Note: This page contains sample records for the topic caspase-2 mediated apoptotic from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Caspase-2 promotes cytoskeleton protein degradation during apoptotic cell death  

PubMed Central

The caspase family of proteases cleaves large number of proteins resulting in major morphological and biochemical changes during apoptosis. Yet, only a few of these proteins have been reported to selectively cleaved by caspase-2. Numerous observations link caspase-2 to the disruption of the cytoskeleton, although it remains elusive whether any of the cytoskeleton proteins serve as bona fide substrates for caspase-2. Here, we undertook an unbiased proteomic approach to address this question. By differential proteome analysis using two-dimensional gel electrophoresis, we identified four cytoskeleton proteins that were degraded upon treatment with active recombinant caspase-2 in vitro. These proteins were degraded in a caspase-2-dependent manner during apoptosis induced by DNA damage, cytoskeleton disruption or endoplasmic reticulum stress. Hence, degradation of these cytoskeleton proteins was blunted by siRNA targeting of caspase-2 and when caspase-2 activity was pharmacologically inhibited. However, none of these proteins was cleaved directly by caspase-2. Instead, we provide evidence that in cells exposed to apoptotic stimuli, caspase-2 probed these proteins for proteasomal degradation. Taken together, our results depict a new role for caspase-2 in the regulation of the level of cytoskeleton proteins during apoptosis.

Vakifahmetoglu-Norberg, H; Norberg, E; Perdomo, A B; Olsson, M; Ciccosanti, F; Orrenius, S; Fimia, G M; Piacentini, M; Zhivotovsky, B

2013-01-01

2

Mitochondrial Release of Caspase-2 and -9 during the Apoptotic Process  

PubMed Central

The barrier function of mitochondrial membranes is perturbed early during the apoptotic process. Here we show that the mitochondria contain a caspase-like enzymatic activity cleaving the caspase substrate Z-VAD.afc, in addition to three biological activities previously suggested to participate in the apoptotic process: (a) cytochrome c; (b) an apoptosis-inducing factor (AIF) which causes isolated nuclei to undergo apoptosis in vitro; and (c) a DNAse activity. All of these factors, which are biochemically distinct, are released upon opening of the permeability transition (PT) pore in a coordinate, Bcl-2–inhibitable fashion. Caspase inhibitors fully neutralize the Z-VAD.afc–cleaving activity, have a limited effect on the AIF activity, and have no effect at all on the DNase activities. Purification of proteins reacting with the biotinylated caspase substrate Z-VAD, immunodetection, and immunodepletion experiments reveal the presence of procaspase-2 and -9 in mitochondria. Upon induction of PT pore opening, these procaspases are released from purified mitochondria and become activated. Similarly, upon induction of apoptosis, both procaspases redistribute from the mitochondrion to the cytosol and are processed to generate enzymatically active caspases. This redistribution is inhibited by Bcl-2. Recombinant caspase-2 and -9 suffice to provoke full-blown apoptosis upon microinjection into cells. Altogether, these data suggest that caspase-2 and -9 zymogens are essentially localized in mitochondria and that the disruption of the outer mitochondrial membrane occurring early during apoptosis may be critical for their subcellular redistribution and activation.

Susin, Santos A.; Lorenzo, Hans K.; Zamzami, Naoufal; Marzo, Isabel; Brenner, Catherine; Larochette, Nathanael; Prevost, Marie-Christine; Alzari, Pedro M.; Kroemer, Guido

1999-01-01

3

Metabolic control of oocyte apoptosis mediated by 14-3-3?-regulated dephosphorylation of caspase-2  

PubMed Central

SUMMARY Xenopus oocyte death is partly controlled by the apoptotic initiator, caspase-2. We reported previously that oocyte nutrient depletion activates caspase-2 upstream of mitochondrial cytochrome c release. Conversely, nutrient-replete oocytes inhibit caspase-2 via S135 phosphorylation catalyzed by calcium/calmodulin-dependent protein kinase II. We now show that caspase-2 phosphorylated at S135 binds 14-3-3?, thus preventing caspase-2 dephosphorylation. Moreover, we determined that S135 dephosphorylation is catalyzed by protein phosphatase-1, which directly binds caspase-2. Although caspase-2 dephosphorylation is responsive to metabolism, neither PP1 activity nor binding is metabolically regulated. Rather, release of 14-3-3? from caspase-2 is controlled by metabolism and allows for caspase-2 dephosphorylation. Accordingly, a caspase-2 mutant unable to bind 14-3-3? is highly susceptible to dephosphorylation. Although this mechanism was initially established in Xenopus, we now demonstrate similar control of murine caspase-2 by phosphorylation and 14-3-3 binding in mouse eggs. These findings provide an unexpected evolutionary link between 14-3-3 and metabolism in oocyte death.

Nutt, Leta K.; Buchakjian, Marisa R.; Gan, Eugene; Darbandi, Rashid; Yoon, Sook-Young; Wu, Judy Q.; Miyamoto, Yuko J.; Gibbon, Jennifer A.; Andersen, Josh L.; Freel, Christopher D.; Tang, Wanli; He, Changli; Kurokawa, Manabu; Wang, Yongjun; Margolis, Seth S.; Fissore, Rafael A.; Kornbluth, Sally

2009-01-01

4

Oncogenic ras-induced Down-regulation of Pro-apoptotic Protease Caspase-2 Is Required for Malignant Transformation of Intestinal Epithelial Cells*  

PubMed Central

Resistance of carcinoma cells to anoikis, apoptosis that is normally induced by loss of cell-to-extracellular matrix adhesion, is thought to be essential for the ability of these cells to form primary tumors, invade adjacent tissues, and metastasize to distant organs. Current knowledge about the mechanisms by which cancer cells evade anoikis is far from complete. In an effort to understand these mechanisms, we found that ras, a major oncogene, down-regulates protease caspase-2 (which initiates certain steps of the cellular apoptotic program) in malignant human and rat intestinal epithelial cells. This down-regulation could be reversed by inhibition of a protein kinase Mek, a mediator of Ras signaling. We also found that enforced down-regulation of caspase-2 in nonmalignant intestinal epithelial cells by RNA interference protected them from anoikis. Furthermore, the reversal of the effect of Ras on caspase-2 achieved by the expression of exogenous caspase-2 in detached ras-transformed intestinal epithelial cells promoted well established apoptotic events, such as the release of the pro-apoptotic mitochondrial factors cytochrome c and HtrA2/Omi into the cytoplasm of these cells, significantly enhanced their anoikis susceptibility, and blocked their long term growth in the absence of adhesion to the extracellular matrix. Finally, the blockade of the effect of Ras on caspase-2 substantially suppressed growth of tumors formed by the ras-transformed cells in mice. We conclude that ras-induced down-regulation of caspase-2 represents a novel mechanism by which oncogenic Ras protects malignant intestinal epithelial cells from anoikis, promotes their anchorage-independent growth, and allows them to form tumors in vivo.

Yoo, Byong Hoon; Wang, Yanfei; Erdogan, Mete; Sasazuki, Takehiko; Shirasawa, Senji; Corcos, Laurent; Sabapathy, Kanaga; Rosen, Kirill V.

2011-01-01

5

Oncogenic ras-induced down-regulation of pro-apoptotic protease caspase-2 is required for malignant transformation of intestinal epithelial cells.  

PubMed

Resistance of carcinoma cells to anoikis, apoptosis that is normally induced by loss of cell-to-extracellular matrix adhesion, is thought to be essential for the ability of these cells to form primary tumors, invade adjacent tissues, and metastasize to distant organs. Current knowledge about the mechanisms by which cancer cells evade anoikis is far from complete. In an effort to understand these mechanisms, we found that ras, a major oncogene, down-regulates protease caspase-2 (which initiates certain steps of the cellular apoptotic program) in malignant human and rat intestinal epithelial cells. This down-regulation could be reversed by inhibition of a protein kinase Mek, a mediator of Ras signaling. We also found that enforced down-regulation of caspase-2 in nonmalignant intestinal epithelial cells by RNA interference protected them from anoikis. Furthermore, the reversal of the effect of Ras on caspase-2 achieved by the expression of exogenous caspase-2 in detached ras-transformed intestinal epithelial cells promoted well established apoptotic events, such as the release of the pro-apoptotic mitochondrial factors cytochrome c and HtrA2/Omi into the cytoplasm of these cells, significantly enhanced their anoikis susceptibility, and blocked their long term growth in the absence of adhesion to the extracellular matrix. Finally, the blockade of the effect of Ras on caspase-2 substantially suppressed growth of tumors formed by the ras-transformed cells in mice. We conclude that ras-induced down-regulation of caspase-2 represents a novel mechanism by which oncogenic Ras protects malignant intestinal epithelial cells from anoikis, promotes their anchorage-independent growth, and allows them to form tumors in vivo. PMID:21903589

Yoo, Byong Hoon; Wang, Yanfei; Erdogan, Mete; Sasazuki, Takehiko; Shirasawa, Senji; Corcos, Laurent; Sabapathy, Kanaga; Rosen, Kirill V

2011-11-11

6

Mitochondrial Release of Caspase2 and -9 during the Apoptotic Process  

Microsoft Academic Search

Summary The barrier function of mitochondrial membranes is perturbed early during the apoptotic pro- cess. Here we show that the mitochondria contain a caspase-like enzymatic activity cleaving the caspase substrate Z-VAD.afc, in addition to three biological activities previously suggested to participate in the apoptotic process: (a) cytochrome c ; (b) an apoptosis-inducing factor (AIF) which causes isolated nuclei to undergo

Santos A. Susin; Hans K. Lorenzo; Naoufal Zamzami; Isabel Marzo; Catherine Brenner; Nathanael Larochette; Marie-Christine Prévost; Pedro M. Alzari; Guido Kroemer

2010-01-01

7

Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of Caspase 2  

PubMed Central

Summary Female vertebrates are endowed during development with a stockpile of oocytes that is gradually depleted over the organism’s lifetime through the process of apoptosis. The timer that triggers this cell death has yet to be identified. Here, using the ease of biochemical manipulation afforded by Xenopus eggs and oocytes, we examine the hypothesis that nutrient stores of the oocyte can regulate oocyte viability. We show that pentose phosphate pathway generation of NADPH is critical for oocyte survival and that the target of this regulation is caspase 2, previously shown to regulate oocyte death in mice. Pentose phosphate pathway-mediated inhibition of cell death resulted from the inhibitory phosphorylation of caspase 2 by Calcium calmodulin-dependent kinase II (CaMKII). A mutant of caspase 2 able to escape CaMKII phosphorylation overrode this inhibition of apoptosis. These data suggest that exhaustion of oocyte nutrients, resulting in an inability to generate NADPH, may contribute to ooctye depletion. These data also provide unexpected links between oocyte metabolism, CaMKII and caspase 2.

Nutt, Leta K.; Margolis, Seth S.; Jensen, Mette; Herman, Catherine E.; Dunphy, William G.; Rathmell, Jeffrey C.; Kornbluth, Sally

2009-01-01

8

Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis  

PubMed Central

Programmed cell death (PCD) can play a crucial role in tuning the immune response to microbial infection. Although PCD can occur in different forms, all are mediated by a family of proteases called caspases. Caspase-2 is the most conserved caspase, however, its function in cell death is ill-defined. Previously we demonstrated that live attenuated cattle vaccine strain Brucella abortus RB51 induces caspase-2-mediated and caspase-1-independent PCD of infected macrophages. We also discovered that rough attenuated B. suis strain VTRS1 induces a caspase-2-mediated and caspase-1-independent proinflammatory cell death in infected macrophages, which was tentatively coined “caspase-2-mediated pyroptosis”. However, the mechanism of caspase-2-mediated cell death pathway remained unclear. In this study, we found that caspase-2 mediated proinflammatory cell death of RB51-infected macrophages and regulated many genes in different PCD pathways. We show that the activation of proapoptotic caspases-3 and -8 was dependent upon caspase-2. Caspase-2 regulated mitochondrial cytochrome c release and TNF? production, both of which are known to activate caspase-3 and caspase-8, respectively. In addition to TNF?, RB51-induced caspase-1 and IL-1? production was also driven by caspase-2-mediated mitochondrial dysfunction. Interestingly, pore formation, a phenomenon commonly associated with caspase-1-mediated pyroptosis, occurred; however, unlike its role in S. typhimurium-induced pyroptosis, pore formation did not contribute to RB51-induced proinflammatory cell death. Our data suggest that caspase-2 acts as an initiator caspase that mediates a novel RB51-induced hybrid cell death that simulates but differs from typical non-proinflammatory apoptosis and caspase-1-mediated proinflammatory pyroptosis. The initiator role of the caspase-2-mediated cell death was also conserved in cellular stress-induced cell death of macrophages treated with etoposide, naphthalene, or anti-Fas. Caspase-2 also regulated caspase-3 and -8 activation, as well as cell death in macrophages treated with each of the three reagents. Taken together, our data has demonstrated that caspase-2 can play an important role in mediating a proinflammatory response and a hybrid cell death that demonstrates features of both apoptosis and pyroptosis.

Bronner, Denise N.; O'Riordan, Mary X. D.; He, Yongqun

2013-01-01

9

Attenuation of the ELAV1-like protein HuR sensitizes adenocarcinoma cells to the intrinsic apoptotic pathway by increasing the translation of caspase-2L.  

PubMed

Caspase-2 represents the most conserved member of the caspase family, which exhibits features of both initiator and effector caspases. Using ribonucleoprotein (RNP)-immunoprecipitation assay, we identified the proapoptotic caspase-2L encoding mRNA as a novel target of the ubiquitous RNA-binding protein HuR in DLD-1 colon carcinoma cells. Unexpectedly, crosslinking-RNP and RNA probe pull-down experiments revealed that HuR binds exclusively to the caspase-2-5' untranslated region (UTR) despite that the 3' UTR of the mRNA bears several adenylate- and uridylate-rich elements representing the prototypical HuR binding sites. By using RNAi-mediated loss-of-function approach, we observed that HuR regulates the mRNA and in turn the protein levels of caspase-2 in a negative manner. Silencing of HuR did not affect the stability of caspase-2 mRNA but resulted in an increased redistribution of caspase-2 transcripts from RNP particles to translational active polysomes implicating that HuR exerts a direct repressive effect on caspase-2 translation. Consistently, in vitro translation of a luciferase reporter gene under the control of an upstream caspase-2-5'UTR was strongly impaired after the addition of recombinant HuR, whereas translation of caspase-2 coding region without the 5'UTR is not affected by HuR confirming the functional role of the caspase-2-5'UTR. Functionally, an elevation in caspase-2 level by HuR knockdown correlated with an increased sensitivity of cells to apoptosis induced by staurosporine- and pore-forming toxins as implicated by their significant accumulation in the sub G1 phase and an increase in caspase-2, -3 and poly ADP-ribose polymerase cleavage, respectively. Importantly, HuR knockdown cells remained insensitive toward STS-induced apoptosis if cells were additionally transfected with caspase-2-specific siRNAs. Collectively, our findings support the hypothesis that HuR by acting as an endogenous inhibitor of caspase-2-driven apoptosis may essentially contribute to the antiapoptotic program of adenocarcinoma cells by HuR. PMID:25010987

Winkler, C; Doller, A; Imre, G; Badawi, A; Schmid, T; Schulz, S; Steinmeyer, N; Pfeilschifter, J; Rajalingam, K; Eberhardt, W

2014-01-01

10

TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3.  

PubMed

Although it is known that tumor necrosis factor receptor (TNFR) signaling plays a crucial role in vascular integrity and homeostasis, the contribution of each receptor to these processes and the signaling pathway involved are still largely unknown. Here, we show that targeted gene knockdown of TNFRSF1B in zebrafish embryos results in the induction of a caspase-8, caspase-2 and P53-dependent apoptotic program in endothelial cells that bypasses caspase-3. Furthermore, the simultaneous depletion of TNFRSF1A or the activation of NF-?B rescue endothelial cell apoptosis, indicating that a signaling balance between both TNFRs is required for endothelial cell integrity. In endothelial cells, TNFRSF1A signals apoptosis through caspase-8, whereas TNFRSF1B signals survival via NF-?B. Similarly, TNF? promotes the apoptosis of human endothelial cells through TNFRSF1A and triggers caspase-2 and P53 activation. We have identified an evolutionarily conserved apoptotic pathway involved in vascular homeostasis that provides new therapeutic targets for the control of inflammation- and tumor-driven angiogenesis. PMID:22956347

Espín, Raquel; Roca, Francisco J; Candel, Sergio; Sepulcre, María P; González-Rosa, Juan M; Alcaraz-Pérez, Francisca; Meseguer, José; Cayuela, María L; Mercader, Nadia; Mulero, Victoriano

2013-03-01

11

TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3  

PubMed Central

SUMMARY Although it is known that tumor necrosis factor receptor (TNFR) signaling plays a crucial role in vascular integrity and homeostasis, the contribution of each receptor to these processes and the signaling pathway involved are still largely unknown. Here, we show that targeted gene knockdown of TNFRSF1B in zebrafish embryos results in the induction of a caspase-8, caspase-2 and P53-dependent apoptotic program in endothelial cells that bypasses caspase-3. Furthermore, the simultaneous depletion of TNFRSF1A or the activation of NF-?B rescue endothelial cell apoptosis, indicating that a signaling balance between both TNFRs is required for endothelial cell integrity. In endothelial cells, TNFRSF1A signals apoptosis through caspase-8, whereas TNFRSF1B signals survival via NF-?B. Similarly, TNF? promotes the apoptosis of human endothelial cells through TNFRSF1A and triggers caspase-2 and P53 activation. We have identified an evolutionarily conserved apoptotic pathway involved in vascular homeostasis that provides new therapeutic targets for the control of inflammation- and tumor-driven angiogenesis.

Espin, Raquel; Roca, Francisco J.; Candel, Sergio; Sepulcre, Maria P.; Gonzalez-Rosa, Juan M.; Alcaraz-Perez, Francisca; Meseguer, Jose; Cayuela, Maria L.; Mercader, Nadia; Mulero, Victoriano

2013-01-01

12

Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice  

Microsoft Academic Search

Apoptosis has been implicated as a mechanism of loss of muscle cells in normal aging and plays an important role in age-related\\u000a sarcopenia. To test the hypothesis that caspase 2 and c-Jun NH2-terminal kinase (JNK)-mediated intrinsic pathway signaling contribute to skeletal muscle cell apoptosis in aging, we compared\\u000a activation of caspase 2 and JNK and the in vivo expression of 4-hydroxynonenal

Melissa Braga; Amiya P. Sinha Hikim; Sanjit Datta; Monica G. Ferrini; Danielle Brown; Ekaterina L. Kovacheva; Nestor F. Gonzalez-Cadavid; Indrani Sinha-Hikim

2008-01-01

13

Anti-apoptotic effect of quercetin: Intervention in the JNK and ERK-mediated apoptotic pathways  

Microsoft Academic Search

Anti-apoptotic effect of quercetin: Intervention in the JNK- and ERK-mediated apoptotic pathways.BackgroundBioflavonoid quercetin inhibits hydrogen peroxide (H2O2)-induced apoptosis via intervention in the activator protein 1 (AP-1)-mediated apoptotic pathway. In this report, we investigated molecular events involved in the anti-apoptotic effect of quercetin, focusing especially on its effects on the family of mitogen-activated protein (MAP) kinases.MethodsCultured mesangial cells were exposed to

Yoshihisa Ishikawa; Masanori Kitamura

2000-01-01

14

TAp73? and DNp73? activate the expression of the pro-survival caspase-2S  

PubMed Central

p73, the p53 homologue, exists as a transactivation-domain-proficient TAp73 or deficient deltaN(DN)p73 form. Expectedly, the oncogenic DNp73 that is capable of inactivating both TAp73 and p53 function, is over-expressed in cancers. However, the role of TAp73, which exhibits tumour-suppressive properties in gain or loss of function models, in human cancers where it is hyper-expressed is unclear. We demonstrate here that both TAp73 and DNp73 are able to specifically transactivate the expression of the anti-apoptotic member of the caspase family, caspase-2S. Neither p53 nor TAp63 has this property, and only the p73? form, but not the p73? form, has this competency. Caspase-2 promoter analysis revealed that a non-canonical, 18 bp GC-rich Sp-1-binding site-containing region is essential for p73?-mediated activation. However, mutating the Sp-1-binding site or silencing Sp-1 expression did not affect p73?'s transactivation ability. In vitro DNA binding and in vivo chromatin immunoprecipitation assays indicated that p73? is capable of directly binding to this region, and consistently, DNA binding p73 mutant was unable to transactivate caspase-2S. Finally, DNp73? over-expression in neuroblastoma cells led to resistance to cell death, and concomitantly to elevated levels of caspase-2S. Silencing p73 expression in these cells led to reduction of caspase-2S expression and increased cell death. Together, the data identifies caspase-2S as a novel transcriptional target common to both TAp73 and DNp73, and raises the possibility that TAp73 may be over-expressed in cancers to promote survival.

Toh, Wen Hong; Logette, Emmanuelle; Corcos, Laurent; Sabapathy, Kanaga

2008-01-01

15

Analysis of the minimal specificity of caspase-2 and identification of Ac-VDTTD-AFC as a caspase-2-selective peptide substrate  

PubMed Central

Caspase-2 is an evolutionarily conserved but enigmatic protease whose biological role remains poorly understood. To date, research into the functions of caspase-2 has been hampered by an absence of reagents that can distinguish its activity from that of the downstream apoptotic caspase, caspase-3. Identification of protein substrates of caspase-2 that are efficiently cleaved within cells may also provide clues to the role of this protease. We used a yeast-based transcriptional reporter system to define the minimal substrate specificity of caspase-2. The resulting profile enabled the identification of candidate novel caspase-2 substrates. Caspase-2 cleaved one of these proteins, the cancer-associated transcription factor Runx1, although with relatively low efficiency. A fluorogenic peptide was derived from the sequence most efficiently cleaved in the context of the transcriptional reporter. This peptide, Ac-VDTTD-AFC, was efficiently cleaved by purified caspase-2 and auto-activating caspase-2 in mammalian cells, and exhibited better selectivity for caspase-2 relative to caspase-3 than reagents that are currently available. We suggest that this reagent, used in parallel with the traditional caspase-3 substrate Ac-DEVD-AFC, will enable researchers to monitor caspase-2 activity in cell lysates and may assist in the determination of stimuli that activate caspase-2 in vivo.

Kitevska, Tanja; Roberts, Sarah J.; Pantaki-Eimany, Delara; Boyd, Sarah E.; Scott, Fiona L.; Hawkins, Christine J.

2014-01-01

16

Defects in regulation of apoptosis in caspase-2-deficient mice  

PubMed Central

During embryonic development, a large number of cells die naturally to shape the new organism. Members of the caspase family of proteases are essential intracellular death effectors. Herein, we generated caspase-2-deficient mice to evaluate the requirement for this enzyme in various paradigms of apoptosis. Excess numbers of germ cells were endowed in ovaries of mutant mice and the oocytes were found to be resistant to cell death following exposure to chemotherapeutic drugs. Apoptosis mediated by granzyme B and perforin was defective in caspase-2-deficient B lymphoblasts. In contrast, cell death of motor neurons during development was accelerated in caspase-2-deficient mice. In addition, caspase-2-deficient sympathetic neurons underwent apoptosis more effectively than wild-type neurons when deprived of NGF. Thus, caspase-2 acts both as a positive and negative cell death effector, depending upon cell lineage and stage of development.

Bergeron, Louise; Perez, Gloria I.; Macdonald, Glen; Shi, Lianfa; Sun, Yi; Jurisicova, Andrea; Varmuza, Sue; Latham, Keith E.; Flaws, Jodi A.; Salter, Jessica C.M.; Hara, Hideaki; Moskowitz, Michael A.; Li, En; Greenberg, Arnold; Tilly, Jonathan L.; Yuan, Junying

1998-01-01

17

TAp73beta and DNp73beta activate the expression of the pro-survival caspase-2S.  

PubMed

p73, the p53 homologue, exists as a transactivation-domain-proficient TAp73 or deficient deltaN(DN)p73 form. Expectedly, the oncogenic DNp73 that is capable of inactivating both TAp73 and p53 function, is over-expressed in cancers. However, the role of TAp73, which exhibits tumour-suppressive properties in gain or loss of function models, in human cancers where it is hyper-expressed is unclear. We demonstrate here that both TAp73 and DNp73 are able to specifically transactivate the expression of the anti-apoptotic member of the caspase family, caspase-2(S). Neither p53 nor TAp63 has this property, and only the p73beta form, but not the p73alpha form, has this competency. Caspase-2 promoter analysis revealed that a non-canonical, 18 bp GC-rich Sp-1-binding site-containing region is essential for p73beta-mediated activation. However, mutating the Sp-1-binding site or silencing Sp-1 expression did not affect p73beta's transactivation ability. In vitro DNA binding and in vivo chromatin immunoprecipitation assays indicated that p73beta is capable of directly binding to this region, and consistently, DNA binding p73 mutant was unable to transactivate caspase-2(S). Finally, DNp73beta over-expression in neuroblastoma cells led to resistance to cell death, and concomitantly to elevated levels of caspase-2(S.) Silencing p73 expression in these cells led to reduction of caspase-2(S) expression and increased cell death. Together, the data identifies caspase-2(S) as a novel transcriptional target common to both TAp73 and DNp73, and raises the possibility that TAp73 may be over-expressed in cancers to promote survival. PMID:18611950

Toh, Wen Hong; Logette, Emmanuelle; Corcos, Laurent; Sabapathy, Kanaga

2008-08-01

18

Caspase-2: Vestigial Remnant or Master Regulator?  

NSDL National Science Digital Library

Caspase-2, the second mammalian caspase to be identified and the most evolutionarily conserved caspase, has eluded classification. The lack of a profound phenotype in the caspase-2–deficient mouse resulted in decreased interest in caspase-2 for many years. However, advances in the field, including the identification of a potential activation complex and the development of methods to detect active caspase-2, now illuminate our understanding of the function of this caspase. These studies suggest that caspase-2 induces death through two pathways. First, caspase-2 induces cell death independently of the mitochondrial pathway, in a manner similar to that of ced-3, a caspase in Caenorhabditis elegans. Second, caspase-2 also induces cell death upstream of the mitochondrial pathway. The choice of pathway may depend on the type of death stimulus. The placing of caspase-2 upstream and independent of mitochondrial dysfunction provides a potentially new therapeutic target for aberrant cell death.

Carol M. Troy (Departments of Pathology and Neurology;Columbia University College of Physicians and Surgeons REV); Elena M. Ribe (Departments of Pathology and Neurology;Columbia University College of Physicians and Surgeons REV)

2008-09-23

19

Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis  

PubMed Central

Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2? and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery.

Mishra, Ritu; Karande, Anjali A.

2014-01-01

20

Caspase-2, a Novel Lipid Sensor under the Control of Sterol Regulatory Element Binding Protein 2†  

PubMed Central

Caspases play important roles in apoptotic cell death and in some other functions, such as cytokine maturation, inflammation, or differentiation. We show here that the 5?-flanking region of the human CASP-2 gene contains three functional response elements for sterol regulatory element binding proteins (SREBPs), proteins that mediate the transcriptional activation of genes involved in cholesterol, triacylglycerol, and fatty acid synthesis. Exposure of several human cell lines to statins, lipid-lowering drugs that drive SREBP proteolytic activation, induced the CASP-2 gene to an extent similar to that for known targets of SREBP proteins. Adenoviral vector-mediated transfer of active SREBP-2 also induced expression of the CASP-2 gene and the caspase-2 protein and increased the cholesterol and triacylglycerol cellular content. These rises in lipids were strongly impaired following small interfering RNA-mediated silencing of the CASP-2 gene. Taken together, our results identify the human CASP-2 gene as a member of the SREBP-responsive gene battery that senses lipid levels in cells and raise the possibility that caspase-2 participates in the control of cholesterol and triacylglycerol levels.

Logette, E.; Le Jossic-Corcos, C.; Masson, D.; Solier, S.; Sequeira-Legrand, A.; Dugail, I.; Lemaire-Ewing, S.; Desoche, L.; Solary, E.; Corcos, L.

2005-01-01

21

A nonapoptotic role for CASP2/caspase 2: Modulation of autophagy.  

PubMed

CASP2/caspase 2 plays a role in aging, neurodegeneration, and cancer. The contributions of CASP2 have been attributed to its regulatory role in apoptotic and nonapoptotic processes including the cell cycle, DNA repair, lipid biosynthesis, and regulation of oxidant levels in the cells. Previously, our lab demonstrated CASP2-mediated modulation of autophagy during oxidative stress. Here we report the novel finding that CASP2 is an endogenous repressor of autophagy. Knockout or knockdown of CASP2 resulted in upregulation of autophagy in a variety of cell types and tissues. Reinsertion of Caspase-2 gene (Casp2) in mouse embryonic fibroblast (MEFs) lacking Casp2 (casp2(-/-)) suppresses autophagy, suggesting its role as a negative regulator of autophagy. Loss of CASP2-mediated autophagy involved AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and autophagy-related proteins, indicating the involvement of the canonical pathway of autophagy. The present study also demonstrates an important role for loss of CASP2-induced enhanced reactive oxygen species production as an upstream event in autophagy induction. Additionally, in response to a variety of stressors that induce CASP2-mediated apoptosis, casp2(-/-) cells demonstrate a further upregulation of autophagy compared with wild-type MEFs, and upregulated autophagy provides a survival advantage. In conclusion, we document a novel role for CASP2 as a negative regulator of autophagy, which may provide important insight into the role of CASP2 in various processes including aging, neurodegeneration, and cancer. PMID:24879153

Tiwari, Meenakshi; Sharma, Lokendra K; Vanegas, Difernando; Callaway, Danielle A; Bai, Yidong; Lechleiter, James D; Herman, Brian

2014-06-01

22

E-cadherin-mediated cell coupling is required for apoptotic cell extrusion.  

PubMed

Apoptotic extrusion is a multicellular process utilized by live cells to remove neighboring apoptotic cells. In epithelial tissues, this process has been shown to be critical for the preservation of tissue integrity and barrier function. Here we demonstrate that extrusion is driven by the retraction of the apoptotic cell, which, in turn, triggers a transient and coordinated elongation of the neighboring cells. The coordination of cell elongation requires E-cadherin-mediated cell-cell adhesion. Accordingly, cells that express low levels of E-cadherin are compromised in elongation and apoptotic extrusion, and furthermore, display loss of barrier function in response to apoptotic stimuli. These findings indicate that the maintenance of adhesive forces during apoptotic cell turnover might play an essential role in controlling tissue homeostasis. PMID:24704076

Lubkov, Veronica; Bar-Sagi, Dafna

2014-04-14

23

Integral role of Noxa in p53-mediated apoptotic response.  

PubMed

The tumor suppressor p53 exerts its versatile function to maintain the genomic integrity of a cell, and the life of cancerous cells with DNA damage is often terminated by induction of apoptosis. We studied the role of Noxa, one of the transcriptional targets of p53 that encodes a proapoptotic protein of the Bcl-2 family, by the gene-targeting approach. Mouse embryonic fibroblasts deficient in Noxa [Noxa(-/-) mouse embryonic fibroblasts (MEFs)] showed notable resistance to oncogene-dependent apoptosis in response to DNA damage, which was further increased by introducing an additional null zygosity for Bax. These MEFs also showed increased sensitivity to oncogene-induced cell transformation in vitro. Furthermore, Noxa is also involved in the oncogene-independent gradual apoptosis induced by severe genotoxic stresses, under which p53 activates both survival and apoptotic pathways through induction of p21(WAF1/Cip1) and Noxa, respectively. Noxa(-/-) mice showed resistance to X-ray irradiation-induced gastrointestinal death, accompanied with impaired apoptosis of the epithelial cells of small intestinal crypts, indicating the contribution of Noxa to the p53 response in vivo. PMID:12952892

Shibue, Tsukasa; Takeda, Kiyoshi; Oda, Eri; Tanaka, Hiroshi; Murasawa, Hideki; Takaoka, Akinori; Morishita, Yasuyuki; Akira, Shizuo; Taniguchi, Tadatsugu; Tanaka, Nobuyuki

2003-09-15

24

Integral role of Noxa in p53-mediated apoptotic response  

PubMed Central

The tumor suppressor p53 exerts its versatile function to maintain the genomic integrity of a cell, and the life of cancerous cells with DNA damage is often terminated by induction of apoptosis. We studied the role of Noxa, one of the transcriptional targets of p53 that encodes a proapoptotic protein of the Bcl-2 family, by the gene-targeting approach. Mouse embryonic fibroblasts deficient in Noxa [Noxa-/- mouse embryonic fibroblasts (MEFs)] showed notable resistance to oncogene-dependent apoptosis in response to DNA damage, which was further increased by introducing an additional null zygosity for Bax. These MEFs also showed increased sensitivity to oncogene-induced cell transformation in vitro. Furthermore, Noxa is also involved in the oncogene-independent gradual apoptosis induced by severe genotoxic stresses, under which p53 activates both survival and apoptotic pathways through induction of p21WAF1/Cip1 and Noxa, respectively. Noxa-/- mice showed resistance to X-ray irradiation-induced gastrointestinal death, accompanied with impaired apoptosis of the epithelial cells of small intestinal crypts, indicating the contribution of Noxa to the p53 response in vivo.

Shibue, Tsukasa; Takeda, Kiyoshi; Oda, Eri; Tanaka, Hiroshi; Murasawa, Hideki; Takaoka, Akinori; Morishita, Yasuyuki; Akira, Shizuo; Taniguchi, Tadatsugu; Tanaka, Nobuyuki

2003-01-01

25

Hexokinase II detachment from the mitochondria potentiates cisplatin induced cytotoxicity through a caspase-2 dependent mechanism.  

PubMed

Cancer cells are frequently glycolytic and overexpress hexokinase II (HXK II). In cancer cells, the majority of hexokinase II is localized to the mitochondria through interaction with the voltage dependent anion channel (VDAC). Disruption in the binding of hexokinase II to the mitochondria has been shown to promote mitochondrial injury provoked by pro-apoptotic proteins. The present study demonstrates that cisplatin induces the PIDD (p53 induced protein with a death domain) dependent activation of caspase-2. In turn, caspase-2 cleaves and activates Bid, resulting in the oligomerization of Bak and the release of cytochrome c. Notably, the detachment of hexokinase II from the mitochondria markedly potentiates the onset of caspase-2 induced mitochondrial damage, thus resulting in a synergistic induction of cisplatin induced cytotoxicity. PMID:19770592

Shulga, Nataly; Wilson-Smith, Robin; Pastorino, John G

2009-10-15

26

Hexokinase II Detachment from the Mitochondria Potentiates Cisplatin Induced Cytotoxicity through a Caspase-2 dependent Mechanism  

PubMed Central

Cancer cells are frequently glycolytic and over-express hexokinase II (HXK II). In cancer cells, the majority of hexokinase II is localized to the mitochondria through interaction with the voltage dependent anion channel (VDAC). Disruption in the binding of hexokinase II to the mitochondria has been shown to promote mitochondrial injury provoked by pro-apoptotic proteins. The present study demonstrates that cisplatin induces the PIDD (P53 induced protein with a death domain) dependent activation of caspase-2. In turn, caspase-2 cleaves and activates Bid, resulting in the oligomerization of Bak and the release of cytochrome c. Notably, the detachment of hexokinase II from the mitochondria markedly potentiates the onset of caspase-2 induced mitochondrial damage, thus resulting in a synergistic induction of cisplatin induced cytotoxicity.

Shulga, Nataly; Wilson-Smith, Robin; Pastorino, John G.

2010-01-01

27

Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis.  

PubMed

Apoptosis of endothelial cells (ECs) is an early pathogenic event in various fibrotic diseases. In this study, we evaluated whether paracrine mediators produced by apoptotic ECs play direct roles in fibrogenesis. C3H mice injected subcutaneously with serum-free medium conditioned by apoptotic ECs (SSC) showed increased skin thickness and heightened protein levels of alpha-smooth-muscle actin (alphaSMA), vimentin and collagen I as compared with mice injected with medium conditioned by non-apoptotic ECs. Fibroblasts exposed to SSC in vitro showed cardinal features of myofibroblast differentiation with increased stress fiber formation and expression of alphaSMA. Caspase-3 silencing in ECs prevented the release of mediators favoring myofibroblast differentiation. To identify the fibrogenic factor(s) released by ECs, the protein contents of media conditioned by either apoptotic or non-apoptotic ECs were compared using SDS-PAGE-liquid chromatography (LC)-tandem mass spectrometry (MS/MS) and two-dimensional LC-MS/MS. Connective tissue growth factor (CTGF) was the only fibrogenic protein found increased in SSC. Pan-caspase inhibition with ZVAD-FMK or caspase-3 silencing in ECs confirmed that CTGF was released downstream of caspase-3 activation. The fibrogenic signaling signatures of SSC and CTGF on fibroblasts in vitro were similarly Pyk2-, Src-family kinases- and PI3K dependent, but TGF-beta-independent. CTGF-immunodepleted SSC failed to induce myofibroblast differentiation in vitro and skin fibrosis in vivo. These results identify caspase-3 activation in ECs as a novel inducer of CTGF release and fibrogenesis. PMID:19730442

Laplante, P; Sirois, I; Raymond, M-A; Kokta, V; Béliveau, A; Prat, A; Pshezhetsky, A V; Hébert, M-J

2010-02-01

28

Modulation of Orphan Nuclear Receptor Nur77-mediated Apoptotic Pathway by Acetylshikonin and Analogs  

PubMed Central

Shikonin derivatives, which are the active components of the medicinal plant Lithospermum erythrorhizon, exhibit many biological effects including apoptosis induction through undefined mechanisms. We recently discovered that orphan nuclear receptor Nur77 migrates from the nucleus to mitochondria, where it binds to Bcl-2 to induce apoptosis. Here, we report that certain shikonin derivatives could modulate the Nur77-Bcl-2 apoptotic pathway by increasing levels of Nur77 protein and promoting its mitochondrial targeting in cancer cells. Structural modification of acetylshikonin resulted in identification of a derivative 5,8-diacetoxyl-6-(1'-Acetoxyl-4'-methyl-3'-pentenyl)-1,4-naphthaquinones (SK07) that exhibited improved efficacy and specificity in activating the pathway. Unlike other Nur77 modulators, shikonins increased levels of Nur77 protein through their posttranscriptional regulation. The apoptotic effect of SK07 was impaired in Nur77 knockout cells and suppressed by co-treatment with leptomycin B (LMB) that inhibited Nur77 cytoplasmic localization. Furthermore, SK07 induced apoptosis in cells expressing the C-terminal half of Nur77 protein but not its N-terminal region. Our data also showed that SK07-induced apoptosis was associated with a Bcl-2 conformational change and Bax activation. Together, our results demonstrate that certain shikonin derivatives act as modulators of the Nur77-mediated apoptotic pathway and identify new shikonin-based lead that targets Nur77 for apoptosis induction.

Liu, Jie; Zhou, Wen; Li, Shao-Shun; Sun, Zhe; Lin, Bingzhen; Lang, Yuan-Yuan; He, Jia-You; Cao, Xihua; Yan, Tingdong; Wang, Li; Lu, Jiongming; Han, Young-Hoon; Cao, Yu; Zhang, Xiao-kun; Zeng, Jin-Zhang

2008-01-01

29

(+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans.  

PubMed

The phytochemical (+)-Medioresinol, a furofuran type lignan identification and isolation on the stem bark of Sambucus williamsii, which is a folk medicinal plant used in traditional medicine. (+)-Medioresinol is known to possess a lesishmanicidal activity and cardiovascular disease risk reduction but its antifungal effects have not yet been identified. In this study, to confirm (+)-Medioresinol's antifungal properties and mode of action, we observed morphological and physiological change in Candida albicans. In cells exposed to (+)-Medioresinol, arrested the cell cycle and intracellular reactive oxygen species (ROS) which is a major cause of apoptosis were increased. The increase of ROS induced oxidative stress and the mitochondria dysfunction which causes release of pro-apoptotic factors. We investigated a series of characteristic cellular changes of apoptosis by using various apoptosis detection methods. We report here for the first time that (+)-Medioresinol has effects on mitochondria and induced the accumulation of ROS in C. albicans cells. We demonstrated that one of the important features of apoptosis, mitochondrial membrane depolarization is caused by ROS. Substantially, we investigated the release of cytochrome c, which is one of the factors of metacaspase activity. We also show that the effects of (+)-Medioresinol are mediated at an early stage in apoptosis acting on the plasma membrane phosphatidylserine externalization. In addition, (+)-Medioresinol induced apoptotic morphological changes, showing the reduced cell size (low FSC) and enhanced intracellular density (high SSC). In late stage of confirmation of diagnostic markers in yeast apoptosis include the effects of nucleus morphological change, DNA fragmentation and condensation by influence of oxidative stress. These apoptotic phenomena represent that oxidative stress and mitochondria dysfunctions by inducing the phytochemical (+)-Medioresinol must be an important factors of the apoptotic process in C. albicans. These results support the elucidation of the underlying antifungal mechanisms of (+)-Medioresinol. PMID:22534194

Hwang, Ji Hong; Hwang, In-Sok; Liu, Qing-He; Woo, Eun-Rhan; Lee, Dong Gun

2012-08-01

30

Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Mediates Phagocytosis of Aged\\/Apoptotic Cells in Endothelial Cells  

Microsoft Academic Search

Recognition of the exposure of phosphatidyl-serine (PS) on the outer surface of plasma membrane has been implicated in the phagocytosis of aged\\/apoptotic cells. Because oxidized low-density lipoprotein (OxLDL) has been reported to block the phagocytosis, here we examined whether lectin-like OxLDL receptor 1 (LOX-1), the OxLDL receptor in endothelial cells, mediates phagocytosis of aged\\/apoptotic cells by endothelial cells. Cultured bovine

Kozo Oka; Tatsuya Sawamura; Ken-Ichiro Kikuta; Shigekazu Itokawa; Noriaki Kume; Toru Kita; Tomoh Masaki

1998-01-01

31

Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD)  

PubMed Central

A fundamental property of animal cells is the ability to regulate their own cell volume. Even under hypotonic stress imposed by either decreased extracellular or increased intracellular osmolarity, the cells can re-adjust their volume after transient osmotic swelling by a mechanism known as regulatory volume decrease (RVD). In most cell types, RVD is accomplished mainly by KCl efflux induced by parallel activation of K+ and Cl? channels. We have studied the molecular mechanism of RVD in a human epithelial cell line (Intestine 407). Osmotic swelling results in a significant increase in the cytosolic Ca2+ concentration and thereby activates intermediate-conductance Ca2+-dependent K+ (IK) channels. Osmotic swelling also induces ATP release from the cells to the extracellular compartment. Released ATP stimulates purinergic ATP (P2Y2) receptors, thereby inducing phospholipase C-mediated Ca2+ mobilization. Thus, RVD is facilitated by stimulation of P2Y2 receptors due to augmentation of IK channels. In contrast, stimulation of another G protein-coupled Ca2+-sensing receptor (CaR) enhances the activity of volume-sensitive outwardly rectifying Cl? channels, thereby facilitating RVD. Therefore, it is possible that Ca2+ efflux stimulated by swelling-induced and P2Y2 receptor-mediated intracellular Ca2+ mobilization activates the CaR, thereby secondarily upregulating the volume-regulatory Cl? conductance. On the other hand, the initial process towards apoptotic cell death is coupled to normotonic cell shrinkage, called apoptotic volume decrease (AVD). Stimulation of death receptors, such as TNF? receptor and Fas, induces AVD and thereafter biochemical apoptotic events in human lymphoid (U937), human epithelial (HeLa), mouse neuroblastoma × rat glioma hybrid (NG108-15) and rat phaeochromocytoma (PC12) cells. In those cells exhibiting AVD, facilitation of RVD is always observed. Both AVD induction and RVD facilitation as well as succeeding apoptotic events can be abolished by prior treatment with a blocker of volume-regulatory K+ or Cl? channels, suggesting that AVD is caused by normotonic activation of ion channels that are normally involved in RVD under hypotonic conditions. Therefore, it is likely that G protein-coupled receptors involved in RVD regulation and death receptors triggering AVD may share common downstream signals which should give us key clues to the detailed mechanisms of volume regulation and survival of animal cells. In this Topical Review, we look at the physiological ionic mechanisms of cell volume regulation and cell death-associated volume changes from the facet of receptor-mediated cellular processes.

Okada, Yasunobu; Maeno, Emi; Shimizu, Takahiro; Dezaki, Katsuya; Wang, Jun; Morishima, Shigeru

2001-01-01

32

The nuclear receptor nr4a1 mediates anti-inflammatory effects of apoptotic cells.  

PubMed

Uptake of apoptotic cells (ACs) by macrophages ensures the nonimmunogenic clearance of dying cells, as well as the maintenance of self-tolerance to AC-derived autoantigens. Upon ingestion, ACs exert an inhibitory influence on the inflammatory signaling within the phagocyte. However, the molecular signals that mediate these immune-modulatory properties of ACs are incompletely understood. In this article, we show that the phagocytosis of apoptotic thymocytes was enhanced in tissue-resident macrophages where this process resulted in the inhibition of NF-?B signaling and repression of inflammatory cytokines, such as IL-12. In parallel, ACs induced a robust expression of a panel of immediate early genes, which included the Nr4a subfamily of nuclear receptors. Notably, deletion of Nr4a1 interfered with the anti-inflammatory effects of ACs in macrophages and restored both NF-?B signaling and IL-12 expression. Accordingly, Nr4a1 mediated the anti-inflammatory properties of ACs in vivo and was required for maintenance of self-tolerance in the murine model of pristane-induced lupus. Thus, our data point toward a key role for Nr4a1 as regulator of the immune response to ACs and of the maintenance of tolerance to "dying self." PMID:24740500

Ipseiz, Natacha; Uderhardt, Stefan; Scholtysek, Carina; Steffen, Martin; Schabbauer, Gernot; Bozec, Aline; Schett, Georg; Krönke, Gerhard

2014-05-15

33

Metabolomic Profiling Reveals a Role for Caspase-2 in Lipoapoptosis*  

PubMed Central

The accumulation of long-chain fatty acids (LCFAs) in non-adipose tissues results in lipid-induced cytotoxicity (or lipoapoptosis). Lipoapoptosis has been proposed to play an important role in the pathogenesis of several metabolic diseases, including non-alcoholic fatty liver disease, diabetes mellitus, and cardiovascular disease. In this report, we demonstrate a novel role for caspase-2 as an initiator of lipoapoptosis. Using a metabolomics approach, we discovered that the activation of caspase-2, the initiator of apoptosis in Xenopus egg extracts, is associated with an accumulation of LCFA metabolites. Metabolic treatments that blocked the buildup of LCFAs potently inhibited caspase-2 activation, whereas adding back an LCFA in this scenario restored caspase activation. Extending these findings to mammalian cells, we show that caspase-2 was engaged and activated in response to treatment with the saturated LCFA palmitate. Down-regulation of caspase-2 significantly impaired cell death induced by saturated LCFAs, suggesting that caspase-2 plays a pivotal role in lipid-induced cytotoxicity. Together, these findings reveal a previously unknown role for caspase-2 as an initiator caspase in lipoapoptosis and suggest that caspase-2 may be an attractive therapeutic target for inhibiting pathological lipid-induced apoptosis.

Johnson, Erika Segear; Lindblom, Kelly R.; Robeson, Alexander; Stevens, Robert D.; Ilkayeva, Olga R.; Newgard, Christopher B.; Kornbluth, Sally; Andersen, Joshua L.

2013-01-01

34

p53 Mediates Apoptotic Crisis in Primary Abelson Virus-Transformed Pre-B Cells  

PubMed Central

Transformation of pre-B cells by Abelson murine leukemia virus (Ab-MLV) involves a balance between positive, growth-stimulatory signals from the v-Abl oncoprotein and negative regulatory cues from cellular genes. This phenomenon is reflected by the clonal selection that occurs during Ab-MLV-mediated transformation in vivo and in vitro. About 50% of all Ab-MLV-transformed pre-B cells express mutant forms of p53 as they emerge from this process, suggesting that this protein may play an important role in the transformation process. Consistent with this idea, expression of p19Arf, a protein whose function depends on the presence of a functional p53, is required for the apoptotic crisis that characterizes primary Ab-MLV transformants. To test the role of p53 in pre-B-cell transformation directly, we examined the response of Trp53?/? mice to Ab-MLV. The absence of p53 shortens the latency of Abelson disease induction but does not affect the frequency of cells susceptible to Ab-MLV-induced transformation. However, primary transformants derived from the null animals bypass the apoptotic crisis that characterizes the transition from primary transformant to fully malignant cell line. These effects do not require p21Cip-1, a major downstream target of p53; however, consistent with a role of p19Arf, transformants expressing mutant p53 and abundant p19 retain wild-type p19 sequences.

Unnikrishnan, Indira; Radfar, Arash; Jenab-Wolcott, Jenia; Rosenberg, Naomi

1999-01-01

35

GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria.  

PubMed

p73, a member of the p53 family, shares high sequence homology with p53 and shows many p53-like properties: it binds to p53-DNA target sites, transactivates p53-responsive genes and induces cell cycle arrest and apoptosis. Apart from this transcription-dependent effect, less is known about the downstream mechanism(s) by which p73 controls cell fate at the mitochondria. We have previously identified GRAMD4 (alias KIAA0767 or Death-Inducing-Protein) as a novel p53-independent pro-apoptotic target of E2F1, which localizes to mitochondria. In this study, we found that p73-induced apoptosis is mediated by GRAMD4 expression and translocation to the mitochondria. We showed that this protein physically interacts with Bcl-2, promotes Bax mitochondrial relocalization and oligomerization, and is highly efficient in inducing mitochondrial membrane permeabilization with release of cytochrome c and Smac. Overexpression of p73? and p73? isoforms, but not p53, leads to direct GRAMD4 promoter transactivation. In addition, GRAMD4 induces changes in Bcl-2 and Bax protein levels. GRAMD4 transcription is activated in response to cisplatin (cDDP) in a manner dependent on endogenous p73. Using solid tumor xenografts, ectopic expression of GRAMD4 together with cDDP resulted in enhanced cancer killing. Our findings demonstrate that p73 is able to trigger apoptosis via the mitochondrial pathway by a new mechanism using pro-apoptotic GRAMD4 as mediator, and strongly support its p53-like function. PMID:21127500

John, K; Alla, V; Meier, C; Pützer, B M

2011-05-01

36

Apoptotic mediators in patients with severe and non-severe dengue from Brazil.  

PubMed

Despite being the most significant arboviral disease worldwide, dengue has no antiviral treatment or reliable severity predictors. It has been shown that apoptotic cells from blood and tissues may be involved in the complex pathogenesis of dengue. However, very little is known about the interplay between proapoptotic and antiapoptotic mediators in this disease. Therefore, plasma levels of the three proapoptotic mediators Fas ligand (FasL), tumor necrosis factor-? (TNF-?), and TNF-related apoptosis-inducing ligand (TRAIL) were measured in dengue patients. Patients were classified according to the World Health Organization classification of dengue revised in 2009. Additionally, inhibitors of apoptosis protein (IAPs) were determined in plasma (Survivin) and peripheral blood mononuclear cells (PBMCs) lysates (cIAP-1, cIAP-2, XIAP). Levels of apoptotic proteins in plasma were correlated with counts of blood cells. FasL and TRAIL levels were elevated in dengue patients without warning signs when compared to patients with severe dengue and controls. Dengue patients with warning signs showed decreased levels of Survivin compared to patients with severe dengue and controls. TRAIL was inversely correlated with counts of lymphocyte subsets. In contrast, Survivin was positively correlated with leukocyte counts. There was a trend of elevated IAPs levels in PBMCs of patients with severe dengue. The results suggest a likely antiviral effect of TRAIL in dengue. It appears that TRAIL might be involved with apoptosis induction of lymphocytes, whereas IAPs might participate in protecting leukocytes from apoptosis. Further research is needed to explore the interactions between pro and antiapoptotic molecules and their implications in dengue pathogenesis. J. Med. Virol. 86:1437-1447, 2014. © 2013 Wiley Periodicals, Inc. PMID:24170344

Limonta, Daniel; Torrentes-Carvalho, Amanda; Marinho, Cíntia Ferreira; de Azeredo, Elzinandes Leal; de Souza, Luiz José; Motta-Castro, Ana Rita C; da Cunha, Rivaldo Venâncio; Kubelka, Claire Fernandes; Nogueira, Rita Maria Ribeiro; de-Oliveira-Pinto, Luzia Maria

2014-08-01

37

Tissue factor mediates the HGF/Met-induced anti-apoptotic pathway in DAOY medulloblastoma cells.  

PubMed

The classical treatment scheme for medulloblastoma (MB) is based on a tri-therapy approach consisting of surgical tumor resection, craniospinal axis radiation and chemotherapy. With current treatments relying mainly on non-specific cytotoxic therapy, a better understanding of the mechanisms underlying resistance to these treatments is important in order to improve their effectiveness. In this study, we report that stimulation of DAOY with HGF resulted in the protection of these cells against etoposide-induced apoptosis, this anti-apoptotic effect being correlated with an increase in the expression of tissue factor (TF), the initiator of the extrinsic pathway of coagulation. HGF-mediated protection from apoptosis was abolished by a c-Met inhibitor as well as by siRNA-mediated reduction of TF levels, implying a central role of Met-dependent induction of TF expression in this process. Accordingly, stimulation of DAOY with FVIIa, the physiological ligand of TF, also resulted in a significant protection from etoposide-mediated cytotoxicity. Overall, our results suggest the participation of the haemostatic system to drug resistance in MB and may thus provide novel therapeutic approaches for the treatment of these tumors. PMID:19921488

Provençal, Mathieu; Berger-Thibault, Nancy; Labbé, David; Veitch, Ryan; Boivin, Dominique; Rivard, Georges-Etienne; Gingras, Denis; Béliveau, Richard

2010-05-01

38

?-Amyloid-evoked apoptotic cell death is mediated through MKK6-p66shc pathway.  

PubMed

We have previously shown the involvement of p66shc in mediating apoptosis. Here, we demonstrate the novel mechanism of ?-Amyloid-induced toxicity in the mammalian cells. ?-Amyloid leads to the phosphorylation of p66shc at the serine 36 residue and activates MKK6, by mediating the phosphorylation at serine 207 residue. Treatment of cells with antioxidants blocks ?-Amyloid-induced serine phosphorylation of MKK6, reactive oxygen species (ROS) generation, and hence protected cells against ?-Amyloid-induced cell death. Our results indicate that serine phosphorylation of p66shc is carried out by active MKK6. MKK6 knock-down resulted in decreased serine 36 phosphorylation of p66shc. Co-immunoprecipitation results demonstrate a direct physical association between p66shc and WT MKK6, but not with its mutants. Increase in ?-Amyloid-induced ROS production was observed in the presence of MKK6 and p66shc, when compared to triple mutant of MKK6 (inactive) and S36 mutant of p66shc. ROS scavengers and knock-down against p66shc, and MKK6 significantly decreased the endogenous level of active p66shc, ROS production, and cell death. Finally, we show that the MKK6-p66shc complex mediates ?-Amyloid-evoked apoptotic cell death. PMID:24085465

Bashir, Muneesa; Parray, Arif A; Baba, Rafia A; Bhat, Hina F; Bhat, Sehar S; Mushtaq, Umar; Andrabi, Khurshid I; Khanday, Firdous A

2014-03-01

39

Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells  

Microsoft Academic Search

fficient phagocytosis of apoptotic cells is important for normal tissue development, homeostasis, and the resolution of inflammation. Although many receptors have been implicated in the clearance of apoptotic cells, the roles of these receptors in the engulfment process have not been well defined. We developed a novel system to distinguish between receptors involved in tethering of apoptotic cells versus those

Peter R. Hoffmann; Aimee M. deCathelineau; Carol Anne Ogden; Yann Leverrier; Donna L. Bratton; David L. Daleke; Anne J. Ridley; Valerie A. Fadok; Peter M. Henson

2001-01-01

40

Activation of p53-regulated pro-apoptotic signaling pathways in PrP-mediated myopathy  

PubMed Central

Background We have reported that doxycycline-induced over-expression of wild type prion protein (PrP) in skeletal muscles of Tg(HQK) mice is sufficient to cause a primary myopathy with no signs of peripheral neuropathy. The preferential accumulation of the truncated PrP C1 fragment was closely correlated with these myopathic changes. In this study we use gene expression profiling to explore the temporal program of molecular changes underlying the PrP-mediated myopathy. Results We used DNA microarrays, and confirmatory real-time PCR and Western blot analysis to demonstrate deregulation of a large number of genes in the course of the progressive myopathy in the skeletal muscles of doxycycline-treated Tg(HQK) mice. These include the down-regulation of genes coding for the myofibrillar proteins and transcription factor MEF2c, and up-regulation of genes for lysosomal proteins that is concomitant with increased lysosomal activity in the skeletal muscles. Significantly, there was prominent up-regulation of p53 and p53-regulated genes involved in cell cycle arrest and promotion of apoptosis that paralleled the initiation and progression of the muscle pathology. Conclusion The data provides the first in vivo evidence that directly links p53 to a wild type PrP-mediated disease. It is evident that several mechanistic features contribute to the myopathy observed in PrP over-expressing mice and that p53-related apoptotic pathways appear to play a major role.

Liang, Jingjing; Parchaliuk, Debra; Medina, Sarah; Sorensen, Garrett; Landry, Laura; Huang, Shenghai; Wang, Meiling; Kong, Qingzhong; Booth, Stephanie A

2009-01-01

41

Upregulation of extrinsic apoptotic pathway in curcumin-mediated antiproliferative effect on human pancreatic carcinogenesis.  

