavior and cognitive deficits. Our findings reveal the potential of substrate-based caspase inhibition as a therapeutic strategy, and present a promising agent for the treatment of HD. PMID:25616965

  9. BmDredd is an initiator caspase and participates in Emodin-induced apoptosis in the silkworm, Bombyx mori.

    PubMed

    Wang, La; Song, Juan; Bao, Xi-Yan; Chen, Peng; Yi, Hua-Shan; Pan, Min-Hui; Lu, Cheng

    2016-10-15

    The identification and analysis of the caspases is essential to research into apoptosis in lepidoptera insects. The domesticated silkworm, Bombyx mori, is the model system for lepidopterans. In this study, we cloned and characterized a B. mori Dredd gene, BmDredd, the proposed insect homologue of human caspase-8, which encoded a polypeptide of 543 amino acids. BmDredd possesses a long N-terminal prodomain, a p20 domain, and a p10 domain. When transiently expressed in Escherichia coli cells, BmDredd underwent spontaneous cleavage and exhibited high proteolytic activity for caspase-8 substrate but relatively low for caspase-3 or -9 substrate. In addition, BmDredd induced apoptosis when transiently expressed in BmN-SWU1 cells, an ovarian cell line of B. mori. Moreover, after the treatment of Emodin, a novel apoptosis inducer, endogenous BmDredd expression level, the caspase-8 activity and the apoptotic rate increased notably in BmN-SWU1 cells. When BmDredd was subjected to interference in BmN-SWU1 cells and Emodin treatment, BmDredd expression levels decreased and the apoptotic rate also decreased significantly. These results suggest BmDredd is the homologue of human caspase-8 and plays a role in Emodin-induced apoptosis in BmN-SWU1 cells of B. mori. PMID:27291821

  10. EGFR tyrosine kinase inhibitors promote pro-caspase-8 dimerization that sensitizes cancer cells to DNA-damaging therapy.

    PubMed

    Li, Yun-Tian; Qian, Xiao-Jun; Yu, Yan; Li, Zhen-Hua; Wu, Rui-Yan; Ji, Jiao; Jiao, Lin; Li, Xuan; Kong, Peng-Fei; Chen, Wen-Dan; Feng, Gong-Kan; Deng, Rong; Zhu, Xiao-Feng

    2015-07-10

    The combination of time and order-dependent chemotherapeutic strategies has demonstrated enhanced efficacy in killing cancer cells while minimizing adverse effects. However, the precise mechanism remains elusive. Our results showed that pre-treatment of MCF-7 and MDA-MB-468 cells with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib or lapatinib significantly enhanced the cytotoxic effects of DNA-damaging agents compared to coadministration of the EGFR inhibitor and DNA-damaging agent. Sequential application of erlotinib and doxorubicin increased activated caspase-8 by promoting pro-caspase-8 homodimerization and autocatalytical cleavage, whereas coadministration did not. We found that EGFR inhibitors promoted pro-caspase-8 homodimerization by inhibiting ERK pathway signaling, while doxorubicin promoted it. Our data highlight that ERK has the potential to inhibit the formation of pro-caspase-8 homodimers by phosphorylating pro-caspase-8 at S387. In conclusion, the pretreatment of EGFR tyrosine kinase inhibitors promote pro-caspase-8 dimerization that sensitizes cancer cells to DNA-damaging agents. Our findings provide rationale for novel strategies for the implementation of combined targeted and cytotoxic chemotherapy within a new framework of time and order-dependent therapy. PMID:26036637

  11. Activation of Bcl-2-Caspase-9 Apoptosis Pathway in the Testis of Asthmatic Mice

    PubMed Central

    Li, Junjuan; Ding, Zhaolei; Sheng, Jianhui; Li, Juan; Tan, Wei

    2016-01-01

    Background Apoptosis plays a critical role in controlling the proliferation and differentiation of germ cells during spermatogenesis. Dysregulation of the fine-tuned balance may lead to the onset of testicular diseases. In this study, we investigated the activation status of apoptosis pathways in the testicular tissues under the background of an asthmatic mouse model. Methods Ten BALB/c mice were divided into two groups: the acute asthma group and the control group. In the acute asthma group, ovalbumin (OVA)-sensitized mice were challenged with aerosolized OVA for 7 days, while the control group was treated with physiological saline. After that, both epididymis and testis were collected to determine the sperm count and motility. Apoptosis in the testis was evaluated by DNA ladder, immunochemistry and further by PCR array of apoptosis-related genes. Finally, the cleavage of caspase-3 and poly ADP-ribose polymerase (PARP) was determined by western blot and the enzymatic activities of caspase-9 and 3/7 were assessed using Caspase-Glo kits. Results Compared with control mice, significant decreases in the body weight, testis weight, sperm count and motility were seen in the experimental group. DNA ladder and immunochemistry showed significant increase in apoptotic index of the asthmatic testis, whereas a decrease in mRNA expression of Bcl-2 and increases in Bax, BNIP3, caspase-9, and AIF were observed in the asthma group. Furthermore, protein levels of AIF were significantly upregulated, while the translational expression of Bcl-2 was downregulated markedly. Consistently, caspase-9 activity in the testis of asthma mice was significantly higher than that of the control group. Conclusion Collectively, these results showed that Bcl-2-caspase-9 apoptosis pathway was clearly activated in the testis of asthmatic mice with the increased expression of apoptosis-related genes and proteins. To our knowledge, this is the first report demonstrating that asthma could lead to the

  12. Genetically encoded far-red fluorescent sensors for caspase-3 activity.

    PubMed

    Zlobovskaya, Olga A; Sergeeva, Tatiana F; Shirmanova, Marina V; Dudenkova, Varvara V; Sharonov, George V; Zagaynova, Elena V; Lukyanov, Konstantin A

    2016-02-01

    Caspase-3 is a key effector caspase that is activated in both extrinsic and intrinsic pathways of apoptosis. Available fluorescent sensors for caspase-3 activity operate in relatively short wavelength regions and are nonoptimal for multiparameter microscopy and whole-body imaging. In the present work, we developed new genetically encoded sensors for caspase-3 activity possessing the most red-shifted spectra to date. These consist of Förster resonance energy transfer (FRET) pairs in which a far-red fluorescent protein (mKate2 or eqFP650) is connected to the infrared fluorescent protein iRFP through a linker containing the DEVD caspase-3 cleavage site. During staurosporine-induced apoptosis of mammalian cells (HeLa and CT26), both mKate2-DEVD-iRFP and eqFP650-DEVD-iRFP sensors showed a robust response (1.6-fold increase of the donor fluorescence intensity). However, eqFP650-DEVD-iRFP displayed aggregation in some cells. For stably transfected CT26 mKate2-DEVD-iRFP cells, fluorescence lifetime imaging (FLIM) enabled us to detect caspase-3 activation due to the increase of mKate2 donor fluorescence lifetime from 1.45 to 2.05 ns. We took advantage of the strongly red-shifted spectrum of mKate2-DEVD-iRFP to perform simultaneous imaging of EGFP-Bax translocation during apoptosis. We conclude that mKate2-DEVD-iRFP is well-suited for multiparameter imaging and also potentially beneficial for in vivo imaging in animal tissues. PMID:26842350

  13. Cytoprotective effect of selective small-molecule caspase inhibitors against staurosporine-induced apoptosis

    PubMed Central

    Wu, Jianghong; Wang, Yuren; Liang, Shuguang; Ma, Haiching

    2014-01-01

    Caspases are currently known as the central executioners of the apoptotic pathways. Inhibition of apoptosis and promotion of normal cell survival by caspase inhibitors would be a tremendous benefit for reducing the side effects of cancer therapy and for control of neurodegenerative disorders such as Parkinson’s, Alzheimer’s, and Huntington’s diseases. The objective of this study was to discover small-molecule caspase inhibitors with which to achieve cytoprotective effect. We completed the high-throughput screening of Bionet’s 37,500-compound library (Key Organics Limited, Camelford, Cornwall, UK) against caspase-1, -3, and -9 and successfully identified 43 initial hit compounds. The 43 hit compounds were further tested for cytoprotective activity against staurosporine-induced cell death in NIH3T3 cells. Nineteen compounds were found to have significant cytoprotective effects in cell viability assays. One of the compounds, RBC1023, was demonstrated to protect NIH3T3 cells from staurosporine-induced caspase-3 cleavage and activation. RBC1023 was also shown to protect against staurosporine-induced impairment of mitochondrial membrane potential. DNA microarray analysis demonstrated that staurosporine treatment induced broad global gene expression alterations, and RBC1023 co-treatment significantly restored these changes, especially of the genes that are related to cell growth and survival signaling such as Egr1, Cdc25c, cdkn3, Rhob, Nek2, and Taok1. Collectively, RBC1023 protects NIH3T3 cells against staurosporine-induced apoptosis via inhibiting caspase activity, restoring mitochondrial membrane potential, and possibly upregulating some cell survival-related gene expressions and pathways. PMID:24920883

  14. Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock.

    PubMed

    Yang, Dahai; He, Yuan; Muñoz-Planillo, Raul; Liu, Qin; Núñez, Gabriel

    2015-11-17

    The noncanonical inflammasome induced by intracellular lipopolysaccharide (LPS) leads to caspase-11-dependent pyroptosis, which is critical for induction of endotoxic shock in mice. However, the signaling pathway downstream of caspase-11 is unknown. We found that cytosolic LPS stimulation induced caspase-11-dependent cleavage of the pannexin-1 channel followed up by ATP release, which in turn activated the purinergic P2X7 receptor to mediate cytotoxicity. In the absence of P2X7 or pannexin-1, pyroptosis induced by cytosolic LPS was abrogated. Cleavage of pannexin-1 required the catalytic activity of caspase-11 and was essential for ATP release and P2X7-mediated pyroptosis. Priming the caspase-11 pathway in vivo with LPS or Toll-like receptor-3 (TLR3) agonist resulted in high mortality in wild-type mice after secondary LPS challenge, but not in Casp11(-/-), Panx1(-/-), or P2x7(-/-) mice. These results reveal a critical role for pannexin-1 and P2X7 downstream of caspase-11 for pyroptosis and susceptibility to sepsis induced by the noncanonical inflammasome. PMID:26572062

  15. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock

    PubMed Central

    Yang, Dahai; He, Yuan; Muñoz-Planillo, Raul; Liu, Qin; Núñez, Gabriel

    2016-01-01

    SUMMARY The noncanonical inflammasome induced by intracellular lipopolysaccharide (LPS) leads to caspase-11-dependent pyroptosis which is critical for induction of endotoxic shock in mice. However, the signaling pathway downstream of caspase-11 is unknown. We found that cytosolic LPS stimulation induced caspase-11-dependent cleavage of the pannexin-1 channel and ATP release, which in turn activated the purinergic P2X7 receptor to mediate cytotoxicity. In the absence of P2X7 or pannexin-1, pyroptosis induced by LPS transfection or treatment with cholera toxin B and LPS was abrogated. Cleavage of pannexin-1 required the catalytic activity of caspase-11 and was essential for ATP release and P2X7-mediated pyroptosis. Priming the caspase-11 pathway in vivo with LPS or toll-like receptor-3 (TLR3) agonist resulted in high mortality in wild-type mice after secondary LPS challenge, but not in Casp11−/−, Panx1−/− or P2x7−/− mice. These results reveal a critical role for pannexin-1 and P2X7 downstream of caspase-11 for pyroptosis and susceptibility to sepsis induced by the noncanonical inflammasome. PMID:26572062

  16. Shikonin Suppresses NLRP3 and AIM2 Inflammasomes by Direct Inhibition of Caspase-1

    PubMed Central

    Zorman, Jernej; Sušjan, Petra; Hafner-Bratkovič, Iva

    2016-01-01

    Shikonin is a highly lipophilic naphtoquinone found in the roots of Lithospermum erythrorhizon used for its pleiotropic effects in traditional Chinese medicine. Based on its reported antipyretic and anti-inflammatory properties, we investigated whether shikonin suppresses the activation of NLRP3 inflammasome. Inflammasomes are cytosolic protein complexes that serve as scaffolds for recruitment and activation of caspase-1, which, in turn, results in cleavage and secretion of proinflammatory cytokines IL-1β and IL-18. NLRP3 inflammasome activation involves two steps: priming, i.e. the activation of NF-κB pathway, and inflammasome assembly. While shikonin has previously been reported to suppress the priming step, we demonstrated that shikonin also inhibits the second step of inflammasome activation induced by soluble and particulate NLRP3 instigators in primed immortalized murine bone marrow-derived macrophages. Shikonin decreased NLRP3 inflammasome activation in response to nigericin more potently than acetylshikonin. Our results showed that shikonin also inhibits AIM2 inflammasome activation by double stranded DNA. Shikonin inhibited ASC speck formation and caspase-1 activation in murine macrophages and suppressed the activity of isolated caspase-1, demonstrating that it directly targets caspase-1. Complexing shikonin with β-lactoglobulin reduced its toxicity while preserving the inhibitory effect on NLRP3 inflammasome activation, suggesting that shikonin with improved bioavailability might be interesting for therapeutic applications in inflammasome-mediated conditions. PMID:27467658

  17. Lantana camara Induces Apoptosis by Bcl-2 Family and Caspases Activation.

    PubMed

    Han, Eun Byeol; Chang, Bo Yoon; Jung, Young Suk; Kim, Sung Yeon

    2015-04-01

    Breast cancer is one of the most common cancers worldwide, and the second most fatal cancer in women after lung cancer. Because there are instances of cancer resistance to existing therapies, studies focused on the identification of novel therapeutic drugs are very important. In this study, we identified a natural anticancer agent from Lantana camara, a flowering plant species of the genus Verbena. The extract obtained from the L. camara exhibited cell death properties in the human breast cancer cell line, MCF-7. We found that the apoptosis induced by treatment with the L. camara extract was regulated by the Bcl-2 family. Bid and Bax was increased and Bcl-2 was decreased by L. camara extract. L. camara extract modulated cleavage of caspase-8, and caspase-9, as well as poly (ADP-ribose) polymerase (PARP). Our results support the potential use of the L. camara extract as an anti-breast cancer drug. PMID:25145450

  18. Caspase Functions in Cell Death and Disease

    PubMed Central

    McIlwain, David R.; Berger, Thorsten; Mak, Tak W.

