Science.gov

Sample records for caspase-2 mediated apoptotic

  1. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment

    PubMed Central

    Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, CR; Lechleiter, JD; Herman, B

    2016-01-01

    Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro-cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2−/− mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2−/− cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2−/− primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis. PMID:27019748

  2. Mitochondrial Release of Caspase-2 and -9 during the Apoptotic Process

    PubMed Central

    Susin, Santos A.; Lorenzo, Hans K.; Zamzami, Naoufal; Marzo, Isabel; Brenner, Catherine; Larochette, Nathanael; Prévost, Marie-Christine; Alzari, Pedro M.; Kroemer, Guido

    1999-01-01

    The barrier function of mitochondrial membranes is perturbed early during the apoptotic process. Here we show that the mitochondria contain a caspase-like enzymatic activity cleaving the caspase substrate Z-VAD.afc, in addition to three biological activities previously suggested to participate in the apoptotic process: (a) cytochrome c; (b) an apoptosis-inducing factor (AIF) which causes isolated nuclei to undergo apoptosis in vitro; and (c) a DNAse activity. All of these factors, which are biochemically distinct, are released upon opening of the permeability transition (PT) pore in a coordinate, Bcl-2–inhibitable fashion. Caspase inhibitors fully neutralize the Z-VAD.afc–cleaving activity, have a limited effect on the AIF activity, and have no effect at all on the DNase activities. Purification of proteins reacting with the biotinylated caspase substrate Z-VAD, immunodetection, and immunodepletion experiments reveal the presence of procaspase-2 and -9 in mitochondria. Upon induction of PT pore opening, these procaspases are released from purified mitochondria and become activated. Similarly, upon induction of apoptosis, both procaspases redistribute from the mitochondrion to the cytosol and are processed to generate enzymatically active caspases. This redistribution is inhibited by Bcl-2. Recombinant caspase-2 and -9 suffice to provoke full-blown apoptosis upon microinjection into cells. Altogether, these data suggest that caspase-2 and -9 zymogens are essentially localized in mitochondria and that the disruption of the outer mitochondrial membrane occurring early during apoptosis may be critical for their subcellular redistribution and activation. PMID:9892620

  3. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis

    PubMed Central

    Bronner, Denise N.; O'Riordan, Mary X. D.; He, Yongqun

    2013-01-01

    Programmed cell death (PCD) can play a crucial role in tuning the immune response to microbial infection. Although PCD can occur in different forms, all are mediated by a family of proteases called caspases. Caspase-2 is the most conserved caspase, however, its function in cell death is ill-defined. Previously we demonstrated that live attenuated cattle vaccine strain Brucella abortus RB51 induces caspase-2-mediated and caspase-1-independent PCD of infected macrophages. We also discovered that rough attenuated B. suis strain VTRS1 induces a caspase-2-mediated and caspase-1-independent proinflammatory cell death in infected macrophages, which was tentatively coined “caspase-2-mediated pyroptosis”. However, the mechanism of caspase-2-mediated cell death pathway remained unclear. In this study, we found that caspase-2 mediated proinflammatory cell death of RB51-infected macrophages and regulated many genes in different PCD pathways. We show that the activation of proapoptotic caspases-3 and -8 was dependent upon caspase-2. Caspase-2 regulated mitochondrial cytochrome c release and TNFα production, both of which are known to activate caspase-3 and caspase-8, respectively. In addition to TNFα, RB51-induced caspase-1 and IL-1β production was also driven by caspase-2-mediated mitochondrial dysfunction. Interestingly, pore formation, a phenomenon commonly associated with caspase-1-mediated pyroptosis, occurred; however, unlike its role in S. typhimurium-induced pyroptosis, pore formation did not contribute to RB51-induced proinflammatory cell death. Our data suggest that caspase-2 acts as an initiator caspase that mediates a novel RB51-induced hybrid cell death that simulates but differs from typical non-proinflammatory apoptosis and caspase-1-mediated proinflammatory pyroptosis. The initiator role of the caspase-2-mediated cell death was also conserved in cellular stress-induced cell death of macrophages treated with etoposide, naphthalene, or anti-Fas. Caspase-2 also regulated caspase-3 and -8 activation, as well as cell death in macrophages treated with each of the three reagents. Taken together, our data has demonstrated that caspase-2 can play an important role in mediating a proinflammatory response and a hybrid cell death that demonstrates features of both apoptosis and pyroptosis. PMID:24350060

  4. Proinflammatory caspase-2-mediated macrophage cell death induced by a rough attenuated Brucella suis strain.

    PubMed

    Chen, Fang; Ding, Xicheng; Ding, Ying; Xiang, Zuoshuang; Li, Xinna; Ghosh, Debashis; Schurig, Gerhardt G; Sriranganathan, Nammalwar; Boyle, Stephen M; He, Yongqun

    2011-06-01

    Brucella spp. are intracellular bacteria that cause an infectious disease called brucellosis in humans and many domestic and wildlife animals. B. suis primarily infects pigs and is pathogenic to humans. The macrophage-Brucella interaction is critical for the establishment of a chronic Brucella infection. Our studies showed that smooth virulent B. suis strain 1330 (S1330) prevented programmed cell death of infected macrophages and rough attenuated B. suis strain VTRS1 (a vaccine candidate) induced strong macrophage cell death. To further investigate the mechanism of VTRS1-induced macrophage cell death, microarrays were used to analyze temporal transcriptional responses of murine macrophage-like J774.A1 cells infected with S1330 or VTRS1. In total 17,685 probe sets were significantly regulated based on the effects of strain, time and their interactions. A miniTUBA dynamic Bayesian network analysis predicted that VTRS1-induced macrophage cell death was mediated by a proinflammatory gene (the tumor necrosis factor alpha [TNF-α] gene), an NF-κB pathway gene (the IκB-α gene), the caspase-2 gene, and several other genes. VTRS1 induced significantly higher levels of transcription of 40 proinflammatory genes than S1330. A Mann-Whitney U test confirmed the proinflammatory response in VTRS1-infected macrophages. Increased production of TNF-α and interleukin 1β (IL-1β) were also detected in the supernatants in VTRS1-infected macrophage cell culture. Hyperphosphorylation of IκB-α was observed in macrophages infected with VTRS1 but not S1330. The important roles of TNF-α and IκB-α in VTRS1-induced macrophage cell death were further confirmed by individual inhibition studies. VTRS1-induced macrophage cell death was significantly inhibited by a caspase-2 inhibitor but not a caspase-1 inhibitor. The role of caspase-2 in regulating the programmed cell death of VTRS1-infected macrophages was confirmed in another study using caspase-2-knockout mice. In summary, VTRS1 induces a proinflammatory, caspase-2- and NF-κB-mediated macrophage cell death. This unique cell death differs from apoptosis, which is not proinflammatory. It is also different from classical pyroptosis, which is caspase-1 mediated. PMID:21464087

  5. Additive effects of nicotine and high-fat diet on hepatocellular apoptosis in mice: Involvement of caspase 2 and inducible nitric oxide synthase-mediated intrinsic pathway signaling

    PubMed Central

    Ivey, R.; Desai, M.; Green, K.; Sinha-Hikim, I.; Friedman, T. C.; Sinha-Hikim, A. P.

    2015-01-01

    Smoking is a major risk factor for diabetes and cardiovascular disease and may contribute to non-alcoholic fatty liver disease (NAFLD). The health risk associated with smoking is exaggerated by obesity and is the leading causes of morbidity and mortality worldwide. We recently demonstrated that combined treatment with nicotine and a high-fat diet (HFD) triggers greater oxidative stress, activates hepatocellular apoptosis, and exacerbates HFD-induced hepatic steatosis. Given that hepatocellular apoptosis plays a pivotal role in the pathogenesis of NAFLD, using this model of exacerbated hepatic steatosis, we elucidated the signal transduction pathways involved in HFD plus nicotine-induced liver cell death. Adult C57BL6 male mice were fed a normal chow diet or HFD with 60% of calories derived from fat and received twice daily IP injections of 0.75 mg/kg BW of nicotine or saline for 10 weeks. High resolution light microscopy revealed markedly higher lipid accumulation in hepatocytes from mice received HFD plus nicotine, compared to mice on HFD alone. Addition of nicotine to HFD further resulted in an increase in the incidence of hepatocellular apoptosis and was associated with activation of caspase 2, induction of inducible nitric oxide synthase (iNOS), and perturbation of the BAX/BCL-2 ratio. Together, our data indicate the involvement of caspase 2 and iNOS –mediated apoptotic signaling in nicotine plus HFD-induced hepatocellular apoptosis. Targeting the caspase 2-mediated death pathway may have a protective role in development and progression of NAFLD. PMID:24830635

  6. Proinflammatory Caspase-2-Mediated Macrophage Cell Death Induced by a Rough Attenuated Brucella suis Strain ▿ †

    PubMed Central

    Chen, Fang; Ding, Xicheng; Ding, Ying; Xiang, Zuoshuang; Li, Xinna; Ghosh, Debashis; Schurig, Gerhardt G.; Sriranganathan, Nammalwar; Boyle, Stephen M.; He, Yongqun

    2011-01-01

    Brucella spp. are intracellular bacteria that cause an infectious disease called brucellosis in humans and many domestic and wildlife animals. B. suis primarily infects pigs and is pathogenic to humans. The macrophage-Brucella interaction is critical for the establishment of a chronic Brucella infection. Our studies showed that smooth virulent B. suis strain 1330 (S1330) prevented programmed cell death of infected macrophages and rough attenuated B. suis strain VTRS1 (a vaccine candidate) induced strong macrophage cell death. To further investigate the mechanism of VTRS1-induced macrophage cell death, microarrays were used to analyze temporal transcriptional responses of murine macrophage-like J774.A1 cells infected with S1330 or VTRS1. In total 17,685 probe sets were significantly regulated based on the effects of strain, time and their interactions. A miniTUBA dynamic Bayesian network analysis predicted that VTRS1-induced macrophage cell death was mediated by a proinflammatory gene (the tumor necrosis factor alpha [TNF-α] gene), an NF-κB pathway gene (the IκB-α gene), the caspase-2 gene, and several other genes. VTRS1 induced significantly higher levels of transcription of 40 proinflammatory genes than S1330. A Mann-Whitney U test confirmed the proinflammatory response in VTRS1-infected macrophages. Increased production of TNF-α and interleukin 1β (IL-1β) were also detected in the supernatants in VTRS1-infected macrophage cell culture. Hyperphosphorylation of IκB-α was observed in macrophages infected with VTRS1 but not S1330. The important roles of TNF-α and IκB-α in VTRS1-induced macrophage cell death were further confirmed by individual inhibition studies. VTRS1-induced macrophage cell death was significantly inhibited by a caspase-2 inhibitor but not a caspase-1 inhibitor. The role of caspase-2 in regulating the programmed cell death of VTRS1-infected macrophages was confirmed in another study using caspase-2-knockout mice. In summary, VTRS1 induces a proinflammatory, caspase-2- and NF-κB-mediated macrophage cell death. This unique cell death differs from apoptosis, which is not proinflammatory. It is also different from classical pyroptosis, which is caspase-1 mediated. PMID:21464087

  7. Glycogen Synthase Kinase-3β and Caspase-2 Mediate Ceramide- and Etoposide-Induced Apoptosis by Regulating the Lysosomal-Mitochondrial Axis

    PubMed Central

    Lin, Chiou-Feng; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Yu-Chih; Tseng, Po-Chun; Tsai, Tsung-Ting; Chen, Chia-Ling

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) regulates the sequential activation of caspase-2 and caspase-8 before mitochondrial apoptosis. Here, we report the regulation of Mcl-1 destabilization and cathepsin D-regulated caspase-8 activation by GSK-3β and caspase-2. Treatment with either the ceramide analogue C2-ceramide or the topoisomerase II inhibitor etoposide sequentially induced lysosomal membrane permeabilization (LMP), the reduction of mitochondrial transmembrane potential, and apoptosis. Following LMP, cathepsin D translocated from lysosomes to the cytoplasm, whereas inhibiting cathepsin D blocked mitochondrial apoptosis. Furthermore, cathepsin D caused the activation of caspase-8 but not caspase-2. Inhibiting GSK-3β and caspase-2 blocked Mcl-1 destabilization, LMP, cathepsin D re-localization, caspase-8 activation, and mitochondrial apoptosis. Expression of Mcl-1 was localized to the lysosomes, and forced expression of Mcl-1 prevented apoptotic signaling via the lysosomal-mitochondrial pathway. These results demonstrate the importance of GSK-3β and caspase-2 in ceramide- and etoposide-induced apoptosis through mechanisms involving Mcl-1 destabilization and the lysosomal-mitochondrial axis. PMID:26727221

  8. Metabolic Control of Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII)-mediated Caspase-2 Suppression by the B55β/Protein Phosphatase 2A (PP2A)*

    PubMed Central

    Huang, Bofu; Yang, Chih-Sheng; Wojton, Jeffrey; Huang, Nai-Jia; Chen, Chen; Soderblom, Erik J.; Zhang, Liguo; Kornbluth, Sally

    2014-01-01

    High levels of metabolic activity confer resistance to apoptosis. Caspase-2, an apoptotic initiator, can be suppressed by high levels of nutrient flux through the pentose phosphate pathway. This metabolic control is exerted via inhibitory phosphorylation of the caspase-2 prodomain by activated Ca2+/calmodulin-dependent protein kinase II (CaMKII). We show here that this activation of CaMKII depends, in part, on dephosphorylation of CaMKII at novel sites (Thr393/Ser395) and that this is mediated by metabolic activation of protein phosphatase 2A in complex with the B55β targeting subunit. This represents a novel locus of CaMKII control and also provides a mechanism contributing to metabolic control of apoptosis. These findings may have implications for metabolic control of the many CaMKII-controlled and protein phosphatase 2A-regulated physiological processes, because both enzymes appear to be responsive to alterations in glucose metabolized via the pentose phosphate pathway. PMID:25378403

  9. Measurement of caspase-2 activation during different anti-tumor drugs induced apoptosis by FRET technique

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zeng, Shaoqun; Luo, Qingming; Rong, Chen; Zhang, Zhihong

    2007-11-01

    Caspase-2 is important for the engagement of the mitochondrial apoptotic pathway, in the presence of DNA-damaging agents, such as cisplatin; however, the mechanism by which caspase-2 executes apoptosis remains obscure. In this study, we carried out the measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. A FRET probe was constructed that encoded a CRS (caspase-2 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using this probe, we found that during TRAIL-induced apoptosis, caspase-2 was not activated, and caspase-2 activation occurred in etoposide and cisplatin treated cells. However, during cisplatin-induced apoptosis caspase-2 activation was initiated much earlier than that of etoposide. Cisplatin and etoposide is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Most of anticancer drugs can induce apoptosis mediated by the activation of caspase pathway. Thus, the perfect synergistic effect group of multi-drug can be selected by using our FRET probe.

  10. The role of caspase-2 in stress-induced apoptosis

    PubMed Central

    Bouchier-Hayes, Lisa

    2010-01-01

    Abstract Caspase-2 is the most evolutionarily conserved of all the caspases, yet it has a poorly defined role in apoptotic pathways. This is mainly due to a dearth of techniques to determine the activation status of caspase-2 and the lack of an abnormal phenotype in caspase-2 deficient mice. Nevertheless, emerging evidence suggests that caspase-2 may have important functions in a number of stress-induced cell death pathways, in cell cycle maintenance and regulation of tumour progression. This review discusses recent advances that have been made to help elucidate the true role of this elusive caspase and the potential contribution of caspase-2 to the pathology of human diseases including cancer. PMID:20158568

  11. Caspase-2 Deficiency Enhances Aging-Related Traits in Mice

    PubMed Central

    Zhang, Yingpei; Padalecki, Susan S; Chaudhuri, Asish R; Waal, Eric De; Goins, Beth A; Grubbs, Barry; Ikeno, Yuji; Richardson, Arlan; Mundy, Gregory R; Herman, Brian

    2007-01-01

    Alteration of apoptotic activity has been observed in a number of tissues in aging mammals, but it remains unclear whether and/or how apoptosis may affect aging. Caspase-2 is a member of the cysteine protease family that plays a critical role in apoptosis. To understand the impact of compromised apoptosis function on mammalian aging, we conducted a comparative study on caspase-2 deficient mice and their wild-type littermates with a specific focus on the aging-related traits at advanced ages. We found that caspase-2 deficiency enhanced a number of traits commonly seen in premature aging animals. Loss of caspase-2 was associated with shortened maximum lifespan, impaired hair growth, increased bone loss, and reduced body fat content. In addition, we found that the livers of caspase-2 deficient mice had higher levels of oxidized proteins than those of age-matched wild-type mice, suggesting that caspase-2 deficiency compromised the animal's ability to clear oxidatively damaged cells. Collectively, these results suggest that caspase-2 deficiency affects aging in the mice. This study thus demonstrates for the first time that disruption of a key apoptotic gene has a significant impact on aging. PMID:17188333

  12. Natural indoles, indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM), attenuate staphylococcal enterotoxin B-mediated liver injury by downregulating miR-31 expression and promoting caspase-2-mediated apoptosis.

    PubMed

    Busbee, Philip B; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2015-01-01

    Staphylococcal enterotoxin B (SEB) is a potent superantigen capable of inducing inflammation characterized by robust immune cell activation and proinflammatory cytokine release. Exposure to SEB can result in food poisoning as well as fatal conditions such as toxic shock syndrome. In the current study, we investigated the effect of natural indoles including indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) on SEB-mediated liver injury. Injection of SEB into D-galactosamine-sensitized female C57BL/6 mice resulted in liver injury as indicated by an increase in enzyme aspartate transaminase (AST) levels, induction of inflammatory cytokines, and massive infiltration of immune cells into the liver. Administration of I3C and DIM (40 mg/kg), by intraperitonal injection, attenuated SEB-induced acute liver injury, as evidenced by decrease in AST levels, inflammatory cytokines and cellular infiltration in the liver. I3C and DIM triggered apoptosis in SEB-activated T cells primarily through activation of the intrinsic mitochondrial pathway. In addition, inhibitor studies involving caspases revealed that I3C and DIM-mediated apoptosis in these activated cells was dependent on caspase-2 but independent of caspase-8, 9 and 3. In addition, I3C and DIM caused a decrease in Bcl-2 expression. Both compounds also down-regulated miR-31, which directly targets caspase-2 and influences apoptosis in SEB-activated cells. Our data demonstrate for the first time that indoles can effectively suppress acute hepatic inflammation caused by SEB and that this may be mediated by decreased expression of miR-31 and consequent caspase-2-dependent apoptosis in T cells. PMID:25706292

  13. Natural Indoles, Indole-3-Carbinol (I3C) and 3,3’-Diindolylmethane (DIM), Attenuate Staphylococcal Enterotoxin B-Mediated Liver Injury by Downregulating miR-31 Expression and Promoting Caspase-2-Mediated Apoptosis

    PubMed Central

    Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2015-01-01

    Staphylococcal enterotoxin B (SEB) is a potent superantigen capable of inducing inflammation characterized by robust immune cell activation and proinflammatory cytokine release. Exposure to SEB can result in food poisoning as well as fatal conditions such as toxic shock syndrome. In the current study, we investigated the effect of natural indoles including indole-3-carbinol (I3C) and 3,3’-diindolylmethane (DIM) on SEB-mediated liver injury. Injection of SEB into D-galactosamine-sensitized female C57BL/6 mice resulted in liver injury as indicated by an increase in enzyme aspartate transaminase (AST) levels, induction of inflammatory cytokines, and massive infiltration of immune cells into the liver. Administration of I3C and DIM (40mg/kg), by intraperitonal injection, attenuated SEB-induced acute liver injury, as evidenced by decrease in AST levels, inflammatory cytokines and cellular infiltration in the liver. I3C and DIM triggered apoptosis in SEB-activated T cells primarily through activation of the intrinsic mitochondrial pathway. In addition, inhibitor studies involving caspases revealed that I3C and DIM-mediated apoptosis in these activated cells was dependent on caspase-2 but independent of caspase-8, 9 and 3. In addition, I3C and DIM caused a decrease in Bcl-2 expression. Both compounds also down-regulated miR-31, which directly targets caspase-2 and influences apoptosis in SEB-activated cells. Our data demonstrate for the first time that indoles can effectively suppress acute hepatic inflammation caused by SEB and that this may be mediated by decreased expression of miR-31 and consequent caspase-2-dependent apoptosis in T cells. PMID:25706292

  14. A nonapoptotic role for CASP2/caspase 2

    PubMed Central

    Tiwari, Meenakshi; Sharma, Lokendra K; Vanegas, Difernando; Callaway, Danielle A; Bai, Yidong; Lechleiter, James D; Herman, Brian

    2014-01-01

    CASP2/caspase 2 plays a role in aging, neurodegeneration, and cancer. The contributions of CASP2 have been attributed to its regulatory role in apoptotic and nonapoptotic processes including the cell cycle, DNA repair, lipid biosynthesis, and regulation of oxidant levels in the cells. Previously, our lab demonstrated CASP2-mediated modulation of autophagy during oxidative stress. Here we report the novel finding that CASP2 is an endogenous repressor of autophagy. Knockout or knockdown of CASP2 resulted in upregulation of autophagy in a variety of cell types and tissues. Reinsertion of Caspase-2 gene (Casp2) in mouse embryonic fibroblast (MEFs) lacking Casp2 (casp2−/−) suppresses autophagy, suggesting its role as a negative regulator of autophagy. Loss of CASP2-mediated autophagy involved AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and autophagy-related proteins, indicating the involvement of the canonical pathway of autophagy. The present study also demonstrates an important role for loss of CASP2-induced enhanced reactive oxygen species production as an upstream event in autophagy induction. Additionally, in response to a variety of stressors that induce CASP2-mediated apoptosis, casp2−/− cells demonstrate a further upregulation of autophagy compared with wild-type MEFs, and upregulated autophagy provides a survival advantage. In conclusion, we document a novel role for CASP2 as a negative regulator of autophagy, which may provide important insight into the role of CASP2 in various processes including aging, neurodegeneration, and cancer. PMID:24879153

  15. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2.

    PubMed

    Andersen, Joshua L; Johnson, Carrie E; Freel, Christopher D; Parrish, Amanda B; Day, Jennifer L; Buchakjian, Marisa R; Nutt, Leta K; Thompson, J Will; Moseley, M Arthur; Kornbluth, Sally

    2009-10-21

    The apoptotic initiator caspase-2 has been implicated in oocyte death, in DNA damage- and heat shock-induced death, and in mitotic catastrophe. We show here that the mitosis-promoting kinase, cdk1-cyclin B1, suppresses apoptosis upstream of mitochondrial cytochrome c release by phosphorylating caspase-2 within an evolutionarily conserved sequence at Ser 340. Phosphorylation of this residue, situated in the caspase-2 interdomain, prevents caspase-2 activation. S340 was susceptible to phosphatase 1 dephosphorylation, and an interaction between phosphatase 1 and caspase-2 detected during interphase was lost in mitosis. Expression of S340A non-phosphorylatable caspase-2 abrogated mitotic suppression of caspase-2 and apoptosis in various settings, including oocytes induced to undergo cdk1-dependent maturation. Moreover, U2OS cells treated with nocodazole were found to undergo mitotic catastrophe more readily when endogenous caspase-2 was replaced with the S340A mutant to lift mitotic inhibition. These data demonstrate that for apoptotic stimuli transduced by caspase-2, cell death is prevented during mitosis through the inhibitory phosphorylation of caspase-2 and suggest that under conditions of mitotic arrest, cdk1-cyclin B1 activity must be overcome for apoptosis to occur. PMID:19730412

  16. Antitumor triptycene bisquinones induce a caspase-independent release of mitochondrial cytochrome c and a caspase-2-mediated activation of initiator caspase-8 and -9 in HL-60 cells by a mechanism which does not involve Fas signaling.