PubMed

Pancreatic cancer is one of the most lethal human cancers, with almost identical incidence and mortality rates. Curcumin, derived from the rhizome of Curcuma longa, has a long history of use as coloring agent and for a wide variety of disorders. Here, the antiproliferative activity of curcumin and its modulatory effect on gene expression of pancreatic cancer cell lines were investigated. The effect of curcumin on cellular proliferation and viability was monitored by sulphurhodamine B assay. Apoptotic effect was evaluated by flow cytometry and further confirmed by measuring amount of cytoplasmic histone-associated DNA fragments. Analysis of gene expression was performed with and without curcumin treatment using microarray expression profiling techniques. Array results were confirmed by real-time PCR. ingenuity pathway analysis (IPA) has been used to classify the list of differentially expressed genes and to indentify common biomarkergenes modulating the chemopreventive effect of curcumin. Results showed that curcumin induces growth arrest and apoptosis in pancreatic cancer cell lines. Its effect was more obvious on the highly COX-2 expressing cell line. Additionally, the expression of 366 and 356 cancer-related genes, involved in regulation of apoptosis, cell cycle, metastasis, was significantly altered after curcumin treatment in BxPC-3 and MiaPaCa-2 cells, respectively. Our results suggested that up-regulation of the extrinsic apoptotic pathway was among signaling pathways modulating the growth inhibitory effects of curcumin on pancreatic cancer cells. Curcumin effect was mediated through activation of TNFR, CASP 8, CASP3, BID, BAX, and down-regulation of NF?B, NDRG 1, and BCL2L10 genes. PMID:23794119

Youns, Mahmoud; Fathy, Gihan Mahmoud

2013-12-01

42

Polyglutamine-expanded androgen receptor truncation fragments activate a Bax-dependent apoptotic cascade mediated by DP5/Hrk  

PubMed Central

Spinal and bulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by a polyglutamine (polyQ) repeat expansion in the androgen receptor (AR). PolyQ-AR neurotoxicity may involve generation of an amino-terminal truncation fragment, as such peptides occur in SBMA patients and mouse models. To elucidate the basis of SBMA, we expressed amino-terminal truncated AR in motor neuron-derived cells and primary cortical neurons. Accumulation of polyQ-AR truncation fragments in the cytosol resulted in neurodegeneration and apoptotic, caspase-dependent cell death. Using primary neurons from mice transgenic or deficient for apoptosis-related genes, we determined that polyQ-AR apoptotic activation is fully dependent on Bax. Jun N-terminal kinase (JNK) was required for apoptotic pathway activation through phosphorylation of c-Jun. Expression of polyQ-AR in DP5/Hrk null neurons yielded significant protection against apoptotic activation, but absence of Bim did not provide protection, apparently due to compensatory up-regulation of DP5/Hrk or other BH3-only proteins. Misfolded AR protein in the cytosol thus initiates a cascade of events beginning with JNK and culminating in Bax-dependent, intrinsic pathway activation, mediated in part by DP5/Hrk. As apoptotic mediators are candidates for toxic fragment generation and other cellular processes linked to neuron dysfunction, delineation of the apoptotic activation pathway induced by polyQ-expanded AR may shed light on the pathogenic cascade in SBMA and other motor neuron diseases.

Young, Jessica E.; Garden, Gwenn A.; Martinez, Refugio A.; Tanaka, Fumiaki; Sandoval, C. Miguel; Smith, Annette C.; Sopher, Bryce L.; Lin, Amy; Fischbeck, Kenneth H.; Ellerby, Lisa M.; Morrison, Richard S.; Taylor, J. Paul; La Spada, Albert R.

2009-01-01

43

Appoptosin is a novel pro-apoptotic protein and mediates cell death in neurodegeneration.  

PubMed

Apoptosis is an essential cellular process in multiple diseases and a major pathway for neuronal death in neurodegeneration. The detailed signaling events/pathways leading to apoptosis, especially in neurons, require further elucidation. Here we identify a ?-amyloid precursor protein (APP)-interacting protein, designated as appoptosin, whose levels are upregulated in brain samples from Alzheimer's disease and infarct patients, and in rodent stroke models, as well as in neurons treated with ?-amyloid (A?) and glutamate. We further demonstrate that appoptosin induces reactive oxygen species release and intrinsic caspase-dependent apoptosis. The physiological function of appoptosin is to transport/exchange glycine/5-amino-levulinic acid across the mitochondrial membrane for heme synthesis. Downregulation of appoptosin prevents cell death and caspase activation caused by glutamate or A? insults. APP modulates appoptosin-mediated apoptosis through interaction with appoptosin. Our study identifies appoptosin as a crucial player in apoptosis and a novel pro-apoptotic protein involved in neuronal cell death, providing a possible new therapeutic target for neurodegenerative disorders. PMID:23115192

Zhang, Han; Zhang, Yun-wu; Chen, Yaomin; Huang, Xiumei; Zhou, Fangfang; Wang, Weiwei; Xian, Bo; Zhang, Xian; Masliah, Eliezer; Chen, Quan; Han, Jing-Dong J; Bu, Guojun; Reed, John C; Liao, Francesca-Fang; Chen, Ye-Guang; Xu, Huaxi

2012-10-31

44

Enhanced G?q signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure  

PubMed Central

Receptor-mediated Gq signaling promotes hypertrophic growth of cultured neonatal rat cardiac myocytes and is postulated to transduce in vivo cardiac pressure overload hypertrophy. Although initially compensatory, hypertrophy can proceed by unknown mechanisms to cardiac failure. We used adenoviral infection and transgenic overexpression of the alpha subunit of Gq to autonomously activate Gq signaling in cardiomyocytes. In cultured cardiac myocytes, overexpression of wild-type G?q resulted in hypertrophic growth. Strikingly, expression of a constitutively activated mutant of G?q, which further increased Gq signaling, produced initial hypertrophy, which rapidly progressed to apoptotic cardiomyocyte death. This paradigm was recapitulated during pregnancy in G?q overexpressing mice and in transgenic mice expressing high levels of wild-type G?q. The consequence of cardiomyocyte apoptosis was a transition from compensated hypertrophy to a rapidly progressive and lethal cardiomyopathy. Progression from hypertrophy to apoptosis in vitro and in vivo was coincident with activation of p38 and Jun kinases. These data suggest a mechanism in which moderate levels of Gq signaling stimulate cardiac hypertrophy whereas high level Gq activation results in cardiomyocyte apoptosis. The identification of a single biochemical stimulus regulating cardiomyocyte growth and death suggests a plausible mechanism for the progression of compensated hypertrophy to decompensated heart failure.

Adams, John W.; Sakata, Yoshihito; Davis, Michael G.; Sah, Valerie P.; Wang, Yibin; Liggett, Stephen B.; Chien, Kenneth R.; Brown, Joan Heller; Dorn, Gerald W.

1998-01-01

45

The scavenger receptor SCARF1 mediates apoptotic cell clearance and prevents autoimmunity  

PubMed Central

Clearance of apoptotic cells is critical for control of tissue homeostasis however the full range of receptor(s) on phagocytes responsible for recognition of apoptotic cells remains to be identified. Here we show that dendritic cells (DCs), macrophages and endothelial cells use scavenger receptor type F family member 1 (SCARF1) to recognize and engulf apoptotic cells via C1q. Loss of SCARF1 impairs uptake of apoptotic cells. Consequently, in SCARF1-deficient mice, dying cells accumulate in tissues leading to a lupus-like disease with the spontaneous generation of autoantibodies to DNA-containing antigens, immune cell activation, dermatitis and nephritis. The discovery of SCARF1 interactions with C1q and apoptotic cells provides insights into molecular mechanisms involved in maintenance of tolerance and prevention of autoimmune disease.

Ramirez-Ortiz, Zaida G.; Pendergraft, William F.; Prasad, Amit; Byrne, Michael H.; Iram, Tal; Blanchette, Christopher J.; Luster, Andrew D.; Hacohen, Nir; Khoury, Joseph El; Means, Terry K.

2013-01-01

46

Pro-apoptotic gene knockdown mediated by nanocomplexed siRNA reduces radiation damage in primary salivary gland cultures  

PubMed Central

A critical issue in the management of head and neck tumors is radioprotection of the salivary glands. We have investigated whether siRNA-mediated gene knock down of pro-apoptotic mediators can reduce radiation-induced cellular apoptosis in salivary gland cells in vitro. We used novel, pH-responsive nanoparticles to deliver functionally active siRNAs into cultures of salivary gland cells. The nanoparticle molecules are comprised of cationic micelles that electrostatically interact with the siRNA, protecting it from nuclease attack, and also include pH-responsive endosomolytic constituents that promote release of the siRNA into the target cell cytoplasm. Transfection controls with Cy3-tagged siRNA/nanoparticle complexes showed efficiently internalized siRNAs in more than 70% of the submandibular gland cells. We found that introduction of siRNAs specifically targeting the Pkc? or Bax genes significantly blocked the induction of these pro-apoptotic proteins that normally occurs after radiation in cultured salivary gland cells. Furthermore, the level of cell death from subsequent radiation, as measured by caspase-3, TUNEL, and mitochondrial disruption assays, was significantly decreased. Thus, we have successfully demonstrated that the siRNA/ nanoparticle-mediated knock down of pro-apoptotic genes can prevent radiation-induced damage in submandibular gland primary cell cultures.

Arany, Szilvia; Xu, Qingfu; Hernady, Eric; Benoit, Danielle S.W.; Dewhurst, Steve; Ovitt, Catherine E.

2012-01-01

47

Pro-apoptotic gene knockdown mediated by nanocomplexed siRNA reduces radiation damage in primary salivary gland cultures.  

PubMed

A critical issue in the management of head and neck tumors is radioprotection of the salivary glands. We have investigated whether siRNA-mediated gene knock down of pro-apoptotic mediators can reduce radiation-induced cellular apoptosis in salivary gland cells in vitro. We used novel, pH-responsive nanoparticles to deliver functionally active siRNAs into cultures of salivary gland cells. The nanoparticle molecules are comprised of cationic micelles that electrostatically interact with the siRNA, protecting it from nuclease attack, and also include pH-responsive endosomolytic constituents that promote release of the siRNA into the target cell cytoplasm. Transfection controls with Cy3-tagged siRNA/nanoparticle complexes showed efficiently internalized siRNAs in more than 70% of the submandibular gland cells. We found that introduction of siRNAs specifically targeting the Pkc? or Bax genes significantly blocked the induction of these pro-apoptotic proteins that normally occurs after radiation in cultured salivary gland cells. Furthermore, the level of cell death from subsequent radiation, as measured by caspase-3, TUNEL, and mitochondrial disruption assays, was significantly decreased. Thus, we have successfully demonstrated that the siRNA/nanoparticle-mediated knock down of pro-apoptotic genes can prevent radiation-induced damage in submandibular gland primary cell cultures. PMID:22253051

Arany, Szilvia; Xu, Qingfu; Hernady, Eric; Benoit, Danielle S W; Dewhurst, Steve; Ovitt, Catherine E

2012-06-01

48

Structural study of TTR-52 reveals the mechanism by which a bridging molecule mediates apoptotic cell engulfment  

PubMed Central

During apoptosis, apoptotic cells are removed by professional phagocytes or neighboring engulfing cells either directly through phagocytic receptors or indirectly through bridging molecules that cross-link dying cells to phagocytes. However, how bridging molecules recognize “eat me” signals and phagocytic receptors to mediate engulfment remains unclear. Here, we report the structural and functional studies of Caenorhabditis elegans TTR-52, a recently identified bridging molecule that cross-links surface-exposed phosphatidylserine (PtdSer) on apoptotic cells to the CED-1 receptor on phagocytes. Crystal structure studies show that TTR-52 has an open ?-barrel-like structure with some similarities to the PKC?-C2 domain. TTR-52 is proposed to bind PtdSer via an “ion-mediating” PtdSer-binding mode. Intensive functional studies show that CED-1 binds TTR-52 through its N-terminal EMI domain and that the hydrophobic region of the TTR-52 C terminus is involved in this interaction. In addition, unlike other PtdSer-binding domains, TTR-52 forms dimers, and its dimerization is important for its function in vivo. Our results reveal the first full-length structure of a bridging molecule and the mechanism underlying bridging molecule-mediated apoptotic cell recognition.

Kang, Yanyong; Zhao, Dongfeng; Liang, Huanhuan; Liu, Bin; Zhang, Yan; Liu, Qinwen; Wang, Xiaochen; Liu, Yingfang

2012-01-01

49

Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1?  

PubMed Central

Sterile inflammation resulting from cell death is due to the release of cell contents normally inactive and sequestered within the cell; fragments of cell membranes from dying cells also contribute to sterile inflammation. Endothelial cells undergoing stress-induced apoptosis release membrane microparticles, which become vehicles for proinflammatory signals. Here, we show that stress-activated endothelial cells release two distinct populations of particles: One population consists of membrane microparticles (<1 ?m, annexin V positive without DNA and no histones) and another larger (1–3 ?m) apoptotic body-like particles containing nuclear fragments and histones, representing apoptotic bodies. Contrary to present concepts, endothelial microparticles do not contain IL-1? and do not induce neutrophilic chemokines in vitro. In contrast, the large apoptotic bodies contain the full-length IL-1? precursor and the processed mature form. In vitro, these apoptotic bodies induce monocyte chemotactic protein-1 and IL-8 chemokine secretion in an IL-1?–dependent but IL-1?–independent fashion. Injection of these apoptotic bodies into the peritoneal cavity of mice induces elevated serum neutrophil-inducing chemokines, which was prevented by cotreatment with the IL-1 receptor antagonist. Consistently, injection of these large apoptotic bodies into the peritoneal cavity induced a neutrophilic infiltration that was prevented by IL-1 blockade. Although apoptosis is ordinarily considered noninflammatory, these data demonstrate that nonphagocytosed endothelial apoptotic bodies are inflammatory, providing a vehicle for IL-1? and, therefore, constitute a unique mechanism for sterile inflammation.

Berda-Haddad, Yael; Robert, Stephane; Salers, Paul; Zekraoui, Leila; Farnarier, Catherine; Dinarello, Charles A.; Dignat-George, Francoise; Kaplanski, Gilles

2011-01-01

50

Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation  

PubMed Central

Background Titanium dioxide (TiO2) has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined. Methods and results In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70) together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation. Conclusion These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein, Bax. Elucidating the molecular mechanisms by which nanosized particles induce activation of cell death signaling pathways would be critical for the development of prevention strategies to minimize the cytotoxicity of nanomaterials.

Yoo, Ki-Chun; Yoon, Chang-Hwan; Kwon, Dongwook; Hyun, Kyung-Hwan; Woo, Soo Jung; Kim, Rae-Kwon; Lim, Eun-Jung; Suh, Yongjoon; Kim, Min-Jung; Yoon, Tae Hyun; Lee, Su-Jae

2012-01-01

51

Caspases-2, -3, and -7 are involved in thapsigargin-induced apoptosis of SH-SY5Y neuroblastoma cells.  

PubMed

Caspase-2 has been reported to play a role in the cell death observed under a number of different conditions; however, it is unclear whether caspase-2 plays a role in cell death triggered by endoplasmic reticulum (ER) stress. The purpose of this study was to determine whether caspase-2 is involved in SH-SY5Y neuroblastoma cell death caused by thapsigargin-induced ER stress. Thapsigargin treatment (1 microM, 16 hr) stimulated the proteolytic processing of caspases-2, -3, and -7, suggesting that these caspases are activated by ER stress. The role of these caspases in thapsigargin-induced cell death was examined by using cell-permeable caspase inhibitors. In the absence of pretreatment with caspase inhibitors, thapsigargin (0.1 microM, 20 hr) reduced the number of viable cells to 53.9% +/- 3.3% of starting-time control. Pretreatment for 90 min with either the pan-caspase inhibitor Z-VAD-FMK or the caspase-2-selective inhibitor Z-VDVAD-FMK inhibited thapsigargin-stimulated cell death, resulting in the number of viable cells being 115.6% +/- 5.3% (P < 0.001) and 69.3% +/- 2.9% (P < 0.01), respectively, of starting-time control. Neither the caspase-3- and -7-selective inhibitor Z-DEVD-FMK nor the caspase-9-selective inhibitor Z-LEHD-FMK significantly affected thapsigargin-stimulated cell death. An anticaspase-12-reactive protein was also identified in SH-SY5Y cells, but thapsigargin had no effect on proteolysis of this protein. These data demonstrate that caspases-2, -3, and -7 are involved in ER stress-mediated death of SH-SY5Y cells. PMID:15825194

Dahmer, Mary K

2005-05-15

52

Caspase-2 Is Upregulated after Sciatic Nerve Transection and Its Inhibition Protects Dorsal Root Ganglion Neurons from Apoptosis after Serum Withdrawal  

PubMed Central

Sciatic nerve (SN) transection-induced apoptosis of dorsal root ganglion neurons (DRGN) is one factor determining the efficacy of peripheral axonal regeneration and the return of sensation. Here, we tested the hypothesis that caspase-2 (CASP2) orchestrates apoptosis of axotomised DRGN both in vivo and in vitro by disrupting the local neurotrophic supply to DRGN. We observed significantly elevated levels of cleaved CASP2 (C-CASP2), compared to cleaved caspase-3 (C-CASP3), within TUNEL+DRGN and DRG glia (satellite and Schwann cells) after SN transection. A serum withdrawal cell culture model, which induced 40% apoptotic death in DRGN and 60% in glia, was used to model DRGN loss after neurotrophic factor withdrawal. Elevated C-CASP2 and TUNEL were observed in both DRGN and DRG glia, with C-CASP2 localisation shifting from the cytosol to the nucleus, a required step for induction of direct CASP2-mediated apoptosis. Furthermore, siRNA-mediated downregulation of CASP2 protected 50% of DRGN from apoptosis after serum withdrawal, while downregulation of CASP3 had no effect on DRGN or DRG glia survival. We conclude that CASP2 orchestrates the death of SN-axotomised DRGN directly and also indirectly through loss of DRG glia and their local neurotrophic factor support. Accordingly, inhibiting CASP2 expression is a potential therapy for improving both the SN regeneration response and peripheral sensory recovery.

Vigneswara, Vasanthy; Berry, Martin

2013-01-01

53

Clathrin and AP2 Are Required for Phagocytic Receptor-Mediated Apoptotic Cell Clearance in Caenorhabditis elegans  

PubMed Central

Clathrin and the multi-subunit adaptor protein complex AP2 are central players in clathrin-mediated endocytosis by which the cell selectively internalizes surface materials. Here, we report the essential role of clathrin and AP2 in phagocytosis of apoptotic cells. In Caenorhabditis elegans, depletion of the clathrin heavy chain CHC-1 and individual components of AP2 led to a significant accumulation of germ cell corpses, which resulted from defects in both cell corpse engulfment and phagosome maturation required for corpse removal. CHC-1 and AP2 components associate with phagosomes in an inter-dependent manner. Importantly, we found that the phagocytic receptor CED-1 interacts with the ? subunit of AP2, while the CED-6/Gulp adaptor forms a complex with both CHC-1 and the AP2 complex, which likely mediates the rearrangement of the actin cytoskeleton required for cell corpse engulfment triggered by the CED-1 signaling pathway. In addition, CHC-1 and AP2 promote the phagosomal association of LST-4/Snx9/18/33 and DYN-1/dynamin by forming a complex with them, thereby facilitating the maturation of phagosomes necessary for corpse degradation. These findings reveal a non-classical role of clathrin and AP2 and establish them as indispensable regulators in phagocytic receptor-mediated apoptotic cell clearance.

Liu, Xuezhao; Zhang, Yuanya; Liang, Jingjing; Qi, Xiaying; Du, Hongwei; Zou, Wei; Chen, Lianwan; Chai, Yongping; Ou, Guangshuo; Miao, Long; Wang, Yingchun; Yang, Chonglin

2013-01-01

54

The IRF-3/Bax-Mediated Apoptotic Pathway, Activated by Viral Cytoplasmic RNA and DNA, Inhibits Virus Replication ? †  

PubMed Central

Induction of apoptosis in cells infected by Sendai virus (SeV), which triggers the cytosolic RIG-I pathway, requires the presence of interferon regulatory factor 3 (IRF-3). Independent of IRF-3's transcriptional role, a novel IRF-3 activation pathway causes its interaction with the proapoptotic protein Bax and its mitochondrial translocation to induce apoptosis. Here we report that two other RNA viruses, vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMCV), may also activate the same pathway. Moreover, cytosolic DNA, produced by adenovirus or introduced by transfection, activated the pathway in an RNA polymerase III-dependent fashion. To evaluate the contribution of this newly discovered apoptotic pathway to the host's overall antiviral response, we measured the efficiencies of replication of various viruses in vitro and viral pathogenesis in vivo, using cells and mice that are selectively deficient in components required for the apoptotic pathway of IRF-3. Our results clearly demonstrate that the IRF-3/Bax-mediated apoptotic signaling branch contributes significantly to the host's protection from viral infection and consequent pathogenesis.

Chattopadhyay, Saurabh; Yamashita, Michifumi; Zhang, Ying; Sen, Ganes C.

2011-01-01

55

Vaccinia Virus Infection Disarms the Mitochondrion-Mediated Pathway of the Apoptotic Cascade by Modulating the Permeability Transition Pore  

PubMed Central

Many viruses have evolved strategies that target crucial components within the apoptotic cascade. One of the best studied is the caspase 8 inhibitor, crmA/Spi-2, encoded by members of the poxvirus family. Since many proapoptotic stimuli induce apoptosis through a mitochondrion-dependent, caspase 8-independent pathway, we hypothesized that vaccinia virus would encode a mechanism to directly modulate the mitochondrial apoptotic pathway. In support of this, we observed that Jurkat cells, which undergo Fas-mediated apoptosis exclusively through the mitochondrial route, were resistant to Fas-induced death following infection with a crmA/Spi-2-deficient strain of vaccinia virus. In addition, vaccinia virus-infected cells subjected to the proapoptotic stimulus staurosporine exhibited decreased levels of both cytochrome c released from the mitochondria and caspase 3 activation. In all cases we found that the loss of the mitochondrial membrane potential, which occurs as a result of opening the multimeric permeability transition pore complex, was prevented in vaccinia virus-infected cells. Moreover, vaccinia virus infection specifically inhibited opening of the permeability transition pore following treatment with the permeability transition pore ligand atractyloside and t-butylhydroperoxide. These studies indicate that vaccinia virus infection directly impacts the mitochondrial apoptotic cascade by influencing the permeability transition pore.

Wasilenko, Shawn T.; Meyers, Adrienne F. A.; Vander Helm, Kathleen; Barry, Michele

2001-01-01

56

Beneficial Effects of Astragaloside IV for Hair Loss via Inhibition of Fas/Fas L-Mediated Apoptotic Signaling  

PubMed Central

Apoptosis with premature termination of hair follicle growth induces several types of hair loss and is one of the crucial factors of hair loss. Astragaloside IV, which is a major component of Astragalus membranaceus, is a cycloartane triterpene saponin. Although an anti-apoptotic effect of Astragaloside IV has been reported, its effects against hair loss have not been investigated. To explore the underlying mechanisms of Astragaloside IV on apoptotic signaling in hair follicle, the dorsal skin of depilated C57BL/6 mice was topically treated with 1 and 100 ?M Astragaloside IV for 14 days. In Astragaloside IV-treated group, TUNEL-positive cells were reduced. We found that Astragaloside IV blocked the procaspase-8, resulting in the inhibition of caspase-3 and procaspase-9 activities. The changes were accompanied with down-regulation of Bax and p53, and up-regulation of Bcl-2 and Bcl-xL by Astragaloside IV treatment. In addition, activation of NF-?B and phosphorylation of I?B-? were inhibited, along with decreases in three MAPKs: ERK, SAPK/JNK and p38 by Astragaloside IV. The expressions of KGF, p21, TNF-? and IL-1?, which are keratinocyte terminal differentiation markers associated with catagen, were modulated by treatment with Astragaloside IV. These results demonstrated that Astragaloside IV is concerned with blocking the Fas/Fas L-mediated apoptotic pathway, which would be an alternative therapy for hair loss.

Kim, Mi Hye; Kim, Sung-Hoon; Yang, Woong Mo

2014-01-01

57

Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C delta.  

PubMed

Aplidin, a new antitumoural drug presently in phase II clinical trials, has shown both in vitro and in vivo activity against human cancer cells. Aplidin effectively inhibits cell viability by triggering a canonical apoptotic program resulting in alterations in cell morphology, caspase activation, and chromatin fragmentation. Pro-apoptotic concentrations of Aplidin induce early oxidative stress, which results in a rapid and persistent activation of both JNK and p38 MAPK and a biphasic activation of ERK. Inhibition of JNK and p38 MAPK blocks the apoptotic program induced by Aplidin demonstrating its central role in the integration of the cellular stress induced by the drug. JNK and p38 MAPK activation results in downstream cytochrome c release and activation of caspases -9 and -3 and PARP cleavage, demonstrating the mediation of the mitochondrial apoptotic pathway in this process. We also demonstrate that protein kinase C delta (PKC-delta) mediates the cytotoxic effect of Aplidin and that it is concomitantly processed and activated late in the apoptotic process by a caspase mediated mechanism. Remarkably, cells deficient in PKC-delta show enhanced survival upon drug treatment as compared to its wild type counterpart. PKC-delta thus appears as an important component necessary for full caspase cascade activation and execution of apoptosis, which most probably initiates a positive feedback loop further amplifying the apoptotic process. PMID:12386816

García-Fernández, Luis F; Losada, Alejandro; Alcaide, Victoria; Alvarez, Alberto M; Cuadrado, Ana; González, Laura; Nakayama, Keiko; Nakayama, Keiichi I; Fernández-Sousa, José María; Muñoz, Alberto; Sánchez-Puelles, José María

2002-10-24

58

The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells  

PubMed Central

The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell–induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH2-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-? or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

2012-01-01

59

Puma is an essential mediator of p53-dependent and -independent apoptotic pathways  

Microsoft Academic Search

Puma encodes a BH3-only protein that is induced by the p53 tumor suppressor and other apoptotic stimuli. To assess its physiological role in apoptosis, we generated Puma knockout mice by gene targeting. Here we report that Puma is essential for hematopoietic cell death triggered by ionizing radiation (IR), deregulated c-Myc expression, and cytokine withdrawal. Puma is also required for IR-induced

John R. Jeffers; Evan Parganas; Youngsoo Lee; Chunying Yang; JinLing Wang; Jennifer Brennan; Kirsteen H. MacLean; Jiawen Han; Thomas Chittenden; James N. Ihle; Peter J. McKinnon; John L. Cleveland; Gerard P. Zambetti

2003-01-01

60

Survivin mediates the anti-apoptotic effect of  -opioid receptor stimulation in cardiomyocytes  

Microsoft Academic Search

Survivin is known to be essential for cell division and to inhibit apoptosis during embryonic development and in adult cancerous tissues. However, the cardiovascular role of survivin is unknown. We observed that in cardiomyocytes cultured under conditions of serum and glucose deprivation (DEPV), the levels of survivin, Bcl-2 and extracellular signal-regulated kinase (ERK) were positively correlated with the anti-apoptotic action

Ling-Ling Yao; Yong-Gang Wang; Wen-Jie Cai; Tai Yao; Yi-Chun Zhu

2007-01-01

61

Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation  

PubMed Central

Long noncoding RNAs (lncRNAs) are differentially expressed under both normal and pathological conditions, implying that they may play important biological functions. Here we examined the expression of lncRNAs during erythropoiesis and identified an erythroid-specific lncRNA with anti-apoptotic activity. Inhibition of this lncRNA blocks erythroid differentiation and promotes apoptosis. Conversely, ectopic expression of this lncRNA can inhibit apoptosis in mouse erythroid cells. This lncRNA represses expression of Pycard, a proapoptotic gene, explaining in part the inhibition of programmed cell death. These findings reveal a novel layer of regulation of cell differentiation and apoptosis by a lncRNA.

Hu, Wenqian; Yuan, Bingbing; Flygare, Johan; Lodish, Harvey F.

2011-01-01

62

Cracking the Cytotoxicity Code: Apoptotic Induction of 10-Acetylirciformonin B is Mediated through ROS Generation and Mitochondrial Dysfunction.  

PubMed

A marine furanoterpenoid derivative, 10-acetylirciformonin B (10AB), was found to inhibit the proliferation of leukemia, hepatoma, and colon cancer cell lines, with selective and significant potency against leukemia cells. It induced DNA damage and apoptosis in leukemia HL 60 cells. To fully understand the mechanism behind the 10AB apoptotic induction against HL 60 cells, we extended our previous findings and further explored the precise molecular targets of 10AB. We found that the use of 10AB increased apoptosis by 8.9%-87.6% and caused disruption of mitochondrial membrane potential (MMP) by 15.2%-95.2% in a dose-dependent manner, as demonstrated by annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of HL 60 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by 10AB, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of 10AB. The results of a cell-free system assay indicated that 10AB could act as a topoisomerase catalytic inhibitor through the inhibition of topoisomerase II?. On the protein level, the expression of the anti-apoptotic proteins Bcl-xL and Bcl-2, caspase inhibitors XIAP and survivin, as well as hexokinase II were inhibited by the use of 10AB. On the other hand, the expression of the pro-apoptotic protein Bax was increased after 10AB treatment. Taken together, our results suggest that 10AB-induced apoptosis is mediated through the overproduction of ROS and the disruption of mitochondrial metabolism. PMID:24857964

Shih, Huei-Chuan; El-Shazly, Mohamed; Juan, Yung-Shun; Chang, Chao-Yuan; Su, Jui-Hsin; Chen, Yu-Cheng; Shih, Shou-Ping; Chen, Huei-Mei; Wu, Yang-Chang; Lu, Mei-Chin

2014-01-01

63

In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death.  

PubMed Central

In tumour cells, elevated levels of mitochondria-bound isoforms of hexokinase (HK-I and HK-II) result in the evasion of apoptosis, thereby allowing the cells to continue proliferating. The molecular mechanisms by which bound HK promotes cell survival are not yet fully understood. Our studies relying on the purified mitochondrial outer membrane protein VDAC (voltage-dependent anion channel), isolated mitochondria or cells in culture suggested that the anti-apoptotic activity of HK-I occurs via modulation of the mitochondrial phase of apoptosis. In the present paper, a direct interaction of HK-I with bilayer-reconstituted purified VDAC, inducing channel closure, is demonstrated for the first time. Moreover, HK-I prevented the Ca(2+)-dependent opening of the mitochondrial PTP (permeability transition pore) and release of the pro-apoptotic protein cytochrome c. The effects of HK-I on VDAC activity and PTP opening were prevented by the HK reaction product glucose 6-phosphate, a metabolic intermediate in most biosynthetic pathways. Furthermore, glucose 6-phosphate re-opened both the VDAC and the PTP closed by HK-I. The HK-I-mediated effects on VDAC and PTP were not observed using either yeast HK or HK-I lacking the N-terminal hydrophobic peptide responsible for binding to mitochondria, or in the presence of an antibody specific for the N-terminus of HK-I. Finally, HK-I overexpression in leukaemia-derived U-937 or vascular smooth muscle cells protected against staurosporine-induced apoptosis, with a decrease of up to 70% in cell death. These results offer insight into the mechanisms by which bound HK promotes tumour cell survival, and suggests that its overexpression not only ensures supplies of energy and phosphometabolites, but also reflects an anti-apoptotic defence mechanism.

Azoulay-Zohar, Heftsi; Israelson, Adrian; Abu-Hamad, Salah; Shoshan-Barmatz, Varda

2004-01-01

64

Cracking the Cytotoxicity Code: Apoptotic Induction of 10-Acetylirciformonin B is Mediated through ROS Generation and Mitochondrial Dysfunction  

PubMed Central

A marine furanoterpenoid derivative, 10-acetylirciformonin B (10AB), was found to inhibit the proliferation of leukemia, hepatoma, and colon cancer cell lines, with selective and significant potency against leukemia cells. It induced DNA damage and apoptosis in leukemia HL 60 cells. To fully understand the mechanism behind the 10AB apoptotic induction against HL 60 cells, we extended our previous findings and further explored the precise molecular targets of 10AB. We found that the use of 10AB increased apoptosis by 8.9%–87.6% and caused disruption of mitochondrial membrane potential (MMP) by 15.2%–95.2% in a dose-dependent manner, as demonstrated by annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of HL 60 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by 10AB, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of 10AB. The results of a cell-free system assay indicated that 10AB could act as a topoisomerase catalytic inhibitor through the inhibition of topoisomerase II?. On the protein level, the expression of the anti-apoptotic proteins Bcl-xL and Bcl-2, caspase inhibitors XIAP and survivin, as well as hexokinase II were inhibited by the use of 10AB. On the other hand, the expression of the pro-apoptotic protein Bax was increased after 10AB treatment. Taken together, our results suggest that 10AB-induced apoptosis is mediated through the overproduction of ROS and the disruption of mitochondrial metabolism.

Shih, Huei-Chuan; El-Shazly, Mohamed; Juan, Yung-Shun; Chang, Chao-Yuan; Su, Jui-Hsin; Chen, Yu-Cheng; Shih, Shou-Ping; Chen, Huei-Mei; Wu, Yang-Chang; Lu, Mei-Chin

2014-01-01

65

Carbon Monoxide Mediates the Anti-apoptotic Effects of Heme Oxygenase-1 in Medulloblastoma DAOY Cells via K+ Channel Inhibition*  

PubMed Central

Tumor cell survival and proliferation is attributable in part to suppression of apoptotic pathways, yet the mechanisms by which cancer cells resist apoptosis are not fully understood. Many cancer cells constitutively express heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe2+, and carbon monoxide (CO). These breakdown products may play a role in the ability of cancer cells to suppress apoptotic signals. K+ channels also play a crucial role in apoptosis, permitting K+ efflux which is required to initiate caspase activation. Here, we demonstrate that HO-1 is constitutively expressed in human medulloblastoma tissue, and can be induced in the medulloblastoma cell line DAOY either chemically or by hypoxia. Induction of HO-1 markedly increases the resistance of DAOY cells to oxidant-induced apoptosis. This effect was mimicked by exogenous application of the heme degradation product CO. Furthermore we demonstrate the presence of the pro-apoptotic K+ channel, Kv2.1, in both human medulloblastoma tissue and DAOY cells. CO inhibited the voltage-gated K+ currents in DAOY cells, and largely reversed the oxidant-induced increase in K+ channel activity. p38 MAPK inhibition prevented the oxidant-induced increase of K+ channel activity in DAOY cells, and enhanced their resistance to apoptosis. Our findings suggest that CO-mediated inhibition of K+ channels represents an important mechanism by which HO-1 can increase the resistance to apoptosis of medulloblastoma cells, and support the idea that HO-1 inhibition may enhance the effectiveness of current chemo- and radiotherapies.

Al-Owais, Moza M. A.; Scragg, Jason L.; Dallas, Mark L.; Boycott, Hannah E.; Warburton, Philip; Chakrabarty, Aruna; Boyle, John P.; Peers, Chris

2012-01-01

66

Carbon monoxide mediates the anti-apoptotic effects of heme oxygenase-1 in medulloblastoma DAOY cells via K+ channel inhibition.  

PubMed

Tumor cell survival and proliferation is attributable in part to suppression of apoptotic pathways, yet the mechanisms by which cancer cells resist apoptosis are not fully understood. Many cancer cells constitutively express heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe(2+), and carbon monoxide (CO). These breakdown products may play a role in the ability of cancer cells to suppress apoptotic signals. K(+) channels also play a crucial role in apoptosis, permitting K(+) efflux which is required to initiate caspase activation. Here, we demonstrate that HO-1 is constitutively expressed in human medulloblastoma tissue, and can be induced in the medulloblastoma cell line DAOY either chemically or by hypoxia. Induction of HO-1 markedly increases the resistance of DAOY cells to oxidant-induced apoptosis. This effect was mimicked by exogenous application of the heme degradation product CO. Furthermore we demonstrate the presence of the pro-apoptotic K(+) channel, Kv2.1, in both human medulloblastoma tissue and DAOY cells. CO inhibited the voltage-gated K(+) currents in DAOY cells, and largely reversed the oxidant-induced increase in K(+) channel activity. p38 MAPK inhibition prevented the oxidant-induced increase of K(+) channel activity in DAOY cells, and enhanced their resistance to apoptosis. Our findings suggest that CO-mediated inhibition of K(+) channels represents an important mechanism by which HO-1 can increase the resistance to apoptosis of medulloblastoma cells, and support the idea that HO-1 inhibition may enhance the effectiveness of current chemo- and radiotherapies. PMID:22593583

Al-Owais, Moza M A; Scragg, Jason L; Dallas, Mark L; Boycott, Hannah E; Warburton, Philip; Chakrabarty, Aruna; Boyle, John P; Peers, Chris

2012-07-13

67

Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia.  

PubMed

Stroma induces treatment resistance in chronic lymphocytic leukemia (CLL), possibly because of alterations in the BCL-2 family of proteins, which are key regulators of apoptosis. We previously developed BH3 profiling, a functional assay that assesses mitochondrial depolarization in response to BH3-only peptides, to measure "apoptotic priming," the proximity of a cell to the apoptotic threshold. In the present study, we use BH3 profiling to show that CLL cells from the PB are highly primed. Increased priming is associated with improved clinical response and, unexpectedly, with unmutated IGHV status. Coculturing CLL cells in vitro with stroma decreases priming. Using matched PB, BM, and lymph node compartment samples, we found in vivo that BM-derived CLL cells are the least primed. CLL cells cocultured with stroma were treated with the PI3K ?-isoform inhibitor CAL-101 (GS1101). CAL-101 caused CLL cell de-adhesion, leading to increased CLL cell priming. Stimulation of CLL cells with anti-IgM or CXCL12 caused decreased priming that could be reversed by CAL-101. Our results show that inhibition of stromal interactions leading to displacement of CLL cells into the blood by CAL-101 in vivo may increase CLL cell priming, suggesting a mechanism by which agents inducing lymphocyte redistribution might facilitate improved clinical response when used in combination with other therapies. PMID:22955911

Davids, Matthew S; Deng, Jing; Wiestner, Adrian; Lannutti, Brian J; Wang, Lili; Wu, Catherine J; Wilson, Wyndham H; Brown, Jennifer R; Letai, Anthony

2012-10-25

68

Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.  

PubMed

Phospholipids are asymmetrically distributed in the plasma membrane. This asymmetrical distribution is disrupted during apoptosis, exposing phosphatidylserine (PtdSer) on the cell surface. Using a haploid genetic screen in human cells, we found that ATP11C (adenosine triphosphatase type 11C) and CDC50A (cell division cycle protein 50A) are required for aminophospholipid translocation from the outer to the inner plasma membrane leaflet; that is, they display flippase activity. ATP11C contained caspase recognition sites, and mutations at these sites generated caspase-resistant ATP11C without affecting its flippase activity. Cells expressing caspase-resistant ATP11C did not expose PtdSer during apoptosis and were not engulfed by macrophages, which suggests that inactivation of the flippase activity is required for apoptotic PtdSer exposure. CDC50A-deficient cells displayed PtdSer on their surface and were engulfed by macrophages, indicating that PtdSer is sufficient as an "eat me" signal. PMID:24904167

Segawa, Katsumori; Kurata, Sachiko; Yanagihashi, Yuichi; Brummelkamp, Thijn R; Matsuda, Fumihiko; Nagata, Shigekazu

2014-06-01

69

p85? recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression  

NASA Astrophysics Data System (ADS)

Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85? regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as Fc?RIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

2014-01-01

70

Reduced IRE1? mediates apoptotic cell death by disrupting calcium homeostasis via the InsP3 receptor  

PubMed Central

The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer's and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1? (IRE1?). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1?-dependent signaling pathway. In this study, we show that inactivation of IRE1? by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1?-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1?–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1?-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1? in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1?–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.

Son, S M; Byun, J; Roh, S-E; Kim, S J; Mook-Jung, I

2014-01-01

71

Targeted Apoptotic Effects of Thymoquinone and Tamoxifen on XIAP Mediated Akt Regulation in Breast Cancer  

PubMed Central

X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment.

Rajput, Shashi; Kumar, B. N. Prashanth; Sarkar, Siddik; Das, Subhasis; Azab, Belal; Santhekadur, Prasanna K.; Das, Swadesh K.; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B.; Mandal, Mahitosh

2013-01-01

72

Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer.  

PubMed

X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment. PMID:23613836

Rajput, Shashi; Kumar, B N Prashanth; Sarkar, Siddik; Das, Subhasis; Azab, Belal; Santhekadur, Prasanna K; Das, Swadesh K; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B; Mandal, Mahitosh

2013-01-01

73

Tetraspanin CD37 directly mediates transduction of survival and apoptotic signals.  

PubMed

Tetraspanins are commonly believed to act only as "molecular facilitators," with no direct role in signal transduction. We herein demonstrate that upon ligation, CD37, a tetraspanin molecule expressed on mature normal and transformed B cells, becomes tyrosine phosphorylated, associates with proximal signaling molecules, and initiates a cascade of events leading to apoptosis. Moreover, we have identified two tyrosine residues with opposing regulatory functions: one lies in the N-terminal domain of CD37 in a predicted "ITIM-like" motif and mediates SHP1-dependent death, whereas the second lies in a predicted "ITAM motif" in the C-terminal domain of CD37 and counteracts death signals by mediating phosphatidylinositol 3-kinase-dependent survival. PMID:22624718

Lapalombella, Rosa; Yeh, Yuh-Ying; Wang, Liwen; Ramanunni, Asha; Rafiq, Sarwish; Jha, Shruti; Staubli, Justin; Lucas, David M; Mani, Rajeswaran; Herman, Sarah E M; Johnson, Amy J; Lozanski, Arletta; Andritsos, Leslie; Jones, Jeffrey; Flynn, Joseph M; Lannutti, Brian; Thompson, Peter; Algate, Paul; Stromatt, Scott; Jarjoura, David; Mo, Xiaokui; Wang, Dasheng; Chen, Ching-Shih; Lozanski, Gerard; Heerema, Nyla A; Tridandapani, Susheela; Freitas, Michael A; Muthusamy, Natarajan; Byrd, John C

2012-05-15

74

Tetraspanin CD37 Directly Mediates Transduction of Survival and Apoptotic Signals  

PubMed Central

SUMMARY Tetraspanins are commonly believed to act only as “molecular facilitators”, with no direct role in signal transduction. We herein demonstrate that upon ligation, CD37, a tetraspanin molecule expressed on mature normal and transformed B-cells, becomes tyrosine phosphorylated, associates with proximal signaling molecules, and initiates a cascade of events leading to apoptosis. Moreover, we have identified two tyrosine residues with opposing regulatory functions, one lies in the N-terminal domain of CD37 in a predicted “ITIM-like” motif and mediates SHP1-dependent death whereas the second lies in a predicted “ITAM motif” in the C-terminal domain of CD37 and counteracts death signals by mediating phosphatidylinositol 3-kinase-dependent survival.

Lapalombella, Rosa; Yeh, Yuh-Ying; Wang, Liwen; Ramanunni, Asha; Rafiq, Sarwish; Jha, Shruti; Staubli, Justin; Lucas, David M.; Mani, Rajeswaran; Herman, Sarah E. M.; Johnson, Amy J.; Lozanski, Arletta; Andritsos, Leslie; Jones, Jeffrey; Flynn, Joseph M.; Lannutti, Brian; Thompson, Peter; Algate, Paul; Stromatt, Scott; Jarjoura, David; Mo, Xiaokui; Wang, Dasheng; Chen, Ching-Shih; Lozanski, Gerard; Heerema, Nyla A.; Tridandapani, Susheela; Freitas, Michael A.; Muthusamy, Natarajan; Byrd, John C.

2012-01-01

75

Cyclooxygenase 2-mediated apoptotic and inflammatory responses in photodynamic therapy treated breast adenocarcinoma cells and xenografts.  

PubMed

Cyclooxygenase 2 (COX-2) is an inducible enzyme that contributes to the generation of chronic inflammation and the development of cancer, and promotes neoplastic transformation, in response to chemical carcinogens and environmental stresses. In this study, we demonstrated that a sublethal dose photodynamic therapy (PDT) led to inflammatory response mediated by the induction of COX-2 and release of Prostaglandin E2 (PGE2). Pretreatment with N-acetylcysteine (NAC) reduced COX-2 expression and PGE2 release induced by PDT. The elevated COX-2 level and PGE2 release following PDT were inhibited by NADPH oxidase inhibitor and NF-?B inhibitor. Inhibition of COX-2 attenuated the levels of PGE2 and vascular endothelial growth factor (VEGF) following PDT in treated tumors, and also decreased the expression of proinflammatory mediators interleukin-1? (IL-1?) and tumor necrosis factor-? (TNF-?). In addition, PDT led to an appreciable accumulation of pSer15-p53/COX-2 complexes, and this association of complexes was partially inhibited by SB203580, an inhibitor of p38. Blockage of COX-2 expression by siRNA enhanced the transcriptional activity of p53, and facilitated PDT-induced loss of mitochondrial membrane potential and cleavage of caspase 3, probably due to the elevated Noxa expression disrupting the interaction of Mcl-1/Bax. Together, this study highlights the important roles of COX-2 in PDT-induced apoptosis and inflammation and the specific COX-2-mediated responses to PDT initiated by reactive oxygen species (ROS) involving the regulation of the multiple signaling pathways. These results indicate the inflammatory mediator COX-2 as a potential therapeutic target for improving PDT efficacy. PMID:24792472

Song, Jiaxing; Wei, Yanchun; Chen, Qun; Xing, Da

2014-05-01

76

Chandipura Virus Induces Neuronal Death through Fas-Mediated Extrinsic Apoptotic Pathway  

PubMed Central

Chandipura virus (CHPV; genus Vesiculovirus, family Rhabdoviridae) is an emerging tropical pathogen with a case fatality rate of 55 to 75% that predominantly affects children in the age group of 2 to 16 years. Although it has been established as a neurotropic virus causing encephalitis, the molecular pathology leading to neuronal death is unknown. The present study elucidates for the first time the mechanism of cell death in neurons after CHPV infection that answers the basic cause of CHPV-mediated neurodegeneration. Through various cell death assays in vitro and in vivo, a relationship between viral replication within neuron and neuronal apoptosis has been established. We report that expression of CHPV phosphoprotein increases up to 6 h postinfection and diminishes thereafter in neuronal cell lines, signifying the replicative phase of CHPV. Various analyses conducted during the investigation established that CHPV-infected neurons are undergoing apoptosis through an extrinsic pathway mediated through the Fas-associated death domain (FADD) following activation of caspase-8 and -3 and prominent cleavage of poly(ADP-ribose) polymerase (PARP). Knocking down the expression of caspase-3, the final executioner of apoptosis, in a neuronal cell line by endoribonuclease-prepared small interfering RNA (siRNA) validated its pivotal role in CHPV-mediated neurodegeneration by showing reduction in apoptosis after CHPV infection.

Ghosh, Sourish; Dutta, Kallol

2013-01-01

77

Cytotoxicity Mediated by the Fas Ligand (FasL)-activated Apoptotic Pathway in Stem Cells*  

PubMed Central

Whereas it is now clear that human bone marrow stromal cells (BMSCs) can be immunosuppressive and escape cytotoxic lymphocytes (CTLs) in vitro and in vivo, the mechanisms of this phenomenon remain controversial. Here, we test the hypothesis that BMSCs suppress immune responses by Fas-mediated apoptosis of activated lymphocytes and find both Fas and FasL expression by primary BMSCs. Jurkat cells or activated lymphocytes were each killed by BMSCs after 72 h of co-incubation. In comparison, the cytotoxic effect of BMSCs on non-activated lymphocytes and on caspase-8(?/?) Jurkat cells was extremely low. Fas/Fc fusion protein strongly inhibited BMSC-induced lymphocyte apoptosis. Although we detected a high level of Fas expression in BMSCs, stimulation of Fas with anti-Fas antibody did not result in the expected BMSC apoptosis, regardless of concentration, suggesting a disruption of the Fas activation pathway. Thus BMSCs may have an endogenous mechanism to evade Fas-mediated apoptosis. Cumulatively, these data provide a parallel between adult stem/progenitor cells and cancer cells, consistent with the idea that stem/progenitor cells can use FasL to prevent lymphocyte attack by inducing lymphocyte apoptosis during the regeneration of injured tissues.

Mazar, Julia; Thomas, Molly; Bezrukov, Ludmila; Chanturia, Alexander; Pekkurnaz, Gulcin; Yin, Shurong; Kuznetsov, Sergei A.; Robey, Pamela G.; Zimmerberg, Joshua

2009-01-01

78

Caspase-mediated cleavage of p130cas in etoposide-induced apoptotic Rat-1 cells.  

PubMed

Apoptosis causes characteristic morphological changes in cells, including membrane blebbing, cell detachment from the extracellular matrix, and loss of cell-cell contacts. We investigated the changes in focal adhesion proteins during etoposide-induced apoptosis in Rat-1 cells and found that during apoptosis, p130cas (Crk-associated substrate [Cas]) is cleaved by caspase-3. Sequence analysis showed that Cas contains 10 DXXD consensus sites preferred by caspase-3. We identified two of these sites (DVPD(416)G and DSPD(748)G) in vitro, and point mutations substituting the Asp of DVPD(416)G and DSPD(748)G with Glu blocked caspase-3-mediated cleavage. Cleavage at DVPD(416)G generated a 74-kDa fragment, which was in turn cleaved at DSPD(748)G, yielding 47- and 31-kDa fragments. Immunofluorescence microscopy revealed well-developed focal adhesion sites in control cells that dramatically declined in number in etoposide-treated cells. Cas cleavage correlated temporally with the onset of apoptosis and coincided with the loss of p125FAK (focal adhesion kinase [FAK]) from focal adhesion sites and the attenuation of Cas-paxillin interactions. Considering that Cas associates with FAK, paxillin, and other molecules involved in the integrin signaling pathway, these results suggest that caspase-mediated cleavage of Cas contributes to the disassembly of focal adhesion complexes and interrupts survival signals from the extracellular matrix. PMID:10712510

Kook, S; Shim, S R; Choi, S J; Ahnn, J; Kim, J I; Eom, S H; Jung, Y K; Paik, S G; Song, W K

2000-03-01

79

Amylin prevents TRAIL-mediated apoptotic effects of reserpine in the rat gastric mucosa.  

PubMed

We have previously shown that amylin has a protective effect upon the damaged rat gastric mucosa via a cytokine-mediated mechanism. Here, the effects of amylin on the proapoptotic cytokine TNF-related-apoptosis-inducing-ligand (TRAIL) were tested in the rat gastric mucosa damaged by reserpine administration in vivo. Intraperitoneal administration of reserpine in adult male Sprague-Dawley rats resulted in increased TRAIL expression in the gastric mucosa. Immunohistochemistry showed that the TRAIL death-receptor 5 (DR5) was constitutively expressed by the mucosa cells. Western blot showed that pretreatment of reserpine-treated rats with amylin was associated with attenuated expression of TRAIL. In the same samples, we also investigated about TRAIL-related signaling and observed that activation of caspases-8 and -3 occurs in parallel to increased TRAIL expression in rats treated with reserpine. Similarly to the latter, activation of caspases was attenuated in rats pretreated with amylin. Treatment with reserpine was associated with increased expression of the proapoptotic protein Bax, whereas that of the antiapoptotic protein Bcl-2 was significantly decreased. Amylin prevented the effects of reserpine on these genes. Reserpine sets into motion mechanisms of apoptosis in the rat gastric mucosa, which appear mediated, at least in part, by TRAIL. In addition, TRAIL downstream signaling is activated along with subversion of gene expression related to apoptosis. Amylin was able to prevent detrimental effects of reserpine. Finally, amylin and related molecules may be envisioned as protective agent in gastric mucosa damage. PMID:19463876

Cantarella, Giuseppina; Di Benedetto, Giulia; Martinez, Giuseppa; Loreto, Carla; Clementi, Giuseppe; Cantarella, Antonio; Prato, Agatina; Bernardini, Renato

2009-08-01

80

Paracrine apoptotic effect of p53 mediated by tumor suppressor Par-4.  

PubMed

The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. Given that p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, the activation of p53 in normal mice, but not p53(-)/(-) or Par-4(-)/(-) mice, caused systemic elevation of Par-4, which induced apoptosis of p53-deficient tumor cells. Mechanistically, p53 induced Par-4 secretion by suppressing the expression of its binding partner, UACA, which sequesters Par-4. Thus, normal cells can be empowered by p53 activation to induce Par-4 secretion for the inhibition of therapy-resistant tumors. PMID:24412360

Burikhanov, Ravshan; Shrestha-Bhattarai, Tripti; Hebbar, Nikhil; Qiu, Shirley; Zhao, Yanming; Zambetti, Gerard P; Rangnekar, Vivek M

2014-01-30

81

p53 mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer  

PubMed Central

SUMMARY Studies on the role of TP53 mutation in breast cancer response to chemotherapy are conflicting. Here, we show that, contrary to dogma, MMTV-Wnt1 mammary tumors with mutant p53 exhibited a superior clinical response compared to tumors with wild-type p53. Doxorubicin-treated p53-mutant tumors failed to arrest proliferation leading to abnormal mitoses and cell death, while p53 wild-type tumors arrested, avoiding mitotic catastrophe. Senescent tumor cells persisted, secreting senescence-associated cytokines that exhibited autocrine/paracrine activity and mitogenic potential. Wild-type p53 still mediated arrest and inhibited drug response even in the context of a heterozygous p53 point mutation or absence of p21. Thus, we show wild-type p53 activity hinders chemotherapy response and demonstrate the need to reassess the paradigm for p53 in cancer therapy.

Jackson, James G.; Pant, Vinod; Li, Qin; Chang, Leslie L.; Quintas-Cardama, Alfonso; Garza, Daniel; Tavana, Omid; Yang, Peirong; Manshouri, Taghi; Li, Yi; El-Naggar, Adel K.; Lozano, Guillermina

2012-01-01

82

Caspase-induced proteolysis of the cyclin-dependent kinase inhibitor p27Kip1 mediates its anti-apoptotic activity.  

PubMed

The caspase-mediated cleavage of a limited number of cellular proteins is a common feature of apoptotic cell death. This cleavage usually inhibits the function of the target protein or generates peptides that actively contribute to the death process. In the present study, we demonstrate that the cyclin-dependent kinase inhibitor p27Kip1 is cleaved by caspases in human leukemic cells exposed to apoptotic stimuli. We have shown recently that p27Kip1 overexpression delayed leukemic cell death in response to cytotoxic drugs. In transient transfection experiments, the p23 and the p15 N-terminal peptides generated by p27Kip1 proteolysis demonstrate an anti-apoptotic effect similar to that induced by the wild-type protein, whereas cleavage-resistant mutants have lost their protective effect. Moreover, stable transfection of a cleavage-resistant mutant of p27Kip1 sensitizes leukemic cells to drug-induced cell death. Altogether, these results indicate that proteolysis of p27Kip1 triggered by caspases mediates the anti-apoptotic activity of the protein. PMID:10490817

Eymin, B; Sordet, O; Droin, N; Munsch, B; Haugg, M; Van de Craen, M; Vandenabeele, P; Solary, E

1999-08-26

83

MCMV-mediated Inhibition of the Pro-apoptotic Bak Protein Is Required for Optimal In Vivo Replication  

PubMed Central

Successful replication and transmission of large DNA viruses such as the cytomegaloviruses (CMV) family of viruses depends on the ability to interfere with multiple aspects of the host immune response. Apoptosis functions as a host innate defence mechanism against viral infection, and the capacity to interfere with this process is essential for the replication of many viruses. The Bcl-2 family of proteins are the principle regulators of apoptosis, with two pro-apoptotic members, Bax and Bak, essential for apoptosis to proceed. The m38.5 protein encoded by murine CMV (MCMV) has been identified as Bax-specific inhibitor of apoptosis. Recently, m41.1, a protein product encoded by the m41 open reading frame (ORF) of MCMV, has been shown to inhibit Bak activity in vitro. Here we show that m41.1 is critical for optimal MCMV replication in vivo. Growth of a m41.1 mutant was attenuated in multiple organs, a defect that was not apparent in Bak?/? mice. Thus, m41.1 promotes MCMV replication by inhibiting Bak-dependent apoptosis during in vivo infection. The results show that Bax and Bak mediate non-redundant functions during MCMV infection and that the virus produces distinct inhibitors for each protein to counter the activity of these proteins.

Fleming, Peter; Kvansakul, Marc; Voigt, Valentina; Kile, Benjamin T.; Kluck, Ruth M.; Huang, David C. S.; Degli-Esposti, Mariapia A.; Andoniou, Christopher E.

2013-01-01

84

MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway  

PubMed Central

MDM4 is a key regulator of p53, whose biological activities depend on both transcriptional activity and transcription-independent mitochondrial functions. MDM4 binds to p53 and blocks its transcriptional activity; however, the main cytoplasmic localization of MDM4 might also imply a regulation of p53-mitochondrial function. Here, we show that MDM4 stably localizes at the mitochondria, in which it (i) binds BCL2, (ii) facilitates mitochondrial localization of p53 phosphorylated at Ser46 (p53Ser46P) and (iii) promotes binding between p53Ser46P and BCL2, release of cytochrome C and apoptosis. In agreement with these observations, MDM4 reduction by RNA interference increases resistance to DNA-damage-induced apoptosis in a p53-dependent manner and independently of transcription. Consistent with these findings, a significant downregulation of MDM4 expression associates with cisplatin resistance in human ovarian cancers, and MDM4 modulation affects cisplatin sensitivity of ovarian cancer cells. These data define a new localization and function of MDM4 that, by acting as a docking site for p53Ser46P to BCL2, facilitates the p53-mediated intrinsic-apoptotic pathway. Overall, our results point to MDM4 as a double-faced regulator of p53.

Mancini, Francesca; Di Conza, Giusy; Pellegrino, Marsha; Rinaldo, Cinzia; Prodosmo, Andrea; Giglio, Simona; D'Agnano, Igea; Florenzano, Fulvio; Felicioni, Lara; Buttitta, Fiamma; Marchetti, Antonio; Sacchi, Ada; Pontecorvi, Alfredo; Soddu, Silvia; Moretti, Fabiola

2009-01-01

85

The apoptotic engulfment protein Ced-6 participates in clathrin-mediated yolk uptake in Drosophila egg chambers  

PubMed Central

Clathrin-mediated endocytosis and phagocytosis are both selective surface internalization processes but have little known mechanistic similarity or interdependence. Here we show that the phosphotyrosine-binding (PTB) domain protein Ced-6, a well-established phagocytosis component that operates as a transducer of so-called “eat-me” signals during engulfment of apoptotic cells and microorganisms, is expressed in the female Drosophila germline and that Ced-6 expression correlates with ovarian follicle development. Ced-6 exhibits all the known biochemical properties of a clathrin-associated sorting protein, yet ced-6–null flies are semifertile despite massive accumulation of soluble yolk precursors in the hemolymph. This is because redundant sorting signals within the cytosolic domain of the Drosophila vitellogenin receptor Yolkless, a low density lipoprotein receptor superfamily member, occur; a functional atypical dileucine signal binds to the endocytic AP-2 clathrin adaptor directly. Nonetheless, the Ced-6 PTB domain specifically recognizes the noncanonical Yolkless FXNPXA sorting sequence and in HeLa cells promotes the rapid, clathrin-dependent uptake of a Yolkless chimera lacking the distal dileucine signal. Ced-6 thus operates in vivo as a clathrin adaptor. Because the human Ced-6 orthologue GULP similarly binds to clathrin machinery, localizes to cell surface clathrin-coated structures, and is enriched in placental clathrin-coated vesicles, new possibilities for Ced-6/Gulp operation during phagocytosis must be considered.

Jha, Anupma; Watkins, Simon C.; Traub, Linton M.

2012-01-01

86

Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death  

PubMed Central

An important event during apoptosis is regulated cell condensation known as apoptotic volume decrease (AVD). Ion channels have emerged as essential regulators of this process mediating the release of K+ and Cl?, which together with osmotically obliged water, results in the condensation of cell volume. Using a Grade IV human glioblastoma cell line, we examined the contribution of calcium-activated K+ channels (KCa channels) to AVD after the addition of either staurosporine (Stsp) or TNF-?-related apoptosis-inducing ligand (TRAIL) to activate the intrinsic or extrinsic pathway of apoptosis, respectively. We show that AVD can be inhibited in both pathways by high extracellular K+ or the removal of calcium. However, BAPTA-AM was only able to inhibit Stsp-initiated AVD, whereas TRAIL-induced AVD was unaffected. Specific KCa channel inhibitors revealed that Stsp-induced AVD was dependent on K+ efflux through intermediate-conductance calcium-activated potassium (IK) channels, while TRAIL-induced AVD was mediated by large-conductance calcium-activated potassium (BK) channels. Fura-2 imaging demonstrated that Stsp induced a rapid and modest rise in calcium that was sustained over the course of AVD, while TRAIL produced no detectable rise in global intracellular calcium. Inhibition of IK channels with clotrimazole or 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) blocked downstream caspase-3 activation after Stsp addition, while paxilline, a specific BK channel inhibitor, had no effect. Treatment with ionomycin also induced an IK-dependent cell volume decrease. Together these results show that calcium is both necessary and sufficient to achieve volume decrease and that the two major pathways of apoptosis use unique calcium signaling to efflux K+ through different KCa channels.