    2013-01-01

    Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled. PMID:23545416

  19. Caspase deficiency alters the murine gut microbiome

    PubMed Central

    Brinkman, B M; Hildebrand, F; Kubica, M; Goosens, D; Del Favero, J; Declercq, W; Raes, J; Vandenabeele, P

    2011-01-01

    Caspases are aspartate-specific cysteine proteases that have an essential role in apoptosis and inflammation, and contribute to the maintenance of homeostasis in the intestine. These facts, together with the knowledge that caspases are implicated in host-microbe crosstalk, prompted us to investigate the effect of caspase (Casp)1, -3 and -7 deficiency on the composition of the murine gut microbiota. We observed significant changes in the abundance of the Firmicutes and Bacteroidetes phyla, in particular the Lachnospiraceae, Porphyromonodaceae and Prevotellacea families, when comparing Casp-1, -7 and -3 knockout mice with wild-type mice. Our data point toward an intricate relationship between these caspases and the composition of the murine gut microflora. PMID:22012254

  20. Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells.

    PubMed

    Ma, Guixin; Luo, Weiwei; Lu, Jinjian; Ma, Dik-Lung; Leung, Chung-Hang; Wang, Yitao; Chen, Xiuping

    2016-06-25

    Cucurbitacin E (CuE) is a triterpenoid with potent anticancer activities while the underlying mechanisms remain elusive. In the present study, the anticancer effects of CuE on 95D lung cancer cells were investigated. CuE decreased cell viability, inhibited colony formation, and increased reactive oxygen species (ROS) in a concentration-dependent manner, which were reversed by N-acetyl-l-cysteine (NAC). CuE induced apoptosis as determined by JC-1 staining, expression of Bcl-2 family proteins, cleavage of caspases, and TUNEL staining. NAC and Ac-DEVD-CHO partially reversed CuE-induced cleavage of caspase-3, caspase-7, and PARP. Furthermore, CuE caused accumulation of autophagic vacuoles and concentration- and time-dependent expression of LC3II protein. Autophagy inhibitors chloroquine and bafilomycin A1 enhanced CuE-induced LC3II expression and cell death. CuE-triggered protein expression of p-AKT, p-mTOR, Beclin-1, and p-ULK1 was partially reversed by NAC pretreatment. In addition, CuE treatment damaged F-actin without affecting β-tubulin as confirmed by immunofluorescence. In conclusion, CuE induced ROS-dependent apoptosis through Bcl-2 family and caspases in 95D lung cancer cells. Furthermore, CuE induced protective autophagy mediated by ROS through AKT/mTOR pathway. This study provides novel roles of ROS in the anticancer effect of CuE. PMID:27106530

  1. Analysis of caspase-3 in ASTC-a-1 cells treated with mitomycin C using acceptor photobleaching techniques

    NASA Astrophysics Data System (ADS)

    Wang, Huiying; Chen, Tongsheng; Sun, Lei

    2008-02-01

    Caspase-3 is a key activated death protease, which catalyzes the specific cleavage of many cellular proteins and induces DNA cleavage eventually. In this report, cells were treated with mitomycin C (MMC) at different concentration and its activity was detected by cell counting kit (CCK-8). Based on results of CCK-8, cells were treated with 10μg/mL MMC and Hoechst 33258 has been used to observe cell apoptosis. Fluorescence resonance energy transfer (FRET) and confocal microscopy have been used to the effect of MMC on the caspase3 activation in living cells. Human lung adenocarcinoma cells (ASTC-a-1) was transfected with plasmid SCAT3 (pSCAT3)/CKAR FRET receptor. Acceptor photobleaching techniques of FRET plasmid has been used to destruct fluorophore of cells stably expressing SCAT3 reporter on a fluorescence confocal microscope. The activity of caspase3 can be analyzed by FRET dynamics of SCAT3 in living cells. Our results show that MM C can induce ASTC-a-1 cell apoptosis through activation of caspase3.

  2. Caspase-2 and the oxidative stress response

    PubMed Central

    Shalini, Sonia; Kumar, Sharad

    2015-01-01

    Caspase-2, one of the earliest discovered caspases, has emerged as a multifunctional enzyme with roles that are not limited to cell death. It acts as a tumor suppressor, prevents genetic instability, and protects against aging by playing a crucial role in sensing alterations in cellular redox status and activating the antioxidant defense system. These apparent non-apoptotic functions, only discovered recently, emphasize the importance of this often-neglected protease. PMID:27308499

  3. Caspase-11 and caspase-1 differentially modulate actin polymerization via RhoA and Slingshot proteins to promote bacterial clearance

    PubMed Central

    Caution, Kyle; Gavrilin, Mikhail A.; Tazi, Mia; Kanneganti, Apurva; Layman, Daniel; Hoque, Sheshadri; Krause, Kathrin; Amer, Amal O.

    2015-01-01

    Inflammasomes are multiprotein complexes that include members of the NOD-like receptor family and caspase-1. Caspase-1 is required for the fusion of the Legionella vacuole with lysosomes. Caspase-11, independently of the inflammasome, also promotes phagolysosomal fusion. However, it is unclear how these proteases alter intracellular trafficking. Here, we show that caspase-11 and caspase-1 function in opposing manners to phosphorylate and dephosphorylate cofilin, respectively upon infection with Legionella. Caspase-11 targets cofilin via the RhoA GTPase, whereas caspase-1 engages the Slingshot phosphatase. The absence of either caspase-11 or caspase-1 maintains actin in the polymerized or depolymerized form, respectively and averts the fusion of pathogen-containing vacuoles with lysosomes. Therefore, caspase-11 and caspase-1 converge on the actin machinery with opposing effects to promote vesicular trafficking. PMID:26686473

  4. Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis

    PubMed Central

    Mishra, Ritu; Karande, Anjali A.

    2014-01-01

    Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2α and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery. PMID:24664279

  5. Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy.

    PubMed

    Yang, Pei-Ming; Tseng, Ho-Hsing; Peng, Chih-Wen; Chen, Wen-Shu; Chiu, Shu-Jun

    2012-02-01

    The outcome of producing apoptotic defects in cancer cells is the primary obstacle that limits the therapeutic efficacy of anticancer agents, and hence the development of novel agents targeting novel non-canonical cell death pathways has become an imperative mission for clinical research. Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid commonly found in fruits and vegetables. In this study, we investigated the potential anticancer effects of fisetin on breast cancer cells. The result showed fisetin induced higher cytotoxicity in human breast cancer MCF-7 than in MDA-MB-231 cells otherwise it did not exert any detectable cytotoxicity in non-tumorigenic MCF-10A cells. We found fisetin can trigger a novel form of atypical apoptosis in caspase-3-deficient MCF-7 cells, which was characterized by several apoptotic features, including plasma membrane rupture, mitochondrial depolarization, activation of caspase-7, -8 and -9, and PARP cleavage; however, neither DNA fragmentation and phosphotidylserine (PS) externalization was observed. Although p53 was also activated by fisetin, the fisetin-induced apoptosis was not rescued by the p53 inhibitor pifithrin-α. In contrast, the fisetin-induced apoptosis was abrogated by pan-caspase inhibitor z-VAD-fmk. Furthermore, inhibition of autophagy by fisetin was shown as additional route to prompt anticancer activity in MCF-7 cells. These data allow us to propose that fisetin appears as a new potential anticancer agent which can be applied to develop a clinical protocol of human breast cancers. PMID:21922137

  6. Caspase-1-Like Regulation of the proPO-System and Role of ppA and Caspase-1-Like Cleaved Peptides from proPO in Innate Immunity

    PubMed Central

    Jiravanichpaisal, Pikul; Nakamura, Seiko; Tassanakajon, Anchalee; Söderhäll, Irene; Söderhäll, Kenneth

    2014-01-01

    Invertebrates rely on innate immunity to respond to the entry of foreign microorganisms. One of the important innate immune responses in arthropods is the activation of prophenoloxidase (proPO) by a proteolytic cascade finalized by the proPO-activating enzyme (ppA), which leads to melanization and the elimination of pathogens. Proteolytic cascades play a crucial role in innate immune reactions because they can be triggered more quickly than immune responses that require altered gene expression. Caspases are intracellular proteases involved in tightly regulated limited proteolysis of downstream processes and are also involved in inflammatory responses to infections for example by activation of interleukin 1ß. Here we show for the first time a link between caspase cleavage of proPO and release of this protein and the biological function of these fragments in response to bacterial infection in crayfish. Different fragments from the cleavage of proPO were studied to determine their roles in bacterial clearance and antimicrobial activity. These fragments include proPO-ppA, the N-terminal part of proPO cleaved by ppA, and proPO-casp1 and proPO-casp2, the fragments from the N-terminus after cleavage by caspase-1. The recombinant proteins corresponding to all three of these peptide fragments exhibited bacterial clearance activity in vivo, and proPO-ppA had antimicrobial activity, as evidenced by a drastic decrease in the number of Escherichia coli in vitro. The bacteria incubated with the proPO-ppA fragment were agglutinated and their cell morphology was altered. Our findings show an evolutionary conserved role for caspase cleavage in inflammation, and for the first time show a link between caspase induced inflammation and melanization. Further we give a more detailed understanding of how the proPO system is regulated in time and place and a role for the peptide generated by activation of proPO as well as for the peptides resulting from Caspase 1 proteolysis. PMID

  7. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    SciTech Connect

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho . E-mail: ykim@knu.ac.kr

    2007-07-15

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 {mu}M) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins.

  8. Cleavage mechanism in vanadium alloys

    SciTech Connect

    Odette, G.R.; Donahue, E.; Lucas, G.E.

    1997-12-31

    The effect specimen geometry, loading rate and irradiation on the ductile-to-brittle transition in a V-4Ti-4Cr alloy were evaluated and modeled. Confocal microscopy-fracture reconstruction and SEM were used to characterize the sequence-of-events leading to cleavage, as well as the CTOD at fracture initiation. This alloy undergoes normal stress-controlled transgranular cleavage below a transition temperature that depends primarily on the tensile properties and constraint. Thus an equivalent yield stress model is in good agreement with observed effects of loading rate and irradiation hardening. Predicted effects of specimen geometry based on a critical stress-area criteria and FEM simulations of crack tip fields were also found to be in agreement with experiment. Some interesting characteristics of the fracture process are also described.

  9. Inflammatory caspases are innate immune receptors for intracellular LPS.

    PubMed

    Shi, Jianjin; Zhao, Yue; Wang, Yupeng; Gao, Wenqing; Ding, Jingjin; Li, Peng; Hu, Liyan; Shao, Feng

    2014-10-01

    The murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown. Here we show that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS. LPS-induced cytotoxicity was mediated by human caspase-4 that could functionally complement murine caspase-11. Human caspase-4 and the mouse homologue caspase-11 (hereafter referred to as caspase-4/11) and also human caspase-5, directly bound to LPS and lipid A with high specificity and affinity. LPS associated with endogenous caspase-11 in pyroptotic cells. Insect-cell purified caspase-4/11 underwent oligomerization upon LPS binding, resulting in activation of the caspases. Underacylated lipid IVa and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) could bind to caspase-4/11 but failed to induce their oligomerization and activation. LPS binding was mediated by the CARD domain of the caspase. Binding-deficient CARD-domain point mutants did not respond to LPS with oligomerization or activation and failed to induce pyroptosis upon LPS electroporation or bacterial infections. The function of caspase-4/5/11 represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation. PMID:25119034

  10. Cell death independent of caspases: a review.

    PubMed

    Bröker, Linda E; Kruyt, Frank A E; Giaccone, Giuseppe

    2005-05-01

    Patterns of cell death have been divided into apoptosis, which is actively executed by specific proteases, the caspases, and accidental necrosis. However, there is now accumulating evidence indicating that cell death can occur in a programmed fashion but in complete absence and independent of caspase activation. Alternative models of programmed cell death (PCD) have therefore been proposed, including autophagy, paraptosis, mitotic catastrophe, and the descriptive model of apoptosis-like and necrosis-like PCD. Caspase-independent cell death pathways are important safeguard mechanisms to protect the organism against unwanted and potential harmful cells when caspase-mediated routes fail but can also be triggered in response to cytotoxic agents or other death stimuli. As in apoptosis, the mitochondrion can play a key role but also other organelles such as lysosomes and the endoplasmic reticulum have an important function in the release and activation of death factors such as cathepsins, calpains, and other proteases. Here we review the various models of PCD and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of caspase-independent cell death pathways for cancer. PMID:15867207

  11. Harmol induces apoptosis by caspase-8 activation independently of Fas/Fas ligand interaction in human lung carcinoma H596 cells.