    PubMed

    Perchellet, Elisabeth M; Wang, Yang; Weber, Rebeka L; Lou, Kaiyan; Hua, Duy H; Perchellet, Jean-Pierre H

    2004-11-01

    Synthetic triptycene analogs (TT code number) mimic the antitumor effects of daunorubicin (DAU) in vitro, but have the advantage of blocking nucleoside transport, inhibiting both DNA topoisomerase I and II activities, and retaining their efficacy in multidrug-resistant (MDR) tumor cells. Since TT bisquinones induce poly(ADP-ribose) polymerase-1 (PARP-1) cleavage at 6 h and internucleosomal DNA fragmentation at 24 h, which are, respectively, early and late markers of apoptosis, these antitumor drugs were tested for their ability to trigger the release of mitochondrial cytochrome c (Cyt c) and the caspase activation cascade in the HL-60 cell system. Based on their ability to reduce the viability of wild-type, drug-sensitive HL-60-S cells in the nanomolar range, six lead antitumor TT bisquinones have been identified so far: TT2, TT13, TT16, TT19, TT24 and TT26. In accord with the fact that effector caspase-3 is responsible for PARP-1 cleavage, 4 microM concentrations of DAU and these TT bisquinones all maximally induce caspase-3 activity at 6 h in HL-60-S cells, an effect which persists when the drugs are removed after a 1-h pulse treatment. Since caspase-3 may be activated by initiator caspase-9 and -8, it is significant to show that such caspase activation cascade is induced by 4 microM DAU and TT bisquinones at 6 h in HL-60-S cells. Although the relationship is not perfect, the ability of TT analogs to induce caspase-3, -8 and -9 activities may be linked to their quinone functionality and cytotoxicity. Interestingly, 4 microM concentrations of TT bisquinones retain their ability to induce caspase-3, -8 and -9 activities at 6 h in the MDR HL-60-RV cell line where 4 microM DAU becomes totally ineffective. The release of mitochondrial Cyt c is also detected within 6 h in HL-60-S cells treated with 4 microM DAU or TT bisquinones, a finding consistent with the fact that Cyt c is the apoptotic trigger that activates caspase-9. Caspase-2 and -8 may both act upstream of mitochondria to promote Cyt c release, but caspase-2 is already maximally activated 6 h after 4 microM DAU or TT13 treatments, whereas DAU- or TT-induced caspase-8 and -9 activities peak at 9 h. Pre-treatments with 15 microM of the caspase-2 inhibitor benzyloxycarbonyl (z)-Val-Asp-Val-Ala-Asp (VDVAD)-fluoromethyl ketone (fmk) totally block DAU- and TT13-induced caspase-2, -8 and -9 activities, whereas pre-treatments with 15 microM of the caspase-8 inhibitor z-Ile-Glu-Thr-Asp (IETD)-fmk prevent DAU and TT13 from inducing caspase-8 activities without affecting their caspase-2- and -9-inducing activities, suggesting that the induction of apical caspase-2 activity by these drugs may be a critical upstream event required for the activation of other downstream caspases, including caspase-9 and the mitochondrial amplification loop through caspase-8. However, the mechanisms by which DAU and TT13 induce the release of mitochondrial Cyt c appear to be caspase-independent since they are both insensitive to similar pre-treatments with 100 microM of these specific caspase-2 and -8 inhibitors. Moreover, pre-treatments with 10 microg/ml of the antagonistic anti-Fas DX2 and ZB4 monoclonal antibodies (mAbs), and the neutralizing anti-Fas ligand (FasL) NOK-1 mAb are all unable to prevent DAU and TT13 from inducing Cyt c release and caspase-2, -8 and -9 activities, suggesting that the Fas-FasL signaling pathway is not involved in the mechanism by which these quinone antitumor drugs trigger apoptosis in HL-60 cells. PMID:15514562

  17. Caspase-2 is required for cell death induced by cytoskeletal disruption.

    PubMed

    Ho, L H; Read, S H; Dorstyn, L; Lambrusco, L; Kumar, S

    2008-05-29

    Caspase-2 is one of the most conserved caspases, yet its biological function remains a matter of controversy. In the present article we analysed mouse embryonic fibroblasts (MEFs) from caspase-2 knockout mice for their sensitivity to various apoptosis inducing agents. We found that cell death induced by drugs that disrupt cytoskeleton is significantly inhibited in Casp2(-/-) MEFs. These drugs included zoledronic acid, vincristine, cytochalasin D and paclitaxel. We demonstrate that MEFs lacking Casp2 show clonogenic survival following drug treatment, whereas all Casp2(+/+) MEFs die, indicating that caspase-2 is required for apoptosis induced by cytoskeletal disruption. We further found that caspase-2 mediates apoptosis via Piddosome, Bid and Bax activation, and cytochrome c release. In the absence of caspase-2, Bid and Bax activation, and cytochrome c release are significantly delayed following drug treatment. Our data provide strong support for a context-dependent function of caspase-2 in apoptosis. PMID:18193089

  18. Co-receptors are dispensable for tethering receptor-mediated phagocytosis of apoptotic cells

    PubMed Central

    Park, B; Lee, J; Moon, H; Lee, G; Lee, D-H; Hoon Cho, J; Park, D

    2015-01-01

    During efferocytosis, phagocytic cells recognize dying cells by receptors binding to ligands specifically exposed on apoptotic cells. Multiple phagocytic receptors and some of their signaling pathways have been identified. However, the downstream pathways of tethering receptors that secure apoptotic cells remain elusive. It is generally assumed that tethering receptors induce signaling to mediate engulfment via interacting with co-receptors or other engulfment receptors located nearby. However, it is poorly understood whether co-receptors for tethering receptors exist during efferocytosis, and, if they do, whether they are indispensable for this process. Here, we address this issue using glycophosphatidylinositol (GPI)-anchored annexin A5 (Anxa5-GPI), an artificial tethering receptor without a putative co-receptor. Phagocytes expressing Anxa5-GPI exhibited enhanced binding of apoptotic cells, resulting in promoted ingestion of apoptotic cells in a phosphatidylserine-dependent manner. Anxa5-GPI-induced phagocytosis of apoptotic cells relied on the known cytoskeletal engulfment machinery but partially depended on the Elmo-Dock-Rac module or the integrin pathway. In addition, Anxa5-GPI-mediated efferocytosis provoked anti-inflammatory responses. Taken together, our work suggests that co-receptors are dispensable for tethering receptor-induced efferocytosis and that tethering receptors mediate the engulfment of apoptotic cells through multiple engulfment signaling pathways. PMID:26018733

  19. Co-receptors are dispensable for tethering receptor-mediated phagocytosis of apoptotic cells.

    PubMed

    Park, B; Lee, J; Moon, H; Lee, G; Lee, D-H; Cho, J Hoon; Park, D

    2015-01-01

    During efferocytosis, phagocytic cells recognize dying cells by receptors binding to ligands specifically exposed on apoptotic cells. Multiple phagocytic receptors and some of their signaling pathways have been identified. However, the downstream pathways of tethering receptors that secure apoptotic cells remain elusive. It is generally assumed that tethering receptors induce signaling to mediate engulfment via interacting with co-receptors or other engulfment receptors located nearby. However, it is poorly understood whether co-receptors for tethering receptors exist during efferocytosis, and, if they do, whether they are indispensable for this process. Here, we address this issue using glycophosphatidylinositol (GPI)-anchored annexin A5 (Anxa5-GPI), an artificial tethering receptor without a putative co-receptor. Phagocytes expressing Anxa5-GPI exhibited enhanced binding of apoptotic cells, resulting in promoted ingestion of apoptotic cells in a phosphatidylserine-dependent manner. Anxa5-GPI-induced phagocytosis of apoptotic cells relied on the known cytoskeletal engulfment machinery but partially depended on the Elmo-Dock-Rac module or the integrin pathway. In addition, Anxa5-GPI-mediated efferocytosis provoked anti-inflammatory responses. Taken together, our work suggests that co-receptors are dispensable for tethering receptor-induced efferocytosis and that tethering receptors mediate the engulfment of apoptotic cells through multiple engulfment signaling pathways. PMID:26018733

  20. Evidence for a Novel, Caspase-8-Independent, Fas Death Domain-Mediated Apoptotic Pathway

    PubMed Central

    Katsanis, Emmanuel

    2004-01-01

    Certain caspase-8 null cell lines demonstrate resistance to Fas-induced apoptosis, indicating that the Fas/FasL apoptotic pathway may be caspase-8-dependent. Some reports, however, have shown that Fas induces cell death independent of caspase-8. Here we provide evidence for an alternative, caspase-8-independent, Fas death domain-mediated apoptotic pathway. Murine 12B1-D1 cells express procaspase-3, -8, and -9, which were activated upon the dimerization of Fas death domain. Bid was cleaved and mitochondrial transmembrane potential was disrupted in this apoptotic process. All apoptotic events were completely blocked by the broad-spectrum caspase inhibitor Z-VAD-FMK, but not by other peptide caspase inhibitors. Cyclosporin A (CsA), which inhibits mitochondrial transition pore permeability, blocked neither pore permeability disruption nor caspase activation. However, CsA plus caspase-8 inhibitor blocked all apoptotic events of 12B1-D1 induced by Fas death domain dimerization. Our data therefore suggest that there is a novel, caspase-8-independent, Z-VAD-FMK-inhibitable, apoptotic pathway in 12B1-D1 cells that targets mitochondria directly. PMID:15123887

  1. Real-time detection of caspase-2 activation in a single living HeLa cell during cisplatin-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zhang, Zhihong; Yang, Jie; Zeng, Shaoqun; Liu, Bifeng; Luo, Qingming

    2006-03-01

    Caspase-2 is important for the mitochondrial apoptotic pathway, however, the mechanism by which caspase-2 executes apoptosis remains obscure. We carry out the first measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. Two FRET probes are constructed that each encoded a CRS (caspase-2 or caspase-3 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using these probes, we found that during cisplatin-induced apoptosis, caspase-2 activation occurred more slowly than did activation of caspase-3; additionally, caspase-2 activation was initiated much earlier than that of caspase-3.

  2. PIDDosome-independent tumor suppression by Caspase-2

    PubMed Central

    Manzl, C; Peintner, L; Krumschnabel, G; Bock, F; Labi, V; Drach, M; Newbold, A; Johnstone, R; Villunger, Andreas

    2012-01-01

    The PIDDosome, a multiprotein complex constituted of the ‘p53-induced protein with a death domain (PIDD), ‘receptor-interacting protein (RIP)-associated ICH-1/CED-3 homologous protein with a death domain' (RAIDD) and pro-Caspase-2 has been defined as an activating platform for this apoptosis-related protease. PIDD has been implicated in p53-mediated cell death in response to DNA damage but also in DNA repair and nuclear factor kappa-light-chain enhancer (NF-κB) activation upon genotoxic stress, together with RIP-1 kinase and Nemo/IKKγ. As all these cellular responses are critical for tumor suppression and deregulated expression of individual PIDDosome components has been noted in human cancer, we investigated their role in oncogenesis induced by DNA damage or oncogenic stress in gene-ablated mice. We observed that Pidd or Caspase-2 failed to suppress lymphoma formation triggered by γ-irradiation or 3-methylcholanthrene-driven fibrosarcoma development. In contrast, Caspase-2 showed tumor suppressive capacity in response to aberrant c-Myc expression, which did not rely on PIDD, the BH3-only protein Bid (BH3 interacting domain death agonist) or the death receptor ligand Trail (TNF-related apoptosis-inducing ligand), but associated with reduced rates of p53 loss and increased extranodal dissemination of tumor cells. In contrast, Pidd deficiency associated with abnormal M-phase progression and delayed disease onset, indicating that both proteins are differentially engaged upon oncogenic stress triggered by c-Myc, leading to opposing effects on tumor-free survival. PMID:22595758

  3. BAD-mediated apoptotic pathway is associated with human cancer development

    PubMed Central

    STICKLES, XIAOMANG B; MARCHION, DOUGLAS C; BICAKU, ELONA; SAWAH, ENTIDHAR AL; ABBASI, FOROUGH; XIONG, YIN; ZGHEIB, NADIM BOU; BOAC, BERNADETTE M; ORR, BRIAN C; JUDSON, PATRICIA L; BERRY, AMY; HAKAM, ARDESHIR; WENHAM, ROBERT M; APTE, SACHIN M; BERGLUND, ANDERS E; LANCASTER, JOHNATHAN M

    2015-01-01

    The malignant transformation of normal cells is caused in part by aberrant gene expression disrupting the regulation of cell proliferation, apoptosis, senescence and DNA repair. Evidence suggests that the Bcl-2 antagonist of cell death (BAD)-mediated apoptotic pathway influences cancer chemoresistance. In the present study, we explored the role of the BAD-mediated apoptotic pathway in the development and progression of cancer. Using principal component analysis to derive a numeric score representing pathway expression, we evaluated clinico-genomic datasets (n=427) from corresponding normal, pre-invasive and invasive cancers of different types, such as ovarian, endometrial, breast and colon cancers in order to determine the associations between the BAD-mediated apoptotic pathway and cancer development. Immunofluorescence was used to compare the expression levels of phosphorylated BAD [pBAD (serine-112, -136 and -155)] in immortalized normal and invasive ovarian, colon and breast cancer cells. The expression of the BAD-mediated apoptotic pathway phosphatase, PP2C, was evaluated by RT-qPCR in the normal and ovarian cancer tissue samples. The growth-promoting effects of pBAD protein levels in the immortalized normal and cancer cells were assessed using siRNA depletion experiments with MTS assays. The expression of the BAD-mediated apoptotic pathway was associated with the development and/or progression of ovarian (n=106, p<0.001), breast (n=185, p<0.0008; n=61, p=0.04), colon (n=22, p<0.001) and endometrial (n=33, p<0.001) cancers, as well as with ovarian endometriosis (n=20, p<0.001). Higher pBAD protein levels were observed in the cancer cells compared to the immortalized normal cells, whereas PP2C gene expression was lower in the cancer compared to the ovarian tumor tissue samples (n=76, p<0.001). The increased pBAD protein levels after the depletion of PP2C conferred a growth advantage to the immortalized normal and cancer cells. The BAD-mediated apoptotic pathway is thus associated with the development of human cancers likely influenced by the protein levels of pBAD. PMID:25653146

  4. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its anti-apoptotic actions

    PubMed Central

    Sen, Nilkantha; Paul, Bindu D.; Gadalla, Moataz M.; Mustafa, Asif K.; Sen, Tanusree; Xu, Risheng; Kim, Seyun; Snyder, Solomon H.

    2011-01-01

    Summary Nuclear factor κB (NF-κB) is an anti-apoptotic transcription factor. We show that the anti-apoptotic actions of NF-κB are mediated by hydrogen sulfide (H2S) synthesized by cystathionine gamma-lyase (CSE). TNFα treatment triples H2S generation by stimulating binding of SP1 to the CSE promoter. H2S generated by CSE stimulates DNA binding and gene activation of NF-κB, processes that are abolished in CSE deleted mice. As CSE deletion leads to decreased glutathione levels, resultant oxidative stress may contribute to alterations in CSE mutant mice. H2S acts by sulfhydrating the p65 subunit of NF-κB at cysteine-38, which promotes its binding to the co-activator ribosomal protein S3 (RPS3). Sulfhydration of p65 predominates early following TNFα treatment, then declines and is succeeded by a reciprocal enhancement of p65 nitrosylation. Anti-apoptotic influences of NF-κB, which are markedly diminished in CSE mutant mice. Thus, sulfhydration of NF-κB appears to be a physiologic determinant of its anti-apoptotic transcriptional activity. PMID:22244329

  5. CDIP, a novel pro-apoptotic gene, regulates TNFalpha-mediated apoptosis in a p53-dependent manner.

    PubMed

    Brown, Lauren; Ongusaha, Pat P; Kim, Hyung-Gu; Nuti, Shanthy; Mandinova, Anna; Lee, Ji Won; Khosravi-Far, Roya; Aaronson, Stuart A; Lee, Sam W

    2007-07-25

    We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-alpha expression tightly correlates with CDIP expression, and that inhibition of TNF-alpha signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-alpha is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-alpha impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 --> CDIP --> TNF-alpha apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy. PMID:17599062

  6. CDIP, a novel pro-apoptotic gene, regulates TNFα-mediated apoptosis in a p53-dependent manner

    PubMed Central

    Brown, Lauren; Ongusaha, Pat P; Kim, Hyung-Gu; Nuti, Shanthy; Mandinova, Anna; Lee, Ji Won; Khosravi-Far, Roya; Aaronson, Stuart A; Lee, Sam W

    2007-01-01

    We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-α expression tightly correlates with CDIP expression, and that inhibition of TNF-α signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-α is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-α impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 → CDIP → TNF-α apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy. PMID:17599062

  7. Tigecycline prevents LPS-induced release of pro-inflammatory and apoptotic mediators in neuronal cells.

    PubMed

    Yagnik, Radhi M; Benzeroual, Kenza E

    2013-03-01

    Pro-inflammatory and pro-apoptotic mediators have been involved in the pathogenesis of neurodegenerative diseases. Tigecycline (Tig), a glycylcycline antibiotic and an analog of Minocycline, is shown to exert anti-inflammatory effects that are distinct from its anti-microbial activity. Its neuroprotective mechanism is unknown. In this study, we investigated the direct protective mechanisms of tigecycline against lipopolysaccharide (LPS)-induced Rat pheochromocytoma (PC12) cells. The results showed that tigecycline significantly attenuated the expression and the release of nuclear factor-kappa beta (NF-κB), tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β), as well as nitric oxide (NO) levels in LPS-induced PC12 cells. In addition, tigecycline dose-dependently decreased cytochrome c release and caspase-3 activity. This later finding corroborated the results of decreased pro-apoptotic Bad, and increased anti-apoptotic Bcl-2 protein expression thus, confirming a neuroprotective effect of the drug in differentiated PC12 cells induced with LPS. The findings of our study suggest new targets for tigecycline and support the potential for tigecycline to be investigated as a therapeutic agent for neurodegenerative disorders. PMID:23200736

  8. C. elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor

    PubMed Central

    Wang, Xiaochen; Li, Weida; Zhao, Dongfeng; Liu, Bin; Shi, Yong; Chen, Baohui; Yang, Hengwen; Guo, Pengfei; Geng, Xin; Shang, Zhihong; Peden, Erin; Kage-Nakadai, Eriko; Mitani, Shohei; Xue, Ding

    2010-01-01

    During apoptosis, dying cells are swiftly removed by phagocytes. How apoptotic cells are recognized by phagocytes is not fully understood. Here we report the identification and characterization of the C. elegans ttr-52 gene, which is required for efficient cell corpse engulfment and encodes a transthyretin-like protein. The TTR-52 protein is expressed in and secreted from C. elegans endoderm and clusters around apoptotic cells. Genetic analysis indicates that TTR-52 acts in the cell corpse engulfment pathway mediated by CED-1, CED-6, and CED-7 and affects clustering of the phagocyte receptor CED-1 around apoptotic cells. Interestingly, TTR-52 recognizes surface exposed phosphatidylserine (PS) in vivo and binds to both PS and the extracellular domain of CED-1 in vitro. Therefore, TTR-52 is the first bridging molecule identified in C. elegans that mediates recognition of apoptotic cells by cross-linking the PS “eat me” signal with the phagocyte receptor CED-1. PMID:20526330

  9. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD)

    PubMed Central

    Okada, Yasunobu; Maeno, Emi; Shimizu, Takahiro; Dezaki, Katsuya; Wang, Jun; Morishima, Shigeru

    2001-01-01

    A fundamental property of animal cells is the ability to regulate their own cell volume. Even under hypotonic stress imposed by either decreased extracellular or increased intracellular osmolarity, the cells can re-adjust their volume after transient osmotic swelling by a mechanism known as regulatory volume decrease (RVD). In most cell types, RVD is accomplished mainly by KCl efflux induced by parallel activation of K+ and Cl− channels. We have studied the molecular mechanism of RVD in a human epithelial cell line (Intestine 407). Osmotic swelling results in a significant increase in the cytosolic Ca2+ concentration and thereby activates intermediate-conductance Ca2+-dependent K+ (IK) channels. Osmotic swelling also induces ATP release from the cells to the extracellular compartment. Released ATP stimulates purinergic ATP (P2Y2) receptors, thereby inducing phospholipase C-mediated Ca2+ mobilization. Thus, RVD is facilitated by stimulation of P2Y2 receptors due to augmentation of IK channels. In contrast, stimulation of another G protein-coupled Ca2+-sensing receptor (CaR) enhances the activity of volume-sensitive outwardly rectifying Cl− channels, thereby facilitating RVD. Therefore, it is possible that Ca2+ efflux stimulated by swelling-induced and P2Y2 receptor-mediated intracellular Ca2+ mobilization activates the CaR, thereby secondarily upregulating the volume-regulatory Cl− conductance. On the other hand, the initial process towards apoptotic cell death is coupled to normotonic cell shrinkage, called apoptotic volume decrease (AVD). Stimulation of death receptors, such as TNFα receptor and Fas, induces AVD and thereafter biochemical apoptotic events in human lymphoid (U937), human epithelial (HeLa), mouse neuroblastoma × rat glioma hybrid (NG108-15) and rat phaeochromocytoma (PC12) cells. In those cells exhibiting AVD, facilitation of RVD is always observed. Both AVD induction and RVD facilitation as well as succeeding apoptotic events can be abolished by prior treatment with a blocker of volume-regulatory K+ or Cl− channels, suggesting that AVD is caused by normotonic activation of ion channels that are normally involved in RVD under hypotonic conditions. Therefore, it is likely that G protein-coupled receptors involved in RVD regulation and death receptors triggering AVD may share common downstream signals which should give us key clues to the detailed mechanisms of volume regulation and survival of animal cells. In this Topical Review, we look at the physiological ionic mechanisms of cell volume regulation and cell death-associated volume changes from the facet of receptor-mediated cellular processes. PMID:11283221

  10. ER-β mediates 17 β-estradiol attenuation of HIV-1 Tat-induced apoptotic signaling

    PubMed Central

    Adams, Sheila M.; Aksenova, Marina V.; Aksenov, Michael Y.; Mactutus, Charles F.; Booze, Rosemarie M.

    2010-01-01

    The protective actions of estrogen have been well evaluated in various models of neurodegeneration. These neuroprotective mechanisms may include a direct neuronal anti-apoptotic effect as estrogen modulates actions of key regulators of the mitochondrial/intrinsic apoptotic cascade. We tested the ability of estrogen to protect against apoptotic signaling in cortical cell cultures exposed to Tat 1-86 (50nM), and additionally, whether the beneficial actions of estrogen involved an estrogen receptor sensitive mechanism. We demonstrated that estrogen pretreatment significantly delayed Tat-induced cell death in primary cortical cultures. Pretreatment with 17β-estradiol (10nM) attenuated the increased expression of anti-apoptotic protein Bcl-2, pro-apoptotic protein Bax and activation of caspases linked to mitochondrial apoptotic pathway following Tat exposure. In addition, select components of apoptotic pathway signaling appear more sensitive to estrogen receptor (ER) activation, as the addition of ER antagonist ICI 182,780 reversed estrogen downregulation of Bax and caspase 3, while estrogen effects on Tat-induced Bcl-2 and caspase 9 expression were maintained. Moreover, the addition of preferential ERα and ERβ antagonists (MPP dihydrochloride and PHTPP) indicated that estrogen effects on caspase 3 may be mediated by both receptor subtypes, while ERβ was more involved in estrogen effects on Bax. Our data suggest that estrogen intervenes against HIV Tat-induced cortical neuronal dysfunction via intersecting mitochondrial apoptotic pathway signaling in an ER-sensitive manner. PMID:20340172

  11. The nuclear receptor Nr4a1 mediates anti-inflammatory effects of apoptotic cells.

    PubMed

    Ipseiz, Natacha; Uderhardt, Stefan; Scholtysek, Carina; Steffen, Martin; Schabbauer, Gernot; Bozec, Aline; Schett, Georg; Krönke, Gerhard

    2014-05-15

    Uptake of apoptotic cells (ACs) by macrophages ensures the nonimmunogenic clearance of dying cells, as well as the maintenance of self-tolerance to AC-derived autoantigens. Upon ingestion, ACs exert an inhibitory influence on the inflammatory signaling within the phagocyte. However, the molecular signals that mediate these immune-modulatory properties of ACs are incompletely understood. In this article, we show that the phagocytosis of apoptotic thymocytes was enhanced in tissue-resident macrophages where this process resulted in the inhibition of NF-κB signaling and repression of inflammatory cytokines, such as IL-12. In parallel, ACs induced a robust expression of a panel of immediate early genes, which included the Nr4a subfamily of nuclear receptors. Notably, deletion of Nr4a1 interfered with the anti-inflammatory effects of ACs in macrophages and restored both NF-κB signaling and IL-12 expression. Accordingly, Nr4a1 mediated the anti-inflammatory properties of ACs in vivo and was required for maintenance of self-tolerance in the murine model of pristane-induced lupus. Thus, our data point toward a key role for Nr4a1 as regulator of the immune response to ACs and of the maintenance of tolerance to "dying self." PMID:24740500

  12. Characterization and expression analysis of a caspase-2 in an invertebrate echinoderm sea cumber Apostichopus japonicus.

    PubMed

    Ye, Shigen; Gao, Yang; Wang, Shengnan; Li, Qiang; Li, Ruijun; Li, Hua

    2016-01-01

    Caspase-2 is the most evolutionarily conserved member of the caspase family which mediates the programmed cell death and plays crucial roles in key cellular processes. In this study, a caspase-2 homolog was identified and functionally characterized in sea cucumber Apostichopus japonicus, which we named AjCASP. The full-length cDNA consists of 2100 bp with an ORF encoding a protein of 378 amino acids. The deduced amino acid sequence shows that AjCASP consists of a conserved CARD-CASP2 domain and a CASs domain containing two active residues, two proteolytic cleavage residues, a substrate pocket and a dimer interface as well. In addition, a p20 large subunit with a characteristic five-peptide motif (QACRG) and a p10 small subunit in C-terminal were identified in CASs domain. Above data demonstrated that AjCASP is similar to CED-3 (the caspase-2 homolog of nematode Caenorhabditis elegans), which is further confirmed by phylogenetic tree analysis. AjCASP was ubiquitously expressed in sea cucumber and the obviously higher expression level was observed in coelomocyte, respiratory tree and intestine. Real-time PCR analyses further demonstrated that AjCASP was significantly induced by LPS. Taken together, these results strongly suggest that AjCASP is a caspase-2 homolog and it may be involved in invertebrate immune response, especially in eliminating and degrading invading pathogens. PMID:26687532

  13. Ceramide mediates the apoptotic response of WEHI 231 cells to anti-immunoglobulin, corticosteroids and irradiation.

    PubMed

    Quintans, J; Kilkus, J; McShan, C L; Gottschalk, A R; Dawson, G

    1994-07-29

    We demonstrate for the first time how immature B cells kill themselves. Ceramide is identified as the mediator of apoptosis in the murine B lymphoma line WEHI 231 commonly used as a model to study clonal deletion in B lymphocytes. We show that exogenous ceramide induces apoptosis in WEHI 231 cells. To maintain self tolerance, immature lymphocytes readily undergo apoptotic death in response to the cross-linking of their antigen-specific receptors. We demonstrate that endogenously produced ceramide accumulates in WEHI 231 cells exposed to anti-IgM, an antigen surrogate before the onset of apoptosis. We also show that two other inducers of apoptosis, irradiation and dexamethasone, cause intracellular accumulation of ceramide. PMID:8048941

  14. Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: A role for the IAPs

    SciTech Connect

    Cheung, Herman H.; Lynn Kelly, N.; Liston, Peter; Korneluk, Robert G. . E-mail: bob@mgcheo.med.uottawa.ca

    2006-07-15

    Dysregulation of apoptosis is involved in a wide spectrum of disease ranging from proliferative to degenerative disorders. An emerging area of study in apoptosis is the critical contribution of the endoplasmic reticulum (ER) in both mitochondrial and ER specific apoptosis pathways. Here we show that brefeldin A and tunicamycin-mediated ER stress lead to caspase-dependent apoptosis involving caspase-2. Confocal microscopy and subcellular fractionation indicate that caspase-2 is localized to the ER, and following ER stress, the processing of caspase-2 and -9 is an early event preceding the activation of caspase-3 and -7 and the cleavage of the caspase substrate poly(ADP-ribose) polymerase (PARP). Inhibition and silencing of either caspase-2 or caspase-9 suppress ER stress-induced apoptosis, as demonstrated by annexin V binding. Similarly, transduction with an adenovirus encoding either Inhibitors of Apoptosis (IAP) protein HIAP1/c-IAP2 or HIAP2/c-IAP1 also suppresses ER stress-induced apoptosis. However, among HIAP1, HIAP2 and XIAP, only HIAP2 binds and inhibits caspase-2. Our results thus indicate a novel mechanism by which HIAP2 can regulate ER-initiated apoptosis by modulating the activity of caspase-2.