McFerrin, Michael B.; Turner, Kathryn L.; Cuddapah, Vishnu Anand

2012-01-01

87

Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death.  

PubMed

An important event during apoptosis is regulated cell condensation known as apoptotic volume decrease (AVD). Ion channels have emerged as essential regulators of this process mediating the release of K(+) and Cl(-), which together with osmotically obliged water, results in the condensation of cell volume. Using a Grade IV human glioblastoma cell line, we examined the contribution of calcium-activated K(+) channels (K(Ca) channels) to AVD after the addition of either staurosporine (Stsp) or TNF-?-related apoptosis-inducing ligand (TRAIL) to activate the intrinsic or extrinsic pathway of apoptosis, respectively. We show that AVD can be inhibited in both pathways by high extracellular K(+) or the removal of calcium. However, BAPTA-AM was only able to inhibit Stsp-initiated AVD, whereas TRAIL-induced AVD was unaffected. Specific K(Ca) channel inhibitors revealed that Stsp-induced AVD was dependent on K(+) efflux through intermediate-conductance calcium-activated potassium (IK) channels, while TRAIL-induced AVD was mediated by large-conductance calcium-activated potassium (BK) channels. Fura-2 imaging demonstrated that Stsp induced a rapid and modest rise in calcium that was sustained over the course of AVD, while TRAIL produced no detectable rise in global intracellular calcium. Inhibition of IK channels with clotrimazole or 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) blocked downstream caspase-3 activation after Stsp addition, while paxilline, a specific BK channel inhibitor, had no effect. Treatment with ionomycin also induced an IK-dependent cell volume decrease. Together these results show that calcium is both necessary and sufficient to achieve volume decrease and that the two major pathways of apoptosis use unique calcium signaling to efflux K(+) through different K(Ca) channels. PMID:22992678

McFerrin, Michael B; Turner, Kathryn L; Cuddapah, Vishnu Anand; Sontheimer, Harald

2012-11-15

88

Identification of human estrogen-inducible transcripts that potentially mediate the apoptotic response in breast cancer.  

PubMed

Hormone manipulation has been used for several decades with the purpose of inducing breast cancer regression. On the one hand, hormone ablation and antiestrogen administration were used on the rationale that estrogens induce proliferation of their target cells. Before the advent of the antiestrogen tamoxifen, on the other hand, the estrogen agonist DES was used to obtain clinical remissions. The rationale for the use of diethylstilbestrol (DES) was totally empirical. In fact, the efficacy of both treatments was comparable. A mechanistic explanation for estrogen-induced regression is urgently needed in order to provide a rationale for its use in therapeutic fields, and to develop markers to identify this phenotype in order to recognize responsive tumors. In this report, we use E8CASS cells (a MCF7 variant) as a model to study estrogen-mediated regression. The proliferation rate of E8CASS cells is decreased by estrogens. In order to isolate mRNA sequences induced by estradiol, a subtracted library was prepared from E8CASS cells grown in the presence and absence of estrogens. Twenty nine differentially expressed unique sequences were found. Seven of them were homologous to known genes, 12 of them were homologous to expressed sequence tags (EST), and 10 sequences had no homologues in the databases. The two sequences showing the highest induction by estradiol (E9 and E43) were chosen for further analysis. The sequence of the E43 coding region has 96% homology to the bovine actin2 gene and 100% identity to bovine actin2 protein, and it is homologous to the human actin-related protein 3 (Arp3). It has been suggested that Arp3 is involved in actin nucleation. The phenotype of E8CASS cells is clearly affected by estrogen treatment. It is likely that E43 may be involved in these morphological changes. The E9 cDNA is a putative zinc-finger protein of the PHD family of transcriptional transactivators. A member of this family, Requiem, is involved in apoptosis. The E9 mRNA is highly expressed in E8CASS cells treated with estrogens, a treatment which results in decreased proliferation rate and increased DNA degradation. This correlation suggests that E9 may be a mediator of estrogen-induced regression of breast cancer. PMID:10775800

Szelei, J; Soto, A M; Geck, P; Desronvil, M; Prechtl, N V; Weill, B C; Sonnenschein, C

2000-03-01

89

Mitochondrial superoxide mediates heat-induced apoptotic-like death in Leishmania infantum.  

PubMed

Previous studies have shown that heat stress triggers a process of programmed cell death in Leishmania infantum promastigotes that resembles apoptosis in higher eukaryotes. Even though this cell death process takes about 40 h to be completed, several early changes in the heat-stressed cells can be observed. Hyperpolarization of the parasite mitochondrion is the earliest event detected, which correlates with an increase in respiration rates and a concomitant increase in superoxide radical production. Induction of oxidative stress seems to mediate the heat-induced cell death process, as indicated by the partial prevention of parasite death observed when cell cultures are supplemented with N-acetyl-cysteine or glutathione. These antioxidants are able to diminish the concentration of superoxide radical but they do not prevent mitochondrial hyperpolarization. Treatment of the heat stressed parasites with the inhibitors of the mitochondrial respiration TTFA, antimycin A and KCN significantly decreases the production of superoxide radicals, which confirms the mitochondrial origin of this reactive oxygen species. PMID:17300844

Alzate, Juan F; Arias, Andrés A; Moreno-Mateos, David; Alvarez-Barrientos, Alberto; Jiménez-Ruiz, Antonio

2007-04-01

90

Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells*  

PubMed Central

Objective: To investigate the effects of curcumin on release of cytochrome c and expressions of Bcl-2, Bax, Bad, Bcl-xL, caspase-3, poly ADP-ribose polymerase (PARP), and survivin of HT-29 cells. Methods: HT-29 cells were treated with curcumin (0~80 ?mol/L) for 24 h. The release of cytochrome c from the mitochondria and the apoptosis-related proteins Bax, Bcl-2, Bcl-xL, Bad, caspase-3, PARP, and survivin were determined by Western blot analysis and their mRNA expressions by reverse transcriptase-polymerase chain reaction (RT-PCR). Results: Curcumin significantly induced the growth inhibition and apoptosis of HT-29 cells. A decrease in expressions of Bcl-2, Bcl-xL and survivin was observed after exposure to 10~80 ?mol/L curcumin, while the levels of Bax and Bad increased in the curcumin-treated cells. Curcumin also induced the release of cytochrome c, the activation of caspase-3, and the cleavage of PARP in a dose-dependent manner. Conclusion: These data suggest that curcumin induced the HT-29 cell apoptosis possibly via the mitochondria-mediated pathway.

Wang, Jin-bo; Qi, Li-li; Zheng, Shui-di; Wu, Tian-xing

2009-01-01

91

BH3 Mimetic ABT-737 Potentiates TRAIL-Mediated Apoptotic Signaling by Unsequestering Bim and Bak in Human Pancreatic Cancer Cells  

Microsoft Academic Search

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce mitochondrial apoptotic signaling that can be negatively regulated by prosurvival Bcl-2 proteins. ABT-737 is a small-molecule BH3 mimetic that binds to and antagonizes Bcl-2\\/Bcl-xL but not Mcl-1. We show that ABT-737 can synergistically enhance TRAIL-mediated cytotox- icity in human pancreatic cancer cell lines. ABT-737 was shown to enhance TRAIL-induced

Shengbing Huang; Frank A. Sinicrope

2008-01-01

92

Loss of caspase-2 augments lymphomagenesis and enhances genomic instability in Atm-deficient mice  

PubMed Central

Caspase-2, the most evolutionarily conserved member of the caspase family, has been shown to be involved in apoptosis induced by various stimuli. Our recent work indicates that caspase-2 has putative functions in tumor suppression and protection against cellular stress. As such, the loss of caspase-2 enhances lymphomagenesis in Eµ-Myc transgenic mice, and caspase-2 KO (Casp2?/?) mice show characteristics of premature aging. However, the extent and specificity of caspase-2 function in tumor suppression is currently unclear. To further investigate this, ataxia telangiectasia mutated KO (Atm?/?) mice, which develop spontaneous thymic lymphomas, were used to generate Atm?/?Casp2?/? mice. Initial characterization revealed that caspase-2 deficiency enhanced growth retardation and caused synthetic perinatal lethality in Atm?/? mice. A comparison of tumor susceptibility demonstrated that Atm?/?Casp2?/? mice developed tumors with a dramatically increased incidence compared with Atm?/? mice. Atm?/?Casp2?/? tumor cells displayed an increased proliferative capacity and extensive aneuploidy that coincided with elevated oxidative damage. Furthermore, splenic and thymic T cells derived from premalignant Atm?/?Casp2?/? mice also showed increased levels of aneuploidy. These observations suggest that the tumor suppressor activity of caspase-2 is linked to its function in the maintenance of genomic stability and suppression of oxidative damage. Given that ATM and caspase-2 are important components of the DNA damage and antioxidant defense systems, which are essential for the maintenance of genomic stability, these proteins may synergistically function in tumor suppression by regulating these processes.

Puccini, Joseph; Shalini, Sonia; Voss, Anne K.; Gatei, Magtouf; Wilson, Claire H.; Hiwase, Devendra K.; Lavin, Martin F.; Dorstyn, Loretta; Kumar, Sharad

2013-01-01

93

Combining the chemotherapeutic effects of epigallocatechin 3-gallate with siRNA-mediated p53 knock-down results in synergic pro-apoptotic effects  

PubMed Central

Plant extracts and compounds are applied to a wide variety of diseases in which traditional drugs have proven ineffective. A quickly developing trend in biomedicine is the therapeutic use of siRNA (short interfering RNA) structures. The focus of this study was on evaluating the gene expression involved in the modulation of apoptosis, in cases of combinatorial treatment (?)-epigallocatechin-3-gallate (EGCG) and/or p53siRNA. EGCG in combination with p53siRNA exerts synergic pro-apoptotic effects that are greater than those of each agent taken individually. There is a cumulative antiproliferative effect, induced by EGCG and p53siRNA treatment, and it is mediated through the activation of a large number of pro-apoptotic genes and the inhibition of anti-apoptotic protein expression levels. p53siRNA promotes the convergence of the extrinsic and intrinsic pathways in a synergic manner with EGCG. The chemotherapeutic effects of EGCG in combination with p53siRNA therapy induced a synergic pro-apoptotic effect, indicating the potential for development of promising new anticancer therapies.

Berindan-Neagoe, Ioana; Braicu, Cornelia; Irimie, Alexandru

2012-01-01

94

Protective effects of hesperidin against amyloid-? (A?) induced neurotoxicity through the voltage dependent anion channel 1 (VDAC1)-mediated mitochondrial apoptotic pathway in PC12 cells.  

PubMed

Amyloid-? (A?) is known to exert cytotoxic effects by inducing mitochondrial dysfunction. Additionally, the mitochondrial voltage-dependent anion channel 1 (VDAC1), which is involved in the release of apoptotic proteins with possible relevance in Alzheimer's disease (AD) neuropathology, plays an important role in maintaining mitochondrial function and integrity. However, the application of therapeutic drugs, especially natural products in (AD) therapy via VDAC1-regulated mitochondrial apoptotic pathway has not aroused extensive attention. In the present study, we investigated neuroprotective effects of hesperidin, a bioactive flavonoid compound, on A?25-35-induced neurotoxicity in PC12 cells and also examined the potential cellular signalling mechanism. Our results showed that treatment with hesperidin significantly inhibited A?25-35-induced apoptosis by reversing A?-induced mitochondrial dysfunction, including the mitochondrial permeability transition pore opening, intracellular free calcium increase and reactive oxygen species production. Further study indicated that hesperidin can decrease the level ofVDAC1 phosphorylation through inhibiting the activity of the glycogen synthase kinase-3b and increase the level of hexokinaseI in mitochondria, preventing release of cytochrome c from mitochondria [corrected]. Furthermore, hesperidin inhibited mitochondria-dependent downstream caspase-mediated apoptotic pathway, such as that involving caspase-9 and caspase-3. These results demonstrate that hesperidin can protect A?-induced neurotoxicity via VDAC1-regulated mitochondrial apoptotic pathway, and they raise the possibility that hesperidin could be developed into a clinically valuable treatment for AD and other neuronal degenerative diseases associated with mitochondrial dysfunction. PMID:23475456

Wang, Dong-Mei; Li, San-Qiang; Zhu, Xiao-Ying; Wang, Yong; Wu, Wen-Lan; Zhang, Xiao-Juan

2013-05-01

95

Caspase-2 is involved in cell death induction by taxanes in breast cancer cells  

PubMed Central

Background We studied the role of caspase-2 in apoptosis induction by taxanes (paclitaxel, novel taxane SB-T-1216) in breast cancer cells using SK-BR-3 (nonfunctional p53, functional caspase-3) and MCF-7 (functional p53, nonfunctional caspase-3) cell lines. Results Both taxanes induced apoptosis in SK-BR-3 as well as MCF-7 cells. Caspase-2 activity in SK-BR-3 cells increased approximately 15-fold within 48 h after the application of both taxanes at the death-inducing concentration (100 nM). In MCF-7 cells, caspase-2 activity increased approximately 11-fold within 60 h after the application of taxanes (300 nM). Caspase-2 activation was confirmed by decreasing levels of procaspase-2, increasing levels of cleaved caspase-2 and the cleavage of caspase-2 substrate golgin-160. The inhibition of caspase-2 expression using siRNA increased the number of surviving cells more than 2-fold in MCF-7 cells, and at least 4-fold in SK-BR-3 cells, 96 h after the application of death-inducing concentration of taxanes. The inhibition of caspase-2 expression also resulted in decreased cleavage of initiator caspases (caspase-8, caspase-9) as well as executioner caspases (caspase-3, caspase-7) in both cell lines after the application of taxanes. In control cells, caspase-2 seemed to be mainly localized in the nucleus. After the application of taxanes, it was released from the nucleus to the cytosol, due to the long-term disintegration of the nuclear envelope, in both cell lines. Taxane application led to some formation of PIDDosome complex in both cell lines within 24 h after the application. After taxane application, p21WAF1/CIP1 expression was only induced in MCF-7 cells with functional p53. However, taxane application did not result in a significant increase of PIDD expression in either SK-BR-3 or MCF-7 cells. The inhibition of RAIDD expression using siRNA did not affect the number of surviving SK-BR-3 and MCF-7 cells after taxane application at all. Conclusion Caspase-2 is required, at least partially, for apoptosis induction by taxanes in tested breast cancer cells. We suggest that caspase-2 plays the role of an apical caspase in these cells. Caspase-2 seems to be activated via other mechanism than PIDDosome formation. It follows the release of caspase-2 from the nucleus to the cytosol.

2013-01-01

96

Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects.  

PubMed

Miltefosine (MI) is a novel, potential antifungal agent with activity against some yeast and filamentous fungal pathogens. We previously demonstrated in the model yeast, Saccharomyces cerevisiae, that MI causes disruption of mitochondrial membrane potential and apoptosis-like cell death via interaction with the Cox9p sub-unit of cytochrome c oxidase (COX). To identify additional mechanisms of antifungal action, MI resistance was induced in S. cerevisiae by exposure to the mutagen, ethyl methanesulfonate, and gene mutation(s) responsible for resistance were investigated. An MI-resistant haploid strain (H-C101) was created. Resistance was retained in the diploid strain (D-C101) following mating, confirming dominant inheritance. Phenotypic assessment of individual D-C101 tetrads revealed that only one mutant gene contributed to the MI-resistance phenotype. To identify this gene, the genome of H-C101 was sequenced and 17 mutated genes, including metacaspase-encoding MCA1, were identified. The MCA1 mutation resulted in substitution of asparagine (N) with aspartic acid (D) at position 164 (MCA1(N164D)). MI resistance was found to be primarily due to MCA1(N164D), as single-copy episomal expression of MCA1(N164D), but not two other mutated genes (FAS1(T1417I) and BCK2(T104A)), resulted in MI resistance in the wild-type strain. Furthermore, an MCA1 deletion mutant (mca1?) was MI-resistant. MI treatment led to accumulation of reactive oxygen species (ROS) in MI-resistant (MCA1(N164D)-expressing and mca1?) strains and MI-susceptible (MCA1-expressing) strains, but failed to activate Mca1 in the MI-resistant strains, demonstrating that ROS accumulation does not contribute to the fungicidal effect of MI. In conclusion, functional disruption of Mca1, leads to MI resistance and inability to mediate MI-induced apoptotic effects. Mca1-mediated apoptosis is therefore a major mechanism of MI-induced antifungal action. PMID:24731805

Biswas, Chayanika; Zuo, Xiaoming; Chen, Sharon C-A; Schibeci, Stephen D; Forwood, Jade K; Jolliffe, Katrina A; Sorrell, Tania C; Djordjevic, Julianne T

2014-06-01

97

NOX2 mediates apoptotic death induced by staurosporine but not by potassium deprivation in cerebellar granule neurons.  

PubMed

Neuronal apoptotic death involves the participation of reactive oxygen species (ROS), but their sources have not been completely elucidated. Previous studies have demonstrated that the ROS-producing enzyme NADPH oxidase is present in neuronal cells and that this enzyme could participate in the apoptotic neuronal death. Cerebellar granule neurons (CGN) undergo apoptosis when cells are transferred from a medium with 25 mM KCl (K25) to a 5 mM KCl (K5) medium or when they are treated with staurosporine (ST). Under these conditions, apoptotic death of CGN is dependent on ROS production. In this study, we evaluated the role of NOX2, an NADPH oxidase homolog, in the apoptotic death of CGN induced by two different conditions. In CGN from NOX2-deficient (ko) mice, a significantly lower rate of apoptotic death occurs compared with wild-type (wt) CGN. Also, caspase-3 activation, NADPH oxidase activity, and superoxide anion production induced by ST were markedly lower in ko neurons than in wt CGN. In contrast to the case with ST, when CGN were treated with K5, no differences were observed between ko and wt cells in any of the parameters measured. However, all NADPH oxidase inhibitors tested noticeably reduced cell death and apoptotic parameters induced by K5 in both wt and ko CGN. These results suggest that NOX2 could be necessary for apoptotic death induced by ST, but not by K5, which could require other member of the NOX family in the apoptotic process. PMID:19360906

Guemez-Gamboa, Alicia; Morán, Julio

2009-08-15

98

Caspase2 is required for DNA damage-induced expression of the CDK inhibitor p21WAF1\\/CIP1  

Microsoft Academic Search

Although caspase-2 represents the most conserved caspase across species and was the second caspase identified, its precise function remains enigmatic. In several cell types we show that knockdown of caspase-2 specifically impaired DNA damage-induced p21 expression, whereas overexpression of a caspase-2 mutant increased p21 levels. Caspase-2 did not influence p21 mRNA transcription; moreover, various inhibitors targeting proteasomal or non-proteasomal proteases,

D Sohn; W Budach; R U Jänicke

2011-01-01

99

Diclofenac induced in vivo nephrotoxicity may involve oxidative stress-mediated massive genomic DNA fragmentation and apoptotic cell death  

Microsoft Academic Search

Diclofenac (DCLF) is a nonsteroidal anti-inflammatory drug that is widely used for the treatment of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and acute muscle pain conditions. Toxic doses of DCLF can cause nephrotoxicity in humans and experimental animals. However, whether this DCLF-induced nephrotoxicity involves apoptotic cell death in addition to necrosis is unknown. The goals of this investigation were to determine

E. J Hickey; R. R Raje; V. E Reid; S. M Gross; S. D Ray

2001-01-01

100

Death Receptor-Mediated Apoptotic Signaling Is Activated in the Brain following Infection with West Nile Virus in the Absence of a Peripheral Immune Response  

PubMed Central

Apoptosis is an important mechanism of West Nile virus (WNV) pathogenesis within the central nervous system (CNS). The signaling pathways that result in WNV-induced apoptotic neuronal death within the CNS have not been established. In this study, we identified death receptor (DR)-induced apoptosis as a pathway that may be important in WNV pathogenesis, based on the pattern of differential gene expression in WNV-infected, compared to uninfected, brains. Reverse transcription-PCR (RT-PCR) and Western blotting confirmed that genes involved in DR-induced apoptotic signaling are upregulated in the brain following WNV infection. Activity of the DR-associated initiator caspase, caspase 8, was also increased in the brains of WNV-infected mice and occurred in association with cleavage of Bid and activation of caspase 9. These results demonstrate that DR-induced apoptotic signaling is activated in the brain following WNV infection and suggest that the caspase 8-dependent cleavage of Bid promotes intrinsic apoptotic signaling within the brains of infected animals. Utilization of a novel ex vivo brain slice culture (BSC) model of WNV encephalitis revealed that inhibition of caspase 8 decreases virus-induced activation of caspase 3 and tissue injury. The BSC model allows us to examine WNV-induced pathogenesis in the absence of a peripheral immune response. Thus, our results indicate that WNV-induced neuronal injury in the brain is mediated by DR-induced apoptosis signaling and can occur in the absence of infiltrating immune cells. However, astrocytes and microglia were activated in WNV-infected BSC, suggesting that local immune responses influence WNV pathogenesis.

Leser, J. Smith; Quick, Eamon D.; Dionne, Kalen R.; Beckham, J. David; Tyler, Kenneth L.

2014-01-01

101

Apoptotic Regulation.  

National Technical Information Service (NTIS)

Reaper is a potent inducer of apoptotic cell death in the fruit fly Drosoophila melanogaster. Our lab unexpectedly discovered that Reaper also induces apoptosis in cultured human cells and cell free extracts prepared using eggs from the frog Xenopus laevi...

D. A. Richardson S. A. Kornbluth

2003-01-01

102

Role of cyclin B1/Cdc2 in mediating Bcl-XL phosphorylation and apoptotic cell death following nocodazole-induced mitotic arrest.  

PubMed

Treatment of cancer cells with microtubule inhibitors causes mitotic arrest, which subsequently leads to cell death via activation of the intrinsic apoptotic pathway. Mitotically arrested cells typically display increased phosphorylation (i.e., inactivation) of two key anti-apoptotic proteins, Bcl-2 and Bcl-XL , but the mechanisms that regulate their phosphorylation as well as their role in apoptotic cell death following mitotic arrest are still poorly understood at present, which are the focus of this study. We recently showed that cyclin B1 and cell division cycle 2 (Cdc2) proteins are strongly up-regulated in human breast cancer cells following treatment with nocodazole (a prototypical microtubule inhibitor), and their up-regulation plays a critical role in the development of mitotic prometaphase arrest. In this study, we present evidence showing that the up-regulated cyclin B1/Cdc2 complex in nocodazole-treated human breast cancer cells is also responsible for the increased phosphorylation of Bcl-2 and Bcl-XL . However, only the increased phosphorylation of Bcl-XL , but not the phosphorylation of Bcl-2, contributes to subsequent activation of the intrinsic cell death pathway. In addition, evidence is presented to show that mitotic arrest deficient 2 (MAD2) is a key upstream mediator of the up-regulation of cyclin B1/Cdc2 as well as the subsequent increase in phosphorylationof Bcl-2 and Bcl-XL in nocodazole-treated cancer cells. Together, these results reveal that the up-regulated cyclin B1/Cdc2 complex not only mediates prometaphase arrest in nocodazole-treated cells, but also activates the subsequent intrinsic cell death pathway in these cells via increased phosphorylation of Bcl-XL . PMID:22949227

Choi, Hye Joung; Zhu, Bao Ting

2014-02-01

103

Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway.  

PubMed

Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. PMID:23722043

Song, Shasha; Wang, Shuang; Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin; Zhu, Daling

2013-08-01

104

Antagonism of cytotoxic chemotherapy in neuroblastoma cell lines by 13-cis-retinoic acid is mediated by the anti-apoptotic Bcl-2 family proteins  

PubMed Central

13-cis-retinoic acid (13-cis-RA), is given at completion of cytotoxic therapy to control minimal residual disease in neuroblastoma. We investigated the effect of combining 13-cis-RA with cytotoxic agents employed in neuroblastoma therapy using a panel of 6 neuroblastoma cell lines. The effect of 13-cis-RA on the mitochondrial apoptotic pathway, was studied by flow cytometry, cytotoxicity by DIMSCAN, and protein expression by immuoblotting. Pre-treatment and direct combination of 13-cis-RA with etoposide, topotecan, cisplatin, melphalan, or doxorubicin markedly antagonized the cytotoxicity of those agents in 4 out of 6 tested neuroblastoma cell lines, increasing fractional cell survival by 1 to 3 logs. The inhibitory concentration of drugs (IC99) increased from clinically achievable levels to non-achievable levels: > 5-fold (cisplatin) to > 7-fold (etoposide). In SMS-KNCR neuroblastoma cells, 13-cis-RA upregulated expression of Bcl-2 and Bcl-xL RNA and protein, and this was associated with protection from etoposide-mediated apoptosis at the mitochondrial level. A small molecule inhibitor of the Bcl-2 family of proteins (ABT-737) restored mitochondrial membrane potential loss and apoptosis in response to cytotoxic agents in 13-cis-RA treated cells. Prior selection for resistance to RA did not diminish the response to cytotoxic treatment. Thus, combining 13-cis-RA with cytotoxic chemotherapy significantly reduced the cytotoxiciity for neuroblastoma in vitro, mediated at least in part via the anti-apoptotic Bcl-2 family of proteins.

Hadjidaniel, Michael Daniel; Reynolds, Charles Patrick

2010-01-01

105

Jab1/CSN5 mediates E2F dependent expression of mitotic and apoptotic but not DNA replication targets  

PubMed Central

The E2F transcription factors are critical regulators of cell cycle and cell fate control. Several classes of E2F target genes have been categorized based on their roles in DNA replication, G2/M and mitosis, apoptosis, DNA repair, etc. How E2Fs coordinate the appropriate and timely expression of these functionally disparate gene products is poorly understood at a molecular level. We previously showed that the E2F1 binding partner Jab1/CSN5 promotes E2F1-dependent induction of apoptosis but not proliferation. To better understand how Jab1 regulates E2F1 dependent transcription, we performed gene expression analysis to identify E2F target genes most and least affected by shRNA depletion of Jab1. We find that a significant number of apoptotic and mitotic E2F target genes are poorly expressed in cells lacking Jab1/CSN5, whereas DNA replication genes are generally still highly expressed. Chromatin immunoprecipitation analysis indicates that both Jab1 and E2F1 co-occupy apoptotic and mitotic, but not DNA replication target genes. We explored a potential connection between PI3K activity and Jab1/E2F1 target gene induction, and found that E2F1/Jab1 co-induction of apoptotic target genes can be inhibited by activated PI3K. Furthermore, PI3K activity interferes with formation of the E2F1/Jab1 complex by co-immunoprecipitation. Jab1/CSN5 is upregulated in a variety of human tumors, but it’s unclear how its pro-proliferatory and apoptotic functions are regulated in this context. We explored the link between increased Jab1 levels and PI3K function in tumors and detected a highly significant correlation between elevated Jab1/CSN5 levels and PI3K activity in breast, ovarian, lung and prostate cancers.

Lu, Huarui; Liang, Xudong; Issaenko, Olga A.; Hallstrom, Timothy C.

2011-01-01

106

Enhancement in efferocytosis of oxidized low-density lipoprotein-induced apoptotic RAW264.7 cells through Sirt1-mediated autophagy  

PubMed Central

Macrophages play a key role in atherosclerotic plaque formation and rupture. These phagocytic cells are important in the scavenging of modified lipoproteins, unwanted or dead cells and cellular debris through efferocytosis. Sirtuin1 (Sirt1), a member of the conserved sirtuin family and a key regulator in the progression of atherosclerosis exerts protective effects by regulating autophagy, a well-known survival mechanism. Inhibition of autophagy may also result in defective efferocytosis. This study aimed to investigate the effect of Sirt1 on the efferocytosis of oxidized low-density lipoprotein (ox-LDL)-induced apoptotic RAW264.7 cells through upregulation of autophagy. The apoptotic cells were incubated with high and low concentrations of Sirt1 activator resveratrol (RSV) and Sirt1 inhibitor nicotinamide (NAM) as well as autophagy inhibitor 3-methyladenine (3-MA) + low concentration RSV. Apoptosis was determined by flow cytometry (FCM) of annexin-V/propidium iodide (AV/PI) dual staining. Total proteins were extracted and protein levels were detected through western blot analysis. The ox-LDL uptake and efferocytosis of apoptotic RAW264.7 cells were detected by oil red O staining and calculation of the phagocytic index of apoptotic RAW264.7 cells. The expression of Sirt1 and autophagy marker proteins was simultaneously increased with the stimulation of low concentration RSV (all P<0.05) and decreased in low and high NAM groups (all P<0.05), compared with the control group. Efferocytosis was highest in the low concentration RSV group (P<0.001) and relatively lower in the low and high concentration NAM groups (both P<0.05) compared with the control group, which was similar to the change in the expression of Sirt1 and autophagy marker proteins. The results showed that the efferocytosis of apoptotic RAW264.7 cells was significantly improved with the upregulation of Sirt1-mediated autophagy. Therefore, Sirt1 may serve as a novel therapeutic target for the treatment of atherosclerosis.

LIU, BAOXIN; ZHANG, BUCHUN; GUO, RONG; LI, SHUANG; XU, YAWEI

2014-01-01

107

Apoptotic-induced cleavage shifts HuR from being a promoter of survival to an activator of caspase-mediated apoptosis  

PubMed Central

Little is known about the cellular mechanisms modulating the shift in balance from a state of survival to cell death by caspase-mediated apoptosis in response to a lethal stress. Here we show that the RNA-binding protein HuR has an important function in mediating this switch. During caspase-mediated apoptosis, HuR is cleaved to generate two cleavage products (CPs). Our data demonstrate that the cleavage of HuR switches its function from being a prosurvival factor under normal conditions to becoming a promoter of apoptosis in response to a lethal stress. In the absence of an apoptotic stimuli, HuR associates with and promotes the expression of caspase-9 and prothymosin ? (ProT) mRNAs, and pro- and antiapoptotic factors, respectively, both of which have been characterized as important players in determining cell fate. During the early steps of caspase-mediated apoptosis, however, the level of caspase-9 protein increases, while ProT remains unchanged. Under these conditions, the two HuR-CPs selectively bind to and stabilize caspase-9 mRNA, but do not bind to ProT. Hence, taken together, our data show that by maintaining a threshold of expression of proapoptotic factors such as caspase-9 in response to a lethal stress, the HuR-CPs help a cell to switch from resisting death to undergoing apoptosis.

von Roretz, C; Jin Lian, X; Macri, A M; Punjani, N; Clair, E; Drouin, O; Dormoy-Raclet, V; Ma, J F; Gallouzi, I-E

2013-01-01

108

Do plants mediate their anti-diabetic effects through anti-oxidant and anti-apoptotic actions? an in vitro assay of 3 Indian medicinal plants  

PubMed Central

Background Both experimental and clinical studies suggest that oxidative stress plays a major role in the pathogenesis of both types of diabetes mellitus. This oxidative stress leads to ?-cell destruction by apoptosis. Hence exploring agents modulating oxidative stress is an effective strategy in the treatment of both Type I and Type II diabetes. Plants are a major source of anti-oxidants and exert protective effects against oxidative stress in biological systems. Phyllanthus emblica, Curcuma longa and Tinospora cordifolia are three such plants widely used in Ayurveda for their anti-hyperglycemic activity. Additionally their anti-oxidant properties have been scientifically validated in various experimental in vitro and in vivo models. Hence the present in vitro study was planned to assess whether the anti-hyperglycemic effects of the hydro-alcoholic extracts of Phyllanthus emblica (Pe) and Curcuma longa (Cl) and aqueous extract of Tinospora cordifolia (Tc) are mediated through their antioxidant and/or anti-apoptotic property in a streptozotocin induced stress model. Methods RINm5F cell line was used as a model of pancreatic ?-cells against stress induced by streptozotocin (2 mM). Non-toxic concentrations of the plant extracts were identified using MTT assay. Lipid peroxidation through MDA release, modulation of apoptosis and insulin release were the variables measured to assess streptozotocin induced damage and protection afforded by the plant extracts. Results All 3 plants extracts significantly inhibited MDA release from RIN cells indicating protective effect against STZ induced oxidative damage. They also exhibited a dose dependent anti-apoptotic effect as seen by a decrease in the sub G0 population in response to STZ. None of the plant extracts affected insulin secretion from the cells to a great extent. Conclusion The present study thus demonstrated that the protective effect of the selected medicinal plants against oxidative stress induced by STZ in vitro, which was exerted through their anti-oxidant and anti-apoptotic actions.

2013-01-01

109

Caspase-2 Maintains Bone Homeostasis by Inducing Apoptosis of Oxidatively-Damaged Osteoclasts  

PubMed Central

Osteoporosis is a silent disease, characterized by a porous bone micro-structure that enhances risk for fractures and associated disabilities. Senile, or age-related osteoporosis (SO), affects both men and women, resulting in increased morbidity and mortality. However, cellular and molecular mechanisms underlying senile osteoporosis are not fully known. Recent studies implicate the accumulation of reactive oxygen species (ROS) and increased oxidative stress as key factors in SO. Herein, we show that loss of caspase-2, a cysteine aspartate protease involved in oxidative stress-induced apoptosis, results in total body and femoral bone loss in aged mice (20% decrease in bone mineral density), and an increase in bone fragility (30% decrease in fracture strength). Importantly, we demonstrate that genetic ablation or selective inhibition of caspase-2 using zVDVAD-fmk results in increased numbers of bone-resorbing osteoclasts and enhanced tartrate-resistant acid phosphatase (TRAP) activity. Conversely, transfection of osteoclast precursors with wild type caspase-2 but not an enzymatic mutant, results in a decrease in TRAP activity. We demonstrate that caspase-2 expression is induced in osteoclasts treated with oxidants such as hydrogen peroxide and that loss of caspase-2 enhances resistance to oxidants, as measured by TRAP activity, and decreases oxidative stress-induced apoptosis of osteoclasts. Moreover, oxidative stress, quantified by assessment of the lipid peroxidation marker, 4-HNE, is increased in Casp2-/- bone, perhaps due to a decrease in antioxidant enzymes such as SOD2. Taken together, our data point to a critical and novel role for caspase-2 in maintaining bone homeostasis by modulating ROS levels and osteoclast apoptosis during conditions of enhanced oxidative stress that occur during aging.

Sharma, Ramaswamy; Callaway, Danielle; Vanegas, Difernando; Bendele, Michelle; Lopez-Cruzan, Marisa; Horn, Diane; Guda, Teja; Fajardo, Roberto; Abboud-Werner, Sherry; Herman, Brian

2014-01-01

110

Nuclear factor-?B is involved in the protocadherin-10-mediated pro-apoptotic effect in multiple myeloma.  

PubMed

The gene encoding protocadherin-10 (PCDH10), a member of the cadherin superfamily, has been recently identified as a tumor suppressor gene (TSG). PCDH10 plays important roles in the apoptosis of tumor cells in some cancer types. However, the exact role of PCDH10 in multiple myeloma (MM) is largely unknown. Increasing evidence has suggested that the activation of nuclear factor-?B (NF-?B) is crucial for apoptosis in myeloma cells. In this study, we investigated the pro-apoptotic effect of PCDH10 on myeloma cells and whether this effect may involve inhibition of the NF-?B pathway. We report here, for the first time to the best of our knowledge, that PCDH10 markedly induces apoptosis of myeloma cells, accompanied by an increase in activated caspase-3 and poly-ADP?ribose polymerase (PARP) levels, and inhibited expression of anti?apoptotic proteins. We also demonstrate that PCDH10 inhibits the activation of NF-?B, by inhibiting the expression of the inhibitor of nuclear factor-?B (I?B) kinase subunits (IKKs) and the phosphorylation of I?B?. Moreover, the constitutive NF-?B DNA-binding activity and the expression of the NF-?B?regulated proteins cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) were inhibited by PCDH10 in MM cells. These results suggest that PCDH10 induces myeloma cell apoptosis, probably by inhibiting the NF-?B pathway. PMID:24888369

Li, Zhen; Yang, Zesong; Peng, Xi; Li, Ying; Liu, Qiong; Chen, Jianbin

2014-08-01

111

Radiation and inhibition of angiogenesis by canstatin synergize to induce HIF-1alpha-mediated tumor apoptotic switch.  

PubMed

Tumor radioresponsiveness depends on endothelial cell death, which leads in turn to tumor hypoxia. Radiation-induced hypoxia was recently shown to trigger tumor radioresistance by activating angiogenesis through hypoxia-inducible factor 1-regulated (HIF-1-regulated) cytokines. We show here that combining targeted radioiodide therapy with angiogenic inhibitors, such as canstatin, enhances direct tumor cell apoptosis, thereby overcoming radio-induced HIF-1-dependent tumor survival pathways in vitro and in vivo. We found that following dual therapy, HIF-1alpha increases the activity of the canstatin-induced alpha(v)beta(5) signaling tumor apoptotic pathway and concomitantly abrogates mitotic checkpoint and tetraploidy triggered by radiation. Apoptosis in conjunction with mitotic catastrophe leads to lethal tumor damage. We discovered that HIF-1 displays a radiosensitizing activity that is highly dependent on treatment modalities by regulating key apoptotic molecular pathways. Our findings therefore support a crucial role for angiogenesis inhibitors in shifting the fate of radiation-induced HIF-1alpha activity from hypoxia-induced tumor radioresistance to hypoxia-induced tumor apoptosis. This study provides a basis for developing new biology-based clinically relevant strategies to improve the efficacy of radiation oncology, using HIF-1 as an ally for cancer therapy. PMID:17557121

Magnon, Claire; Opolon, Paule; Ricard, Marcel; Connault, Elisabeth; Ardouin, Patrice; Galaup, Ariane; Métivier, Didier; Bidart, Jean-Michel; Germain, Stéphane; Perricaudet, Michel; Schlumberger, Martin

2007-07-01

112

Enhanced Tolerance against Early and Late Apoptotic Oxidative Stress in Mammalian Neurons through Nicotinamidase and Sirtuin Mediated Pathways  

PubMed Central

Focus upon therapeutic strategies that intersect between pathways that govern cellular metabolism and cellular survival may offer the greatest impact for the treatment of a number of neurodegenerative and metabolic disorders, such as diabetes mellitus. In this regard, we investigated the role of a Drosophila nicotinamidase (DN) in mammalian SH-SY5Y neuronal cells during oxidative stress. We demonstrate that during free radical exposure to nitric oxide generators DN neuronal expression significantly increased cell survival and blocked cellular membrane injury. Furthermore, DN neuronal expression prevented both apoptotic late DNA degradation and early phosphatidylserine exposure that may serve to modulate inflammatory cell activation in vivo. Nicotinamidase activity that limited nicotinamide cellular concentrations appeared to be necessary for DN neuroprotection, since application of progressive nicotinamide concentrations could abrogate the benefits of DN expression during oxidative stress. Pathways that involved sirtuin activation and SIRT1 were suggested to be vital, at least in part, for DN to confer protection through a series of studies. First, application of resveratrol increased cell survival during oxidative stress either alone or in conjunction with the expression of DN to a similar degree, suggesting that DN may rely upon SIRT1 activation to foster neuronal protection. Second, the overexpression of either SIRT1 or DN in neurons prevented apoptotic injury specifically in neurons expressing these proteins during oxidative stress, advancing the premise that DN and SIRT1 may employ similar pathways for neuronal protection. Third, inhibition of sirtuin activity with sirtinol was detrimental to neuronal survival during oxidative stress and prevented neuronal protection during overexpression of DN or SIRT1, further supporting that SIRT1 activity may be necessary for DN neuroprotection during oxidative stress. Implementation of further work to elucidate the cellular mechanisms that govern nicotinamidase activity in mammalian cells may offer novel avenues for the treatment of disorders tied to oxidative stress and cellular metabolic dysfunction.

Chong, Zhao Zhong; Maiese, Kenneth

2008-01-01

113

Chromatin Collapse during Caspase-dependent Apoptotic Cell Death Requires DNA Fragmentation Factor, 40-kDa Subunit-/Caspase-activated Deoxyribonuclease-mediated 3?-OH Single-strand DNA Breaks*  

PubMed Central

Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD?/? cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3?-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3?-OH ends in single-strand rather than double-strand DNA nicks/breaks.

Iglesias-Guimarais, Victoria; Gil-Guinon, Estel; Sanchez-Osuna, Maria; Casanelles, Elisenda; Garcia-Belinchon, Merce; Comella, Joan X.; Yuste, Victor J.

2013-01-01

114

Induction of the Intrinsic Apoptotic Pathway by 3-Deazaadenosine Is Mediated by BAX Activation in HL-60 Cells  

PubMed Central

3-Deazaadenosine (DZA), a potent inhibitor of S-adenosylhomocysteine hydrolase, was previously proposed to induce intrinsic apoptosis in human leukemic cells. In the present study, we analyzed the mechanism underlying the DZA-induced intrinsic apoptotic pathway. DZA activated typical caspase-dependent apoptosis in HL-60 cells, as demonstrated by an accumulation of hypo-diploidic cells, the processing of multiple procaspases and an inhibitory effect of z-VAD-Fmk on this cell death. During DZA-induced apoptosis, cytochrome c (cyt c) was released into the cytosol. This was neither prevented by z-VAD-Fmk and nor was it associated with the dissipation of mitochondrial membrane potential (??m). Prior to the release of cyt c, BAX was translocated from the cytosol to mitochondria and underwent oligomerization. Finally, the overexpression of BCL-XL protected HL-60 cells from apoptosis by blocking both the cyt c release and BAX oligomerization. Collectively, these findings suggest that DZA may activate intrinsic apoptosis by stimulating BAX activation and thereby the release of cyt c.

Lee, Sun-Young; Ko, Kyoung-Won; Kang, Won-Kyung; Choe, Yun-Jeong; Kim, Yoon-Hyoung; Kim, In-Kyung; Kim, Jin

2010-01-01

115

Down-expression of PGC-1alpha partially mediated by JNK/c-Jun through binding to CRE site during apoptotic procedure in cerebellar granule neurons.  

PubMed

In eukaryotes, mitochondria are critical for cellular bioenergetics and mediating apoptosis. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) is an important regulator of mitochondrial biogenesis and function. However, the role of PGC-1alpha in neuronal apoptosis and its regulation by apoptotic pathway are still unknown. We demonstrated that PGC-1alpha expression was down-regulated in cerebellar granule neurons(CGNs) after activation of the JNK/c-Jun pathway by potassium deprivation. Overexpression of PGC-1alpha partially protected CGNs from potassium deprivation-induced apoptosis. JNK-specific inhibitors, SP600125 and CEP11004, partially blocked the inhibitory effects of JNK on PGC-1alpha expression and its promoter activity. Furthermore, ChIP assays revealed that c-Jun was able to bind to the CRE site (-188 to -180) in the PGC-1alpha promoter. In conclusion, these results suggest that down-expression of PGC-1alpha partially mediated by activation of JNK/c-Jun may be through the binding of c-Jun to the CRE site in the PGC-1alpha promoter, and it might be involved in potassium deprivation-induced apoptosis in CGNs. PMID:20143420

Liang, Jingyao; Yang, Yi; Zhu, Xiaonan; Wang, Xuelan; Chen, Ruzhu

2010-07-01

116

Determining the contributions of caspase-2, caspase-8 and effector caspases to intracellular VDVADase activities during apoptosis initiation and execution.  

PubMed

Apoptosis signaling crucially depends on caspase activities. Caspase-2 shares features of both initiator and effector caspases. Opinions are divided on whether caspase-2 activity is established during apoptosis initiation or execution in response to DNA damage, death receptor stimulation, or heat shock. So far, approaches towards measuring caspase-2 activity were restricted to analyses in cell homogenates and extracts, yielded inconsistent results, and were often limited in sensitivity, thereby contributing to controversies surrounding the role of caspase-2 during apoptosis. Furthermore, caspases overlap in substrate specificities, and caspase-8 as well as effector caspases may cleave the optimal VDVAD recognition motif as well. We therefore generated a highly sensitive Förster resonance energy transfer (FRET) substrate to determine the relative contribution of these caspases to VDVADase activity non-invasively inside living cells. We observed limited proteolysis of the substrate during apoptosis initiation in response to death receptor stimulation by FasL, TNF? and TRAIL. However, this activity was attributable to caspase-8 rather than caspase-2. Likewise, no caspase-2-specific activity was detected during apoptosis initiation in response to genotoxic stress (cisplatin, 5-FU), microtubule destabilization (vincristine), or heat shock. The contribution of caspase-2 to proteolytic activities during apoptosis execution was insignificant. Since even residual, ectopically introduced caspase-2 activity could readily be detected inside living cells in our measurements, we conclude, in contrast to several previous studies, that caspase-2 activity does not contribute to apoptosis in the scenarios investigated, and that instead caspase-8 and effector caspases are the most significant VDVADases during canonical apoptosis signaling. PMID:23747563

Delgado, M Eugenia; Olsson, Magnus; Lincoln, Frank A; Zhivotovsky, Boris; Rehm, Markus

2013-10-01

117

Effect of cilostazol pretreatment on the PARP/AIF-mediated apoptotic pathway in rat cerebral ischemia-reperfusion models  

PubMed Central

The aim of this study was to observe the expression of poly ADP-ribose polymerase (PARP) and apoptosis-inducing factor (AIF) in the CA1 region of the hippocampus and to explore whether cilostazol pretreatment exerts a protective effect on the brain through the PARP/AIF-mediated pathway in a rat model of cerebral ischemia-reperfusion. Rats were randomly divided into three groups: Sham-surgery, ischemia-reperfusion and cilostazol (n=45 rats/group). Rat models of middle cerebral artery occlusion were prepared using a thread occlusion method. Rats in the cilostazol group were administered 30 mg/kg intragastric cilostazol 6 and 2 h before brain ischemia, respectively. Following reperfusion, samples were collected at different time-points (6, 24 and 72 h) and each group was further subdivided into three subgroups (n=15 rats/subgroup). Apoptosis was measured using the terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling method. The protein expression levels of AIF and PARP were detected using western blot analysis and the expression levels of AIF mRNA were determined using the reverse transcription-polymerase chain reaction. AIF nuclear translocation occurred following local cerebral ischemia-reperfusion injury. Apoptosis, levels of AIF and PARP protein expression and levels of AIF mRNA expression were significantly increased in the ischemia-reperfusion group compared with the sham-surgery group (P<0.05). However, apoptosis and the expression levels of AIF protein, PARP protein and AIF mRNA at different time-points were significantly decreased in the cilostazol group compared with the ischemia-reperfusion group (P<0.05). In conclusion, cilostazol has a protective effect on rat cerebral ischemia-reperfusion injury, and acts by inhibiting nerve cell apoptosis by preventing the excessive activation of PARP and AIF nuclear translocation.

BA, XIAO-HONG; CAI, LI-PING; HAN, WEI

2014-01-01

118

A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system.  

PubMed

Ganoderma is a precious health-care edible medicinal fungus in China. A novel Ganoderma atrum polysaccharide (PSG-1) is the main bioactive component. We investigated the antitumor effect and molecular mechanisms of PSG-1. It exhibited no significant effect on cell proliferation directly. In contrast, administration of PSG-1 markedly suppressed tumor growth in CT26 tumor-bearing mice. It was observed that PSG-1 caused apoptosis in CT26 cells. Apoptosis was associated with loss of mitochondrial membrane potential, enhancement of mitochondrial cytochrome c release and intracellular ROS production, elevation of p53 and Bax expression, downregulation of Bcl-2, and the activation of caspase-9 and -3. Moreover, PSG-1 enhanced immune organ index and promoted lymphocyte proliferation as well as cytokine levels in serum. Taken together, our data indicate that PSG-1 has potential antitumor activity in vivo by inducing apoptosis via mitochondria-mediated apoptotic pathway and enhances host immune system function. Therefore, PSG-1 could be a safe and effective antitumor, bioactive agent or functional food. PMID:24506418

Zhang, Shenshen; Nie, Shaoping; Huang, Danfei; Feng, Yanling; Xie, Mingyong

2014-02-19

119

Ca(2+)-independent caspase-3 but not Ca(2+)-dependent caspase-2 activation induced by oxidative stress leads to SH-SY5Y human neuroblastoma cell apoptosis.  

PubMed

Continuous and long-lasting exposure to tert-butylhydroperoxide (t-BOOH) increased the number of apoptotic SH-SY5Y human neuroblastoma cells both in the presence and in the absence of the intracellular Ca(2+) ion chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). In addition, t-BOOH exposure induced activation of CPP32, as demonstrated by poly-(ADP-ribose) polymerase (PARP) cleavage, and of ICH-1L caspases. Exposure to t-BOOH also induced a time-dependent release of cytochrome c. Interestingly, in the presence of BAPTA, CPP32 activation still occurred, whereas ICH-1L activation was blocked. Ac-DEVD-CHO, an inhibitor of CPP32 activity, prevented the appearance of apoptotic cells, whereas the inhibitor of ICH-1L activity Z-VDVAD-FMK did not. Collectively, these findings demonstrate that in SH-SY5Y neuroblastoma cells exposure to continuous and long-lasting oxidative stress induced activation of caspase-3 that was independent of intracellular Ca(2+) ion concentration ([Ca(2+)](i)) elevation but led to cell apoptosis. In contrast, caspase-2 activation was dependent on [Ca(2+)](i) increase but did not result in apoptosis. PMID:11992472

Amoroso, Salvatore; D'Alessio, Angela; Sirabella, Rossana; Di Renzo, Gianfranco; Annunziato, Lucio

2002-05-15

120

Immunosuppressive effects of apoptotic cells  

NASA Astrophysics Data System (ADS)

Apoptotic cell death is important in the development and homeostasis of multicellular organisms and is a highly controlled means of eliminating dangerous, damaged or unnecessary cells without causing an inflammatory response or tissue damage,. We now show that the presence of apoptotic cells during monocyte activation increases their secretion of the anti-inflammatory and immunoregulatory cytokine interleukin 10 (IL-10) and decreases secretion of the proinflammatory cytokines tumour necrosis factor-? (TNF-?), IL-1 and IL-12. This may inhibit inflammation and contribute to impaired cell-mediated immunity in conditions associated with increased apoptosis, such as viral infections, pregnancy, cancer and exposure to radiation.

Voll, Reinhard E.; Herrmann, Martin; Roth, Edith A.; Stach, Christian; Kalden, Joachim R.; Girkontaite, Irute

1997-11-01

121

Apoptotic Response through a High Mobility Box 1 Protein-Dependent Mechanism in LPS/GalN-Induced Mouse Liver Failure and Glycyrrhizin-Mediated Inhibition  

PubMed Central

HMGB1 is a nuclear component involved in nucleosome stabilization and transcription regulation, but extracellularly it is able to serve as a potential late mediator of lethality. In the present study, we explored inflammation-promoting activity of HMGB1 and blockade of extracellular release of HMGB1 by glycyrrhizin (GL) in LPS/GalN-triggered mouse liver injury. At 1 to 10 h after LPS/GalN-treatment, mice were anesthetized to collect blood from heart puncture, and serum transaminase and HMGB1 were evaluated. Administration of LPS/GalN precipitated tissue injury associated with time-dependent alteration in HMGB1 serum levels. At 8 h nuclear immunoreactive products were remarkably reduced and extracellular HMGB1 expression was found exclusively in the pericentral foci. The treatment with GL significantly down-regulated the serum levels of ALT, AST, and HMGB1 in addition to the strong inhibition of tissue injury and extracellular immunoreactivity to HMGB1 and to acetylated-lysine. Furthermore, GL brought about a significant decrease in the number of apoptotic hepatocytes labeled with TUNEL-method. On the basis of these results, three apoptosis-associated genes were identified with microarray analysis and real-time PCR. The ChIP-assay revealed the binding of HMGB1 protein to Gsto1 promoter sequence in LPS/GalN-treated mice and the remarkable decrease in combined HMGB1 protein by GL. The current findings claim that a single injection of LPS/GalN might stimulate apoptosis of hepatocytes through the binding of HMGB1 protein to Gsto1 promoter region and that GL-treatment might prevent the apoptosis and inflammatory infiltrates caused with LPS/GalN-injection by disturbing the binding of HMGB1 protein to Gsto1 promoter sequence.

Kuroda, Noriyuki; Inoue, Kouji; Ikeda, Tadayuki; Hara, Yaiko; Wake, Kenjiro; Sato, Tetsuji

2014-01-01

122

Apoptotic regulation and transfer RNA  

PubMed Central

Apoptotic regulation is critical to organismal homeostasis and protection against many human disease processes such as cancer. Significant research efforts over the past several decades have illuminated many of the signaling molecules and effecter proteins responsible for this form of programmed cell death. Recent evidence suggests that transfer RNA (tRNA) regulates apoptotic sensitivity at the level of cytochrome c-mediated apoptosome formation. This finding unexpectedly places tRNA at the nexus of cellular biosynthesis and survival. Here we review the current understanding of both the apoptotic machinery and tRNA biology. We describe the evidence linking tRNA and cytochrome c in depth, and speculate on the implications of this link in cell biology.

Mei, Yide; Stonestrom, Aaron; Hou, Ya-Ming; Yang, Xiaolu

2010-01-01

123

Brain angiogenesis inhibitor 1 is expressed by gastric phagocytes during infection with Helicobacter pylori and mediates the recognition and engulfment of human apoptotic gastric epithelial cells.  

PubMed

After Helicobacter pylori infection in humans, gastric epithelial cells (GECs) undergo apoptosis due to stimulation by the bacteria or inflammatory cytokines. In this study, we assessed the expression and function of brain angiogenesis inhibitor 1 (BAI1) in the engulfment of apoptotic GECs using human tissue and cells. After induction of apoptosis by H. pylori or camptothecin, there was a 5-fold increase in the binding of apoptotic GECs to THP-1 cells or peripheral blood monocyte-derived macrophages as assayed by confocal microscopy or conventional and imaging flow cytometry. Binding was impaired 95% by pretreating apoptotic cells with annexin V, underscoring the requirement for phosphatidylserine recognition. The phosphatidylserine receptor BAI1 was expressed in human gastric biopsy specimens and gastric phagocytes. To confirm the role of BAI1 in apoptotic cell clearance, the functional domain of BAI1 was used as a competitive inhibitor or BAI1 expression was inhibited by small interfering RNA. Both approaches decreased binding and engulfment >40%. Exposing THP-1 cells to apoptotic cells inhibited IL-6 production from 1340 to <364 pg/ml; however, this decrease was independent of phagocytosis. We conclude that recognition of apoptotic cells by BAI1 contributes to their clearance in the human gastric mucosa and this is associated with anti-inflammatory effects. PMID:24509909

Das, Soumita; Sarkar, Arup; Ryan, Kieran A; Fox, Sarah; Berger, Alice H; Juncadella, Ignacio J; Bimczok, Diane; Smythies, Lesley E; Harris, Paul R; Ravichandran, Kodi S; Crowe, Sheila E; Smith, Phillip D; Ernst, Peter B

2014-05-01

124

Human chorionic gonadotropin suppresses human breast cancer cell growth directly via p53-mediated mitochondrial apoptotic pathway and indirectly via ovarian steroid secretion.  

PubMed

The tumor-suppressive effects of human chorionic gonadotropin (hCG) against human breast cancer cells were examined. In cell viability assays, hCG inhibited the growth of three human breast cancer cell lines (estrogen receptor (ER)-positive KPL-1 and MCF-7, and ER-negative MKL-F cells), and the growth inhibition activity of hCG was most pronounced against KPL-1 cells (luteinizing hormone/chorionic gonadotropin receptor (LHCGR)-positive and luminal-A subtype). In hCG-treated KPL-1 cells, immunoblotting analysis revealed the expression of tumor suppressor protein p53 peaking at 12 h following treatment, followed by cleavage of caspase-9 and caspase-3 at 24 h and 48 h, respectively. KPL-1-transplanted athymic mice were divided into 3 groups: a sham-treated group that received an inoculation of KPL-1 cells at 6 weeks of age followed by daily intraperitoneal (i.p.) injection of saline; an in vitro hCG-treated KPL-1 group that received an inoculation of KPL-1 cells pre-treated with 100 IU/ml hCG in vitro for 48 h at 6 weeks of age, followed by daily i.p. injection of saline; and an in vivo hCG-treated group that received an KPL-1 cell inoculation at 6 weeks of age, followed by daily i.p. injection of 100 IU hCG. The daily injections of saline or hCG continued until the end of the experiment when mice reached 11 weeks of age. KPL-1 tumor growth was retarded in in vitro and in vivo hCG-treated mice compared to sham-treated controls, and the final tumor volume and tumor weight tended to be suppressed in the in vitro hCG-treated group and were significantly suppressed in the in vivo hCG-treated group. In vivo 100-IU hCG injections for 5 weeks elevated serum estradiol levels (35.7 vs. 23.5 pg/ml); thus, the mechanisms of hCG action may be directly coordinated via the p53-mediated mitochondrial apoptotic pathway and indirectly through ovarian steroid secretion that elevates estrogen levels. It is thus concluded that hCG may be an attractive agent for treating human breast cancer expressing both LHCGR and ER. PMID:24596382

Yuri, Takashi; Kinoshita, Yuichi; Emoto, Yuko; Yoshizawa, Katsuhiko; Tsubura, Airo

2014-03-01

125

A Novel Herbal Medicine, KIOM-C, Induces Autophagic and Apoptotic Cell Death Mediated by Activation of JNK and Reactive Oxygen Species in HT1080 Human Fibrosarcoma Cells  

PubMed Central

KIOM-C was recently demonstrated to have anti-metastatic activity in highly malignant cancer cells via suppression of NF-?B-mediated MMP-9 activity. In addition, it was reported to be effective for clearance of the influenza virus by increasing production of anti-viral cytokines, such as TNF-? and IFN-?, and efficacious in the treatment of pigs suffering from porcine circovirus-associated disease (PCVAD). In this study, we investigated whether KIOM-C induces cancer cell death and elucidated the underlying anti-cancer mechanisms. In addition, we examined whether KIOM-C oral administration suppresses in vivo tumor growth of HT1080 cells in athymic nude mice. We initially found that KIOM-C at concentrations of 500 and 1000 µg/ml caused dose- and time-dependent cell death in cancer cells, but not normal hepatocytes, to approximately 50% of control levels. At the early stage of KIOM-C treatment (12 h), cells were arrested in G1 phase, which was accompanied by up-regulation of p21 and p27, down-regulation of cyclin D1, and subsequent increases in apoptotic and autophagic cells. Following KIOM-C treatment, the extent of caspase-3 activation, PARP cleavage, Beclin-1 expression, and LC3-II conversion was remarkably up-regulated, but p62 expression was down-regulated. Phosphorylation of AMPK, ULK, JNK, c-jun, and p53 was increased significantly in response to KIOM-C treatment. The levels of intracellular ROS and CHOP expression were also increased. In particular, the JNK-specific inhibitor SP600125 blocked KIOM-C-induced ROS generation and CHOP expression almost completely, which consequently almost completely rescued cell death, indicating that JNK activation plays a critical role in KIOM-C-induced cell death. Furthermore, daily oral administration of 85 and 170 mg/kg KIOM-C efficiently suppressed the tumorigenic growth of HT1080 cells, without systemic toxicity. These results collectively suggest that KIOM-C efficiently induces cancer cell death by both autophagy and apoptosis via activation of JNK signaling pathways, and KIOM-C represents a safe and potent herbal therapy for treating malignancies.