    PubMed

    Abe, Akihisa; Yamada, Hiroyuki

    2009-06-01

    The beta-carboline alkaloids are naturally existing plant substances. It is known that these alkaloids have a wide spectrum of neuropharmacological, psychopharmacological, and antitumor effects. Therefore, they have been traditionally used in oriental medicine for the treatment of various diseases including cancers and malaria. In this study, harmol and harmalol, which are beta-carboline alkaloids, were examined for their antitumor effect on human lung carcinoma cell lines, and structure-activity relationship was also investigated. H596, H226, and A549 cells were treated with harmol and harmalol, respectively. Apoptosis was induced by harmol only in H596 cells. In contrast, harmalol had negligible cytotoxicity in three cell lines. Harmol induced caspase-3, caspase-8, and caspase-9 activities and caspase-3 activities accompanied by cleavage of poly-(ADP-ribose)-polymerase. Furthermore, harmol treatment decreased the native Bid protein, and induced the release of cytochrome c from mitochondria to cytosol. The apoptosis induced by harmol was completely inhibited by caspase-8 inhibitor and partially inhibited by caspase-9 inhibitor. The antagonistic antibody ZB4 blocked Fas ligand-induced apoptosis, but had no effect on harmol-induced apoptosis. Harmol had no significant effect on the expression of Fas. In conclusion, our results showed that the harmol could cause apoptosis-inducing effects in human lung H596 cells through caspase-8-dependent pathway but independent of Fas/Fas ligand interaction. PMID:19318910

  12. Zinc deficiency induces apoptosis via mitochondrial p53- and caspase-dependent pathways in human neuronal precursor cells.

    PubMed

    Seth, Rohit; Corniola, Rikki S; Gower-Winter, Shannon D; Morgan, Thomas J; Bishop, Brian; Levenson, Cathy W

    2015-04-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent increases in the pro-apoptotic mitochondrial protein BAX leading to a loss of mitochondrial membrane potential as demonstrated by a 25% decrease in JC-1 red:green fluorescence ratio. Disruption of mitochondrial membrane integrity was accompanied by efflux of the apoptosis inducing factor (AIF) from the mitochondria and translocation to the nucleus with a significant increase in reactive oxygen species (ROS) after 24h of zinc deficiency. Measurement of caspase cleavage, mRNA, and treatment with caspase inhibitors revealed the involvement of caspases 2, 3, 6, and 7 in zinc deficiency-mediated apoptosis. Down-stream targets of caspase activation, including the nuclear structure protein lamin and polyADP ribose polymerase (PARP), which participates in DNA repair, were also cleaved. Transfection with a dominant-negative p53 construct and use of the p53 inhibitor, pifithrin-μ, established that these alterations were largely dependent on p53. Together these data identify a cascade of events involving mitochondrial p53 as well as p53-dependent caspase-mediated mechanisms leading to apoptosis during zinc deficiency. PMID:25467851

  13. Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe

    NASA Astrophysics Data System (ADS)

    Lee, Hyeran; Akers, Walter J.; Cheney, Philip P.; Edwards, W. Barry; Liang, Kexian; Culver, Joseph P.; Achilefu, Samuel

    2009-07-01

    Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with 64Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters kcat and KM of 0.55+/-0.01 s-1 and 1.12+/-0.06 μM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled 64Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.

  14. Effects of camptothecin, etoposide and Ca2+ on caspase-3 activity and myofibrillar disruption of chicken during postmortem ageing.

    PubMed

    Chen, Lin; Feng, Xian Chao; Lu, Feng; Xu, Xing Lian; Zhou, Guang Hong; Li, Qing Yun; Guo, Xiang Ying

    2011-03-01

    Recently, a novel consideration has focused on the potential relationship of apoptosis and the protease caspases and the underlying mechanism for meat postmortem tenderization. In this study, apoptosis inducers, camptothecin and etoposide as well as Ca(2+) were used to treat chicken muscle immediately after slaughter and follow the changes in caspase-3 activities and changes in the myofibrillar structures during 7 days of ageing. All three treatments resulted in significantly higher caspase-3 activities during storage (p<0.05), with the natural substrates, whereas Western blotting analysis of the α-spectrin cleavage product, 120 kDa peptide (SBDP 120), showed that Ca(2+) was more effective than either camptothecin or etopside, and all were most active up to day 3 (p<0.01). According to SDS-PAGE, each treatment enhanced the accumulation of the 30 kD Troponin-T degradation product, especially during the first 3 days (p<0.05), and this was supported by the degradation of myofibrils observed by electron microscopy (TEM). TEM images showed the treatments resulted in enlargement of the I-bands and shrinkage of A-bands; however Z-lines were only slightly affected, even at day 7. The findings revealed that the three apoptosis inducers could increase myofibrillar dissociation and proteolysis during the first 3 days of chicken meat ageing. Because of the high activity of caspase-3 during the early postmortem period, it is possible that caspase-3 contributes to the conversion of muscle into meat. PMID:21055882

  15. Ethanol extracts of Cinnamomum kanehirai Hayata leaves induce apoptosis in human hepatoma cell through caspase-3 cascade

    PubMed Central

    Liu, Yu-Kuo; Chen, Kuan-Hsing; Leu, Yann-Lii; Way, Tzong-Der; Wang, Ling-Wei; Chen, Yu-Jen; Liu, Yu-Ming

    2015-01-01

    Inducing apoptosis to susceptible cells is the major mechanism of most cytotoxic anticancer drugs in current use. Cinnamomum kanehirai Hayata (Lauraceae), a unique and native tree of Taiwan, is the major host for the medicinal fungus Antrodia cinnamomea which exhibits anti-cancer activity. Because of the scarcity of A. cinnamomea, C. kanehirai Hayata instead, is used as fork medicine in liver cancer. Here we observed the C. kanehirai Hayata ethanol extract could inhibit the cellular viability of both HepG2 and HA22T/VGH human hepatoma cell lines in a dose- and time-dependent manner. We found the mode of cell death was apoptosis according to cell morphological changes by Liu’s stain, oligonucleosomal DNA fragmentation by gel electrophoresis, externalization of phosphotidyl serine by detecting Annexin V and hypoploid population by cell cycle analysis. Our results showed that the extracts caused cleavage of caspase-3 and increased enzyme activity of caspase-8 and caspase-9. Caspase 3 inhibitor partially reversed the viability inhibition by the extract. Furthermore, the up-regulation of Bax and down-regulation of Bcl-2 were also noted by the extract treatment. In conclusion, C. kanehirai Hayata ethanol extract induced intrinsic pathway of apoptosis through caspase-3 cascade in human hepatoma HA22T/VGH and HepG2 cells, which might shed new light on hepatoma therapy. PMID:25678797

  16. Centralspindlin in Rappaport's cleavage signaling.

    PubMed

    Mishima, Masanori

    2016-05-01

    Cleavage furrow in animal cell cytokinesis is formed by cortical constriction driven by contraction of an actomyosin network activated by Rho GTPase. Although the role of the mitotic apparatus in furrow induction has been well established, there remain discussions about the detailed molecular mechanisms of the cleavage signaling. While experiments in large echinoderm embryos highlighted the role of astral microtubules, data in smaller cells indicate the role of central spindle. Centralspindlin is a constitutive heterotetramer of MKLP1 kinesin and the non-motor CYK4 subunit and plays crucial roles in formation of the central spindle and recruitment of the downstream cytokinesis factors including ECT2, the major activator of Rho during cytokinesis, to the site of division. Recent reports have revealed a role of this centralspindlin-ECT2 pathway in furrow induction both by the central spindle and by the astral microtubules. Here, a unified view of the stimulation of cortical contractility by this pathway is discussed. Cytokinesis, the division of the whole cytoplasm, is an essential process for cell proliferation and embryonic development. In animal cells, cytokinesis is executed using a contractile network of actin filaments driven by a myosin-II motor that constricts the cell cortex (cleavage furrow ingression) into a narrow channel between the two daughter cells, which is resolved by scission (abscission) [1-3]. The anaphase-specific organization of the mitotic apparatus (MA, spindle with chromosomes plus asters) positions the cleavage furrow and plays a major role in spatial coupling between mitosis and cytokinesis [4-6]. The nucleus and chromosomes are dispensable for furrow specification [7-10], although they contribute to persistent furrowing and robust completion in some cell types [11,12]. Likewise, centrosomes are not essential for cytokinesis, but they contribute to the general fidelity of cell division [10,13-15]. Here, classical models of cleavage furrow

  17. Mutation of caspase-digestion sites in keratin 18 interferes with filament reorganization, and predisposes to hepatocyte necrosis and loss of membrane integrity

    PubMed Central

    Weerasinghe, Sujith V. W.; Ku, Nam-On; Altshuler, Peter J.; Kwan, Raymond; Omary, M. Bishr

    2014-01-01

    ABSTRACT Keratin 18 (K18 or KRT18) undergoes caspase-mediated cleavage during apoptosis, the significance of which is poorly understood. Here, we mutated the two caspase-cleavage sites (D238E and D397E) in K18 (K18-DE), followed by transgenic overexpression of the resulting mutant. We found that K18-DE mice develop extensive Fas-mediated liver damage compared to wild-type mice overexpressing K18 (K18-WT). Fas-stimulation of K18-WT mice or isolated hepatocytes caused K18 degradation. By contrast, K18-DE livers or hepatocytes maintained intact keratins following Fas-stimulation, but showed hypo-phosphorylation at a major stress-kinase-related keratin 8 (K8) phosphorylation site. Although K18-WT and K18-DE hepatocytes showed similar Fas-mediated caspase activation, K18-DE hepatocytes were more ‘leaky’ after a mild hypoosmotic challenge and were more susceptible to necrosis after Fas-stimulation or severe hypoosmotic stress. K8 hypophosphorylation was not due to the inhibition of kinase binding to the keratin but was due to mutation-induced inaccessibility to the kinase that phosphorylates K8. A stress-modulated keratin phospho-mutant expressed in hepatocytes phenocopied the hepatocyte susceptibility to necrosis but was found to undergo keratin filament reorganization during apoptosis. Therefore, the caspase cleavage of keratins might promote keratin filament reorganization during apoptosis. Interference with keratin caspase cleavage shunts hepatocytes towards necrosis and increases liver injury through the inhibition of keratin phosphorylation. These findings might extend to other intermediate filament proteins that undergo proteolysis during apoptosis. PMID:24463813

  18. Small compound 6-O-angeloylplenolin induces caspase-dependent apoptosis in human multiple myeloma cells

    PubMed Central

    LIU, YING; DONG, YING; ZHANG, BO; CHENG, YONG-XIAN

    2013-01-01

    6-O-angeloylplenolin (6-OAP) is a sesquiterpene lactone agent that has been previously demonstrated to inhibit the growth of multiple myeloma (MM) cells through mitotic arrest with accumulated cyclin B1. In the present study, the levels of apoptosis were analyzed in dexamethasone-sensitive (MM.1S), dexamethasone-resistant (U266) and chemotherapy-sensitive (RPMI 8226) myeloma cell lines. Enhanced apoptosis was identified following a 48-h incubation with 6-OAP (0–10 μM) that induced a dose-dependent decrease in pro-casp-3 and the cleavage of its substrate, anti-poly (ADP-ribose) polymerase (PARP). In addition, time-dependent cleavage of PARP was also detected in U266 and MM.1S cells. The mechanism of 6-OAP cytotoxicity in all cell lines was associated with the induction of apoptosis with the presence of cleaved caspase-3 and PARP. In conclusion, 6-OAP-induced apoptosis is caspase-dependent. These observations are likely to provide a framework for future studies of 6-OAP therapy in MM. PMID:24137368