  15. Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells

    PubMed Central

    Dransfield, I; Zagórska, A; Lew, E D; Michail, K; Lemke, G

    2015-01-01

    Billions of inflammatory leukocytes die and are phagocytically cleared each day. This regular renewal facilitates the normal termination of inflammatory responses, suppressing pro-inflammatory mediators and inducing their anti-inflammatory counterparts. Here we investigate the role of the receptor tyrosine kinase (RTK) Mer and its ligands Protein S and Gas6 in the initial recognition and capture of apoptotic cells (ACs) by macrophages. We demonstrate extremely rapid binding kinetics of both ligands to phosphatidylserine (PtdSer)-displaying ACs, and show that ACs can be co-opsonized with multiple PtdSer opsonins. We further show that macrophage phagocytosis of ACs opsonized with Mer ligands can occur independently of a requirement for αV integrins. Finally, we demonstrate a novel role for Mer in the tethering of ACs to the macrophage surface, and show that Mer-mediated tethering and subsequent AC engulfment can be distinguished by their requirement for Mer kinase activity. Our results identify Mer as a receptor uniquely capable of both tethering ACs to the macrophage surface and driving their subsequent internalization. PMID:25695599

  16. Trypanosome apoptotic factor mediates apoptosis in human brain vascular endothelial cells.

    PubMed

    Stiles, Jonathan K; Whittaker, Joseph; Sarfo, Bismark Y; Thompson, Winston E; Powell, Michael D; Bond, Vincent C

    2004-02-01

    Human African trypanosomiasis (HAT, sleeping sickness) is a devastating disease caused by infection with Trypanosoma brucei ssp. These hemoflagellates invade the central nervous system (CNS) and induce meningo-encephalitis, neuronal demyelination, blood-brain-barrier (BBB) dysfunction, peri-vascular infiltration, astrocytosis and apoptosis. The molecular basis of these manifestations is unclear. We previously reported T. brucei-induced apoptosis in cerebella and brain-stem nuclei in mice at peak parasitemia. Here, we identify and characterize a trypanosome apoptotic factor (TAF) expressed by T. brucei that mediates apoptosis in mouse-brain and human-brain vascular endothelial cells (HBVEC). Molecular, biochemical and apoptotic assays, coupled with surface enhanced laser desorption ionization (SELDI), and protein database analyses were utilized to show that TAF is a soluble, non-serum, parasite-derived, heat-labile protein that causes DNA laddering and apoptosis in HBVEC. Protein-chip assay analysis of the SELDI spectrum of infected mouse serum and procyclic culture supernatants revealed a single major peak at 8652.7 Da. Further database analysis indicated that the TAF may be a procyclin or procyclin derivative. A synthetic 27 mer peptide (ProEP2-1), corresponding to a region common to EP procyclins (EP2-1), induced apoptosis in HBVEC and in cerebella of mice similar to that induced in T. brucei-infected mice. Western blot analysis utilizing an anti-procyclin monoclonal antibody (mAb) revealed that TAF is present in infected but not uninfected brain tissue lysates. Furthermore, this mAb blocked T. brucei- and ProEP2-1-induced apoptosis in HBVEC in vitro. We conclude that T. brucei TAF or its derivative(s) play a major role in the apoptosis associated with HAT pathology. PMID:14698435

  17. Caspase-2 modulates osteoclastogenesis through down-regulating oxidative stress.

    PubMed

    Callaway, Danielle A; Riquelme, Manuel A; Sharma, Ramaswamy; Lopez-Cruzan, Marisa; Herman, Brian A; Jiang, Jean X

    2015-07-01

    The loss of caspase-2 (Casp-2) in mice results in an osteopenic phenotype associated with increased numbers of osteoclasts in vivo. In this study, we show that Casp-2 is involved in osteoclastogenesis. Protein levels of Casp-2 decrease during the differentiation of macrophages to osteoclasts. Furthermore, siRNA-mediated Casp-2 knockdown in osteoclast precursors or differentiation of bone marrow macrophage (BMM) precursors from Casp2(-/-) mice results in increased osteoclast numbers and tartrate-resistant acid phosphatase (TRAP) activity. Casp2(-/-) osteoclasts are larger in size compared to wild-type osteoclasts and exhibited increased numbers of nuclei, perhaps due to increased precursor fusion. The loss of Casp-2 did not alter earlier stages of differentiation, but had a greater consequence on later stages involving NFATc1 auto-amplification and pre-osteoclast fusion. We have previously shown that the loss of Casp-2 results in increased oxidative stress in the bone. Reactive oxygen species (ROS) is known to play a critical role in late osteoclast differentiation and we show that total ROS and specifically, mitochondrial ROS, significantly increased in Casp2(-/-) BMM precursors after RANKL administration, with a concomitant reduction in FoxO3a and its target antioxidant enzymes, catalase and superoxide 2 (SOD2). Because mitochondrial ROS has been identified as a putative regulator of the later stages of differentiation, the heightened ROS levels in Casp2(-/-) cells likely promote precursor fusion and increased osteoclast numbers. In conclusion, our results indicate a novel role of Casp-2 in the osteoclast as a modulator of total and mitochondrial ROS and osteoclast differentiation. PMID:25796569

  18. Caspase-2 protects against oxidative stress in vivo.

    PubMed

    Shalini, S; Puccini, J; Wilson, C H; Finnie, J; Dorstyn, L; Kumar, S

    2015-09-17

    Caspase-2 belongs to the caspase family of cysteine proteases with established roles in apoptosis. Recently, caspase-2 has been implicated in nonapoptotic functions including maintenance of genomic stability and tumor suppression. Our previous studies demonstrated that caspase-2 also regulates cellular redox status and delays the onset of several ageing-related traits. In the current study, we tested stress tolerance ability in caspase-2-deficient (Casp2(-/-)) mice by challenging both young and old mice with a low dose of the potent reactive oxygen species (ROS) generator, PQ that primarily affects lungs. In both groups of mice, PQ induced pulmonary damage. However, the lesions in caspase-2 knockout mice were consistently and reproducibly more severe than those in wild-type (WT) mice. Furthermore, serum interleukin (IL)-1β and IL-6 levels were higher in PQ-exposed aged Casp2(-/-) mice indicating increased inflammation. Interestingly, livers from Casp2(-/-) mice displayed karyomegaly, a feature commonly associated with ageing and aneuploidy. Given that Casp2(-/-) mice show impaired antioxidant defense, we tested oxidative damage in these mice. Protein oxidation significantly increased in PQ-injected old Casp2(-/-) mice. Moreover, FoxO1, SOD2 and Nrf2 expression levels were reduced and induction of superoxide dismutase (SOD) and glutathione peroxidase activity was not observed in PQ-treated Casp2(-/-) mice. Strong c-Jun amino-terminal kinase (JNK) activation was observed in Casp2(-/-) mice, indicative of increased stress. Together, our data strongly suggest that caspase-2 deficiency leads to increased cellular stress largely because these mice fail to respond to oxidative stress by upregulating their antioxidant defense mechanism. This makes the mice more vulnerable to exogenous challenges and may partly explain the shorter lifespan of Casp2(-/-) mice. PMID:25531319

  19. KAISO, a critical regulator of p53-mediated transcription of CDKN1A and apoptotic genes

    PubMed Central

    Koh, Dong-In; Han, Dohyun; Ryu, Hoon; Choi, Won-Il; Jeon, Bu-Nam; Kim, Min-Kyeong; Kim, Youngsoo; Kim, Jin Young; Parry, Lee; Clarke, Alan R.; Reynolds, Albert B.; Hur, Man-Wook

    2014-01-01

    An unresolved issue in genotoxic stress response is identification of induced regulatory proteins and how these activate tumor suppressor p53 to determine appropriate cell responses. Transcription factor KAISO was previously described to repress transcription following binding to methylated DNA. In this study, we show that KAISO is induced by DNA damage in p53-expressing cells and then interacts with the p53–p300 complex to increase acetylation of p53 K320 and K382 residues, although decreasing K381 acetylation. Moreover, the p53 with this particular acetylation pattern shows increased DNA binding and potently induces cell cycle arrest and apoptosis by activating transcription of CDKN1A (cyclin-dependent kinase inhibitor 1) and various apoptotic genes. Analogously, in Kaiso KO mouse embryonic fibroblast cells, p53-to-promoter binding and up-regulation of p21 and apoptosis gene expression is significantly compromised. KAISO may therefore be a critical regulator of p53-mediated cell cycle arrest and apoptosis in response to various genotoxic stresses in mammalian cells. PMID:25288747

  20. KAISO, a critical regulator of p53-mediated transcription of CDKN1A and apoptotic genes.

    PubMed

    Koh, Dong-In; Han, Dohyun; Ryu, Hoon; Choi, Won-Il; Jeon, Bu-Nam; Kim, Min-Kyeong; Kim, Youngsoo; Kim, Jin Young; Parry, Lee; Clarke, Alan R; Reynolds, Albert B; Hur, Man-Wook

    2014-10-21

    An unresolved issue in genotoxic stress response is identification of induced regulatory proteins and how these activate tumor suppressor p53 to determine appropriate cell responses. Transcription factor KAISO was previously described to repress transcription following binding to methylated DNA. In this study, we show that KAISO is induced by DNA damage in p53-expressing cells and then interacts with the p53-p300 complex to increase acetylation of p53 K320 and K382 residues, although decreasing K381 acetylation. Moreover, the p53 with this particular acetylation pattern shows increased DNA binding and potently induces cell cycle arrest and apoptosis by activating transcription of CDKN1A (cyclin-dependent kinase inhibitor 1) and various apoptotic genes. Analogously, in Kaiso KO mouse embryonic fibroblast cells, p53-to-promoter binding and up-regulation of p21 and apoptosis gene expression is significantly compromised. KAISO may therefore be a critical regulator of p53-mediated cell cycle arrest and apoptosis in response to various genotoxic stresses in mammalian cells. PMID:25288747

  1. Role of Apoptotic Proteins in REC-2006 Mediated Radiation Protection in Hepatoma Cell Lines

    PubMed Central

    Singh, Pankaj Kumar; Kumar, Raj; Sharma, Ashok; Arora, Rajesh; Chawla, Raman; Jain, Swatantra Kumar; Tripathi, Rajendra Prasad; Sharma, Rakesh Kumar

    2011-01-01

    The present study was carried out to evaluate the role of apoptotic proteins in REC-2006-mediated radiation protection in hepatoma cell lines. REC-2006 treatment 2 h before irradiation strongly inhibited the cleavage of ATM and PARP-1 in HepG2 cells. The expression of nuclear apoptosis inducing factor (AIF) was found to be more inhibited (~17%) in HepG2 cells in REC-2006 + radiation-treated group. More inhibition (~33%) of cytochrome c was observed in HepG2 cells upon REC-2006 treatment 2 h prior irradiation. Similarly, significantly more (P<.05) inhibition of Apaf-1, caspase-9 and caspase-3 was observed in REC-2006 + radition-treated group in HepG2 cells. REC-2006 treatment restored the expression of ICAD in HepG2 cells; however, no restoration was observed in Hep3B cells. Lower nuclear to cytoplasmic CAD ratio was observed in HepG2 cells (~0.6) as compared with Hep3B cells (~1.2) in REC-2006 + radiation-treated group. In conclusion, REC-2006 rendered higher protection in HepG2 cells by inhibiting the expression and translocation of AIF, inhibiting the cleavage of ATM and PARP-1, restoring the expression of ICAD, inhibiting the release of cytochrome c and thus modulating the expression of Apaf-1 caspase-9 and activity of caspase-3. PMID:21799693

  2. Tie-mediated signal from apoptotic cells protects stem cells in Drosophila melanogaster

    PubMed Central

    Xing, Yalan; Su, Tin Tin; Ruohola-Baker, Hannele

    2015-01-01

    Many types of normal and cancer stem cells are resistant to killing by genotoxins, but the mechanism for this resistance is poorly understood. Here we show that adult stem cells in Drosophila melanogaster germline and midgut are resistant to ionizing radiation (IR) or chemically induced apoptosis and dissect the mechanism for this protection. We find that upon IR the receptor tyrosine kinase Tie/Tie-2 is activated, leading to the upregulation of microRNA bantam that represses FOXO-mediated transcription of pro-apoptotic Smac/DIA-BLO orthologue, Hid in germline stem cells. Knockdown of the IR-induced putative Tie ligand, Pvf1, a functional homologue of human Angiopoietin, in differentiating daughter cells renders germline stem cells sensitive to IR, suggesting that the dying daughters send a survival signal to protect their stem cells for future repopulation of the tissue. If conserved in cancer stem cells, this mechanism may provide therapeutic options for the eradication of cancer. PMID:25959206

  3. Apoptotic CD8 T-lymphocytes disable macrophage-mediated immunity to Trypanosoma cruzi infection.

    PubMed

    Cabral-Piccin, M P; Guillermo, L V C; Vellozo, N S; Filardy, A A; Pereira-Marques, S T; Rigoni, T S; Pereira-Manfro, W F; DosReis, G A; Lopes, M F

    2016-01-01

    Chagas disease is caused by infection with the protozoan Trypanosoma cruzi. CD8 T-lymphocytes help to control infection, but apoptosis of CD8 T cells disrupts immunity and efferocytosis can enhance parasite infection within macrophages. Here, we investigate how apoptosis of activated CD8 T cells affects M1 and M2 macrophage phenotypes. First, we found that CD8 T-lymphocytes and inflammatory monocytes/macrophages infiltrate peritoneum during acute T. cruzi infection. We show that treatment with anti-Fas ligand (FasL) prevents lymphocyte apoptosis, upregulates type-1 responses to parasite antigens, and reduces infection in macrophages cocultured with activated CD8 T cells. Anti-FasL skews mixed M1/M2 macrophage profiles into polarized M1 phenotype, both in vitro and following injection in infected mice. Moreover, inhibition of T-cell apoptosis induces a broad reprogramming of cytokine responses and improves macrophage-mediated immunity to T. cruzi. The results indicate that disposal of apoptotic CD8 T cells increases M2-macrophage differentiation and contributes to parasite persistence. PMID:27195678

  4. Fatty acid synthase inhibition engages a novel caspase-2 regulatory mechanism to induce ovarian cancer cell death.

    PubMed

    Yang, C-S; Matsuura, K; Huang, N-J; Robeson, A C; Huang, B; Zhang, L; Kornbluth, S

    2015-06-01

    Blockade of fatty acid synthase (FASN), a key enzyme involved in de novo lipogenesis, results in robust death of ovarian cancer cells. However, known FASN inhibitors have proven to be poor therapeutic agents due to their ability to induce cachexia. Therefore, we sought to identify additional targets in the pathway linking FASN inhibition and cell death whose modulation might kill ovarian cancer cells without the attendant side effects. Here, we show that the initiator caspase-2 is required for robust death of ovarian cancer cells induced by FASN inhibitors. REDD1 (also known as Rtp801 or DDIT4), a known mTOR inhibitor previously implicated in the response to FASN inhibition, is a novel caspase-2 regulator in this pathway. REDD1 induction is compromised in ovarian cancer cells that do not respond to FASN inhibition. Inhibition of FASN induced an ATF4-dependent transcriptional induction of REDD1; downregulation of REDD1 prevented orlistat-induced activation of caspase-2, as monitored by its cleavage, proteolytic activity and dimerization. Abrogation of REDD1-mediated suppression of mTOR by TSC2 RNAi protected FASN inhibitor-sensitive ovarian cancer cells (OVCA420 cells) from orlistat-induced death. Conversely, suppression of mTOR with the chemical inhibitors PP242 or rapamycin-sensitized DOV13, an ovarian cancer cell line incapable of inducing REDD1, to orlistat-induced cell death through caspase-2. These findings indicate that REDD1 positively controls caspase-2-dependent cell death of ovarian cancer cells by inhibiting mTOR, placing mTOR as a novel upstream regulator of caspase-2 and supporting the possibility of manipulating mTOR to enhance caspase-2 activation in ovarian cancer. PMID:25151963

  5. The BCL-2 family: key mediators of the apoptotic response to targeted anti-cancer therapeutics

    PubMed Central

    Hata, Aaron N.; Engelman, Jeffrey A.; Faber, Anthony C.

    2016-01-01

    The ability of cancer cells to suppress apoptosis is critical for carcinogenesis. The BCL-2 family proteins comprise the sentinel network that regulates the mitochondrial or intrinsic apoptotic response. Recent advances in our understanding of apoptotic signaling pathways have enabled methods to identify cancers that are primed to undergo apoptosis, and have revealed potential biomarkers that may predict which cancers will undergo apoptosis in response to specific therapies. Complementary efforts have focused on developing novel drugs that directly target anti-apoptotic BCL-2 family proteins. In this review, we summarize the current knowledge of the role of BCL-2 family members in cancer development and response to therapy, focusing on targeted therapeutics, recent progress in the development of apoptotic biomarkers, and therapeutic strategies designed to overcome deficiencies in apoptosis. PMID:25895919

  6. A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells

    PubMed Central

    Yang, Hengwen; Chen, Yu-Zen; Zhang, Yi; Wang, Xiaohui; Zhao, Xiang; Godfroy, James I.; Liang, Qian; Zhang, Man; Zhang, Tianying; Yuan, Quan; Royal, Mary Ann; Driscoll, Monica; Xia, Ning-Shao; Yin, Hang; Xue, Ding

    2014-01-01

    The conserved phosphatidylserine receptor (PSR) was first identified as a receptor for phosphatidylserine, an "eat-me" signal exposed by apoptotic cells. However, several studies suggest that PSR may also act as an arginine demethylase, a lysyl hydroxylase, or an RNA binding protein through its N-terminal JmjC domain. How PSR might execute drastically different biochemical activities, and whether they are physiologically significant, remain unclear. Here we report that a lysine-rich motif in the extracellular domain of PSR-1, the Caenorhabditis elegans PSR, mediates specific phosphatidylserine binding in vitro and clearance of apoptotic cells in vivo. This motif also mediates phosphatidylserine-induced oligomerization of PSR-1, suggesting a mechanism by which PSR-1 activates phagocytosis. Mutations in the phosphatidylserine-binding motif, but not in its Fe(II) binding site critical for the JmjC activity, abolish PSR-1 phagocytic function. Moreover, PSR-1 enriches and clusters around apoptotic cells during apoptosis. These results establish that PSR-1 is a conserved, phosphatidylserine-recognizing phagocyte receptor. PMID:25564762

  7. A novel anti-proliferative role of HMGA2in induction of apoptosis through caspase 2in primary human fibroblast cells

    PubMed Central

    Shi, Xi; Tian, Baoqing; Ma, Wenlong; Zhang, Na; Qiao, Yuehua; Li, Xiaoxue; Zhang, Yu; Huang, Baiqu; Lu, Jun

    2014-01-01

    The HMGA2 (high-mobility group AT-hook) protein has previously been shown as an oncoprotein, whereas ectopic expression of HMGA2 is found to induce growth arrest in primary cells. The precise mechanisms underlying this phenomenon remain to be unravelled. In the present study, we determined that HMGA2 was able to induce apoptosis in WI38 primary human cells. We show that WI38 cells expressing high level of HMGA2 were arrested at G2/M phase and exhibited apoptotic nuclear phenotypes. Meanwhile, the cleaved caspase 3 (cysteine aspartic acid-specific protease 3) was detected 8days after HMGA2 overexpression. Flow cytometric analysis confirmed that the ratio of cells undergoing apoptosis increased dramatically. Concurrently, other major apoptotic markers were also detected, including the up-regulation of p53, Bax and cleaved caspase 9, down-regulation of Bcl-2; as well as release of cytochrome c from the mitochondria. We further demonstrate that the shRNA (small-hairpin RNA)-mediated Apaf1 (apoptotic protease activating factor 1) silencing partially rescued the HMGA2-induced apoptosis, which was accompanied by the decrease of cleaved caspase-3 level and a decline of cell death ratio. Our results also reveal that ?H2A was accumulated in nuclei during the HMGA2-induced apoptosis along with the up-regulation of cleaved caspase 2, suggesting that the HMGA2-induced apoptosis was dependent on the pathway of DNA damage. Overall, the present study unravelled a novel function of HMGA2 in induction of apoptosis in human primary cell lines, and provided clues for clarification of the mechanistic action of HMGA2 in addition to its function as an oncoprotein. PMID:25300915

  8. Mucin 1 gene silencing inhibits the growth of SMMC-7721 human hepatoma cells through Bax-mediated mitochondrial and caspase-8-mediated death receptor apoptotic pathways.

    PubMed

    Yuan, Hongyan; Wang, Juan; Wang, Fengli; Zhang, Nannan; Li, Qiongshu; Xie, Fei; Chen, Tanxiu; Zhai, Ruiping; Wang, Fang; Guo, Yingying; Ni, Weihua; Tai, Guixiang

    2015-11-01

    Mucin 1 (MUC1) is an oncogene that has a crucial role in the pathogenesis and progression of the majority of epithelial malignant tumors. Our previous study demonstrated that MUC1 gene silencing inhibited the growth of SMMC‑7721 cells in vitro and in vivo, however, whether this growth inhibition is associated with apoptotic cell death remains to be elucidated. In the present study, it was found that MUC1 gene silencing not only resulted in the inhibition of SMMC‑7721 cell growth, determined using a clone formation assay in vitro and a tumor xenograft mouse model with an in vivo imaging system, but also induced apoptotic alterations in SMMC‑7721 cells, determined using Hoechst 33342 staining, flow cytometry with an Annexin V-PE staining and a DNA ladder assay. Further investigation using western blotting revealed that cytochrome c was released from the mitochondria into the cytoplasm, and caspase‑8 and caspase‑9 were activated in MUC1 gene‑silenced SMMC‑7721 cells. The pro‑apoptotic protein Bcl‑2‑associated X protein (Bax) and the tumor suppressor p53 were increased, while the anti‑apoptotic protein B‑cell lymphoma 2 was decreased in MUC1 gene‑silenced cells. In addition, results from the co‑immunoprecipitation experiments demonstrated that the MUC1 cytoplasmic tail can bind directly to Bax or caspase‑8 and these interactions were reduced upon MUC1 gene silencing in SMMC‑7721 cells. The above results indicate that MUC1 gene silencing induces growth inhibition in SMMC‑7721 cells through Bax‑mediated mitochondrial and caspase-8-mediated death receptor apoptotic pathways. PMID:26398332

  9. Mucin 1 gene silencing inhibits the growth of SMMC-7721 human hepatoma cells through Bax-mediated mitochondrial and caspase-8-mediated death receptor apoptotic pathways

    PubMed Central

    YUAN, HONGYAN; WANG, JUAN; WANG, FENGLI; ZHANG, NANNAN; LI, QIONGSHU; XIE, FEI; CHEN, TANXIU; ZHAI, RUIPING; WANG, FANG; GUO, YINGYING; NI, WEIHUA; TAI, GUIXIANG

    2015-01-01

    Mucin 1 (MUC1) is an oncogene that has a crucial role in the pathogenesis and progression of the majority of epithelial malignant tumors. Our previous study demonstrated that MUC1 gene silencing inhibited the growth of SMMC-7721 cells in vitro and in vivo, however, whether this growth inhibition is associated with apoptotic cell death remains to be elucidated. In the present study, it was found that MUC1 gene silencing not only resulted in the inhibition of SMMC-7721 cell growth, determined using a clone formation assay in vitro and a tumor xenograft mouse model with an in vivo imaging system, but also induced apoptotic alterations in SMMC-7721 cells, determined using Hoechst 33342 staining, flow cytometry with an Annexin V-PE staining and a DNA ladder assay. Further investigation using western blotting revealed that cytochrome c was released from the mitochondria into the cytoplasm, and caspase-8 and caspase-9 were activated in MUC1 gene-silenced SMMC-7721 cells. The pro-apoptotic protein Bcl-2-associated X protein (Bax) and the tumor suppressor p53 were increased, while the anti-apoptotic protein B-cell lymphoma 2 was decreased in MUC1 gene-silenced cells. In addition, results from the co-immunoprecipitation experiments demonstrated that the MUC1 cytoplasmic tail can bind directly to Bax or caspase-8 and these interactions were reduced upon MUC1 gene silencing in SMMC-7721 cells. The above results indicate that MUC1 gene silencing induces growth inhibition in SMMC-7721 cells through Bax-mediated mitochondrial and caspase-8-mediated death receptor apoptotic pathways. PMID:26398332

  10. Clathrin and AP2 Are Required for Phagocytic Receptor-Mediated Apoptotic Cell Clearance in Caenorhabditis elegans

    PubMed Central

    Liu, Xuezhao; Zhang, Yuanya; Liang, Jingjing; Qi, Xiaying; Du, Hongwei; Zou, Wei; Chen, Lianwan; Chai, Yongping; Ou, Guangshuo; Miao, Long; Wang, Yingchun; Yang, Chonglin

    2013-01-01

    Clathrin and the multi-subunit adaptor protein complex AP2 are central players in clathrin-mediated endocytosis by which the cell selectively internalizes surface materials. Here, we report the essential role of clathrin and AP2 in phagocytosis of apoptotic cells. In Caenorhabditis elegans, depletion of the clathrin heavy chain CHC-1 and individual components of AP2 led to a significant accumulation of germ cell corpses, which resulted from defects in both cell corpse engulfment and phagosome maturation required for corpse removal. CHC-1 and AP2 components associate with phagosomes in an inter-dependent manner. Importantly, we found that the phagocytic receptor CED-1 interacts with the α subunit of AP2, while the CED-6/Gulp adaptor forms a complex with both CHC-1 and the AP2 complex, which likely mediates the rearrangement of the actin cytoskeleton required for cell corpse engulfment triggered by the CED-1 signaling pathway. In addition, CHC-1 and AP2 promote the phagosomal association of LST-4/Snx9/18/33 and DYN-1/dynamin by forming a complex with them, thereby facilitating the maturation of phagosomes necessary for corpse degradation. These findings reveal a non-classical role of clathrin and AP2 and establish them as indispensable regulators in phagocytic receptor-mediated apoptotic cell clearance. PMID:23696751

  11. Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C delta.