Kim, Aeyung; Im, Minju; Yim, Nam-Hui; Kim, Taesoo; Ma, Jin Yeul

2014-01-01

126

Charge Profile Analysis Reveals That Activation of Pro-apoptotic Regulators Bax and Bak Relies on Charge Transfer Mediated Allosteric Regulation  

Microsoft Academic Search

The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model,

Crina-Maria Ionescu; Radka Svobodová Va?eková; Jochen H. M. Prehn; Heinrich J. Huber; Jaroslav Ko?a

2012-01-01

127

A role for c-Jun N-terminal kinase 1 (JNK1), but not JNK2, in the beta-amyloid-mediated stabilization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons.  

PubMed Central

beta-Amyloid (A beta) peptide has been shown to induce neuronal apoptosis; however, the mechanisms underlying A beta-induced neuronal cell death remain to be fully elucidated. The stress-activated protein kinase, c-Jun N-terminal kinase (JNK), is activated in response to cellular stress and has been identified as a proximal mediator of cell death. In the present study, expression of active JNK was increased in the nucleus and cytoplasm of A beta-treated cells. Evaluation of the nature of the JNK isoforms activated by A beta revealed a transient increase in JNK1 activity that reached its peak at 1 h and a later activation (at 24 h) of JNK2. The tumour suppressor protein, p53, is a substrate for JNK and can serve as a signalling molecule in apoptosis. In cultured cortical neurons, we found that A beta increased p53 protein expression and phosphorylation of p53 at Ser(15). Thus it appears that A beta increases p53 expression via phosphorylation-mediated stabilization of the protein. Given the lack of availability of a JNK inhibitor that can distinguish between JNK1- and JNK2-mediated effects, we employed antisense technology to deplete cells of JNK1 or JNK2 selectively. Using this strategy, the respective roles of JNK1 and JNK2 on the A beta-mediated activation of the apoptotic cascade (i.e. p53 stabilization, caspase 3 activation and DNA fragmentation) were examined. The results obtained demonstrate a role for JNK1 in the A beta-induced stabilization of p53, activation of caspase 3 and DNA fragmentation. In contrast, depletion of JNK2 had no effect on the proclivity of A beta to activate capase 3 or induce DNA fragmentation. These results demonstrate a significant role for JNK1 in A beta-mediated induction of the apoptotic cascade in cultured cortical neurons.

Fogarty, Marie P; Downer, Eric J; Campbell, Veronica

2003-01-01

128

Catalytic activity-independent pathway is involved in phospholipase A(2)-induced apoptotic death of human leukemia U937 cells via Ca(2+)-mediated p38 MAPK activation and mitochondrial depolarization.  

PubMed

In view of the controversial role of catalytic activity on the cytotoxicity of phospholipase A(2) (PLA(2)), the present study is conducted to explore whether PLA(2) induces apoptotic process of human leukemia U937 cells through catalytic activity-independent pathway. Modification of His-48 (according to the sequence alignment with porcine pancreatic PLA(2)) with p-bromophenacyl bromide (BPB) caused over 99.9% drop in enzymatic activity Naja naja atra PLA(2). It was found that BPB-PLA(2)-induced apoptotic death of U937 cells was associated with mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Upon exposure to BPB-PLA(2), elevation of intracellular Ca(2+) levels and p38 MAPK activation were observed in U937 cells. Pretreatment with BAPTA-AM (Ca(2+) chelator) and nifedipine (L-type Ca(2+) channel blocker) abrogated Ca(2+) increase and p38 MAPK activation, and rescued viability of BPB-PLA(2)-treated U937 cells. BPB-PLA(2)-induced dissipation of mitochondrial membrane potential and down-regulation of Bcl-2 were suppressed by SB202190 (p38MAPK inhibitor). Although PLA(2) mutants in which His-48 and Asp-49 were substituted by Ala and Lys, respectively, did not display detectable PLA(2) activity, they induced death of U937 cells. The signaling pathway of PLA(2) mutants in inducing cell death was indistinguishable from that of BPB-PLA(2). Taken together, our data indicate that catalytic activity-independent pathway is involved in PLA(2)-induced apoptotic death of human leukemia U937 cells via mitochondria-mediated death pathway triggering by Ca(2+)-mediated p38 MAPK activation. PMID:19118607

Liu, Wen-Hsin; Kao, Pei-Hsiu; Chiou, Yi-Ling; Lin, Shinne-Ren; Wu, Ming-Jung; Chang, Long-Sen

2009-03-10

129

Intra-coronary adenoviral-mediated sarcoplasmic reticulum Ca2+ATPase gene transfection during experimental heart failure improves exercise capacity and hemodynamic, inflammatory, and apoptotic profiles  

Microsoft Academic Search

Introduction: Heart failure is associated with abnormalities of the inflammatory and apoptotic cascades. Our goal was to assess potential alterations in these systemic pathways as a result of intra-cardiac gene transfection of sarcoplasmic reticulum Ca2+-ATPase (SERCA).Methods: Rats underwent aortic banding and were followed by echocardiography for development of heart failure. After a decrease in fractional shortening of at least 25%

Dipin Gupta; Jonathan Palma; Walter Long; John Gaughan; Steven Houser; Satoshi Furukawa; Mahender Macha

2004-01-01

130

Houttuynia cordata Thunb extract modulates G0/G1 arrest and Fas/CD95-mediated death receptor apoptotic cell death in human lung cancer A549 cells  

PubMed Central

Background Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells. Results In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment. Conclusions The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells

2013-01-01

131

Quercetin enhances apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway.  

PubMed

Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown efficacy in a phase 2 clinical trial, development of resistance to TRAIL by tumor cells is a major roadblock. We investigated whether quercetin, a flavonoid, can sensitize human ovarian cancer cells to TRAIL. Results indicate that quercetin sensitized cancer cells to TRAIL. The quercetin induced expression of death receptor DR5 but did not affect expression of DR4 in cancer cells. The induction of DR5 was mediated through activation of JNK and through upregulation of a transcription factor CCAAT enhancer-binding protein homologous protein (CHOP); as silencing of these signaling molecules abrogated the effect of quercetin. Upregulation of DR5 was mediated through the generation of reactive oxygen species (ROS), as ROS scavengers reduced the effect of quercetin on JNK activation, CHOP upregulation, DR induction, TRAIL sensitization, downregulated the expression of cell survival proteins and upregulated the proapoptotic proteins. Furthermore, quercetin enhances TRAIL mediated inhibition of tumor growth of human SKOV-3 xenograft was associated with induction of apoptosis, activation of caspase-3, CHOP and DR5. Overall, our data suggest that quercetin enhances apoptotic death of ovarian cancer cells to TRAIL through upregulation of CHOP-induced DR5 expression following ROS mediated endoplasmic reticulum-stress. PMID:24612139

Yi, Liu; Zongyuan, Yang; Cheng, Gong; Lingyun, Zhang; Guilian, Yu; Wei, Gong

2014-05-01

132

siRNA-Mediated Down-regulation of Ceramide Synthase 1 Leads to Apoptotic Resistance in Human Head and Neck Squamous Carcinoma Cells After Photodynamic Therapy  

PubMed Central

Background The effectiveness of photodynamic therapy (PDT) for cancer treatment correlates with apoptosis. We previously observed that the knockdown of ceramide synthase 6, an enzyme from the de novo sphingolipid biosynthesis pathway, is associated with marked reduction in C18-dihydroceramide and makes cells resistant to apoptosis post-PDT. Down-regulation of ceramide synthase 1 (CERS1) can also render cells resistant to anticancer drugs. Aim To explore the impact of CERS1 knockdown on apoptosis and the sphingolipid profile, post-PDT, with the silicone phthalocyanine Pc 4, in a human head and neck squamous carcinoma cell line. Materials and Methods Besides siRNA transfection and PDT treatment, the following methods were used: immunoblotting for protein expression, mass spectrometry for sphingolipid analysis, spectroflurometry and flow cytometry for apoptosis detection, and trypan blue assay for cell viability evaluation. Results CERS1 knockdown led to inhibition of PDT-induced caspase 3-like (DEVDase) activation, of apoptosis and cell death. CERS1 knockdown was associated with global and selective decreases in ceramides and dihydroceramides, in particular C18-, C18:1- and C20-ceramide post-PDT. Conclusion Our novel findings are consistent with the notion that CERS1 regulates apoptotic resistance to PDT, partly via C18- and C20-ceramide, and that CERS1 is a molecular target for controlling resistance to PDT.

SEPAROVIC, DUSKA; BIELAWSKI, JACEK; PIERCE, JASON S.; VAN BUREN, ERIC; GUDZ, TATYANA I.

2014-01-01

133

Mediation of endogenous antioxidant enzymes and apoptotic signaling by resveratrol following muscle disuse in the gastrocnemius muscles of young and old rats  

PubMed Central

Hindlimb suspension (HLS) elicits muscle atrophy, oxidative stress, and apoptosis in skeletal muscle. Increases in oxidative stress can have detrimental effects on muscle mass and function, and it can potentially lead to myonuclear apoptosis. Resveratrol is a naturally occurring polyphenol possessing both antioxidant and antiaging properties. To analyze the capacity of resveratrol to attenuate oxidative stress, apoptosis and muscle force loss were measured following 14 days of HLS. Young (6 mo) and old (34 mo) rats were administered either 12.5 mg·kg?1·day?1 of trans-resveratrol, or 0.1% carboxymethylcellulose for 21 days, including 14 days of HLS. HLS induced a significant decrease in plantarflexor isometric force, but resveratrol blunted this loss in old animals. Resveratrol increased gastrocnemius catalase activity, MnSOD activity, and MnSOD protein content following HLS. Resveratrol reduced hydrogen peroxide and lipid peroxidation levels in muscles from old animals after HLS. Caspase 9 abundance was reduced and Bcl-2 was increased, but other apoptotic markers were not affected by resveratrol in the gastrocnemius muscle after HLS. The data indicate that resveratrol has a protective effect against oxidative stress and muscle force loss in old HLS animals; however, resveratrol was unable to attenuate apoptosis following HLS. These results suggest that resveratrol has the potential to be an effective therapeutic agent to treat muscle functional decrements via improving the redox status associated with disuse.

Jackson, Janna R.; Ryan, Michael J.; Hao, Yanlei

2010-01-01

134

Caspase-mediated apoptosis in chicken postovulatory follicle regression.  

PubMed

Chicken postovulatory follicle (POF) regression occurs via the process of apoptosis. However, the signals and initiator pathways responsible for regression of the POF are unknown. In the current study, we examined gene expression patterns of various caspases (caspase-1, -2 and -3) involved in apoptosis by semi-quantitative RT-PCR. The percentage of apoptotic cells during POF regression was also quantified by flow cytometry. Expression of caspase-3 mRNA was noted in the largest preovulatory follicle (F1). However, the initiator caspases (caspase-1 and -2) were not expressed in F1. During the regression of the POF, caspase-3 was activated during initial stages, whereas the initiator caspases were upregulated at the later stages (POF4 and POF5). The percentage of apoptotic cells was significantly higher during the regression of the POF. It might be possible that levels of caspase-3 mRNA do not necessarily reflect the cell's potential for facilitating apoptosis, as activation of the caspase-3 by initiator caspases is required for its function. We presume that both caspase-1 and caspase-2 were key initiators in the regression of chicken POF and that the apoptosis-mediated regression of POFs might be similar to mammalian corpus luteum involution. PMID:17564810

Sundaresan, N R; Saxena, V K; Sastry, K V H; Anish, D; Marcus Leo, M D; Kantaraja, C; Saxena, M; Ahmed, K A

2008-01-01

135

Immune-mediated anti-neoplastic effect of intratumoral RSV envelope glycoprotein expression is related to apoptotic death of tumor cells but not to the size of syncytia  

PubMed Central

AIM: To promote the development of improved tumor vaccination strategies relying on the intratumoral expression of viral fusogenic membrane proteins, we elucidated whether the size of syncytia or the way tumor cells die has an effect on the therapeutic outcome. METHODS: In two syngeneic subcutaneous murine colon cancer models we assessed the anti-neoplastic effect on vector-treated and contralateral untreated tumors. RESULTS: Intratumoral injection of a replication-defective adenovirus encoding respiratory syncytial virus fusion protein (RSV-F) alone (Ad.RSV-F) or together with the attachment glycoprotein RSV-G (Ad.RSV-F/G) led to a significant growth reduction of the vector-treated and contralateral untreated tumors. The treatment response was associated with a strong tumor-specific CTL response and significantly improved survival with medians of 46 d and 44 d, respectively. Intratumoral injection of Ad.RSV-G or a soluble RSV-F encoding adenovirus (Ad.RSV-Fsol) had no significant anti-neoplastic effect. The median survival of these treatment groups and of Ad.Null-treated control animals was about 30 d. CONCLUSION: Although in vitro transduction of colon cancer cell lines with Ad.RSV-F/G resulted in about 8-fold larger syncytia than with Ad.RSV-F, the in vivo outcome was not significantly different. Transduction of murine colon cancer cell lines with Ad.RSV-F or Ad.RSV-F/G caused apoptotic cell death, in contrast to transduction with Ad.RSV-G or Ad.RSV-Fsol, suggesting an importance of the mode of cell death. Overall, these findings provide insight into improved tumor vaccination strategies relying on the intratumoral expression of viral fusogenic membrane proteins.

Hoffmann, Dennis; Grunwald, Thomas; Bayer, Wibke; Wildner, Oliver

2008-01-01

136

Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of anti-proliferative, pro-apoptotic and anti-angiogenic effects.  

PubMed

While 25% of human cancers harbor oncogenic Ras mutations, such mutations are not found in astrocytomas. We have previously demonstrated that the activation of receptor tyrosine kinases expressed by malignant human astrocytoma cells and specimens results in functional upregulation of the Ras signalling pathway and increased levels of activated Ras*GTP. Farnesyl transferase inhibitors (FTIs) are promising anti-cancer agents in early clinical trials, which may exert their effect through pharmacological inhibition of the Ras signalling pathway. In this study we establish the anti-tumorigenic properties of the FTI L-744,832 against a panel of malignant human astrocytoma cell lines. Furthermore, we demonstrate the multiple mechanisms by which L-744,832 exerts its effect. L-744,832 demonstrates both cytostatic and cytotoxic effects on astrocytoma cells, and cells expressing a truncated constitutively phosphorylated Epidermal Growth Factor Receptor common in high-grade astrocytomas (EGFRvIII/p140EGF-R) demonstrate increased sensitivity to the agent. L-744,832 is capable of inducing apoptosis in astrocytoma cells under anchorage-dependent conditions; this process occurs in a p53-independent manner and is associated with increased expression of Bax and Bak. L-744,832 also induces cell cycle arrest at both the G1/M and G2/S checkpoints; this process is also independent of p53 mutational status. Cell cycle arrest in drug-treated cells can be accompanied by induction of p21WAF1/CIP1, but this induction is not necessary for the cell cycle inhibitory effects, nor is it dependent on functional p53. Finally, angiogenesis in astrocytomas has been shown to be dependent on secretion of Vascular Endothelial Growth Factor (VEGF) by tumour cells, particularly under hypoxic conditions. L-744,832 potently inhibits the secretion of VEGF under hypoxic conditions. These combinations of mechanisms suggest that these tumours, despite the absence of oncogenic Ras mutations, will be amenable to growth inhibition by FTIs, through a combination of anti-proliferative, pro-apoptotic, and anti-angiogenic effects. PMID:10602510

Feldkamp, M M; Lau, N; Guha, A

1999-12-01

137

A Death Effector Domain Chain DISC Model Reveals a Crucial Role for Caspase-8 Chain Assembly in Mediating Apoptotic Cell Death  

PubMed Central

Summary Formation of the death-inducing signaling complex (DISC) is a critical step in death receptor-mediated apoptosis, yet the mechanisms underlying assembly of this key multiprotein complex remain unclear. Using quantitative mass spectrometry, we have delineated the stoichiometry of the native TRAIL DISC. While current models suggest that core DISC components are present at a ratio of 1:1, our data indicate that FADD is substoichiometric relative to TRAIL-Rs or DED-only proteins; strikingly, there is up to 9-fold more caspase-8 than FADD in the DISC. Using structural modeling, we propose an alternative DISC model in which procaspase-8 molecules interact sequentially, via their DED domains, to form a caspase-activating chain. Mutating key interacting residues in procaspase-8 DED2 abrogates DED chain formation in cells and disrupts TRAIL/CD95 DISC-mediated procaspase-8 activation in a functional DISC reconstitution model. This provides direct experimental evidence for a DISC model in which DED chain assembly drives caspase-8 dimerization/activation, thereby triggering cell death.

Dickens, Laura S.; Boyd, Robert S.; Jukes-Jones, Rebekah; Hughes, Michelle A.; Robinson, Gemma L.; Fairall, Louise; Schwabe, John W.R.; Cain, Kelvin; MacFarlane, Marion

2012-01-01

138

Apoptotic Signaling in Mouse Odontogenesis  

PubMed Central

Abstract Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members.

Svandova, Eva; Tucker, Abigail S.

2012-01-01

139

The heme oxygenase-1 protein is overexpressed in human renal cancer cells following activation of the Ras-Raf-ERK pathway and mediates anti-apoptotic signal.  

PubMed

The stress-inducible cytoprotective enzyme heme oxygenase-1 (HO-1) may play a critical role in the growth and metastasis of tumors. We demonstrated that overexpressed HO-1 promotes the survival of renal cancer cells by inhibiting cellular apoptosis; we also showed that the proto-oncogene H-Ras becomes activated in these cells under stress following treatment with immunosuppressive agents. However, it is not known if there is an association between Ras activation and HO-1 overexpression. Here, we examined if the activation of H-Ras pathway could induce HO-1, and promote the survival of renal cancer cells (786-0 and Caki-1). In co-transfection assays, using HO-1 promoter-luciferase construct, we found that the activated H-Ras, H-Ras(12V), promoted HO-1 transcriptional activation. The inhibition of endogenous H-Ras by specific dominant-negative mutant/siRNA markedly ablated the HO-1 promoter activity. Active H-Ras increased HO-1 mRNA and protein expression. Moreover, transfection with effector domain mutant constructs of active H-Ras showed that H-Ras-induced HO-1 overexpression was primarily mediated through the Raf signaling pathway. Using pharmacological inhibitor, we observed that ERK is a critical intermediary molecule for Ras-Raf-induced HO-1 expression. Activation of H-Ras and ERK promoted nuclear translocation of the transcription factor Nrf2 for its binding to the specific sequence of HO-1 promoter. The knockdown of Nrf2 significantly inhibited H-Ras-induced HO-1 transcription. Finally, by FACS analysis using Annexin-V staining, we demonstrated that the H-Ras-ERK-induced and HO-1-mediated pathway could protect renal cancer cells from apoptosis. Thus, targeting the Ras-Raf-ERK pathway for HO-1 overexpression may serve as novel therapeutics for the treatment of renal cancer. PMID:21808062

Banerjee, Pallavi; Basu, Aninda; Datta, Dipak; Gasser, Martin; Waaga-Gasser, Ana Maria; Pal, Soumitro

2011-09-23

140

Inositol Hexaphosphate Down-regulates both Constitutive and Ligand-Induced Mitogenic and Cell Survival Signaling, and Causes Caspase-Mediated Apoptotic Death of Human Prostate Carcinoma PC-3 cells  

PubMed Central

Constitutively active mitogenic and pro-survival signaling cascades due to aberrant expression and interaction of growth factors and their receptors are well documented in human prostate cancer (PCa). EGF and IGF-1 are potent mitogens that regulate proliferation and survival of PCa cells via autocrine and paracrine loops involving both MAPK- and Akt-mediated signaling. Accordingly, here we assessed the effect of inositol hexaphosphate (IP6) on constitutive and ligand (EGF and IGF-1)-induced biological responses and associated signaling cascades in advanced and androgen-independent human PCa PC-3 cells. Treatment of PC-3 cells with 2 mM IP6 strongly inhibited both growth and proliferation and decreased cell viability; similar effects were also observed in other human PCa DU145 and LNCaP cells. IP6 also caused a strong apoptotic death of PC-3 cells together with caspase 3 and PARP cleavage. Mechanistic studies showed that biological effects of IP6 were associated with inhibition of both constitutive and ligand-induced Akt phosphorylation together with a decrease in total Akt levels, but a differential inhibitory effect on MAPKs ERK1/2, JNK1/2 and p38 under constitutive and ligand-activated conditions. Under similar condition, IP6 also inhibited AP-1 DNA binding activity and decreased nuclear levels of both phospho and total c-Fos and c-Jun. Together, these findings for the first time establish IP6 efficacy in inhibiting aberrant EGFR or IGF-1R pathway-mediated sustained growth promoting and survival signaling cascades in advanced and androgen-independent human PCa PC-3 cells, which might have translational implications in advanced human PCa control and management.

Gu, Mallikarjuna; Raina, Komal; Agarwal, Chapla; Agarwal, Rajesh

2009-01-01

141

Anti-tumour activity of a novel coumarin-chalcone hybrid is mediated through intrinsic apoptotic pathway by inducing PUMA and altering Bax/Bcl-2 ratio.  

PubMed

Coumarins and chalcones are secondary plant metabolites which have shown an array of pharmacological properties including anti-tumour activity. We have previously reported on the synthesis and anti-proliferative activity of a series of novel coumarin-chalcone hybrids. Now we report on the in vivo efficacy as well as mechanism of action of the most potent molecule of the series, S009-131. Oral administration of this molecule resulted in regression of tumours induced by HeLa cell xenografts in nod SCID mice. The molecule inhibited proliferation of cervical cancer cells (HeLa and C33A) by inducing apoptosis and arresting cell cycle at G2/M phase. Apoptosis was induced through induction of caspase-dependent intrinsic pathway and alterations in the cellular levels of Bcl-2 family proteins. The mitochondrial transmembrane potential got highly depleted in S009-131 treated cells due to an increase in Bax/Bcl-2 ratio and intracellular ROS. The molecule induced release of cytochrome c into the cytosol and activation of initiator caspase-9 and executioner caspases-3/7. Tumour suppressor protein p53 and its transcriptional target PUMA were up regulated, suggesting their role in mediating the cell death. These results suggest that S009-131 is a potent candidate for the chemotherapy of cervical carcinoma. PMID:24638227

Singh, Neetu; Sarkar, Jayanta; Sashidhara, Koneni V; Ali, Shakir; Sinha, Sudhir

2014-06-01

142

An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells.  

PubMed

Now-a-days synthesis and characterization of silver nanoparticles (AgNPs) through biological entity is quite interesting to employ AgNPs for various biomedical applications in general and treatment of cancer in particular. This paper presents the green synthesis of AgNPs using leaf extract of Podophyllum hexandrum Royle and optimized with various parameters such as pH, temperature, reaction time, volume of extract and metal ion concentration for synthesis of AgNPs. TEM, XRD and FTIR were adopted for characterization. The synthesized nanoparticles were found to be spherical shaped with average size of 14 nm. Effects of AgNPs were analyzed against human cervical carcinoma cells by MTT Assay, quantification of ROS, RT-PCR and western blotting techniques. The overall result indicates that AgNPs can selectively inhibit the cellular mechanism of HeLa by DNA damage and caspase mediated cell death. This biological procedure for synthesis of AgNPs and selective inhibition of cancerous cells gives an alternative avenue to treat human cancer effectively. PMID:23117153

Jeyaraj, Murugaraj; Rajesh, Manoharan; Arun, Renganathan; MubarakAli, Davoodbasha; Sathishkumar, Gnanasekar; Sivanandhan, Ganeshan; Dev, Gnanajothi Kapil; Manickavasagam, Markandan; Premkumar, Kumpati; Thajuddin, Nooruddin; Ganapathi, Andy

2013-02-01

143

Up-Regulation of AT1 and AT2 Receptors in Postinfarcted Hypertrophied Myocytes and Stretch-Mediated Apoptotic Cell Death  

PubMed Central

To determine whether up-regulation of AT1 and AT2 receptors occurred in hypertrophied myocytes after infarction and whether AT2 played a role in stretch-mediated apoptosis, left ventricular myocytes were dissociated from the surviving portion of the wall 8 days after coronary occlusion and cardiac failure in rats. Control cells were obtained from sham-operated animals. Myocytes were stretched in an equibiaxial stretch apparatus and angiotensin II (Ang II) formation and cell death were measured 3 and 12 hours later. AT1 and AT2 proteins were evaluated in freshly isolated myocytes and after stretch. The effects of AT1 and AT2 antagonists on stretch-induced Ang II synthesis and apoptosis were also established. Myocardial infarction increased AT1 and AT2 in myocytes and stretch further up-regulated these receptors. Ang II levels were higher in postinfarcted myocytes and this peptide increased with the duration of stretch in both groups of cells. Similarly, apoptosis increased with time in control and postinfarcted myocytes. Absolute values of Ang II and apoptosis were greater in myocytes from infarcted hearts at 3 and 12 hours after stretch. Addition of AT1 blocker to cultures inhibited stretch-activated apoptosis in both myocyte populations as well as the generation of Ang II in postinfarcted myocytes. In contrast, AT2 antagonists had no impact on these cellular events. In conclusion, Ang II stimulated cell death through AT1 receptor activation, whereas ligand binding to AT2 receptor did not alter Ang II concentration and apoptosis in normal and postinfarcted hypertrophied myocytes.

Leri, Annarosa; Liu, Yu; Li, Baosheng; Fiordaliso, Fabio; Malhotra, Ashwani; Latini, Roberto; Kajstura, Jan; Anversa, Piero

2000-01-01

144

The Anti-Apoptotic and Cardioprotective Effects of Salvianolic Acid A on Rat Cardiomyocytes following Ischemia/Reperfusion by DUSP-Mediated Regulation of the ERK1/2/JNK Pathway  

PubMed Central

The purpose of this study was to observe the effects of salvianolic acid A (SAA) pretreatment on the myocardium during ischemia/reperfusion (I/R) and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP) 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI). Wistar rats were divided into the following six groups: control group (CON), I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R), PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R). The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximum rate of ventricular pressure rise and fall (±dp/dtmax), myocardial infarction areas (MIA), lactate dehydrogenase (LDH), and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4+I/R group. SAA exerts an anti-apoptotic role against myocardial IRI by inhibiting DUSP2-mediated JNK dephosphorylation and activating DUSP4/16-mediated ERK1/2 phosphorylation.

Chen, Qiuping; Zhu, Shasha; Liu, Yang; Pan, Defeng; Chen, Xiaohu; Li, Dongye

2014-01-01

145

Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins  

NASA Astrophysics Data System (ADS)

The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

2010-03-01

146

Ras-mediated loss of the pro-apoptotic response protein Par-4 is mediated by DNA hypermethylation through Raf-independent and Raf-dependent signaling cascades in epithelial cells.  

PubMed

The apoptosis-promoting protein Par-4 has been shown to be down-regulated in Ras-transformed NIH 3T3 fibroblasts through the Raf/MEK/ERK MAPK pathway. Because mutations of the ras gene are most often found in tumors of epithelial origin, we explored the signaling pathways utilized by oncogenic Ras to down-regulate Par-4 in RIE-1 and rat ovarian surface epithelial (ROSE) cells. We determined that constitutive activation of the Raf, phosphatidylinositol 3-kinase, or Ral guanine nucleotide exchange factor effector pathway alone was not sufficient to down-regulate Par-4 in RIE-1 or ROSE cells. However, treatment of Ras-transformed RIE-1 or ROSE cells with the MEK inhibitors U0126 and PD98059 increased Par-4 protein expression. Thus, although oncogenic Ras utilizes the Raf/MEK/ERK pathway to down-regulate Par-4 in both fibroblasts and epithelial cells, Ras activation of an additional signaling pathway(s) is required to achieve the same outcome in epithelial cells. Methylation-specific PCR showed that the par-4 promoter is methylated in Ras-transformed cells through a MEK-dependent pathway and that treatment with the DNA methyltransferase inhibitor azadeoxycytidine restored Par-4 mRNA transcript and protein levels, suggesting that the mechanism for Ras-mediated down-regulation of Par-4 is by promoter methylation. Support for this possibility is provided by our observation that Ras transformation was associated with up-regulation of Dnmt1 and Dnmt3 DNA methyltransferase expression. Finally, ectopic Par-4 expression significantly reduced Ras-mediated growth in soft agar, but not morphological transformation, highlighting the importance of Par-4 down-regulation in specific aspects of Ras-mediated transformation of epithelial cells. PMID:15831492

Pruitt, Kevin; Ulkü, Aylin S; Frantz, Karen; Rojas, Rafael J; Muniz-Medina, Vanessa M; Rangnekar, Vivek M; Der, Channing J; Shields, Janiel M

2005-06-17

147

Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation.  

PubMed

Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit human lung cancers by inducing apoptosis and differentiation. In the present study, we elucidated the apoptotic mechanism of PPARgamma activation in human lung cancers by using a novel PPARgamma agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy)-3-phenyl-(1H-indene-2-carboxylic acid ethyl ester (KR-62980), and rosiglitazone. PPARgamma activation selectively inhibited cell viability of non-small-cell lung cancer with little effect on small-cell lung cancer and normal lung cells. The cell death induced by PPARgamma activation presented apoptotic features of oligonucleosomal DNA fragmentation in A549 human non-small-cell lung cancer cell line. Reactive oxygen species (ROS) production was accompanied by increased expression of proline oxidase (POX), a redox enzyme expressed in mitochondria, upon incubation with the agonists. POX RNA interference treatment blocked PPARgamma-induced ROS formation and cytotoxicity, suggesting that POX plays a functional role in apoptosis through ROS formation. The apoptotic effects by the agonists were antagonized by bisphenol A diglycidyl ether, a PPARgamma antagonist, and by knockdown of PPARgamma expression, indicating the involvement of PPARgamma in these actions. The results of the present study suggest that PPARgamma activation induces apoptotic cell death in non-small-cell lung carcinoma mainly through ROS formation via POX induction. PMID:17535976

Kim, Ki Young; Ahn, Jin Hee; Cheon, Hyae Gyeong

2007-09-01

148

Granzyme B\\/Perforin-Mediated Apoptosis of Jurkat Cells Results in Cleavage of Poly(ADP-ribose) Polymerase to the 89-kDa Apoptotic Fragment and Less Abundant 64-kDa Fragment  

Microsoft Academic Search

Cytotoxic lymphocytes utilize granule associated serine proteases (granzymes) and perforin to induce apoptosis. Although the importance of granzyme B has been established by gene ablation experiments, biochemical events initiated by the granzyme remain enigmatic. We show here that exposure of Jurkat cells to granzyme B and perforin results in cleavage of poly(ADP-ribose) polymerase to an apoptotic 89 kDa fragment and

Christopher J. Froelich; William L. Hanna; Guy G. Poirier; Patrick J. Duriez; Damien D'amours; Guy S. Salvesen; Emad S. Alnemri; William C. Earnshaw; Girish M. Shah

1996-01-01

149

Catalytic activity-independent pathway is involved in phospholipase A 2-induced apoptotic death of human leukemia U937 cells via Ca 2+-mediated p38 MAPK activation and mitochondrial depolarization  

Microsoft Academic Search

In view of the controversial role of catalytic activity on the cytotoxicity of phospholipase A2 (PLA2), the present study is conducted to explore whether PLA2 induces apoptotic process of human leukemia U937 cells through catalytic activity-independent pathway. Modification of His-48 (according to the sequence alignment with porcine pancreatic PLA2) with p-bromophenacyl bromide (BPB) caused over 99.9% drop in enzymatic activity

Wen-Hsin Liu; Pei-Hsiu Kao; Yi-Ling Chiou; Shinne-ren Lin; Ming-Jung Wu; Long-Sen Chang

2009-01-01

150

Viral Subversion of Apoptotic Enzymes: Escape from Death Row*  

PubMed Central

To prolong cell viability and facilitate replication, viruses have evolved multiple mechanisms to inhibit the host apoptotic response. Cellular proteases such as caspases and serine proteases are instrumental in promoting apoptosis. Thus, these enzymes are logical targets for virus-mediated modulation to suppress cell death. Four major classes of viral inhibitors antagonize caspase function: serpins, p35 family members, inhibitor of apoptosis proteins, and viral FLICE-inhibitory proteins. Viruses also subvert activity of the serine proteases, granzyme B and HtrA2/Omi, to avoid cell death. The combined efforts of viruses to suppress apoptosis suggest that this response should be avoided at all costs. However, some viruses utilize caspases during replication to aid virus protein maturation, progeny release, or both. Hence, a multifaceted relationship exists between viruses and the apoptotic response they induce. Examination of these interactions contributes to our understanding of both virus pathogenesis and the regulation of apoptotic enzymes in normal cellular functions.

Best, Sonja M.

2008-01-01

151

H. pylori Infection Inhibits Phagocyte Clearance of Apoptotic Gastric Epithelial Cells  

PubMed Central

Increased apoptotic death of gastric epithelial cells is a hallmark of H. pylori infection, and altered epithelial cell turnover is an important contributor to gastric carcinogenesis. To address the fate of apoptotic gastric epithelial cells and their role in H. pylori mucosal disease, we investigated phagocyte clearance of apoptotic gastric epithelial cells in H. pylori infection. Human gastric mononuclear phagocytes were analyzed for their ability to take up apoptotic epithelial cells in vivo using immunofluorescence analysis. We then used primary human gastric epithelial cells induced to undergo apoptosis by exposure to live H. pylori to study apoptotic cell uptake by autologous monocyte-derived macrophages. We show that HLA-DR+ mononuclear phagocytes in human gastric mucosa contain cytokeratin-positive and TUNEL-positive apoptotic epithelial cell material, indicating that gastric phagocytes are involved in apoptotic epithelial cell clearance. We further show that H. pylori both increased apoptosis in primary gastric epithelial cells and decreased phagocytosis of the apoptotic epithelial cells by autologous monocyte-derived macrophages. Reduced macrophage clearance of apoptotic cells was mediated in part by H. pylori-induced macrophage TNF-?, which was expressed at higher levels in H. pylori-infected, compared to uninfected, gastric mucosa. Importantly, we show that H. pylori-infected gastric mucosa contained significantly higher numbers of apoptotic epithelial cells and higher levels of non-phagocytosed TUNEL-positive apoptotic material, consistent with a defect in apoptotic cell clearance. Thus, as shown in other autoimmune and chronic inflammatory diseases, insufficient phagocyte clearance may contribute to the chronic and self-perpetuating inflammation in human H. pylori infection.

Bimczok, Diane; Smythies, Lesley E.; Waites, Ken B.; Grams, Jayleen M.; Stahl, Richard D.; Mannon, Peter J.; Peter, Shajan; Wilcox, C. Mel; Harris, Paul R.; Das, Soumita; Ernst, Peter B.; Smith, Phillip D.

2013-01-01

152

Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-?B pathway.  

PubMed

Azadirachta indica (neem tree) is used in traditional Indian medicine for its pharmacological properties including cancer prevention and treatment. Here, we studied a neem extract's anti-inflammatory potential via the nuclear factor-?B (NF-?B) signaling pathway, linked to cancer, inflammation, and apoptosis. Cultured human leukemia cells were treated with a methanolic neem leaf extract with or without tumor necrosis factor (TNF)-? stimulation. Inhibition of NF-?B activity was demonstrated by luciferase assay and electrophoretic mobility shift assay (EMSA). Inhibition of viability by neem extracts was assessed by luminescent assays. Western blot analysis allowed assessing the inhibitory effect of the neem extract on TNF-?-induced degradation of inhibitor of ?B (I?B) and nuclear translocation of the NF-?B p50/p65 heterodimer. Inhibition of I?B kinase (IKK) activity was shown as well as the effect of neem extract on the induction of apoptotic cell death mechanisms by nuclear fragmentation analysis and flow cytometry analysis. In conclusion, our data provide evidence for a strong effect of the neem extract on pro-inflammatory cell signaling and apoptotic cell death mechanisms, contributing to a better understanding of the mechanisms triggered by Azadirachta indica. PMID:21484152

Schumacher, Marc; Cerella, Claudia; Reuter, Simone; Dicato, Mario; Diederich, Marc

2011-05-01

153

Dual-Targeting Pro-apoptotic Peptide for Programmed Cancer Cell Death via Specific Mitochondria Damage  

PubMed Central

Mitochondria are vital organelles to eukaryotic cells. Damage to mitochondria will cause irreversible cell death or apoptosis. In this report, we aim at programmed cancer cell death via specific mitochondrial damage. Herein, a functionalized pro-apoptotic peptide demonstrates a dual-targeting capability using folic acid (FA) (targeting agent I) and triphenylphosphonium (TPP) cation (targeting agent II). FA is a cancer-targeting agent, which can increase the cellular uptake of the pro-apoptotic peptide via receptor-mediated endocytosis. And the TPP cation is the mitochondrial targeting agent, which specifically delivers the pro-apoptotic peptide to its particular subcellular mitochondria after internalized by cancer cells. Then the pro-apoptotic peptide accumulates in mitochondria and causes its serious damage. This dual-targeting strategy has the potential to effectively transport the pro-apoptotic peptide to targeted cancer cell mitochondria, inducing mitochondrial dysfunction and triggering the mitochondria-dependent apoptosis to efficiently eliminate cancer cells.

Chen, Wei-Hai; Xu, Xiao-Ding; Luo, Guo-Feng; Jia, Hui-Zhen; Lei, Qi; Cheng, Si-Xue; Zhuo, Ren-Xi; Zhang, Xian-Zheng

2013-01-01

154

Dual-targeting pro-apoptotic peptide for programmed cancer cell death via specific mitochondria damage.  

PubMed

Mitochondria are vital organelles to eukaryotic cells. Damage to mitochondria will cause irreversible cell death or apoptosis. In this report, we aim at programmed cancer cell death via specific mitochondrial damage. Herein, a functionalized pro-apoptotic peptide demonstrates a dual-targeting capability using folic acid (FA) (targeting agent I) and triphenylphosphonium (TPP) cation (targeting agent II). FA is a cancer-targeting agent, which can increase the cellular uptake of the pro-apoptotic peptide via receptor-mediated endocytosis. And the TPP cation is the mitochondrial targeting agent, which specifically delivers the pro-apoptotic peptide to its particular subcellular mitochondria after internalized by cancer cells. Then the pro-apoptotic peptide accumulates in mitochondria and causes its serious damage. This dual-targeting strategy has the potential to effectively transport the pro-apoptotic peptide to targeted cancer cell mitochondria, inducing mitochondrial dysfunction and triggering the mitochondria-dependent apoptosis to efficiently eliminate cancer cells. PMID:24336626

Chen, Wei-Hai; Xu, Xiao-Ding; Luo, Guo-Feng; Jia, Hui-Zhen; Lei, Qi; Cheng, Si-Xue; Zhuo, Ren-Xi; Zhang, Xian-Zheng

2013-01-01

155

Immunological Consequences of Apoptotic Cell Phagocytosis  

PubMed Central

Cells undergo apoptosis in development, tissue homeostasis, and disease and are subsequently cleared by professional and nonprofessional phagocytes. There is now overwhelming evidence that phagocyte function is profoundly altered following apoptotic cell uptake, with consequences for the ensuing innate and adaptive immune response. Pathogens and tumors exploit the changes in macrophage function following apoptotic cell uptake. Here, we will outline the consequences of apoptotic cell phagocytosis and illustrate how apoptotic cells could be used to manipulate the immune response for therapeutic gain.

Erwig, Lars-Peter; Henson, Peter M.

2007-01-01

156

Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies  

PubMed Central

Obesity and type 2 diabetes are associated with chronic inflammation. Adiponectin is an adipocyte-derived hormone with antidiabetic and antiinflammatory actions. Here, we demonstrate what we believe to be a previously undocumented activity of adiponectin, facilitating the uptake of early apoptotic cells by macrophages, an essential feature of immune system function. Adiponectin-deficient (APN-KO) mice were impaired in their ability to clear apoptotic thymocytes in response to dexamethasone treatment, and these animals displayed a reduced ability to clear early apoptotic cells that were injected into their intraperitoneal cavities. Conversely, adiponectin administration promoted the clearance of apoptotic cells by macrophages in both APN-KO and wild-type mice. Adiponectin overexpression also promoted apoptotic cell clearance and reduced features of autoimmunity in lpr mice whereas adiponectin deficiency in lpr mice led to a further reduction in apoptotic cell clearance, which was accompanied by exacerbated systemic inflammation. Adiponectin was capable of opsonizing apoptotic cells, and phagocytosis of cell corpses was mediated by the binding of adiponectin to calreticulin on the macrophage cell surface. We propose that adiponectin protects the organism from systemic inflammation by promoting the clearance of early apoptotic cells by macrophages through a receptor-dependent pathway involving calreticulin.

Takemura, Yukihiro; Ouchi, Noriyuki; Shibata, Rei; Aprahamian, Tamar; Kirber, Michael T.; Summer, Ross S.; Kihara, Shinji; Walsh, Kenneth

2007-01-01

157

Apoptotic Cell Death in Neuroblastoma  

PubMed Central

Neuroblastoma (NB) is one of the most common malignant solid tumors in childhood, which derives from the sympathoadrenal lineage of the neural crest and exhibits extremely heterogeneous biological and clinical behaviors. The infant patients frequently undergo spontaneous regression even with metastatic disease, whereas the patients of more than one year of age who suffer from disseminated disease have a poor outcome despite intensive multimodal treatment. Spontaneous regression in favorable NBs has been proposed to be triggered by nerve growth factor (NGF) deficiency in the tumor with NGF dependency for survival, while aggressive NBs have defective apoptotic machinery which enables the tumor cells to evade apoptosis and confers the resistance to treatment. This paper reviews the molecules and pathways that have been recently identified to be involved in apoptotic cell death in NB and discusses their potential prospects for developing more effective therapeutic strategies against aggressive NB.

Li, Yuanyuan; Nakagawara, Akira

2013-01-01

158

Apoptotic markers in protozoan parasites.  

PubMed

The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms.In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities. PMID:21062457

Jiménez-Ruiz, Antonio; Alzate, Juan Fernando; Macleod, Ewan Thomas; Lüder, Carsten Günter Kurt; Fasel, Nicolas; Hurd, Hilary

2010-01-01

159

Apoptotic markers in protozoan parasites  

PubMed Central

The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

2010-01-01

160

Proinflammatory Cytokines Activate the Intrinsic Apoptotic Pathway in ?-Cells  

PubMed Central

OBJECTIVE Proinflammatory cytokines are cytotoxic to ?-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced ?-cell death is unclear. Here, cytokine activation of the intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in ?-cells. RESEARCH DESIGN AND METHODS Human and rat islets and INS-1 cells were exposed to a combination of proinflammatory cytokines (interleukin-1?, interferon-?, and/or tumor necrosis factor-?). Activation of Bad was determined by Ser136 dephosphorylation, mitochondrial stress by changes in mitochondrial metabolic activity and cytochrome c release, downstream apoptotic signaling by activation of caspase-9 and -3, and DNA fragmentation. The inhibitors FK506 and V5 were used to investigate the role of Bad and Bax activation, respectively. RESULTS We found that proinflammatory cytokines induced calcineurin-dependent dephosphorylation of Bad Ser136, mitochondrial stress, cytochrome c release, activation of caspase-9 and -3, and DNA fragmentation. Inhibition of Bad Ser136 dephosphorylation or Bax was found to inhibit cytokine-induced intrinsic proapoptotic signaling. CONCLUSIONS Our findings demonstrate that the intrinsic mitochondrial apoptotic pathway contributes significantly to cytokine-induced ?-cell death and suggest a functional role of calcineurin-mediated Bad Ser136 dephosphorylation and Bax activity in cytokine-induced apoptosis.

Grunnet, Lars G.; Aikin, Reid; Tonnesen, Morten F.; Paraskevas, Steven; Blaabjerg, Lykke; St?rling, Joachim; Rosenberg, Lawrence; Billestrup, Nils; Maysinger, Dusica; Mandrup-Poulsen, Thomas

2009-01-01

161

Interaction of Apoptotic Cells with Macrophages Upregulates COX-2/PGE2 and HGF Expression via a Positive Feedback Loop  

PubMed Central

Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2 expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cells in vitro and in vivo orchestrate the interaction between COX-2/PGE2 and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2 production. Both NS-398 and COX-2-siRNA, as well as the PGE2 receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2 induction. The in vivo relevance of the interaction between the COX-2/PGE2 and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages following in vivo exposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2 and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.

Byun, Ji Yeon; Youn, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Woo, So-Yeon; Kang, Jihee Lee

2014-01-01

162

Protective role of D-saccharic acid-1,4-lactone in alloxan induced oxidative stress in the spleen tissue of diabetic rats is mediated by suppressing mitochondria dependent apoptotic pathway.  

PubMed

The present study investigated the role of D-saccharic acid 1,4-lactone (DSL) in the spleen tissue of alloxan (ALX) induced diabetic rats. Diabetes was induced in rats by injecting ALX (at a dose of 120 mg/kg body weight) intraperitoneally in sterile normal saline. Elevated levels of blood glucose, glycosylated Hb and TNF? decreased levels of plasma insulin and disturbed intra-cellular antioxidant machineries were detected in ALX exposed animals. Oral administration of DSL at a dose of 80 mg/kg body weight, however, restored these alterations in diabetic rats. Studies on the mechanism of ALX-induced diabetes showed that hyperglycemia caused disruption of mitochondrial membrane potential in the spleen, released cytochrome C in the cytosol, activated caspase 3 and ultimately led to apoptotic cell death. Results suggest that DSL possesses the ability of protecting the spleen tissue from ALX-induced hyperglycemia and thus could act as an anti-diabetic agent in lessening diabetes associated spleen dysfunction. PMID:22239106

Rashid, Kahkashan; Bhattacharya, Semantee; Sil, Parames C

2012-03-01

163

The Anti-Apoptotic Activity of Albumin for Endothelium Is Mediated by a Partially Cryptic Protein Domain and Reduced by Inhibitors of G-Coupled Protein and PI3 Kinase, but Is Independent of Radical Scavenging or Bound Lipid  

Microsoft Academic Search

Increased vascular disease occurs with low albumin (human serum albumin, HSA), possibly reflecting specific inhibition of endothelial apoptosis reported for tissue culture. Despite the reported specificity for endothelial protection by HSA, the high but physiological concentrations needed appear more consistent with non-specific low-affinity interactions. We reconcile this contradiction by demonstrating protection is mediated by a partially cryptic HSA protein domain,

Christine Bolitho; Penelope Bayl; Jing Y. Hou; Garry Lynch; Alexander J. Hassel; Alexandra J. Wall; Hans Zoellner

2007-01-01

164

EBNA3C-Mediated Regulation of Aurora Kinase B Contributes to Epstein-Barr Virus-Induced B-Cell Proliferation through Modulation of the Activities of the Retinoblastoma Protein and Apoptotic Caspases  

PubMed Central

Epstein-Barr virus (EBV) is an oncogenic gammaherpesvirus that is implicated in several human malignancies, including Burkitt's lymphoma (BL), posttransplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma (NPC), and AIDS-associated lymphomas. Epstein-Barr nuclear antigen 3C (EBNA3C), one of the essential EBV latent antigens, can induce mammalian cell cycle progression through its interaction with cell cycle regulators. Aurora kinase B (AK-B) is important for cell division, and deregulation of AK-B is associated with aneuploidy, incomplete mitotic exit, and cell death. Our present study shows that EBNA3C contributes to upregulation of AK-B transcript levels by enhancing the activity of its promoter. Further, EBNA3C also increased the stability of the AK-B protein, and the presence of EBNA3C leads to reduced ubiquitination of AK-B. Importantly, EBNA3C in association with wild-type AK-B but not with its kinase-dead mutant led to enhanced cell proliferation, and AK-B knockdown can induce nuclear blebbing and cell death. This phenomenon was rescued in the presence of EBNA3C. Knockdown of AK-B resulted in activation of caspase 3 and caspase 9, along with poly(ADP-ribose) polymerase 1 (PARP1) cleavage, which is known to be an important contributor to apoptotic signaling. Importantly, EBNA3C failed to stabilize the kinase-dead mutant of AK-B compared to wild-type AK-B, which suggests a role for the kinase domain in AK-B stabilization and downstream phosphorylation of the cell cycle regulator retinoblastoma protein (Rb). This study demonstrates the functional relevance of AK-B kinase activity in EBNA3C-regulated B-cell proliferation and apoptosis.

Jha, Hem Chandra; Lu, Jie; Saha, Abhik; Cai, Qiliang; Banerjee, Shuvomoy; Prasad, Mahadesh A. J.

2013-01-01

165

Annexin A1 on the Surface of Early Apoptotic Cells Suppresses CD8+ T Cell Immunity  

PubMed Central

Prevention of an immune response against self-antigens derived from apoptotic cells is essential to preclude autoimmune and chronic inflammatory diseases. Here, we describe apoptosis induced externalization of endogenous cytosolic annexin 1 initiating an anti-inflammatory effector mechanism that suppresses the immune response against antigens of apoptotic cells. Cytosolic annexin 1 rapidly translocated to the apoptotic cell surface and inhibited dendritic cell (DC) activation induced by Toll like receptors (TLR). Annexin 1-inhibited DC showed strongly reduced secretion of pro-inflammatory cytokines (e.g. TNF and IL-12) and costimulatory surface molecules (e.g. CD40 and CD86), while anti-inflammatory mediators like PD-L1 remained unchanged. T cells stimulated by such DC lacked secretion of interferon-? (IFN-?) and TNF but retained IL-10 secretion. In mice, annexin 1 prevented the development of inflammatory DC and suppressed the cellular immune response against the model antigen ovalbumin (OVA) expressed in apoptotic cells. Furthermore, annexin 1 on apoptotic cells compromised OVA-specific tumor vaccination and impaired rejection of an OVA-expressing tumor. Thus, our results provide a molecular mechanism for the suppressive activity of apoptotic cells on the immune response towards apoptotic cell-derived self-antigens. This process may play an important role in prevention of autoimmune diseases and of the immune response against cancer.

Weyd, Heiko; Jahndel, Veronika; Pfrang, Sandra; Schnolzer, Martina; Falk, Christine S.; Krammer, Peter H.

2013-01-01

166

Structural basis for autoantibody recognition of phosphatidylserine-?2 glycoprotein I and apoptotic cells  

PubMed Central

Apoptotic cells contain nuclear autoantigens that may initiate a systemic autoimmune response. To explore the mechanism of antibody binding to apoptotic cells, 3H9, a murine autoantibody with dual specificity for phospholipids and DNA, was used. H chain mutants of 3H9 were constructed, expressed as single-chain Fv (scFv) in Escherichia coli, and assessed for binding to phosphatidylserine, an antigen expressed on apoptotic cells. Both 3H9 and its germline revertant bound to dioleoyl phosphatidylserine in ELISA, and binding was enhanced by ?2 glycoprotein I (?2GPI), a plasma protein that selectively binds to apoptotic cells. Higher relative affinity for DOPS-?2GPI was achieved by the introduction of Arg residues into the 3H9 H chain variable region at positions previously shown to mediate DNA binding. Specificity of the two structurally most diverse scFv for apoptotic cells was shown by flow cytometry, and two populations of scFv-bound cells were identified by differences in propidium iodide staining. The results suggest that, in autoimmunity, B cells with Ig receptors for apoptotic cells and DNA are positively selected, and that the antibodies they produce have the potential to affect the clearance and processing of apoptotic cells.

Cocca, Brian A.; Seal, Samarendra N.; D'Agnillo, Paolo; Mueller, Yvonne M.; Katsikis, Peter D.; Rauch, Joyce; Weigert, Martin; Radic, Marko Z.

2001-01-01

167

Apoptotic cells induce immunosuppression through dendritic cells: critical roles of IFN-gamma and nitric oxide.  

PubMed

Apoptotic cells induce immunosuppression through unknown mechanisms. To identify the underlying molecular mediators, we examined how apoptotic cells induce immunoregulation by dendritic cells (DC). We found that administration of DC exposed to apoptotic cells (DC(ap)) strongly inhibited the expansion of lymphocytes in draining lymph nodes in vivo and the subsequent Ag-specific activation of these lymphocytes ex vivo. Unexpectedly, DC(ap) supported T cell activation to a similar extent as normal DC in vitro, leading to proliferation and IL-2 production, except that DC(ap) did not support T cell production of IFN-gamma. Surprisingly, when DC(ap) were cocultured with normal DC, they completely lost their ability to support T cell activation, an effect reversed by anti-IFN-gamma or inhibitors of inducible NO synthase (iNOS). As expected, exposure to apoptotic cells rendered DC(ap) capable of producing much more NO in response to exogenous IFN-gamma than normal DC. Furthermore, DC(ap) from iNOS(-/-) or IFN-gammaR1(-/-) mice were not inhibitory in vitro or in vivo. Therefore, the IFN-gamma-induced production of NO by apoptotic cell-sensitized DC plays a key role in apoptotic cell-mediated immunosuppression. PMID:18713999

Ren, Guangwen; Su, Juanjuan; Zhao, Xin; Zhang, Liying; Zhang, Jimin; Roberts, Arthur I; Zhang, Huatang; Das, Gobardhan; Shi, Yufang

2008-09-01

168

Divalent cation-dependent and -independent augmentation of macrophage phagocytosis of apoptotic neutrophils by CD44 antibody  

PubMed Central

Phagocytosis of apoptotic neutrophils by macrophages is required for resolution of an inflammatory response. Removal of intact apoptotic neutrophils prevents the release of cytotoxic granules that would otherwise cause tissue damage and may lead to development of fibrosis. Importantly, macrophage phagocytosis of apoptotic neutrophils fails to induce release of proinflammatory mediators, consistent with a ‘safe’ pathway for disposal of potentially harmful inflammatory cells. One pathway for increasing phagocytosis of apoptotic cells to allow matching of tissue phagocyte capacity to apoptotic cell load in vitro is via antibody-mediated cross-linking of CD44, providing a mechanism for limiting tissue damage during resolution of inflammation. In this study, we have defined divalent cation-dependent and -independent actions of the CD44 antibody. For the divalent cation-independent CD44 antibody effect, we provide evidence that ‘enabled’ CD32 on the apoptotic neutrophil binds to intact CD44 antibody on the macrophage surface. One implication is that macrophages can phagocytose apoptotic neutrophils that are ‘tethered’ to the macrophage surface in a manner that is independent of defined apoptotic mechanisms. These data also provide an explanation for the greater efficacy of intact CD44 antibody when compared with F(ab?)2 fragments.

VIVERS, S; HEASMAN, S J; HART, S P; DRANSFIELD, I

2004-01-01

169

Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum  

PubMed Central

The obligate intracellular pathogen Leishmania major survives and multiplies in professional phagocytes. The evasion strategy to circumvent killing by host phagocytes and establish a productive infection is poorly understood. Here we report that the virulent inoculum of Leishmania promastigotes contains a high ratio of annexin A5-binding apoptotic parasites. This subpopulation of parasites is characterized by a round body shape, a swollen kinetoplast, nuclear condensation, and a lack of multiplication and represents dying or already dead parasites. After depleting the apoptotic parasites from a virulent population, Leishmania do not survive in phagocytes in vitro and lose their disease-inducing ability in vivo. TGF-? induced by apoptotic parasites is likely to mediate the silencing of phagocytes and lead to survival of infectious Leishmania populations. The data demonstrate that apoptotic promastigotes, in an altruistic way, enable the intracellular survival of the viable parasites.

van Zandbergen, Ger; Bollinger, Annalena; Wenzel, Alexander; Kamhawi, Shaden; Voll, Reinhard; Klinger, Matthias; Muller, Antje; Holscher, Christoph; Herrmann, Martin; Sacks, David; Solbach, Werner; Laskay, Tamas

2006-01-01

170

The apoptotic perspective of autism.  

PubMed

Autism is a severe neurodevelopmental disorder characterized by impairments in social interaction, deficits in verbal and non-verbal communication, and repetitive behavior and restricted interests. The normal brain development during fetal brain development and the first year of life is critical to the behaviors and cognitions in adulthood. Programmed cell death (apoptosis) is an important mechanism that determines the size and shape of the brain and regulates the proper wiring of developing neuronal networks. Pathological activation of apoptotic death pathways under pathological conditions may lead to neuroanatomic abnormalities and possibly to developmental disabilities. It has been demonstrated a possible association between neural cell death and autism. Here, the abnormal apoptosis found in autism from postmortem and animal studies was reviewed and the possible mechanism was discussed. PMID:24798024

Wei, Hongen; Alberts, Ian; Li, Xiaohong

2014-08-01

171

The Urokinase Plasminogen Activator Receptor Promotes Efferocytosis of Apoptotic Cells  

PubMed Central

The urokinase receptor (uPAR), expressed on the surface of many cell types, coordinates plasmin-mediated cell surface proteolysis for matrix remodeling and promotes cell adhesion by acting as a binding protein for vitronectin. There is great clinical interest in uPAR in the cancer field as numerous reports have demonstrated that up-regulation of the uPA system is correlated with malignancy of various carcinomas. Using both stable cell lines overexpressing uPAR and transient gene transfer, here we provide evidence for a non-reported role of uPAR in the phagocytosis of apoptotic cells, a process that has recently been termed efferocytosis. When uPAR was expressed in human embryonic kidney cells, hamster melanoma cells, or breast cancer cells (BCCs), there was a robust enhancement in the efferocytosis of apoptotic cells. uPAR-expressing cells failed to stimulate engulfment of viable cells, suggesting that uPAR enhances recognition of one or more determinant on the surface of the apoptotic cell. uPAR-mediated engulfment was not inhibited by expression of mutant ?5 integrin, nor was ?v?5 integrin-mediated engulfment modulated by cleavage of uPAR by phosphatidylinositol-specific phospholipase C. Further, we found that the more aggressive BCCs had a higher phagocytic capacity that correlated with uPAR expression and cleavage of membrane-associated uPAR in MDA-MB231 BCCs significantly impaired phagocytic activity. Because efferocytosis is critical for the resolution of inflammation and production of anti-inflammatory cytokines, overexpression of uPAR in tumor cells may promote a tolerogenic microenvironment that favors tumor progression.

D'mello, Veera; Singh, Sukhwinder; Wu, Yi; Birge, Raymond B.