  19. Zinc- and oxidative property-dependent degradation of pro-caspase-1 and NLRP3 by ziram in mouse macrophages.

    PubMed

    Muroi, Masashi; Tanamoto, Ken-ichi

    2015-06-15

    The NLRP3 inflammasome, composed of caspase-1, NLRP3 and ASC, plays a critical role in the clearance of microbial pathogens. Here, we found that the treatment of mouse macrophages with the zinc-containing dithiocarbamate ziram, a widely used fungicide in agriculture, caused a decrease in pro-caspase-1 and NLRP3 levels while not affecting ASC level. Ziram did not affect levels of pro-caspase-1 and NLRP3 mRNA, and no cleavage products of pro-caspase-1 including p10 subunit, which is an autocleavage product of pro-caspase-1, were detected, indicating that the decrease was associated with degradation of these proteins. The decrease was inhibited by SH-type antioxidants, N-acetyl cysteine, dithiothreitol and 2-mercaptoethanol, or a metal chelator EDTA but not by inhibitors of proteasome, lysosomes, autophagy and matrix metalloproteases. Thiram, a comparator for ziram that does not contain zinc, showed a weaker decrease in protein levels. Furthermore, the zinc-containing dithiocarbamate, zinc diethyldithiocarbamate, efficiently decreased the levels of pro-caspase-1 and NLRP3, whereas dithiocarbamates, dimethyldithiocarbamate and diethyldithiocarbamate without zinc, were less active. The organic zinc compound [3,4-toluenedithiolato(2-)]zinc hydrate did not induce a decrease in protein levels. Ziram also inhibited IL-1β production by macrophages in response to lipopolysaccharide and bacterial clearance during Salmonella infection of macrophage cells. These results indicate that ziram causes degradation of pro-caspase-1 and NLRP3 in a zinc- and oxidative property-dependent manner and suggest that exposure to ziram may compromise the clearance of microbial pathogens. PMID:25929180

  20. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    PubMed

    Zhang, Yu-Qin; Xiao, Chuan-Xing; Lin, Bi-Yun; Shi, Ying; Liu, Yun-Peng; Liu, Jing-Jing; Guleng, Bayasi; Ren, Jian-Lin

    2013-01-01

    The role of Pokemon (POK erythroid myeloid ontogenic actor), a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC) and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma) as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy. PMID:23874836

  1. Silencing of Pokemon Enhances Caspase-Dependent Apoptosis via Fas- and Mitochondria-Mediated Pathways in Hepatocellular Carcinoma Cells

    PubMed Central

    Lin, Bi-Yun; Shi, Ying; Liu, Yun-Peng; Liu, Jing-Jing; Guleng, Bayasi; Ren, Jian-Lin

    2013-01-01

    The role of Pokemon (POK erythroid myeloid ontogenic actor), a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC) and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma) as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy. PMID:23874836

  2. Kinetic and structural characterization of caspase-3 and caspase-8 inhibition by a novel class of irreversible inhibitors

    SciTech Connect

    Wang, Zhigang; Watt, William; Brooks, Nathan A.; Harris, Melissa S.; Urban, Jan; Boatman, Douglas; McMillan, Michael; Kahn, Michael; Heinrikson, Robert L.; Finzel, Barry C.; Wittwer, Arthur J.; Blinn, James; Kamtekar, Satwik; Tomasselli, Alfredo G.

    2010-09-17

    Because of their central role in programmed cell death, the caspases are attractive targets for developing new therapeutics against cancer and autoimmunity, myocardial infarction and ischemic damage, and neurodegenerative diseases. We chose to target caspase-3, an executioner caspase, and caspase-8, an initiator caspase, based on the vast amount of information linking their functions to diseases. Through a structure-based drug design approach, a number of novel {beta}-strand peptidomimetic compounds were synthesized. Kinetic studies of caspase-3 and caspase-8 inhibition were carried out with these urazole ring-containing irreversible peptidomimetics and a known irreversible caspase inhibitor, Z-VAD-fmk. Using a stopped-flow fluorescence assay, we were able to determine individual kinetic parameters of caspase-3 and caspase-8 inhibition by these inhibitors. Z-VAD-fmk and the peptidomimetic inhibitors inhibit caspase-3 and caspase-8 via a three-step kinetic mechanism. Inhibition of both caspase-3 and caspase-8 by Z-VAD-fmk and of caspase-3 by the peptidomimetic inhibitors proceeds via two rapid equilibrium steps followed by a relatively fast inactivation step. However, caspase-8 inhibition by the peptidomimetics goes through a rapid equilibrium step, a slow-binding reversible step, and an extremely slow inactivation step. The crystal structures of inhibitor complexes of caspases-3 and -8 validate the design of the inhibitors by illustrating in detail how they mimic peptide substrates. One of the caspase-8 structures also shows binding at a secondary, allosteric site, providing a possible route to the development of noncovalent small molecule modulators of caspase activity.

  3. Preparation of anti-mouse caspase-12 mRNA hammerhead ribozyme and identification of its activity in vitro

    PubMed Central

    Jiang, Shan; Xie, Qing; Zhang, Wei; Zhou, Xia-Qiu; Jin, You-Xin

    2005-01-01

    AIM: To prepare and identify specific anti-mouse caspase-12 hammerhead ribozymes in vitro, in order to select a more effective ribozyme against mouse caspase-12 as a potential tool to rescue cells from endoplasmic reticulum stress induced apoptosis. METHODS: Two hammerhead ribozymes directed separately against 138 and 218 site of nucleotide of mouse caspase-12 mRNA were designed by computer software, and their DNA sequences were synthesized. The synthesized ribozymes were cloned into an eukaryotic expression vector-neorpBSKU6 and embedded in U6 SnRNA context for further study. Mouse caspase-12 gene segment was cloned into PGEM-T vector under the control of T7 RNA polymerase promoter (containing gene sequence from positions nt 41 to nt 894) as target. In vitro transcription both the ribozymes and target utilize T7 promoter. The target was labeled with [α-32P]UTP, while ribozymes were not labeled. After gel purification the RNAs were dissolved in RNase free water. Ribozyme and target were incubated for 90 min at 37°C in reaction buffer (40 mmol/L Tris-HCL, pH 7.5, 10 mmol/L Mg2+). Molar ratio of ribozyme vs target was 30:1. Samples were analyzed on 6% PAGE (containing 8 mol/L urea). RESULTS: Both caspase-12 and ribozyme gene sequences were successfully cloned into expression vector confirmed by sequencing. Ribozymes and caspase-12 mRNA were obtained by in vitro transcription. Cleavage experiment showed that in a physiological similar condition (37°C, pH 7.5), Rz138 and Rz218 both cleaved targets at predicted sites, for Rz138 the cleavage efficiency was about 100%, for Rz218 the value was 36.66%. CONCLUSION: Rz138 prepared in vitro can site specific cleave mouse caspase-12 mRNA with an excellent efficiency. It shows a potential to suppress the expression of caspase-12 in vivo, thus provided a new way to protect cells from ER stress induced apoptosis. PMID:15996037

  4. Nitric oxide donors inhibit formation of the Apaf-1/caspase-9 apoptosome and activation of caspases.

    PubMed Central

    Zech, Birgit; Köhl, Roman; von Knethen, Andreas; Brüne, Bernhard

    2003-01-01

    Caspases are critical for the initiation and execution of apoptosis. Nitric oxide (NO) or derived species can prevent programmed cell death in several cell types, reportedly through S-nitrosation and inactivation of active caspases. Although we find that S-nitrosation of caspases can occur in vitro, our study questions whether this post-translational modification is solely responsible for NO-mediated inhibition of apoptosis. Indeed, using Jurkat cells as a model system, we demonstrate that NO donors block Fas- and etoposide-induced caspase activation and apoptosis (downstream of mitochondrial membrane depolarization) and cytochrome c release. However, caspase activity was not restored by the strong reducing agent dithiothreitol, as predicted for S-nitrosation reactions, thereby excluding active-site-thiol modification of caspases as the only anti-apoptotic mechanism of NO donors in cells. Rather, we observed that processing of procaspases-9, -3 and -8 was decreased due to ineffective formation of the Apaf-1/caspase-9 apoptosome. Gel-filtration and in vitro binding assays indicated that NO donors inhibit correct assembly of Apaf-1 into an active approx. 700 kDa apoptosome complex, and markedly attenuate caspase-recruitment domain (CARD)-CARD interactions between Apaf-1 and procaspase-9. Therefore we suggest that NO or a metabolite acts directly at the level of the apoptosome and inhibits the sequential activation of caspases-9, -3 and -8, which are required for both stress- and receptor-induced death in cells that use the mitochondrial subroute of cell demise. PMID:12605597

  5. Procaspase-9 induces its cleavage by transnitrosylating XIAP via the Thioredoxin system during cerebral ischemia-reperfusion in rats.

    PubMed

    Zhang, Dengyue; Zhao, Ningjun; Ma, Bin; Wang, Yan; Zhang, Gongliang; Yan, Xianliang; Hu, Shuqun; Xu, Tie

    2016-01-01

    Transnitrosylation is an important mechanism by which nitric oxide (NO) modulates cell signaling pathways. For instance, SNO-caspase-3 can transnitrosylate the X-linked inhibitor of apoptosis (XIAP) to enhance apoptosis. XIAP is a potent antagonist of caspase apoptotic activity. Decrease in XIAP activity via nitrosylation results in SNO-XIAP-mediated caspase activation. Considering the functional liaison of procaspase-9 and XIAP, we hypothesized that procaspase-9 nitrosylates XIAP directly. Our data confirmed that cerebral ischemia-reperfusion induced XIAP nitrosylation, procaspase-9 denitrosylation and cleavage. Interestingly, the time courses of the nitrosylation of procaspase-9 and XIAP were negatively correlated, which was more prominent after cerebral ischemia-reperfusion, suggesting a direct interaction. The nitrosylation of XIAP, as well as the denitrosylation and cleavage of procaspase-9, were inhibited by DNCB, TrxR1 AS-ODNs, or TAT-AVPY treatment. Meanwhile, DNCB, TrxR1 AS-ODNs, or TAT-AVPY also inhibited the decrease in hippocampal CA1 neurons induced by ischemia-reperfusion in rats. The denitrosylation and cleavage of procaspase-9 induced by OGD/reoxygenation in SH-SY5Y cells were inhibited when cells were co-transfected with wild-type procaspase-9 and XIAP mutant (C449G). These data suggest that cerebral ischemia-reperfusion induces a transnitrosylation from procaspase-9 to XIAP via the Trx system to consequently cause apoptosis. Additionally, Cys325 is a critical S-nitrosylation site of procaspase-9. PMID:27052476

  6. Procaspase-9 induces its cleavage by transnitrosylating XIAP via the Thioredoxin system during cerebral ischemia-reperfusion in rats

    PubMed Central

    Zhang, Dengyue; Zhao, Ningjun; Ma, Bin; Wang, Yan; Zhang, Gongliang; Yan, Xianliang; Hu, Shuqun; Xu, Tie

    2016-01-01

    Transnitrosylation is an important mechanism by which nitric oxide (NO) modulates cell signaling pathways. For instance, SNO-caspase-3 can transnitrosylate the X-linked inhibitor of apoptosis (XIAP) to enhance apoptosis. XIAP is a potent antagonist of caspase apoptotic activity. Decrease in XIAP activity via nitrosylation results in SNO-XIAP-mediated caspase activation. Considering the functional liaison of procaspase-9 and XIAP, we hypothesized that procaspase-9 nitrosylates XIAP directly. Our data confirmed that cerebral ischemia-reperfusion induced XIAP nitrosylation, procaspase-9 denitrosylation and cleavage. Interestingly, the time courses of the nitrosylation of procaspase-9 and XIAP were negatively correlated, which was more prominent after cerebral ischemia-reperfusion, suggesting a direct interaction. The nitrosylation of XIAP, as well as the denitrosylation and cleavage of procaspase-9, were inhibited by DNCB, TrxR1 AS-ODNs, or TAT-AVPY treatment. Meanwhile, DNCB, TrxR1 AS-ODNs, or TAT-AVPY also inhibited the decrease in hippocampal CA1 neurons induced by ischemia-reperfusion in rats. The denitrosylation and cleavage of procaspase-9 induced by OGD/reoxygenation in SH-SY5Y cells were inhibited when cells were co-transfected with wild-type procaspase-9 and XIAP mutant (C449G). These data suggest that cerebral ischemia-reperfusion induces a transnitrosylation from procaspase-9 to XIAP via the Trx system to consequently cause apoptosis. Additionally, Cys325 is a critical S-nitrosylation site of procaspase-9. PMID:27052476

  7. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia

    PubMed Central

    Nakanishi, Tsukasa; Morita, Kentaro; Tsukada, Junichi; Kanazawa, Tamotsu

    2016-01-01

    We previously reported that the inflammasome inhibitor cucurbitacin D (CuD) induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL) inhibitor on autophagy in peripheral blood lymphocytes (PBL) isolated from adult T-cell leukemia (ATL) patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA). The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose) polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients. PMID:27190722

  8. Endoplasmic Reticulum Stress Activates the Inflammasome via NLRP3- and Caspase-2-Driven Mitochondrial Damage.

    PubMed

    Bronner, Denise N; Abuaita, Basel H; Chen, Xiaoyun; Fitzgerald, Katherine A; Nuñez, Gabriel; He, Yongqun; Yin, Xiao-Ming; O'Riordan, Mary X D