    PubMed

    García-Fernández, Luis F; Losada, Alejandro; Alcaide, Victoria; Alvarez, Alberto M; Cuadrado, Ana; González, Laura; Nakayama, Keiko; Nakayama, Keiichi I; Fernández-Sousa, José María; Muñoz, Alberto; Sánchez-Puelles, José María

    2002-10-24

    Aplidin, a new antitumoural drug presently in phase II clinical trials, has shown both in vitro and in vivo activity against human cancer cells. Aplidin effectively inhibits cell viability by triggering a canonical apoptotic program resulting in alterations in cell morphology, caspase activation, and chromatin fragmentation. Pro-apoptotic concentrations of Aplidin induce early oxidative stress, which results in a rapid and persistent activation of both JNK and p38 MAPK and a biphasic activation of ERK. Inhibition of JNK and p38 MAPK blocks the apoptotic program induced by Aplidin demonstrating its central role in the integration of the cellular stress induced by the drug. JNK and p38 MAPK activation results in downstream cytochrome c release and activation of caspases -9 and -3 and PARP cleavage, demonstrating the mediation of the mitochondrial apoptotic pathway in this process. We also demonstrate that protein kinase C delta (PKC-delta) mediates the cytotoxic effect of Aplidin and that it is concomitantly processed and activated late in the apoptotic process by a caspase mediated mechanism. Remarkably, cells deficient in PKC-delta show enhanced survival upon drug treatment as compared to its wild type counterpart. PKC-delta thus appears as an important component necessary for full caspase cascade activation and execution of apoptosis, which most probably initiates a positive feedback loop further amplifying the apoptotic process. PMID:12386816

  12. Argon Mediates Anti-Apoptotic Signaling and Neuroprotection via Inhibition of Toll-Like Receptor 2 and 4

    PubMed Central

    Ulbrich, Felix; Kaufmann, Kai; Roesslein, Martin; Wellner, Franziska; Auwärter, Volker; Kempf, Jürgen; Loop, Torsten; Buerkle, Hartmut; Goebel, Ulrich

    2015-01-01

    Purpose Recently, the noble gas argon attracted significant attention due to its neuroprotective properties. However, the underlying molecular mechanism is still poorly understood. There is growing evidence that the extracellular regulated kinase 1/2 (ERK1/2) is involved in Argon´s protective effect. We hypothesized that argon mediates its protective effects via the upstream located toll-like receptors (TLRs) 2 and 4. Methods Apoptosis in a human neuroblastoma cell line (SH-SY5Y) was induced using rotenone. Argon treatment was performed after induction of apoptosis with different concentrations (25, 50 and 75 Vol% in oxygen 21 Vol%, carbon dioxide and nitrogen) for 2 or 4 hours respectively. Apoptosis was analyzed using flow cytometry (annexin-V (AV)/propidiumiodide (PI)) staining, caspase-3 activity and caspase cleavage. TLR density on the cells’ surface was analyzed using FACS and immunohistochemistry. Inhibition of TLR signaling and extracellular regulated kinase 1/2 (ERK1/2) were assessed by western blot, activity assays and FACS analysis. Results Argon 75 Vol% treatment abolished rotenone-induced apoptosis. This effect was attenuated dose- and time-dependently. Argon treatment was accompanied with a significant reduction of TLR2 and TLR4 receptor density and protein expression. Moreover, argon mediated increase in ERK1/2 phosphorylation was attenuated after inhibition of TLR signaling. ERK1/2 and TLR signaling inhibitors abolished the anti-apoptotic and cytoprotective effects of argon. Immunohistochemistry results strengthened these findings. Conclusion These findings suggest that argon-mediated anti-apoptotic and neuroprotective effects are mediated via inhibition of TLR2 and TLR4. PMID:26624894

  13. Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans

    PubMed Central

    Shen, Qian; He, Bin; Lu, Nan; Conradt, Barbara; Grant, Barth D.; Zhou, Zheng

    2013-01-01

    The engulfment and subsequent degradation of apoptotic cells by phagocytes is an evolutionarily conserved process that efficiently removes dying cells from animal bodies during development. Here, we report that clathrin heavy chain (CHC-1), a membrane coat protein well known for its role in receptor-mediated endocytosis, and its adaptor epsin (EPN-1) play crucial roles in removing apoptotic cells in Caenorhabditis elegans. Inactivating epn-1 or chc-1 disrupts engulfment by impairing actin polymerization. This defect is partially suppressed by inactivating UNC-60, a cofilin ortholog and actin server/depolymerization protein, further indicating that EPN-1 and CHC-1 regulate actin assembly during pseudopod extension. CHC-1 is enriched on extending pseudopods together with EPN-1, in an EPN-1-dependent manner. Epistasis analysis places epn-1 and chc-1 in the same cell-corpse engulfment pathway as ced-1, ced-6 and dyn-1. CED-1 signaling is necessary for the pseudopod enrichment of EPN-1 and CHC-1. CED-1, CED-6 and DYN-1, like EPN-1 and CHC-1, are essential for the assembly and stability of F-actin underneath pseudopods. We propose that in response to CED-1 signaling, CHC-1 is recruited to the phagocytic cup through EPN-1 and acts as a scaffold protein to organize actin remodeling. Our work reveals novel roles of clathrin and epsin in apoptotic-cell internalization, suggests a Hip1/R-independent mechanism linking clathrin to actin assembly, and ties the CED-1 pathway to cytoskeleton remodeling. PMID:23861060

  14. Cracking the cytotoxicity code: apoptotic induction of 10-acetylirciformonin B is mediated through ROS generation and mitochondrial dysfunction.

    PubMed

    Shih, Huei-Chuan; El-Shazly, Mohamed; Juan, Yung-Shun; Chang, Chao-Yuan; Su, Jui-Hsin; Chen, Yu-Cheng; Shih, Shou-Ping; Chen, Huei-Mei; Wu, Yang-Chang; Lu, Mei-Chin

    2014-05-01

    A marine furanoterpenoid derivative, 10-acetylirciformonin B (10AB), was found to inhibit the proliferation of leukemia, hepatoma, and colon cancer cell lines, with selective and significant potency against leukemia cells. It induced DNA damage and apoptosis in leukemia HL 60 cells. To fully understand the mechanism behind the 10AB apoptotic induction against HL 60 cells, we extended our previous findings and further explored the precise molecular targets of 10AB. We found that the use of 10AB increased apoptosis by 8.9%-87.6% and caused disruption of mitochondrial membrane potential (MMP) by 15.2%-95.2% in a dose-dependent manner, as demonstrated by annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of HL 60 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by 10AB, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of 10AB. The results of a cell-free system assay indicated that 10AB could act as a topoisomerase catalytic inhibitor through the inhibition of topoisomerase II?. On the protein level, the expression of the anti-apoptotic proteins Bcl-xL and Bcl-2, caspase inhibitors XIAP and survivin, as well as hexokinase II were inhibited by the use of 10AB. On the other hand, the expression of the pro-apoptotic protein Bax was increased after 10AB treatment. Taken together, our results suggest that 10AB-induced apoptosis is mediated through the overproduction of ROS and the disruption of mitochondrial metabolism. PMID:24857964

  15. Regulation of Apoptotic Mediators Reveals Dynamic Responses to Thermal Stress in the Reef Building Coral Acropora millepora

    PubMed Central

    Pernice, Mathieu; Dunn, Simon R.; Miard, Thomas; Dufour, Sylvie; Dove, Sophie; Hoegh-Guldberg, Ove

    2011-01-01

    Background Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts. Methodology/Principal Findings The present study reports the impacts of different stressors (colchicine and heat stress) on three phases of apoptosis: (i) the potential initiation by differential expression of Bcl-2 members, (ii) the execution of apoptotic events by activation of caspase 3-like proteases and (iii) and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity. Conclusions/Significance In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in corals exposed to sudden environmental changes. PMID:21283671

  16. Cracking the Cytotoxicity Code: Apoptotic Induction of 10-Acetylirciformonin B is Mediated through ROS Generation and Mitochondrial Dysfunction

    PubMed Central

    Shih, Huei-Chuan; El-Shazly, Mohamed; Juan, Yung-Shun; Chang, Chao-Yuan; Su, Jui-Hsin; Chen, Yu-Cheng; Shih, Shou-Ping; Chen, Huei-Mei; Wu, Yang-Chang; Lu, Mei-Chin

    2014-01-01

    A marine furanoterpenoid derivative, 10-acetylirciformonin B (10AB), was found to inhibit the proliferation of leukemia, hepatoma, and colon cancer cell lines, with selective and significant potency against leukemia cells. It induced DNA damage and apoptosis in leukemia HL 60 cells. To fully understand the mechanism behind the 10AB apoptotic induction against HL 60 cells, we extended our previous findings and further explored the precise molecular targets of 10AB. We found that the use of 10AB increased apoptosis by 8.9%–87.6% and caused disruption of mitochondrial membrane potential (MMP) by 15.2%–95.2% in a dose-dependent manner, as demonstrated by annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of HL 60 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by 10AB, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of 10AB. The results of a cell-free system assay indicated that 10AB could act as a topoisomerase catalytic inhibitor through the inhibition of topoisomerase IIα. On the protein level, the expression of the anti-apoptotic proteins Bcl-xL and Bcl-2, caspase inhibitors XIAP and survivin, as well as hexokinase II were inhibited by the use of 10AB. On the other hand, the expression of the pro-apoptotic protein Bax was increased after 10AB treatment. Taken together, our results suggest that 10AB-induced apoptosis is mediated through the overproduction of ROS and the disruption of mitochondrial metabolism. PMID:24857964

  17. Potent antitumor efficacy of ST13 for colorectal cancer mediated by oncolytic adenovirus via mitochondrial apoptotic cell death.

    PubMed

    Yang, Min; Cao, Xin; Yu, Ming Can; Gu, Jin Fa; Shen, Zong Hou; Ding, Miao; Yu, De Bing; Zheng, Shu; Liu, Xin yuan

    2008-04-01

    ST13 is a cofactor of heat shock protein 70 (Hsp70). To date, all data since the discovery of ST13 in 1993 until more recent studies in 2007 have proved that ST13 is downregulated in tumors and it was proposed to be a tumor suppressor gene, but no work reported its antitumor effect and apoptotic mechanism. In the work described in this paper, ST13 was inserted into ZD55, an oncolytic adenovirus with the E1B 55-kDa gene deleted, to form ZD55-ST13, which exerts an excellent antitumor effect in vitro and in an animal model of colorectal carcinoma SW620 xenograft. ZD55-ST13 inhibited tumor cells 100-fold more than Ad-ST13 and ZD55-EGFP in vitro. However, ZD55-ST13 showed no damage of normal fibroblast MRC5 cells. In exploring the mechanism of ZD55-ST13 in tumor cell killing, we found that ZD55-ST13-infected SW620 cells formed apoptotic bodies and presented obvious apoptosis phenomena. ZD55-ST13 induced the upregulation of Hsp70, the downregulation of antiapoptotic gene Bcl-2, and the release of cytochrome c. Cytochrome c triggered apoptosis by activating caspase-9 and caspase-3, which cleave the enzyme poly(ADP-ribose) polymerase in ZD55-ST13-infected SW620 cells. In summary, overexpressed ST13 as mediated by oncolytic adenovirus could exert potent antitumor activity via the intrinsic apoptotic pathway and has the potential to become a novel therapeutic for colorectal cancer gene therapy. PMID:18355116

  18. Endocytosis and serpentine filopodia drive blebbishield-mediated resurrection of apoptotic cancer stem cells

    PubMed Central

    Jinesh, Goodwin G.; Kamat, Ashish M.

    2016-01-01

    The blebbishield emergency program helps to resurrect apoptotic cancer stem cells (CSCs) themselves. Understanding the mechanisms behind this program is essential to block resurrection of CSCs during cancer therapy. Here we demonstrate that endocytosis drives serpentine filopodia to construct blebbishields from apoptotic bodies and that a VEGF-VEGFR2-endocytosis-p70S6K axis governs subsequent transformation. Disengagement of RalGDS from E-cadherin initiates endocytosis of RalGDS and its novel interaction partners cdc42, VEGFR2, cleaved β-catenin, and PKC-ζ as well as its known interaction partner K-Ras. We also report novel interactions of p45S6K (cleaved p70S6K) and PKM-ζ with PAK-1 filopodia-forming machinery specifically in blebbishields. Thus, a RalGDS-endocytosis-filopodia-VEGFR2-K-Ras-p70S6K axis drives the blebbishield emergency program, and therapeutic targeting of this axis might prevent resurrection of CSCs during cancer therapy. PMID:27226900

  19. MiR-125a-5p decreases after long non-coding RNA HOTAIR knockdown to promote cancer cell apoptosis by releasing caspase 2

    PubMed Central

    Tang, L; Shen, H; Li, X; Li, Z; Liu, Z; Xu, J; Ma, S; Zhao, X; Bai, X; Li, M; Wang, Q; Ji, J

    2016-01-01

    HOTAIR (homeobox transcript antisense RNA), one of the prototypical long non-coding RNAs, has been verified overexpressed in multiple carcinomas and has emerged as a promising novel anticancer target. Its well-established role is acting as a predictor of poor prognosis and promoting cancer cell metastasis. Recently, another important mission of HOTAIR was uncovered that targeting HOTAIR caused cancer cell apoptosis. Nevertheless, so far there is no published data elaborating the mechanism. Here, we report that microRNA miR-125a-5p decreases and releases caspase 2 to promote cancer cell apoptosis after HOTAIR knockdown. We applied siRNAs targeting HOTAIR to various cancer cells, and observed apoptosis in all of these cell lines. RNA sequencing detected that miR-125a-5p was decreased after HOTAIR knockdown and miR-125a-5p mimics could rescue the apoptosis induced by HOTAIR deficiency. Luciferase assays identified caspase 2, an initiator caspase, to be a new target of miR-125a-5p. Elevated expression and subsequent cleavage of caspase 2 was observed after HOTAIR knockdown or inhibition of miR-125a-5p. RNAi of caspase 2 could attenuate the apoptosis induced by HOTAIR knockdown. In 80 clinical colon cancer tissues, HOTAIR and miR-125a-5p levels were higher than adjacent tissues, whereas caspase 2 was lower. MiR-125a-5p expression level was significantly correlated with colon tumor size, lymph node metastasis and clinical stage. These findings indicate that miR-125a-5p decreases after HOTAIR knockdown to promote cancer cell apoptosis by releasing caspase 2. Our work reveals a previously unidentified apoptotic mechanism, which might be exploitable in anticancer drug development. PMID:26962687

  20. MiR-125a-5p decreases after long non-coding RNA HOTAIR knockdown to promote cancer cell apoptosis by releasing caspase 2.

    PubMed

    Tang, L; Shen, H; Li, X; Li, Z; Liu, Z; Xu, J; Ma, S; Zhao, X; Bai, X; Li, M; Wang, Q; Ji, J

    2016-01-01

    HOTAIR (homeobox transcript antisense RNA), one of the prototypical long non-coding RNAs, has been verified overexpressed in multiple carcinomas and has emerged as a promising novel anticancer target. Its well-established role is acting as a predictor of poor prognosis and promoting cancer cell metastasis. Recently, another important mission of HOTAIR was uncovered that targeting HOTAIR caused cancer cell apoptosis. Nevertheless, so far there is no published data elaborating the mechanism. Here, we report that microRNA miR-125a-5p decreases and releases caspase 2 to promote cancer cell apoptosis after HOTAIR knockdown. We applied siRNAs targeting HOTAIR to various cancer cells, and observed apoptosis in all of these cell lines. RNA sequencing detected that miR-125a-5p was decreased after HOTAIR knockdown and miR-125a-5p mimics could rescue the apoptosis induced by HOTAIR deficiency. Luciferase assays identified caspase 2, an initiator caspase, to be a new target of miR-125a-5p. Elevated expression and subsequent cleavage of caspase 2 was observed after HOTAIR knockdown or inhibition of miR-125a-5p. RNAi of caspase 2 could attenuate the apoptosis induced by HOTAIR knockdown. In 80 clinical colon cancer tissues, HOTAIR and miR-125a-5p levels were higher than adjacent tissues, whereas caspase 2 was lower. MiR-125a-5p expression level was significantly correlated with colon tumor size, lymph node metastasis and clinical stage. These findings indicate that miR-125a-5p decreases after HOTAIR knockdown to promote cancer cell apoptosis by releasing caspase 2. Our work reveals a previously unidentified apoptotic mechanism, which might be exploitable in anticancer drug development. PMID:26962687

  1. Association of a Methanol Extract of Rheum undulatum L. Mediated Cell Death in AGS Cells with an Intrinsic Apoptotic Pathway

    PubMed Central

    Hong, Noo Ri; Park, Hyun Soo; Ahn, Tae Seok; Jung, Myeong Ho; Kim, Byung Joo

    2015-01-01

    Objectives: Rheum undulatum L. has traditionally been used for the treatment of many diseases in Asia. However, its anti-proliferative activity in cancer has still not been studied. In the present study, we investigated the anti-cancer effects of methanol extract of Rheum undulatum L. (MERL) on human adenocarcinoma gastric cell lines (AGS). Methods: To investigate the anti-cancer effect of MERL on AGS cells, we treated the AGS cells with varying con¬centrations of MERL and performed 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Cell cycle analyses, measurements of the mitochondrial membrane potential (MMP), caspase activity assays and Western blots were conducted to determine whether AGS cell death occurred by apoptosis. Results: Treatment with MERL significantly inhibited growth of AGS cells in a concentration dependent manner. MERL treatment in AGS cells leaded to increased accumulation of apoptotic sub G1 phase cells in a concentration dependent manner. In control cultures, 5.38% of the cells were in the sub G1 phase. In MERL treated cells, however, this percentage was significantly increased (9.95% at 70 μg/mL, 15.94% at 140 μg/mL, 26.56% at 210 μg/mL and 38.08% at 280 μg/mL). MERL treatment induced the decreased expression of pro-caspase-8 and -9 in a concentration dependent manner, whereas the expression of the active form of caspase-3 was increased. A subsequent Western blot analysis revealed increased cleaved levels of poly (ADP-ribose) polymerase (PARP) protein. Also, treatment with MERL increased the activities of caspase-3 and -9 compared with the control. MERL treatment increased the levels of the pro-apoptotic truncated Bid (tBid) and Bcl2 Antagonist X (Bax) proteins and decreased the levels of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, whose is the stabilization of mitochondria. However, inhibitions of p38, extracellular signal regulated kinases (ERKs) and C-Jun N-terminal kinases (JNK) by MERL treatment did not affect cell death. Conclusion: These results suggest that MERL mediated cell death is associated with an intrinsic apoptotic pathway in AGS cells. PMID:26120485

  2. Apoptotic effects of Antrodia cinnamomea fruiting bodies extract are mediated through calcium and calpain-dependent pathways in Hep 3B cells.

    PubMed

    Kuo, Po-Lin; Hsu, Ya-Ling; Cho, Chien-Yu; Ng, Lean-Teik; Kuo, Yueh-Hsiung; Lin, Chun-Ching

    2006-08-01

    Antrodia cinnamomea is well known in Taiwan as a traditional medicine for treating cancer and inflammation. The purpose of this study was to evaluate the apoptotic effects of ethylacetate extract from A. cinnamomea (EAC) fruiting bodies in Hep 3B, a liver cancer cell line. EAC decreased cell proliferation of Hep 3B cells by inducing apoptotic cell death. EAC treatment increased the level of calcium (Ca2+) in the cytoplasm and triggered the subsequent activation of calpain and caspase-12. EAC also initiated the mitochondrial apoptotic pathway through regulation of Bcl-2 family proteins expression, release of cytochrome c, and activation of caspase-9 in Hep 3B cells. Furthermore, the mitochondrial apoptotic pathway amplified the calpain pathway by Bid and Bax interaction and Ca2+ translocation. We have therefore concluded that the molecular mechanisms during EAC-mediated proliferation inhibition in Hep 3B cells were due to: (1) apoptosis induction, (2) triggering of Ca2+/calpain pathway, (3) disruption of mitochondrial function, and (4) apoptotic signaling being amplified by cross-talk between the calpain/Bid/Bax and Ca2+/mitochondrial apoptotic pathways. PMID:16600460

  3. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    NASA Astrophysics Data System (ADS)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  4. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    PubMed Central

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C.; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis. PMID:24477292

  5. Targeted Apoptotic Effects of Thymoquinone and Tamoxifen on XIAP Mediated Akt Regulation in Breast Cancer

    PubMed Central

    Rajput, Shashi; Kumar, B. N. Prashanth; Sarkar, Siddik; Das, Subhasis; Azab, Belal; Santhekadur, Prasanna K.; Das, Swadesh K.; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B.; Mandal, Mahitosh

    2013-01-01

    X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment. PMID:23613836

  6. Chandipura Virus Induces Neuronal Death through Fas-Mediated Extrinsic Apoptotic Pathway

    PubMed Central

    Ghosh, Sourish; Dutta, Kallol

    2013-01-01

    Chandipura virus (CHPV; genus Vesiculovirus, family Rhabdoviridae) is an emerging tropical pathogen with a case fatality rate of 55 to 75% that predominantly affects children in the age group of 2 to 16 years. Although it has been established as a neurotropic virus causing encephalitis, the molecular pathology leading to neuronal death is unknown. The present study elucidates for the first time the mechanism of cell death in neurons after CHPV infection that answers the basic cause of CHPV-mediated neurodegeneration. Through various cell death assays in vitro and in vivo, a relationship between viral replication within neuron and neuronal apoptosis has been established. We report that expression of CHPV phosphoprotein increases up to 6 h postinfection and diminishes thereafter in neuronal cell lines, signifying the replicative phase of CHPV. Various analyses conducted during the investigation established that CHPV-infected neurons are undergoing apoptosis through an extrinsic pathway mediated through the Fas-associated death domain (FADD) following activation of caspase-8 and -3 and prominent cleavage of poly(ADP-ribose) polymerase (PARP). Knocking down the expression of caspase-3, the final executioner of apoptosis, in a neuronal cell line by endoribonuclease-prepared small interfering RNA (siRNA) validated its pivotal role in CHPV-mediated neurodegeneration by showing reduction in apoptosis after CHPV infection. PMID:24027318

  7. Caspase-2 promotes obesity, the metabolic syndrome and nonalcoholic fatty liver disease.

    PubMed

    Machado, M V; Michelotti, G A; Jewell, M L; Pereira, T A; Xie, G; Premont, R T; Diehl, A M

    2016-01-01

    Obesity and its resulting metabolic disturbances are major health threats. In response to energy surplus, overtaxed adipocytes release fatty acids and pro-inflammatory factors into the circulation, promoting organ fat accumulation (including nonalcoholic fatty liver disease), insulin resistance and the metabolic syndrome. Recently, caspase-2 was linked to lipoapoptosis, so we hypothesized that caspase-2 might be a critical determinant of metabolic syndrome pathogenesis. Caspase-2-deficient and wild-type mice were fed a Western diet (high-fat diet, enriched with saturated fatty acids and 0.2% cholesterol, supplemented with fructose and glucose in the drinking water) for 16 weeks. Metabolic and hepatic outcomes were evaluated. In vitro studies assessed the role of caspase-2 in adipose tissue proliferative properties and susceptibility for lipoapoptosis. Caspase-2-deficient mice fed a Western diet were protected from abdominal fat deposition, diabetes mellitus, dyslipidemia and hepatic steatosis. Adipose tissue in caspase-2-deficient mice was more proliferative, upregulated mitochondrial uncoupling proteins consistent with browning, and was resistant to cell hypertrophy and cell death. The liver was protected from steatohepatitis through a decrease in circulating fatty acids and more efficient hepatic fat metabolism, and from fibrosis as a consequence of reduced fibrogenic stimuli from fewer lipotoxic hepatocytes. Caspase-2 deficiency protected mice from diet-induced obesity, metabolic syndrome and nonalcoholic fatty liver disease. Further studies are necessary to assess caspase-2 as a therapeutic target for those conditions. PMID:26890135

  8. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection

    PubMed Central

    Aachoui, Youssef; Sagulenko, Vitaliya; Miao, Edward A; Stacey, Katryn J.

    2013-01-01

    Cell death is an effective strategy to limit intracellular infections. Canonical inflammasomes, including NLRP3, NLRC4, and AIM2, recruit and activate caspase-1 in response to a range of microbial stimuli and endogenous danger signals. Caspase-1 then promotes the secretion of IL-1? and IL-18 and a rapid form of lytic programmed cell death termed pyroptosis. A second inflammatory caspase, mouse caspase-11, mediates pyroptotic death through an unknown non-canonical inflammasome system in response to cytosolic bacteria. In addition, recent work shows that inflammasomes can also recruit procaspase-8, initiating apoptosis. The induction of multiple pathways of cell death has probably evolved to counteract microbial evasion of cell death pathways. PMID:23707339

  9. Paracrine apoptotic effect of p53 mediated by tumor suppressor Par-4.

    PubMed

    Burikhanov, Ravshan; Shrestha-Bhattarai, Tripti; Hebbar, Nikhil; Qiu, Shirley; Zhao, Yanming; Zambetti, Gerard P; Rangnekar, Vivek M

    2014-01-30

    The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. Given that p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, the activation of p53 in normal mice, but not p53(-)/(-) or Par-4(-)/(-) mice, caused systemic elevation of Par-4, which induced apoptosis of p53-deficient tumor cells. Mechanistically, p53 induced Par-4 secretion by suppressing the expression of its binding partner, UACA, which sequesters Par-4. Thus, normal cells can be empowered by p53 activation to induce Par-4 secretion for the inhibition of therapy-resistant tumors. PMID:24412360

  10. Paracrine Apoptotic Effect of p53 Mediated by Tumor Suppressor Par-4

    PubMed Central

    Burikhanov, Ravshan; Shrestha-Bhattarai, Tripti; Hebbar, Nikhil; Qiu, Shirley; Zhao, Yanming; Zambetti, Gerard P.; Rangnekar, Vivek M.

    2014-01-01

    Summary The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. As p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, activation of p53 in normal mice, but not in p53?/? or Par-4?/? mice, caused systemic elevation of Par-4 that induced apoptosis of p53-deficient tumor cells. Mechanistically, p53 induced Par-4 secretion by suppressing the expression of UACA, which sequesters Par-4. Thus, normal cells can be empowered by p53 activation to induce Par-4 secretion for inhibition of therapy-resistant tumors. PMID:24412360

  11. Na+/Ca2+ exchanger 1 (NCX-1) mediates the anti-apoptotic effect of Akt1 in neonatal rat cardiomyocytes during ischemia/reperfusion

    PubMed Central

    Huang, Manman; Pan, Defeng; Du, Yinping; Zhu, Hong; Zhang, Lin; Xu, Tongda; Luo, Yuanyuan; Li, Dongye

    2016-01-01

    The purpose of this study was to investigate the anti-apoptotic role of Akt1 gene in neonatal rat cardiomyocytes and the relationship with Na+/Ca2+ exchanger 1 (NCX1) during ischemia/reperfusion (IR). The cultured original rat cardiomyocytes were randomly divided into five groups: normal control group (C group), hypoxia/reoxygenation group (HR group), the control vector pLVX-EGFP-3FLAG group (CV group), the gene pLVX-EGFP-3FLAG-Akt1 transfection group (A group), and Akt1 inhibitor LY294002 group (LY group). Cardiomyocyte vitality was determined using MTT, and the apoptosis was determined by TUNEL to verify the anti-apoptotic role of Akt1. The mRNA levels of Akt1 and NCX1 were determined by RT-PCR, the protein expression of Akt1, p-Akt1, NCX1 and the apoptotic proteins of mitochondrial pathway cytochrome C (Cyto C) and caspase-9 were measured by Western blot. As a result, transfected Akt1 (A group) showed increased myocardial cell viability and reduced apoptosis, with increase in Akt1 expression and decrease in NCX1 expression. The levels of apoptotic proteins Cyto C and caspase-9 also declined. This study demonstrated that lentivirus-mediated transfection of Akt1 played an anti-apoptotic role during IR of rat cardiomyocytes, via inhibition of NCX1 and other mitochondrial proteins.

  12. The apoptotic engulfment protein Ced-6 participates in clathrin-mediated yolk uptake in Drosophila egg chambers

    PubMed Central

    Jha, Anupma; Watkins, Simon C.; Traub, Linton M.

    2012-01-01

    Clathrin-mediated endocytosis and phagocytosis are both selective surface internalization processes but have little known mechanistic similarity or interdependence. Here we show that the phosphotyrosine-binding (PTB) domain protein Ced-6, a well-established phagocytosis component that operates as a transducer of so-called eat-me signals during engulfment of apoptotic cells and microorganisms, is expressed in the female Drosophila germline and that Ced-6 expression correlates with ovarian follicle development. Ced-6 exhibits all the known biochemical properties of a clathrin-associated sorting protein, yet ced-6null flies are semifertile despite massive accumulation of soluble yolk precursors in the hemolymph. This is because redundant sorting signals within the cytosolic domain of the Drosophila vitellogenin receptor Yolkless, a low density lipoprotein receptor superfamily member, occur; a functional atypical dileucine signal binds to the endocytic AP-2 clathrin adaptor directly. Nonetheless, the Ced-6 PTB domain specifically recognizes the noncanonical Yolkless FXNPXA sorting sequence and in HeLa cells promotes the rapid, clathrin-dependent uptake of a Yolkless chimera lacking the distal dileucine signal. Ced-6 thus operates in vivo as a clathrin adaptor. Because the human Ced-6 orthologue GULP similarly binds to clathrin machinery, localizes to cell surface clathrin-coated structures, and is enriched in placental clathrin-coated vesicles, new possibilities for Ced-6/Gulp operation during phagocytosis must be considered. PMID:22398720

  13. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson's disease.