2009-01-01

172

P90RSK and Nrf2 Activation via MEK1/2-ERK1/2 Pathways Mediated by Notoginsenoside R2 to Prevent 6-Hydroxydopamine-Induced Apoptotic Death in SH-SY5Y Cells  

PubMed Central

6-Hydroxydopamine (6-OHDA) is known to contribute to neuronal death in Parkinson's disease. In this study, we found that the preincubation of SH-SY5Y cells for 24?h with 20??M notoginsenoside R2 (NGR2), which is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. NGR2 incubation successively resulted in the activation of P90RSK, inactivation of BAD, and inhibition of 6-OHDA-induced mitochondrial membrane depolarization, thus preventing the mitochondrial apoptosis pathway. NGR2 incubation also led to the activation of Nrf2 and subsequent activity enhancement of phase II detoxifying enzymes, thus suppressing 6-OHDA-induced oxidative stress, and these effects could be removed by Nrf2 siRNA. We also found that the upstream activators of P90RSK and Nrf2 were the MEK1/2–ERK1/2 pathways but not the JNK, P38, or PI3K/Akt pathways. Interestingly, NGR2 incubation could also activate MEK1/2 and ERK1/2. Most importantly, NGR2-mediated P90RSK and Nrf2 activation, respective downstream target activation, and neuroprotection were reversed by the genetic silencing of MEK1/2 and ERK1/2 by using siRNA and PD98059 application. These results suggested that the neuroprotection elicited by NGR2 against 6-OHDA-induced neurotoxicity was associated with NGR2-mediated P90RSK and Nrf2 activation through MEK1/2-ERK1/2 pathways.

Meng, Xiang-Bao; Sun, Gui-Bo; Sun, Xiao-Bo

2013-01-01

173

P90RSK and Nrf2 Activation via MEK1/2-ERK1/2 Pathways Mediated by Notoginsenoside R2 to Prevent 6-Hydroxydopamine-Induced Apoptotic Death in SH-SY5Y Cells.  

PubMed

6-Hydroxydopamine (6-OHDA) is known to contribute to neuronal death in Parkinson's disease. In this study, we found that the preincubation of SH-SY5Y cells for 24?h with 20? ? M notoginsenoside R2 (NGR2), which is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. NGR2 incubation successively resulted in the activation of P90RSK, inactivation of BAD, and inhibition of 6-OHDA-induced mitochondrial membrane depolarization, thus preventing the mitochondrial apoptosis pathway. NGR2 incubation also led to the activation of Nrf2 and subsequent activity enhancement of phase II detoxifying enzymes, thus suppressing 6-OHDA-induced oxidative stress, and these effects could be removed by Nrf2 siRNA. We also found that the upstream activators of P90RSK and Nrf2 were the MEK1/2-ERK1/2 pathways but not the JNK, P38, or PI3K/Akt pathways. Interestingly, NGR2 incubation could also activate MEK1/2 and ERK1/2. Most importantly, NGR2-mediated P90RSK and Nrf2 activation, respective downstream target activation, and neuroprotection were reversed by the genetic silencing of MEK1/2 and ERK1/2 by using siRNA and PD98059 application. These results suggested that the neuroprotection elicited by NGR2 against 6-OHDA-induced neurotoxicity was associated with NGR2-mediated P90RSK and Nrf2 activation through MEK1/2-ERK1/2 pathways. PMID:24159358

Meng, Xiang-Bao; Sun, Gui-Bo; Wang, Min; Sun, Jing; Qin, Meng; Sun, Xiao-Bo

2013-01-01

174

PDT-treated apoptotic cells induce macrophage synthesis NO  

NASA Astrophysics Data System (ADS)

Nitric oxide (NO) is a biologically active molecule which has multi-functional in different species. As a second messenger and neurotransmitter, NO is not only an important regulatory factor between cells' information transmission, but also an important messenger in cell-mediated immunity and cytotoxicity. On the other side, NO is involving in some diseases' pathological process. In pathological conditions, the macrophages are activated to produce a large quantity of nitric oxide synthase (iNOS), which can use L-arginine to produce an excessive amount of NO, thereby killing bacteria, viruses, parasites, fungi, tumor cells, as well as in other series of the immune process. In this paper, photofrin-based photodynamic therapy (PDT) was used to treat EMT6 mammary tumors in vitro to induce apoptotic cells, and then co-incubation both apoptotic cells and macrophages, which could activate macrophage to induce a series of cytotoxic factors, especially NO. This, in turn, utilizes macrophages to activate a cytotoxic response towards neighboring tumor cells. These results provided a new idea for us to further study the immunological mechanism involved in damaging effects of PDT, also revealed the important function of the immune effect of apoptotic cells in PDT.

Song, S.; Xing, D.; Zhou, F. F.; Chen, W. R.

2009-11-01

175

Proteome analysis of nuclear matrix proteins during apoptotic chromatin condensation.  

PubMed

The nuclear matrix (NM) is considered a proteinaceous scaffold spatially organizing the interphase nucleus, the integrity of which is affected during apoptosis. Caspase-mediated degradation of NM proteins, such as nuclear lamins, precedes apoptotic chromatin condensation (ACC). Nevertheless, other NM proteins remain unaffected, which most likely maintain a remaining nuclear structure devoid of chromatin. We, therefore, screened various types of apoptotic cells for changes of the nuclear matrix proteome during the process of apoptotic ACC. Expectedly, we observed fundamental alterations of known chromatin-associated proteins, comprising both degradation and translocation to the cytosol. Importantly, a consistent set of abundant NM proteins, some (e.g. hNMP 200) of which displaying structural features, remained unaffected during apoptosis and might therefore represent constituents of an elementary scaffold. In addition, proteins involved in DNA replication and DNA repair were found accumulated in the NM fraction before cells became irreversibly committed to ACC, a time point characterized in detail by inhibitor studies with orthovanadate. In general, protein alterations of a consistent set of NM proteins (67 of which were identified), were reproducibly detectable in Fas-induced Jurkat cells, in UV-light treated U937 cells and also in staurosporine-treated HeLa cells. Our data indicate that substantial alterations of proteins linking chromatin to an elementary nuclear protein scaffold might play an intriguing role for the process of ACC. PMID:12032676

Gerner, C; Gotzmann, J; Fröhwein, U; Schamberger, C; Ellinger, A; Sauermann, G

2002-06-01

176

Transcriptional activation of known and novel apoptotic pathways by Nur77 orphan steroid receptor  

PubMed Central

Nur77 is a nuclear orphan steroid receptor that has been implicated in negative selection. Expression of Nur77 in thymocytes and cell lines leads to apoptosis through a mechanism that remains unclear. In some cell lines, Nur77 was reported to act through a transcription-independent mechanism involving translocation to mitochondria, leading to cytochrome c release. However, we show here that Nur77-mediated apoptosis in thymocytes does not involve cytoplasmic cytochrome c release and cannot be rescued by Bcl-2. Microarray analysis shows that Nur77 induces many genes, including two novel genes (NDG1, NDG2) and known apoptotic genes FasL and TRAIL. Characterization of NDG1 and NDG2 indicates that NDG1 initiates a novel apoptotic pathway in a Bcl-2-independent manner. Thus Nur77-mediated apoptosis in T cells involves Bcl-2 independent transcriptional activation of several known and novel apoptotic pathways.

Rajpal, Arvind; Cho, Yuri A.; Yelent, Biana; Koza-Taylor, Petra H.; Li, Dongling; Chen, Elaine; Whang, Michael; Kang, Chulho; Turi, Thomas G.; Winoto, Astar

2003-01-01

177

Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression  

PubMed Central

During the resolution phase of inflammation, the ‘corpses’ of apoptotic leukocytes are gradually cleared by macrophages. Here we report that during the resolution of peritonitis, the CCR5 chemokine receptor ligands CCL3 and CCL5 persisted in CCR5-deficient mice. CCR5 expression on apoptotic neutrophils and activated apoptotic T cells sequestered and effectively cleared CCL3 and CCL5 from sites of inflammation. CCR5 expression on late apoptotic human polymorphonuclear cells was downregulated by proinflammatory stimuli, including tumor necrosis factor, and was upregulated by ‘proresolution’ lipid mediators, including lipoxin A4, resolvin E1 and protectin D1. Our results suggest that CCR5+ apoptotic leukocytes act as ‘terminators’ of chemokine signaling during the resolution of inflammation.

Ariel, Amiram; Fredman, Gabrielle; Sun, Yee-Ping; Kantarci, Alpdogan; Van Dyke, Thomas E; Luster, Andrew D; Serhan, Charles N

2006-01-01

178

Cannabidiol induced a contrasting pro-apoptotic effect between freshly isolated and precultured human monocytes  

Microsoft Academic Search

It has been documented that cannabidiol (CBD) induced apoptosis in a variety of transformed cells, including lymphocytic and monocytic leukemias. In contrast, a differential sensitivity between normal lymphocytes and monocytes to CBD-mediated apoptosis has been reported. The present study investigated the pro-apoptotic effect of CBD on human peripheral monocytes that were either freshly isolated or precultured for 72 h. CBD

Hsin-Ying Wu; An-Chi Chang; Chia-Chi Wang; Fu-Hua Kuo; Chi-Ya Lee; Der-Zen Liu; Tong-Rong Jan

2010-01-01

179

Multiple Apoptotic Caspase Cascades Are Required in Nonapoptotic Roles for Drosophila Spermatid Individualization  

Microsoft Academic Search

Spermatozoa are generated and mature within a germline syncytium. Differentiation of haploid syncytial spermatids into single motile sperm requires the encapsulation of each spermatid by an independent plasma membrane and the elimination of most sperm cytoplasm, a process known as individualization. Apoptosis is mediated by caspase family proteases. Many apoptotic cell deaths in Drosophila utilize the REAPER\\/HID\\/GRIM family proapoptotic proteins.

Jun R. Huh; Stephanie Y. Vernooy; Hong Yu; Nieng Yan; Yigong Shi; Ming Guo; Bruce A. Hay

2004-01-01

180

Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death  

PubMed Central

Alcohol exposure during development can cause brain malformations and neurobehavioral abnormalities. In view of the teratogenicity of ethanol, identification of molecules that could counteract the neurotoxic effects of alcohol deserves high priority. Here, we report that pituitary adenylate cyclase-activating polypeptide (PACAP) can prevent the deleterious effect of ethanol on neuronal precursors. Exposure of cultured cerebellar granule cells to ethanol inhibited neurite outgrowth and provoked apoptotic cell death. Incubation of granule cells with PACAP prevented ethanol-induced apoptosis, and this effect was not mimicked by vasoactive intestinal polypeptide, suggesting that PAC1 receptors are involved in the neurotrophic activity of PACAP. Ethanol exposure induced a strong increase of caspase-2, -3, -6, -8, and -9 activities, DNA fragmentation, and mitochondrial permeability. Cotreatment of granule cells with PACAP provoked a significant inhibition of all of the apoptotic markers investigated although the neurotrophic activity of PACAP could only be ascribed to inhibition of caspase-3 and -6 activities. These data demonstrate that PACAP is a potent protective agent against ethanol-induced neuronal cell death. The fact that PACAP prevented ethanol toxicity even when added 2 h after alcohol exposure, suggests that selective PACAP agonists could have potential therapeutic value for the treatment of fetal alcohol syndrome.

Vaudry, David; Rousselle, Cecile; Basille, Magali; Falluel-Morel, Anthony; Pamantung, Tommy F.; Fontaine, Marc; Fournier, Alain; Vaudry, Hubert; Gonzalez, Bruno J.

2002-01-01

181

Serum-dependent processing of late apoptotic cells for enhanced efferocytosis  

PubMed Central

Binding of the serum protein complement component C1q to the surface of dying cells facilitates their clearance by phagocytes in a process termed efferocytosis. Here, we investigate during which phase of apoptotic cell death progression C1q binding takes place. Purified C1q was found to bind to all dying cells and, albeit weaker, also to viable cells. The presence of serum abrogated completely the binding to viable cells. In addition, C1q binding to dying cells was limited to a specific subpopulation of late apoptotic/secondary necrotic cells. Co-culturing serum-treated apoptotic cells with human monocytes revealed a much higher phagocytosis of C1q-positive than of C1q-negative late apoptotic/secondary necrotic cells. But this phagocytosis-promoting activity could not be observed with purified C1q. Serum-treated C1q-positive late apoptotic/secondary necrotic cells exhibited a similar volume, a similar degraded protein composition, but a much lower DNA content in comparison with the remaining late apoptotic/secondary necrotic cells. This was mediated by a serum-bound nuclease activity that could be abrogated by G-actin, which is a specific inhibitor of serum DNase I. These results show that serum factors are involved in the prevention of C1q binding to viable cells and in the processing of late apoptotic/secondary necrotic cells promoting cell death progression toward apoptotic bodies. This process leads to the exposure of C1q-binding structures and facilitates efferocytosis.

Liang, Y Y; Arnold, T; Michlmayr, A; Rainprecht, D; Perticevic, B; Spittler, A; Oehler, R

2014-01-01

182

Toxicological and Pharmacokinetic Properties of QPI-1007, a Chemically Modified Synthetic siRNA Targeting Caspase 2 mRNA, Following Intravitreal Injection.  

PubMed

We report the toxicological and pharmacokinetic properties of the synthetic, small interfering RNA (siRNA), QPI-1007, following intravitreal administration. QPI-1007 is a chemically modified siRNA designed to act via the RNA interference (RNAi) pathway to temporarily inhibit expression of the caspase 2 protein and is being developed as a neuroprotectant for the treatment of nonarteritic anterior ischemic optic neuropathy and other optic neuropathies such as glaucoma that result in the death of retinal ganglion cells. The half-life of QPI-1007 in the vitreous and retina/choroid in the Dutch Belted rabbit was about 2 days, and there was no sign of accumulation after repeated administrations at either 2- or 4-week dosing intervals in the rabbit. QPI-1007 was well tolerated in Dutch Belted rabbits following single or repeated intravitreal administrations of up to 11 doses over 9 months. Test-article-related effects were limited to the eyes, with minimal to mild vitreal cellular infiltration being the major finding, which was reversible. In repeated-dose studies, a modest reduction in B-wave amplitude obtained by electroretinography was observed in animals treated with the highest dose level tested (3?mg, which is equivalent to a 12?mg/eye human dose) that was not considered to be clinically meaningful. Administration in the rat of either a single bolus intravenous (i.v.) injection of 100?mg/kg or daily bolus i.v. injections of 75?mg/kg/day for 28 days failed to elicit any macroscopic or microscopic changes, suggesting a low risk for systemic toxicity. QPI-1007 was negative in three genetic toxicity studies. Overall, the nonclinical studies support the further development of QPI-1007. PMID:25054518

Solano, Elisabeth C R; Kornbrust, Douglas J; Beaudry, Amber; Foy, Jeffrey W-D; Schneider, David J; Thompson, James D

2014-08-01

183

Intercellular transfer of apoptotic signals via electrofusion  

SciTech Connect

We determined whether cells that are induced to undergo anoikis by matrix detachment can initiate apoptosis in healthy cells following electroporation-induced fusion. Separate populations of MDCK cells undergoing anoikis and stained with FITC-annexin or viable MDCK cells that were labeled with spectrally discrete fluorescent beads were electroporated. Cells were analyzed by flow cytometry for enumeration of viable cells with beads, apoptotic cells or fused cells. Electroporation promoted a 49-fold increase of the percentage of viable cells that had fused with apoptotic cells. Apoptotic cell-viable cell fusions were 8-fold more likely to not attach to cell culture plastic and 2.3-fold less likely to proliferate after 24 hr incubation than viable cell fusion controls. These data demonstrate that apoptotic signals can be transferred between cells by electrofusion, possibly suggesting a novel investigative approach for optimizing targeted cell deletion in cancer treatment.

Park, Jin Suk; Lee, Wilson; McCulloch, Christopher A., E-mail: christopher.mcculloch@utoronto.ca

2012-05-01

184

Ras Homolog Enriched in Brain (Rheb) Enhances Apoptotic Signaling*  

PubMed Central

Rheb is a homolog of Ras GTPase that regulates cell growth, proliferation, and regeneration via mammalian target of rapamycin (mTOR). Because of the well established potential of activated Ras to promote survival, we sought to investigate the ability of Rheb signaling to phenocopy Ras. We found that overexpression of lipid-anchored Rheb enhanced the apoptotic effects induced by UV light, TNF?, or tunicamycin in an mTOR complex 1 (mTORC1)-dependent manner. Knocking down endogenous Rheb or applying rapamycin led to partial protection, identifying Rheb as a mediator of cell death. Ras and c-Raf kinase opposed the apoptotic effects induced by UV light or TNF? but did not prevent Rheb-mediated apoptosis. To gain structural insight into the signaling mechanisms, we determined the structure of Rheb-GDP by NMR. The complex adopts the typical canonical fold of RasGTPases and displays the characteristic GDP-dependent picosecond to nanosecond backbone dynamics of the switch I and switch II regions. NMR revealed Ras effector-like binding of activated Rheb to the c-Raf-Ras-binding domain (RBD), but the affinity was 1000-fold lower than the Ras/RBD interaction, suggesting a lack of functional interaction. shRNA-mediated knockdown of apoptosis signal-regulating kinase 1 (ASK-1) strongly reduced UV or TNF?-induced apoptosis and suppressed enhancement by Rheb overexpression. In conclusion, Rheb-mTOR activation not only promotes normal cell growth but also enhances apoptosis in response to diverse toxic stimuli via an ASK-1-mediated mechanism. Pharmacological regulation of the Rheb/mTORC1 pathway using rapamycin should take the presence of cellular stress into consideration, as this may have clinical implications.

Karassek, Sascha; Berghaus, Carsten; Schwarten, Melanie; Goemans, Christoph G.; Ohse, Nadine; Kock, Gerd; Jockers, Katharina; Neumann, Sebastian; Gottfried, Sebastian; Herrmann, Christian; Heumann, Rolf; Stoll, Raphael

2010-01-01

185

Apoptotic mechanisms in mutant LRRK2-mediated cell death  

Microsoft Academic Search

Mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) cause autosomal-dominant Parkinson's disease. The pathological mutations have been associated with an increase of LRRK2 kinase activity, although its physiological substrates have not been identified yet. The data we report here demon- strate that disease-associated mutant LRRK2 cell toxicity is due to mitochondria-dependent apoptosis. Transient transfection of mutant LRRK2

Ciro Iaccarino; Claudia Crosio; Carmine Vitale; Giovanna Sanna; Paolo Barone

2007-01-01

186

Anti-apoptotic effects of osteopontin through the up-regulation of Mcl-1 in gastrointestinal stromal tumors  

PubMed Central

Background Osteopontin (OPN) is a secreted phosphoprotein expressed by neoplastic cells involved in the malignant potential and aggressive phenotypes of human malignancies, including gastrointestinal stromal tumors (GISTs). Our previous study showed that OPN can promote tumor cell proliferation in GISTs. In this series, we further aim to investigate the effect of OPN on apoptosis in GISTs. Methods The expression of apoptotic and anti-apoptotic proteins in response to OPN was evaluated. In vitro effects of OPN against apoptosis in GIST were also assessed. GIST specimens were also used for analyzing protein expression of specific apoptosis-related molecules and their clinicopathologic significance. Results Up-regulation of ?-catenin and anti-apoptotic proteins Mcl-1 with concomitant suppression of apoptotic proteins in response to OPN was noted. A significant anti-apoptotic effect of OPN on imatinib-induced apoptosis was identified. Furthermore, Mcl-1 overexpression was significantly associated with OPN and ?-catenin expression in tumor tissues, as well as worse survival clinically. Conclusions Our study identifies anti-apoptotic effects of OPN that, through ?-catenin-mediated Mcl-1 up-regulation, significantly antagonized imatinib-induced apoptosis in GISTs. These results provide a potential rationale for therapeutic strategies targeting both OPN and Mcl-1 of the same anti-apoptotic signaling pathway, which may account for resistance to imatinib in GISTs.

2014-01-01

187

Intravenous transfer of apoptotic cell-treated dendritic cells leads to immune tolerance by blocking Th17 cell activity.  

PubMed

Apoptotic cell-induced tolerogenic dendritic cells (DCs) play an important role in induction of peripheral tolerance in vivo; however, the mechanisms of immune tolerance induced by these DCs are poorly understood. Here we show that treatment of apoptotic cells modulates expression of inflammation- and tolerance-associated molecules including Gr-1, B220, CD205 and galectin-1 on bone marrow-derived DCs. In addition, apoptotic cell-treated DCs suppress secretion of cytokines produced by Th17 cells. Our data also demonstrate that i.v. transfer of apoptotic cell-treated DCs blocks EAE development and down-regulates production of inflammatory cytokines such as IL-17A and IL-17F in CD4+ T cells. These results suggest that apoptotic cell-treated DCs may inhibit activity of Th17 cells via down-regulation of inflammatory cytokine production, thereby affecting EAE development in vivo. Our results reveal a potential mechanism of immune tolerance mediated by apoptotic cell-treated DCs and the possible use of apoptotic cell-treated DCs to treat autoimmune diseases such as MS/EAE. PMID:23587571

Zhou, Fang; Lauretti, Elisabetta; di Meco, Antonio; Ciric, Bogoljub; Gonnella, Patricia; Zhang, Guang-Xian; Rostami, Abdolmohamad

2013-08-01

188

Modafinil Abrogates Methamphetamine-Induced Neuroinflammation and Apoptotic Effects in the Mouse Striatum  

PubMed Central

Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4×5 mg/kg, i.p., 2 h apart) and modafinil co-administration (2×90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections) on glial cells (microglia and astroglia). We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum.

Goitia, Belen; Garcia-Rill, Edgar; Krasnova, Irina N.; Cadet, Jean Lud; Urbano, Francisco J.; Bisagno, Veronica

2012-01-01

189

Human intrahepatic biliary epithelial cells engulf blebs from their apoptotic peers.  

PubMed

The phagocytic clearance of apoptotic cells is critical for tissue homeostasis; a number of non-professional phagocytic cells, including epithelial cells, can both take up and process apoptotic bodies, including the release of anti-inflammatory mediators. These observations are particularly important in the case of human intrahepatic biliary cells (HiBEC), because such cells are themselves a target of destruction in primary biliary cirrhosis, the human autoimmune disease. To address the apoptotic ability of HiBECs, we have focused on their ability to phagocytize apoptotic blebs from autologous HiBECs. In this study we report that HiBEC cells demonstrate phagocytic function from autologous HiBEC peers accompanied by up-regulation of the chemokines CCL2 [monocyte chemotactic protein-1 (MCP-1)] and CXCL8 [interleukin (IL)-8]. In particular, HiBEC cells express the phagocytosis-related receptor phosphatidylserine receptors (PSR), implying that HiBECs function through the 'eat-me' signal phosphatidylserine expressed by apoptotic cells. Indeed, although HiBEC cells acquire antigen-presenting cell (APC) function, they do not change the expression of classic APC function surface markers after engulfment of blebs, both with and without the presence of Toll-like receptor (TLR) stimulation. These results are important not only for understanding of the normal physiological function of HiBECs, but also explain the inflammatory potential and reduced clearance of HiBEC cells following the inflammatory cascade in primary biliary cirrhosis. PMID:23480189

Rong, G-H; Yang, G-X; Ando, Y; Zhang, W; He, X-S; Leung, P S C; Coppel, R L; Ansari, A A; Zhong, R; Gershwin, M E

2013-04-01

190

Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells  

PubMed Central

Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a ‘calm down’ signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001

Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

2014-01-01

191

Measuring glutamate receptor activation-induced apoptotic cell death in ischemic rat retina using the TUNEL assay  

PubMed Central

Glutamate receptor activation-mediated excitotoxicity has been hypothesized to cause cell death in both acute and chronic neurodegenerative diseases including glaucoma. Although the precise mechanisms of ischemia-induced neuronal death are unknown, glutamate excitotoxicty-induced apoptotic cell death is considered to be an important component of postischemic damage in the retina. The blockade of apoptotic cell death induced by glutamate receptor activation provides strong evidence that glutamate excitotoxicity-induced apoptotic cell death may be a central mechanism of cell death in ischemic rat retina. We have shown that there is TUNEL-positive apoptotic cell death in the outer nuclear layer, inner nuclear layer and ganglion cell layer of the ischemic rat retina at 12 h.

Ju, Won-Kyu; Kim, Keun-Young

2014-01-01

192

Apoptotic effect of eugenol in human colon cancer cell lines.  

PubMed

Eugenol, a natural compound available in honey and various plants extracts including cloves and Magnoliae flos, is exploited for various medicinal applications. Since most of the drugs used in the cancer are apoptotic inducers, the apoptotic effect and anticancer mechanism of eugenol were investigated against colon cancer cells. Antiproliferative effect was estimated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay]. Earlier events like MMP (mitochondrial membrane potential), thiol depletion and lipid layer break were measured by using flow cytometry. Apoptosis was evaluated using PI (propidium iodide) staining, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assay and DNA fragmentation assay. MTT assay signified the antiproliferative nature of eugenol against the tested colon cancer cells. PI staining indicated increasing accumulation of cells at sub-G1-phase. Eugenol treatment resulted in reduction of intracellular non-protein thiols and increase in the earlier lipid layer break. Further events like dissipation of MMP and generation of ROS (reactive oxygen species) were accompanied in the eugenol-induced apoptosis. Augmented ROS generation resulted in the DNA fragmentation of treated cells as shown by DNA fragmentation and TUNEL assay. Further activation of PARP (polyadenosine diphosphate-ribose polymerase), p53 and caspase-3 were observed in Western blot analyses. Our results demonstrated molecular mechanism of eugenol-induced apoptosis in human colon cancer cells. This research will further enhance eugenol as a potential chemopreventive agent against colon cancer. PMID:21044050

Jaganathan, Saravana Kumar; Mazumdar, Abhijit; Mondhe, Dilip; Mandal, Mahitosh

2011-06-01

193

A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers  

PubMed Central

Cancer cells subvert the natural balance between cellular life and death, achieving immortality through pathologic enforcement of survival pathways and blockade of cell death mechanisms. Pro-apoptotic BCL-2 family proteins are frequently disarmed in relapsed and refractory cancer through genetic deletion or interaction-based neutralization by overexpressed antiapoptotic proteins, resulting in resistance to chemotherapy and radiation treatments. New pharmacologic strategies are urgently needed to overcome these formidable apoptotic blockades. We harnessed the natural killing activity of BCL-2–interacting mediator of cell death (BIM), which contains one of the most potent BH3 death domains of the BCL-2 protein family, to restore BH3-dependent cell death in resistant hematologic cancers. A hydrocarbon-stapled peptide modeled after the BIM BH3 helix broadly targeted BCL-2 family proteins with high affinity, blocked inhibitory antiapoptotic interactions, directly triggered proapoptotic activity, and induced dose-responsive and BH3 sequence–specific cell death of hematologic cancer cells. The therapeutic potential of stapled BIM BH3 was highlighted by the selective activation of cell death in the aberrant lymphoid infiltrates of mice reconstituted with BIM-deficient bone marrow and in a human AML xenograft model. Thus, we found that broad and multimodal targeting of the BCL-2 family pathway can overcome pathologic barriers to cell death.

LaBelle, James L.; Katz, Samuel G.; Bird, Gregory H.; Gavathiotis, Evripidis; Stewart, Michelle L.; Lawrence, Chelsea; Fisher, Jill K.; Godes, Marina; Pitter, Kenneth; Kung, Andrew L.; Walensky, Loren D.

2012-01-01

194

A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers.  

PubMed

Cancer cells subvert the natural balance between cellular life and death, achieving immortality through pathologic enforcement of survival pathways and blockade of cell death mechanisms. Pro-apoptotic BCL-2 family proteins are frequently disarmed in relapsed and refractory cancer through genetic deletion or interaction-based neutralization by overexpressed antiapoptotic proteins, resulting in resistance to chemotherapy and radiation treatments. New pharmacologic strategies are urgently needed to overcome these formidable apoptotic blockades. We harnessed the natural killing activity of BCL-2-interacting mediator of cell death (BIM), which contains one of the most potent BH3 death domains of the BCL-2 protein family, to restore BH3-dependent cell death in resistant hematologic cancers. A hydrocarbon-stapled peptide modeled after the BIM BH3 helix broadly targeted BCL-2 family proteins with high affinity, blocked inhibitory antiapoptotic interactions, directly triggered proapoptotic activity, and induced dose-responsive and BH3 sequence-specific cell death of hematologic cancer cells. The therapeutic potential of stapled BIM BH3 was highlighted by the selective activation of cell death in the aberrant lymphoid infiltrates of mice reconstituted with BIM-deficient bone marrow and in a human AML xenograft model. Thus, we found that broad and multimodal targeting of the BCL-2 family pathway can overcome pathologic barriers to cell death. PMID:22622039

LaBelle, James L; Katz, Samuel G; Bird, Gregory H; Gavathiotis, Evripidis; Stewart, Michelle L; Lawrence, Chelsea; Fisher, Jill K; Godes, Marina; Pitter, Kenneth; Kung, Andrew L; Walensky, Loren D

2012-06-01

195

Recognition of Apoptotic Cells by Epithelial Cells  

PubMed Central

During apoptosis, cells acquire new activities that enable them to modulate the fate and function of interacting phagocytes, particularly macrophages (m?). Although the best known of these activities is anti-inflammatory, apoptotic targets also influence m? survival and proliferation by modulating proximal signaling events, such as MAPK modules and Akt. We asked whether modulation of these same signaling events extends to epithelial cells, a minimally phagocytic cell type. We used BU.MPT cells, a mouse kidney epithelial cell line, as our primary model, but we also evaluated several epithelial cell lines of distinct tissue origins. Like m?, mouse kidney epithelial cells recognized apoptotic and necrotic targets through distinct non-competing receptors, albeit with lower binding capacity and markedly reduced phagocytosis. Also, modulation of inflammatory activity and MAPK-dependent signaling by apoptotic and necrotic targets was indistinguishable in kidney epithelial cells and m?. In contrast, modulation of Akt-dependent signaling differed dramatically between kidney epithelial cells and m?. In kidney epithelial cells, modulation of Akt was linked to target cell recognition, independently of phagocytosis, whereas in m?, modulation was linked to phagocytosis. Moreover, recognition of apoptotic and necrotic targets by kidney epithelial cells elicited opposite responses; apoptotic targets inhibited whereas necrotic targets stimulated Akt activity. These data confirm that nonprofessional phagocytes recognize and respond to dying cells, albeit in a manner partially distinct from m?. By acting as sentinels of environmental change, apoptotic and necrotic targets may permit neighboring viable cells, especially non-migratory epithelial cells, to monitor and adapt to local stresses.

Patel, Vimal A.; Lee, Daniel J.; Feng, Lanfei; Antoni, Angelika; Lieberthal, Wilfred; Schwartz, John H.; Rauch, Joyce; Ucker, David S.; Levine, Jerrold S.

2010-01-01

196

Delivery of Intracellular-acting Biologics in Pro-Apoptotic Therapies  

PubMed Central

The recent elucidation of molecular regulators of apoptosis and their roles in cellular oncogenesis has motivated the development of biomacromolecular anticancer therapeutics that can activate intracellular apoptotic signaling pathways. Pharmaceutical scientists have employed a variety of classes of biologics toward this goal, including antisense oligodeoxynucleotides, small interfering RNA, proteins, antibodies, and peptides. However, stability in the in vivo environment, tumor-specific biodistribution, cell internalization, and localization to the intracellular microenvironment where the targeted molecule is localized pose significant challenges that limit the ability to directly apply intracellular-acting, pro-apoptotic biologics for therapeutic use. Thus, approaches to improve the pharmaceutical properties of therapeutic biomacromolecules are of great significance and have included chemically modifying the bioactive molecule itself or formulation with auxiliary compounds. Recently, promising advances in delivery of pro-apoptotic biomacromolecular agents have been made using tools such as peptide “stapling”, cell penetrating peptides, fusogenic peptides, liposomes, nanoparticles, smart polymers, and synergistic combinations of these components. This review will discuss the molecular mediators of cellular apoptosis, the respective mechanisms by which these mediators are dysregulated in cellular oncogenesis, the history and development of both nucleic-acid and amino-acid based drugs, and techniques to achieve intracellular delivery of these biologics. Finally, recent applications where pro-apoptotic functionality has been achieved through delivery of intracellular-acting biomacromolecular drugs will be highlighted.

Li, Hongmei; Nelson, Chris E.; Evans, Brian C.; Duvall, Craig L.

2013-01-01

197

Pro-apoptotic Bid induces membrane perturbation by inserting selected lysolipids into the bilayer  

PubMed Central

Bid is a BH3-only member of the Bcl-2 family that regulates cell death at the level of mitochondrial membranes. Bid appears to link the mitochondrial pathway with the death receptor-mediated pathway of cell death. It is generally assumed that the f.l. (full-length) protein becomes activated after proteolytic cleavage, especially by apical caspases like caspase 8. The cleaved protein then relocates to mitochondria and promotes membrane permeabilization, presumably by interaction with mitochondrial lipids and other Bcl-2 proteins that facilitate the release of apoptogenic proteins like cytochrome c. Although the major action may reside in the C-terminus part, tBid (cleaved Bid), un-cleaved Bid also has pro-apoptotic potential when ectopically expressed in cells or in vitro. This pro-apoptotic action of f.l. Bid has remained unexplained, especially at the biochemical level. In the present study, we show that f.l. (full-length) Bid can insert specific lysolipids into the membrane surface, thereby priming mitochondria for the release of apoptogenic factors. This is most effective for lysophosphatidylcholine species that we report to accumulate in mitochondria during apoptosis induction. A Bid mutant that is not pro-apoptotic in vivo is defective in lysophosphatidylcholine-mediated membrane perturbation in vitro. Our results thus provide a biochemical explanation for the pro-apoptotic action of f.l. Bid.

Goonesinghe, Alexander; Mundy, Elizabeth S.; Smith, Melanie; Khosravi-Far, Roya; Martinou, Jean-Claude; Esposti, Mauro D.

2004-01-01

198

Apoptotic osteocytes and the control of targeted bone resorption.  

PubMed

Studies from the 1950s and 1960s already recognize the fact that osteocytes, although long living cells, die, as evidenced by accumulation of osteocytic lacunae devoid of cells. More recently, it was demonstrated that these cells die by apoptosis. The rate of osteocyte apoptosis is regulated by the age of the bone, as well as by systemic hormones, local growth factors, cytokines, pharmacological agents, and mechanical forces. Apoptotic osteocytes, in turn, recruit osteoclasts to initiate targeted bone resorption. This results in the removal of "dead" bone and may improve the mechanical properties of the skeleton. However, the molecular regulators of osteocyte survival and targeted bone remodeling are not completely known. In this review, the current knowledge on the molecular mechanism that lead to osteocyte death or survival, and the signals that mediate targeted bone resorption is discussed. PMID:24470254

Plotkin, Lilian I

2014-03-01

199

Cadmium induces an apoptotic response in sea urchin embryos  

PubMed Central

Cadmium is a heavy metal toxic for living organisms even at low concentrations. It does not have any biological role, and since it is a permanent metal ion, it is accumulated by many organisms. In the present paper we have studied the apoptotic effects of continuous exposure to subacute/sublethal cadmium concentrations on a model system: Paracentrotus lividus embryos. We demonstrated, by atomic absorption spectrometry, that the intracellular amount of metal increased during exposure time. We found, using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, that long treatments with cadmium triggered a severe DNA fragmentation. We demonstrated, by immunocytochemistry on whole-mount embryos, that treatment with cadmium causes activation of caspase-3 and cleavage of death substrates ?-fodrin and lamin A. Incubating the embryos since fertilization with Z-DEVD FMK, a caspase-3 inhibitor, we found, by immunocytochemistry, that cleavage by caspase-3 and cleavage of death substrates were inactivated.

Agnello, Maria; Filosto, Simone; Scudiero, Rosaria; Rinaldi, Anna M.; Roccheri, Maria C.

2007-01-01

200

Role of mitotic, pro-apoptotic and anti-apoptotic factors in human kidney development  

Microsoft Academic Search

The expression pattern of mitotic Ki-67 and anti-apoptotic bcl-2 proteins, as well as apoptotic caspase-3 and p53 proteins,\\u000a were investigated in the human mesonephros and metanephros of 5–9 week-old human conceptuses. Apoptotic cells were additionally\\u000a detected using the terminal deoxynucleotidyl transferase (TdT) nick-end labelling (TUNEL) method. Between the 5th and 7th\\u000a developmental weeks Ki-67, caspase-3 and TUNEL-positive cells characterized all

Dominko Carev; Dragan Krni; Marijan Saraga; Damir Sapunar; Mirna Saraga-Babi

2006-01-01

201

Persistent Chlamydia trachomatis Infections Resist Apoptotic Stimuli  

Microsoft Academic Search

Microbial modulation of apoptosis has added a new dimension of understanding to the dynamic interaction between the human host and its microbial invaders. Persistent infection can be a by-product of inhibition of apoptosis and may significantly impact the pathogenesis of diseases caused by organisms such as Chlamydia trachomatis. We compared apoptotic responses among HeLa 229 cells acutely and persistently infected

DEBORAH DEAN; VIRGINIA C. POWERS

2001-01-01

202

Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein  

PubMed Central

Rapid and efficient removal of apoptotic cells by phagocytes plays a key role during development, tissue homeostasis, and in controlling immune responses1–5. An important feature of efficient clearance is the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the increased load of corpse-derived cellular material6–9. However, factors that influence sustained phagocytic capacity or how they in turn influence continued clearance by phagocytes are not known. Here we identify that the ability of a phagocyte to control its mitochondrial membrane potential is a critical factor in the capacity of a phagocyte to engulf apoptotic cells. Changing the phagocyte mitochondrial membrane potential (genetically or pharmacologically) significantly affected phagocytosis, with lower potential enhancing engulfment and higher membrane potential inhibiting uptake. We then identified that Ucp2, a mitochondrial membrane protein that acts to lower the mitochondrial membrane potential10–12, is upregulated in phagocytes engulfing apoptotic cells (but not synthetic targets, bacteria, or yeast). Loss of Ucp2 limited the capacity of phagocytes to continually ingest apoptotic cells, while overexpression of Ucp2 increased the capacity for engulfment and the ability to engulf multiple apoptotic cells. Mutational and pharmacological inhibition of Ucp2 uncoupling activity reversed the positive effect of Ucp2 on engulfment capacity, suggesting a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice13, 14 were impaired in their capacity to engulf apoptotic cells in vitro, and Ucp2-deficient mice displayed profound in vivo defects in clearing dying cells in the thymus and the testes. Collectively, these data suggest that phagocytes alter the mitochondrial membrane potential during engulfment to regulate uptake of sequential apoptotic cells, and that Ucp2 is a key molecular determinant of this step in vivo. Since Ucp2 function has also been linked to metabolic diseases and atherosclerosis14–16, these data identifying a new role for Ucp2 in regulating apoptotic cell clearance may provide additional insights toward understanding the complex etiology and pathogenesis of these diseases.

Park, Daeho; Han, Claudia; Elliott, Michael R.; Kinchen, Jason M.; Trampont, Paul C.; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J.; Hoehn, Kyle L.; Ravichandran, Kodi S.

2012-01-01

203

Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria  

SciTech Connect

Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad from the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl{sup -}/HCO{sub 3} {sup -} exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes.

Grondin, Melanie [Departement de Chimie, Centre de Recherche en Toxicologie de l'environnement (TOXEN), Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada); Marion, Michel [Departement de Chimie, Centre de Recherche en Toxicologie de l'environnement (TOXEN), Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada); Denizeau, Francine [Departement de Chimie, Centre de Recherche en Toxicologie de l'environnement (TOXEN), Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada); Averill-Bates, Diana A. [Departement des Sciences Biologiques, Centre de Recherche en Toxicologie de l'environnement (TOXEN), Universite du Quebec a Montreal, Montreal, Quebec (Canada)]. E-mail: averill.diana@uqam.ca

2007-07-01

204

Apoptotic Cells Can Deliver Chemotherapeutics to Engulfing Macrophages and Suppress Inflammatory Cytokine Production*  

PubMed Central

Immunosuppression via cell-cell contact with apoptotic cells is a well studied immunological phenomenon. Although the original studies of immune repression used primary cells, which undergo spontaneous cell death or apoptosis in response to irradiation, more recent studies have relied on chemotherapeutic agents to induce apoptosis in cell lines. In this work, we demonstrate that Jurkat cells induced to die with actinomycin D suppressed inflammatory cytokine production by macrophages, whereas cells treated with etoposide did not. This immune repression mediated by actinomycin D-treated cells did not require phagocytosis or cell-cell contact and thus occurs through a different mechanism from that seen with primary apoptotic neutrophils. Moreover, cells induced to die with etoposide and then treated for a short time with actinomycin D also suppressed macrophage responses, indicating that suppression was mediated by actinomycin D independent of the mechanism of cell death. Finally, phagocytosis of actinomycin D-treated cells caused apoptosis in macrophages, and suppression could be blocked by inhibition of caspase activity in the target macrophage. Together, these data indicate that apoptotic cells act as “Trojan horses,” delivering actinomycin D to engulfing macrophages. Suppression of cytokine production by macrophages is therefore due to exposure to actinomycin D from apoptotic cells and is not the result of cell-receptor interactions. These data suggest that drug-induced death may not be an appropriate surrogate for the immunosuppressive activity of apoptotic cells. Furthermore, these effects of cytotoxic drugs on infiltrating immune phagocytes may have clinical ramifications for their use as antitumor therapies.

Perez, Beatriz; Paquette, Nicholas; Paidassi, Helena; Zhai, Bo; White, Kristin; Skvirsky, Rachel; Lacy-Hulbert, Adam; Stuart, Lynda M.

2012-01-01

205

Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis  

PubMed Central

Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as ?-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit ?4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit ? was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.

Oropesa-Avila, M; Fernandez-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotan, D; de Miguel, M; Calero, C P; Paz, M V; Pavon, A D; Sanchez, M A; Zaderenko, A P; Ybot-Gonzalez, P; Sanchez-Alcazar, J A

2013-01-01

206

Cancer therapeutics: Targeting the apoptotic pathway.  

PubMed

Apoptosis, a physiological process of programmed cell death, is disrupted in various malignancies. It has been exploited as an anti-cancer strategy traditionally by inducing DNA damage with chemotherapy and radiotherapy. With an increased understanding of the intrinsic and extrinsic pathways of apoptosis in recent years, novel approaches of targeting the apoptotic pathways have been tested in pre-clinical and clinical models. There are several early phase clinical trials investigating the therapeutic role of pro-apoptotic agents, both as single agents and in combination. In this review, we examine such treatment strategies, detailing the various compounds currently under clinical investigation, their potential roles in cancer therapeutics, and discussing approaches to their optimal use in the clinic. PMID:24507955

Khan, Khurum H; Blanco-Codesido, Montserrat; Molife, L Rhoda

2014-06-01

207

Apoptotic, Antiapoptotic, Clastogenic and Oncogenic Effects  

Microsoft Academic Search

In vitro studies have revealed that mycoplasmas can produce apoptotic, mitogenic as well as antiapoptotic effects on mammalian cells.\\u000a In addition, mycoplasmal infections produce clastogenic effects that cause genomic instability and chromosomal changes. The\\u000a chromosomal changes are apparently irreversible in the mammalian cells following chronic mycoplasmal infections in culture.\\u000a Development of genetic instability and chromosomal aberrations in the mycoplasma-infected cells

Shyh-Ching Lo

208

Antiproliferative and apoptotic effects of spanish honeys  

PubMed Central

Background: Current evidence supports that consumption of polyphenols has beneficial effects against numerous diseases mostly associated with their antioxidant activity. Honey is a good source of antioxidants since it contains a great variety of phenolic compounds. Objective: The main objective of this work was to investigate the antiproliferative and apoptotic effects of three crude commercial honeys of different floral origin (heather, rosemary and polyfloral honey) from Madrid Autonomic Community (Spain) as well as of an artificial honey in human peripheral blood promyelocytic leukemia cells (HL-60). Material and Methods: HL-60 cells were cultured in the presence of honeys at various concentrations for up to 72 hours and the percentage of cell viability was evaluated by MTT assay. Apoptotic cells were identified by chromatin condensation and flow cytometry analysis. ROS production was determined using 2´,7´-dichlorodihydrofluorescein diacetate (H2DCFDA). Results: The three types of crude commercial honey induced apoptosis in a concentration and time dependent-manner. In addition, honeys with the higher phenolic content, heather and polyfloral, were the most effective to induce apoptosis in HL-60 cells. However, honeys did not generate reactive oxygen species (ROS) and N-acetyl-L-cysteine (NAC) could not block honeys-induced apoptosis in HL-60 cells. Conclusion: These data support that honeys induced apoptosis in HL-60 cells through a ROS-independent cell death pathway. Moreover, our findings indicate that the antiproliferative and apoptotic effects of honey varied according to the floral origin and the phenolic content.

Morales, Paloma; Haza, Ana Isabel

2013-01-01

209

Modulation of Apoptotic Pathways of Macrophages by Surface-Functionalized Multi-Walled Carbon Nanotubes  

PubMed Central

Biomedical applications of carbon nanotubes (CNTs) often involve improving their hydrophilicity and dispersion in biological media by modifying them through noncovalent or covalent functionalization. However, the potential adverse effects of surface-functionalized CNTs have not been well characterized. In this study, we functionalized multi-walled CNTs (MWCNTs) via carboxylation, to produce MWCNTs-COOH, and via poly (ethylene glycol) linking, to produce MWCNTs-PEG. We used these functionalized MWCNTs to study the effect of surface functionalization on MWCNTs-induced toxicity to macrophages, and elucidate the underlying mechanisms of action. Our results revealed that MWCNTs-PEG were less cytotoxic and were associated with less apoptotic cell death of macrophages than MWCNTs-COOH. Additionally, MWCNTs-PEG induced less generation of reactive oxygen species (ROS) involving less activation of NADPH oxidase compared with MWCNTs-COOH, as evidenced by membrane translocation of p47phox and p67phox in macrophages. The less cytotoxic and apoptotic effect of MWCNTs-PEG compared with MWCNTs-COOH resulted from the lower cellular uptake of MWCNTs-PEG, which resulted in less activation of oxidative stress-responsive pathways, such as p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-?B. These results demonstrate that surface functionalization of CNTs may alter ROS-mediated cytotoxic and apoptotic response by modulating apoptotic signaling pathways. Our study thus provides new insights into the molecular basis for the surface properties affecting CNTs toxicity.

Jiang, Yuanqin; Zhang, Honggang; Wang, Yange; Chen, Min; Ye, Shefang; Hou, Zhenqing; Ren, Lei

2013-01-01

210

Overexpression of Nrf2 Protects Cerebral Cortical Neurons from Ethanol-Induced Apoptotic DeathS?  

PubMed Central

Ethanol (ETOH) can cause apoptotic death of neurons by depleting GSH with an associated increase in oxidative stress. The current study illustrates a means to overcome this ETOH-induced neurotoxicity by enhancing GSH through boosting Nrf2, a transcription factor that controls GSH homeostasis. ETOH treatment caused a significant increase in Nrf2 protein, transcript expression, Nrf2-DNA binding activity, and expression of its transcriptional target, NQO1, in primary cortical neuron (PCNs). However, this increase in Nrf2 did not maintain GSH levels in response to ETOH, and apoptotic death still occurred. To elucidate this phenomenon, we silenced Nrf2 in neurons and found that ETOH-induced GSH depletion and the increase in superoxide levels were exacerbated. Furthermore, Nrf2 knockdown resulted in significantly increased (P < 0.05) caspase 3 activity and apoptosis. Adenovirus-mediated overexpression of Nrf2 prevented ETOH-induced depletion of GSH from the medium and high GSH subpopulations and prevented ETOH-related apoptotic death. These studies illustrate the importance of Nrf2-dependent maintenance of GSH homeostasis in cerebral cortical neurons in the defense against oxidative stress and apoptotic death elicited by ETOH exposure.

Narasimhan, Madhusudhanan; Mahimainathan, Lenin; Rathinam, Mary Latha; Riar, Amanjot Kaur

2011-01-01

211

Boolean Model of Yeast Apoptosis as a Tool to Study Yeast and Human Apoptotic Regulations  

PubMed Central

Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested.

Kazemzadeh, Laleh; Cvijovic, Marija; Petranovic, Dina

2012-01-01

212

Pretransplant IgG Reactivity to Apoptotic Cells Correlates With Late kidney Allograft Loss.  

PubMed

Preexisting serum antibodies have long been associated with graft loss in transplant recipients. While most studies have focused on HLA-specific antibodies, the contribution of non-HLA-reactive antibodies has been largely overlooked. We have recently characterized mAbs secreted by B cell clones derived from kidney allograft recipients with rejection that bind to apoptotic cells. Here, we assessed the presence of such antibodies in pretransplant serum from 300 kidney transplant recipients and examined their contribution to the graft outcomes. Kaplan-Meier survival analysis revealed that patients with high pretransplant IgG reactivity to apoptotic cells had a significantly increased rate of late graft loss. The effect was only apparent after approximately 1 year posttransplant. Moreover, the association between pretransplant IgG reactivity to apoptotic cells and graft loss was still significant after excluding patients with high reactivity to HLA. This reactivity was almost exclusively mediated by IgG1 and IgG3 with complement fixing and activating properties. Overall, our findings support the view that IgG reactive to apoptotic cells contribute to presensitization. Taking these antibodies into consideration alongside anti-HLA antibodies during candidate evaluation would likely improve the transplant risk assessment. PMID:24935695

Gao, B; Moore, C; Porcheray, F; Rong, C; Abidoglu, C; DeVito, J; Paine, R; Girouard, T C; Saidman, S L; Schoenfeld, D; Levin, B; Wong, W; Elias, N; Schuetz, C; Rosales, I; Fu, Y; Zorn, E

2014-07-01

213

Ebola Virus Does Not Block Apoptotic Signaling Pathways  

PubMed Central

Since viruses rely on functional cellular machinery for efficient propagation, apoptosis is an important mechanism to fight viral infections. In this study, we sought to determine the mechanism of cell death caused by Ebola virus (EBOV) infection by assaying for multiple stages of apoptosis and hallmarks of necrosis. Our data indicate that EBOV does not induce apoptosis in infected cells but rather leads to a nonapoptotic form of cell death. Ultrastructural analysis confirmed necrotic cell death of EBOV-infected cells. To investigate if EBOV blocks the induction of apoptosis, infected cells were treated with different apoptosis-inducing agents. Surprisingly, EBOV-infected cells remained sensitive to apoptosis induced by external stimuli. Neither receptor- nor mitochondrion-mediated apoptosis signaling was inhibited in EBOV infection. Although double-stranded RNA (dsRNA)-induced activation of protein kinase R (PKR) was blocked in EBOV-infected cells, induction of apoptosis mediated by dsRNA was not suppressed. When EBOV-infected cells were treated with dsRNA-dependent caspase recruiter (dsCARE), an antiviral protein that selectively induces apoptosis in cells containing dsRNA, virus titers were strongly reduced. These data show that the inability of EBOV to block apoptotic pathways may open up new strategies toward the development of antiviral therapeutics.

Olejnik, Judith; Alonso, Jesus; Schmidt, Kristina M.; Yan, Zhen; Wang, Wei; Marzi, Andrea; Ebihara, Hideki; Yang, Jinghua; Patterson, Jean L.; Ryabchikova, Elena

2013-01-01

214

Anti-apoptotic action of zearalenone in MCF-7 cells.  

PubMed

Zearalenone (ZEA), a nonsteroidal estrogenic mycotoxin, is present in high concentrations in dairy products and cereals. Studies have indicated that ZEA could strongly provoke proliferation in estrogen-dependent breast cancer MCF-7 cells following estrogen ablation. The current study confirmed the previous studies that within the range of concentrations of 2-96nM, like endogenous estradiol, ZEA could stimulate proliferation in MCF-7 cells with inducing a profound increase in S phase and a modest increase in G(2)/M phase that was accompanied by a decrease in G(0)/G(1) phase. The Cell Death Detection ELISA was used to determine whether the robust cell viability retrieved by ZEA was a result of inhibited apoptosis. Data indicated that ZEA-mediated inhibition of apoptosis is significantly evident (P<0.05) and in a dose-dependent manner. Western blot and multiple RT-PCR analysis revealed that the anti-apoptotic bcl-2 was upregulated at both protein and mRNA levels, together with the downregulation of pro-apoptotic bax. In short, the results here showed that ZEA possessed comparative estrogenic activity and could promote the progression of MCF-7 cells through the cell cycle by a decrease in G(0)/G(1) phase and a significant increase in S phase. The pro-proliferative activity of ZEA was due to inhibition of apoptosis through regulation of bax/bcl-2 expression. Therefore, we conclude that contamination of ZEA in food might contribute to the increasing incidence rates of breast cancer. PMID:16216639

Yu, Zengli; Zhang, Lishi; Wu, Desheng; Liu, Fuyun

2005-11-01

215

Computational study of the mechanism of Bcl-2 apoptotic switch  

NASA Astrophysics Data System (ADS)

In spite of attention devoted to molecular mechanisms of apoptosis, the details of functioning of one crucial component-the Bcl-2 apoptotic switch-are not completely understood. There are two competing mechanisms of its internal working-the indirect activation and the direct activation. In the absence of conclusive experimental data, we have used computational modeling to assess the properties of both mechanisms and their suitability to act as a biological switch. Since the two mechanisms form opposite poles of continuum of Bcl-2 molecular interaction models, we have constructed more general models including these two models as extreme cases. By studying the relationship between model parameters and the steady-state response we have found optimal interaction patterns which reproduce the behavior of the Bcl-2 apoptotic switch. Our results show, that stimulus-response ultrasensitivity is negatively affected by spontaneous activation of Bcl-2 effectors. We found that ultrasensitivity requires effectors activation, mediated by another subgroup of Bcl-2 proteins-activators. We have shown that the auto-activation of monomeric effector forms provides an ultrasensitivity enhancing feedback loop. Thorough robustness analysis revealed that the interaction pattern postulated in the direct activation hypothesis is able to conserve stimulus-response switching characteristics for wide range changes of its internal parameters. The robustness of the switch against the variation of the reaction parameter is strongly reduced for the intermediate hybrid model and even more for the indirect part of the models. Computer simulations of the more general model presented here suggest, that stimulus-response ultrasensitivity is an emergent property of the direct activation model that is unlikely to occur in the model of indirect activation. Introduction of indirect-model-specific interactions does not provide a better explanation of the Bcl-2 switch functionality compared to the direct model.

Tokár, Tomáš; Uli?ný, Jozef

2012-12-01

216

VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia.  

PubMed

The voltage-dependent anion channel 1 (VDAC1), localized in the outer mitochondrial membrane, mediates metabolic cross-talk between the mitochondrion and the cytoplasm and thus serves a fundamental role in cell energy metabolism. VDAC1 also plays a key role in mitochondria-mediated apoptosis, interacting with anti-apoptotic proteins. Resistance of cancer cells to apoptosis involves quenching the mitochondrial apoptotic pathway by over-expression of anti-apoptotic/pro-survival hexokinase (HK) and Bcl-2 family proteins, proteins that mediate their anti-apoptotic activities via interaction with VDAC1. Using specifically designed VDAC1-based cell-penetrating peptides, we targeted these anti-apoptotic proteins to prevent their pro-survival/anti-apoptotic activities. Anti-apoptotic proteins are expressed at high levels in B-cell chronic lymphocytic leukemia (CLL), an incurable disease requiring innovative new approaches to improve therapeutic outcome. CLL is characterized by a clonal accumulation of mature neoplastic B cells that are resistant to apoptosis. Specifically, we demonstrate that the VDAC1-based peptides (Antp-LP4 and N-Terminal-Antp) selectively kill peripheral blood mononuclear cells (PBMCs) obtained from CLL patients, yet spare those obtained from healthy donors. The cell death induction competence of the peptides was well correlated with the amount of double positive CD19/CD5 cancerous CLL PBMCs, further illustrating their selectivity toward cancer cells. Moreover, these VDAC1-based peptides induced apoptosis by activating the mitochondria-mediated pathway, reflected in membrane blebbing, condensation of nuclei, DNA fragmentation, release of mitochondrial cytochrome c, loss of mitochondrial membrane potential, decreased cellular ATP levels and detachment of HK, all leading to apoptotic cell death. Thus, the mode of action of the peptides involves decreasing energy production and inducing apoptosis. Over 27 versions of cell-penetrating VDAC1-based peptides were designed and screened to identify the most stable, short and apoptosis-inducing peptides toward CLL-derived lymphocytes. In this manner, three optimized peptides suitable for in vivo studies were identified. This study thus reveals the potential of VDAC1-based peptides as an innovative and effective anti-CLL therapy. PMID:24052077

Prezma, T; Shteinfer, A; Admoni, L; Raviv, Z; Sela, I; Levi, I; Shoshan-Barmatz, V

2013-01-01

217

Regulation of Apoptotic Effects by Erythrocarpine E, a Cytotoxic Limonoid from Chisocheton erythrocarpus in HSC-4 Human Oral Cancer Cells  

PubMed Central

The aim of this study was to determine the cytotoxic and apoptotic effects of erythrocarpine E (CEB4), a limonoid extracted from Chisocheton erythrocarpus on human oral squamous cell carcinoma. Based on preliminary dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, CEB4 treated HSC-4 cells demonstrated a cytotoxic effect and inhibited cell proliferation in a time and dose dependent manner with an IC50 value of 4.0±1.9 µM within 24 h of treatment. CEB4 was also found to have minimal cytotoxic effects on the normal cell line, NHBE with cell viability levels maintained above 80% upon treatment. Annexin V-fluorescein isothiocyanate (FITC), poly-ADP ribose polymerase (PARP) cleavage and DNA fragmentation assay results showed that CEB4 induces apoptosis mediated cell death. Western blotting results demonstrated that the induction of apoptosis by CEB4 appeared to be mediated through regulation of the p53 signalling pathway as there was an increase in p53 phosphorylation levels. CEB4 was also found to up-regulate the pro-apoptotic protein, Bax, while down-regulating the anti-apoptotic protein, Bcl-2, suggesting the involvement of the intrinsic mitochondrial pathway. Reduced levels of initiator procaspase-9 and executioner caspase-3 zymogen were also observed following CEB4 exposure, hence indicating the involvement of cytochrome c mediated apoptosis. These results demonstrate the cytotoxic and apoptotic ability of erythrocarpine E, and suggest its potential development as a cancer chemopreventive agent.

Nagoor, Noor Hasima; Shah Jehan Muttiah, Norliza; Soon Lim, Chong; In, Lionel L. A.; Mohammad, Khalit; Awang, Khalijah

2011-01-01

218

Autophagy enhanced phagocytosis of apoptotic cells by oridonin-treated human histocytic lymphoma U937 cells.  