    2015-09-15

    Endoplasmic reticulum (ER) stress is observed in many human diseases, often associated with inflammation. ER stress can trigger inflammation through nucleotide-binding domain and leucine-rich repeat containing (NLRP3) inflammasome, which might stimulate inflammasome formation by association with damaged mitochondria. How ER stress triggers mitochondrial dysfunction and inflammasome activation is ill defined. Here we have used an infection model to show that the IRE1α ER stress sensor regulates regulated mitochondrial dysfunction through an NLRP3-mediated feed-forward loop, independently of ASC. IRE1α activation increased mitochondrial reactive oxygen species, promoting NLRP3 association with mitochondria. NLRP3 was required for ER stress-induced cleavage of caspase-2 and the pro-apoptotic factor, Bid, leading to subsequent release of mitochondrial contents. Caspase-2 and Bid were necessary for activation of the canonical inflammasome by infection-associated or general ER stress. These data identify an NLRP3-caspase-2-dependent mechanism that relays ER stress to the mitochondria to promote inflammation, integrating cellular stress and innate immunity. PMID:26341399

  9. Krebs Cycle Moonlights in Caspase Regulation.

    PubMed

    Minis, Adi; Steller, Hermann

    2016-04-01

    In this issue of Developmental Cell, Aram et al. (2016) identify a mechanism that uses a Krebs cycle protein to control local activation of a ubiquitin ligase complex at the mitochondrial outer membrane for temporally and spatially restricted caspase activation during Drosophila sperm differentiation. PMID:27046823

  10. Caspase-3, Shears for Synapse Pruning

    PubMed Central

    Shen, Chengyong; Xiong, Wen C.; Mei, Lin

    2014-01-01

    Motor neurons regulate neuromuscular junction formation by using agrin to stimulate acetylcholine receptor clustering and using acetylcholine to disperse unnecessary receptor clusters on muscle fibers. Wang et al. now report in this issue of Developmental Cella critical role for caspase-3 in intracellular mechanisms of acetylcholine-induced dispersal. PMID:24697895

  11. Specificity of hammerhead ribozyme cleavage.

    PubMed Central

    Hertel, K J; Herschlag, D; Uhlenbeck, O C

    1996-01-01

    To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879

  12. Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease

    PubMed Central

    2011-01-01

    Background Huntington Disease (HD) is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2) activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/-) to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. Results YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI) techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. Conclusions The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD. PMID:21854568

  13. Sam68 is cleaved by caspases under apoptotic cell death induced by ionizing radiation.

    PubMed

    Cho, Seong-Jun; Choi, Moo Hyun; Nam, Seon Young; Kim, Ji Young; Kim, Cha Soon; Pyo, Suhkneung; Yang, Kwang Hee

    2015-03-01

    The RNA-binding protein Sam68, a mitotic substrate of tyrosine kinases, has been reported to participate in the cell cycle, apoptosis, and signaling. In particular, overexpression of Sam68 protein is known to suppress cell growth and cell cycle progression in NIH3T3 cells. Although Sam68 is involved in many cellular activities, the function of Sam68, especially in response to apoptotic stimulation, is not well understood. In this study, we found that Sam68 protein is cleaved in immune cells undergoing apoptosis induced by γ-radiation. Moreover, we found that Sam68 cleavage was induced by apoptotic stimuli containing γ-radiation in a caspase-dependent manner. In particular, we showed that activated casepase-3, 7, 8 and 9 can directly cleave Sam68 protein through in vitro protease cleavage assay. Finally, we found that the knockdown of Sam68 attenuated γ-radiation-induced cell death and growth suppression. Conclusively, the cleavage of Sam68 is a new indicator for the cell damaging effects of ionizing radiation. PMID:25666188

  14. Rabies virus-induced apoptosis involves caspase-dependent and caspase-independent pathways.

    PubMed

    Sarmento, Luciana; Tseggai, Tesfai; Dhingra, Vikas; Fu, Zhen F

    2006-11-01

    Previously, it has been shown that the laboratory attenuated rabies virus CVS-B2C, but not the wild-type virus SHBRV, induces apoptosis in mice and the induction of apoptosis is mediated by viral glycoprotein. Induction of apoptosis by CVS-B2C limits the spread of the virus in the CNS. In the present study, we characterized the pathways by which CVS-B2C induces apoptosis. BSR cells were infected with CVS-B2C or SHBRV and harvested at different time points for detection of apoptosis by immunofluorescence and flow cytometry. Apoptosis was detected only in cells infected with CVS-B2C, but not SHBRV. Caspase activity and expression of several apoptotic proteins were analyzed by fluorometric assay and Western blotting. Activation of caspase-8 and -3, but not of caspase-9, was observed in CVS-B2C-infected cells. In addition, the level of expression of Apaf-1 did not change. Furthermore, PARP was cleaved confirming activation of downstream caspases. All these data suggest that CVS-B2C infection activates the extrinsic, but not the intrinsic, apoptotic pathway. In addition, AIF, a caspase-independent apoptotic protein was up-regulated and translocated from the cytoplasm to the nucleus post-infection, suggesting that apoptosis induced by CVS-B2C also involves the activation of a caspase-independent pathway. PMID:16814422

  15. Mutation detection by chemical cleavage.

    PubMed

    Cotton, R G

    1999-02-01

    Detection and amplification of mutations in genes in a cheap, 100% effective manner is a major objective in modern molecular genetics. This ideal is some way away and many methods are used each of which have their own particular advantages and disadvantages. Sequencing is often thought of as the 'gold standard' for mutation detection. This perception is distorted due to the fact that this is the ONLY method of mutation identification but this does not mean it is the best for mutation detection. The fact that many scanning methods detect 5-10% of mutant molecules in a wild type environment immediately indicates these methods are advantageous over sequencing. One such method, the Chemical Cleavage method, is able to cut the costs of detecting a mutation on order of magnitude and guarantees mutation detection as evidenced by track record and the fact that each mutation has two chances of being detected. PMID:10084109

  16. Proliferative versus Apoptotic Functions of Caspase-8 Hetero or Homo: The Caspase-8 Dimer Controls Cell Fate

    PubMed Central

    van Raam, Bram J.; Salvesen, Guy S.

    2014-01-01

    Caspase-8, the initiator of extrinsically-triggered apoptosis, also has important functions in cellular activation and differentiation downstream of a variety of cell surface receptors. It has become increasingly clear that the heterodimer of caspase-8 with the long isoform of cellular FLIP (FLIPL) fulfills these pro-survival functions of caspase-8. FLIPL, a catalytically defective caspase-8 paralog, can interact with caspase-8 to activate its catalytic function. The caspase-8/FLIPL heterodimer has a restricted substrate repertoire and does not induce apoptosis. In essence, caspase-8 heterodimerized with FLIPL prevents the receptor interacting kinases RIPK1 and -3 from executing the form of cell death known as necroptosis. This review discusses the latest insights in caspase-8 homo- vs. heterodimerization and the implication this has for cellular death or survival. PMID:21704196

  17. Highly sensitive detection of caspase-3 activities via a nonconjugated gold nanoparticle-quantum dot pair mediated by an inner-filter effect.

    PubMed

    Li, Jingwen; Li, Xinming; Shi, Xiujuan; He, Xuewen; Wei, Wei; Ma, Nan; Chen, Hong

    2013-10-01

    We describe here a simple fluorometric assay for the highly sensitive detection of caspase-3 activities on the basis of the inner-filter effect of gold nanoparticles (AuNPs) on CdTe quantum dots (QDs). The method takes advantage of the high molar absorptivity of the plasmon band of gold nanoparticles as well as the large absorption band shift from 520 to 680 nm upon nanoparticle aggregation. When labeled with a peptide possessing the caspase-3 cleavage sequence (DEVD), the monodispersed Au-Ps (peptide-modified AuNPs) exhibited a tendency to aggregate when exposed to caspase-3, which induced the absorption band transition from 520 to 680 nm and turned on the fluorescence of the CdTe QDs for caspase-3 sensing. Under optimum conditions, a high sensitivity towards caspase-3 was achieved with a detection limit as low as 18 pM, which was much lower than the corresponding assays based on absorbance or other approaches. Overall, we demonstrated a facile and sensitive approach for caspase-3 detection, and we expected that this method could be potentially generalized to design more fluorescent assays for sensing other bioactive entities. PMID:24015837

  18. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells

    PubMed Central

    Chen, Ying-Hui; Wang, Jo-Yu; Pan, Bo-Syong; Mu, Yi-Fen; Lai, Meng-Shao; So, Edmund Cheung; Wong, Thian-Sze; Huang, Bu-Miin

    2013-01-01

    Purpose The present study aims to investigate whether the combination treatment of cordycepin (an extracted pure compound from Cordyceps sinensis) and cisplatin (a platinum-based chemotherapy drug) has better apoptotic effect in head and neck squamous cell carcinoma (HNSCC). Methods The apoptotic influences of cordycepin and/or cisplatin treatments to human OC3, OEC-M1, and FaDu HNSCC cells were investigated by morphological observations, viability assay, flow cytometry assay, and Western blotting methods. Results Data showed that the cell death phenomenon increased as the dosage of cordycepin or cisplatin increased, and it appeared more in cordycepin plus cisplatin cotreatment among three cell lines. Cell survival rates significantly decreased as the dosage of cordycepin or cisplatin increased, and the better apoptotic effects were observed in cotreatment. Cell cycle analysis further demonstrated that percentages of subG1 cells in cordycepin or cisplatin treatments significantly increased, suggesting that cells underwent apoptosis, and cordycepin plus cisplatin induced many more subG1 cells. Furthermore, cordycepin or cisplatin induced caspase-8, caspase-9, caspase-3, and poly adenosine diphosphate-ribose polymerase protein cleavages, and stimulated c-Jun NH2-terminal kinase, extracellular signal-regulated kinase, and p38 protein phosphorylations. Moreover, cordycepin plus cisplatin cotreatment significantly activated those proteins with much better effects among three cell lines. Conclusion Cordycepin plus cisplatin have better apoptotic effect by activating caspase activation with possible MAPK pathway involvement in HNSCC cells. PMID:23926438

  19. Synergistic Myeloma Cell Death via Novel Intracellular Activation of Caspase-10-Dependent Apoptosis by Carfilzomib and Selinexor.

    PubMed

    Rosebeck, Shaun; Alonge, Mattina M; Kandarpa, Malathi; Mayampurath, Anoop; Volchenboum, Samuel L; Jasielec, Jagoda; Dytfeld, Dominik; Maxwell, Sean P; Kraftson, Stephanie J; McCauley, Dilara; Shacham, Sharon; Kauffman, Michael; Jakubowiak, Andrzej J

    2016-01-01

    Exportin1 (XPO1; also known as chromosome maintenance region 1, or CRM1) controls nucleo-cytoplasmic transport of most tumor suppressors and is overexpressed in many cancers, including multiple myeloma, functionally impairing tumor suppressive function via target mislocalization. Selective inhibitor of nuclear export (SINE) compounds block XPO1-mediated nuclear escape by disrupting cargo protein binding, leading to retention of tumor suppressors, induction of cancer cell death, and sensitization to other drugs. Combined treatment with the clinical stage SINE compound selinexor and the irreversible proteasome inhibitor (PI) carfilzomib induced synergistic cell death of myeloma cell lines and primary plasma cells derived from relapsing/refractory myeloma patients and completely impaired the growth of myeloma cell line-derived tumors in mice. Investigating the details of SINE/PI-induced cell death revealed (i) reduced Bcl-2 expression and cleavage and inactivation of Akt, two prosurvival regulators of apoptosis and autophagy; (ii) intracellular membrane-associated aggregation of active caspases, which depended on caspase-10 protease activity; and (iii) novel association of caspase-10 and autophagy-associated proteins p62 and LC3 II, which may prime activation of the caspase cascade. Overall, our findings provide novel mechanistic rationale behind the potent cell death induced by combining selinexor with carfilzomib and support their use in the treatment of relapsed/refractory myeloma and potentially other cancers. PMID:26637366

  20. Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells.

    PubMed

    Park, Joon Hee; Jin, Cheng-Yun; Lee, Bok Kyu; Kim, Gi-Young; Choi, Yung Hyun; Jeong, Yong Kee

    2008-12-01

    Naringenin (NGEN), one of the most abundant flavonoids in citrus fruits, has been shown to inhibit in vitro growth of in human cancer cells, although the mechanism of action is poorly understood. Herein, we investigated NEGN's pro-apoptotic effect on human leukemia THP-1 cells. NGEN treatment inhibited THP-1 cells' growth a concentration-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies and the accumulation of cells in the sub-G1 phase. NGEN-induced apoptosis was accompanied by increased hyperpolarization of the mitochondrial membrane potential, downregulation of Bcl-2, upregulation of Bax, activation of caspases and subsequent poly(ADP-ribose)polymerase (PARP) cleavages. z-DEVD-fmk, a caspase-3 inhibitor, significantly inhibited both the cytotoxic effect and apoptotic characteristics induced by NGEN treatment demonstrating caspase-3's important role in the observed cytotoxic effect. The induction of apoptosis was also associated with the inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt, and PI3K inhibitor LY29004 significantly increases NGEN-induced cell death. These findings provide evidence that NEGN's pro-apoptotic effect is mediated by the activation of caspases and mitochondria dysfunctions that correlate with the inactivation of the PI3K/Akt pathway in THP-1 cells. Therefore, NGEN has a strong potential as a therapeutic agent for preventing cancers such as leukemia. PMID:18930780

  1. Inhibition of Histone Deacetylases Permits Lipopolysaccharide-Mediated Secretion of Bioactive IL-1β via a Caspase-1-Independent Mechanism.