    PubMed

    Arduíno, Daniela Moniz; Esteves, A Raquel; Cardoso, Sandra M; Oliveira, Catarina R

    2009-09-01

    Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. Many cellular mechanisms are thought to be involved in the death of these specific neurons in PD, including oxidative stress, changes of intracellular calcium homeostasis, and mitochondrial dysfunction. Since recent studies have revealed that also endoplasmic reticulum (ER) stress in conjunction with abnormal protein degradation can contribute to the PD pathophysiology, we investigated here the molecular mechanisms underlying the interplay between ER and mitochondria and its relevance in the control of neuronal cell death in PD. We observed that MPP+ induced changes in the mitochondrial function, affecting mitochondrial membrane potential and electron transport chain function. Likewise, it was also evident the unfolded protein response activation by an overexpression of GRP78 protein. Moreover, stress stimuli caused the release of Ca2+ from the ER that consistently induced mitochondrial Ca2+ uptake, with a rise of mitochondrial matrix free Ca2+. Besides, Ca2+ release inhibition prevented MPP+ mediated mitochondria-dependent caspases activation. Our findings show that ER and mitochondria are in a close communication, establishing a dynamic ER-Ca2+-mitochondria interconnection that can play a prominent role in the neuronal cell death induction under particular stressful circumstances of PD pathology. PMID:19375464

  14. IRES-mediated translation of the pro-apoptotic Bcl2 family member PUMA

    PubMed Central

    Shaltouki, Atossa; Harford, Terri J.; Komar, Anton A.; Weyman, Crystal M.

    2013-01-01

    The proapoptotic Bcl-2 family member PUMA is a critical regulator of apoptosis. We have previously shown that PUMA plays a pivotal role in the apoptosis associated with skeletal myoblast differentiation and that a MyoD-dependent mechanism is responsible for the increased expression of PUMA in these cells. Herein, we report that the increased expression of PUMA under these conditions involves regulation at the level of translation. Specifically, we have found that the increase in PUMA protein levels occurs under conditions of decreased total protein synthesis, eIF2-alpha phosphorylation and hypophosphorylation of eIF4E-BP, suggesting that PUMA translation is proceeding via an alternative initiation mechanism. Polyribosome analysis of PUMA mRNA further corroborated this suggestion. A combination of in vitro and ex vivo (cellular) approaches has provided evidence suggesting that PUMA mRNA 5'UTR harbors an Internal Ribosome Entry Site (IRES) element. Using mono- and bi-cistronic reporter constructs, we have delineated an mRNA fragment that allows for cap-independent translation in vitro and ex vivo (in skeletal myoblasts) in response to culture in differentiation media (DM), or in response to treatment with the DNA-damaging agent, etoposide. This mRNA fragment also supports translation in HeLa and 293T cells. Thus, our data has revealed a novel IRES-mediated regulation of PUMA expression in several cell types and in response to several stimuli. These findings contribute to our understanding and potential manipulation of any developmental or therapeutic scenario involving PUMA. PMID:26824017

  15. Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects.

    PubMed

    Biswas, Chayanika; Zuo, Xiaoming; Chen, Sharon C-A; Schibeci, Stephen D; Forwood, Jade K; Jolliffe, Katrina A; Sorrell, Tania C; Djordjevic, Julianne T

    2014-06-01

    Miltefosine (MI) is a novel, potential antifungal agent with activity against some yeast and filamentous fungal pathogens. We previously demonstrated in the model yeast, Saccharomyces cerevisiae, that MI causes disruption of mitochondrial membrane potential and apoptosis-like cell death via interaction with the Cox9p sub-unit of cytochrome c oxidase (COX). To identify additional mechanisms of antifungal action, MI resistance was induced in S. cerevisiae by exposure to the mutagen, ethyl methanesulfonate, and gene mutation(s) responsible for resistance were investigated. An MI-resistant haploid strain (H-C101) was created. Resistance was retained in the diploid strain (D-C101) following mating, confirming dominant inheritance. Phenotypic assessment of individual D-C101 tetrads revealed that only one mutant gene contributed to the MI-resistance phenotype. To identify this gene, the genome of H-C101 was sequenced and 17 mutated genes, including metacaspase-encoding MCA1, were identified. The MCA1 mutation resulted in substitution of asparagine (N) with aspartic acid (D) at position 164 (MCA1(N164D)). MI resistance was found to be primarily due to MCA1(N164D), as single-copy episomal expression of MCA1(N164D), but not two other mutated genes (FAS1(T1417I) and BCK2(T104A)), resulted in MI resistance in the wild-type strain. Furthermore, an MCA1 deletion mutant (mca1Δ) was MI-resistant. MI treatment led to accumulation of reactive oxygen species (ROS) in MI-resistant (MCA1(N164D)-expressing and mca1Δ) strains and MI-susceptible (MCA1-expressing) strains, but failed to activate Mca1 in the MI-resistant strains, demonstrating that ROS accumulation does not contribute to the fungicidal effect of MI. In conclusion, functional disruption of Mca1, leads to MI resistance and inability to mediate MI-induced apoptotic effects. Mca1-mediated apoptosis is therefore a major mechanism of MI-induced antifungal action. PMID:24731805

  16. Upstream control of apoptosis by caspase-2 in serum-deprived primary neurons.

    PubMed

    Chauvier, D; Lecoeur, H; Langonné, A; Borgne-Sanchez, A; Mariani, J; Martinou, J-C; Rebouillat, D; Jacotot, E

    2005-12-01

    During development as well as in pathological situations, neurons that fail to find appropriate targets or neurotrophic factors undergo cell death. Using primary cortical neurons subjected to acute serum-deprivation (SD), we have examined caspases activation, mitochondrial dysfunction and cell death parameters. Among a panel of metabolic, signaling and caspases inhibitors only those able to interfere with caspase-2 like activity protect primary neurons against SD-induced cell death. In situ detection and subcellular fractionation demonstrate a very early activation of cytosolic caspase-2, which controls Bax cleavage, relocalization and mitochondrial membrane permeabilization (MMP). Both z-VDVAD-fmk and a siRNA specific for caspase-2 abolish Bax changes, mitochondrial membranes permeabilization, as well as cytochrome c release-dependent activation of caspase-9/caspase-3, nuclear alterations, phosphatidylserine exposure, neurites dismantling and neuronal death. Hence, caspase-2 is an early checkpoint for apoptosis initiation in primary neurons subjected to serum deprivation. PMID:16215683

  17. Integrin αVβ5-mediated Removal of Apoptotic Cell Debris by the Eye Lens and Its Inhibition by UV Light Exposure.

    PubMed

    Chauss, Daniel; Brennan, Lisa A; Bakina, Olga; Kantorow, Marc

    2015-12-18

    Accumulation of apoptotic material is toxic and associated with cataract and other disease states. Identification of mechanisms that prevent accumulation of apoptotic debris is important for establishing the etiology of these diseases. The ocular lens is routinely assaulted by UV light that causes lens cell apoptosis and is associated with cataract formation. To date, no molecular mechanism for removal of toxic apoptotic debris has been identified in the lens. Vesicular debris within lens cells exposed to UV light has been observed raising speculation that lens cells themselves could act as phagocytes to remove toxic apoptotic debris. However, phagocytosis has not been confirmed as a function of the intact eye lens, and no mechanism for lens phagocytosis has been established. Here, we demonstrate that the eye lens is capable of phagocytizing extracellular lens cell debris. Using high throughput RNA sequencing and bioinformatics analysis, we establish that lens epithelial cells express members of the integrin αVβ5-mediated phagocytosis pathway and that internalized cell debris co-localizes with αVβ5 and with RAB7 and Rab-interacting lysosomal protein that are required for phagosome maturation and fusion with lysosomes. We demonstrate that the αVβ5 receptor is required for lens epithelial cell phagocytosis and that UV light treatment of lens epithelial cells results in damage to the αVβ5 receptor with concomitant loss of phagocytosis. These data suggest that loss of αVβ5-mediated phagocytosis by the eye lens could result in accumulation of toxic cell debris that could contribute to UV light-induced cataract formation. PMID:26527683

  18. Efficacious gene silencing in serum and significant apoptotic activity induction by survivin downregulation mediated by new cationic gemini tocopheryl lipids.

    PubMed

    Kumar, Krishan; Maiti, Bappa; Kondaiah, Paturu; Bhattacharya, Santanu

    2015-02-01

    Nonviral gene delivery offers cationic liposomes as promising instruments for the delivery of double-stranded RNA (ds RNA) molecules for successful sequence-specific gene silencing (RNA interference). The efficient delivery of siRNA (small interfering RNA) to cells while avoiding unexpected side effects is an important prerequisite for the exploitation of the power of this excellent tool. We present here six new tocopherol based cationic gemini lipids, which induce substantial gene knockdown without any obvious cytotoxicity. All the efficient coliposomal formulations derived from each of these geminis and a helper lipid, dioleoylphosphatidylethanolamine (DOPE), were well characterized using physical methods such as atomic force microscopy (AFM) and dynamic light scattering (DLS). Zeta potential measurements were conducted to estimate the surface charge of these formulations. Flow cytometric analysis showed that the optimized coliposomal formulations could transfect anti-GFP siRNA efficiently in three different GFP expressing cell lines, viz., HEK 293T, HeLa, and Caco-2, significantly better than a potent commercial standard Lipofectamine 2000 (L2K) both in the absence and in the presence of serum (FBS). Notably, the knockdown activity of coliposomes of gemini lipids was not affected even in the presence of serum (10% and 50% FBS) while it dropped down for L2K significantly. Observations under a fluorescence microscope, RT-PCR, and Western blot analysis substantiated the flow cytometry results. The efficient cellular entry of labeled siRNA in GFP expressing cells as evidenced from confocal microscopy put forward these gemini lipids among the potent lipidic carriers for siRNA. The efficient transfection capabilities were also profiled in a more relevant fashion while performing siRNA transfections against survivin (an anti-apoptotic protein) which induced substantial apoptosis. Furthermore, the survivin downregulation improved the therapeutic efficacy levels of an anticancer drug, doxorubicin, significantly. In short, the new tocopherol based gemini lipids appear to be highly promising for achieving siRNA mediated gene knockdown in various cell lines. PMID:25438085

  19. Apoptotic-like Leishmania exploit the hosts autophagy machinery to reduce T-cell-mediated parasite elimination

    PubMed Central

    Crauwels, Peter; Bohn, Rebecca; Thomas, Meike; Gottwalt, Stefan; Jckel, Florian; Krmer, Susi; Bank, Elena; Tenzer, Stefan; Walther, Paul; Bastian, Max; van Zandbergen, Ger

    2015-01-01

    Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showedin contrast to viable parasitesthat apoptotic-like parasites enter an LC3+, autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4+ T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis. PMID:25801301

  20. Caspase-2 Short Isoform Interacts with Membrane-Associated Cytoskeleton Proteins to Inhibit Apoptosis

    PubMed Central

    Han, Chunhua; Zhao, Ran; Kroger, John; Qu, Meihua; Wani, Altaf A.; Wang, Qi-En

    2013-01-01

    Caspase-2 (casp-2) is the most conserved caspase across species, and is one of the initiator caspases activated by various stimuli. The casp-2 gene produces several alternative splicing isoforms. It is believed that the long isoform, casp-2L, promotes apoptosis, whereas the short isoform, casp-2S, inhibits apoptosis. The actual effect of casp-2S on apoptosis is still controversial, however, and the underlying mechanism for casp-2S-mediated apoptosis inhibition is unclear. Here, we analyzed the effects of casp-2S on DNA damage induced apoptosis through “gain-of-function” and “loss-of-function” strategies in ovarian cancer cell lines. We clearly demonstrated that the over-expression of casp-2S inhibited, and the knockdown of casp-2S promoted, the cisplatin-induced apoptosis of ovarian cancer cells. To explore the mechanism by which casp-2S mediates apoptosis inhibition, we analyzed the proteins which interact with casp-2S in cells by using immunoprecipitation (IP) and mass spectrometry. We have identified two cytoskeleton proteins, Fodrin and α-Actinin 4, which interact with FLAG-tagged casp-2S in HeLa cells and confirmed this interaction through reciprocal IP. We further demonstrated that casp-2S (i) is responsible for inhibiting DNA damage-induced cytoplasmic Fodrin cleavage independent of cellular p53 status, and (ii) prevents cisplatin-induced membrane blebbing. Taken together, our data suggests that casp-2S affects cellular apoptosis through its interaction with membrane-associated cytoskeletal Fodrin protein. PMID:23840868

  1. Combinatorial treatment of CD95L and gemcitabine in pancreatic cancer cells induces apoptotic and RIP1-mediated necroptotic cell death network.

    PubMed

    Pietkiewicz, Sabine; Eils, Roland; Krammer, Peter H; Giese, Natalia; Lavrik, Inna N

    2015-11-15

    Combination therapy of cancer is based on the cumulative effects mediated by several drugs. Although molecular mechanisms of action of each particular drug are partially elucidated, understanding of the dynamic cross-talk between different cell death pathways at the quantitative level induced by combination therapy is still missing. Here, we exemplified this question for the death receptor (DR) networks in pancreatic cancer cells. We demonstrate that the combined action of CD95L and gemcitabine in pancreatic cancer cells leads to the simultaneous induction of caspase-dependent and caspase-independent cell death. The pro-apoptotic effects are mediated through down-regulation of the anti-apoptotic proteins c-FLIP and Mcl-1, while caspase-independent cell death was blocked by inhibition of the kinase activity of RIP1. Furthermore, gemcitabine co-treatment strongly increased the amount of cells undergoing CD95-induced RIP1-regulated necrosis. Imaging flow cytometry has enabled us to get the quantitative insights into the apoptosis-necroptosis network and reveal that the majority of the cells upon the CD95L/gemcitabine co-treatment undergoes necroptosis. Our data underlie the importance of the quantitative understanding of the interplay between different cell death modalities, which is essential for the development of anti-cancer therapies. Taken together, our results are important for combination therapy of pancreatic cancer comprising chemotherapeutics and DR-agonists and offer a possibility to sensitize cells with defects in the apoptotic machinery towards necroptosis-type-mediated death. PMID:26453936

  2. Sulfated Glycosphingolipid as Mediator of Phagocytosis: SM4s Enhances Apoptotic Cell Clearance and Modulates Macrophage Activity1

    PubMed Central

    Popovic, Zoran V.; Sandhoff, Roger; Sijmonsma, Tjeerd P.; Kaden, Sylvia; Jennemann, Richard; Kiss, Eva; Tone, Edgar; Autschbach, Frank; Platt, Nick; Malle, Ernst; Gröne, Hermann-Josef

    2016-01-01

    Sulfoglycolipids are present on the surface of a variety of cells. The sulfatide SM4s is increased in lung, renal, and colon cancer and is associated with an adverse prognosis, possibly due to a low immunoreactivity of the tumor. As macrophages significantly contribute to the inflammatory infiltrate in malignancies, we postulated that SM4s may modulate macrophage function. We have investigated the effect of SM4s on the uptake of apoptotic tumor cells, macrophage cytokine profile, and receptor expression. Using flow cytometry and microscopic analyses, we found that coating apoptotic murine carcinoma cells from the colon and kidney with SM4s promoted their phagocytosis by murine macrophages up to 3-fold ex vivo and in vivo. This increased capacity was specifically inhibited by preincubation of macrophages with oxidized or acetylated low density lipoprotein and maleylated albumin, indicating involvement of scavenger receptors in this interaction. The uptake of SM4s-coated apoptotic cells significantly enhanced macrophage production of TGF-β1, expression of P-selectin, and secretion of IL-6. These data suggest that SM4s within tumors may promote apoptotic cell removal and alter the phenotype of tumor-associated macrophages. PMID:17982067

  3. The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria.

    PubMed

    Monaco, Giovanni; Decrock, Elke; Arbel, Nir; van Vliet, Alexander R; La Rovere, Rita M; De Smedt, Humbert; Parys, Jan B; Agostinis, Patrizia; Leybaert, Luc; Shoshan-Barmatz, Varda; Bultynck, Geert

    2015-04-01

    Excessive Ca(2+) fluxes from the endoplasmic reticulum to the mitochondria result in apoptotic cell death. Bcl-2 and Bcl-XL proteins exert part of their anti-apoptotic function by directly targeting Ca(2+)-transport systems, like the endoplasmic reticulum-localized inositol 1,4,5-trisphosphate receptors (IP3Rs) and the voltage-dependent anion channel 1 (VDAC1) at the outer mitochondrial membranes. We previously demonstrated that the Bcl-2 homology 4 (BH4) domain of Bcl-2 protects against Ca(2+)-dependent apoptosis by binding and inhibiting IP3Rs, although the BH4 domain of Bcl-XL was protective independently of binding IP3Rs. Here, we report that in contrast to the BH4 domain of Bcl-2, the BH4 domain of Bcl-XL binds and inhibits VDAC1. In intact cells, delivery of the BH4-Bcl-XL peptide via electroporation limits agonist-induced mitochondrial Ca(2+) uptake and protects against staurosporine-induced apoptosis, in line with the results obtained with VDAC1(-/-) cells. Moreover, the delivery of the N-terminal domain of VDAC1 as a synthetic peptide (VDAC1-NP) abolishes the ability of BH4-Bcl-XL to suppress mitochondrial Ca(2+) uptake and to protect against apoptosis. Importantly, VDAC1-NP did not affect the ability of BH4-Bcl-2 to suppress agonist-induced Ca(2+) release in the cytosol or to prevent apoptosis, as done instead by an IP3R-derived peptide. In conclusion, our data indicate that the BH4 domain of Bcl-XL, but not that of Bcl-2, selectively targets VDAC1 and inhibits apoptosis by decreasing VDAC1-mediated Ca(2+) uptake into the mitochondria. PMID:25681439

  4. Methylantcinate A induces tumor specific growth inhibition in oral cancer cells via Bax-mediated mitochondrial apoptotic pathway.

    PubMed

    Tsai, Wan-Chi; Rao, Yerra Koteswara; Lin, Shih-Shen; Chou, Ming-Yung; Shen, Yi-Ting; Wu, Chih-Hao; Geethangili, Madamanchi; Yang, Chi-Chiang; Tzeng, Yew-Min

    2010-10-15

    An ergostane type triterpenoid methylantcinate A (MAA) isolated from the fruiting bodies of Antrodia camphorata inhibited the growth of oral cancer cell lines OEC-M1 and OC-2 in a dose-dependent manner, without cytotoxic to normal oral gingival fibroblast cells. The major mechanism of growth inhibition was apoptosis induction, as shown by flow cytometric analysis of annexin V-FITC and propidium iodide staining, caspase-3 activation and DNA fragmentation. The increased expression of pro-apoptotic Bax, poly-(ADP-ribose) polymerase cleavage, and activated caspase-3 and decreased expression of anti-apoptotic Bcl-2 and Bcl-xL were also observed. These results provide the first evidence that the anti-oral cancer effects of MAA may involve a mechanism through the mitochondrial dependent pathway. Thus, results reported here may offer further impulse to the development of MAA analogues as potential chemotherapeutic targets for oral cancer complications. PMID:20817519

  5. T Cell/Transmembrane, Ig, and Mucin-3 Allelic Variants Differentially Recognize Phosphatidylserine and Mediate Phagocytosis of Apoptotic Cells

    PubMed Central

    DeKruyff, Rosemarie H.; Bu, Xia; Ballesteros, Angela; Santiago, César; Chim, Yee-Ling E.; Lee, Hyun-Hee; Karisola, Piia; Pichavant, Muriel; Kaplan, Gerardo G.; Umetsu, Dale T.; Freeman, Gordon J.; Casasnovas, José M.

    2011-01-01

    T cell/transmembrane, Ig, and mucin (TIM) proteins, identified using a congenic mouse model of asthma, critically regulate innate and adaptive immunity. TIM-1 and TIM-4 are receptors for phosphatidylserine (PtdSer), exposed on the surfaces of apoptotic cells. Herein, we show with structural and biological studies that TIM-3 is also a receptor for PtdSer that binds in a pocket on the N-terminal IgV domain in coordination with a calcium ion. The TIM-3/PtdSer structure is similar to that of TIM-4/PtdSer, reflecting a conserved PtdSer binding mode by TIM family members. Fibroblastic cells expressing mouse or human TIM-3 bound and phagocytosed apoptotic cells, with the BALB/c allelic variant of mouse TIM-3 showing a higher capacity than the congenic C.D2 Es-Hba–allelic variant. These functional differences were due to structural differences in the BC loop of the IgV domain of the TIM-3 polymorphic variants. In contrast to fibroblastic cells, T or B cells expressing TIM-3 formed conjugates with but failed to engulf apoptotic cells. Together these findings indicate that TIM-3–expressing cells can respond to apoptotic cells, but the consequence of TIM-3 engagement of PtdSer depends on the polymorphic variants of and type of cell expressing TIM-3. These findings establish a new paradigm for TIM proteins as PtdSer receptors and unify the function of the TIM gene family, which has been associated with asthma and autoimmunity and shown to modulate peripheral tolerance. PMID:20083673

  6. Tip60 HAT Activity Mediates APP Induced Lethality and Apoptotic Cell Death in the CNS of a Drosophila Alzheimer's Disease Model

    PubMed Central

    Pirooznia, Sheila K.; Chiu, Kellie; Koduri, Sravanthi; Elefant, Felice

    2012-01-01

    Histone acetylation of chromatin promotes dynamic transcriptional responses in neurons that influence neuroplasticity critical for cognitive ability. It has been demonstrated that Tip60 histone acetyltransferase (HAT) activity is involved in the transcriptional regulation of genes enriched for neuronal function as well as the control of synaptic plasticity. Accordingly, Tip60 has been implicated in the neurodegenerative disorder Alzheimer's disease (AD) via transcriptional regulatory complex formation with the AD linked amyloid precursor protein (APP) intracellular domain (AICD). As such, inappropriate complex formation may contribute to AD-linked neurodegeneration by misregulation of target genes involved in neurogenesis; however, a direct and causative epigenetic based role for Tip60 HAT activity in this process during neuronal development in vivo remains unclear. Here, we demonstrate that nervous system specific loss of Tip60 HAT activity enhances APP mediated lethality and neuronal apoptotic cell death in the central nervous system (CNS) of a transgenic AD fly model while remarkably, overexpression of Tip60 diminishes these defects. Notably, all of these effects are dependent upon the C-terminus of APP that is required for transcriptional regulatory complex formation with Tip60. Importantly, we show that the expression of certain AD linked Tip60 gene targets critical for regulating apoptotic pathways are modified in the presence of APP. Our results are the first to demonstrate a functional interaction between Tip60 and APP in mediating nervous system development and apoptotic neuronal cell death in the CNS of an AD fly model in vivo, and support a novel neuroprotective role for Tip60 HAT activity in AD neurodegenerative pathology. PMID:22848598

  7. Tip60 HAT activity mediates APP induced lethality and apoptotic cell death in the CNS of a Drosophila Alzheimer's disease model.

    PubMed

    Pirooznia, Sheila K; Sarthi, Jessica; Johnson, Ashley A; Toth, Meridith S; Chiu, Kellie; Koduri, Sravanthi; Elefant, Felice

    2012-01-01

    Histone acetylation of chromatin promotes dynamic transcriptional responses in neurons that influence neuroplasticity critical for cognitive ability. It has been demonstrated that Tip60 histone acetyltransferase (HAT) activity is involved in the transcriptional regulation of genes enriched for neuronal function as well as the control of synaptic plasticity. Accordingly, Tip60 has been implicated in the neurodegenerative disorder Alzheimer's disease (AD) via transcriptional regulatory complex formation with the AD linked amyloid precursor protein (APP) intracellular domain (AICD). As such, inappropriate complex formation may contribute to AD-linked neurodegeneration by misregulation of target genes involved in neurogenesis; however, a direct and causative epigenetic based role for Tip60 HAT activity in this process during neuronal development in vivo remains unclear. Here, we demonstrate that nervous system specific loss of Tip60 HAT activity enhances APP mediated lethality and neuronal apoptotic cell death in the central nervous system (CNS) of a transgenic AD fly model while remarkably, overexpression of Tip60 diminishes these defects. Notably, all of these effects are dependent upon the C-terminus of APP that is required for transcriptional regulatory complex formation with Tip60. Importantly, we show that the expression of certain AD linked Tip60 gene targets critical for regulating apoptotic pathways are modified in the presence of APP. Our results are the first to demonstrate a functional interaction between Tip60 and APP in mediating nervous system development and apoptotic neuronal cell death in the CNS of an AD fly model in vivo, and support a novel neuroprotective role for Tip60 HAT activity in AD neurodegenerative pathology. PMID:22848598

  8. Icariin displays anticancer activity against human esophageal cancer cells via regulating endoplasmic reticulum stress-mediated apoptotic signaling.