PubMed

Macrophages rapidly engulf and remove apoptotic cells to limit the release of noxious cellular contents and to restrict autoimmune disease or inflammation. Recent developments reveal an important role in autophagy for clearance of apoptotic corpses. However, the relationship between autophagy and phagocytosis remains unclear. In this study we found that low doses of oridonin, an active diterpenoid, enhanced phagocytosis of apoptotic cells by human macrophage-like U937 cells, meanwhile it also induced autophagy in these U937 cells. Moreover, inhibition of extracellular signal-related kinase (ERK), nuclear factor-?B (NF-?B) and caspase-1 significantly suppressed oridonin-induced phagocytosis and autophagy. In addition, oridonin increased the protein levels of p-ERK, NF-?B, caspase-1 and pro IL-1?. Autophagic inhibitor 3-methyladenine (3-MA) decreased phagocytosis and the expression of ERK whereas increased the expression of NF-?B- and caspase-1-mediated IL-1? release. Beclin-1 (known as autophagic regulator) loss also led to the similar results. Pretreatment with autophagic agonist rapamycin caused opposite results. Autophagy-associated proteins, Beclin-1, LC3 and Atg4B, involved in this phagocytosis process. These results demonstrated that autophagy enhanced oridonin-induced phagocytosis through feedback regulation of ERK, NF-?B- and caspase-1-mediated IL-1? release. PMID:22155150

Zang, Linghe; Xu, Qian; Ye, Yuanchao; Li, Xin; Liu, Yanqiu; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

2012-02-01

219

The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor  

PubMed Central

Growth factor withdrawal results in the termination of factor-dependent transcription. One transcript that declines rapidly following growth factor deprivation of hematopoietic cells is the serine/threonine kinase pim-2. When constitutively expressed, Pim-2 conferred long-term resistance to a variety of apoptotic stimuli including growth factor withdrawal and endogenous levels of Pim-2 contributed to growth factor-mediated apoptotic resistance. Pim-2 expression maintained cell size and mitochondrial potential independently of the PI3K/Akt/TOR pathway. Pim-2-dependent maintenance of cell size and survival correlated with its ability to maintain rapamycin-resistant phosphorylation of the translational repressor 4E-BP1 and phosphorylation of the BH3 protein BAD. These results establish Pim-2 as a direct link between growth factor-induced transcription and a novel, kinase-dependent pathway that promotes cell-autonomous survival.

Fox, Casey J.; Hammerman, Peter S.; Cinalli, Ryan M.; Master, Stephen R.; Chodosh, Lewis A.; Thompson, Craig B.

2003-01-01

220

The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor.  

PubMed

Growth factor withdrawal results in the termination of factor-dependent transcription. One transcript that declines rapidly following growth factor deprivation of hematopoietic cells is the serine/threonine kinase pim-2. When constitutively expressed, Pim-2 conferred long-term resistance to a variety of apoptotic stimuli including growth factor withdrawal and endogenous levels of Pim-2 contributed to growth factor-mediated apoptotic resistance. Pim-2 expression maintained cell size and mitochondrial potential independently of the PI3K/Akt/TOR pathway. Pim-2-dependent maintenance of cell size and survival correlated with its ability to maintain rapamycin-resistant phosphorylation of the translational repressor 4E-BP1 and phosphorylation of the BH3 protein BAD. These results establish Pim-2 as a direct link between growth factor-induced transcription and a novel, kinase-dependent pathway that promotes cell-autonomous survival. PMID:12869584

Fox, Casey J; Hammerman, Peter S; Cinalli, Ryan M; Master, Stephen R; Chodosh, Lewis A; Thompson, Craig B

2003-08-01

221

Leptin Is an Anti-Apoptotic Effector in Placental Cells Involving p53 Downregulation  

PubMed Central

Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1) was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle-signaling proteins, is downregulated in the presence of leptin under serum deprivation. On the other hand, we determined that leptin reduced the phosphorylation of Ser-46 p53 that plays a pivotal role for apoptotic signaling by p53. Our data suggest that the observed anti-apoptotic effect of leptin in placenta is in part mediated by the p53 pathway. In conclusion, we provide evidence that demonstrates that leptin is a trophic factor for trophoblastic cells.

Toro, Ayelen Rayen; Maymo, Julieta Lorena; Ibarbalz, Federico Matias; Perez, Antonio Perez; Maskin, Bernardo; Faletti, Alicia Graciela; Margalet, Victor Sanchez; Varone, Cecilia Laura

2014-01-01

222

IgM Promotes the Clearance of Small Particles and Apoptotic Microparticles by Macrophages  

PubMed Central

Background Antibodies are often involved in enhancing particle clearance by macrophages. Although the mechanisms of antibody-dependent phagocytosis have been studied for IgG in greater detail, very little is known about IgM-mediated clearance. It has been generally considered that IgM does not support phagocytosis. Recent studies indicate that natural IgM is important to clear microbes and other bioparticles, and that shape is critical to particle uptake by macrophages; however, the relevance of IgM and particle size in their clearance remains unclear. Here we show that IgM has a size-dependent effect on clearance. Methodology/Principal Findings We used antibody-opsonized sheep red blood cells, different size beads and apoptotic cells to determine the effect of human and mouse IgM on phagocytosis by mouse alveolar macrophages. Our microscopy (light, epifluorescence, confocal) and flow cytometry data show that IgM greatly enhances the clearance of small particles (about 1–2 micron) by these macrophages. There is an inverse relationship between IgM-mediated clearance by macrophages and the particle size; however, macrophages bind and internalize many different size particles coated with IgG. We also show that IgM avidly binds to small size late apoptotic cells or bodies (2–5 micron) and apoptotic microparticles (<2 µm) released from dying cells. IgM also promotes the binding and uptake of microparticle-coated beads. Conclusions/Significance Therefore, while the shape of the particles is important for non-opsonized particle uptake, the particle size matters for antibody-mediated clearance by macrophages. IgM particularly promotes the clearance of small size particles. This finding may have wider implications in IgM-mediated clearing of antigens, microbial pathogens and dying cells by the host.

Litvack, Michael L.; Post, Martin; Palaniyar, Nades

2011-01-01

223

SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes.  

PubMed

Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. PMID:24726431

Herbert, Katharine J; Cook, Anthony L; Snow, Elizabeth T

2014-06-15

224

Protective effects of melittin on transforming growth factor-{beta}1 injury to hepatocytes via anti-apoptotic mechanism  

SciTech Connect

Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytes were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.

Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun [Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu (Korea, Republic of); Park, Yoon-Yub [Department of Physiology, College of Medicine, Catholic University of Daegu, Daegu (Korea, Republic of); Han, Sang-Mi [Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon (Korea, Republic of); Park, Kwan-kyu, E-mail: kkpark@cu.ac.kr [Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu (Korea, Republic of)

2011-10-15

225

Apoptotic process in cystic fibrosis cells.  

PubMed

Cystic fibrosis (CF) is a recessively inherited disease caused by genetic lesions in CF transmembrane conductance regulator (CFTR) gene. CF is characterized by exaggerated inflammation, progressive tissue damage, and chronic bacterial colonization, mainly in the respiratory tract. The mechanisms underlying these pathological changes are increasingly well understood. However, apoptotic dysfunction in CF disease is still debated since studies report controversial results. Nonetheless, it is clear that apoptosis participates to onset of pathology and concerns various types of cells with variable susceptibility. Apoptosis is a physiological process necessary for the preservation of homeostasis of epithelial organization and function for clearance of inflammatory cells. Increased susceptibility to apoptosis in epithelial cells and failed apoptosis in neutrophils would contribute to the self-perpetuating inflammatory cycle in CF. Also, retention of mutated CFTR in the endoplasmic reticulum participates to inflammation which may trigger apoptosis. Independently of the sensibility to apoptosis of CF cells, it has been shown that clearance of apoptotic cells, due in part to decrease in efferocytosis, is flawed and that accumulation of such cells may contribute to ongoing inflammation in CF patients. Despite great advance in understanding CF pathophysiology, there is still no cure for the disease. The most recent therapeutic strategies are directed to target CFTR protein using cell and gene therapy as well as pharmacotherapy. PMID:23793868

Soleti, Raffaella; Porro, Chiara; Martínez, Maria Carmen

2013-09-01

226

SYTO probes: markers of apoptotic cell demise.  

PubMed

As mechanistic studies on tumor cell death advance towards their ultimate translational goal, there is a need for specific, rapid, and high-throughput analytical tools to detect diverse cell demise modes. Patented DNA-binding SYTO probes, for example, are gaining increasing interest as easy-to-use markers of caspase-dependent apoptotic cell death. They are proving convenient for tracking apoptosis in diverse hematopoietic cell lines and primary tumor samples, and, due to their spectral characteristics, appear to be useful for the development of multiparameter flow cytometry assays. Herein, several protocols for multiparametric assessment of apoptotic events using SYTO probes are provided. There are protocols describing the use of green fluorescent SYTO 16 and red fluorescent SYTO 17 dyes in combination with plasma membrane permeability markers. Another protocol highlights the multiparametric use of SYTO 16 dye in conjunction with the mitochondrial membrane potential sensitive probe, tetramethylrhodamine methyl ester (TMRM), and the plasma membrane permeability marker, 7-aminoactinomycin D (7-AAD). PMID:18770855

Wlodkowic, Donald; Skommer, Joanna

2007-10-01

227

Organotypic Cerebellar Cultures: Apoptotic Challenges and Detection  

PubMed Central

Organotypic cultures of neuronal tissue were first introduced by Hogue in 1947 1,2 and have constituted a major breakthrough in the field of neuroscience. Since then, the technique was developed further and currently there are many different ways to prepare organotypic cultures. The method presented here was adapted from the one described by Stoppini et al. for the preparation of the slices and from Gogolla et al. for the staining procedure 3,4. A unique feature of this technique is that it allows you to study different parts of the brain such as hippocampus or cerebellum in their original structure, providing a big advantage over dissociated cultures in which all the cellular organization and neuronal networks are disrupted. In the case of the cerebellum it is even more advantageous because it allows the study of Purkinje cells, extremely difficult to obtain as dissociated primary culture. This method can be used to study certain developmental features of the cerebellum in vitro, as well as for electrophysiological and pharmacological experiments in both wild type and mutant mice. The method described here was designed to study the effect of apoptotic stimuli such as Fas ligand in the developing cerebellum, using TUNEL staining to measure apoptotic cell death. If TUNEL staining is combined with cell type specific markers, such as Calbindin for Purkinje cells, it is possible to evaluate cell death in a cell population specific manner. The Calbindin staining also serves the purpose of evaluating the quality of the cerebellar cultures.

Hurtado de Mendoza, Tatiana; Balana, Bartosz; Slesinger, Paul A.; Verma, Inder M.

2011-01-01

228

Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.  

PubMed Central

Apoptosis in vivo is followed almost inevitably by rapid uptake into adjacent phagocytic cells, a critical process in tissue remodeling, regulation of the immune response, or resolution of inflammation. Phagocytosis of apoptotic cells by macrophages has been suggested to be a quiet process that does not lead to production of inflammatory mediators. Here we show that phagocytosis of apoptotic neutrophils (in contrast to immunoglobulin G-opsonized apoptotic cells) actively inhibited the production of interleukin (IL)-1beta, IL-8, IL-10, granulocyte macrophage colony-stimulating factor, and tumor necrosis factor-alpha, as well as leukotriene C4 and thromboxane B2, by human monocyte-derived macrophages. In contrast, production of transforming growth factor (TGF)-beta1, prostaglandin E2, and platelet-activating factor (PAF) was increased. The latter appeared to be involved in the inhibition of proinflammatory cytokine production because addition of exogenous TGF-beta1, prostaglandin E2, or PAF resulted in inhibition of lipopolysaccharide-stimulated cytokine production. Furthermore, anti-TGF-beta antibody, indomethacin, or PAF receptor antagonists restored cytokine production in lipopolysaccharide-stimulated macrophages that had phagocytosed apoptotic cells. These results suggest that binding and/or phagocytosis of apoptotic cells induces active antiinflammatory or suppressive properties in human macrophages. Therefore, it is likely that resolution of inflammation depends not only on the removal of apoptotic cells but on active suppression of inflammatory mediator production. Disorders in either could result in chronic inflammatory diseases.

Fadok, V A; Bratton, D L; Konowal, A; Freed, P W; Westcott, J Y; Henson, P M

1998-01-01

229

Caspase 3 Cleavage of the Inositol 1,4,5-Trisphosphate Receptor Does Not Contribute to Apoptotic Calcium Release  

PubMed Central

An important role in the regulation of apoptotic calcium release is played by the ubiquitously expressed family of inositol 1,4,5-trisphosphate receptor (IP3R) channels. One model for IP3R activation during apoptosis is cleavage by the apoptotic protease caspase 3. Here we show that early elevations in cytosolic calcium during apoptosis do not require caspase 3 activity. We detected a robust increase in calcium levels in response to staurosporine treatment in primary human fibroblasts and HeLa cells in the presence of the caspase inhibitor Z-VAD, indicating that calcium release during the initiation of apoptosis occurs independently of caspase 3. Similar results were obtained with MCF-7 cells which lack caspase 3 expression. Stable expression of caspase 3 in MCF-7 cells and TAT-based transduction of the active recombinant caspase 3 directly into living MCF-7 cells had marginal effects on the early events leading to cytosolic calcium elevations and irreversible commitment to apoptotic cell death. Significantly, blocking IP3 binding to the IP3R with an IP3 sponge resulted in suppression of staurosporine-induced calcium release and cell death. Collectively, our results suggest that generation of IP3 is sufficient for the initiation of apoptotic calcium signaling, and caspase 3-mediated truncation of IP3R channel is a consequence, not causative, of apoptotic calcium release.

Akimzhanov, Askar M.; Barral, Jose M.; Boehning, Darren

2012-01-01

230

Genes of the Mitochondrial Apoptotic Pathway in Mytilus galloprovincialis  

PubMed Central

Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress.

Figueras, Antonio; Novoa, Beatriz

2013-01-01

231

Protein Tyrosine Phosphatases PTP-1B, SHP-2, and PTEN Facilitate Rb/E2F-Associated Apoptotic Signaling  

PubMed Central

To maintain tissue homeostasis, apoptosis is functionally linked to the cell cycle through the retinoblastoma (Rb)/E2F pathway. When the Rb tumor suppressor protein is functionally inactivated, E2F1 elicits an apoptotic response through both intrinsic (caspase-9 mediated) and extrinsic (caspase-8 mediated) apoptotic pathways in order to eliminate hyperproliferative cells. Rb/E2F-associated apoptosis has been demonstrated to be associated with the loss of constitutive transcriptional repression by Rb/E2F complexes and mediated by caspase-8. Protein tyrosine phosphatases (PTPs) PTP-1B and SHP-2 have been previously shown to be directly activated by loss of Rb/E2F repression during Rb/E2F-associated apoptosis. In this current study, we demonstrate that the PTEN tumor suppressor is also directly activated by loss of Rb/E2F repression. We also demonstrate that PTP-1B, SHP-2, and PTEN play a functional role in Rb/E2F-associated apoptosis. Knockdown of PTP1B, SHP2, or PTEN expression with small interfering RNA (siRNA) in apoptotic cells increases cell viability and rescues cells from the Rb/E2F-associated apoptotic response. Furthermore, rescue from apoptosis coincides with inhibition of caspase-8 and caspase-3 cleavage (activation). Our results indicate PTP-1B, SHP-2, and PTEN all play a functional role in Rb/E2F-associated apoptotic signal transduction and provide further evidence that PTP-1B, SHP-2, and PTEN can contribute to tumor suppression through an Rb/E2F-associated mechanism.

Morales, Liza D.; Casillas Pavon, Edgar A.; Shin, Jun Wan; Garcia, Alexander; Capetillo, Mario; Kim, Dae Joon; Lieman, Jonathan H.

2014-01-01

232

Innate recognition of apoptotic cells: novel apoptotic cell-associated molecular patterns revealed by crossreactivity of anti-LPS antibodies  

PubMed Central

Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells – apoptotic cell-associated molecular patterns (ACAMPs) – that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V- and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs.

Tennant, I; Pound, J D; Marr, L A; Willems, J J L P; Petrova, S; Ford, C A; Paterson, M; Devitt, A; Gregory, C D

2013-01-01

233

WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer  

SciTech Connect

Research highlights: {yields} Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. {yields} Expression profiling of apoptosis-related genes in Apc{sup Min/+} mice revealed the differential expression of pro-apoptotic Bok and Bax. {yields} APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. {yields} Blocking of {beta}-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or {beta}-catenin causes constitutively active {beta}-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc{sup Min/+} mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of {beta}-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which uncontrolled epithelial cell proliferation in the stem cell compartment can be counterbalanced by an increased propensity to undergo cell death.

Zeilstra, Jurrit; Joosten, Sander P.J. [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands)] [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Wensveen, Felix M. [Department of Experimental Immunology, Academic Medical Center, Amsterdam (Netherlands)] [Department of Experimental Immunology, Academic Medical Center, Amsterdam (Netherlands); Dessing, Mark C.; Schuetze, Denise M. [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands)] [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Eldering, Eric [Department of Experimental Immunology, Academic Medical Center, Amsterdam (Netherlands)] [Department of Experimental Immunology, Academic Medical Center, Amsterdam (Netherlands); Spaargaren, Marcel [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands)] [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Pals, Steven T., E-mail: s.t.pals@amc.uva.nl [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands)

2011-03-04

234

Exposure of Phosphatidylethanolamine on the Surface of Apoptotic Cells  

Microsoft Academic Search

In the early stages of apoptosis, phosphatidylserine (PS) is translocated from the inner side of the plasma membrane to the outer layer, which allows phagocytes to recognize and engulf the apoptotic cells. In this study we have analyzed the cell surface exposure of phosphatidylethanolamine (PE) in apoptotic CTLL-2 cells, a cytotoxic T cell line, using a tetracyclic polypeptide of 19

Kazuo Emoto; Noriko Toyama-Sorimachi; Hajime Karasuyama; Keizo Inoue; Masato Umeda

1997-01-01

235

Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells  

PubMed Central

Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance.

Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

2012-01-01

236

Clustering of apoptotic cells via bystander killing by peroxides  

Microsoft Academic Search

Clustering of apoptotic cells is a char- acteristic of many developing or renewing systems, suggesting that apoptotic cells kill bystanders. By- stander killing can be triggered experimentally by inducing apoptosis in single cells and may be based on the exchange of as yet unidentified chemical cell death signals between nearby cells without the need for cell-to-cell communication via gap junctions.

KYRILL REZNIKOV; LARISSA KOLESNIKOVA; ALADDIN PRAMANIK; KOICHI TAN-NO; IRINA GILEVA; TATJANA YAKOVLEVA; RUDOLF RIGLER; LARS TERENIUS; GEORGY BAKALKIN

2000-01-01

237

Human Cells Display Reduced Apoptotic Function Relative to Chimpanzee Cells  

PubMed Central

Previously published gene expression analyses suggested that apoptotic function may be reduced in humans relative to chimpanzees and led to the hypothesis that this difference may contribute to the relatively larger size of the human brain and the increased propensity of humans to develop cancer. In this study, we sought to further test the hypothesis that humans maintain a reduced apoptotic function relative to chimpanzees by conducting a series of apoptotic function assays on human, chimpanzee and macaque primary fibroblastic cells. Human cells consistently displayed significantly reduced apoptotic function relative to the chimpanzee and macaque cells. These results are consistent with earlier findings indicating that apoptotic function is reduced in humans relative to chimpanzees.

McDonald, John F.

2012-01-01

238

Increased HoxB4 Inhibits Apoptotic Cell Death in Pro-B Cells  

PubMed Central

HoxB4, a homeodomain-containing transcription factor, is involved in the expansion of hematopoietic stem cells and progenitor cells in vivo and in vitro, and plays a key role in regulating the balance between hematopoietic stem cell renewal and cell differentiation. However, the biological activity of HoxB4 in other cells has not been reported. In this study, we investigated the effect of overexpressed HoxB4 on cell survival under various conditions that induce death, using the Ba/F3 cell line. Analysis of phenotypical characteristics showed that HoxB4 overexpression in Ba/F3 cells reduced cell size, death, and proliferation rate. Moreover, the progression from early to late apoptotic stages was inhibited in Ba/F3 cells subjected to HoxB4 overexpression under removal of interleukin-3-mediated signal, leading to the induction of cell cycle arrest at the G2/M phase and attenuated cell death by Fas protein stimulation in vitro. Furthermore, apoptotic cell death induced by doxorubicin-treated G2/M phase cell-cycle arrest also decreased with HoxB4 overexpression in Ba/F3 cells. From these data, we suggest that HoxB4 may play an important role in the regulation of pro-B cell survival under various apoptotic death environments.

Park, Sung-Won; Won, Kyung-Jong; Lee, Yong-Soo; Kim, Hye Sun; Kim, Yu-Kyung; Lee, Hyeon-Woo; Kim, Bokyung; Lee, Byeong Han; Kim, Jin-Hoi; Kim, Dong-Ku

2012-01-01

239

TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms  

PubMed Central

The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NF?B-mediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NF?B activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival.

Rauert, H; Stuhmer, T; Bargou, R; Wajant, H; Siegmund, D

2011-01-01

240

The Arf GAP CNT-2 regulates the apoptotic fate in C. elegans asymmetric neuroblast divisions  

PubMed Central

Summary During development, all cells make the decision to live or die. While the molecular mechanisms that execute the apoptotic program are well defined, less is known about how cells decide whether to live or die. In C. elegans, this decision is linked to how cells divide asymmetrically [1, 2]. Several classes of molecules are known to regulate asymmetric cell divisions in metazoans, yet these molecules do not appear to control C. elegans divisions that produce apoptotic cells [3]. We identified CNT-2, an Arf GAP protein of the AGAP family, as a novel regulator of this type of neuroblast division. Loss of CNT-2 altered daughter cell size and caused the apoptotic cell to adopt the fate of its sister cell, resulting in extra neurons. CNT-2’s Arf GAP activity was essential for its function in these divisions. The N-terminus of CNT-2, which contains a GTPase-like domain that defines the AGAP class of Arf GAPs, negatively regulates CNT-2’s function. We provide evidence that CNT-2 regulates receptor-mediated endocytosis and consider the implications of its role in asymmetric cell divisions.

Singhvi, Aakanksha; Teuliere, Jerome; Talavera, Karla; Cordes, Shaun; Ou, Guangshuo; Vale, Ronald D.; Prasad, Brinda C.; Clark, Scott G.; Garriga, Gian

2011-01-01

241

BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter  

PubMed Central

In the presence of extensive DNA damage, eukaryotes activate endonucleases to fragment their chromosomes and induce apoptotic cell death. Apoptotic-like responses have recently been described in bacteria, but primarily in specialized mutant backgrounds, and the factors responsible for DNA damage-induced chromosome fragmentation and death have not been identified. Here we find that wild-type Caulobacter cells induce apoptotic-like cell death in response to extensive DNA damage. The bacterial apoptosis endonuclease (BapE) protein is induced by damage but not involved in DNA repair itself, and mediates this cell fate decision. BapE fragments chromosomes by cleaving supercoiled DNA in a sequence-nonspecific manner, thereby perturbing chromosome integrity both in vivo and in vitro. This damage-induced chromosome fragmentation pathway resembles that of eukaryotic apoptosis. We propose that damage-induced programmed cell death can be a primary stress response for some bacterial species, providing isogenic bacterial communities with advantages similar to those that apoptosis provides to multicellular organisms.

Bos, Julia; Yakhnina, Anastasiya A.; Gitai, Zemer

2012-01-01

242

Suppression of FVIII Inhibitor Formation in Hemophilic Mice by Delivery of Transgene Modified Apoptotic Fibroblasts  

PubMed Central

The development of inhibitory antibodies to factor VIII (FVIII) is currently the most significant complication of FVIII replacement therapy in the management of patients with severe hemophilia A. Immune tolerance protocols for the eradication of inhibitors require daily delivery of intravenous FVIII for at least 6 months and are unsuccessful in 20–40% of treated patients. We hypothesize that tolerance can be induced more efficiently and reliably by delivery of FVIII antigen within autologous apoptotic cells (ACs). In this study, we demonstrated suppression of the T cell and inhibitor responses to FVIII by infusion of FVIII expression vector modified apoptotic syngeneic fibroblasts in both naive and preimmunized hemophilia A mice. ACs without FVIII antigen exerted modest generalized immune suppression mediated by anti-inflammatory signals. However, FVIII expressing apoptotic syngeneic fibroblasts produced much stronger antigen-specific immune suppression. Mice treated with these fibroblasts generated CD4+ T cells that suppressed the immune response to FVIII after adoptive transfer into naive recipients and antigen-specific CD4+CD25+ regulatory T cells (Tregs) that inhibited the proliferation of FVIII responsive effector T cells in vitro. These preclinical results demonstrate the potential for using FVIII vector modified autologous ACs to treat high-titer inhibitors in patients with hemophilia A.

Su, Rui-Jun; Epp, Angela; Latchman, Yvette; Bolgiano, Doug; Pipe, Steven W; Josephson, Neil C

2009-01-01

243

SPION-Smac mimetic nano-conjugates: Putative pro-apoptotic agents in oncology.  

PubMed

Non-covalent (NP-1/3) and covalent (NP-A-1/3) pro-apoptotic SPION-Smac mimetic nano-conjugates antitumor agents are reported. The solution synthesis of key Smac mimetics, their support onto SPIONs through non-covalent adsorption (NP-1/3) or APTES-mediated covalent binding (NP-A-1/3), the analytical characterization of SPION-Smac mimetic conjugates, their target affinity in cell-free assays, and their cytotoxicity against tumor cells are thoroughly described. PMID:24736115

Seneci, Pierfausto; Rizzi, Mattia; Ballabio, Luigi; Lecis, Daniele; Conti, Annalisa; Carrara, Claudio; Licandro, Emanuela

2014-05-15

244

MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM  

Microsoft Academic Search

Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies. GC-induced apoptosis involves an intrinsic mitochondria-dependent pathway. We and others have shown that BIM (BCL-2 interacting mediator of cell death), a BH3-only pro-apoptotic protein, is up-regulated by dexamethasone (Dex) treatment in acute lymphoblastic leukemia (ALL) cells and plays an essential role in Dex-induced apoptosis. Furthermore, BIM is inactivated

A A Rambal; Z L G Panaguiton; L Kramer; S Grant; H Harada

2009-01-01

245

Apoptosis and apoptotic mimicry in Leishmania: an evolutionary perspective  

PubMed Central

Apoptotic death and apoptotic mimicry are defined respectively as a non-accidental death and as the mimicking of an apoptotic-cell phenotype, usually by phosphatidylserine (PS) exposure. In the case of the murine infection by Leishmania spp, apoptotic death has been described in promastigotes and apoptotic mimicry in amastigotes. In both situations they are important events of the experimental murine infection by this parasite. In the present review we discuss what features we need to consider if we want to establish if a behavior shown by Leishmania is altruistic or not: does the behavior increases the fitness of organisms other than the one showing it? Does this behavior have a cost for the actor? If we manage to show that a given behavior is costly for the actor and beneficial for the recipient of the action, we will be able to establish it as altruistic. From this perspective, we can argue that apoptotic-like death and apoptotic mimicry are both altruistic with the latter representing a weaker altruistic behavior than the former.

El-Hani, Charbel N.; Borges, Valeria M.; Wanderley, Joao L. M.; Barcinski, Marcello A.

2012-01-01

246

Fetal bovine serum requirement for pyrrolidine dithiocarbamate-induced apoptotic cell death of MCF-7 breast tumor cells.  

PubMed

Pyrrolidine dithiocarbamate (PDTC) can form a complex with metal ions and then act as a proteasome inhibitor, which leads to tumor cell apoptosis, and could therefore be developed as an anticancer agent. In our efforts to find factors that induce PDTC-mediated apoptosis of tumor cells, the effect of serum concentration on the apoptotic activity of PDTC was investigated. PDTC could not induce MCF-7 breast tumor cell death in serum-free media but significantly induced cell death in a dose-dependent manner at concentrations of ?25 ?M in media containing 10% fetal bovine serum. PDTC-mediated cell death was also dependent on serum concentration. PDTC-mediated cell death occurred through apoptosis. Similar to that in normal FBS, PDTC-mediated apoptotic cell death was also induced in media containing dialyzed FBS, indicating that PDTC-mediated apoptosis does not require metal ions or salts, but rather proteins in fetal bovine serum. In addition, differential apoptotic effects of PDTC were not observed with inhibitors of NF-?B activation such as N-acetylcysteine (NAC), Fenofibrate and carbobenzoxyl-l-leucyl-l-leucyl-l-leucinal (MG132) or with the metal-binding agent, 5-chloro-7-iodo-8-hydroxyquinoline (Clioquinol). These results indicate that serum is required for PDTC-mediated apoptosis and that zinc-binding compounds such as PDTC, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and Clioquinol may each have their own mechanisms by which they induce tumor cell death, even though they are all classified as zinc-binding compounds. PMID:20868670

Oh, Da Hee; Bang, Jun Soo; Choi, Hyun Mi; Yang, Hyung-In; Yoo, Myung Chul; Kim, Kyoung Soo

2010-12-15

247

Terfenadine induces anti-proliferative and apoptotic activities in human hormone-refractory prostate cancer through histamine receptor-independent Mcl-1 cleavage and Bak up-regulation.  

PubMed

Although the results of several studies have underscored the regulatory effect of H1-histamine receptors in cell proliferation of some cancer cell types, its effect in prostate cancers remains unclear. We have therefore studied the effect of terfenadine (an H1-histamine receptor antagonist) in prostate cancer cell lines. Our data demonstrate that terfenadine was effective against PC-3 and DU-145 cells (two prostate cancer cell lines). In contrast, based on the sulforhodamine B assay, loratadine had less potency while fexofenadine and diphenhydramine had little effect. Terfenadine induced the cleavage of Mcl-1 cleavage into a pro-apoptotic 28-kDa fragment and up-regulation of Bak, resulting in the loss of mitochondrial membrane potential (??m) and the release of cytochrome c and apoptosis-inducing factor into the cytosol. The activation of caspase cascades was detected to be linked to terfenadine action. Bak up-regulation was also examined at both the transcriptional and translational levels, and Bak activation was validated based on conformational change to expose the N terminus. Terfenadine also induced an indirect-but not direct-DNA damage response through the cleavage and activation of caspase-2, phosphorylation and activation of Chk1 and Chk2 kinases, phosphorylation of RPA32 and acetylation of Histone H3; these processes were highly correlated to severe mitochondrial dysfunction and the activation of caspase cascades. In conclusion, terfenadine induced apoptotic signaling cascades against HRPCs in a sequential manner. The exposure of cells to terfenadine caused the up-regulation and activation of Bak and the cleavage of Mcl-1, leading to the loss of ??m and activation of caspase cascades which further resulted in DNA damage response and cell apoptosis. PMID:24048439

Wang, Wei-Ting; Chen, Yen-Hui; Hsu, Jui-Ling; Leu, Wohn-Jenn; Yu, Chia-Chun; Chan, She-Hung; Ho, Yunn-Fang; Hsu, Lih-Ching; Guh, Jih-Hwa

2014-01-01

248

Cannabidiol induced a contrasting pro-apoptotic effect between freshly isolated and precultured human monocytes  

SciTech Connect

It has been documented that cannabidiol (CBD) induced apoptosis in a variety of transformed cells, including lymphocytic and monocytic leukemias. In contrast, a differential sensitivity between normal lymphocytes and monocytes to CBD-mediated apoptosis has been reported. The present study investigated the pro-apoptotic effect of CBD on human peripheral monocytes that were either freshly isolated or precultured for 72 h. CBD markedly enhanced apoptosis of freshly isolated monocytes in a time- and concentration-dependent manner, whereas precultured monocytes were insensitive. By comparison, both cells were sensitive to doxorubicin-induced apoptosis. CBD significantly diminished the cellular thiols and glutathione in freshly isolated monocytes. The apoptosis induced by CBD was abrogated in the presence of N-acetyl-{sub L}-cysteine, a precursor of glutathione. In addition, precultured monocytes contained a significantly greater level of glutathione and heme oxygenase-1 (HO-1) compared to the freshly isolated cells. The HO-1 competitive inhibitor zinc protoporphyrin partially but significantly restored the sensitivity of precultured monocytes to CBD-mediated apoptosis. Collectively, our results demonstrated a contrasting pro-apoptotic effect of CBD between precultured and freshly isolated monocytes, which was closely associated with the cellular level of glutathione and the antioxidative capability of the cells.

Wu, Hsin-Ying; Chang, An-Chi; Wang, Chia-Chi; Kuo, Fu-Hua; Lee, Chi-Ya [Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); Liu, Der-Zen [Graduate Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei, Taiwan (China); Jan, Tong-Rong, E-mail: tonyjan@ntu.edu.t [Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China)

2010-08-01

249

DAPK1-p53 Interaction Converges Necrotic and Apoptotic Pathways of Ischemic Neuronal Death.  

PubMed

Necrosis and apoptosis are two distinct types of mechanisms that mediate ischemic injury. But a signaling point of convergence between them has yet to be identified. Here, we show that activated death-associated protein kinase 1 (DAPK1), phosphorylates p53 at serine-23 (pS(23)) via a direct binding of DAPK1 death domain (DAPK1DD) to the DNA binding motif of p53 (p53DM). We uncover that the pS(23) acts as a functional version of p53 and mediates necrotic and apoptotic neuronal death; in the nucleus, pS(23) induces the expression of proapoptotic genes, such as Bax, whereas in the mitochondrial matrix, pS(23) triggers necrosis via interaction with cyclophilin D (CypD) in cultured cortical neurons from mice. Deletion of DAPK1DD (DAPK1(DD?)) or application of Tat-p53DM that interrupts DAPK1-p53 interaction blocks these dual pathways of pS(23) actions in mouse cortical neurons. Thus, the DAPK1-p53 interaction is a signaling point of convergence of necrotic and apoptotic pathways and is a desirable target for the treatment of ischemic insults. PMID:24806680

Pei, Lei; Shang, You; Jin, Huijuan; Wang, Shan; Wei, Na; Yan, Honglin; Wu, Yan; Yao, Chengye; Wang, Xiaoxi; Zhu, Ling-Qiang; Lu, Youming

2014-05-01

250

C/EBPdelta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution.  

PubMed

The STAT3 transcription factor is an important initiator of mammary gland involution in the mouse. This work shows that the STAT3 target gene CCAAT/enhancer binding protein delta (C/EBPdelta) is a crucial mediator of pro-apoptotic gene expression events in mammary epithelial cells. In the absence of C/EBPdelta, involution is delayed, the pro-apoptotic genes encoding p53, BAK, IGFBP5 and SGP2/clusterin are not activated, while the anti-apoptotic genes coding for BFL1 and Cyclin D1 are not repressed. Consequently, p53 targets such as survivin, BRCA1, BRCA2 and BAX are not regulated appropriately and protease activation is delayed. Furthermore, expression of MMP3 and C/EBPdelta during the second phase of involution is perturbed in the absence of C/EBPdelta. In HC11 cells, C/EBPdelta alone is sufficient to induce IGFBP5 and SGP2. It also suppresses Cyclin D1 expression and cooperates with p53 to elicit apoptosis. This study places C/EBPdelta between STAT3 and several pro- and anti-apoptotic genes promoting the physiological cell death response in epithelial cells at the onset of mammary gland involution. PMID:16192306

Thangaraju, Muthusamy; Rudelius, Martina; Bierie, Brian; Raffeld, Mark; Sharan, Shikha; Hennighausen, Lothar; Huang, A-Mei; Sterneck, Esta

2005-11-01

251

Apoptotic-cell-derived membrane vesicles induce an alternative maturation of human dendritic cells which is disturbed in SLE.  

PubMed

The clearance of apoptotic cells occurs in a non-inflammatory context. Defects in this clearance process have been linked to the emergence of human autoimmune diseases like systemic lupus erythematosus (SLE). A characteristic of apoptotic cell death is the shedding of membrane coated vesicles from the cellular surfaces. Those vesicles have recently been recognized as mediators of intercellular communication or as adjuvant in the pathogenesis of autoimmune diseases. We analyzed the interactions between these apoptotic cell-derived membrane vesicles and professional antigen presenting cells. These vesicles were engulfed by monocyte-derived dendritic cells (mDC) and stimulated their maturation towards a phenotype comprising an upregulation of CD80, CD83, CD86, and a remarkable downregulation of MHC class II molecules. We observed only a minor release of proinflammatory cytokines from these mDC when compared to LPS stimulation. mDC stimulated by apoptotic vesicles did not cause significant T-cell expansion. Interestingly, when compared to normal healthy donors SLE patients-derived dendritic cells showed a significantly different phenotype lacking the downregulation of MHC class II, which correlated to disease activity. PMID:23031801

Fehr, Eva-Marie; Spoerl, Silvia; Heyder, Petra; Herrmann, Martin; Bekeredjian-Ding, Isabelle; Blank, Norbert; Lorenz, Hanns-Martin; Schiller, Martin

2013-02-01

252

The apoptotic pathways effect of fine particulate from cooking oil fumes in primary fetal alveolar type II epithelial cells.  

PubMed

Apoptosis occurs along three major pathways: (i) an extrinsic pathway, mediated by death receptors; (ii) an intrinsic pathway centered on mitochondria; and (iii) an ER-stress pathway. We investigated the apoptotic pathway effects of cooking oil fumes (COF) in fetal lung type II-like epithelium cells (AEC II). Exposure to COF caused up-regulation of the pro-apoptotic protein Bax and down-regulation of the anti-apoptotic protein Bcl-2. COF induced the mitochondrial permeability transition, an early event in apoptosis; cytochrome c was translocated from the mitochondria to the cytoplasm and nucleus. Caspase-9 and caspase-3 were activated, as a consequence of the mitochondrial permeability transition. The death receptor apoptotic pathway was triggered by COF, as indicated by a change in Fas expression, resulting in increased caspase-8 content. COF exposure arrested the cell cycle the at G0-G1 phase. In summary, COF can lead to apoptosis via mitochondrial and death receptor pathways in AEC II cells. PMID:24463316

Che, Zhen; Liu, Ying; Chen, Yanyan; Cao, Jiyu; Liang, Chunmei; Wang, Lei; Ding, Rui

2014-02-01

253

Inhibitors of apoptotic proteins: new targets for anticancer therapy.  

PubMed

Inhibitors of apoptotic proteins (IAPs) can play an important role in inhibiting apoptosis by exerting their negative action on caspases (apoptotic proteins). There are eight proteins in this family: NAIP/BIRC1/NLRB, cellular IAP1 (cIAP1)/human IAP2/BIRC2, cellular IAP2 (cIAP2)/human IAP1/BIRC3, X-linked IAP (XIAP)/BIRC4, survivin/BIRC5, baculoviral IAP repeat (BIR)-containing ubiquitin-conjugating enzyme/apollon/BIRC6, livin/melanoma-IAP (ML-IAP)/BIRC7/KIAP, and testis-specific IAP (Ts-IAP)/hILP-2/BIRC8. Deregulation of these inhibitors of apoptotic proteins (IAPs) may push cell toward cancer and neurodegenerative disorders. Inhibitors of apoptotic proteins (IAPs) may provide new target for anticancer therapy. Drugs may be developed that are inhibiting these IAPs to induce apoptosis in cancerous cells. PMID:23790005

Saleem, Mohammad; Qadir, Muhammad Imran; Perveen, Nadia; Ahmad, Bashir; Saleem, Uzma; Irshad, Tehseen; Ahmad, Bashir

2013-09-01

254

Stable transcriptional status in the apoptotic erythroid genome.  

PubMed

When a cell is destined for apoptosis, will its genome reprogram its transcriptional machinery to overcome the life-threatening challenge? To address this issue, we performed a genome-wide transcriptome analysis in EPO (erythropoietin) deprivation-induced apoptotic erythroid cells using the SAGE method. The results show that the transcript contents for the majority of the genes remain unchanged in the apoptotic cells, including the apoptotic genes and the heat shock genes. Of the small number of genes with an altered expression, they are mainly associated with cellular structure. Our study reveals that there is no genetic reprogramming for the transcriptional machinery in the apoptotic genome. Apoptosis, as defined by programmed cell death, is not a crisis but a peaceful physiological process. PMID:17560551

Lee, Sanggyu; Hwang, Junmo; Ulaszek, Jodie; Kim, Yeong C; Dong, Hui; Kim, Hyung Soo; Seok, Ji Woong; Suh, Bo Kyung; Yim, So Jeong; Johnson, Debra; Choe, Nong Hoon; Chang, Kyu Tae; Ryoo, Zae Young; Tseng, Charles C; Wickrema, Amittha; Wang, San Ming

2007-08-01

255

BH3-Only Protein BIM Mediates Heat Shock-Induced Apoptosis  

PubMed Central

Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax?/?Bak?/? cells and better than either Bid?/? or dominant-negative caspase-9-expressing cells. Only Bim?/? and Bax?/?Bak?/? cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid?/? cells, it readily did so in Bim?/? cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1?/? cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-XL with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members.

Mahajan, Indra M.; Chen, Miao-Der; Muro, Israel; Robertson, John D.; Wright, Casey W.; Bratton, Shawn B.

2014-01-01

256

Raman spectroscopy and Raman chemical imaging of apoptotic cells  

NASA Astrophysics Data System (ADS)

Apoptosis, also known as programmed cell death, is a process in which cells initiate a series of events to trigger their own demise. Normal cells use this mechanism in the regulation of their life cycle. On the contrary, abnormal or cancer cells have lost the ability to regulate themselves by this process. Because of this, there is much interest in the study of the apoptotic process. Currently, there are many commercial assays available to detect apoptosis in cells, most of which are fluorescence based. Limitations of such fluorescent assays lead to arbitrary or inclusive results. Raman spectroscopy is a powerful technique that yields specific molecular information on samples under study. The Raman spectra obtained from cell samples are very complex, yet the differences in the complex Raman spectra analyzed using chemometric techniques can identify chemical and physiological information about cells. Furthermore, Raman spectroscopy is a sensitive, rapid, reagentless, low-cost technique, making it a superior alternative to traditional fluorescence based apoptosis assays. In this study, we have employed Raman spectroscopy and Raman chemical imaging, along with chemometric techniques, to distinguish apoptotic cells from non-apoptotic cells in two prostate cancer cell lines, PC3 and LnCAP. Initial results indicate that Raman spectra of apoptotic and non-apoptotic cells are different in both cell lines. Furthermore, chemometric analysis of the data shows that the spectra separate into two distinct populations, apoptotic and non-apoptotic. Traditional fluorescence based apoptotic assays confirm the results. This work provides ample evidence that Raman spectroscopy is a valuable tool in biomedical imaging.

Panza, Janice L.; Maier, John S.

2007-03-01

257

Regulation of cytokine production during phagocytosis of apoptotic cells  

Microsoft Academic Search

Loss of self-tolerance and expansion of auto-reactive lymphocytes are the basis for autoimmunity. Apoptosis and the rapid clearance of apoptotic cells by phagocytes usually occur as coordinated processes that ensure regulated cellularity and stress response with non-pathological outcomes. Defects in clearance of apoptotic cells would contribute to the generation of self-reactive lymphocytes, which drive autoimmune disorders such as rheumatoid arthritis

Elaine Y Chung; Sun Jung Kim; Xiao Jing Ma

2006-01-01

258

VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria  

Microsoft Academic Search

Voltage-dependent anion channels (VDACs) are expressed in three isoforms, with common channeling properties and different roles in cell survival. We show that VDAC1 silencing potentiates apoptotic challenges, whereas VDAC2 has the opposite effect. Although all three VDAC isoforms are equivalent in allowing mitochondrial Ca2+ loading upon agonist stimulation, VDAC1 silencing selectively impairs the transfer of the low-amplitude apoptotic Ca2+ signals.

D De Stefani; A Bononi; A Romagnoli; A Messina; V De Pinto; P Pinton; R Rizzuto

2012-01-01

259

Clearance of apoptotic and necrotic cells and its immunological consequences.  

PubMed

The ultimate and most favorable fate of almost all dying cells is engulfment by neighboring or specialized cells. Efficient clearance of cells undergoing apoptotic death is crucial for normal tissue homeostasis and for the modulation of immune responses. Engulfment of apoptotic cells is finely regulated by a highly redundant system of receptors and bridging molecules on phagocytic cells that detect molecules specific for dying cells. Recognition of necrotic cells by phagocytes is less well understood than recognition of apoptotic cells, but an increasing number of recent studies, which are discussed here, are highlighting its importance. New observations indicate that the interaction of macrophages with dying cells initiates internalization of the apoptotic or necrotic targets, and that internalization can be preceded by "zipper"-like and macropinocytotic mechanisms, respectively. We emphasize that clearance of dying cells is an important fundamental process serving multiple functions in the regulation of normal tissue turnover and homeostasis, and is not just simple anti- or pro-inflammatory responses. Here we review recent findings on genetic pathways participating in apoptotic cell clearance, mechanisms of internalization, and molecules involved in engulfment of apoptotic versus necrotic cells, as well as their immunological consequences and relationships to disease pathogenesis. PMID:16951923

Krysko, Dmitri V; D'Herde, Katharina; Vandenabeele, Peter

2006-10-01

260

Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells.  

PubMed

Apoptotic resistance is often associated with metastatic phenotype in tumor cells and is considered a hallmark of tumor progression. In this study, IFN regulatory factor 8 (IRF8) expression was found to be inversely correlated with an apoptotic-resistant and metastatic phenotype in human colon carcinoma cell lines in vitro. This inverse correlation was further extended to spontaneously arising primary mammary carcinoma and lung metastases in a mouse tumor model in vivo. Exogenous expression of IRF8 in the metastatic tumor cell line restored, at least partially, the sensitivity of the tumor cells to Fas-mediated apoptosis, and disruption of IRF8 function conferred the poorly metastatic tumors with enhanced apoptotic resistance and metastatic capability. DNA demethylation restored IRF8 expression and sensitized the metastatic tumor cells to Fas-mediated apoptosis. Analysis of genomic DNA isolated from both primary and metastatic tumor cells with methylation-sensitive PCR revealed hypermethylation of the IRF8 promoter in metastatic tumor cells but not in primary tumor cells. Taken together, our data suggest that IRF8 is both an essential regulator in Fas-mediated apoptosis pathway and a metastasis suppressor in solid tumors and that metastatic tumor cells use DNA hypermethylation to repress IRF8 expression to evade apoptotic cell death and to acquire a metastatic phenotype. PMID:17409439

Yang, Dafeng; Thangaraju, Muthusamy; Greeneltch, Kristy; Browning, Darren D; Schoenlein, Patricia V; Tamura, Tomohiko; Ozato, Keiko; Ganapathy, Vadivel; Abrams, Scott I; Liu, Kebin

2007-04-01

261

Gamma tocotrienol, a potent radioprotector, preferentially upregulates expression of anti-apoptotic genes to promote intestinal cell survival.  

PubMed

Gamma tocotrienol (GT3) has been reported as a potent ameliorator of radiation-induced gastrointestinal (GI) toxicity when administered prophylactically. This study aimed to evaluate the role of GT3 mediated pro- and anti-apoptotic gene regulation in protecting mice from radiation-induced GI damage. Male 10- to 12-weeks-old CD2F1 mice were administered with a single dose of 200 mg/kg of GT3 or equal volume of vehicle (5% Tween-80) 24 h before exposure to 11 Gy of whole-body ?-radiation. Mouse jejunum was surgically removed 4 and 24h after radiation exposure, and was used for PCR array, histology, immunohistochemistry, and immunoblot analysis. Results were compared among vehicle pre-treated no radiation, vehicle pre-treated irradiated, and GT3 pre-treated irradiated groups. GT3 pretreated irradiated groups, both 4h and 24h after radiation, showed greater upregulation of anti-apoptotic gene expression than vehicle pretreated irradiated groups. TUNEL staining and intestinal crypt analysis showed protection of jejunum after GT3 pre-treatment and immunoblot results were supportive of PCR data. Our study demonstrated that GT3-mediated protection of intestinal cells from a GI-toxic dose of radiation occurred via upregulation of antiapoptotic and downregulation of pro-apoptotic factors, both at the transcript as well as at the protein levels. PMID:23941772

Suman, Shubhankar; Datta, Kamal; Chakraborty, Kushal; Kulkarni, Shilpa S; Doiron, Kathryn; Fornace, Albert J; Sree Kumar, K; Hauer-Jensen, Martin; Ghosh, Sanchita P

2013-10-01

262

Apoptotic response of malignant rhabdoid tumor cells  

PubMed Central

Background Malignant rhabdoid tumors (MRTs) are extremely aggressive and resist current radio- and chemotherapic treatments. To gain insight into the dysfunctions of MRT cells, the apoptotic response of a model cell line, MON, was analyzed after exposure to several genotoxic and non-genotoxic agents employed separately or in association. Results Fluorescence microscopy of chromatin morphology and electrophoretic analysis of internucleosomal DNA fragmentation revealed that MON cells were, comparatively to HeLa cells, resistant to apoptosis after treatment with etoposide, cisplatin (CisPt) or X-rays, but underwent some degree of apoptosis after ultraviolet (UV) C irradiation. Concomitant treatment of MON cells with X-rays or vinblastine and the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin resulted in synergistic induction of apoptosis. Western blot analysis showed that the p53 protein was upregulated in MON cells after exposure to all the different agents tested, singly or in combination. In treated cells, the p53 downstream effectors p21WAF1/CIP1, Mdm2 and Bax were induced with some inconsistency with regard to the accumulation of p53. Poly ADP-ribose polymerase (PARP) cleavage, indicative of ongoing apoptosis, occurred in UVC-irradiated cells and, especially, in cells treated with combinations of X-rays or vinblastine with wortmannin. However, there was moderate or no PARP cleavage in cells treated with CisPt, X-rays, vinblastine or wortmannin singly or with the combinations X-rays plus CisPt or vinblastine and CisPt plus vinblastine or wortmannin. The synergistic effect on the induction of apoptosis exerted by some agent combinations corresponded with synergy in respect of MON cell growth inhibition. Conclusion These results suggest abnormalities in the p53 pathway and apoptosis control in MRT cells. The Ras/PI3-K/AKT signaling pathway might also be deregulated in these cells by generating an excess of survival factors. These dysfunctions might contribute to the resistance of MRTs to current antineoplastic treatments and could warrant consideration in the search of new therapeutic approaches.

Nocentini, Silvano

2003-01-01

263

The anti-apoptotic effect of leukotriene D4 involves the prevention of caspase 8 activation and Bid cleavage.  

PubMed Central

We have shown in a previous study that leukotriene D(4) (LTD(4)) signalling increases cell survival and proliferation in intestinal epithelial cells [Ohd, Wikström and Sjölander (2000) Gastroenterology 119, 1007-1018]. This is highly interesting since inflammatory conditions of the bowel are associated with an increased risk of developing colon cancer. The enzyme cyclo-oxygenase 2 (COX-2) is important in this context since it is up-regulated in colon cancer tissues and in tumour cell lines. Treatment with the COX-2-specific inhibitor N -(2-cyclohexyloxy-4-nitrophenyl)methane sulphonamide has been shown previously to cause apoptosis in intestinal epithelial cells. In the present study, we attempted to elucidate the underlying mechanisms and we can now show that a mitochondrial pathway is employed. Inhibition of COX-2 causes release of cytochrome c, as shown by both Western-blot and microscopy studies, and as with apoptosis, this is significantly decreased by LTD(4). Since previous studies showed increased Bcl-2 levels on LTD(4) stimulation, we further studied apoptotic regulation at the mitochondrial level. From this we could exclude the involvement of the anti-apoptotic protein Bcl-X(L) as well as its pro-apoptotic counterpart Bax, since they are not expressed. Furthermore, the activity of the pro-apoptotic protein Bad (Bcl-2/Bcl-X(L)-antagonist, causing cell death) was completely unaffected. However, inhibition of COX-2 caused cleavage of caspase 8 into a 41 kDa fragment associated with activation and caused the appearance of an activated 15 kDa fragment of Bid. This indicates that N -(2-cyclohexyloxy-4-nitrophenyl)methane sulphonamide-induced apoptosis is mediated by the activation of caspase 8, via generation of truncated Bid, and thereafter release of cytochrome c. Interestingly, LTD(4) not only reverses the effects induced by inhibition of COX-2 but also reduces the apoptotic potential by lowering the basal level of caspase 8 activation and truncated Bid generation.

Wikstrom, Katarina; Juhas, Maria; Sjolander, Anita

2003-01-01

264

Surface code—biophysical signals for apoptotic cell clearance  

NASA Astrophysics Data System (ADS)

Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.

Biermann, Mona; Maueröder, Christian; Brauner, Jan M.; Chaurio, Ricardo; Janko, Christina; Herrmann, Martin; Muñoz, Luis E.

2013-12-01

265

Measles virus induces apoptotic cell death in lymphocytes activated with phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore.  

PubMed

Peripheral blood mononuclear cells (PBMC) and T lymphocytes were infected with measles virus (MV) and cultured with a protein kinase C (PKC) activator, PMA and a calcium ionophore, ionomycin. After stimulation, cell viability and incorporation of 5-bromo-2'- deoxyuridine (BrdU) were decreased in MV-infected cells compared with mock-infected cells. DNA content analysis and terminal deoxytransferase (TdT)-mediated dUTP nick end labelling demonstrated that the hypodiploid fraction and DNA fragmentation were increased in MV-infected, T lymphocytes activated with PMA plus ionomycin. These data suggest that MV induces apoptotic cell death in cells activated by PMA plus ionomycin. In contrast to stimulation with PMA plus ionomycin, mitogenic stimulation with phytohaemagglutinin (PHA) did not induce apoptotic cell death in MV-infected cells, although cell proliferation was suppressed. Apoptosis induced in stimulated, MV-infected cells may be one mechanism of immunosuppression. PMID:9158096

Ito, M; Watanabe, M; Ihara, T; Kamiya, H; Sakurai, M

1997-05-01

266

Measles virus induces apoptotic cell death in lymphocytes activated with phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore  

PubMed Central

Peripheral blood mononuclear cells (PBMC) and T lymphocytes were infected with measles virus (MV) and cultured with a protein kinase C (PKC) activator, PMA and a calcium ionophore, ionomycin. After stimulation, cell viability and incorporation of 5-bromo-2?-deoxyuridine (BrdU) were decreased in MV-infected cells compared with mock-infected cells. DNA content analysis and terminal deoxytransferase (TdT)-mediated dUTP nick end labelling demonstrated that the hypodiploid fraction and DNA fragmentation were increased in MV-infected, T lymphocytes activated with PMA plus ionomycin. These data suggest that MV induces apoptotic cell death in cells activated by PMA plus ionomycin. In contrast to stimulation with PMA plus ionomycin, mitogenic stimulation with phytohaemagglutinin (PHA) did not induce apoptotic cell death in MV-infected cells, although cell proliferation was suppressed. Apoptosis induced in stimulated, MV-infected cells may be one mechanism of immunosuppression.

ITO, M; WATANABE, M; IHARA, T; KAMIYA, H; SAKURAI, M

1997-01-01

267

Paraptosis: mediation by MAP kinases and inhibition by AIP1\\/Alix  

Microsoft Academic Search

Programmed cell death (pcd) may take the form of apoptotic or nonapoptotic pcd. Whereas cysteine aspartyl-specific proteases (caspases) mediate apoptosis, the mediators of nonapoptotic cell death programs are much less well characterized. Here, we report that paraptosis, an alternative, nonapoptotic cell death program that may be induced by the insulin-like growth factor I receptor (among other inducers), is mediated by

S Sperandio; K Poksay; I de Belle; M J Lafuente; B Liu; J Nasir; D E Bredesen

2004-01-01

268

Rnd3 haploinsufficient mice are predisposed to hemodynamic stress and develop apoptotic cardiomyopathy with heart failure.  

PubMed

Rho family guanosine triphosphatase (GTPase) 3 (Rnd3), a member of the small Rho GTPase family, has been suggested to regulate cell actin cytoskeleton dynamics, cell migration, and apoptosis through the Rho kinase-dependent signaling pathway. The biological function of Rnd3 in the heart is unknown. The downregulation of small GTPase Rnd3 transcripts was found in patients with end-stage heart failure. The pathological significance of Rnd3 loss in the transition to heart failure remains unexplored. To investigate the functional consequence of Rnd3 downregulation and the associated molecular mechanism, we generated Rnd3(+/-) haploinsufficient mice to mimic the downregulation of Rnd3 observed in the failing human heart. Rnd3(+/-) mice were viable; however, the mice developed heart failure after pressure overload by transverse aortic constriction (TAC). Remarkable apoptosis, increased caspase-3 activity, and elevated Rho kinase activity were detected in the Rnd3(+/-) haploinsufficient animal hearts. Pharmacological inhibition of Rho kinase by fasudil treatment partially improved Rnd3(+/-) mouse cardiac functions and attenuated myocardial apoptosis. To determine if Rho-associated coiled-coil kinase 1 (ROCK1) was responsible for Rnd3 deficiency-mediated apoptotic cardiomyopathy, we established a double-knockout mouse line, the Rnd3 haploinsufficient mice with ROCK1-null background (Rnd3(+/-/ROCK1-/-)). Again, genetic deletion of ROCK1 partially but not completely rescued Rnd3 deficiency-mediated heart failure phenotype. These data suggest that downregulation of Rnd3 correlates with cardiac loss of function as in heart failure patients. Animals with Rnd3 haploinsufficiency are predisposed to hemodynamic stress. Hyperactivation of Rho kinase activity is responsible in part for the apoptotic cardiomyopathy development. Further investigation of ROCK1-independent mechanisms in Rnd3-mediated cardiac remodeling should be the focus for future study. PMID:24901055

Yue, X; Yang, X; Lin, X; Yang, T; Yi, X; Dai, Y; Guo, J; Li, T; Shi, J; Wei, L; Fan, G-C; Chen, C; Chang, J

2014-01-01

269

Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2).  

PubMed

Increasing use of nickel oxide nanoparticles (NiO NPs) necessitates an improved understanding of their potential impact on human health. Previously, toxic effects of NiO NPs have been investigated, mainly on airway cells. However, information on effect of NiO NPs on human liver cells is largely lacking. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and induction of apoptotic response in human liver cells (HepG2) due to NiO NPs exposure. Prepared NiO NPs were crystalline and spherical shaped with an average diameter of 44 nm. NiO NPs induced cytotoxicity (cell death) and ROS generation in HepG2 cells in dose-dependent manner. Further, ROS scavenger vitamin C reduced cell death drastically caused by NiO NPs exposure indicating that oxidative stress plays an important role in NiO NPs toxicity. Micronuclei induction, chromatin condensation and DNA damage in HepG2 cells treated with NiO NPs suggest that NiO NPs induced cell death via apoptotic pathway. Quantitative real-time PCR analysis showed that following the exposure of HepG2 cells to NiO NPs, the expression level of mRNA of apoptotic genes (bax and caspase-3) were up-regulated whereas the expression level of anti-apoptotic gene bcl-2 was down-regulated. Moreover, activity of caspase-3 enzyme was also higher in NiO NPs treated cells. To the best of our knowledge this is the first report demonstrating that NiO NPs caused cytotoxicity via ROS and induced apoptosis in HepG2 cells, which is likely to be mediated through bax/bcl-2 pathway. This work warrants careful assessment of Ni NPs before their commercial and industrial applications. PMID:24139157

Ahamed, Maqusood; Ali, Daoud; Alhadlaq, Hisham A; Akhtar, Mohd Javed

2013-11-01

270

Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons  

PubMed Central

Background Exposure to ethanol during early development triggers severe neuronal death by activating multiple stress pathways and causes neurological disorders, such as fetal alcohol effects or fetal alcohol syndrome. This study investigated the effect of ethanol on intracellular events that predispose developing neurons for apoptosis via calcium-mediated signaling. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, mitochondrial dysfunction, altered calcium homeostasis and apoptosis-related proteins have been implicated in ethanol neurotoxicity. The present study was designed to evaluate the neuroprotective mechanisms of metformin (Met) and thymoquinone (TQ) during ethanol toxicity in rat prenatal cortical neurons at gestational day (GD) 17.5. Results We found that Met and TQ, separately and synergistically, increased cell viability after ethanol (100 mM) exposure for 12 hours and attenuated the elevation of cytosolic free calcium [Ca2+]c. Furthermore, Met and TQ maintained normal physiological mitochondrial transmembrane potential (??M), which is typically lowered by ethanol exposure. Increased cytosolic free [Ca2+]c and lowered mitochondrial transmembrane potential after ethanol exposure significantly decreased the expression of a key anti-apoptotic protein (Bcl-2), increased expression of Bax, and stimulated the release of cytochrome-c from mitochondria. Met and TQ treatment inhibited the apoptotic cascade by increasing Bcl-2 expression. These compounds also repressed the activation of caspase-9 and caspase-3 and reduced the cleavage of PARP-1. Morphological conformation of cell death was assessed by TUNEL, Fluoro-Jade-B, and PI staining. These staining methods demonstrated more cell death after ethanol treatment, while Met, TQ or Met plus TQ prevented ethanol-induced apoptotic cell death. Conclusion These findings suggested that Met and TQ are strong protective agents against ethanol-induced neuronal apoptosis in primary rat cortical neurons. The collective data demonstrated that Met and TQ have the potential to ameliorate ethanol neurotoxicity and revealed a possible protective target mechanism for the damaging effects of ethanol during early brain development.