    PubMed

    Stammler, Dominik; Eigenbrod, Tatjana; Menz, Sarah; Frick, Julia S; Sweet, Matthew J; Shakespear, Melanie R; Jantsch, Jonathan; Siegert, Isabel; Wölfle, Sabine; Langer, Julian D; Oehme, Ina; Schaefer, Liliana; Fischer, Andre; Knievel, Judith; Heeg, Klaus; Dalpke, Alexander H; Bode, Konrad A

    2015-12-01

    Histone deacetylase (HDAC) inhibitors (HDACi) are clinically approved anticancer drugs that have important immune-modulatory properties. We report the surprising finding that HDACi promote LPS-induced IL-1β processing and secretion in human and murine dendritic cells and murine macrophages. HDACi/LPS-induced IL-1β maturation and secretion kinetics differed completely from those observed upon inflammasome activation. Moreover, this pathway of IL-1β secretion was dependent on caspase-8 but was independent of the inflammasome components NACHT, LRR, and PYD domains-containing protein 3, apoptosis-associated speck-like protein containing a carboxyl-terminal caspase-recruitment domain, and caspase-1. Genetic studies excluded HDAC6 and HDAC10 as relevant HDAC targets in this pathway, whereas pharmacological inhibitor studies implicated the involvement of HDAC11. Treatment of mice with HDACi in a dextran sodium sulfate-induced colitis model resulted in a strong increase in intestinal IL-1β, confirming that this pathway is also operative in vivo. Thus, in addition to the conventional inflammasome-dependent IL-1β cleavage pathway, dendritic cells and macrophages are capable of generating, secreting, and processing bioactive IL-1β by a novel, caspase-8-dependent mechanism. Given the widespread interest in the therapeutic targeting of IL-1β, as well as the use of HDACi for anti-inflammatory applications, these findings have substantial clinical implications. PMID:26519528

  2. Caspase-1 induced pyroptotic cell death

    PubMed Central

    Miao, Edward A.; Rajan, Jayant V.; Aderem, Alan

    2013-01-01

    Summary Programmed cell death is a necessary part of development and tissue homeostasis enabling the removal of unwanted cells. In the setting of infectious disease, cells that have been commandeered by microbial pathogens become detrimental to the host. When macrophages and dendritic cells are compromised in this way, they can be lysed by pyroptosis, a cell death mechanism that is distinct from apoptosis and oncosis/necrosis. Pyroptosis is triggered by Caspase-1 after its activation by various inflammasomes, and results in lysis of the affected cell. Both pyroptosis and apoptosis are programmed cell death mechanisms, but are dependent on different caspases, unlike oncosis. Similar to oncosis, and unlike apoptosis, pyroptosis results in cellular lysis and release of the cytosolic contents to the extracellular space. This event is predicted to be inherently inflammatory, and additionally coincides with IL-1β and IL-18 secretion. We discuss the role of distinct inflammasomes, including NLRC4, NLRP3 and AIM2, as well as the role of the ASC focus in Caspase-1 signaling. We further review the importance of pyroptosis in vivo as a potent mechanism to clear intracellular pathogens. PMID:21884178

  3. Microstructure and cleavage in lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Morris, John W., Jr.; Kinney, Chris; Pytlewski, Ken; Adachi, Y.

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  4. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death.

    PubMed

    Cui, Jing; Chen, Bing; Wang, Hongjuan; Han, Yue; Chen, Xi; Zhang, Wei

    2016-01-01

    Endoplasmic reticulum (ER) stress activates unfolded protein response (UPR) and autophagy. However, prolonged, severe stresses activate programmed cell death (PCD) in both animal and plant cells. Compared to the well-studied UPR pathway, the molecular mechanisms of ER-stress-induced PCD are less understood. Here, we report the identification of Gas2, the glucosidase II β subunit in the ER, as a potential switch between PCD and autophagy in rice. MS analysis identified Gas2, GRP94, and HSP40 protein in a purified caspase-3-like activity from heat stressed rice cell suspensions. The three corresponding genes were down-regulated under DTT-induced ER stress. Gas2 and GRP94 were localized to the ER, while HSP40 localized to the cytoplasm. Compared to wild-type, a Gas2 RNAi cell line was much sensitive to DTT treatment and had high levels of autophagy. Both caspase-3 and heat-stressed cell suspension lysate could cleave Gas2, producing a 14 kDa N-terminal fragment. Conditional expression of corresponding C-terminal fragment resulted in enhanced caspase-3-like activity in the protoplasts under heat stress. We proposed that mild ER stress causes down-regulation of Gas2 and induces autophagy, while severe stress results in Gas2 cleavage by caspase-3-like activity and the cleavage product amplifies this activity, possibly participating in the initiation of PCD. PMID:27538481

  5. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death

    PubMed Central

    Cui, Jing; Chen, Bing; Wang, Hongjuan; Han, Yue; Chen, Xi; Zhang, Wei

    2016-01-01

    Endoplasmic reticulum (ER) stress activates unfolded protein response (UPR) and autophagy. However, prolonged, severe stresses activate programmed cell death (PCD) in both animal and plant cells. Compared to the well-studied UPR pathway, the molecular mechanisms of ER-stress-induced PCD are less understood. Here, we report the identification of Gas2, the glucosidase II β subunit in the ER, as a potential switch between PCD and autophagy in rice. MS analysis identified Gas2, GRP94, and HSP40 protein in a purified caspase-3-like activity from heat stressed rice cell suspensions. The three corresponding genes were down-regulated under DTT-induced ER stress. Gas2 and GRP94 were localized to the ER, while HSP40 localized to the cytoplasm. Compared to wild-type, a Gas2 RNAi cell line was much sensitive to DTT treatment and had high levels of autophagy. Both caspase-3 and heat-stressed cell suspension lysate could cleave Gas2, producing a 14 kDa N-terminal fragment. Conditional expression of corresponding C-terminal fragment resulted in enhanced caspase-3-like activity in the protoplasts under heat stress. We proposed that mild ER stress causes down-regulation of Gas2 and induces autophagy, while severe stress results in Gas2 cleavage by caspase-3-like activity and the cleavage product amplifies this activity, possibly participating in the initiation of PCD. PMID:27538481

  6. Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells.

    PubMed Central

    Pörn-Ares, M Isabella; Saido, Takaomi C; Andersson, Tommy; Ares, Mikko P S

    2003-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to induce apoptosis in endothelial cells, and this is believed to contribute to the progression of atherosclerosis. In the present study we made the novel observation that oxLDL-induced death of HMEC-1 cells is accompanied by activation of calpain. The mu-calpain inhibitor PD 151746 decreased oxLDL-induced cytotoxicity, whereas the general caspase inhibitor BAF (t-butoxycarbonyl-Asp-methoxyfluoromethylketone) had no effect. Also, oxLDL provoked calpain-dependent proteolysis of cytoskeletal alpha-fodrin in the HMEC-1 cells. Our observation of an autoproteolytic cleavage of the 80 kDa subunit of mu-calpain provided further evidence for an oxLDL-induced stimulation of calpain activity. The Bcl-2 protein Bid was also cleaved during oxLDL-elicited cell death, and this was prevented by calpain inhibitors, but not by inhibitors of cathepsin B and caspases. Treating the HMEC-1 cells with oxLDL did not result in detectable activation of procaspase 3 or cleavage of PARP [poly(ADP-ribose) polymerase], but it did cause polyubiquitination of caspase 3, indicating inactivation and possible degradation of this protease. Despite the lack of caspase 3 activation, oxLDL treatment led to the formation of nucleosomal DNA fragments characteristic of apoptosis. These novel results show that oxLDL initiates a calpain-mediated death-signalling pathway in endothelial cells. PMID:12775216

  7. Application of a FRET probe for Caspase-3 activation in living HeLa cells by sequentially treated cisplatin and TRAIL

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zhang, Zhihong; Yi, Qiushi; Zeng, Shaoqun; Luo, Qingming

    2006-02-01

    Caspase-3 is a kind of cysteine proteases that plays an important role in cell apoptosis. We have constructed a FRET (fluorescence resonance energy transfer) probe fused with ECFP (enhanced cyan fluorescence protein) and DsRed (Discosoma red fluorescent protein) with a linker containing a caspase-3 cleavage sequence (CCS, DEVD).It could be observed much change in fluorescence emission ratio when the probe was cleaved by caspase-3. Therefore, application of this probe we can real-time detected the activation of caspase-3. It was already confirmed that caspase-3 was activated in HeLa cells treated by cisplatin or TRAIL (Tumor necrosis factor (TNF)-related apoptosis-inducing ligand). In the present study, we detected the activation of caspase-3 during cisplatin or TRAIL induced apoptosis in living HeLa cells, and also observed the activation of caspase-3 caused by both cisplatin and TRAIL combined treatment. Our results demonstrated a synergistic effect between cisplatin and TRAIL. Cisplatin is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Therefore, TRAIL is a very valuably prospective utility as its potential tumor-specific cancer therapeutic. Most of anticancer drugs can induce apoptosis which mediated by the activation of caspase pathway. We can select the best synergistic effect group by our FRET probe. This finding would be useful in the design of treatment modalities for patients.

  8. p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3.

    PubMed

    Pham, Dan Duc; Do, Hai Thi; Bruelle, Céline; Kukkonen, Jyrki P; Eriksson, Ove; Mogollón, Isabel; Korhonen, Laura T; Arumäe, Urmas; Lindholm, Dan

    2016-05-13

    Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF. PMID:26984409

  9. Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway

    SciTech Connect

    Ramanathan, Mathura P.; Chambers, Jerome A.; Pankhong, Panyupa; Chattergoon, Michael; Attatippaholkun, Watcharee; Dang, Kesen; Shah, Neelima; Weiner, David B. . E-mail: dbweiner@mail.med.upenn.edu

    2006-02-05

    The West Nile Virus (WNV) non-structural proteins 2B and 3 (NS2B-NS3) constitute the proteolytic complex that mediates the cleavage and processing of the viral polyprotein. NS3 recruits NS2B and NS5 proteins to direct protease and replication activities. In an effort to investigate the biology of the viral protease, we cloned cDNA encoding the NS2B-NS3 proteolytic complex from brain tissue of a WNV-infected dead crow, collected from the Lower Merion area (Merion strain). Expression of the NS2B-NS3 gene cassette induced apoptosis within 48 h of transfection. Electron microscopic analysis of NS2B-NS3-transfected cells revealed ultra-structural changes that are typical of apoptotic cells including membrane blebbing, nuclear disintegration and cytoplasmic vacuolations. The role of NS3 or NS2B in contributing to host cell apoptosis was examined. NS3 alone triggers the apoptotic pathways involving caspases-8 and -3. Experimental results from the use of caspase-specific inhibitors and caspase-8 siRNA demonstrated that the activation of caspase-8 was essential to initiate apoptotic signaling in NS3-expressing cells. Downstream of caspase-3 activation, we observed nuclear membrane ruptures and cleavage of the DNA-repair enzyme, PARP in NS3-expressing cells. Nuclear herniations due to NS3 expression were absent in the cells treated with a caspase-3 inhibitor. Expression of protease and helicase domains themselves was sufficient to trigger apoptosis generating insight into the apoptotic pathways triggered by NS3 from WNV.

  10. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2.

    PubMed

    Villalpando Rodriguez, Gloria E; Torriglia, Alicia

    2013-10-01

    In light induced retinal degeneration (LIRD) photoreceptor cell death is mediated by caspase independent mechanisms. The activation of LEI/L-DNase II pathway in this model, is due to cathepsin D release from lysosomes, although the underlying mechanism remains poorly understood. In this paper we studied the involvement of calpains in lysosomal permeabilization. We investigated, for the first time, the calpain targets at lysosomal membrane level. We found that calpain 1 is responsible for lysosomal permeabilization by cleavage of the lysosomal associated membrane protein 2 (LAMP 2). Moreover, LAMP 2 degradation and lysosomal permeabilization were rescued by calpain inhibition and the use of MEF(-/-)lamp 2 cells indicates that the cleavage of LAMP 2A is essential for this permeabilization. Finally, we found that LAMP 2 is cleaved in LIRD, suggesting that the mechanism of calpain induced lysosomal permeabilization is not exclusive of a single cell death model. Overall, these data shed new light on understanding the mechanisms of lysosomal and caspase-independent cell death and point to the original targets for development of the new therapeutic protocols. PMID:23747342

  11. Experiments on schistosity and slaty cleavage

    USGS Publications Warehouse

    Becker, George Ferdinand

    1904-01-01

    Schistosity as a structure is important, and it is a part of the business of geologists to explain its origin. Slaty cleavage has further and greater importance as a possible tectonic feature. Scarcely a great mountain range exists, or has existed, along the course of which belts of slaty rock are not found, the dip of the cleavage usually approaching verticality. Are these slate belts equivalent to minutely distributed step faults of great total throw, or do they indicate compression perpendicular to the cleavage without attendant relative dislocation? Evidently the answer to this question is of first importance in the interpretation of orogenic phenomena.