    PubMed

    Fan, Chongxi; Yang, Yang; Liu, Yong; Jiang, Shuai; Di, Shouyin; Hu, Wei; Ma, Zhiqiang; Li, Tian; Zhu, Yifang; Xin, Zhenlong; Wu, Guiling; Han, Jing; Li, Xiaofei; Yan, Xiaolong

    2016-01-01

    In this study, we investigated the antitumor activity of icariin (ICA) in human esophageal squamous cell carcinoma (ESCC) in vitro and in vivo and explored the role of endoplasmic reticulum stress (ERS) signaling in this activity. ICA treatment resulted in a dose- and time-dependent decrease in the viability of human EC109 and TE1 ESCCs. Additionally, ICA exhibited strong antitumor activity, as evidenced by reductions in cell migration, adhesion, and intracellular glutathione (GSH) levels and by increases in the EC109 and TE1 cell apoptotic index, Caspase 9 activity, reactive oxygen species (ROS) level, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Furthermore, ICA treatments upregulated the levels of ERS-related molecules (p-PERK, GRP78, ATF4, p-eIF2α, and CHOP) and a pro-apoptotic protein (PUMA) and simultaneously downregulated an anti-apoptotic protein (Bcl2) in the two ESCC cell lines. The downregulation of ERS signaling using eIF2α siRNA desensitized EC109 and TE1 cells to ICA treatment, and the upregulation of ERS signaling using thapsigargin sensitized EC109 and TE1 cells to ICA treatment. In summary, ERS activation may represent a mechanism of action for the anticancer activity of ICA in ESCCs, and the activation of ERS signaling may represent a novel therapeutic intervention for human esophageal cancer. PMID:26892033

  9. Canarypox Virus-Induced Maturation of Dendritic Cells Is Mediated by Apoptotic Cell Death and Tumor Necrosis Factor Alpha Secretion

    PubMed Central

    Ignatius, Ralf; Marovich, Mary; Mehlhop, Erin; Villamide, Loreley; Mahnke, Karsten; Cox, William I.; Isdell, Frank; Frankel, Sarah S.; Mascola, John R.; Steinman, Ralph M.; Pope, Melissa

    2000-01-01

    Recombinant avipox viruses are being widely evaluated as vaccines. To address how these viruses, which replicate poorly in mammalian cells, might be immunogenic, we studied how canarypox virus (ALVAC) interacts with primate antigen-presenting dendritic cells (DCs). When human and rhesus macaque monocyte-derived DCs were exposed to recombinant ALVAC, immature DCs were most susceptible to infection. However, many of the infected cells underwent apoptotic cell death, and dying infected cells were engulfed by uninfected DCs. Furthermore, a subset of DCs matured in the ALVAC-exposed DC cultures. DC maturation coincided with tumor necrosis factor alpha (TNF-α) secretion and was significantly blocked in the presence of anti-TNF-α antibodies. Interestingly, inhibition of apoptosis with a caspase 3 inhibitor also reduced some of the maturation induced by exposure to ALVAC. This indicates that both TNF-α and the presence of primarily apoptotic cells contributed to DC maturation. Therefore, infection of immature primate DCs with ALVAC results in apoptotic death of infected cells, which can be internalized by noninfected DCs driving DC maturation in the presence of the TNF-α secreted concomitantly by exposed cells. This suggests an important mechanism that may influence the immunogenicity of avipox virus vectors. PMID:11070033

  10. Integrin αPS3/βν-mediated phagocytosis of apoptotic cells and bacteria in Drosophila.

    PubMed

    Nonaka, Saori; Nagaosa, Kaz; Mori, Toshinobu; Shiratsuchi, Akiko; Nakanishi, Yoshinobu

    2013-04-12

    Integrins exert a variety of cellular functions as heterodimers of two transmembrane subunits named α and β. Integrin βν, a β-subunit of Drosophila integrin, is involved in the phagocytosis of apoptotic cells and bacteria. Here, we searched for an α-subunit that forms a complex and cooperates with βν. Examinations of RNAi-treated animals suggested that αPS3, but not any of four other α-subunits, is required for the effective phagocytosis of apoptotic cells in Drosophila embryos. The mutation of αPS3-encoding scb, deficiency, insertion of P-element, or alteration of nucleotide sequences, brought about a reduction in the level of phagocytosis. The defect in phagocytosis by deficiency was reverted by the forced expression of scb. Furthermore, flies in which the expression of both αPS3 and βν was inhibited by RNAi showed a level of phagocytosis almost equal to that observed in flies with RNAi for either subunit alone. A loss of αPS3 also decreased the activity of larval hemocytes in the phagocytosis of Staphylococcus aureus. Finally, a co-immunoprecipitation analysis using a Drosophila cell line treated with a chemical cross-linker suggested a physical association between αPS3 and βν. These results collectively indicated that integrin αPS3/βν serves as a receptor in the phagocytosis of apoptotic cells and bacteria by Drosophila phagocytes. PMID:23426364

  11. Icariin displays anticancer activity against human esophageal cancer cells via regulating endoplasmic reticulum stress-mediated apoptotic signaling

    PubMed Central

    Fan, Chongxi; Yang, Yang; Liu, Yong; Jiang, Shuai; Di, Shouyin; Hu, Wei; Ma, Zhiqiang; Li, Tian; Zhu, Yifang; Xin, Zhenlong; Wu, Guiling; Han, Jing; Li, Xiaofei; Yan, Xiaolong

    2016-01-01

    In this study, we investigated the antitumor activity of icariin (ICA) in human esophageal squamous cell carcinoma (ESCC) in vitro and in vivo and explored the role of endoplasmic reticulum stress (ERS) signaling in this activity. ICA treatment resulted in a dose- and time-dependent decrease in the viability of human EC109 and TE1 ESCCs. Additionally, ICA exhibited strong antitumor activity, as evidenced by reductions in cell migration, adhesion, and intracellular glutathione (GSH) levels and by increases in the EC109 and TE1 cell apoptotic index, Caspase 9 activity, reactive oxygen species (ROS) level, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Furthermore, ICA treatments upregulated the levels of ERS-related molecules (p-PERK, GRP78, ATF4, p-eIF2α, and CHOP) and a pro-apoptotic protein (PUMA) and simultaneously downregulated an anti-apoptotic protein (Bcl2) in the two ESCC cell lines. The downregulation of ERS signaling using eIF2α siRNA desensitized EC109 and TE1 cells to ICA treatment, and the upregulation of ERS signaling using thapsigargin sensitized EC109 and TE1 cells to ICA treatment. In summary, ERS activation may represent a mechanism of action for the anticancer activity of ICA in ESCCs, and the activation of ERS signaling may represent a novel therapeutic intervention for human esophageal cancer. PMID:26892033

  12. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    SciTech Connect

    Song, Shasha; Wang, Shuang; Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin; Zhu, Daling

    2013-08-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway.

  13. Changes in proliferating and apoptotic markers in the oviductal magnum of chickens during sexual maturation.

    PubMed

    Hrabia, Anna; Leśniak-Walentyn, Agnieszka; Ocłoń, Ewa; Sechman, Andrzej

    2016-06-01

    The avian oviduct is characterized by dynamic hormonal, biochemical, and cellular changes during its development. To better understand the molecular mechanisms regulating proper development of this organ in birds, the rate of cell proliferation and apoptosis as well as these processes-related gene expressions in the chicken oviduct during the sexual maturation were examined. The oviducts were isolated from Hy-Line Brown chickens at 2-week intervals from 10 to 16 weeks of age, and at 17 weeks, i.e. just after the onset of egg laying. In the tissue from the middle part of the oviduct (the magnum) the following parameters were tested: (1) proliferating (proliferating cell nuclear antigen [PCNA]-positive) and apoptotic (Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive) cells, (2) mRNA expression of bcl-2, caspases 2, 3, 8, and 9, PCNA, survivin-142, and ovalbumin by quantitative real-time polymerase chain reaction, (3) protein expression of Bcl-2, PCNA, and caspases 3 and 9 by Western blot, (4) activity of caspases 2, 3, 8, and 9 by fluorometric method, and (5) localization of Bcl-2 and caspases by immunohistochemistry. It was found that the number of proliferating cells per unit area did not change during the examined period. The number of apoptotic cells in the oviductal wall remained on the same level until 14 weeks of age followed by a gradual decrease, reaching the lowest number at 17 weeks. The mRNA expression of all caspases and Bcl-2 gradually decreased during maturation, and PCNA decreased after 14 weeks of age. Survivin-142 mRNA level increased in 14-week-old chickens and then diminished, whereas ovalbumin expression was dramatically elevated in birds 16 weeks old and older. Patterns of protein expression of Bcl-2, PCNA, and caspases and activity of caspases were similar to mRNA, although not as pronounced. In the wall of the magnum the apoptotic cells and examined proteins were localized predominantly in the mucosa (surface epithelium and tubular glands). In summary, the results obtained provide some evidence of changes in selected proliferation- and apoptosis-related gene expression, alterations in activity of multiple apoptotic markers, and differences in the frequency of proliferating and apoptotic markers between mucosa and stroma in the oviductal magnum during the sexual maturation. Concluding, we suggest that Bcl-2, PCNA, survivin-142, and some caspases may cooperatively orchestrate a cascade of events mainly related to the cell proliferation, apoptosis, and differentiation in the chicken oviduct over the course of its development. PMID:26905504

  14. Enhancement in efferocytosis of oxidized low-density lipoprotein-induced apoptotic RAW264.7 cells through Sirt1-mediated autophagy.

    PubMed

    Liu, Baoxin; Zhang, Buchun; Guo, Rong; Li, Shuang; Xu, Yawei

    2014-03-01

    Macrophages play a key role in atherosclerotic plaque formation and rupture. These phagocytic cells are important in the scavenging of modified lipoproteins, unwanted or dead cells and cellular debris through efferocytosis. Sirtuin1 (Sirt1), a member of the conserved sirtuin family and a key regulator in the progression of atherosclerosis exerts protective effects by regulating autophagy, a well-known survival mechanism. Inhibition of autophagy may also result in defective efferocytosis. This study aimed to investigate the effect of Sirt1 on the efferocytosis of oxidized low-density lipoprotein (ox-LDL)-induced apoptotic RAW264.7 cells through upregulation of autophagy. The apoptotic cells were incubated with high and low concentrations of Sirt1 activator resveratrol (RSV) and Sirt1 inhibitor nicotinamide (NAM) as well as autophagy inhibitor 3-methyl-adenine (3-MA) + low concentration RSV. Apoptosis was determined by flow cytometry (FCM) of annexin-V/propidium iodide (AV/PI) dual staining. Total proteins were extracted and protein levels were detected through western blot analysis. The ox-LDL uptake and efferocytosis of apoptotic RAW264.7 cells were detected by oil red O staining and calculation of the phagocytic index of apoptotic RAW264.7 cells. The expression of Sirt1 and autophagy marker proteins was simultaneously increased with the stimulation of low concentration RSV (all P<0.05) and decreased in low and high NAM groups (all P<0.05), compared with the control group. Efferocytosis was highest in the low concentration RSV group (P<0.001) and relatively lower in the low and high concentration NAM groups (both P<0.05) compared with the control group, which was similar to the change in the expression of Sirt1 and autophagy marker proteins. The results showed that the efferocytosis of apoptotic RAW264.7 cells was significantly improved with the upregulation of Sirt1‑mediated autophagy. Therefore, Sirt1 may serve as a novel therapeutic target for the treatment of atherosclerosis. PMID:24378473

  15. Bax, caspase-2, and caspase-3 are required for ovarian follicle loss caused by 4-vinylcyclohexene diepoxide exposure of female mice in vivo.

    PubMed

    Takai, Yasushi; Canning, Jacqueline; Perez, Gloria I; Pru, James K; Schlezinger, Jennifer J; Sherr, David H; Kolesnick, Richard N; Yuan, Junying; Flavell, Richard A; Korsmeyer, Stanley J; Tilly, Jonathan L

    2003-01-01

    The industrial chemical, 4-vinylcyclohexene diepoxide (VCD), kills oocytes within immature follicles in the ovaries of mice and rats and is considered a potential occupational health hazard. It has been reported that VCD-induced follicle loss occurs via a cell death process involving elevated expression of Bax, a proapoptotic Bcl-2 family member, and increased caspase-3-like activity. We have previously shown that oocytes lacking acid sphingomyelinase (ASMase; an enzyme that generates the proapoptotic stress sensor ceramide), the aromatic hydrocarbon receptor (Ahr), Bax, or caspase-2 are resistant to apoptosis induced by other chemical toxicants. Therefore, this study was designed to investigate the functional importance of ASMase, Ahr, Bax, and caspase-2 as well as the related executioner enzyme caspase-3 to VCD-induced ovotoxicity in mice using gene knockout technology. For each gene mutant mouse line, wild-type and homozygous-null female siblings derived from heterozygous matings were given once-daily ip injections of either vehicle (sesame oil) or VCD (80 mg/kg body weight) for 15 d (three or four mice per treatment group per genotype). Ovaries were collected 24 h after the final injection and analyzed for the total number of nonatretic primordial and primary follicles remaining per ovary. No differences in the extent of primordial or primary follicle destruction resulting from VCD exposure were observed in wild-type vs. ASMase- or Ahr-deficient mice. By contrast, the extent of VCD-induced primordial follicle depletion in Bax-deficient mice (45 +/- 11%) was significantly (P < 0.05) lower than that in wild-type females (85 +/- 2%). The extent of primary follicle loss in bax-null mice exposed to VCD (3 +/- 22%) was also significantly (P < 0.05) lower than that in their wild-type sisters (86 +/- 4%). In caspase-2-deficient mice, significantly (P < 0.05) fewer oocyte-containing primary follicles were destroyed by VCD (17 +/- 19%) vs. wild-type controls (71 +/- 6%); however, no significant difference in the extent of VCD-induced primordial follicle destruction was observed in caspase-2-null vs. wild-type females. Finally, in caspase-3-deficient mice, significantly (P < 0.05) fewer oocyte-containing primary follicles were destroyed by VCD (33 +/- 3%) vs. wild-type controls (71 +/- 2%); however, no significant difference in the extent of VCD-induced primordial follicle destruction was observed in caspase-3-null vs. wild-type females. We conclude that Bax, caspase-2, and caspase-3, but not ASMase or Ahr, are functionally important in VCD-induced follicle loss. However, as a loss of Bax, caspase-2, or caspase-3 function conveyed only partial protection from the ovotoxic effects of VCD, other cell death pathways that either function independently of Bax, caspase-2, and caspase-3 or are not apoptotic in nature are also involved. PMID:12488331

  16. Do plants mediate their anti-diabetic effects through anti-oxidant and anti-apoptotic actions? an in vitro assay of 3 Indian medicinal plants

    PubMed Central

    2013-01-01

    Background Both experimental and clinical studies suggest that oxidative stress plays a major role in the pathogenesis of both types of diabetes mellitus. This oxidative stress leads to ?-cell destruction by apoptosis. Hence exploring agents modulating oxidative stress is an effective strategy in the treatment of both Type I and Type II diabetes. Plants are a major source of anti-oxidants and exert protective effects against oxidative stress in biological systems. Phyllanthus emblica, Curcuma longa and Tinospora cordifolia are three such plants widely used in Ayurveda for their anti-hyperglycemic activity. Additionally their anti-oxidant properties have been scientifically validated in various experimental in vitro and in vivo models. Hence the present in vitro study was planned to assess whether the anti-hyperglycemic effects of the hydro-alcoholic extracts of Phyllanthus emblica (Pe) and Curcuma longa (Cl) and aqueous extract of Tinospora cordifolia (Tc) are mediated through their antioxidant and/or anti-apoptotic property in a streptozotocin induced stress model. Methods RINm5F cell line was used as a model of pancreatic ?-cells against stress induced by streptozotocin (2mM). Non-toxic concentrations of the plant extracts were identified using MTT assay. Lipid peroxidation through MDA release, modulation of apoptosis and insulin release were the variables measured to assess streptozotocin induced damage and protection afforded by the plant extracts. Results All 3 plants extracts significantly inhibited MDA release from RIN cells indicating protective effect against STZ induced oxidative damage. They also exhibited a dose dependent anti-apoptotic effect as seen by a decrease in the sub G0 population in response to STZ. None of the plant extracts affected insulin secretion from the cells to a great extent. Conclusion The present study thus demonstrated that the protective effect of the selected medicinal plants against oxidative stress induced by STZ in vitro, which was exerted through their anti-oxidant and anti-apoptotic actions. PMID:24093976

  17. RXRα, PXR and CAR xenobiotic receptors mediate the apoptotic and neurotoxic actions of nonylphenol in mouse hippocampal cells.

    PubMed

    Litwa, E; Rzemieniec, J; Wnuk, A; Lason, W; Krzeptowski, W; Kajta, M

    2016-02-01

    In the present study, we investigated the role of the retinoid X receptor (RXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), in the apoptotic and toxic effects of nonylphenol in mouse primary neuronal cell cultures. Our study demonstrated that nonylphenol activated caspase-3 and induced lactate dehydrogenase (LDH) release in hippocampal cells, which was accompanied by an increase in the mRNA expression and protein levels of RXRα, PXR and CAR. Nonylphenol stimulated Rxra, Pxr, and Car mRNA expression. These effects were followed by increase in the protein levels of particular receptors. Immunofluorescence labeling revealed the cellular distribution of RXRα, PXR and CAR in hippocampal neurons in response to nonylphenol, shortening of neurites and cytoplasmic shrinking, as indicated by MAP2 staining. It also showed NP-induced translocation of receptor-specific immunofluorescence from cytoplasm to the nucleus. The use of specific siRNAs demonstrated that Rxra-, Pxr-, and Car-siRNA-transfected cells were less vulnerable to nonylphenol-induced activation of caspase-3 and LDH, thus confirming the key involvement of RXRα/PXR/CAR signaling pathways in the apoptotic and neurotoxic actions of nonylphenol. These new data give prospects for the targeting xenobiotic nuclear receptors to protect the developing nervous system against endocrine disrupting chemicals. PMID:26643981

  18. Biomechanical insult switches PEA-15 activity to uncouple its anti-apoptotic function and promote erk mediated tissue remodeling.

    PubMed

    Exler, Rachel E; Guo, Xiaoxin; Chan, Darren; Livne-Bar, Izhar; Vicic, Nevena; Flanagan, John G; Sivak, Jeremy M

    2016-01-15

    Biomechanical insult contributes to many chronic pathological processes, yet the resulting influences on signal transduction mechanisms are poorly understood. The retina presents an excellent mechanotransduction model, as mechanical strain on sensitive astrocytes of the optic nerve head (ONH) is intimately linked to chronic tissue remodeling and excavation by matrix metalloproteinases (MMPs), and apoptotic cell death. However, the mechanism by which these effects are induced by biomechanical strain is unclear. We previously identified the small adapter protein, PEA-15 (phosphoprotein enriched in astrocytes), through proteomic analyses of human ONH astrocytes subjected to pathologically relevant biomechanical insult. Under resting conditions PEA-15 is regulated through phosphorylation of two key serine residues to inhibit extrinsic apoptosis and ERK1/2 signaling. However, we surprisingly observed that biomechanical insult dramatically switches PEA-15 phosphorylation and function to uncouple its anti-apoptotic activity, and promote ERK1/2-dependent MMP-2 and MMP-9 secretion. These results reveal a novel cell autonomous mechanism by which biomechanical strain rapidly modifies this signaling pathway to generate altered tissue injury responses. PMID:26615958

  19. Activation of AMPK/MnSOD signaling mediates anti-apoptotic effect of hepatitis B virus in hepatoma cells

    PubMed Central

    Li, Lei; Hong, Hong-Hai; Chen, Shi-Ping; Ma, Cai-Qi; Liu, Han-Yan; Yao, Ya-Chao

    2016-01-01

    AIM: To investigate the anti-apoptotic capability of the hepatitis B virus (HBV) in the HepG2 hepatoma cell line and the underlying mechanisms. METHODS: Cell viability and apoptosis were measured by MTT assay and flow cytometry, respectively. Targeted knockdown of manganese superoxide dismutase (MnSOD), AMP-activated protein kinase (AMPK) and hepatitis B virus X protein (HBx) genes as well as AMPK agonist AICAR and antagonist compound C were employed to determine the correlations of expression of these genes. RESULTS: HBV markedly protected the hepatoma cells from growth suppression and cell death in the condition of serum deprivation. A decrease of superoxide anion production accompanied with an increase of MnSOD expression and activity was found in HepG2.215 cells. Moreover, AMPK activation contributed to the up-regulation of MnSOD. HBx protein was identified to induce the expression of AMPK and MnSOD. CONCLUSION: Our results suggest that HBV suppresses mitochondrial superoxide level and exerts an anti-apoptotic effect by activating AMPK/MnSOD signaling pathway, which may provide a novel pharmacological strategy to prevent HCC. PMID:27158203

  20. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling.

    PubMed

    Chhibber-Goel, Jyoti; Coleman-Vaughan, Caroline; Agrawal, Vishal; Sawhney, Neha; Hickey, Emer; Powell, James C; McCarthy, Justin V

    2016-03-11

    The γ-secretase protease and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signaling events, which have a central role in Alzheimer disease, cancer progression, and immune surveillance. An increasing number of γ-secretase substrates have a role in cytokine signaling, including the IL-6 receptor, IL-1 receptor type I, and IL-1 receptor type II. In this study, we show that following TNF-converting enzyme-mediated ectodomain shedding of TNF type I receptor (TNFR1), the membrane-bound TNFR1 C-terminal fragment is subsequently cleaved by γ-secretase to generate a cytosolic TNFR1 intracellular domain. We also show that clathrin-mediated internalization of TNFR1 C-terminal fragment is a prerequisite for efficient γ-secretase cleavage of TNFR1. Furthermore, using in vitro and in vivo model systems, we show that in the absence of presenilin expression and γ-secretase activity, TNF-mediated JNK activation was prevented, assembly of the TNFR1 pro-apoptotic complex II was reduced, and TNF-induced apoptosis was inhibited. These observations demonstrate that TNFR1 is a γ-secretase substrate and suggest that γ-secretase cleavage of TNFR1 represents a new layer of regulation that links the presenilins and the γ-secretase protease to pro-inflammatory cytokine signaling. PMID:26755728

  1. Docetaxel loaded oleic acid-coated hydroxyapatite nanoparticles enhance the docetaxel-induced apoptosis through activation of caspase-2 in androgen independent prostate cancer cells.

    PubMed

    Luo, Yun; Ling, You; Guo, Wusheng; Pang, Jun; Liu, Weipeng; Fang, Youqiang; Wen, Xinqiao; Wei, Kun; Gao, Xin

    2010-10-15

    Docetaxel (Dtxl) remains the preferred choice of improving the survival of patients with hormone refractory prostate cancer (HRPC), but many patients suffer from modest drug response and significant toxicity. In the present study, we investigated the efficiency of novel Dtxl loaded-[1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-carboxy(polyethylene glycol)]2000 (DSPE-PEG-COOH) stabilized-oleic acid (OA) coated hydroxyapatite (HA) nanoparticles (Dtxl-NPs) and gained insights into the molecular mechanism of the apoptosis induced by these novel Dtxl-loaded nanoparticles. The drug encapsulation efficiency of Dtxl was 83.6% and the sustained drug release was observed over 30days. The Dtxl-NPs exhibited significantly more cytotoxicity in both prostate cancer cell lines (PC3 and DU145) compared with Dtxl in vitro and increased the Dtxl-induced apoptosis in the PC3 cells. Cell cycle analysis showed that the PC3 cells treated with Dtxl-NPs exhibited significant arrest in the G2-M phase but a higher sub-G(0)/G(1) population when compared with Dtxl. The enhanced apoptosis induced by Dtxl-NPs in the PC3 cells was associated with the changes in mitochondrial membrane potential (MMP) and seemed to involve the activation of caspase-2. The kinetic studies of caspases demonstrated an early activation of caspase-2 in Dtxl-NPs-induced apoptosis in PC3 cells, which differs from Dtxl-induced apoptosis. The inhibition of caspase-2 activation by small interfering RNA (siRNA) knockdown resulted in the significant inhibition of Dtxl-NPs-induced disruption of MMP and Dtxl-NPs-induced apoptosis, indicating that the activation of caspase-2 was the critical event before the mitochondrial depolarization in the PC3 cells. Our findings showed that nanoparticles, more than simple drug carriers, may play an active role in mediating the biological effects. PMID:20655966

  2. The p53-inducible gene 3 involved in flavonoid-induced cytotoxicity through the reactive oxygen species-mediated mitochondrial apoptotic pathway in human hepatoma cells.

    PubMed

    Zhang, Qiang; Cheng, Guangdong; Qiu, Hongbin; Zhu, Liling; Ren, Zhongjuan; Zhao, Wei; Zhang, Tao; Liu, Lei

    2015-05-01

    Flavonoids have been reported to exhibit prooxidant cytotoxicity against cancer cells, but the underlying mechanism is still poorly understood. Here we investigated the potential mechanism that p53-inducible gene 3 (PIG3), a NADPH:quinone oxidoreductase, mediated the prooxidant cytotoxicity of flavonoids on human hepatoma HepG2 cells. The results showed that flavonoids (apigenin, luteolin, kaempferol, and quercetin) inhibited the growth of HepG2 cells in a dosage- and time-dependent manner, and induced the morphological changes characteristic of apoptosis in HepG2 cells. We also found that expression of PIG3 was increased markedly in HepG2 cells treated with flavonoids at both mRNA and protein levels, which was accompanied by increased intracellular ROS production and a decreased mitochondrial membrane potential (ΔΨm). All these effects were largely reversed through knockdown of the PIG3 gene in HepG2 cells. Western blotting indicated that flavonoids increased cytochrome c release, upregulated the ratio of Bax/Bcl-2, and activated the caspases-9 and -3. Moreover, knockdown of PIG3 could reverse the changes of these apoptotic-related proteins. These results suggest that PIG3 plays an important role in regulating the prooxidant activity and apoptosis-inducing action of flavonoids on HepG2 cells though the ROS-triggered mitochondrial apoptotic pathway. PMID:25820747

  3. Correlation of glucocorticoid-mediated E4BP4 upregulation with altered expression of pro- and anti-apoptotic genes in CEM human lymphoblastic leukemia cells.

    PubMed

    Beach, Jessica A; Nary, Laura J; Hovanessian, Rebeka; Medh, Rheem D

    2014-08-29

    In Caenorhabditiselegans, motorneuron apoptosis is regulated via a ces-2-ces-1-egl-1 pathway. We tested whether human CEM lymphoblastic leukemia cells undergo apoptosis via an analogous pathway. We have previously shown that E4BP4, a ces-2 ortholog, mediates glucocorticoid (GC)-dependent upregulation of BIM, an egl-1 ortholog, in GC-sensitive CEM C7-14 cells and in CEM C1-15mE#3 cells, which are sensitized to GCs by ectopic expression of E4BP4. In the present study, we demonstrate that the human ces-1 orthologs, SLUG and SNAIL, are not significantly repressed in correlation with E4BP4 expression. Expression of E4BP4 homologs, the PAR family genes, especially HLF, encoding a known anti-apoptotic factor, was inverse to that of E4BP4 and BIM. Expression of pro- and anti-apoptotic genes in CEM cells was analyzed via an apoptosis PCR Array. We identified BIRC3 and BIM as genes whose expression paralleled that of E4BP4, while FASLG, TRAF4, BCL2A1, BCL2L1, BCL2L2 and CD40LG as genes whose expression was opposite to that of E4BP4. PMID:25101525

  4. AMP-activated protein kinase mediates apoptosis in response to bioenergetic stress through activation of the pro-apoptotic Bcl-2 homology domain-3-only protein BMF.