2012-01-01

271

Apoptotic and Autophagic Effects of Sesbania grandiflora Flowers in Human Leukemic Cells  

PubMed Central

Background Identification of cytotoxic compounds that induce apoptosis has been the mainstay of anti-cancer therapeutics for several decades. In recent years, focus has shifted to inducing multiple modes of cell death coupled with reduced systemic toxicity. The plant Sesbania grandiflora is widely used in Indian traditional medicine for the treatment of a broad spectrum of diseases. This encouraged us to investigate into the anti-proliferative effect of a fraction (F2) isolated from S. grandiflora flowers in cancer cells and delineate the underlying involvement of apoptotic and autophagic pathways. Principal Findings Using MTT based cell viability assay, we evaluated the cytotoxic potential of fraction F2. It was the most effective on U937 cells (IC50?18.6 µg/ml). Inhibition of growth involved enhancement of Annexin V positivity. This was associated with elevated reactive oxygen species generation, measured by flow cytometry and reduced oxygen consumption – both effects being abrogated by anti-oxidant NAC. This caused stimulation of pro-apoptotic proteins and concomitant inhibition of anti-apoptotic protein expressions inducing mitochondrial depolarization, as measured by flow cytometry and release of cytochrome c. Interestingly, even with these molecular features of apoptosis, F2 was able to alter Atg protein levels and induce LC3 processing. This was accompanied by formation of autophagic vacuoles as revealed by fluorescence and transmission electron microscopy – confirming the occurrence of autophagy. Eventually, F2 triggered caspase cascade – executioners of programmed cell death and AIF translocation to nuclei. This culminated in cleavage of the DNA repair enzyme, poly (ADP-ribose) polymerase that caused DNA damage as proved by staining with Hoechst 33258 leading to cell death. Conclusions The findings suggest fraction F2 triggers pro-oxidant activity and mediates its cytotoxicity in leukemic cells via apoptosis and autophagy. Thus, it merits consideration and further investigation as a therapeutic option for the treatment of leukemia.

Chakraborty, Biswajit; Chowdhury, Chinmay; Das, Padma

2013-01-01

272

Pro-apoptotic Effect of Pifithrin-? on Preimplantation Porcine In vitro Fertilized Embryo Development  

PubMed Central

The aim of this study was to investigate the impact of a reported p53 inhibitor, pifithrin-? (PFT-?), on preimplantation porcine in vitro fertilized (IVF) embryo development in culture. Treatment of PFT-? was administered at both early (0 to 48 hpi), and later stages (48 to 168 hpi) of preimplantation development, and its impact upon the expression of five genes related to apoptosis (p53, bak, bcl-xL, p66Shc and caspase3), was assessed in resulting d 7 blastocysts, using real-time quantitative PCR. Total cell numbers, along with the number of apoptotic nuclei, as detected by the in situ cell death detection assay, were also calculated on d 7 in treated and non-treated control embryos. The results indicate that PFT-?, when administered at both early and later stages of porcine IVF embryo development, increases the incidence of apoptosis in resulting blastocysts. When administered at early cleavage stages, PFT-? treatment was shown to reduce the developmental competence of porcine IVF embryos, as well as reducing the quality of resulting blastocysts in terms of overall cell numbers. In contrast, at later stages, PFT-? administration resulted in marginally increased blastocyst development rates amongst treated embryos, but did not affect cell numbers. However, PFT-? treatment induced apoptosis and apoptotic related gene expression, in all treated embryos, irrespective of the timing of treatment. Our results indicate that PFT-? may severely compromise the developmental potential of porcine IVF embryos, and is a potent apoptotic agent when placed into porcine embryo culture media. Thus, caution should be exercised when using PFT-? as a specific inhibitor of p53 mediated apoptosis, in the context of porcine IVF embryo culture systems.

Mulligan, Brendan; Hwang, Jae-Yeon; Kim, Hyung-Min; Oh, Jong-Nam; Choi, Kwang-Hwan; Lee, Chang-Kyu

2012-01-01

273

Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer The effects of 6BIO and 7BIO are evaluated against five breast cancer cell lines. Black-Right-Pointing-Pointer 6BIO induces a caspase dependent apoptotic effect via the intrinsic pathway. Black-Right-Pointing-Pointer 7BIO promotes G{sub 2}/M cells cycle arrest. Black-Right-Pointing-Pointer 7BIO triggers a caspase-8 mediated apoptotic pathway. Black-Right-Pointing-Pointer 7BIO triggers and a caspase independent pathway. -- Abstract: Indirubin derivatives gained interest in recent years for their anticancer and antimetastatic properties. The objective of the present study was to evaluate and compare the anticancer properties of the two novel bromo-substituted derivatives 6-bromoindirubin-3 Prime -oxime (6BIO) and 7-bromoindirubin-3 Prime -oxime (7BIO) in five different breast cancer cell lines. Cell viability assays identified that 6BIO and 7BIO are most effective in preventing the proliferation of the MDA-MB-231-TXSA breast cancer cell line from a total of five breast cancer cell lined examined. In addition it was found that the two compounds induce apoptosis via different mechanisms. 6BIO induces caspase-dependent programmed cell death through the intrinsic (mitochondrial) caspase-9 pathway. 7BIO up-regulates p21 and promotes G{sub 2}/M cell cycle arrest which is subsequently followed by the activation of two different apoptotic pathways: (a) a pathway that involves the upregulation of DR4/DR5 and activation of caspase-8 and (b) a caspase independent pathway. In conclusion, this study provides important insights regarding the molecular pathways leading to cell cycle arrest and apoptosis by two indirubin derivatives that can find clinical applications in targeted cancer therapeutics.

Nicolaou, Katerina A. [Department of Biological Sciences, University of Cyprus, Nicosia (Cyprus)] [Department of Biological Sciences, University of Cyprus, Nicosia (Cyprus); Liapis, Vasilis; Evdokiou, Andreas [Department of Surgery, Basil Hetzel Institute, Adelaide University, Adelaide (Australia)] [Department of Surgery, Basil Hetzel Institute, Adelaide University, Adelaide (Australia); Constantinou, Constantina [St. George's University of London Medical School at the University of Nicosia, Nicosia (Cyprus)] [St. George's University of London Medical School at the University of Nicosia, Nicosia (Cyprus); Magiatis, Prokopios; Skaltsounis, Alex L. [Faculty of Pharmacy, University of Athens, Athens (Greece)] [Faculty of Pharmacy, University of Athens, Athens (Greece); Koumas, Laura; Costeas, Paul A. [Center for Study of Hematological Malignancies, Nicosia (Cyprus)] [Center for Study of Hematological Malignancies, Nicosia (Cyprus); Constantinou, Andreas I., E-mail: andreasc@ucy.ac.cy [Department of Biological Sciences, University of Cyprus, Nicosia (Cyprus)

2012-08-17

274

Binding of anti-SSA antibodies to apoptotic fetal cardiocytes stimulates urokinase plasminogen activator (uPA)/uPA receptor-dependent activation of TGF-? and potentiates fibrosis.  

PubMed

In congenital heart block (CHB), binding of maternal anti-SSA/Ro Abs to fetal apoptotic cardiocytes impairs their removal by healthy cardiocytes and increases urokinase plasminogen activator (uPA)/uPA receptor (uPAR)-dependent plasmin activation. Because the uPA/uPAR system plays a role in TGF-? activation, we evaluated whether anti-Ro binding to apoptotic cardiocytes enhances plasmin-mediated activation of TGF-?, thereby promoting a profibrosing phenotype. Supernatants from cocultures of healthy cardiocytes and apoptotic cardiocytes bound by IgG from a mother whose child had CHB (apoptotic-CHB-IgG [apo-CHB-IgG]) exhibited significantly increased levels of active TGF-? compared with supernatants from cocultures of healthy cardiocytes and apoptotic cardiocytes preincubated with IgG from a healthy donor. Treatment of the culture medium with anti-TGF-? Ab or TGF-? inhibitor (SB431542) abrogated the luciferase response, thereby confirming TGF-? dependency. Increased uPA levels and activity were present in supernatants generated from cocultures of healthy cardiocytes and apo-CHB-IgG cardiocytes compared with healthy cardiocytes and apoptotic cardiocytes preincubated with IgG from a healthy donor, respectively. Treatment of apo-CHB-IgG cardiocytes with anti-uPAR or anti-uPA Abs or plasmin inhibitor aprotinin prior to coculturing with healthy cardiocytes attenuated TGF-? activation. Supernatants derived from cocultures of healthy cardiocytes and apo-CHB-IgG cardiocytes promoted Smad2 phosphorylation and fibroblast transdifferentiation, as evidenced by increased smooth muscle actin and collagen expression, which decreased when fibroblasts were treated with supernatants from cocultures pretreated with uPAR Abs. These data suggested that binding of anti-Ro Abs to apoptotic cardiocytes triggers TGF-? activation, by virtue of increasing uPAR-dependent uPA activity, thus initiating and amplifying a cascade of events that promotes myofibroblast transdifferentiation and scar. PMID:22013113

Briassouli, Paraskevi; Rifkin, Daniel; Clancy, Robert M; Buyon, Jill P

2011-11-15

275

Central roles of apoptotic proteins in mitochondrial function.  

PubMed

Mitochondria have been classically characterized as organelles with responsibility for cellular energy production in the form of ATP, but they are also the organelles through which apoptotic signaling occurs. Cell stress stimuli can result in outer membrane permeabilization, after which mitochondria release numerous proteins involved in apoptotic signaling, including cytochrome c, apoptosis-inducing factor, endonuclease G, Smac/DIABLO and Omi/HtrA2. Cell fate is determined by signaling through apoptotic proteins within the Bcl-2 (B-cell lymphoma 2) protein family, which converges on mitochondria. Many cancerous cells display abnormal levels of Bcl-2 protein family member expression that results in defective apoptotic signaling. Alterations in bioenergetic function also contribute to cancer as well as numerous other disorders. Recent evidence indicates that several pro-apoptotic proteins localized within mitochondria, as well as proteins within the Bcl-2 protein family, can influence mitochondrial bioenergetic function. This review focuses on the emerging roles of these proteins in the control of mitochondrial activity. PMID:22869150

Kilbride, S M; Prehn, J H M

2013-05-30

276

Apoptotic cells in peripheral blood and multiple organ injury.  

PubMed

To evaluate the roles of apoptotic cells in peripheral blood (PB) on multiple organ injury, five patients with hematopoietic stem cell transplantation (HSCT) and one with refractory anemia were examined. The following findings were confirmed. 1) High-dose alkylating agents were administrated as conditioning regimens to all HSCT patients. 2) Many organs were injured in all cases. 3) Neutrophils accumulated in the capillaries of injured organs, and endothelial cells were extensively injured. 4) Large numbers of apoptotic cells and ?H2AX(+) cells were observed in the foci of large cells with hyperchromatic nuclei. 5) Increased numbers of apoptotic cells (6/6), ?H2AX(+) cells (6/6), scavenger receptor A positive (SRA(+) ) cells (6/6), and tumor necrosis factor (TNF)-?(+) cells (5/6) were observed in PB smear preparations. 6) Cytokines exceeded the normal levels in most patients. From these findings, apoptotic cells were considered to be produced by the administration of high-dose alkylating agents in HSCT patients, and apoptotic cells and SRA(+) cells in PB were thought to play important roles in the development of multiple organ injury in HSCT and MDS patients. PMID:22612508

Emura, Iwao; Usuda, Hiroyuki

2012-06-01

277

Rho kinase regulates fragmentation and phagocytosis of apoptotic cells  

SciTech Connect

During the execution phase of apoptosis, a cell undergoes cytoplasmic and nuclear changes that prepare it for death and phagocytosis. The end-point of the execution phase is condensation into a single apoptotic body or fragmentation into multiple apoptotic bodies. Fragmentation is thought to facilitate phagocytosis; however, mechanisms regulating fragmentation are unknown. An isoform of Rho kinase, ROCK-I, drives membrane blebbing through its activation of actin-myosin contraction; this raises the possibility that ROCK-I may regulate other execution phase events, such as cellular fragmentation. Here, we show that COS-7 cells fragment into a number of small apoptotic bodies during apoptosis; treating with ROCK inhibitors (Y-27632 or H-1152) prevents fragmentation. Latrunculin B and blebbistatin, drugs that interfere with actin-myosin contraction, also inhibit fragmentation. During apoptosis, ROCK-I is cleaved and activated by caspases, while ROCK-II is not activated, but rather translocates to a cytoskeletal fraction. siRNA knock-down of ROCK-I but not ROCK-II inhibits fragmentation of dying cells, consistent with ROCK-I being required for apoptotic fragmentation. Finally, cells dying in the presence of the ROCK inhibitor Y-27632 are not efficiently phagocytized. These data show that ROCK plays an essential role in fragmentation and phagocytosis of apoptotic cells.

Orlando, Kelly A. [Department of Pharmacology, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104 (United States); Stone, Nicole L. [GlaxoSmithKline, 1250 S. Collegeville Rd., Collegeville, PA 19426 (United States); Pittman, Randall N. [Department of Pharmacology, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104 (United States)]. E-mail: pittman@pharm.med.upenn.edu

2006-01-01

278

Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells.  

PubMed

A cell-in-cell process refers to the invasion of one living cell into another homotypic or heterotypic cell. Different from non-apoptotic death processes of internalized cells termed entosis or cannibalism, we previously reported an apoptotic cell-in-cell death occurring during heterotypic cell-in-cell formation. In this study, we further demonstrated that the apoptotic cell-in-cell death occurred only in internalized immune killer cells expressing granzyme B (GzmB). Vacuole wrapping around the internalized cells inside the target cells was the common hallmark during the early stage of all cell-in-cell processes, which resulted in the accumulation of reactive oxygen species and subsequent mitochondrial injury of encapsulated killer or non-cytotoxic immune cells. However, internalized killer cells mediated rapid bubbling of the vacuoles with the subsequent degranulation of GzmB inside the vacuole of the target cells and underwent the reuptake of GzmB by killer cells themselves. The confinement of GzmB inside the vacuole surpassed the lysosome-mediated cell death occurring in heterotypic or homotypic entosis processes, resulting in a GzmB-triggered caspase-dependent apoptotic cell-in-cell death of internalized killer cells. On the contrary, internalized killer cells from GzmB-deficient mice underwent a typical non-apoptotic entotic cell-in-cell death similar to that of non-cytotoxic immune cells or tumor cells. Our results thus demonstrated the critical involvement of immune cells with cytotoxic property in apoptotic cell-in-cell death, which we termed as emperitosis taken from emperipolesis and apoptosis. Whereas entosis or cannibalism may serve as a feed-on mechanism to exacerbate and nourish tumor cells, emperitosis of immune killer cells inside tumor cells may serve as an in-cell danger sensation model to prevent the killing of target cells from inside, implying a unique mechanism for tumor cells to escape from immune surveillance. PMID:24113190

Wang, S; He, M-f; Chen, Y-h; Wang, M-y; Yu, X-M; Bai, J; Zhu, H-y; Wang, Y-y; Zhao, H; Mei, Q; Nie, J; Ma, J; Wang, J-f; Wen, Q; Ma, L; Wang, Y; Wang, X-n

2013-01-01

279

Die another way - non-apoptotic mechanisms of cell death.  

PubMed

Regulated, programmed cell death is crucial for all multicellular organisms. Cell death is essential in many processes, including tissue sculpting during embryogenesis, development of the immune system and destruction of damaged cells. The best-studied form of programmed cell death is apoptosis, a process that requires activation of caspase proteases. Recently it has been appreciated that various non-apoptotic forms of cell death also exist, such as necroptosis and pyroptosis. These non-apoptotic cell death modalities can be either triggered independently of apoptosis or are engaged should apoptosis fail to execute. In this Commentary, we discuss several regulated non-apoptotic forms of cell death including necroptosis, autophagic cell death, pyroptosis and caspase-independent cell death. We outline what we know about their mechanism, potential roles in vivo and define outstanding questions. Finally, we review data arguing that the means by which a cell dies actually matters, focusing our discussion on inflammatory aspects of cell death. PMID:24833670

Tait, Stephen W G; Ichim, Gabriel; Green, Douglas R

2014-05-15

280

Molecular mechanism of PDT-induced apoptotic cells stimulation NO production in macrophages  

NASA Astrophysics Data System (ADS)

It is well known that apoptotic cells (AC) participate in immune response. The immune response induced by AC, either immunostimulatory or immunosuppressive, have been extensively studied. However, the molecular mechanisms of the immunostimulatory effects induced by PDT-treated AC remain unclear. Nitric oxide (NO) is an important signal transduction molecule and has been implicated in a variety of functions. It has also been found to play an important role not only as a cytotoxic effector but an immune regulatory mediator. In this study, we demonstrate that the PDT-induced apoptotic tumor cells stimulate the production of NO in macrophages by up-regulating expression of inducible nitric oxide synthase (iNOS). In addition, we show that AC, through toll-like receptors (TLRs), can activate myeloid differentiation factor-88 (MyD88), indicating that AC serves as an intercellular signal to induce iNOS expression in immune cells after PDT treatment. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

Song, Sheng; Zhou, Fei-Fan; Yang, Si-Hua; Chen, Wei R.

2011-02-01

281

Reduced cellular Ca(2+) availability enhances TDP-43 cleavage by apoptotic caspases.  

PubMed

Accumulation of transactive response DNA binding protein (TDP-43) fragments in motor neurons is a post mortem hallmark of different neurodegenerative diseases. TDP-43 fragments are the products of the apoptotic caspases-3 and -7. Either excessive or insufficient cellular Ca(2+) availability is associated with activation of apoptotic caspases. However, as far as we know, it is not described whether activation of caspases, due to restricted intracellular Ca(2+), affects TDP-43 cleavage. Here we show that in various cell lineages with restricted Ca(2+) availability, TDP-43 is initially cleaved by caspases-3 and -7 and then, also by caspases-6 and -8 once activated by caspase-3. Furthermore, we disclose the existence of a TDP-43 caspase-mediated fragment of 15kDa, in addition to the well-known fragments of 35 and 25kDa. Interestingly, with respect to the other two fragments this novel fragment is the major product of caspase activity on murine TDP-43 whereas in human cell lines the opposite occurs. This outcome should be considered when murine models are used to investigate TDP-43 proteinopathies. PMID:24440855

De Marco, Giovanni; Lomartire, Annarosa; Mandili, Giorgia; Lupino, Elisa; Buccinnà, Barbara; Ramondetti, Cristina; Moglia, Cristina; Novelli, Francesco; Piccinini, Marco; Mostert, Michael; Rinaudo, Maria Teresa; Chiò, Adriano; Calvo, Andrea

2014-04-01

282

Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy  

PubMed Central

Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes.

Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

2014-01-01

283

Advanced Glycation Endproducts Stimulate Osteoblast Apoptosis Via the MAP Kinase and Cytosolic Apoptotic Pathways  

PubMed Central

We have previously shown that diabetes significantly enhances apoptosis of osteoblastic cells in vivo and that the enhanced apoptosis contributes to diabetes impaired new bone formation. A potential mechanism is enhanced apoptosis stimulated by advanced glycation endproducts (AGEs). To investigate this further, an advanced glycation product, carboxymethyl lysine modified collagen (CML-collagen) was injected in vivo and stimulated a 5 fold increase in calvarial periosteal cell apoptosis compared to unmodified collagen. It also induced apoptosis in primary cultures of human or neonatal rat osteoblastic cells or MC-3T3-E1 cells in vitro. Moreover, the apoptotic effect was largely mediated through RAGE receptor. CML-collagen increased p38 and JNK activity 3.2 and 4.4 fold, respectively. Inhibition of p38 and JNK reduced CML-collagen stimulated apoptosis by 45% and 59% and by 90% when used together (P<0.05). The predominant apoptotic pathway induced by CML-collagen involved caspase-8 activation of caspase-3 and was independent of NF-?B activation. When osteoblastic cells were exposed to a long-term low dose incubation with CML-collagen there was a higher degree of apoptosis compared to short term incubation. In more differentiated osteoblastic cultures apoptosis was enhanced even further. These results indicate that advanced glycation endproducts, which accumulate in diabetic and aged individuals may promote apoptosis of osteoblastic cells and contribute to deficient bone formation.

Alikhani, Mani; Alikhani, Zoubin; Boyd, Coy; MacLellan, Christine M.; Raptis, Markos; Liu, Rongkun; Pischon, Nicole; Trackman, Philip C.; Gerstenfeld, Louis; Graves, Dana T.

2007-01-01

284

Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways.  

PubMed

We have previously shown that diabetes significantly enhances apoptosis of osteoblastic cells in vivo and that the enhanced apoptosis contributes to diabetes impaired new bone formation. A potential mechanism is enhanced apoptosis stimulated by advanced glycation end products (AGEs). To investigate this further, an advanced glycation product, carboxymethyl lysine modified collagen (CML-collagen), was injected in vivo and stimulated a 5-fold increase in calvarial periosteal cell apoptosis compared to unmodified collagen. It also induced apoptosis in primary cultures of human or neonatal rat osteoblastic cells or MC3T3-E1 cells in vitro. Moreover, the apoptotic effect was largely mediated through RAGE receptor. CML-collagen increased p38 and JNK activity 3.2- and 4.4-fold, respectively. Inhibition of p38 and JNK reduced CML-collagen stimulated apoptosis by 45% and 59% and by 90% when used together (P<0.05). The predominant apoptotic pathway induced by CML-collagen involved caspase-8 activation of caspase-3 and was independent of NF-kappaB activation. When osteoblastic cells were exposed to a long-term low dose incubation with CML-collagen, there was a higher degree of apoptosis compared to short-term incubation. In more differentiated osteoblastic cultures, apoptosis was enhanced even further. These results indicate that advanced glycation end products, which accumulate in diabetic and aged individuals, may promote apoptosis of osteoblastic cells and contribute to deficient bone formation. PMID:17064973

Alikhani, Mani; Alikhani, Zoubin; Boyd, Coy; MacLellan, Christine M; Raptis, Markos; Liu, Rongkun; Pischon, Nicole; Trackman, Philip C; Gerstenfeld, Louis; Graves, Dana T

2007-02-01

285

Binding, degradation and apoptotic activity of stearoylethanolamide in rat C6 glioma cells.  

PubMed Central

Stearoylethanolamide (SEA) is present in human, rat and mouse brain in amounts comparable with those of the endocannabinoid anandamide (arachidonoylethanolamide; AEA). Yet, the biological activity of SEA has never been investigated. We synthesized unlabelled and radiolabelled SEA to investigate its binding, degradation and biological activity in rat C6 glioma cells. We report that SEA binds to a specific site distinct from known cannabinoid or vanilloid receptors, and that AEA and capsazepine partly (approx. 50%) antagonized this binding. Treatment of C6 cells with SEA inhibits cellular nitric oxide synthase and does not affect adenylate cyclase, whereas treatment with cannabinoid type 1 agonist 2-arachidonoylglycerol activates the former enzyme and inhibits the latter. C6 cells also have a specific SEA membrane transporter, which is inhibited by NO, and a fatty acid amide hydrolase capable of cleaving SEA. In these cells, SEA shows pro-apoptotic activity, due to elevation of intracellular calcium, activation of the arachidonate cascade and mitochondrial uncoupling. NO further enhances SEA-induced apoptosis. Moreover, the cannabinoid type 1 receptor-mediated decrease in cAMP induced by AEA in C6 cells is potentiated by SEA, suggesting that this compound also has an 'entourage' effect. Taken together, this study shows that SEA is an endocannabinoid-like compound which binds to and is transported by new components of the endocannabinoid system. It seems noteworthy that degradation and pro-apoptotic activity of SEA are regulated by NO in a way opposite to that reported for AEA.

Maccarrone, Mauro; Pauselli, Riccardo; Di Rienzo, Marianna; Finazzi-Agro, Alessandro

2002-01-01

286

IF1 limits the apoptotic-signalling cascade by preventing mitochondrial remodelling  

PubMed Central

Mitochondrial structure has a central role both in energy conversion and in the regulation of cell death. We have previously shown that IF1 protects cells from necrotic cell death and supports cristae structure by promoting the oligomerisation of the F1Fo-ATPsynthase. As IF1 is upregulated in a large proportion of human cancers, we have here explored its contribution to the progression of apoptosis and report that an increased expression of IF1, relative to the F1Fo-ATPsynthase, protects cells from apoptotic death. We show that IF1 expression serves as a checkpoint for the release of Cytochrome c (Cyt c) and hence the completion of the apoptotic program. We show that the progression of apoptosis engages an amplification pathway mediated by: (i) Cyt c-dependent release of ER Ca2+, (ii) Ca2+-dependent recruitment of the GTPase Dynamin-related protein 1 (Drp1), (iii) Bax insertion into the outer mitochondrial membrane and (iv) further release of Cyt c. This pathway is accelerated by suppression of IF1 and delayed by its overexpression. IF1 overexpression is associated with the preservation of mitochondrial morphology and ultrastructure, consistent with a central role for IF1 as a determinant of the inner membrane architecture and with the role of mitochondrial ultrastructure in the regulation of Cyt c release. These data suggest that IF1 is an antiapoptotic and potentially tumorigenic factor and may be a valuable predictor of responsiveness to chemotherapy.

Faccenda, D; Tan, C H; Seraphim, A; Duchen, M R; Campanella, M

2013-01-01

287

Contrasting nuclear dynamics of the caspase-activated DNase (CAD) in dividing and apoptotic cells  

PubMed Central

Although compelling evidence supports the central role of caspase-activated DNase (CAD) in oligonucleosomal DNA fragmentation in apoptotic nuclei, the regulation of CAD activity remains elusive in vivo. We used fluorescence photobleaching and biochemical techniques to investigate the molecular dynamics of CAD. The CAD-GFP fusion protein complexed with its inhibitor (ICAD) was as mobile as nuclear GFP in the nucleosol of dividing cells. Upon induction of caspase-3–dependent apoptosis, activated CAD underwent progressive immobilization, paralleled by its attenuated extractability from the nucleus. CAD immobilization was mediated by its NH2 terminus independently of its DNA-binding activity and correlated with its association to the interchromosomal space. Preventing the nuclear attachment of CAD provoked its extracellular release from apoptotic cells. We propose a novel paradigm for the regulation of CAD in the nucleus, involving unrestricted accessibility of chromosomal DNA at the initial phase of apoptosis, followed by its nuclear immobilization that may prevent the release of the active nuclease into the extracellular environment.

Lechardeur, Delphine; Xu, Ming; Lukacs, Gergely L.

2004-01-01

288

The small GTPase Cdc42 initiates an apoptotic signaling pathway in Jurkat T lymphocytes.  

PubMed Central

Apoptosis plays an important role in regulating development and homeostasis of the immune system, yet the elements of the signaling pathways that control cell death have not been well defined. When expressed in Jurkat T cells, an activated form of the small GTPase Cdc42 induces cell death exhibiting the characteristics of apoptosis. The death response induced by Cdc42 is mediated by activation of a protein kinase cascade leading to stimulation of c-Jun amino terminal kinase (JNK). Apoptosis initiated by Cdc42 is inhibited by dominant negative components of the JNK cascade and by reagents that block activity of the ICE protease (caspase) family, suggesting that stimulation of the JNK kinase cascade can lead to caspase activation. The sequence of morphological events observed typically in apoptotic cells is modified in the presence of activated Cdc42, suggesting that this GTPase may account for some aspects of cytoskeletal regulation during the apoptotic program. These data suggest a means through which the biochemical and morphological events occurring during apoptosis may be coordinately regulated. Images

Chuang, T H; Hahn, K M; Lee, J D; Danley, D E; Bokoch, G M

1997-01-01

289

The adapter protein apoptotic protease-activating factor-1 (Apaf-1) is proteolytically processed during apoptosis.  

PubMed

Apoptotic protease-activating factor-1 (Apaf-1), a key regulator of the mitochondrial apoptosis pathway, consists of three functional regions: (i) an N-terminal caspase recruitment domain (CARD) that can bind to procaspase-9, (ii) a CED-4-like region enabling self-oligomerization, and (iii) a regulatory C terminus with WD-40 repeats masking the CARD and CED-4 region. During apoptosis, cytochrome c and dATP can relieve the inhibitory action of the WD-40 repeats and thus enable the oligomerization of Apaf-1 and the subsequent recruitment and activation of procaspase-9. Here, we report that different apoptotic stimuli induced the caspase-mediated cleavage of Apaf-1 into an 84-kDa fragment. The same Apaf-1 fragment was obtained in vitro by incubation of cell lysates with either cytochrome c/dATP or caspase-3 but not with caspase-6 or caspase-8. Apaf-1 was cleaved at the N terminus, leading to the removal of its CARD H1 helix. An additional cleavage site was located within the WD-40 repeats and enabled the oligomerization of p84 into a approximately 440-kDa Apaf-1 multimer even in the absence of cytochrome c. Due to the partial loss of its CARD, the p84 multimer was devoid of caspase-9 or other caspase activity. Thus, our data indicate that Apaf-1 cleavage causes the release of caspases from the apoptosome in the course of apoptosis. PMID:11387322

Lauber, K; Appel, H A; Schlosser, S F; Gregor, M; Schulze-Osthoff, K; Wesselborg, S

2001-08-10

290

Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy  

NASA Astrophysics Data System (ADS)

Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes.

Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

2014-04-01

291

Mitochondria-specific pro-apoptotic activity of genistein lipidic nanocarriers.  

PubMed

Genistein (Gen) soy isoflavone produces extensive pro-apoptotic anticancer effects, mediated predominantly via induction of mitochondrial damages. Rationalization of the native mitochondrial selectivity of Gen, utilizing biophysical model assumptions, led to our design of cationic lipid-based nanocarriers (NC) of Gen. Prototype nanoformulations, lipidic micelles (Mic) and nanoemulsions (NEs) incorporated Gen to serve as both therapeutic and targeting moieties, specific for mitochondria. Both Gen-NCs, showing superior physicochemical properties, produced significant cytotoxicity (5-10-fold lower EC50), compared to all drug controls, in hepatic and colon carcinomas. Owing to the mitochondria-specific accumulation of Gen-NCs, their mitochondrial depolarization effect was most evident, leading to marked activation of intrinsic apoptotic pathway markers--cytosolic cytochrme c and specific caspase-9--thus, confirming the direct mitochondrial action of Gen-NCs. This mechanistic evidence of the mitochondria specificity of our Gen-NE and Gen-Mic strongly indicates their potential as targeted delivery nanosystems to augment anticancer efficacy of many lipophilic chemotherapeutics. PMID:23992356

Pham, Jimmy; Brownlow, Bill; Elbayoumi, Tamer

2013-10-01

292

Selective apoptotic effect of Zelkova serrata twig extract on mouth epidermoid carcinoma through p53 activation  

PubMed Central

Apoptosis or programmed cell death plays an essential role in chemotherapy-induced tumor cell killing, and inducers of apoptosis are commonly used in cancer therapy. Treatment with Zelkova serrata extracts was performed in human gingival fibroblast (HGF), mouth epidermoid carcinoma cell (KB), lower gingival squamous cancer cell (YD38) and tongue mucoepidermoid carcinoma cells (YD15). We observed that extract prepared from Zelkova serrata twig selectively inhibited proliferation of various oral cancer cells, but not normal gingival fibroblasts, in a dose-dependent manner. Caspase-8-mediated apoptosis was induced by treatment with the extract only in mouth epidermoid carcinoma and not in other types of cancer cells, including lower gingival squamous cell carcinoma. The selective apoptotic effect of Zelkova serrata twig extract in mouth epidermoid carcinoma was dependent on normal p53 status. Apoptosis was not remarkably induced by treatment with the extract in either lower gingival squamous or tongue mucoepidermoid carcinoma cells, both of which contain abnormalities of p53. Upon treatment with Zelkova serrata twig extract, mouth epidermoid carcinoma cells accumulated in S phase by activation of p21. These data indicate that Zelkova serrata twig extract exerted a cancer type-specific, p53-dependent apoptotic effect and disturbed the cell cycle, which suggests that herbal medicine could be a treatment for specific types of cancers.

Kang, Hoe-Jin; Jang, Young-Joo

2012-01-01

293

Selective apoptotic effect of Zelkova serrata twig extract on mouth epidermoid carcinoma through p53 activation.  

PubMed

Apoptosis or programmed cell death plays an essential role in chemotherapy-induced tumor cell killing, and inducers of apoptosis are commonly used in cancer therapy. Treatment with Zelkova serrata extracts was performed in human gingival fibroblast (HGF), mouth epidermoid carcinoma cell (KB), lower gingival squamous cancer cell (YD38) and tongue mucoepidermoid carcinoma cells (YD15). We observed that extract prepared from Zelkova serrata twig selectively inhibited proliferation of various oral cancer cells, but not normal gingival fibroblasts, in a dose-dependent manner. Caspase-8-mediated apoptosis was induced by treatment with the extract only in mouth epidermoid carcinoma and not in other types of cancer cells, including lower gingival squamous cell carcinoma. The selective apoptotic effect of Zelkova serrata twig extract in mouth epidermoid carcinoma was dependent on normal p53 status. Apoptosis was not remarkably induced by treatment with the extract in either lower gingival squamous or tongue mucoepidermoid carcinoma cells, both of which contain abnormalities of p53. Upon treatment with Zelkova serrata twig extract, mouth epidermoid carcinoma cells accumulated in S phase by activation of p21. These data indicate that Zelkova serrata twig extract exerted a cancer type-specific, p53-dependent apoptotic effect and disturbed the cell cycle, which suggests that herbal medicine could be a treatment for specific types of cancers. PMID:22498930

Kang, Hoe-Jin; Jang, Young-Joo

2012-06-01

294

High molecular weight kininogen binds phosphatidylserine and opsonizes urokinase plasminogen activator receptor-mediated efferocytosis.  

PubMed

Phagocytosis of apoptotic cells (efferocytosis) is essential for regulation of immune responses and tissue homeostasis and is mediated by phagocytic receptors. In this study, we found that urokinase plasminogen activator receptor (uPAR) plays an important role in internalization of apoptotic cells and also characterized the underlying mechanisms. In a flow cytometry-based phagocytic assay, uPAR-deficient macrophages displayed significant defect in internalization but not tethering of apoptotic cells. When uPAR-deficient mice were challenged with apoptotic cells, they exhibited pronounced splenomegaly resulting from accumulation of abundant apoptotic cells in spleen. Overexpression of uPAR in HEK-293 cells enhanced efferocytosis, which was inhibited by Annexin V and phosphatidylserine (PS) liposome, suggesting that uPAR-mediated efferocytosis is dependent on PS. In serum lacking high m.w. kininogen (HK), a uPAR ligand, uPAR-mediated efferocytosis was significantly attenuated, which was rescued by replenishment of HK. As detected by flow cytometry, HK selectively bound to apoptotic cells, but not viable cells. In purified systems, HK was specifically associated with PS liposome. HK binding to apoptotic cells induced its rapid cleavage to the two-chain form of HK (HKa) and bradykinin. Both the H chain and L chain of HKa were associated with PS liposome and apoptotic cells. HKa has higher binding affinity than HK to uPAR. Overexpression of Rac1/N17 cDNA inhibited uPAR-mediated efferocytosis. HK plus PS liposome stimulated a complex formation of CrkII with p130Cas and Dock-180 and Rac1 activation in uPAR-293 cells, but not in control HEK-293 cells. Thus, uPAR mediates efferocytosis through HK interaction with PS on apoptotic cells and activation of the Rac1 pathway. PMID:24688027

Yang, Aizhen; Dai, Jihong; Xie, Zhanli; Colman, Robert W; Wu, Qingyu; Birge, Raymond B; Wu, Yi

2014-05-01

295

Pro-apoptotic Sorafenib signaling in murine hepatocytes depends on malignancy and is associated with PUMA expression in vitro and in vivo  

PubMed Central

The multi-kinase inhibitor Sorafenib increases the survival of patients with advanced hepatocellular carcinoma (HCC). Current data suggest that Sorafenib inhibits cellular proliferation and angiogenesis and promotes apoptosis. However, the underlying pro-apoptotic molecular mechanisms are incompletely understood. Here we compared the pro-apoptotic and anti-proliferative properties of Sorafenib in murine hepatoma cells and syngeneic healthy hepatocytes in vitro and in animal models of HCC and liver regeneration in vivo. In vitro, we demonstrate that cell cycle activity and expression of anti-apoptotic Bcl-2 like proteins are similarly downregulated by Sorafenib in Hepa1-6 hepatoma cells and in syngeneic primary hepatocytes. However, Sorafenib-mediated activation of caspase-3 and induction of apoptosis were exclusively found in hepatoma cells, but not in matching primary hepatocytes. We validated these findings in vivo by applying an isograft HCC transplantation model and partial hepatectomy (PH) in C57BL/6 mice. Sorafenib treatment activated caspase-3 and thus apoptosis selectively in small tumor foci that originated from implanted Hepa1-6 cells but not in surrounding healthy hepatocytes. Similarly, Sorafenib did not induce apoptosis after PH. However, Sorafenib treatment transiently inhibited cell cycle progression and resulted in mitotic catastrophe and enhanced non-apoptotic liver injury during regeneration. Importantly, Sorafenib-mediated apoptosis in hepatoma cells was associated with the expression of p53-upregulated-modulator-of-apoptosis (PUMA). In contrast, regenerating livers after PH revealed downregulation of PUMA and were completely protected from Sorafenib-mediated apoptosis. We conclude that Sorafenib induces apoptosis selectively in hepatoma cells but not in healthy hepatocytes and can additionally increase non-apoptotic hepatocyte injury in the regenerating liver.

Sonntag, R; Gassler, N; Bangen, J-M; Trautwein, C; Liedtke, C

2014-01-01

296

Identification of a novel anti-apoptotic E3 ubiquitin ligase that ubiquitinates antagonists of inhibitor of apoptosis proteins SMAC, HtrA2, and ARTS.  

PubMed

Identification of new anti-apoptotic genes is important for understanding the molecular mechanisms underlying apoptosis and tumorigenesis. The present study identified a novel anti-apoptotic gene named AREL1, which encodes a HECT (homologous to E6-AP carboxyl terminus) family E3 ubiquitin ligase. AREL1 interacted with and ubiquitinated IAP antagonists such as SMAC, HtrA2, and ARTS. However, AREL1 was cytosolic and did not localize to nuclei or mitochondria. The interactions between AREL1 and the IAP antagonists were specific for apoptosis-stimulated cells, in which the IAP antagonists were released into the cytosol from mitochondria. Furthermore, the ubiquitination and degradation of SMAC, HtrA2, and ARTS were significantly enhanced in AREL1-expressing cells following apoptotic stimulation, indicating that AREL1 binds to and ubiquitinates cytosolic but not mitochondria-associated forms of IAP antagonists. Furthermore, the anti-apoptotic role of AREL1-mediated degradation of SMAC, HtrA2, and ARTS was shown by simultaneous knockdown of three IAP antagonists, which caused the inhibition of caspase-3 cleavage, XIAP degradation, and induction of apoptosis. Therefore, the present study suggests that AREL1-mediated ubiquitination and degradation of cytosolic forms of three IAP antagonists plays an important role in the regulation of apoptosis. PMID:23479728

Kim, Jung-Bin; Kim, So Youn; Kim, Byeong Mo; Lee, Hunjin; Kim, Insook; Yun, Jeanho; Jo, Yejin; Oh, Taeheun; Jo, Yongsam; Chae, Hee-Don; Shin, Deug Y

2013-04-26

297

Levels of pro-apoptotic regulator Bad and anti-apoptotic regulator Bcl-xL determine the type of the apoptotic logic gate  

PubMed Central

Background Apoptosis is a tightly regulated process: cellular survive-or-die decisions cannot be accidental and must be unambiguous. Since the suicide program may be initiated in response to numerous stress stimuli, signals transmitted through a number of checkpoints have to be eventually integrated. Results In order to analyze possible mechanisms of the integration of multiple pro-apoptotic signals, we constructed a simple model of the Bcl-2 family regulatory module. The module collects upstream signals and processes them into life-or-death decisions by employing interactions between proteins from three subgroups of the Bcl-2 family: pro-apoptotic multidomain effectors, pro-survival multidomain restrainers, and pro-apoptotic single domain BH3-only proteins. Although the model is based on ordinary differential equations (ODEs), it demonstrates that the Bcl-2 family module behaves akin to a Boolean logic gate of the type dependent on levels of BH3-only proteins (represented by Bad) and restrainers (represented by Bcl-xL). A low level of pro-apoptotic Bad or a high level of pro-survival Bcl-xL implies gate AND, which allows for the initiation of apoptosis only when two stress stimuli are simultaneously present: the rise of the p53 killer level and dephosphorylation of kinase Akt. In turn, a high level of Bad or a low level of Bcl-xL implies gate OR, for which any of these stimuli suffices for apoptosis. Conclusions Our study sheds light on possible signal integration mechanisms in cells, and spans a bridge between modeling approaches based on ODEs and on Boolean logic. In the proposed scheme, logic gates switching results from the change of relative abundances of interacting proteins in response to signals and involves system bistability. Consequently, the regulatory system may process two analogous inputs into a digital survive-or-die decision.

2013-01-01

298

Identification of new modulators and protein alterations in non-apoptotic programmed cell death.  

PubMed

This study describes the first proteomic analysis of paraptosis--a non-apoptotic form of programmed cell death. As with apoptosis, the first description of paraptosis was based on morphological criteria. Since there are no known markers for paraptosis, the purpose of this study was to dissect changes in the proteome profile occurring during paraptosis. Using one- and two-dimensional SDS-PAGE, Western analysis, and mass spectrometry, we show that during paraptosis, alterations occur mainly in cytoskeletal proteins, signal transduction proteins, mitochondrial proteins, and some metabolic proteins. We also report the identification of: (1) a paraptosis inhibitor, phosphatidylethanolamine binding protein (PEBP-1), and (2) a candidate mediator of paraptosis, prohibitin. Identification of specific paraptotic changes will ultimately lead to tools to detect this type of programmed cell death in in vivo systems and allow for its further characterization. PMID:20830744

Sperandio, Sabina; Poksay, Karen S; Schilling, Birgit; Crippen, Danielle; Gibson, Bradford W; Bredesen, Dale E

2010-12-15

299

Macrophage migration inhibitory factor interacts with HBx and inhibits its apoptotic activity  

SciTech Connect

HBx, a transcriptional transactivating protein of hepatitis B virus (HBV), is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the precise molecular mechanism remains largely elusive. We used the yeast two-hybrid system to identify that HBx interacts with MIF directly. Macrophage migration inhibitory factor (MIF) is implicated in the regulation of inflammation, cell growth, and even tumor formation. The interaction between HBx and MIF was verified with co-immunoprecipitation, GST pull-down, and cellular colocalization. The expression of MIF was up-regulated in HBV particle producing cell 2.2.15 compared with HepG2 cell. Both HBx and MIF cause HepG2 cell G /G{sub 1} phase arrest, proliferation inhibition, and apoptosis. However, MIF can counteract the apoptotic effect of HBx. These results may provide evidence to explain the link between HBV infection and hepatocellular carcinoma.

Zhang Shimeng [Beijing Institute of Radiation Medicine, No.27 Taiping Road, Beijing 100850 (China); Lin Ruxian [Beijing Institute of Radiation Medicine, No.27 Taiping Road, Beijing 100850 (China); Zhou Zhe [Beijing Institute of Radiation Medicine, No.27 Taiping Road, Beijing 100850 (China); Wen Siyuan [Beijing Institute of Radiation Medicine, No.27 Taiping Road, Beijing 100850 (China); Lin Li [Beijing Institute of Radiation Medicine, No.27 Taiping Road, Beijing 100850 (China); Chen Suhong [Beijing Institute of Radiation Medicine, No.27 Taiping Road, Beijing 100850 (China); Shan Yajun [Beijing Institute of Radiation Medicine, No.27 Taiping Road, Beijing 100850 (China); Cong Yuwen [Beijing Institute of Radiation Medicine, No.27 Taiping Road, Beijing 100850 (China); Wang Shengqi [Beijing Institute of Radiation Medicine, No.27 Taiping Road, Beijing 100850 (China)]. E-mail: sqwang@nic.bmi.ac.cn

2006-04-07

300

Amentoflavone stimulates mitochondrial dysfunction and induces apoptotic cell death in Candida albicans.  

PubMed

Amentoflavone was isolated from an ethyl acetate extract of the whole plant of Selaginella tamariscina. It is a traditional herb for the therapy of chronic trachitis and exhibits some anti-tumor activity. Previously, we confirmed the antifungal effects of amentoflavone. The objective of this study was to investigate the antifungal mechanism(s) of amentoflavone, such as mitochondria-mediated apoptotic cell death. The cells that were treated with amentoflavone exhibited a series of cellular changes that were consistent with apoptosis: externalization of phosphatidylserine, DNA and nuclear fragmentation, accumulation of intracellular reactive oxygen species (ROS) and hydroxyl radicals, and activation of metacaspase. In addition, diagnostic markers of apoptosis, including the reduction of mitochondrial inner-membrane potential and the release of cytochrome c from mitochondria, were observed. These phenomena are important changes in mitochondria-mediated apoptosis. Furthermore, the effect of thiourea as hydroxyl radical scavenger on amentoflavone-induced apoptosis was evaluated. A hydroxyl radical is a more active ROS species. Mitochondrial dysfunction was inhibited, which was indicated by decreased levels of intracellular hydroxyl radicals. Taken together, our results present the first evidence that amentoflavone induces apoptosis in C. albicans cells and is associated with the mitochondrial dysfunction. Besides, amentoflavone-induced hydroxyl radicals may play a significant role in mitochondria-mediated apoptosis. PMID:22210020

Hwang, In-Sok; Lee, Juneyoung; Jin, Hong-Guang; Woo, Eun-Rhan; Lee, Dong Gun

2012-04-01

301

Coronary artery constriction in rats: necrotic and apoptotic myocyte death  

Microsoft Academic Search

The purpose of this study was to determine whether coronary artery narrowing was associated with the activation of necrotic and apoptotic myocyte cell death in the myocardium and whether these 2 forms of cell death were restricted to the left ventricle, or involved the other portions of the heart. Coronary artery narrowing was surgically induced in rats, and the animals

Jan Kajstura; Yu Liu; Alessandra Baldini; Boasheng Li; Giorgio Olivetti; Annarosa Leri; Piero Anversa

1998-01-01

302

Deltamethrin induces apoptotic cell death in cultured cerebral cortical neurons  

Microsoft Academic Search

In this study we investigated the induction of apoptotic cell death and its potential mechanisms in cultured cortical neurons in response to deltamethrin exposure. The cultured cortical neurons were treated at 7 days with deltamethrin at concentrations of 10, 100, and 1000 nM, respectively. MTT assay showed that higher concentrations of deltamethrin (100 and 1000 nM) decreased neuronal viability in

Aiguo Wu; Long Li; Yugu Liu

2003-01-01

303

Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization but partially affects its apoptotic activity  

SciTech Connect

Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in human tumor cells but not in normal cells. In addition, Apoptin also exhibits tumor-specific nuclear localization and tumor-specific phosphorylation on threonine 108 (T108). Here, we studied the effects of T108 phosphorylation on the tumor-specific nuclear localization and apoptotic activity of Apoptin. We first showed that a hemagglutinin (HA)-tagged Apoptin, but not the green fluorescent protein-fused Apoptin used in many previous studies, exhibited the same intracellular distribution pattern as native Apoptin. We then made and analyzed an HA-Apoptin mutant with its T108 phosphorylation site abolished. We found that Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization and abolishing the T108 phosphorylation of Apoptin does affect its apoptotic activity in tumor cells but only partially. Our results support the previous finding that Apoptin contains two distinct apoptosis domains located separately at the N- and C-terminal regions and suggest that the T108 phosphorylation may only be required for the apoptotic activity mediated through the C-terminal apoptosis domain.

Lee, Y.-H. [Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Cheng, C.-M. [Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chang, Y.-F. [Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Wang, T.-Y. [Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Yuo, C.-Y. [Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); E-mail: m815006@kmu.edu.tw

2007-03-09

304

Pro-apoptotic Bax is the major and Bak an auxiliary effector in cytokine deprivation-induced mast cell apoptosis  

PubMed Central

The process of apoptosis in immune cells like mast cells is essential to regain homeostasis after an inflammatory response. The intrinsic pathway of apoptosis is ultimately controlled by the pro-apoptotic Bcl-2 family members Bax and Bak, which upon activation oligomerize to cause increased permeabilization of the mitochondria outer membrane leading to cell death. We examined the role of Bax and Bak in cytokine deprivation-induced apoptosis in mast cells using connective tissue-like mast cells and mucosal-like mast cells derived from bax?/?, bak?/? and bax?/?bak?/? mice. Although both Bax and Bak were expressed at readily detectable protein levels, we found a major role for Bax in mediating mast cell apoptosis induced by cytokine deprivation. We analyzed cell viability by propidium iodide exclusion and flow cytometry after deprivation of vital cytokines for each mast cell population. Upon cytokine withdrawal, bak?/? mast cells died at a similar rate as wild type, whereas bax?/? and bax?/?bak?/? mast cells were partially or completely resistant to apoptosis, respectively. The total resistance seen in bax?/?bak?/? mast cells is comparable with mast cells deficient of both pro-apoptotic Bim and Puma or mast cells overexpressing anti-apoptotic Bcl-2. These results show that Bax has a predominant and Bak a minor role in cytokine deprivation-induced apoptosis in both connective tissue-like and mucosal-like mast cells.

Karlberg, M; Ekoff, M; Labi, V; Strasser, A; Huang, D; Nilsson, G

2010-01-01

305

Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans.  

PubMed

The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans. PMID:24632947

Neukomm, L J; Zeng, S; Frei, A P; Huegli, P A; Hengartner, M O

2014-06-01

306

Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans  

PubMed Central

The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans.

Neukomm, L J; Zeng, S; Frei, A P; Huegli, P A; Hengartner, M O

2014-01-01

307

Apoptotic Cleavage of Cytoplasmic Dynein Intermediate Chain and P150GluedStops Dynein-Dependent Membrane Motility  

PubMed Central

Cytoplasmic dynein is the major minus end–directed microtubule motor in animal cells, and associates with many of its cargoes in conjunction with the dynactin complex. Interaction between cytoplasmic dynein and dynactin is mediated by the binding of cytoplasmic dynein intermediate chains (CD-IC) to the dynactin subunit, p150Glued. We have found that both CD-IC and p150Glued are cleaved by caspases during apoptosis in cultured mammalian cells and in Xenopus egg extracts. Xenopus CD-IC is rapidly cleaved at a conserved aspartic acid residue adjacent to its NH2-terminal p150Glued binding domain, resulting in loss of the otherwise intact cytoplasmic dynein complex from membranes. Cleavage of CD-IC and p150Glued in apoptotic Xenopus egg extracts causes the cessation of cytoplasmic dynein–driven endoplasmic reticulum movement. Motility of apoptotic membranes is restored by recruitment of intact cytoplasmic dynein and dynactin from control cytosol, or from apoptotic cytosol supplemented with purified cytoplasmic dynein–dynactin, demonstrating the dynamic nature of the association of cytoplasmic dynein and dynactin with their membrane cargo.

Lane, Jon D.; Vergnolle, Mailys A.S.; Woodman, Philip G.; Allan, Victoria J.

2001-01-01

308

Homing of annexin-labeled stem cells to apoptotic cells.  

PubMed

Ischemic diseases are characterized by the presence of pro-apoptotic stimuli, which initiate a cascade of processes that lead to cell injury and death. Several molecules and events represent detectable indicators of the different stages of apoptosis. Among these indicators is phosphatidylserine (PS) translocation from the inner to the outer leaflet of the plasma membrane, which can be detected by annexinV (ANXA5) conjugation. This is a widely used in vivo and in vitro assay marking the early stages of apoptosis. We report here on an original method that employs PS-ANXA5 conjugation to target stem cells to apoptotic cells. Mesenchymal stem cells (MSCs) from GFP-positive transgenic rats were biotinylated on membrane surfaces with sulfosuccinimidyl-6-(biotinamido) hexanoate (sulfo-NHS-LC-biot) and then bound to avidin. The avidin-biotinylated MSCs were labeled with biotin conjugated ANXA5. Bovine aortic endothelial cells (BAE-1 cells) were exposed to UVC to induce caspasedependent apoptosis. Finally, we tested the ability of ANXA5-labeled MSCs to bind BAE-1 apoptotic cells: suspended ANXA5-labeled MSCs were seeded for 1 hour on a monolayer of UV-treated or control BAE-1 cells. After washing, the number of MSCs bound to BAE-1 cells was evaluated by confocal microscopy. Statistical analysis demonstrated a significant increase in the number of MSCs tagged to apoptotic BAE-1 cells. Therefore, stem cell ANXA5 tagging via biotin-avidin bridges could be a straightforward method of improving homing to apoptotic tissues. PMID:18839068

Gerasimou, Argyrios; Ramella, Roberta; Brero, Alessia; Boero, Ombretta; Sheiban, Imad; Levi, Renzo; Gallo, Maria Pia

2009-01-01

309

Alpha lipoic acid attenuates microvascular endothelial cell hyperpermeability by inhibiting the intrinsic apoptotic signaling  

Microsoft Academic Search

BackgroundThis study examined whether alpha lipoic acid (ALA), an antioxidant with anti-apoptotic properties, synthesized in mitochondria of endothelial cells, would inhibit intrinsic apoptotic signaling and microvascular endothelial cell hyperpermeability.

Binu Tharakan; Juliet G. Holder-Haynes; Felicia A. Hunter; Ed W. Childs

2008-01-01

310

F-box protein 10, an NF-?B-dependent anti-apoptotic protein, regulates TRAIL-induced apoptosis through modulating c-Fos/c-FLIP pathway  

PubMed Central

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces selective apoptotic death of human cancer cells while sparing normal human cells. Although TRAIL holds great promise as a potential anticancer agent, some tumors develop resistance to TRAIL. Previously, we have shown that the activator protein 1 (AP-1) family member, c-Fos, is an important modulator of apoptosis. Although F- box protein 10 (FBXL10) has been implicated to regulate an AP-1 family protein, c-Jun, its role in mediating apoptotic pathways has not been previously investigated. Here, we report that FBXL10 is a transcriptional repressor of c-Fos and a target gene of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B)-p65 in human cancers. We demonstrate that FBXL10 is an important anti-apoptotic molecule, which directly binds and represses c-Fos promoter in order for cancer cells to resist TRAIL-induced apoptosis. FBXL10 indirectly regulates c-FLIP(L) levels via c-Fos-dependent pathways. Silencing of FBXL10 sensitizes resistant cells to TRAIL, while, overexpression of FBXL10 represses TRAIL-induced apoptosis. Moreover, our results indicate that expression of FBXL10 functions via an NF-?B-dependent pathway, and TRAIL or proteasome inhibitors downregulate FBXL10 via inhibiting NF-?B signaling. Taken together, we find a novel functional role for FBXL10 as an anti-apoptotic molecule, and describe a new apoptotic-related pathway that involves NF-?B/FBXL10/c-Fos/c-FLIP. Therefore, silencing FBXL10 can help overcome resistant cancer cells for pro-apoptotic therapies.

Ge, R; Wang, Z; Zeng, Q; Xu, X; Olumi, A F

2011-01-01

311

Cardioprotective activity of urocortin by preventing caspase-independent, non-apoptotic death in cultured neonatal rat cardiomyocytes exposed to ischemia  

SciTech Connect

Research highlights: {yields} Ischemia induces high level of iPLA{sub 2} resulting in caspase-independent myocyte death. {yields} Urocortin causes iPLA{sub 2} down-regulation leading to avoidance of non-apoptotic death. {yields} The survival-promoting effect of urocortin is abrogated by CRH receptor antagonist. -- Abstract: Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemia caused elevation of the phospholipase A{sub 2} (iPLA{sub 2}) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of {approx}10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA{sub 2}, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.

Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp [Department of Pharmaceutics, School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien, Nishinomiya, Hyogo 663-8179 (Japan)] [Department of Pharmaceutics, School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien, Nishinomiya, Hyogo 663-8179 (Japan); Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp [Department of Pharmaceutics, School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien, Nishinomiya, Hyogo 663-8179 (Japan)] [Department of Pharmaceutics, School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien, Nishinomiya, Hyogo 663-8179 (Japan)

2010-11-12

312

Flow cytometric ratio analysis of the Hoechst 33342 emission spectrum: multiparametric characterization of apoptotic lymphocytes  

Microsoft Academic Search

The apoptotic response to various stimuli is an important part of immune regulation, and the ability to identify apoptotic lymphocytes within a complex population is a prerequisite to a more detailed understanding of its role in vivo. We describe a flow cytometric technique which utilizes viable cells and enables simultaneous identification of apoptotic cells and analyses of immunophenotype, cell cycle

Laura Chiu; Holly Cherwinski; John Ransom; John F. Dunne

1996-01-01

313

Volume replacement with saline solutions during pancreatitis in rats and the hepatic profiles of apoptotic proteins and heat-shock proteins  

PubMed Central

Objective Liver failure can occur as a consequence of the systemic inflammation after acute pancreatitis. We assessed the effect of volume repositioning with hypertonic saline solution or normal saline on hepatic cytokine production and the expression of heat-shock proteins and apoptotic proteins after acute pancreatitis. Methods Wistar rats were divided in four groups: C - control animals that were not subjected to insult or treatment; NT - animals that were subjected to acute pancreatitis and received no treatment; normal saline - animals that were subjected to acute pancreatitis and received normal saline (NaCl 0.9%); and HS - animals that were subjected to acute pancreatitis and received hypertonic saline solution (NaCl 7.5%). Acute pancreatitis was induced by retrograde transduodenal infusion of 2.5% sodium taurocholate into the pancreatic duct. At 4, 12 and 24 h following acute pancreatitis induction, TNF-alpha, IL-1-beta, IL-6 and IL-10, caspase-2 and -7, Apaf-1, AIF and HSP60 and 90 were analyzed in the liver. Results Casp2 decreased in the normal saline and hypertonic saline groups (p<0.05 versus. C) at 12 h. Apaf-1, AIF and HSP90 remained unchanged. At 4 h, Casp7 increased in the NT group (p<0.01 versus C), although it remained at the baseline levels in the reperfused groups. HSP60 increased in all of the groups at 4 h (p<0.0.001 vs. C). However, the hypertonic saline group showed lower expression of HSP60 than the normal saline group (p<0.05). Hypertonic saline solution maintained the production of cytokines at normal levels. Volume reperfusion with normal or hypertonic saline significantly modulated the expression of Casp7. Conclusion Volume replacement with hypertonic or normal saline was effective in reducing caspase 7. However, only hypertonic solution was capable of regulating cytokine production and HSP60 expression at all time points.