  12. kuzbanian-mediated cleavage of Drosophila Notch

    PubMed Central

    Lieber, Toby; Kidd, Simon; Young, Michael W.

    2002-01-01

    Loss of Kuzbanian, a member of the ADAM family of metalloproteases, produces neurogenic phenotypes in Drosophila. It has been suggested that this results from a requirement for kuzbanian-mediated cleavage of the Notch ligand Delta. Using transgenic Drosophila expressing transmembrane Notch proteins, we show that kuzbanian, independent of any role in Delta processing, is required for the cleavage of Notch. We show that Kuzbanian can physically associate with Notch and that removal of kuzbanian activity by RNA-mediated interference in Drosophila tissue culture cells eliminates processing of ligand-independent transmembrane Notch molecules. Our data suggest that in Drosophila, kuzbanian can mediate S2 cleavage of Notch. PMID:11799064

  13. Does Caspase-6 Have a Role in Perinatal Brain Injury?

    PubMed Central

    Baburamani, Ana A.; Miyakuni, Yasuka; Vontell, Regina; Supramaniam, Veena G.; Svedin, Pernilla; Rutherford, Mary; Gressens, Pierre; Mallard, Carina; Takeda, Satoru; Thornton, Claire; Hagberg, Henrik

    2015-01-01

    Apoptotic mechanisms are centre stage for the development of injury in the immature brain, and caspases have been shown to play a pivotal role during brain development and in response to injury. The inhibition of caspases using broad-spectrum agents such as Q-VD-OPh is neuroprotective in the immature brain. Caspase-6, an effector caspase, has been widely researched in neurodevelopmental disorders and found to be important following adult stroke, but its function in the neonatal brain has yet to be detailed. Furthermore, caspases may be important in microglial activation; microglia are required for optimal brain development and following injury, and their close involvement during neuronal cell death suggests that apoptotic cues such as caspase activation may be important in microglial activation. Therefore, in this study we aimed to investigate the possible apoptotic and non-apoptotic functions caspase-6 may have in the immature brain in response to hypoxia-ischaemia. We examined whether caspases are involved in microglial activation. We assessed cleaved caspase-6 expression following hypoxia-ischaemia and conducted primary microglial cultures to assess whether the broad-spectrum inhibitor Q-VD-OPh or caspase-6 gene deletion affected lipopolysaccharide (LPS)-mediated microglial activation and phenotype. We observed cleaved caspase-6 expression to be low but present in the cell body and cell processes in both a human case of white matter injury and 72 h following hypoxia-ischaemia in the rat. Gene deletion of caspase-6 did not affect the outcome of brain injury following mild (50 min) or severe (60 min) hypoxia-ischaemia. Interestingly, we did note that cleaved caspase-6 was co-localised with microglia that were not of apoptotic morphology. We observed that mRNA of a number of caspases was modulated by low-dose LPS stimulation of primary microglia. Q-VD-OPh treatment and caspase-6 gene deletion did not affect microglial activation but modified slightly the M2b

  14. Measuring initiator caspase activation by bimolecular fluorescence complementation.

    PubMed

    Parsons, Melissa J; Bouchier-Hayes, Lisa

    2015-01-01

    Initiator caspases, including caspase-2, -8, and -9, are activated by the proximity-driven dimerization that occurs after their recruitment to activation platforms. Here we describe the use of caspase bimolecular fluorescence complementation (caspase BiFC) to measure this induced proximity. BiFC assays rely on the use of a split fluorescent protein to identify protein-protein interactions in cells. When fused to interacting proteins, the fragments of the split fluorescent protein (which do not fluoresce on their own) can associate and fluoresce. In this protocol, we use the fluorescent protein Venus, a brighter and more photostable variant of yellow fluorescent protein (YFP), to detect the induced proximity of caspase-2. Plasmids encoding two fusion products (caspase-2 fused to either the amino- or carboxy-terminal halves of Venus) are transfected into cells. The cells are then treated with an activating (death) stimulus. The induced proximity (and subsequent activation) of caspase-2 in the cells is visualized as Venus fluorescence. The proportion of Venus-positive cells at a single time point can be determined using fluorescence microscopy. Alternatively, the increase in fluorescence intensity over time can be evaluated by time-lapse confocal microscopy. The caspase BiFC strategy described here should also work for other initiator caspases, such as caspase-8 or -9, as long as the correct controls are used. PMID:25561623

  15. PARP-1 regulates the expression of caspase-11

    SciTech Connect

    Yoo, Lang; Hong, Seokheon; Shin, Ki Soon; Kang, Shin Jung

    2011-05-13

    Highlights: {yields} Knockdown of PARP-1 suppresses the LPS-induced expression of caspase-11. {yields} Knockdown of PARP-1 suppresses the caspase-11 promoter activity following LPS stimulation. {yields} PARP-1 is recruited to the caspase-11 promoter region containing NF-{kappa}B-binding sites following LPS stimulation. {yields} PARP-1 inhibitors cannot suppress the caspase-11 induction. {yields} PARP-1 does not suppress IFN-{gamma}-induced expression of caspase-11. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP-1) is a multifunctional enzyme that regulates DNA repair, cell death and transcription of inflammatory proteins. In the present study, we present evidence that PARP-1 regulates the expression of caspase-11 following lipopolysaccharide (LPS) stimulation. Knockdown of PARP-1 suppressed the LPS-induced expression of caspase-11 at both mRNA and protein levels as well as caspase-11 promoter activity. Importantly, PARP-1 was recruited to the caspase-11 promoter region containing predicted nuclear factor (NF)-{kappa}B-binding sites when examined by chromatin immunoprecipitation assay. However, knockdown of PARP-1 did not suppress the expression of caspase-11 induced by interferon-{gamma} that activates signal transducer and activator of transcription 1 but not NF-{kappa}B. PARP-1 enzymatic activity was not required for the caspase-11 upregulation since pharmacological inhibitors of PARP-1 did not suppress the induction of caspase-11. Our results suggest that PARP-1, as a transcriptional cofactor for NF-{kappa}B, regulates the induction of caspase-11 at a transcriptional level.

  16. Cytoplasmic Inclusions of TDP-43 in Neurodegenerative Diseases: A Potential Role for Caspases

    PubMed Central

    Rohn, Troy T.

    2009-01-01

    TAR DNA-binding protein-43 (TDP-43) proteinopathies are classified based upon the extent of modified TDP-43 inclusions and include a growing number of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin immunoreactive, tau negative inclusions (FTLD-U) and FTLD with motor neuron disease (FTLD-MND). In addition, TDP-43 inclusions have also been identified in a number of other neurodegenerative disorders including Alzheimer's disease, corticobasal degeneration, Lewy body related diseases and Pick's disease. Current understanding suggests that in these diseases, TDP-43 is relocated from the nucleus to the cytoplasm and sequestered into inclusions that contain modified TDP-43. Major modifications of TDP-43 have been identified as being hyperphosphorylation and proteolytic cleavage by caspases. In this review a summary of the major findings regarding the proteolytic modification of TDP-43 will be discussed as well as potential toxic-gain mechanisms these fragments may cause including cytoskeletal disruptions. PMID:19554515

  17. Granzyme B Inhibits Vaccinia Virus Production through Proteolytic Cleavage of Eukaryotic Initiation Factor 4 Gamma 3

    PubMed Central

    Marcet-Palacios, Marcelo; Duggan, Brenda Lee; Shostak, Irene; Barry, Michele; Geskes, Tracy; Wilkins, John A.; Yanagiya, Akiko; Sonenberg, Nahum; Bleackley, R. Chris

    2011-01-01

    Cytotoxic T lymphocytes (CTLs) are the major killer of virus-infected cells. Granzyme B (GrB) from CTLs induces apoptosis in target cells by cleavage and activation of substrates like caspase-3 and Bid. However, while undergoing apoptosis, cells are still capable of producing infectious viruses unless a mechanism exists to specifically inhibit viral production. Using proteomic approaches, we identified a novel GrB target that plays a major role in protein synthesis: eukaryotic initiation factor 4 gamma 3 (eIF4G3). We hypothesized a novel role for GrB in translation of viral proteins by targeting eIF4G3, and showed that GrB cleaves eIF4G3 specifically at the IESD1408S sequence. Both GrB and human CTL treatment resulted in degradation of eIF4G3 and reduced rates of translation. When Jurkat cells infected with vaccinia virus were treated with GrB, there was a halt in viral protein synthesis and a decrease in production of infectious new virions. The GrB-induced inhibition of viral translation was independent of the activation of caspases, as inhibition of protein synthesis still occurred with addition of the pan-caspase inhibitor zVAD-fmk. This demonstrated for the first time that GrB prevents the production of infectious vaccinia virus by targeting the host translational machinery. PMID:22194691

  18. Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy.

    PubMed

    Means, John C; Venkatesan, Anandakrishnan; Gerdes, Bryan; Fan, Jin-Yuan; Bjes, Edward S; Price, Jeffrey L

    2015-05-01

    While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag) of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc) in the optic lobes during the middle of the day or after light pulses at night. Likewise, reduced Dbt activity lengthens circadian period and causes expression of activated Dronc, and a loss-of-function mutation in Clk also leads to expression of activated Dronc in a light-dependent manner. Genetic epistasis experiments place Dbt downstream of Spag in the pathway, and Spag-dependent reductions of Dbt are shown to require the proteasome. Importantly, activated Dronc expression due to reduced Spag or Dbt activity occurs in cells that do not express the spag RNAi or dominant negative Dbt and requires PDF neuropeptide signaling from the same neurons that support behavioral rhythms. Furthermore, reduction of Dbt or Spag activity leads to Dronc-dependent Drosophila Tau cleavage and enhanced neurodegeneration produced by human Tau in a fly eye model for tauopathy. Aging flies with lowered Dbt or Spag function show markers of cell death as well as behavioral deficits and shortened lifespans, and even old wild type flies exhibit Dbt modification and activated caspase at particular times of day. These results suggest that Dbt suppresses expression of activated Dronc to prevent Tau cleavage, and that the circadian clock defects confer sensitivity to expression of activated Dronc in response to prolonged light. They establish a link between the circadian clock factors, light, cell death pathways and Tau toxicity, potentially via dysregulation of circadian neuronal remodeling in the optic lobes

  19. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes

    PubMed Central

    Aglietti, Robin A.; Estevez, Alberto; Gupta, Aaron; Ramirez, Monica Gonzalez; Liu, Peter S.; Kayagaki, Nobuhiko; Ciferri, Claudio; Dixit, Vishva M.; Dueber, Erin C.

    2016-01-01

    Gasdermin-D (GsdmD) is a critical mediator of innate immune defense because its cleavage by the inflammatory caspases 1, 4, 5, and 11 yields an N-terminal p30 fragment that induces pyroptosis, a death program important for the elimination of intracellular bacteria. Precisely how GsdmD p30 triggers pyroptosis has not been established. Here we show that human GsdmD p30 forms functional pores within membranes. When liberated from the corresponding C-terminal GsdmD p20 fragment in the presence of liposomes, GsdmD p30 localized to the lipid bilayer, whereas p20 remained in the aqueous environment. Within liposomes, p30 existed as higher-order oligomers and formed ring-like structures that were visualized by negative stain electron microscopy. These structures appeared within minutes of GsdmD cleavage and released Ca2+ from preloaded liposomes. Consistent with GsdmD p30 favoring association with membranes, p30 was only detected in the membrane-containing fraction of immortalized macrophages after caspase-11 activation by lipopolysaccharide. We found that the mouse I105N/human I104N mutation, which has been shown to prevent macrophage pyroptosis, attenuated both cell killing by p30 in a 293T transient overexpression system and membrane permeabilization in vitro, suggesting that the mutants are actually hypomorphs, but must be above certain concentration to exhibit activity. Collectively, our data suggest that GsdmD p30 kills cells by forming pores that compromise the integrity of the cell membrane. PMID:27339137

  20. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes.