    PubMed

    Kilbride, Seán M; Farrelly, Angela M; Bonner, Caroline; Ward, Manus W; Nyhan, Kristine C; Concannon, Caoimhín G; Wollheim, Claes B; Byrne, Maria M; Prehn, Jochen H M

    2010-11-12

    Heterozygous loss-of-function mutations in the hepatocyte nuclear factor 1A (HNF1A) gene result in the pathogenesis of maturity-onset diabetes-of-the-young type 3, (HNF1A-MODY). This disorder is characterized by a primary defect in metabolism-secretion coupling and decreased beta cell mass, attributed to excessive beta cell apoptosis. Here, we investigated the link between energy stress and apoptosis activation following HNF1A inactivation. This study employed single cell fluorescent microscopy, flow cytometry, gene expression analysis, and gene silencing to study the effects of overexpression of dominant-negative (DN)-HNF1A expression on cellular bioenergetics and apoptosis in INS-1 cells. Induction of DN-HNF1A expression led to reduced ATP levels and diminished the bioenergetic response to glucose. This was coupled with activation of the bioenergetic stress sensor AMP-activated protein kinase (AMPK), which preceded the onset of apoptosis. Pharmacological activation of AMPK using aminoimidazole carboxamide ribonucleotide (AICAR) was sufficient to induce apoptosis in naive cells. Conversely, inhibition of AMPK with compound C or AMPKα gene silencing protected against DN-HNF1A-induced apoptosis. Interestingly, AMPK mediated the induction of the pro-apoptotic Bcl-2 homology domain-3-only protein Bmf (Bcl-2-modifying factor). Bmf expression was also elevated in islets of DN-HNF1A transgenic mice. Furthermore, knockdown of Bmf expression in INS-1 cells using siRNA was sufficient to protect against DN-HNF1A-induced apoptosis. Our study suggests that overexpression of DN-HNF1A induces bioenergetic stress and activation of AMPK. This in turn mediates the transcriptional activation of the pro-apoptotic Bcl-2-homology protein BMF, coupling prolonged energy stress to apoptosis activation. PMID:20841353

  5. iNKT Cells Are Responsible for the Apoptotic Reduction of Basophils That Mediate Th2 Immune Responses Elicited by Papain in Mice Following γPGA Stimulation

    PubMed Central

    Park, Se-Ho; Hong, Seokmann

    2016-01-01

    Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and development of new therapeutics for Th2-mediated immune diseases such as AD. PMID:27049954

  6. Antiapoptotic and Antioxidant Properties of Orthosiphon stamineus Benth (Cat's Whiskers): Intervention in the Bcl-2-Mediated Apoptotic Pathway

    PubMed Central

    Abdelwahab, Siddig Ibrahim; Mohan, Syam; Mohamed Elhassan, Manal; Al-Mekhlafi, Nabil; Mariod, Abdelbasit Adam; Abdul, Ahmad Bustamam; Abdulla, Mahmood Ameen; Alkharfy, Khalid M.

    2011-01-01

    Antiapoptotic and antioxidant activities of aqueous-methanolic extract (CAME) of Orthosiphonstamineus Benth(OS), and its hexane (HF), chloroform (CF), n-butanol (NBF), ethyl acetate (EAF) and water (WF) fractions were investigated. Antioxidant properties were evaluated using the assays of Folin-Ciocalteu, aluminiumtrichloride, ?-carotene bleaching and DPPH. The role of OS against hydrogen peroxide induced apoptosis on MDA-M231 epithelial cells was examined using MTT assay, phase contrast microscope, colorimetric assay of caspase-3, western blot and quantitative real-time PCR. Results showed that EAF showed the highest total phenolic content followed by CAME, NBF, WF, CF and HF, respectively. Flavonoid content was in the order of the CF > EAF > HF > CAME > NBF > WF. The IC50 values on DPPH assay for different extract/fractions were 126.2 23, 31.25 1.2, 15.25 2.3, 13.56 1.9, 23.0 3.2, and 16.66 1.5??g/ml for HF, CF, EAF, NBF, WF and CAME, respectively. OSreduced the oxidation of ?-carotene by hydroperoxides. Cell death was dose-dependently inhibited by pretreatment with OS. Caspase-3 and distinct morphological features suggest the anti-apoptotic activities of OS. This plant not only increased the expression of Bcl-2, but also decreased Bax expression, and ultimately reduced H2O2-induced apoptosis. The current results showed that phenolics may provide health and nutritional benefits. PMID:21234328

  7. c-Jun N-terminal kinase enhances MST1-mediated pro-apoptotic signaling through phosphorylation at serine 82.

    PubMed

    Bi, Wenzhi; Xiao, Lei; Jia, Yunfeng; Wu, Junbing; Xie, Qi; Ren, Jian; Ji, Guangju; Yuan, Zengqiang

    2010-02-26

    Protein kinases play an important role in the maintenance of homeostasis between cell survival and apoptosis. Deregulation of these kinases leads to various pathological manifestations, such as cancer and neurodegenerative diseases. The MST1 encodes a serine/threonine kinase that is activated upon apoptotic stimulation, which in turn phosphorylates its downstream targets, Histone H2B and FOXO. However, the upstream regulators of MST1 kinase have been poorly studied. In this study, we report that JNK (c-Jun N-terminal kinase) phosphorylates MST1 at serine 82, which leads to the enhancement of MST1 activation. Accordingly, the activation of MST1 phosphorylates FOXO3 at serine 207 and promotes cell death. The inhibition of JNK kinase per se attenuates MST1 activity and nuclear translocation as well as MST1-induced apoptosis. We also find the S82A (serine mutated to alanine) diminishes MST1 activation and its effect on the FOXO transcription activity. Collectively, these findings define the novel feedback regulation of MST1 kinase activation by its putative substrate, JNK, with implication for our understanding of the signaling mechanism during cell death. PMID:20028971

  8. SCAR/WAVE-mediated processing of engulfed apoptotic corpses is essential for effective macrophage migration in Drosophila

    PubMed Central

    Evans, I R; Ghai, P A; Urbančič, V; Tan, K-L; Wood, W

    2013-01-01

    In vitro studies have shown that SCAR/WAVE activates the Arp2/3 complex to generate actin filaments, which in many cell types are organised into lamellipodia that are thought to have an important role in cell migration. Here we demonstrate that SCAR is utilised by Drosophila macrophages to drive their developmental and inflammatory migrations and that it is regulated via the Hem/Kette/Nap1-containing SCAR/WAVE complex. SCAR is also important in protecting against bacterial pathogens and in wound repair as SCAR mutant embryos succumb more readily to both sterile and infected wounds. However, in addition to driving the formation of lamellipodia in macrophages, SCAR is required cell autonomously for the correct processing of phagocytosed apoptotic corpses by these professional phagocytes. Removal of this phagocytic burden by preventing apoptosis rescues macrophage lamellipodia formation and partially restores motility. Our results show that efficient processing of phagosomes is critical for effective macrophage migration in vivo. These findings have important implications for the resolution of macrophages from chronic wounds and the behaviour of those associated with tumours, because phagocytosis of debris may serve to prolong the presence of these cells at these sites of pathology. PMID:23328632

  9. Astragaloside IV inhibits doxorubicin-induced cardiomyocyte apoptosis mediated by mitochondrial apoptotic pathway via activating the PI3K/Akt pathway.

    PubMed

    Jia, Yuanyuan; Zuo, Daiying; Li, Zengqiang; Liu, Hanmo; Dai, Zhengning; Cai, Jiayi; Pang, Lili; Wu, Yingliang

    2014-01-01

    Doxorubicin (DOX) is a widely used antitumor drug whose application is seriously limited by its cardiotoxicity. Mitochondria-mediated cardiomyocyte apoptosis plays a critical role in DOX-induced cardiotoxicity (DIC). The aim of the present study was to investigate the protective effect of astragaloside IV (3-O-beta-D-xylopyranosyl-6-O-beta-D-glucopyranosyl-cycloastragenol, AS-IV), a pure saponin isolated from Astragalus membranaceus, against DOX-induced cardiomyocyte apoptosis in primary cultured neonatal rat cardiomyocytes. Immunocytochemistry and Microculture Tetrazolium (MTT) assays showed that AS-IV significantly reduced DOX-induced cardiomyocyte loss. Additionally, AS-IV markedly ameliorated DOX-caused cardiomyocyte dysfunction via restoring the beating cell ratio and beating rate in cardiomyocytes. Furthermore, AS-IV substantially reduced the mitochondrial reactive oxygen species (ROS) production and lactate dehydrogenase (LDH), creatine kinase-MB isoenzyme (CK-MB) and cytochrome c (CytC) release, and restored the reduced ATP level, succinate dehydrogenase (SDH) and ATP synthase activities induced by DOX, suggesting that AS-IV significantly attenuated DOX-induced mitochondrial damage and dysfunction. It was further observed that DOX-induced cardiomyocyte apoptosis, as qualitatively evaluated by Hoechst 33258 staining and accurately quantified by flow cytometry, was markedly inhibited by AS-IV. Western blot analysis manifested that AS-IV significantly inhibited the activation of mitochondrial apoptotic pathway (MAP) via inducing the phosphorylation of Akt and Bad. Furthermore, phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) remarkably inhibited the anti-apoptotic effect of AS-IV. Moreover, AS-IV didn't compromise the antitumor activity of DOX. Taken together, our findings indicate that AS-IV ameliorates DIC, and this beneficial effect appears to be dependent on the activation of the PI3K/Akt pathway. Thus, AS-IV may hold promise as an efficient cardioprotective agent against DIC. PMID:24390491

  10. Mangiferin Attenuates Diabetic Nephropathy by Inhibiting Oxidative Stress Mediated Signaling Cascade, TNFα Related and Mitochondrial Dependent Apoptotic Pathways in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.

    2014-01-01

    Oxidative stress plays a crucial role in the progression of diabetic nephropathy in hyperglycemic conditions. It has already been reported that mangiferin, a natural C-glucosyl xanthone and polyhydroxy polyphenol compound protects kidneys from diabetic nephropathy. However, little is known about the mechanism of its beneficial action in this pathophysiology. The present study, therefore, examines the detailed mechanism of the beneficial action of mangiferin on STZ-induced diabetic nephropathy in Wister rats as the working model. A significant increase in plasma glucose level, kidney to body weight ratio, glomerular hypertrophy and hydropic changes as well as enhanced nephrotoxicity related markers (BUN, plasma creatinine, uric acid and urinary albumin) were observed in the experimental animals. Furthermore, increased oxidative stress related parameters, increased ROS production and decreased the intracellular antioxidant defenses were detected in the kidney. Studies on the oxidative stress mediated signaling cascades in diabetic nephropathy demonstrated that PKC isoforms (PKCα, PKCβ and PKCε), MAPKs (p38, JNK and ERK1/2), transcription factor (NF-κB) and TGF-β1 pathways were involved in this pathophysiology. Besides, TNFα was released in this hyperglycemic condition, which in turn activated caspase 8, cleaved Bid to tBid and finally the mitochorndia-dependent apoptotic pathway. In addition, oxidative stress also disturbed the proapoptotic-antiapoptotic (Bax and Bcl-2) balance and activated mitochorndia-dependent apoptosis via caspase 9, caspase 3 and PARP cleavage. Mangiferin treatment, post to hyperglycemia, successfully inhibited all of these changes and protected the cells from apoptotic death. PMID:25233093

  11. Synthetic catecholamine triggers β1-adrenergic receptor activation and stimulates cardiotoxicity via oxidative stress mediated apoptotic cell death in rats: Abrogating action of thymol.

    PubMed

    Meeran, M F Nagoor; Jagadeesh, G S; Selvaraj, P

    2016-05-01

    Nowadays, there are considerable interests in the studies which are more connected with the impact of natural antioxidants against the free radical mediated damage in biological systems. Cardiotoxicity is one of the lethal manifestations of cardiovascular diseases (CVDs) which have been associated with the incidence of apoptotic cell death due to oxidative stress. We evaluated the impact of thymol, a dietary monoterpene phenol on isoproterenol (ISO), a synthetic catecholamine and a β1-adrenergic receptor agonist in rats. Thymol (7.5 mg/kg body weight) was pre and co-treated into male albino Wistar rats daily for a period of 7 days. Induction of cardiotoxicity was done by the subcutaneous administration of ISO (100 mg/kg body weight) into rats on 6th and 7th day. Cardiotoxicity in rats was confirmed by the increased levels/activity of serum troponin-T and creatine kinase in the serum alongwith decreased activity of creatine kinase in the heart. ISO induced cardiotoxic rats also showed a significant increase in the concentrations of lipid peroxidation products and a significant decrease in the activities/levels of antioxidants in the myocardium whereas Reverse Transcription Polymerase Chain Reaction study revealed an increased expression of caspase-8, caspase-9 and Fas genes along with a decreased expression of Bcl-xL gene in the myocardium. Thymol pre and co-treated ISO induced cardiotoxic rats showed considerable protective effects on all the biochemical parameters studied. Histopathological and in vitro findings are found in line with our biochemical findings. Thus, the present study revealed that thymol counters ISO induced cardiotoxicity by inhibiting oxidative stress and apoptotic cell death in rats by virtue of its potent antioxidant property. PMID:26996544

  12. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    SciTech Connect

    Ji Lili; Chen Ying; Liu Tianyu; Wang Zhengtao

    2008-09-15

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 {mu}M)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability. Polyubiquitination of Bcl-xL was detected after incubation with 100 {mu}M clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 {mu}M) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway.

  13. Non-conventional apoptotic response to ionising radiation mediated by N-methyl D-aspartate receptors in immature neuronal cells

    PubMed Central

    SAMARI, NADA; DE SAINT-GEORGES, LOUIS; PANI, GIUSEPPE; BAATOUT, SARAH; LEYNS, LUC; BENOTMANE, MOHAMMED ABDERRAFI

    2013-01-01

    During cortical development, N-methyl D-aspartate (NMDA) receptors are highly involved in neuronal maturation and synapse establishment. Their implication in the phenomenon of excitotoxicity has been extensively described in several neurodegenerative diseases due to the permissive entry of Ca2+ ions and massive accumulation in the intracellular compartment, which is highly toxic to cells. Ionising radiation is also a source of stress to the cells, particularly immature neurons. Their capacity to induce cell death has been described for various cell types either by directly damaging the DNA or indirectly through the generation of reactive oxygen species responsible for the activation of a battery of stress response effectors leading in certain cases, to cell death. In this study, in order to determine whether a link exists between NMDA receptors-mediated excitotoxicity and radiation-induced cell death, we evaluated radiation-induced cell death in vitro and in vivo in maturing neurons during the fetal period. Cell death induction was assessed by TUNEL, caspase-3 activity and DNA ladder assays, with or without the administration of dizocilpine (MK-801), a non-competitive NMDA receptor antagonist which blocks neuronal Ca2+ influx. To further investigate the possible involvement of Ca2+-dependent enzyme activation, known to occur at high Ca2+ concentrations, we examined the protective effect of a calpain inhibitor on cell death induced by radiation. Doses ranging from 0.2 to 0.6 Gy of X-rays elicited a clear apoptotic response that was prevented by the injection of dizocilpine (MK-801) or calpain inhibitor. These data demonstrate the involvement of NMDA receptors in radiation-induced neuronal death by the activation of downstream effectors, including calpain-related pathways. An increased apoptotic process elicited by radiation, occurring independently of the normal developmental scheme, may eliminate post-mitotic but immature neuronal cells and deeply impair the establishment of the neuronal network, which in the case of cortical development is critical for cognitive capacities. PMID:23338045

  14. The expression of CD154 by Kaposi's sarcoma cells mediates the anti-apoptotic and migratory effects of HIV-1-TAT protein.

    PubMed

    Cantaluppi, V; Deregibus, M C; Biancone, L; Deambrosis, I; Bussolati, B; Albini, A; Camussi, G

    2006-01-01

    Kaposi's sarcoma (KS) is a malignancy associated to conditions of immune system impairment such as HIV-1 infection and post-transplantation therapy. Here we report that HIV-1-Tat protein, at concentrations well below those detected in AIDS patients, up-regulates the expression of both CD40 and CD154 on KS cells. This occurred also in the presence of vincristine, that at doses shown to induce apoptosis decreased the expression of both CD40 and CD154 on KS cells. The treatment with a soluble CD40-muIg fusion protein (CD40 fp) that prevents the binding of CD154 with cell surface CD40, as well as the transfection with a vector for soluble CD40 (KS sCD40), decreased the anti-apoptotic effect of Tat. Moreover, Tat-induced motility of KS cells was inhibited by soluble CD40 fp. Tat also enhanced the expression of intracellular proteins known to transduce signals triggered by CD40 engagement, in particular TRAF-3. Tat as well as soluble CD154 (sCD154) prevented vincristine-induced reduction of TRAF-3 in KS cells transfected with a vector for neomycin resistance (KS psv-neo), but not in KS sCD40. Immunoprecipitation studies showed that Tat induced CD40 / TRAF-3 association and that this binding was abrogated upon the incubation with the soluble CD40 fp. These data suggest that Tat activates the CD40-CD154 pathway by enhancing the membrane expression of CD40 and in particular of CD154, and by activating the TRAF-3-dependent signaling pathway of CD40. These findings indicate that the CD40-CD154 pathway mediates the anti-apoptotic and migratory effects of HIV-1- Tat, suggesting the potential therapeutic benefits of blocking CD40 activation in HIV-1-associated KS. PMID:16569346

  15. Regulation of anti-apoptotic signaling by Kruppel-like factors 4 and 5 mediates lapatinib resistance in breast cancer

    PubMed Central

    Farrugia, M K; Sharma, S B; Lin, C-C; McLaughlin, S L; Vanderbilt, D B; Ammer, A G; Salkeni, M A; Stoilov, P; Agazie, Y M; Creighton, C J; Ruppert, J M

    2015-01-01

    The Kruppel-like transcription factors (KLFs) 4 and 5 (KLF4/5) are coexpressed in mouse embryonic stem cells, where they function redundantly to maintain pluripotency. In mammary carcinoma, KLF4/5 can each impact the malignant phenotype, but potential linkages to drug resistance remain unclear. In primary human breast cancers, we observed a positive correlation between KLF4/5 transcript abundance, particularly in the human epidermal growth factor receptor 2 (HER2)-enriched subtype. Furthermore, KLF4/5 protein was rapidly upregulated in human breast cancer cells following treatment with the HER2/epidermal growth factor receptor inhibitor, lapatinib. In addition, we observed a positive correlation between these factors in the primary tumors of genetically engineered mouse models (GEMMs). In particular, the levels of both factors were enriched in the basal-like tumors of the C3(1) TAg (SV40 large T antigen transgenic mice under control of the C3(1)/prostatein promoter) GEMM. Using tumor cells derived from this model as well as human breast cancer cells, suppression of KLF4 and/or KLF5 sensitized HER2-overexpressing cells to lapatinib. Indicating cooperativity, greater effects were observed when both genes were depleted. KLF4/5-deficient cells had reduced basal mRNA and protein levels of the anti-apoptotic factors myeloid cell leukemia 1 (MCL1) and B-cell lymphoma-extra large (BCL-XL). Moreover, MCL1 was upregulated by lapatinib in a KLF4/5-dependent manner, and enforced expression of MCL1 in KLF4/5-deficient cells restored drug resistance. In addition, combined suppression of KLF4/5 in cultured tumor cells additively inhibited anchorage-independent growth, resistance to anoikis and tumor formation in immunocompromised mice. Consistent with their cooperative role in drug resistance and other malignant properties, KLF4/5 levels selectively stratified human HER2-enriched breast cancer by distant metastasis-free survival. These results identify KLF4 and KLF5 as cooperating protumorigenic factors and critical participants in resistance to lapatinib, furthering the rationale for combining anti-MCL1/BCL-XL inhibitors with conventional HER2-targeted therapies. PMID:25789974

  16. Regulation of anti-apoptotic signaling by Kruppel-like factors 4 and 5 mediates lapatinib resistance in breast cancer.

    PubMed

    Farrugia, M K; Sharma, S B; Lin, C-C; McLaughlin, S L; Vanderbilt, D B; Ammer, A G; Salkeni, M A; Stoilov, P; Agazie, Y M; Creighton, C J; Ruppert, J M

    2015-01-01

    The Kruppel-like transcription factors (KLFs) 4 and 5 (KLF4/5) are coexpressed in mouse embryonic stem cells, where they function redundantly to maintain pluripotency. In mammary carcinoma, KLF4/5 can each impact the malignant phenotype, but potential linkages to drug resistance remain unclear. In primary human breast cancers, we observed a positive correlation between KLF4/5 transcript abundance, particularly in the human epidermal growth factor receptor 2 (HER2)-enriched subtype. Furthermore, KLF4/5 protein was rapidly upregulated in human breast cancer cells following treatment with the HER2/epidermal growth factor receptor inhibitor, lapatinib. In addition, we observed a positive correlation between these factors in the primary tumors of genetically engineered mouse models (GEMMs). In particular, the levels of both factors were enriched in the basal-like tumors of the C3(1) TAg (SV40 large T antigen transgenic mice under control of the C3(1)/prostatein promoter) GEMM. Using tumor cells derived from this model as well as human breast cancer cells, suppression of KLF4 and/or KLF5 sensitized HER2-overexpressing cells to lapatinib. Indicating cooperativity, greater effects were observed when both genes were depleted. KLF4/5-deficient cells had reduced basal mRNA and protein levels of the anti-apoptotic factors myeloid cell leukemia 1 (MCL1) and B-cell lymphoma-extra large (BCL-XL). Moreover, MCL1 was upregulated by lapatinib in a KLF4/5-dependent manner, and enforced expression of MCL1 in KLF4/5-deficient cells restored drug resistance. In addition, combined suppression of KLF4/5 in cultured tumor cells additively inhibited anchorage-independent growth, resistance to anoikis and tumor formation in immunocompromised mice. Consistent with their cooperative role in drug resistance and other malignant properties, KLF4/5 levels selectively stratified human HER2-enriched breast cancer by distant metastasis-free survival. These results identify KLF4 and KLF5 as cooperating protumorigenic factors and critical participants in resistance to lapatinib, furthering the rationale for combining anti-MCL1/BCL-XL inhibitors with conventional HER2-targeted therapies. PMID:25789974

  17. ROS-mediated activation of JNK/p38 contributes partially to the pro-apoptotic effect of ajoene on cells of lung adenocarcinoma.

    PubMed

    Wang, Yingyi; Sun, Zhao; Chen, Shuchang; Jiao, Yuchen; Bai, Chunmei

    2016-03-01

    Ajoene, a garlic-derived organosulfur compound, exerts anti-tumorigenic effect against various cancers. However, little is known about the biological effect of ajoene on lung adenocarcinoma, an aggressive malignancy with dismal prognosis. We investigated the biological effect of ajoene on lung adenocarcinoma and the underlying pathway. Lung adenocarcinoma cells A549, NCI-H1373, and NCI-H1395, along with the noncancerous lung bronchus cells BEAS-2B, were used. MTT test showed that ajoene (25 μM) reduces viability of lung adenocarcinoma cells but not the noncancerous BEAS-2B cells. Bromodeoxyuridine incorporation assay revealed that ajoene inhibits proliferation of lung adenocarcinoma cells. Treatment of lung adenocarcinoma cells with ajoene enhances apoptosis and ROS generation in a time- and dose-dependent fashion. Abrogation of caspase activation by zVAD-fmk completely prevents the ajoene-induced apoptosis; whereas block of ROS generation by N-acetylcysteine partly abolishes the ajoene-induced apoptosis. ROS-mediated induction of apoptosis contributes partially to the anti-tumorigenic property of ajoene observed, a phenomenon also confirmed by xenograft tumor study. Mitogen activated protein kinases (MAPKs), pivots of ROS-mediated signaling pathway, are activated upon ajoene treatment; Jun-N-terminal kinase (JNK)/p38 activations are required for signaling pathway underlying the ajoene-induced apoptosis. Our results suggest that ROS-mediated activation of JNK/p38 contributes partially to the pro-apoptotic action of ajoene on cells of lung adenocarcinoma. Ajoene may be a promising chemotherapeutic agent for lung adenocarcinoma. PMID:26468015

  18. A Novel Form of DAP5 Protein Accumulates in Apoptotic Cells as a Result of Caspase Cleavage and Internal Ribosome Entry Site-Mediated Translation

    PubMed Central

    Henis-Korenblit, Sivan; Strumpf, Naomi Levy; Goldstaub, Dan; Kimchi, Adi

    2000-01-01

    Death-associated protein 5 (DAP5) (also named p97 and NAT1) is a member of the translation initiation factor 4G (eIF4G) family that lacks the eIF4E binding site. It was previously implicated in apoptosis, based on the finding that a dominant negative fragment of the protein protected against cell death. Here we address its function and two distinct levels of regulation during apoptosis that affect the protein both at translational and posttranslational levels. DAP5 protein was found to be cleaved at a single caspase cleavage site at position 790, in response to activated Fas or p53, yielding a C-terminal truncated protein of 86 kDa that is capable of generating complexes with eIF4A and eIF3. Interestingly, while the overall translation rate in apoptotic cells was reduced by 60 to 70%, in accordance with the simultaneous degradation of the two major mediators of cap-dependent translation, eIF4GI and eIF4GII, the translation rate of DAP5 protein was selectively maintained. An internal ribosome entry site (IRES) element capable of directing the translation of a reporter gene when subcloned into a bicistronic vector was identified in the 5? untranslated region of DAP5 mRNA. While cap-dependent translation from this transfected vector was reduced during Fas-induced apoptosis, the translation via the DAP5 IRES was selectively maintained. Addition of recombinant DAP5/p97 or DAP5/p86 to cell-free systems enhanced preferentially the translation through the DAP5 IRES, whereas neutralization of the endogenous DAP5 in reticulocyte lysates by adding a dominant negative DAP5 fragment interfered with this translation. The DAP5/p86 apoptotic form was more potent than DAP5/p97 in these functional assays. Altogether, the data suggest that DAP5 is a caspase-activated translation factor which mediates cap-independent translation at least from its own IRES, thus generating a positive feedback loop responsible for the continuous translation of DAP5 during apoptosis. PMID:10611228

  19. A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation.

    PubMed

    Henis-Korenblit, S; Strumpf, N L; Goldstaub, D; Kimchi, A

    2000-01-01

    Death-associated protein 5 (DAP5) (also named p97 and NAT1) is a member of the translation initiation factor 4G (eIF4G) family that lacks the eIF4E binding site. It was previously implicated in apoptosis, based on the finding that a dominant negative fragment of the protein protected against cell death. Here we address its function and two distinct levels of regulation during apoptosis that affect the protein both at translational and posttranslational levels. DAP5 protein was found to be cleaved at a single caspase cleavage site at position 790, in response to activated Fas or p53, yielding a C-terminal truncated protein of 86 kDa that is capable of generating complexes with eIF4A and eIF3. Interestingly, while the overall translation rate in apoptotic cells was reduced by 60 to 70%, in accordance with the simultaneous degradation of the two major mediators of cap-dependent translation, eIF4GI and eIF4GII, the translation rate of DAP5 protein was selectively maintained. An internal ribosome entry site (IRES) element capable of directing the translation of a reporter gene when subcloned into a bicistronic vector was identified in the 5' untranslated region of DAP5 mRNA. While cap-dependent translation from this transfected vector was reduced during Fas-induced apoptosis, the translation via the DAP5 IRES was selectively maintained. Addition of recombinant DAP5/p97 or DAP5/p86 to cell-free systems enhanced preferentially the translation through the DAP5 IRES, whereas neutralization of the endogenous DAP5 in reticulocyte lysates by adding a dominant negative DAP5 fragment interfered with this translation. The DAP5/p86 apoptotic form was more potent than DAP5/p97 in these functional assays. Altogether, the data suggest that DAP5 is a caspase-activated translation factor which mediates cap-independent translation at least from its own IRES, thus generating a positive feedback loop responsible for the continuous translation of DAP5 during apoptosis. PMID:10611228

  20. Suppression of ATAD2 inhibits hepatocellular carcinoma progression through activation of p53- and p38-mediated apoptotic signaling

    PubMed Central

    Lu, Wen-Jing; Chua, Mei-Sze; So, Samuel K.