Rios, Ester Correia Sarmento; Moretti, Ana Iochabel Soares; de Souza, Heraldo Possolo; Velasco, Irineu Tadeu; Soriano, Francisco Garcia

2012-01-01

314

Addressing Reported Pro-Apoptotic Functions of NF-kappaB: Targeted Inhibition of Canonical NF-kappaB Enhances the Apoptotic Effects of Doxorubicin  

Microsoft Academic Search

The ability of the transcription factor NF-?B to upregulate anti-apoptotic proteins has been linked to the chemoresistance of solid tumors to standard chemotherapy. In contrast, recent studies have proposed that, in response to doxorubicin, NF-?B can be pro-apoptotic through repression of anti-apoptotic target genes. However, there is little evidence analyzing the outcome of NF-?B inhibition on the cytotoxicity of doxorubicin

Brian K. Bednarski; Albert S. Baldwin; Hong Jin Kim; Mikhail V. Blagosklonny

2009-01-01

315

The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells.  

PubMed

Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, chronic exposure to high levels of Mn in occupational or environmental settings can lead to its accumulation in the brain resulting in a degenerative brain disorder referred to as Manganism. Astrocytes are the main Mn store in the central nervous system and several lines of evidence implicate these cells as major players in the role of Manganism development. In the present study, we employed rat astrocytoma C6 cells as a sensitive experimental model for investigating molecular mechanisms involved in Mn neurotoxicity. Our results show that C6 cells undergo reactive oxygen species-mediated apoptotic cell death involving caspase-8 and mitochondrial-mediated pathways in response to Mn. Exposed cells exhibit typical apoptotic features, such as chromatin condensation, cell shrinkage, membrane blebbing, caspase-3 activation and caspase-specific cleavage of the endogenous substrate poly (ADP-ribose) polymerase. Participation of the caspase-8 dependent pathway was assessed by increased levels of FasL, caspase-8 activation and Bid cleavage. The involvement of the mitochondrial pathway was demonstrated by the disruption of the mitochondrial membrane potential, the opening of the mitochondrial permeability transition pore, cytochrome c release, caspase-9 activation and the increased mitochondrial levels of the pro-apoptotic Bcl-2 family proteins. In addition, our data also shows for the first time that mitochondrial fragmentation plays a relevant role in Mn-induced apoptosis. Taking together, these findings contribute to a deeper elucidation of the molecular signaling mechanisms underlying Mn-induced apoptosis. PMID:21704098

Alaimo, Agustina; Gorojod, Roxana M; Kotler, Mónica L

2011-08-01

316

Manipulating the apoptotic pathway: potential therapeutics for cancer patients.  

PubMed

This review summarizes the current state of scientific understanding of the apoptosis pathway, with a focus on the proteins involved in the pathway, their interactions and functions. This forms the rationale for detailing the preclinical and clinical pharmacology of drugs that modulate the pivotal proteins in this pathway, with emphasis on drugs that are furthest advanced in clinical development as anticancer agents. There is a focus on describing drugs that modulate three of the most promising targets in the apoptosis pathway, namely antibodies that bind and activate the death receptors, small molecules that inhibit the anti-apoptotic Bcl-2 family proteins, and small molecules and antisense oligonucleotides that inactivate the inhibitors of apoptosis, all of which drive the equilibrium of the apoptotic pathway towards apoptosis. These structurally different yet functionally related groups of drugs represent a promising novel approach to anticancer therapeutics whether used as monotherapy or in combination with either classical cytotoxic or other molecularly targeted anticancer agents. PMID:23782006

Bates, Darcy J P; Lewis, Lionel D

2013-09-01

317

Altered mitochondrial apoptotic pathway in placentas from undernourished rat gestations.  

PubMed

Maternal undernutrition (MUN) during pregnancy results in intrauterine growth-restricted (IUGR) fetuses and small placentas. Although reduced fetal nutrient supply has been presumed to be etiologic in IUGR, MUN-induced placental dysfunction may occur prior to detectable fetal growth restriction. Placental growth impairment may result from apoptosis signaled by mitochondria in response to reduced energy substrate. Therefore, we sought to determine the presence of mitochondrial-induced apoptosis under MUN and ad libitum diet (AdLib) pregnancies. Pregnant rats were fed an AdLib or a 50% MUN diet from embryonic day 10 (E10) to E20. At E20, fetuses and placentas from proximal- and mid-horns (extremes of nutrient/oxygen supply) were collected. Right-horn placentas were used to quantify apoptosis. Corresponding left-horn placentas were separated into basal (hormone production) and labyrinth (feto-maternal exchange) zones, and protein expression of the mitochondrial pathway was determined. Our results show that the MUN placentas had significantly increased apoptosis, with lower expression of cytosolic and mitochondrial anti-apoptotic Bcl2 and Bcl-X(L), and significantly higher expression of pro-apoptotic Bax and Bak especially in the labyrinth zone. This was paralleled by higher coimmunostaining with the mitochondrial marker manganese superoxide dismutase (MnSOD), indicating transition of pro-apoptotic factors to the mitochondrial membrane. Also, cytosolic cytochrome c and activated caspases-9 and -3 were significantly higher in all MUN. Conversely, peroxisome proliferator-activator receptor-? (PPAR?), a member of the nuclear receptor family with anti-apoptotic properties, was significantly downregulated in both zones and horns. Our results suggest that MUN during rat pregnancy enhances mitochondria-dependent apoptosis in the placenta, probably due to the downregulation of PPAR? expression. PMID:21918224

Belkacemi, Louiza; Desai, Mina; Nelson, D Michael; Ross, Michael G

2011-12-01

318

Altered mitochondrial apoptotic pathway in placentas from undernourished rat gestations  

PubMed Central

Maternal undernutrition (MUN) during pregnancy results in intrauterine growth-restricted (IUGR) fetuses and small placentas. Although reduced fetal nutrient supply has been presumed to be etiologic in IUGR, MUN-induced placental dysfunction may occur prior to detectable fetal growth restriction. Placental growth impairment may result from apoptosis signaled by mitochondria in response to reduced energy substrate. Therefore, we sought to determine the presence of mitochondrial-induced apoptosis under MUN and ad libitum diet (AdLib) pregnancies. Pregnant rats were fed an AdLib or a 50% MUN diet from embryonic day 10 (E10) to E20. At E20, fetuses and placentas from proximal- and mid-horns (extremes of nutrient/oxygen supply) were collected. Right-horn placentas were used to quantify apoptosis. Corresponding left-horn placentas were separated into basal (hormone production) and labyrinth (feto-maternal exchange) zones, and protein expression of the mitochondrial pathway was determined. Our results show that the MUN placentas had significantly increased apoptosis, with lower expression of cytosolic and mitochondrial anti-apoptotic Bcl2 and Bcl-XL, and significantly higher expression of pro-apoptotic Bax and Bak especially in the labyrinth zone. This was paralleled by higher coimmunostaining with the mitochondrial marker manganese superoxide dismutase (MnSOD), indicating transition of pro-apoptotic factors to the mitochondrial membrane. Also, cytosolic cytochrome c and activated caspases-9 and -3 were significantly higher in all MUN. Conversely, peroxisome proliferator-activator receptor-? (PPAR?), a member of the nuclear receptor family with anti-apoptotic properties, was significantly downregulated in both zones and horns. Our results suggest that MUN during rat pregnancy enhances mitochondria-dependent apoptosis in the placenta, probably due to the downregulation of PPAR? expression.

Desai, Mina; Michael Nelson, D.; Ross, Michael G.

2011-01-01

319

Diverse apoptotic pathways in enterovirus 71-infected cells  

Microsoft Academic Search

Mechanisms related to the neuropathogenesis of enterovirus 71 infection remain unclear. This investigation conducts a comprehensive\\u000a study of the apoptotic pathways in neural and non-neural cells following enterovirus 71 infection. Infections with enterovirus\\u000a 71 not only induce classical cytopathic effects in SF268 (human glioblastoma), SK-N-MC (human neuroblastoma), RD, and Vero\\u000a cells, but also induce classic signs of apoptosis in all

Shih-Cheng Chang; Jing-Yi Lin; Lily Yen-Cheng Lo; Mei-Ling Li; Shin-Ru Shih

2004-01-01

320

Apoptotic Death of Cancer Stem Cells for Cancer Therapy  

PubMed Central

Cancer stem cells (CSCs) play crucial roles in tumor progression, chemo- and radiotherapy resistance, and recurrence. Recent studies on CSCs have advanced understanding of molecular oncology and development of novel therapeutic strategies. This review article updates the hypothesis and paradigm of CSCs with a focus on major signaling pathways and effectors that regulate CSC apoptosis. Selective CSC apoptotic inducers are introduced and their therapeutic potentials are discussed. These include synthetic and natural compounds, antibodies and recombinant proteins, and oligonucleotides.

He, Ying-Chun; Zhou, Fang-Liang; Shen, Yi; Liao, Duan-Fang; Cao, Deliang

2014-01-01

321

Cancer Vaccine Composed of Oligonucleotides Conjugated to Apoptotic Tumor Cells  

Cancer.gov

NCI Scientists have discovered that conjugating CpG ODNs to apoptotic tumor cells to improve vaccine activity by ensuring that the ODN remains associated with the tumor antigen so that both are internalized by professional antigen presenting cells. The strategy eliminates the need to define specific tumor-associated antigens, substituting instead the entire tumor cell (which in the absence of CpG ODN is poorly immunogenic).

322

SorCS2 Regulates Dopaminergic Wiring and Is Processed into an Apoptotic Two-Chain Receptor in Peripheral Glia.  

PubMed

Balancing trophic and apoptotic cues is critical for development and regeneration of neuronal circuits. Here we identify SorCS2 as a proneurotrophin (proNT) receptor, mediating both trophic and apoptotic signals in conjunction with p75(NTR). CNS neurons, but not glia, express SorCS2 as a single-chain protein that is essential for proBDNF-induced growth cone collapse in developing dopaminergic processes. SorCS2- or p75(NTR)-deficient in mice caused reduced dopamine levels and metabolism and dopaminergic hyperinnervation of the frontal cortex. Accordingly, both knockout models displayed a paradoxical behavioral response to amphetamine reminiscent of ADHD. Contrary, in PNS glia, but not in neurons, proteolytic processing produced a two-chain SorCS2 isoform that mediated proNT-dependent Schwann cell apoptosis. Sciatic nerve injury triggered generation of two-chain SorCS2 in p75(NTR)-positive dying Schwann cells, with apoptosis being profoundly attenuated in Sorcs2(-/-) mice. In conclusion, we have demonstrated that two-chain processing of SorCS2 enables neurons and glia to respond differently to proneurotrophins. PMID:24908487

Glerup, Simon; Olsen, Ditte; Vaegter, Christian B; Gustafsen, Camilla; Sjoegaard, Susanne S; Hermey, Guido; Kjolby, Mads; Molgaard, Simon; Ulrichsen, Maj; Boggild, Simon; Skeldal, Sune; Fjorback, Anja N; Nyengaard, Jens R; Jacobsen, Jan; Bender, Dirk; Bjarkam, Carsten R; Sørensen, Esben S; Füchtbauer, Ernst-Martin; Eichele, Gregor; Madsen, Peder; Willnow, Thomas E; Petersen, Claus M; Nykjaer, Anders

2014-06-01

323

Preemptive Donor Apoptotic Cell Infusions Induce IFN-?-Producing Myeloid-Derived Suppressor Cells for Cardiac Allograft Protection.  

PubMed

We have previously shown that preemptive infusion of apoptotic donor splenocytes treated with the chemical cross-linker ethylcarbodiimide (ECDI-SPs) induces long-term allograft survival in full MHC-mismatched models of allogeneic islet and cardiac transplantation. The role of myeloid-derived suppressor cells (MDSCs) in the graft protection provided by ECDI-SPs is unclear. In this study, we demonstrate that infusions of ECDI-SPs increase two populations of CD11b(+) cells in the spleen that phenotypically resemble monocytic-like (CD11b(+)Ly6C(high)) and granulocytic-like (CD11b(+)Gr1(high)) MDSCs. Both populations suppress T cell proliferation in vitro and traffic to the cardiac allografts in vivo to mediate their protection via inhibition of local CD8 T cell accumulation and potentially also via induction and homing of regulatory T cells. Importantly, repeated treatments with ECDI-SPs induce the CD11b(+)Gr1(high) cells to produce a high level of IFN-? and to exhibit an enhanced responsiveness to IFN-? by expressing higher levels of downstream effector molecules ido and nos2. Consequently, neutralization of IFN-? completely abolishes the suppressive capacity of this population. We conclude that donor ECDI-SPs induce the expansion of two populations of MDSCs important for allograft protection mediated in part by intrinsic IFN-?-dependent mechanisms. This form of preemptive donor apoptotic cell infusions has significant potential for the therapeutic manipulation of MDSCs for transplant tolerance induction. PMID:24808363

Bryant, Jane; Lerret, Nadine M; Wang, Jiao-Jing; Kang, Hee-Kap; Tasch, James; Zhang, Zheng; Luo, Xunrong

2014-06-15

324

Carbon disulfide induces rat testicular injury via mitochondrial apoptotic pathway.  

PubMed

Carbon disulfide (CS2), one of the most important volatile organic chemicals, was shown to have serious impairment to male reproductive system. But the underline mechanism is still unclear. In the present study, we aim to investigate the male germ cell apoptosis induced by CS2 exposure alone and by co-administration with cyclosporin A (CsA), which is the inhibitor of membrane permeability transition pore (MPTP). It was shown that CS2 exposure impaired ultrastructure of germ cells, increased the numbers of apoptotic germ cells, accumulated intracellular level of calcium, elevated ROS level, and increased activities of complexes of respiratory chain. Meanwhile, exposure to CS2 dramatically decreased the mitochondrial transmembrane potential (??m) and levels of ATP and MPTP opening. Exposure to CS2 can also cause a significantly dose-dependent increase in the expression levels of Bax, Cytc, Caspase-9, and Caspase-3, but decreased the expression level of Bcl-2. Moreover, co-administration of CsA with CS2 can reverse or alleviate the above apoptotic damage effects of CS2 on testicular germ cells. Taken together, our findings suggested that CS2 can cause damage to testicular germ cells via mitochondrial apoptotic pathway, and MPTP play a crucial role in this process. PMID:24582363

Guo, Yinsheng; Wang, Wei; Dong, Yu; Zhang, Zhen; Zhou, Yijun; Chen, Guoyuan

2014-08-01

325

Membrane Protected Apoptotic Trophoblast Microparticles Contain Nucleic Acids  

PubMed Central

Microparticles (MPs) that circulate in blood may be a source of DNA for molecular analyses, including prenatal genetic diagnoses. Because MPs are heterogeneous in nature, however, further characterization is important before use in clinical settings. One key question is whether DNA is either bound to aggregates of blood proteins and lipid micelles or intrinsically associated with MPs from dying cells. To test the latter hypothesis, we asked whether MPs derived in vitro from dying cells were similar to those in maternal plasma. JEG-3 cells model extravillous trophoblasts, which predominate during the first trimester of pregnancy when prenatal diagnosis is most relevant. MPs were derived from apoptosis and increased over 48 hours. Compared with necrotic MPs, DNA in apoptotic MPs was more fragmented and resistant to plasma DNases. Membrane-specific dyes indicated that apoptotic MPs had more membranous material, which protects nucleic acids, including RNA. Flow cytometry showed that MPs derived from dying cells displayed light scatter and DNA staining similar to MPs found in maternal plasma. Quantification of maternal MPs using characteristics defined by MPs generated in vitro revealed a significant increase of DNA+ MPs in the plasma of women with preeclampsia compared with plasma from women with normal pregnancies. Apoptotic MPs are therefore a likely source of stable DNA that could be enriched for both early genetic diagnosis and monitoring of pathological pregnancies.

Orozco, Aaron F.; Jorgez, Carolina J.; Horne, Cassandra; Marquez-Do, Deborah A.; Chapman, Matthew R.; Rodgers, John R.; Bischoff, Farideh Z.; Lewis, Dorothy E.

2008-01-01

326

Embryonic toxicity of sanguinarine through apoptotic processes in mouse blastocysts.  

PubMed

In this study, we examined the cytotoxic effects of sanguinarine, a phytoalexin with antimicrobial, anti-oxidant, anti-inflammatory and pro-apoptotic effects, on the blastocyst stage of mouse embryos, subsequent embryonic attachment and outgrowth in vitro and in vivo implantation via embryo transfer. Blastocysts treated with 0.5-2 ?M sanguinarine exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with sanguinarine were lower than that of their control counterparts. Moreover, in vitro treatment with 0.5-2 ?M sanguinarine was associated with increased resorption of post-implantation embryos and decreased fetal weight. Our results collectively indicate that sanguinarine induces apoptosis and retards early post-implantation development in vitro and in vivo. In addition, sanguinarine induces apoptotic injury effects on mouse blastocysts through intrinsic and extrinsic apoptotic signaling processes to impair sequent embryonic development. However, the extent to which sanguinarine exerts teratogenic effects on early human development is not known at present, and further studies are required to establish effective protection strategies against its cytotoxic effects. PMID:21722720

Chan, Wen-Hsiung

2011-09-10

327

Effect of PDT-treated apoptotic cells on macrophages  

NASA Astrophysics Data System (ADS)

Recently, the long-term immunological effects of photodynamic therapy have attracted much attention. PDT induced immune response was mainly initiated through necrotic cells and apoptotic cells, as well as immune cells such as macrophages. Nitric oxide (NO) as an important regulatory factor in signal transfer between cells has been wildly studied for generation, development, and metastasis of tumors. NO synthase is a key enzyme in nitric oxide synthesis. However, inducible nitric oxide synthase (iNOS) is usually activated under pathological conditions, such as stress and cancer, which can produce high levels of nitric oxide and contribute to tumor cytotoxicity. In addition, increased NO production by iNOS has been associated with the host immune response and cell apoptosis, which play an important role in many carcinogenesis and anti-carcinoma mechanisms. This study focuses on the NO production in macrophages, induced by mouse breast carcinoma apoptotic cells treated by PDT in vitro, and on the effects of immune response induced by apoptotic cells in tumor cells growth.

Song, Sheng; Xing, Da; Zhou, Fei-Fan; Chen, Wei R.

2009-02-01

328

PDT-apoptotic tumor cells induce macrophage immune response  

NASA Astrophysics Data System (ADS)

Photodynamic therapy (PDT) functions as a cancer therapy through two major cell death mechanisms: apoptosis and necrosis. Immunological responses induced by PDT has been mainly associated with necrosis while apoptosis associated immune responses have not fully investigated. Heat shock proteins (HSPs) play an important role in regulating immune responses. In present study, we studied whether apoptotic tumor cells could induce immune response and how the HSP70 regulates immune response. The endocytosis of tumor cells by the activated macrophages was observed at single cell level by LSM. The TNF-? release of macrophages induced by co-incubated with PDT-apoptotic tumor cells was detected by ELISA. We found that apoptotic tumor cells treated by PDT could activate the macrophages, and the immune effect decreased evidently when HSP70 was blocked. These findings not only show that apoptosis can induce immunological responses, but also show HSP70 may serves as a danger signal for immune cells and induce immune responses to regulate the efficacy of PDT.

Zhou, Fei-fan; Xing, Da; Chen, Wei R.

2008-03-01

329

STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-{alpha}2b peptide  

SciTech Connect

In the search of mimetic peptides of the interferon-{alpha}2b molecule (IFN-{alpha}2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-{alpha}2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-{alpha}2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

Blank, Viviana C.; Pena, Clara [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina)] [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina); Roguin, Leonor P., E-mail: rvroguin@qb.ffyb.uba.ar [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina)

2010-02-15

330

HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death.  

PubMed Central

The mechanisms by which apoptosis is prevented by survival factors are largely unknown. Using an interaction cloning approach, we identified a protein that binds to the intracellular domain of the hepatocyte growth factor (HGF) receptor. This protein was identified as BAG-1, a recently characterized Bcl-2 functional partner, which prolongs cell survival through unknown mechanisms. Overexpression of BAG-1 in liver progenitor cells enhances protection from apoptosis by HGF. Association of the receptor with BAG-1 occurs in intact cells, is mediated by the C-terminal region of BAG-1 and is independent from tyrosine phosphorylation of the receptor. Formation of the complex is increased rapidly following induction of apoptosis. BAG-1 also enhances platelet-derived growth factor (PDGF)-mediated protection from apoptosis and associates with the PDGF receptor. Microinjection or transient expression of BAG-1 deletion mutants shows that both the N- and the C-terminal domains are required for protection from apoptosis. The finding of a link between growth factor receptors and the anti-apoptotic machinery fills a gap in the understanding of the molecular events regulating programmed cell death. Images

Bardelli, A; Longati, P; Albero, D; Goruppi, S; Schneider, C; Ponzetto, C; Comoglio, P M

1996-01-01

331

Deep Sequencing Identification of Novel Glucocorticoid-Responsive miRNAs in Apoptotic Primary Lymphocytes  

PubMed Central

Apoptosis of lymphocytes governs the response of the immune system to environmental stress and toxic insult. Signaling through the ubiquitously expressed glucocorticoid receptor, stress-induced glucocorticoid hormones induce apoptosis via mechanisms requiring altered gene expression. Several reports have detailed the changes in gene expression mediating glucocorticoid-induced apoptosis of lymphocytes. However, few studies have examined the role of non-coding miRNAs in this essential physiological process. Previously, using hybridization-based gene expression analysis and deep sequencing of small RNAs, we described the prevalent post-transcriptional repression of annotated miRNAs during glucocorticoid-induced apoptosis of lymphocytes. Here, we describe the development of a customized bioinformatics pipeline that facilitates the deep sequencing-mediated discovery of novel glucocorticoid-responsive miRNAs in apoptotic primary lymphocytes. This analysis identifies the potential presence of over 200 novel glucocorticoid-responsive miRNAs. We have validated the expression of two novel glucocorticoid-responsive miRNAs using small RNA-specific qPCR. Furthermore, through the use of Ingenuity Pathways Analysis (IPA) we determined that the putative targets of these novel validated miRNAs are predicted to regulate cell death processes. These findings identify two and predict the presence of additional novel glucocorticoid-responsive miRNAs in the rat transcriptome, suggesting a potential role for both annotated and novel miRNAs in glucocorticoid-induced apoptosis of lymphocytes.

Mav, Deepak; Scoltock, Alyson B.; Cidlowski, John A.

2013-01-01

332

Linking Metabolic Abnormalities to Apoptotic Pathways in Beta Cells in Type 2 Diabetes  

PubMed Central

Pancreatic beta-cell apoptosis is an important feature of islets in type 2 diabetes. Apoptosis can occur through two major pathways, the extrinsic or death receptor mediated pathway, and the intrinsic or Bcl-2-regulated pathway. Hyperglycaemia, hyperlipidaemia and islet amyloid poly-peptide (IAPP) represent important possible causes of increased beta-cell apoptosis. Hyperglycaemia induces islet-cell apoptosis by the intrinsic pathway involving molecules of the Bcl-2 family. High concentrations of palmitate also activate intrinsic apoptosis in islets cells. IAPP oligomers can induce apoptosis by both intrinsic and extrinsic pathways. IL-1? produced through NLRP3 inflammasome activation can also induce islet cell death. Activation of the NLRP3 inflammasome may not be important for glucose or palmitate induced apoptosis in islets but may be important for IAPP mediated cell death. Endoplasmic reticulum (ER) and oxidative stress have been observed in beta cells in type 2 diabetes, and these could be the link between upstream metabolic abnormalities and downstream apoptotic machinery.

Wali, Jibran A.; Masters, Seth L.; Thomas, Helen E.

2013-01-01

333

The Extrathyronine Actions of Iodine as Antioxidant, Apoptotic, and Differentiation Factor in Various Tissues  

PubMed Central

Background Seaweed is an important dietary component and a rich source of iodine in several chemical forms in Asian communities. Their high consumption of this element (25 times higher than in Western countries) has been associated with the low incidence of benign and cancerous breast and prostate disease in Japanese people. Summary We review evidence showing that, in addition to being a component of the thyroid hormone, iodine can be an antioxidant as well as an antiproliferative and differentiation agent that helps to maintain the integrity of several organs with the ability to take up iodine. In animal and human studies, molecular iodine (I2) supplementation exerts a suppressive effect on the development and size of both benign and cancerous neoplasias. Investigations by several groups have demonstrated that these effects can be mediated by a variety of mechanisms and pathways, including direct actions, in which the oxidized iodine dissipates the mitochondrial membrane potential, thereby triggering mitochondrion-mediated apoptosis, and indirect effects through iodolipid formation and the activation of peroxisome proliferator–activated receptors type gamma, which, in turn, trigger apoptotic or differentiation pathways. Conclusions We propose that the International Council for the Control of Iodine Deficient Disorders recommend that iodine intake be increased to at least 3?mg/day of I2 in specific pathologies to obtain the potential extrathyroidal benefits described in the present review.

Anguiano, Brenda; Delgado, Guadalupe

2013-01-01

334

Glutathione depletion regulates both extrinsic and intrinsic apoptotic signaling cascades independent from multidrug resistance protein 1.  

PubMed

Glutathione (GSH) depletion is an important hallmark of apoptosis. We previously demonstrated that GSH depletion, by its efflux, regulates apoptosis by modulation of executioner caspase activity. However, both the molecular identity of the GSH transporter(s) involved and the signaling cascades regulating GSH loss remain obscure. We sought to determine the role of multidrug resistance protein 1 (MRP1) in GSH depletion and its regulatory role on extrinsic and intrinsic pathways of apoptosis. In human lymphoma cells, GSH depletion was stimulated rather than inhibited by pharmacological blockage of MRP1 with MK571. GSH loss was dependent on initiator caspases 8 and 9 activity. Genetic knock-down (>60 %) of MRP1 by stable transfection with short hairpin small interfering RNA significantly reduced MRP1 protein levels, which correlated directly with the loss of MRP1-mediated anion transport. However, GSH depletion and apoptosis induced by both extrinsic and intrinsic pathways were not affected by MRP1 knock-down. Interestingly, stimulation of GSH loss by MK571 also enhanced the initiator phase of apoptosis by stimulating initiator caspase 8 and 9 activity and pro-apoptotic BCL-2 interacting domain cleavage. Our results clearly show that caspase-dependent GSH loss and apoptosis are not mediated by MRP1 proteins and that GSH depletion stimulates the initiation phase of apoptosis in lymphoid cells. PMID:24146141

Franco, Rodrigo; Bortner, Carl D; Schmitz, Ingo; Cidlowski, John A

2014-01-01

335

A screen for apoptotic synergism between clinical relevant nephrotoxicant and the cytokine TNF-?.  

PubMed

Nephrotoxicity remains one of the main reasons for post-market drug withdrawal. Tumour necrosis factor ? (TNF-?) secretion has been shown to underlie the nephrotoxicity induced by some of these drugs. Yet, there is currently no reliable and sensitive in vitro assay available to screen for nephrotoxicants of which toxicity largely depends on TNF-? secretion. Therefore, we developed and applied a sensitive fluorescence-based in vitro assay for TNF-?-mediated nephrotoxicity screening using mouse immortalized proximal tubular epithelial cells (IM-PTECs). Our assay allows rapid evaluation of TNF-?-mediated toxicant-induced apoptosis and necrosis using fixed endpoint and live cell measurements. To evaluate our assay, sixteen nephrotoxicants and two control non-nephrotoxicants were used. Out of the sixteen nephrotoxicants, eight induced cell death, of which five induced apoptosis as well as necrosis. Moreover, TNF-? significantly enhanced apoptotic cell death induced by cisplatin, cyclosporine A, tacrolimus and azidothymidine. These nephrotoxicants are known to induce inflammation in vivo which has been linked to an enhancement of nephrotoxicity for cisplatin, cyclosporine A and tacrolimus, confirming the functionality of our assay. Overall, our assay allows rapid and sensitive measurement of apoptosis and necrosis induced by a combination of nephrotoxicants and inflammatory components such as TNF-? and can be used as an alternative assay for nephrotoxicity prediction in vitro. PMID:24041534

Benedetti, Giulia; Ramaiahgaris, Sreenivasa; Herpers, Bram; van de Water, Bob; Price, Leo S; de Graauw, Marjo

2013-12-01

336

Stress-induced apoptosis is not mediated by endolysosomal ceramide  

Microsoft Academic Search

A major lipid-signaling pathway in mammalian cells implicates the generation of cer- amide from the ubiquitous sphingolipid sphingo- myelin (SM). Hydrolysis of SM by a sphingomyeli- nase present in acidic compartments has been reported to mediate, via the production of cer- amide, the apoptotic cell death triggered by stress- inducing agents. In the present study, we investi- gated whether the

BRUNO SEGUI; CHRISTINE BEZOMBES; EMMANUELLE URO-COSTE; JEFFREY A. MEDIN; NATHALIE ANDRIEU-ABADIE; NATHALIE AUGE ´; ANNE BROUCHET; GUY LAURENT; ROBERT SALVAYRE; JEAN-PIERRE JAFFREZOU; THIERRY LEVADE

337

Localization of dynein light chains 1 and 2 and their pro-apoptotic ligands.  

PubMed Central

The dynein and myosin V motor complexes are multi-protein structures that function to transport molecules and organelles within the cell. DLC (dynein light-chain) proteins, found as components of both dynein and myosin V motor complexes, connect the complexes to their cargoes. One of the roles of these motor complexes is to selectively sequester the pro-apoptotic 'BH3-only' (Bcl-2 homology 3-only) proteins, Bim (Bcl-2-interacting mediator of cell death) and Bmf (Bcl-2-modifying factor), and so regulate their cell death-inducing function. In vivo DLC2 is found exclusively as a component of the myosin V motor complex and Bmf binds DLC2 selectively. On the other hand, Bim interacts with DLC1 (LC8), an integral component of the dynein motor complex. The two DLCs share 93% sequence identity yet show unambiguous in vivo specificity for their respective BH3-only ligands. To investigate this specificity the three-dimensional solution structure of DLC2 was elucidated using NMR spectroscopy. In vitro structural and mutagenesis studies show that Bmf and Bim have identical binding characteristics to recombinant DLC2 or DLC1. Thus the selectivity shown by Bmf and Bim for binding DLC1 or DLC2, respectively, does not reside in their DLC-binding domains. Remarkably, mutational analysis of DLC1 and DLC2 indicates that a single surface residue (residue 41) determines the specific localization of DLCs with their respective motor complexes. These results suggest a molecular mechanism for the specific compartmentalization of DLCs and their pro-apoptotic cargoes and implicate other protein(s) in defining the specificity between the cargoes and the DLC proteins.

Day, Catherine L; Puthalakath, Hamsa; Skea, Gretchen; Strasser, Andreas; Barsukov, Igor; Lian, Lu-Yun; Huang, David C S; Hinds, Mark G

2004-01-01

338

The study of the Oxytropis kansuensis-induced apoptotic pathway in the cerebrum of SD rats  

PubMed Central

Background Locoweeds cause significant livestock poisoning and economic loss all over the world. Animals can develop locoism, a chronic neurological disease, after grazing on locoweeds. Oxytropis kansuensis is a variety of locoweed that contains swainsonine as its main toxic ingredient. The purpose of this study was to investigate the apoptotic pathway induced in the cerebrum by swainsonine. Results Twenty-four Sprague-Dawley rats were randomly divided into four groups (experimental groups I, II, III and a control group) and 6 SD rats of each group were feed in 3 cages separately. Rats were penned as groups and fed with feeds containing 15% (SW content 0.03‰), 30% (SW content 0.06‰), or 45% (SW content 0.09‰) O. kansuensis for experimental groups I, II, and III, respectively, or complete feed in the case of the control group. One hundred and nineteen days after poisoning, and all rats showed neurological disorders at different degrees, which were considered to be successful established a chronic poisoning model of O. kansuensis. rats were sacrificed and the expression of Fas, FasL, Bcl-2, Bax as well as cleaved caspase-3, -8 and -9 proteins in brain tissues were detected by Western blot. The results showed that SW treatment up-regulated Fas and Fas ligand (FasL) (P?mediated, caspase-dependent apoptotic pathways in the brain tissue of SD rats.

2013-01-01

339

Differential effects of Oroxylum indicum bark extracts: antioxidant, antimicrobial, cytotoxic and apoptotic study.  

PubMed

Stem bark of Oroxylum indicum (L) (SBOI) is used by ethnic communities of North East India as health tonic and in treating diseases of humans and animals. The objective of this research was to carry out a detailed investigation including total phenolic and flavonoid content, antioxidant, antimicrobial, cytotoxic and apoptotic activities of different solvent extracts of SBOI and to establish correlation between some parameters. Among petroleum ether (PE), dichloromethane and methanol (MeOH) extract of SBOI, MeOH extract contained the highest amount of total phenolic (320.7 ± 34.6 mg Gallic acid equivalent/g extract) and flavonoid (346.6 ± 15.2 mg Quercetin equivalent/g extract) content. In vitro antioxidant activity (IC(50) 22.7 ?g/ml) was highest in MeOH extract (p > 0.05) and also a significant inverse correlation was observed between phenolic (r = 0.886)/flavonoid (r = 0.764) content and corresponding DPPH IC(50). Only MeOH extract inhibited both bacteria and fungi. Although, individual extract showed cytotoxicity on HeLa cells with characteristic features of apoptosis, PE extract caused maximum cytotoxicity (IC(50) of 112.3 ?g/ml, p < 0.05) and apoptotic activity (33.2 % sub-G0/G1 population) on HeLa cells. But, there was a significant non-inverse correlation of the MTT IC(50) with total phenolic (r = 0.812, p < 0.05)/flavonoid (r = 0.998, p < 0.05) content in the three solvent extracts. TLC analysis showed three unique compounds in PE extract which may have a role in apoptosis mediated cytotoxicity. These results called for futher chemical characterisation of MeOH and PE extract of SBOI for specific bioactivity. PMID:22821054

Moirangthem, Dinesh Singh; Talukdar, Narayan Chandra; Bora, Utpal; Kasoju, Naresh; Das, Ratul Kumar

2013-01-01

340

Pro-apoptotic versus anti-apoptotic properties of dietary resveratrol on tumoral and normal cardiac cells  

Microsoft Academic Search

Resveratrol is a natural dietary polyphenol found in grape skin, red wine, and various other food products. Resveratrol has\\u000a proved to be an effective chemopreventive agent for different malignant tumors. It has also been shown to prevent vascular\\u000a alterations such as atherosclerosis and inflammatory-associated events. In view of these observations, we investigated the\\u000a anti-proliferative and pro-apoptotic activities of resveratrol on

Mauhamad Baarine; Sijo Joseph Thandapilly; Xavier Lieben Louis; Frédéric Mazué; Liping Yu; Dominique Delmas; Thomas Netticadan; Gérard Lizard; Norbert Latruffe

2011-01-01

341

The anti-apoptotic effect of leukotriene D4 involves the prevention of caspase 8 activation and Bid cleavage.  

PubMed

We have shown in a previous study that leukotriene D(4) (LTD(4)) signalling increases cell survival and proliferation in intestinal epithelial cells [Ohd, Wikström and Sjölander (2000) Gastroenterology 119, 1007-1018]. This is highly interesting since inflammatory conditions of the bowel are associated with an increased risk of developing colon cancer. The enzyme cyclo-oxygenase 2 (COX-2) is important in this context since it is up-regulated in colon cancer tissues and in tumour cell lines. Treatment with the COX-2-specific inhibitor N -(2-cyclohexyloxy-4-nitrophenyl)methane sulphonamide has been shown previously to cause apoptosis in intestinal epithelial cells. In the present study, we attempted to elucidate the underlying mechanisms and we can now show that a mitochondrial pathway is employed. Inhibition of COX-2 causes release of cytochrome c, as shown by both Western-blot and microscopy studies, and as with apoptosis, this is significantly decreased by LTD(4). Since previous studies showed increased Bcl-2 levels on LTD(4) stimulation, we further studied apoptotic regulation at the mitochondrial level. From this we could exclude the involvement of the anti-apoptotic protein Bcl-X(L) as well as its pro-apoptotic counterpart Bax, since they are not expressed. Furthermore, the activity of the pro-apoptotic protein Bad (Bcl-2/Bcl-X(L)-antagonist, causing cell death) was completely unaffected. However, inhibition of COX-2 caused cleavage of caspase 8 into a 41 kDa fragment associated with activation and caused the appearance of an activated 15 kDa fragment of Bid. This indicates that N -(2-cyclohexyloxy-4-nitrophenyl)methane sulphonamide-induced apoptosis is mediated by the activation of caspase 8, via generation of truncated Bid, and thereafter release of cytochrome c. Interestingly, LTD(4) not only reverses the effects induced by inhibition of COX-2 but also reduces the apoptotic potential by lowering the basal level of caspase 8 activation and truncated Bid generation. PMID:12482325

Wikström, Katarina; Juhas, Maria; Sjölander, Anita

2003-04-01

342

Balance of apoptotic and anti-apoptotic marker and perforin granule release in squamous intraepithelial lesions. HIV infection leads to a decrease in perforin degranulation.  

PubMed

Cell-mediated cytotoxicity plays an important role in the regulation to HPV-associated cervical intraepithelial neoplasia. HIV co-infection is related to poorer prognosis and more rapid clinical progression to cancer. We evaluated the presence of cervical inflammatory cells, apoptotic (Bax, Bcl-2, FasL, NOS2, perforin) markers and the degranulating expressing cell marker (CD107a) in low and high squamous intraepithelial lesions (LSIL and HSIL, respectively) from HIV-negative and -positive women. Higher percentage of cervical CD4(+), CD8(+) T cells and macrophage were observed in LSIL and HSIL groups when compared with control, especially in epithelium and basal layer of epithelium. However, progression from LSIL to HSIL did not change the frequency of inflammatory cells. HIV-infection lead to a reduction on cervical CD4(+) T cell infiltration and an increased CD8(+) T cell distribution in LSIL groups. A balance between pro- and anti-apoptotic protein expressions was verified. Bax-expressing cells were present in all groups and were rarely expressed in keratinocytes in the epithelium in LSIL and control groups, but notably decreased in HSIL group. However, its frequency was enhanced in the basal layer of the epithelium meanly in LSIL group. Bcl2-expressing cells in the epithelium and the stroma were enhanced in HSIL group when compared with LSIL group. HIV-infection did not interfere in both expressions NOS2 expression was located on keratinocytes in both LSIL and HSIL groups when compared with control group. There were few FasL cervical expressing cells in all groups. Indeed, perforin was identified in few cervical cells. However, CD107a, a surface marker for cellular degranulation was significantly higher in epithelium, basal layer of epithelium and stroma in LSIL and HSIL, respectively, when compared with control group. These results support that HIV infection may induce reduction on inflammatory cervical cell degranulation corroborating to carcinogenesis process. This is the first description on the role of HIV in downregulation of perforin degranulation in the cervical lesions and it might be related to carcinogenesis. PMID:23791892

Fernandes, Ana Teresa G; da Rocha, Natalia Pereira; Avvad, Elyzabeth; Grinsztejn, Beatriz J; Russomano, Fabio; Tristão, Aparecida; Quintana, Marcel de Souza Borges; Perez, Mauricio A; Conceição-Silva, Fátima; Bonecini-Almeida, Maria da Gloria

2013-10-01

343

Synergistic Combination of Small Molecule Inhibitor and RNA interference Against Anti-apoptotic Bcl-2 Protein in Head and Neck Cancer Cells  

PubMed Central

B-cell lymphoma 2 (Bcl-2) is an anti-apoptotic protein that is over-expressed in head and neck squamous cell carcinomas, which has been implicated in development of radio- and chemo-resistance. Small molecule inhibitors such as AT-101 (a BH3-mimetic drug) have been developed to inhibit the anti-apoptotic activity of Bcl-2 proteins, which proved effective in restoring radio- and chemo-sensitivity in head and neck cancer cells. However, high doses of AT-101 are associated with gastrointestinal, hepatic, and fertility side effects, which prompted the search for other Bcl-2 inhibitors. Short interfering RNA (siRNA) proved to inhibit anti-apoptotic Bcl-2 protein expression and trigger cancer cell death. However, transforming siRNA molecules into a viable therapy remains a challenge due to the lack of efficient and biocompatible carriers. We report the development of degradable star-shaped polymers that proved to condense anti-Bcl-2 siRNA into “smart” pH-sensitive and membrane-destabilizing particles that shuttle their cargo past the endosomal membrane and into the cytoplasm of head and neck cancer cells. Results show that “smart” anti-Bcl-2 particles reduced the mRNA and protein levels of anti-apoptotic Bcl-2 protein in UM-SCC-17B cancer cells by 50-60% and 65-75%, respectively. Results also show that combining “smart” anti-Bcl-2 particles with the IC25 of AT-101 (inhibitory concentration responsible for killing 25% of the cells) synergistically inhibit cancer cell proliferation and increase cell apoptosis, which reduced the survival of UM-SCC-17B cancer cells compared to treatment with AT-101 alone. Results indicate the therapeutic benefit of combining siRNA-mediated knockdown of anti-apoptotic Bcl-2 protein expression with low doses of AT-101 for inhibiting the growth of head and neck cancer cells.

Lin, Yen-Ling; Durmaz, Yasemin Yuksel; Nor, Jacques E.; ElSayed, Mohamed E. H.

2014-01-01

344

Pro-apoptotic and cytostatic activity of naturally occurring cardenolides  

Microsoft Academic Search

Purpose  Cardenoliddes are steroid glycosides which are known to exert cardiotonic effects by inhibiting the Na+\\/K+-ATPase. Several of these compounds have been shown also to possess anti-tumor potential. The aim of the present work was\\u000a the characterization of the tumor cell growth inhibition activity of four cardenolides, isolated from Periploca graeca L., and the mechanisms underlying such an effect.\\u000a \\u000a \\u000a \\u000a Methods  The pro-apoptotic

Elena Bloise; Alessandra Braca; Nunziatina De Tommasi; Maria Antonietta Belisario

2009-01-01

345

Effect of Reactive Oxygen Species Generation in Rabbit Corneal Epithelial Cells on Inflammatory and Apoptotic Signaling Pathways in the Presence of High Osmotic Pressure  

PubMed Central

It is generally accepted that high osmotic pressure (HOP) of lacrimal fluid is the core mechanism causing ocular inflammation and injury. However, the association between HOP and the regulation of cell inflammatory response and apoptotic pathways remains unclear. In the present study, we used HOP to interfere with in vitro cultured rabbit corneal epithelial cells, and found that HOP increased the generation of reactive oxygen species (ROS) in rabbit corneal epithelial cells, and increased ROS in turn induced the activation of JNK inflammatory signaling pathway, which further promoted the expression of pro-inflammatory factor NF-?? and induced the generation of inflammatory factor IL-1? and TNF-?. In addition, HOP-induced ROS in rabbit corneal epithelial cells regulated the CD95/CD95L-mediated cell apoptotic signaling pathway by activating JNK inflammatory signaling pathway. These findings may serve as new theoretical basis and a new way of thinking about the treatment of ocular diseases, especially dry eye.

Li, Bing; Wang, Weifang; Lin, Anjuan; Sheng, Minjie

2013-01-01

346

Stim1, PKC? and RasGRP proteins set a threshold for pro-apoptotic Erk signaling during B cell development  

PubMed Central

Clonal deletion of autoreactive B cells is crucial to prevent autoimmunity, but the signaling mechanisms that regulate this checkpoint remain undefined. Here we characterized a previously unrecognized Ca2+-driven Erk activation pathway, which was pro-apoptotic and biochemically distinct from DAG-induced Erk activation. This pathway required PKC? and RasGRP proteins and depended on Stim1 concentrations, which control the magnitude of Ca2+ entry. Developmental regulation of these proteins was associated with selective activation of the pathway in B cells prone to negative selection. This checkpoint was impaired in PKC?-deficient mice, which developed B cell autoimmunity. Conversely, Stim1 overexpression conferred a competitive disadvantage to developing B cells. These findings establish Ca2+-dependent Erk signaling as a critical pro-apoptotic pathway that mediates B cell negative selection.

Limnander, Andre; Depeille, Philippe; Freedman, Tanya S.; Liou, Jen; Leitges, Michael; Kurosaki, Tomohiro; Roose, Jeroen P.; Weiss, Arthur

2013-01-01

347

Trypanosome apoptotic factor mediates apoptosis in human brain vascular endothelial cells  

Microsoft Academic Search

Human African trypanosomiasis (HAT, sleeping sickness) is a devastating disease caused by infection with Trypanosoma brucei ssp. These hemoflagellates invade the central nervous system (CNS) and induce meningo-encephalitis, neuronal demyelination, blood–brain-barrier (BBB) dysfunction, peri-vascular infiltration, astrocytosis and apoptosis. The molecular basis of these manifestations is unclear. We previously reported T. brucei-induced apoptosis in cerebella and brain-stem nuclei in mice at

Jonathan K. Stiles; Joseph Whittaker; Bismark Y. Sarfo; Winston E. Thompsonc; Michael D. Powell; Vincent C. Bond

2004-01-01

348

Regulation of Fas receptor/Fas-asssociated protein with death domain apoptotic complex and associated signalling systems by cannabinoid receptors in the mouse brain  

PubMed Central

Background and purpose: Natural and synthetic cannabinoids (CBs) induce deleterious or beneficial actions on neuronal survival. The Fas-associated protein with death domain (FADD) promotes apoptosis, and its phosphorylated form (p-FADD) mediates non-apoptotic actions. The regulation of Fas/FADD, mitochondrial apoptotic proteins and other pathways by CB receptors was investigated in the mouse brain. Experimental approach: Wild-type, CB1 and CB2 receptor knock-out (KO) mice were used to assess differences in receptor genotypes. CD1 mice were used to evaluate the effects of CB drugs on canonical apoptotic pathways and associated signalling systems. Target proteins were quantified by Western blot analysis. Key results: In brain regions of CB1 receptor KO mice, Fas/FADD was reduced, but p-Ser191 FADD and the p-FADD/FADD ratio were increased. In CB2 receptor KO mice, Fas/FADD was increased, but the p-FADD/FADD ratio was not modified. In mutant mice, cleavage of poly(ADP-ribose)-polymerase (PARP) did not indicate alterations in brain cell death. In CD1 mice, acute WIN55212-2 (CB1 receptor agonist), but not JWH133 (CB2 receptor agonist), inversely modulated brain FADD and p-FADD. Chronic WIN55212-2 induced FADD down-regulation and p-FADD up-regulation. Acute and chronic WIN55212-2 did not alter mitochondrial proteins or PARP cleavage. Acute, but not chronic, WIN55212-2 stimulated activation of anti-apoptotic (ERK, Akt) and pro-apoptotic (JNK, p38 kinase) pathways. Conclusions and implications: CB1 receptors appear to exert a modest tonic activation of Fas/FADD complexes in brain. However, chronic CB1 receptor stimulation decreased pro-apoptotic FADD and increased non-apoptotic p-FADD. The multifunctional protein FADD could participate in the mechanisms of neuroprotection induced by CBs. This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x

Alvaro-Bartolome, M; Esteban, S; Garcia-Gutierrez, MS; Manzanares, J; Valverde, O; Garcia-Sevilla, JA

2010-01-01

349

Regulation of dendritic cells and macrophages by an anti-apoptotic-cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis  

PubMed Central

Although natural antibodies (NAbs) are present from birth, little is known about what drives their selection, and whether they have housekeeping functions. The prototypic T15-NAb, first identified because of its protective role in infection, is representative of a special type of NAb response that specifically recognizes and forms complexes with apoptotic cells, and which promotes cell-corpse engulfment by phagocytes. We now show that this T15-NAb IgM-mediated clearance process is dependent on the recruitment of C1q and mannose-binding lectin (MBL), which have known immune modulatory activities that also provide “eat me” signals for enhancing phagocytosis. Further investigation revealed that the addition of T15-NAb significantly suppressed in vitro LPS-induced TNF-? and IL-6 secretion by the macrophage-like cell line, RAW264.7, as well as Toll-like receptor (TLR)-induced maturation and secretion of a range of pro-inflammatory cytokines and chemokines by bone-marrow derived conventional dendritic cells. Significantly, high doses of this B-1 cell produced NAb also suppressed in vivo TLR–induced pro-inflammatory responses. While infusions of apoptotic cells also suppressed such in vivo inflammatory responses and this effect was associated with the induction of high levels of IgM anti-apoptotic cell antibodies, apoptotic cell treatment was not effective at suppressing such TLR responses in B-cell deficient mice. Moreover, infusions of T15-NAb also efficiently inhibited both collagen-induced arthritis and anti-collagen II antibody-mediated arthritis. These studies identify and characterize a previously unknown regulatory circuit by which a NAb product of innate-like B cells aids homeostasis by control of fundamental inflammatory pathways.

Chen, Yifang; Khanna, Sahil; Goodyear, Carl S.; Park, Yong Beom; Raz, Eyal; Thiel, Steffen; Gronwall, Caroline; Vas, Jaya; Boyle, David L.; Corr, Maripat; Kono, Dwight H.; Silverman, Gregg J.

2009-01-01

350

Blockade of PKCdelta proteolytic activation by loss of function mutants rescues mesencephalic dopaminergic neurons from methylcyclopentadienyl manganese tricarbonyl (MMT)-induced apoptotic cell death.  

PubMed

The use of methylcyclopentadienyl manganese tricarbonyl (MMT) as a gasoline additive has raised health concerns and increased interest in understanding the neurotoxic effects of manganese. Chronic exposure to inorganic manganese causes Manganism, a neurological disorder somewhat similar to Parkinson's disease. However, the cellular mechanism by which MMT, an organic manganese compound, induces neurotoxicity in dopaminergic neuronal cells remains unclear. Therefore, we systematically investigated apoptotic cell-signaling events following exposure to 3-200 microM MMT in mesencephalic dopaminergic neuronal (N27) cells. MMT treatment resulted in a time- and dose-dependent increase in reactive oxygen species generation and cell death in N27 cells. The cell death was preceded by sequential activation of mitochondrial-dependent proapoptotic events including cytochrome c release, caspase-3 activation, and DNA fragmentation, indicating that the mitochondrial-dependent apoptotic cascade primarily triggers MMT-induced apoptotic cell death. Importantly, MMT induced proteolytic cleavage of protein kinase Cdelta (PKCdelta), resulting in persistently increased kinase activity. The proteolytic activation of PKCdelta was suppressed by treatment with 100 microM Z-VAD-FMK and 100 microM Z-DEVD-FMK, suggesting that caspase-3 mediates the proteolytic activation of PKCdelta. Pretreatment with 100 microM Z-DEVD-FMK and 5 microM rottlerin (a PKCdelta inhibitor) also significantly attenuated MMT-induced DNA fragmentation. Furthermore, overexpression of either the kinase inactive dominant negative PKCdelta(K376R) mutant or the caspase cleavage resistant PKCdelta(D327A) mutant rescued N27 cells from MMT-induced DNA fragmentation. Collectively, these results demonstrate that the mitochondrial-dependent apoptotic cascade mediates apoptosis via proteolytic activation of PKCdelta in MMT-induced dopaminergic degeneration and suggest that PKCdelta may serve as an attractive therapeutic target in Parkinson-related neurological diseases. PMID:15681813

Anantharam, V; Kitazawa, M; Latchoumycandane, C; Kanthasamy, A; Kanthasamy, A G

2004-12-01

351

Natural Proteasome Inhibitor Celastrol Suppresses Androgen-Independent Prostate Cancer Progression by Modulating Apoptotic Proteins and NF-kappaB  

PubMed Central

Background Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC) with constitutive NF-?B activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-?B activity as well as modulating the Bcl-2 family proteins. Methodology/Principal Findings We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-?B in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1), with IC50 in the range of 1–2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic I?B? degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-?B target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular I?B? and inhibited expression of various NF-?B target genes were observed in tumor tissues. Conclusions/Significance Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-?B activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be developed as a new therapeutic agent for hormone-refractory prostate cancer.

Dai, Yao; DeSano, Jeffrey; Tang, Wenhua; Meng, Xiaojie; Meng, Yang; Burstein, Ezra; Lawrence, Theodore S.; Xu, Liang

2010-01-01

352

Apoptosis induced by desmethyl-lasiodiplodin is associated with upregulation of apoptotic genes and downregulation of monocyte chemotactic protein-3.  

PubMed

There is growing interest in the discovery of bioactive metabolites from endophytes as an alternative source of therapeutics. Identification of their therapeutic targets is essential in understanding the underlying mechanisms and enhancing the resultant therapeutic effects. As such, bioactive compounds produced by endophytic fungi from plants at the National Park, Pahang, Malaysia, were investigated. Five known compounds were identified using LC-UV-MS-NMR and they include trichodermol, 7-epi-brefeldin A, (3R,4S)-4-hydroxymellein, desmethyl-lasiodiplodin and cytochalasin D. The present study went on to investigate the potential anticancer effects of these compounds and the corresponding molecular mechanisms of the lead compound against human breast adenocarcinoma, MCF-7. For the preliminary screening, the cytotoxicity and apoptotic effects of these compounds against MCF-7 were examined. The compounds were also tested against noncarcinogenic hepatocytes (WRL68). The differential cytotoxicity was then determined using the MTT assay. Desmethyl-lasiodiplodin was found to suppress the growth of MCF-7, yielding an inhibitory concentration (IC50) that was seven-fold lower than that of the normal cells. The cytotoxic effect of desmethyl-lasiodiplodin was accompanied by apoptosis. Subsequent analysis demonstrated increased expression levels of caspase 3, c-myc and p53. Further, desmethyl-lasiodiplodin resulted in inhibition of monocyte chemotactic protein (MCP)-3, a cytokine involved in cell survival and metastasis. Hence, this study proposed that desmethyl-lasiodiplodin inhibited growth and survival of MCF-7 through the induction of apoptosis. This anticancer effect is mediated, in part, by upregulation of apoptotic genes and downregulation of MCP-3. As desmethyl-lasiodiplodin elicited minimal impact against normal hepatocytes, our findings also imply its potential use as a specific apoptotic agent in breast cancer treatment. PMID:23764760

Hazalin, Nurul Aqmar M N; Lim, Siong Meng; Cole, Anthony L J; Majeed, Abu Bakar A; Ramasamy, Kalavathy

2013-09-01

353

Inhibition of Rho-ROCK signaling induces apoptotic and non-apoptotic PS exposure in cardiomyocytes via inhibition of flippase.  

PubMed

Subsequent to myocardial infarction, cardiomyocytes within the infarcted areas and border zones expose phosphatidylserine (PS) in the outer plasma membrane leaflet (flip-flop). We showed earlier that in addition to apoptosis, this flip-flop can be reversible in cardiomyocytes. We now investigated a possible role for Rho and downstream effector Rho-associated kinase (ROCK) in the process of (reversible) PS exposure and apoptosis in cardiomyocytes. In rat cardiomyoblasts (H9c2 cells) and isolated adult ventricular rat cardiomyocytes Clostridium difficile Toxin B (TcdB), a Rho GTPase family inhibitor, C3 transferase (C3), a Rho(A,B,C) inhibitor and the ROCK inhibitors Y27632 and H1152 were used to inhibit Rho-ROCK signaling. PS exposure was assessed via flow cytometry and fluorescent digital imaging microscopy using annexin V. Akt expression and phosphorylation were analyzed via Western blot, and Akt activity was inhibited by wortmannin. The cellular concentration activated caspase 3 was determined as a measure of apoptosis, and flippase activity was assessed via flow cytometry using NBD-labeled PS. TcdB, C3, Y27632 and H1152 all significantly increased PS exposure. TcdB, Y27632 and H1152 all significantly inhibited phosphorylation of the anti-apoptotic protein Akt and Akt inhibition by wortmannin lead to increased PS exposure. However, only TcdB and C3, but not ROCK- or Akt inhibition led to caspase 3 activation and thus apoptosis. Notably, pancaspase inhibitor zVAD only partially inhibited TcdB-induced PS exposure indicating the existence of apoptotic and non-apoptotic PS exposure. The induced PS exposure coincided with decreased flippase activity as measured with NBD-labeled PS flip-flop. In this study, we show a regulatory role for a novel signaling route, Rho-ROCK-flippase signaling, in maintaining asymmetrical membrane phospholipid distribution in cardiomyocytes. PMID:20691698

Krijnen, Paul A J; Sipkens, Jessica A; Molling, Johan W; Rauwerda, Jan A; Stehouwer, Coen D A; Muller, Alice; Paulus, Walter J; van Nieuw Amerongen, Geerten P; Hack, C Erik; Verhoeven, Arthur J; van Hinsbergh, Victor W M; Niessen, Hans W M

2010-11-01

354

Directing cancer cells to self-destruct with pro-apoptotic receptor agonists  

Microsoft Academic Search

Each day, the human body eliminates billions of unwanted cells by apoptotic suicide. Apoptosis provides an important barrier against cancer; however, specific mutations enable some tumour cells to escape apoptotic death and become more malignant. Two signalling pathways initiate apoptosis: one acts through intracellular Bcl-2 proteins, the other through cell-surface pro-apoptotic receptors. New molecular insights have inspired the development of

Avi Ashkenazi

2008-01-01

355

Interaction of Late Apoptotic and Necrotic Cells with Vitronectin  

PubMed Central

Background Vitronectin is an abundant plasma glycoprotein identified also as a part of extracellular matrix. Vitronectin is substantially enriched at sites of injured, fibrosing, inflamed, and tumor tissues where it is believed to be involved in wound healing and tissue remodeling. Little is known about the mechanism of vitronectin localization into the damaged tissues. Methodology/Principal Findings 2E12 antibody has been described to bind a subset of late apoptotic cells. Using immunoisolation followed by mass spectrometry, we identified the antigen recognized by 2E12 antibody as vitronectin. Based on flow cytometry, we described that vitronectin binds to the late apoptotic and necrotic cells in cell cultures in vitro as well as in murine thymus and spleen in vivo. Confocal microscopy revealed that vitronectin binds to an intracellular cytoplasmic structure after the membrane rupture. Conclusions/Significance We propose that vitronectin could serve as a marker of membrane disruption in necrosis and apoptosis for flow cytometry analysis. Moreover, we suggest that vitronectin binding to dead cells may represent one of the mechanisms of vitronectin incorporation into the injured tissues.

Stepanek, Ondrej; Brdicka, Tomas; Angelisova, Pavla; Horvath, Ondrej; Spicka, Jiri; Stockb