    PubMed

    Aglietti, Robin A; Estevez, Alberto; Gupta, Aaron; Ramirez, Monica Gonzalez; Liu, Peter S; Kayagaki, Nobuhiko; Ciferri, Claudio; Dixit, Vishva M; Dueber, Erin C

    2016-07-12

    Gasdermin-D (GsdmD) is a critical mediator of innate immune defense because its cleavage by the inflammatory caspases 1, 4, 5, and 11 yields an N-terminal p30 fragment that induces pyroptosis, a death program important for the elimination of intracellular bacteria. Precisely how GsdmD p30 triggers pyroptosis has not been established. Here we show that human GsdmD p30 forms functional pores within membranes. When liberated from the corresponding C-terminal GsdmD p20 fragment in the presence of liposomes, GsdmD p30 localized to the lipid bilayer, whereas p20 remained in the aqueous environment. Within liposomes, p30 existed as higher-order oligomers and formed ring-like structures that were visualized by negative stain electron microscopy. These structures appeared within minutes of GsdmD cleavage and released Ca(2+) from preloaded liposomes. Consistent with GsdmD p30 favoring association with membranes, p30 was only detected in the membrane-containing fraction of immortalized macrophages after caspase-11 activation by lipopolysaccharide. We found that the mouse I105N/human I104N mutation, which has been shown to prevent macrophage pyroptosis, attenuated both cell killing by p30 in a 293T transient overexpression system and membrane permeabilization in vitro, suggesting that the mutants are actually hypomorphs, but must be above certain concentration to exhibit activity. Collectively, our data suggest that GsdmD p30 kills cells by forming pores that compromise the integrity of the cell membrane. PMID:27339137

  1. Continuous monitoring of caspase-3 activation induced by propofol in developing mouse brain.

    PubMed

    Konno, Ayumi; Nishimura, Akiko; Nakamura, Shiro; Mochizuki, Ayako; Yamada, Atsushi; Kamijo, Ryutaro; Inoue, Tomio; Iijima, Takehiko

    2016-06-01

    The neurotoxicity of anesthetics on the developing brain has drawn the attention of anesthesiologists. Several studies have shown that apoptosis is enhanced by exposure to anesthesia during brain development. Although apoptosis is a physiological developmental step occurring before the maturation of neural networks and the integration of brain function, pathological damage also involves apoptosis. Previous studies have shown that prolonged exposure to anesthetics causes apoptosis. Exactly when the apoptotic cascade starts in the brain remains uncertain. If it starts during the early stage of anesthesia, even short-term anesthesia could harm the brain. Therefore, apoptogenesis should be continuously monitored to elucidate when the apoptotic cascade is triggered by anesthesia. Here, we describe the development of a continuous monitoring system to detect caspase-3 activation using an in vivo model. Brain slices from postnatal days 0-4 SCAT3 transgenic mice with a heterozygous genotype (n=20) were used for the monitoring of caspase-3 cleavage. SCAT3 is a fusion protein of ECFP and Venus connected by a caspase-3 cleavable peptide, DEVD. A specimen from the hippocampal CA1 sector was mounted on a confocal laser microscope and was continuously superfused with artificial cerebrospinal fluid, propofol (2,6-diisopropylphenol, 1μM or 10μM), and dimethyl sulfoxide. Images were obtained every hour for five hours. A pixel analysis of the ECFP/Venus ratio images was performed using a histogram showing the number of pixels with each ratio. In the histogram of the ECFP/Venus ratio, an area with a ratio>1 indicated the number of pixels from caspase-3-activated CA1 neurons. We observed a shift in the histogram toward the right over time, indicating caspase-3 activation. This right-ward shift dramatically changed at five hours in the propofol 1μM and 10μM groups and was obviously different from that in the control group. Thus, real-time fluorescence energy transfer (FRET) imaging

  2. Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells.

    PubMed

    Kim, Hong Jae; Park, Cheol; Han, Min-Ho; Hong, Su-Hyun; Kim, Gi-Young; Hoon Hong, Sang; Deuk Kim, Nam; Choi, Yung Hyun

    2016-03-01

    Preclinical Research Baicalein is one of the main bioactive flavonoids found in the roots of Scutellaria baicalensis Georgi. Here, we report that baicalein-induced growth inhibition was associated with the induction of apoptosis in human lung carcinoma A549 cells. Baicalein stimulated the expression of DR5, FasL, and FADD, and activated caspase-8 by reducing the levels of FLIPs (FLICE-inhibitory proteins). The apoptotic cell death was also connected with an activation of caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase; however, a blockage of caspase activation abolished baicalein-induced apoptotic potentials. Additionally, baicalein caused a mitochondrial membrane potential (MMP), the truncation of Bid, and the translocation of pro-apoptotic Bax to the mitochondria, thereby inducing the release of cytochrome c into the cytosol. In turn, baicalein increased the generation of reactive oxygen species (ROS); however, an ROS scavenger, N-acetylcysteine, notably attenuated baicalein-mediated loss of MMP and activation of caspases. Furthermore, baicalein activated the AMP-activated protein kinase (AMPK) signaling pathway. Consequently, baicalein-triggered cell death was attenuated by an AMPK inhibitor, but increased by an AMPK activator, compound C. Overall, the results suggest that the apoptotic activity of baicalein may be associated with caspase-dependent cascade through the activation of both intrinsic and extrinsic signaling pathways connected with ROS generation and AMPK activation. Drug Dev Res 77 : 73-86, 2016.   © 2016 Wiley Periodicals, Inc. PMID:26971531

  3. Momordica charantia Extract Induces Apoptosis in Human Cancer Cells through Caspase- and Mitochondria-Dependent Pathways

    PubMed Central

    Li, Chia-Jung; Tsang, Shih-Fang; Tsai, Chun-Hao; Tsai, Hsin-Yi; Chyuan, Jong-Ho; Hsu, Hsue-Yin

    2012-01-01

    Plants are an invaluable source of potential new anti-cancer drugs. Momordica charantia is one of these plants with both edible and medical value and reported to exhibit anticancer activity. To explore the potential effectiveness of Momordica charantia, methanol extract of Momordica charantia (MCME) was used to evaluate the cytotoxic activity on four human cancer cell lines, Hone-1 nasopharyngeal carcinoma cells, AGS gastric adenocarcinoma cells, HCT-116 colorectal carcinoma cells, and CL1-0 lung adenocarcinoma cells, in this study. MCME showed cytotoxic activity towards all cancer cells tested, with the approximate IC50 ranging from 0.25 to 0.35 mg/mL at 24 h. MCME induced cell death was found to be time-dependent in these cells. Apoptosis was demonstrated by DAPI staining and DNA fragmentation analysis using agarose gel electrophoresis. MCME activated caspase-3 and enhanced the cleavage of downstream DFF45 and PARP, subsequently leading to DNA fragmentation and nuclear condensation. The apoptogenic protein, Bax, was increased, whereas Bcl-2 was decreased after treating for 24 h in all cancer cells, indicating the involvement of mitochondrial pathway in MCME-induced cell death. These findings indicate that MCME has cytotoxic effects on human cancer cells and exhibits promising anti-cancer activity by triggering apoptosis through the regulation of caspases and mitochondria. PMID:23091557

  4. Uncovering an Important Role for YopJ in the Inhibition of Caspase-1 in Activated Macrophages and Promoting Yersinia pseudotuberculosis Virulence.

    PubMed

    Schoberle, Taylor J; Chung, Lawton K; McPhee, Joseph B; Bogin, Ben; Bliska, James B

    2016-04-01

    PathogenicYersiniaspecies utilize a type III secretion system to translocate Yop effectors into infected host cells. Yop effectors inhibit innate immune responses in infected macrophages to promoteYersiniapathogenesis. In turn,Yersinia-infected macrophages respond to translocation of Yops by activating caspase-1, but different mechanisms of caspase-1 activation occur, depending on the bacterial genotype and the state of phagocyte activation. In macrophages activated with lipopolysaccharide (LPS) prior toYersinia pseudotuberculosisinfection, caspase-1 is activated by a rapid inflammasome-dependent mechanism that is inhibited by translocated YopM. The possibility that other effectors cooperate with YopM to inhibit caspase-1 activation in LPS-activated macrophages has not been investigated. Toward this aim, epistasis analysis was carried out in which the phenotype of aY. pseudotuberculosisyopMmutant was compared to that of ayopJ yopM,yopE yopM,yopH yopM,yopT yopM, orypkA yopMmutant. Activation of caspase-1 was measured by cleavage of the enzyme, release of interleukin-1β (IL-1β), and pyroptosis in LPS-activated macrophages infected with wild-type or mutantY. pseudotuberculosisstrains. Results show enhanced activation of caspase-1 after infection with theyopJ yopMmutant relative to infection by any other single or double mutant. Similar results were obtained with theyopJ,yopM, andyopJ yopMmutants ofYersinia pestis Following intravenous infection of mice, theY. pseudotuberculosisyopJmutant was as virulent as the wild type, while theyopJ yopMmutant was significantly more attenuated than theyopMmutant. In summary, through epistasis analysis this work uncovered an important role for YopJ in inhibiting caspase-1 in activated macrophages and in promotingYersiniavirulence. PMID:26810037

  5. MiR-125a-5p decreases after long non-coding RNA HOTAIR knockdown to promote cancer cell apoptosis by releasing caspase 2

    PubMed Central

    Tang, L; Shen, H; Li, X; Li, Z; Liu, Z; Xu, J; Ma, S; Zhao, X; Bai, X; Li, M; Wang, Q; Ji, J

    2016-01-01

    HOTAIR (homeobox transcript antisense RNA), one of the prototypical long non-coding RNAs, has been verified overexpressed in multiple carcinomas and has emerged as a promising novel anticancer target. Its well-established role is acting as a predictor of poor prognosis and promoting cancer cell metastasis. Recently, another important mission of HOTAIR was uncovered that targeting HOTAIR caused cancer cell apoptosis. Nevertheless, so far there is no published data elaborating the mechanism. Here, we report that microRNA miR-125a-5p decreases and releases caspase 2 to promote cancer cell apoptosis after HOTAIR knockdown. We applied siRNAs targeting HOTAIR to various cancer cells, and observed apoptosis in all of these cell lines. RNA sequencing detected that miR-125a-5p was decreased after HOTAIR knockdown and miR-125a-5p mimics could rescue the apoptosis induced by HOTAIR deficiency. Luciferase assays identified caspase 2, an initiator caspase, to be a new target of miR-125a-5p. Elevated expression and subsequent cleavage of caspase 2 was observed after HOTAIR knockdown or inhibition of miR-125a-5p. RNAi of caspase 2 could attenuate the apoptosis induced by HOTAIR knockdown. In 80 clinical colon cancer tissues, HOTAIR and miR-125a-5p levels were higher than adjacent tissues, whereas caspase 2 was lower. MiR-125a-5p expression level was significantly correlated with colon tumor size, lymph node metastasis and clinical stage. These findings indicate that miR-125a-5p decreases after HOTAIR knockdown to promote cancer cell apoptosis by releasing caspase 2. Our work reveals a previously unidentified apoptotic mechanism, which might be exploitable in anticancer drug development. PMID:26962687

  6. Isoform-specific cleavage of 14-3-3 proteins in apoptotic JURL-MK1 cells.

    PubMed

    Kuzelová, Katerina; Grebenová, Dana; Pluskalová, Michaela; Kavan, Daniel; Halada, Petr; Hrkal, Zbynek

    2009-03-01

    The proteins of 14-3-3 family are substantially involved in the regulation of many biological processes including the apoptosis. We studied the changes in the expression of five 14-3-3 isoforms (beta, gamma, epsilon, tau, and zeta) during the apoptosis of JURL-MK1 and K562 cells. The expression level of all these proteins markedly decreased in relation with the apoptosis progression and all isoforms underwent truncation, which probably corresponds to the removal of several C-terminal amino acids. The observed 14-3-3 modifications were partially blocked by caspase-3 inhibition. In addition to caspases, a non-caspase protease is likely to contribute to 14-3-3's cleavage in an isoform-specific manner. While 14-3-3 gamma seems to be cleaved mainly by caspase-3, the alternative mechanism is essentially involved in the case of 14-3-3 tau, and a combined effect was observed for the isoforms epsilon, beta, and zeta. We suggest that the processing of 14-3-3 proteins could form an integral part of the programmed cell death or at least of some apoptotic pathways. PMID:19173300

  7. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    ERIC Educational Resources Information Center

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  8. Selective cleavage of pepsin by molybdenum metallopeptidase

    SciTech Connect

    Yenjai, Sudarat; Malaikaew, Pinpinat; Liwporncharoenvong, Teerayuth; Buranaprapuk, Apinya

    2012-03-02

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 Degree-Sign C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: Black-Right-Pointing-Pointer This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. Black-Right-Pointing-Pointer The cleavage reaction undergoes at mild conditions. Black-Right-Pointing-Pointer No need of reducing agents. Black-Right-Pointing-Pointer Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of {approx}23, {approx}19 and {approx}16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) was incubated at 37 Degree-Sign C for 24 h. No self cleavage of pepsin occurs at 37 Degree-Sign C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein

  9. α-Cleavage of cellular prion protein

    PubMed Central

    Liang, Jingjing; Kong, Qingzhong

    2012-01-01

    The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the α-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the α-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the α-cleavage of PrPC, but there has been no report of direct PrPC α-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the α-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer. PMID:23052041

  10. Structural basis of cohesin cleavage by separase.

    PubMed

    Lin, Zhonghui; Luo, Xuelian; Yu, Hongtao

    2016-04-01

    Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin. PMID:27027290