    2015-01-01

    The ATPase family, AAA domain containing 2 (ATAD2) is highly expressed in multiple cancers. We aim to understand the clinical and biological significance of ATAD2 over-expression in hepatocellular carcinoma (HCC), as a means to validate it as a therapeutic target in HCC. We demonstrated that ATAD2 was over-expressed in HCC patients, where high ATAD2 levels were significantly correlated with aggressive phenotypes such as high AFP levels, advanced tumor stages, and vascular invasion. Using RNA interference, suppression of ATAD2 in HCC cell lines decreased cell viability, migration, and invasion, and induced apoptosis in vitro. Furthermore, we identified p53 and p38 as key proteins that mediate apoptosis induced by ATAD2 suppression. In HCC cells, we demonstrated that ATAD2 directly interacted with MKK3/6, which prevented p38 activation and therefore inhibited p38-mediated apoptosis. In vivo, suppression of ATAD2 impaired the growth of HepG2 and Hep3B subcutaneous xenografts, accompanied by enhanced apoptosis and p-p53 and p-p38 levels. Our results validate that ATAD2 is an important negative regulator of apoptosis, and that neutralizing its activity has promising anti-tumor effects in HCC cells. PMID:26497681

  1. Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades.

    PubMed

    Das, Sreemanti; Das, Jayeeta; Samadder, Asmita; Paul, Avijit; Khuda-Bukhsh, Anisur Rahman

    2013-12-01

    Skin cancer is increasing at an alarming rate and becoming resistant to conventional chemotherapy necessitating improved drug delivery system. We loaded apigenin (Ap), a dietary flavonoid having anti-cancer property, with poly (lactic-co-glycolide) (PLGA) nanoparticles (NAp) to explore if nano-encapsulation could enhance anti-carcinogenic effect against ultra-violet B (UVB) and Benzo(a)pyrene (BaP) induced skin tumor and mitochondrial dysfunction in mice. Particle size, morphology and zeta potential of NAp were determined using dynamic light scattering and atomic force microscopy. Tumor incidence and multiplicity in UVB-BaP induced mice with/without NAp treatment were ascertained and their histolopathological sections and chromosomal aberrations were studied. ROS accumulation and mitochondrial functioning through relevant markers like mitochondrial transmembrane potential were analyzed. Mitochondrial volume changes/swelling, cytochrome c (cyt c) release, mRNA and protein expressions of Apaf-1, bax, bcl-2, cyt c, cleaved caspase-9 and 3 were studied. Results showed that NAp produced better effects than Ap, due to their smaller size, and faster mobility. NAp reduced tissue damage and frequency of chromosomal aberrations, increased ROS accumulation to mediate mitochondrial-apoptosis through modulation of several apoptotic markers and mitochondrial matrix swelling. NAp showed ameliorative potentials in combating skin cancer and therefore has greater prospect of use in therapeutic management of skin cancer. PMID:24120900

  2. Nitrogen-containing bisphosphonates induce apoptosis of hematopoietic tumor cells via inhibition of Ras signaling pathways and Bim-mediated activation of the intrinsic apoptotic pathway.

    PubMed

    Tsubaki, Masanobu; Itoh, Tatsuki; Satou, Takao; Imano, Motohiro; Komai, Makiko; Ogawa, Naoki; Mukai, Junji; Nishida, Shozo

    2013-01-15

    Nitrogen-containing bisphosphonates (N-BPs) induce apoptosis in tumor cells by inhibiting the prenylation of small G-proteins. However, the details of the apoptosis-inducing mechanism remain obscure. The present study showed that the induction of apoptosis by N-BPs in hematopoietic tumor cells is mediated by mitochondrial apoptotic signaling pathways, which are activated by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. Furthermore, N-BPs decreased the levels of phosphorylated extracellular signal-regulated kinase (ERK) and mTOR via suppression of Ras prenylation and enhanced Bim expression. The present results indicated that N-BPs induce apoptosis by decreasing the mitochondrial transmembrane potential, increasing the activation of caspase-9 and caspase-3, and enhancing Bim expression through inhibition of the Ras/MEK/ERK and Ras/mTOR pathways. The accumulation of N-BPs in bones suggests that they may act more effectively on tumors that have spread to bones or on Ras-variable tumors. This is the first study to show that the specific molecular pathways of N-BP-induced apoptosis. PMID:23085435

  3. ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways

    PubMed Central

    Oshima, Ryuji; Hasegawa, Takafumi; Tamai, Keiichi; Sugeno, Naoto; Yoshida, Shun; Kobayashi, Junpei; Kikuchi, Akio; Baba, Toru; Futatsugi, Akira; Sato, Ikuro; Satoh, Kennichi; Takeda, Atsushi; Aoki, Masashi; Tanaka, Nobuyuki

    2016-01-01

    Endosomal sorting required for transport (ESCRT) complexes orchestrate endo-lysosomal sorting of ubiquitinated proteins, multivesicular body formation and autophagic degradation. Defects in the ESCRT pathway have been implicated in many neurodegenerative diseases, but the underlying molecular mechanisms that link them to neurodegeneration remain unknown. In this study, we showed that forebrain-specific ablation of ESCRT-0/Hrs induced marked hippocampal neuronal cell loss accompanied by the accumulation of ubiquitinated proteins, including α-synuclein, TDP-43 and huntingtin as well as the autophagic substrate SQSTM1/p62. Consistent with this, silencing of Hrs in cultured cells not only led to α-synuclein and TDP-43 accumulation in addition to impaired autophagic flux but also suppressed cell viability through the induction of ER stress followed by the activation of JNK and RIPK1, a key regulator of necroptosis. Moreover, necrostatin-1, a specific inhibitor of RIPK1, and pan-caspase inhibitors partially reduced the neurotoxicity in the Hrs-silenced cells. Altogether, these findings suggest that the disruption of ESCRT-0/Hrs in the nervous system compromises autophagic/lysosomal degradation of neurodegenerative disease-related proteins, which thereby triggers ER stress-mediated apoptotic and necroptotic cell death. PMID:27112194

  4. NF-kappaB mediates MPP+-induced apoptotic cell death in neuroblastoma cells SH-EP1 through JNK and c-Jun/AP-1.

    PubMed

    Yang, Hai-Jie; Wang, Lei; Xia, Yin-Yan; Chang, Piek-Ngoh; Feng, Zhi-Wei

    2010-01-01

    Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in substantia nigra with unknown etiology. Neuropathology seen in the brains of PD patients can be closely mimicked by MPP(+)-induced neurotoxicity in vitro. In this study, we used an S-type human neuroblastoma cell line (SH-EP1) as a model to investigate the involvement of NF-kappaB and JNK pathways in MPP(+)-induced neurotoxicity. We show that NF-kappaB was activated by MPP(+) as evidenced by NF-kappaB p65 nuclear translocation, the increased DNA binding activity and a rapid phosphorylation of NF-kappaB inhibitor (IkappaBalpha). NF-kappaB partially mediated the neurotoxicity of MPP(+), as suggested by the reduction of MPP(+)-induced cell death by both a specific IkappaB kinase (IKK) inhibitor and a dominant negative form of IkappaBalpha (IkappaBalpha-M). Besides NF-kappaB, JNK and c-Jun/AP-1 were also activated upon MPP(+) stimulation. Inhibition of JNK activation with a specific JNK inhibitor partially reduced the MPP(+)-mediated cell death. Similarly, inhibition of c-Jun/AP-1 activation, either by a dominant negative c-Jun or c-Jun/AP-1 inhibitor, significantly attenuated MPP(+)-mediated cell death. These results suggest that both JNK and c-Jun/AP-1 activation are pro-apoptotic. Furthermore, we provide clear evidence for the existence of a crosstalk between the NF-kappaB and JNK signaling as MPP(+)-induced activation of JNK and c-Jun/AP-1 was strongly down-regulated in IkappaBalpha-M cells. In conclusion, we demonstrate that in SH-EP1 cells MPP(+)-induced neurotoxicity is partially mediated by NF-kappaB which in turn acts on the activation of JNK and c-Jun/AP-1. These results may point to a combined inhibition of NF-kappaB and JNK as a new approach to PD therapy. PMID:19778565

  5. Puerarin attenuates glucocorticoid-induced apoptosis of hFOB1.19 cells through the JNK-and Akt-mediated mitochondrial apoptotic pathways

    PubMed Central

    YU, DONGDONG; MU, SHUAI; ZHAO, DANYANG; WANG, GUANGBIN; CHEN, ZHIGUANG; REN, HONGFEI; FU, QIN

    2015-01-01

    Puerarin is an active component of Pueraria lobata, which is a commonly used Chinese herbal medicine for the treatment of osteoporosis. The present study aimed to evaluate the osteoprotective effect of puerarin on glucocorticoid (GC)-induced apoptosis of osteoblasts in vitro. The effects of puerarin on dexamethasone (DEX)-induced cell apoptosis were assessed using enzyme-linked immunosorbent assay and a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and found that the viability of hFOB1.19 cells was significantly increased following exposure to between 10−6 and 10−10 M puerarin, with a maximal anti-apoptotic effect at a concentration of 10−8 M. In addition, compared with the control group, puerarin upregulated the transcription and protein levels of B-cell lymphoma-2 and downregulated B-cell-associated X protein in the hFOB1.19 cells. Puerarin attenuated the DEX-induced release of cytochrome c and cleavage of caspase-3, and treatment with puerarin inhibited the c-Jun N-terminal kinase (JNK) pathway and activated the phosphoinositide 3-kinase (PI3K)/Akt pathway in the hFOB1.19 cells. Furthermore, the Akt inhibitor, LY294002, partly eliminated the protective effect of puerarin on DEX-induced apoptosis, and puerarin combined with the JNK inhibitor, SP600125, suppressed DEX-induced apoptosis to a lesser extent than in the cells treated with SP600125 alone. These results suggested that the JNK and PI3K/Akt signaling pathways mediate the inhibitory effects of puerarin on apoptosis in the hFOB1.19 cells. In conclusion, puerarin prevented DEX-induced apoptosis of hFOB1.19 cells via inhibition of the JNK pathway and activation of the PI3K/Akt signaling pathway in the cells, dependent on the mitochondrial apoptotic pathway. These results support puerarin as a promising target in the treatment of GC-induced osteoporosis. PMID:26101183

  6. Puerarin attenuates glucocorticoid-induced apoptosis of hFOB1.19 cells through the JNK- and Akt-mediated mitochondrial apoptotic pathways.

    PubMed

    Yu, Dongdong; Mu, Shuai; Zhao, Danyang; Wang, Guangbin; Chen, Zhiguang; Ren, Hongfei; Fu, Qin

    2015-08-01

    Puerarin is an active component of Pueraria lobata, which is a commonly used Chinese herbal medicine for the treatment of osteoporosis. The present study aimed to evaluate the osteoprotective effect of puerarin on glucocorticoid (GC)-induced apoptosis of osteoblasts in vitro. The effects of puerarin on dexamethasone (DEX)-induced cell apoptosis were assessed using enzyme-linked immunosorbent assay and a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and found that the viability of hFOB1.19 cells was significantly increased following exposure to between 10(-6) and 10(-10) M puerarin, with a maximal anti-apoptotic effect at a concentration of 10(-8) M. In addition, compared with the control group, puerarin upregulated the transcription and protein levels of B-cell lymphoma-2 and downregulated B-cell-associated X protein in the hFOB1.19 cells. Puerarin attenuated the DEX-induced release of cytochrome c and cleavage of caspase-3, and treatment with puerarin inhibited the c-Jun N-terminal kinase (JNK) pathway and activated the phosphoinositide 3-kinase (PI3K)/Akt pathway in the hFOB1.19 cells. Furthermore, the Akt inhibitor, LY294002, partly eliminated the protective effect of puerarin on DEX-induced apoptosis, and puerarin combined with the JNK inhibitor, SP600125, suppressed DEX-induced apoptosis to a lesser extent than in the cells treated with SP600125 alone. These results suggested that the JNK and PI3K/Akt signaling pathways mediate the inhibitory effects of puerarin on apoptosis in the hFOB1.19 cells. In conclusion, puerarin prevented DEX-induced apoptosis of hFOB1.19 cells via inhibition of the JNK pathway and activation of the PI3K/Akt signaling pathway in the cells, dependent on the mitochondrial apoptotic pathway. These results support puerarin as a promising target in the treatment of GC-induced osteoporosis. PMID:26101183

  7. Apoptotic Response through a High Mobility Box 1 Protein-Dependent Mechanism in LPS/GalN-Induced Mouse Liver Failure and Glycyrrhizin-Mediated Inhibition

    PubMed Central

    Kuroda, Noriyuki; Inoue, Kouji; Ikeda, Tadayuki; Hara, Yaiko; Wake, Kenjiro; Sato, Tetsuji

    2014-01-01

    HMGB1 is a nuclear component involved in nucleosome stabilization and transcription regulation, but extracellularly it is able to serve as a potential late mediator of lethality. In the present study, we explored inflammation-promoting activity of HMGB1 and blockade of extracellular release of HMGB1 by glycyrrhizin (GL) in LPS/GalN-triggered mouse liver injury. At 1 to 10 h after LPS/GalN-treatment, mice were anesthetized to collect blood from heart puncture, and serum transaminase and HMGB1 were evaluated. Administration of LPS/GalN precipitated tissue injury associated with time-dependent alteration in HMGB1 serum levels. At 8 h nuclear immunoreactive products were remarkably reduced and extracellular HMGB1 expression was found exclusively in the pericentral foci. The treatment with GL significantly down-regulated the serum levels of ALT, AST, and HMGB1 in addition to the strong inhibition of tissue injury and extracellular immunoreactivity to HMGB1 and to acetylated-lysine. Furthermore, GL brought about a significant decrease in the number of apoptotic hepatocytes labeled with TUNEL-method. On the basis of these results, three apoptosis-associated genes were identified with microarray analysis and real-time PCR. The ChIP-assay revealed the binding of HMGB1 protein to Gsto1 promoter sequence in LPS/GalN-treated mice and the remarkable decrease in combined HMGB1 protein by GL. The current findings claim that a single injection of LPS/GalN might stimulate apoptosis of hepatocytes through the binding of HMGB1 protein to Gsto1 promoter region and that GL-treatment might prevent the apoptosis and inflammatory infiltrates caused with LPS/GalN-injection by disturbing the binding of HMGB1 protein to Gsto1 promoter sequence. PMID:24690901

  8. Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways

    PubMed Central

    Sun, Qian; Zhong, Wei; Zhang, Wenliang; Li, Qiong; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Dong, Daoyin

    2015-01-01

    Hepatic zinc deficiency has been well documented in alcoholic patients, but the mechanisms by which zinc deficiency mediates cell death have not been well defined. The objectives of this study were to determine whether alcohol perturbs subcellular zinc homeostasis and how organelle zinc depletion may link with cell death pathways. Wistar rats were pair-fed with the Lieber-DeCarli control or ethanol diet for 5 mo. Chronic alcohol exposure significantly reduced zinc level in isolated hepatic endoplasmic reticulum (ER) and mitochondria. Among the detected zinc transporters, ER Zrt/Irt-like protein (ZIP)13 and mitochondrial ZIP8, which transport zinc from ER and mitochondria to cytosol, were significantly increased. Mitochondrial zinc transporter (ZnT) 4, which transports zinc from cytosol to mitochondria, was also increased. ER phosphorylated eukaryotic initiation factor 2α, activating transcription factor 4, and C/EBP homologous protein were significantly upregulated, and mitochondrial cytochrome c release and Bax insertion were detected in association with caspase-3 activation and apoptotic cell death. To define the role of zinc deficiency in ER and mitochondrial stress, H4IIEC3 cells were treated with 3 μM N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine for 6 h with or without supplementation with zinc or N-acetylcysteine (NAC). The results demonstrated that zinc deprivation induced caspase-3 activation and apoptosis in association with ER and mitochondria dysfunction, which were inhibited by zinc as low as 10 μM but not by 2 mM NAC. These results suggest that chronic ethanol exposure induced in ER and mitochondrial zinc deficiency might activate intrinsic cell death signaling pathway, which could not be effectively rescued by antioxidant treatment. PMID:25767260

  9. Di-O-demethylcurcumin protects SK-N-SH cells against mitochondrial and endoplasmic reticulum-mediated apoptotic cell death induced by Aβ25-35.

    PubMed

    Pinkaew, Decha; Changtam, Chatchawan; Tocharus, Chainarong; Thummayot, Sarinthorn; Suksamrarn, Apichart; Tocharus, Jiraporn

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative and progressive disorder. The hallmark of pathological AD is amyloid plaque which is the accumulation of amyloid β (Aβ) in extracellular neuronal cells and neurofibrillary tangles (NFT) in neuronal cells, which lead to neurotoxicity via reactive oxygen species (ROS) generation related apoptosis. Loss of synapses and synaptic damage are the best correlates of cognitive decline in AD. Neuronal cell death is the main cause of brain dysfunction and cognitive impairment. Aβ activates neuronal death via endoplasmic reticulum (ER) stress and mitochondria apoptosis pathway. This study investigated the underlying mechanisms and effects of di-O-demethylcurcumin in preventing Aβ-induced apoptosis. Pretreatment with di-O-demethylcurcumin for 2 h, which was followed by Aβ25-35 (10 µM) in human neuroblastoma SK-N-SH cells improved cell viability by using MTS assay and decreased neuronal cell apoptosis. Pretreatment with di-O-demethylcurcumin attenuated the number of nuclear condensations and number of apoptotic cells in Aβ25-35-induced group in a concentration-dependent manner by using transmission electron microscope (TEM) and flow cytometry, respectively. Di-O-demethylcurcumin also increased the ratio of Bcl-XL/Bax protein, and reduced intracellular ROS level, cytochrome c protein expression, cleaved caspase-9 protein expression, and cleaved caspase-3 protein expression. Additionally, di-O-demethylcurcumin treatment also reduced the expression of ER stress protein markers, including protein kinase RNA like endoplasmic reticulum kinase (PERK) phosphorylation, eukaryotic translation initiation factor 2 alpha (eIF2α) phosphorylation, inositol-requiring enzyme 1 (IRE1) phosphorylation, X-box-binding protein-1 (XBP-1), activating transcription factor (ATF6), C/EBP homologous protein (CHOP), and cleaved caspase-12 protein. CHOP and cleaved caspase-12 protein are the key mediators of apoptosis. Our data suggest that di-O-demethylcurcumin is a candidate protectant against neuronal death through its suppression of the apoptosis mediated by mitochondrial death and ER stress pathway. PMID:25451798

  10. Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells.

    PubMed

    Reyes-Zurita, Fernando J; Rufino-Palomares, Eva E; García-Salguero, Leticia; Peragón, Juan; Medina, Pedro P; Parra, Andrés; Cascante, Marta; Lupiáñez, José A

    2016-01-01

    Maslinic acid (MA) is a natural triterpene present in high concentrations in the waxy skin of olives. We have previously reported that MA induces apoptotic cell death via the mitochondrial apoptotic pathway in HT29 colon cancer cells. Here, we show that MA induces apoptosis in Caco-2 colon cancer cells via the extrinsic apoptotic pathway in a dose-dependent manner. MA triggered a series of effects associated with apoptosis, including the cleavage of caspases -8 and -3, and increased the levels of t-Bid within a few hours of its addition to the culture medium. MA had no effect on the expression of the Bax protein, release of cytochrome-c or on the mitochondrial membrane potential. This suggests that MA triggered the extrinsic apoptotic pathway in this cell type, as opposed to the intrinsic pathway found in the HT29 colon-cancer cell line. Our results suggest that the apoptotic mechanism induced in Caco-2 may be different from that found in HT29 colon-cancer cells, and that in Caco-2 cells MA seems to work independently of p53. Natural antitumoral agents capable of activating both the extrinsic and intrinsic apoptotic pathways could be of great use in treating colon-cancer of whatever origin. PMID:26751572

  11. Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells

    PubMed Central

    Reyes-Zurita, Fernando J.; Rufino-Palomares, Eva E.; García-Salguero, Leticia; Peragón, Juan; Medina, Pedro P.; Parra, Andrés; Cascante, Marta; Lupiáñez, José A.

    2016-01-01

    Maslinic acid (MA) is a natural triterpene present in high concentrations in the waxy skin of olives. We have previously reported that MA induces apoptotic cell death via the mitochondrial apoptotic pathway in HT29 colon cancer cells. Here, we show that MA induces apoptosis in Caco-2 colon cancer cells via the extrinsic apoptotic pathway in a dose-dependent manner. MA triggered a series of effects associated with apoptosis, including the cleavage of caspases -8 and -3, and increased the levels of t-Bid within a few hours of its addition to the culture medium. MA had no effect on the expression of the Bax protein, release of cytochrome-c or on the mitochondrial membrane potential. This suggests that MA triggered the extrinsic apoptotic pathway in this cell type, as opposed to the intrinsic pathway found in the HT29 colon-cancer cell line. Our results suggest that the apoptotic mechanism induced in Caco-2 may be different from that found in HT29 colon-cancer cells, and that in Caco-2 cells MA seems to work independently of p53. Natural antitumoral agents capable of activating both the extrinsic and intrinsic apoptotic pathways could be of great use in treating colon-cancer of whatever origin. PMID:26751572

  12. Assessment of in-utero venlafaxine induced, ROS-mediated, apoptotic neurodegeneration in fetal neocortex and neurobehavioral sequelae in rat offspring.

    PubMed

    Singh, Manish; Singh, K P; Shukla, Shubha; Dikshit, Madhu

    2015-02-01

    Venlafaxine (VEN), a serotonin and noradrenaline reuptake inhibitor is being used as a drug of choice for treating clinical depression even during pregnancy. It is an important therapeutic option in the treatment of perinatal depression, but the effects of VEN on fetus and the newborn are uncertain. Therefore, present study was undertaken to investigate the safety of in-utero exposure to VEN in terms of developmental neurotoxicity and neurodegenerative potential by using prenatal rat model. The selected doses of VEN (25, 40 and 50mg/kg) were administered to pregnant rats from GD 5 to 19 through oral gavage. The fetal brains were dissected and processed for histopathological measurements of neocortical thickness that showed significant reduction. Considering vulnerability of immature brain to free radical injury, VEN exposed neocortices were tested for reactive oxygen species (ROS) levels which were significantly increased. As ROS play important role in the initiation of apoptotic mechanisms, we explored for in situ detection of apoptosis by confocal microscopy that showed enhanced apoptosis including chromatin condensation which was further reconfirmed by electron microscopy. Substantially increased levels of pro-apoptotic protein Bax and decreased levels of anti-apoptotic protein Bcl2 as shown by western blotting also supported the increased neuro-apoptotic degeneration. For further correlation of these findings, prenatally VEN exposed young-adult rat offspring were assessed for open field exploratory behavior that showed increased anxiety-like and stereotypic responses indicating disturbed neurobehavioral pattern. The study concludes that prenatal VEN exposure may primarily enhance ROS generation that plays a key role in regulating release of proapoptotic factors from mitochondria and thereby enhancing apoptotic neurodegeneration that affect proliferation, migration and differentiation of cells, resulting in neuronal deficits manifested as long term neurobehavioral impairments. PMID:25450524

  13. iTRAQ-based quantitative proteomic analysis of the anti-apoptotic effect of hyperin, which is mediated by Mcl-1 and Bid, in H2O2-injured EA.hy926 cells.

    PubMed

    Liu, Xiao-Xia; Tang, Li; Ge, Rui; Li, Jian-Kuan; Kang, Ya; Zhu, Mei-Xia; Li, Qing-Shan; Hao, Xu-Liang

    2016-04-01

    Endothelial injury has been implicated in the pathogenesis of many cardiovascular diseases, including thrombotic disorders. Hyperin (quercetin-3-O-galactoside), a flavonoid compound and major bioactive component of the medicinal herb Apocynum venetum L., is commonly used to prevent endothelium dysfunction. However, its mode of action remains unclear. To the best of our knowledge, we have for the first time investigated the protective effect hyperin exerts against H2O2-induced injury in human endothelium-derived EA.hy926 cells using isobaric tags for relative and absolute quantitation (iTRAQ)‑based quantitative proteomic analysis. The results showed that H2O2 exposure induced alterations in the expression of 250 proteins in the cells. We noted that the expression of 52 proteins associated with processes such as cell apoptosis, cell cycle and cytoskeleton organization, was restored by hyperin treatment. Of the proteins differentially regulated following H2O2 stress, the anti-apoptotic protein, myeloid cell leukemia-1 (Mcl-1), and the pro-apoptotic protein, BH3-interacting domain death agonist (Bid), exhibited marked changes in expression. Hyperin increased Mcl-1 expression and decreased that of Bid in a dose-dependent manner. In addition, flow cytometric analysis and western blot analysis of the apoptosis-related proteins, truncated BID (tBid), cleaved caspase-3, cleaved caspase-9, Fas, FasL and caspase-8, demonstrated that the rate of apoptosis and the pro-apoptotic protein levels were decreased by hyperin pre‑treatment. In the present study we demonstrate that hyperin effectively prevents H2O2‑induced cell injury by regulating the Mcl‑1‑ and Bid-mediated anti‑apoptotic mechanism, suggesting that hyperin is a potential candidate for use in the treatment of thrombotic diseases. PMID:26935776

  14. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    SciTech Connect

    Chang, Chun-Yu; Shen, Chao-Yu; Kang, Chao-Kai; Sher, Yuh-Pyng; Sheu, Wayne H.-H.; Chang, Chia-Che; Lee, Tsung-Han

    2014-09-15

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation.

  15. AlphaII-spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding.

    PubMed Central

    Rotter, Björn; Kroviarski, Yolande; Nicolas, Gaël; Dhermy, Didier; Lecomte, Marie-Christine

    2004-01-01

    The spectrin-actin scaffold underlying the lipid bilayer is considered to participate in cell-shape stabilization and in the organization of specialized membrane subdomains. These structures are dynamic and likely to undergo frequent remodelling during changes in cell shape. Proteolysis of spectrin, which occurs during apoptosis, leads to destabilization of the scaffold. It is also one of the major processes involved in membrane remodelling. Spectrins, the main components of the membrane skeleton, are the targets for two important protease systems: m- and micro-calpains (Ca2+-activated proteases) and caspase-3 (activated during apoptosis). In this paper, we show that caspase-2 also targets spectrin in vitro, and we characterize Ca2+/calmodulin-dependent regulation of spectrin cleavage by caspases. Yeast two-hybrid screening reveals that the large isoform (1/L) of procaspase-2 specifically binds to alphaII-spectrin, while the short isoform does not. Like caspase-3, caspase-2 cleaves alphaII-spectrin in vitro at residue Asp-1185. This study emphasizes a role of executioner caspase for caspase-2. We also demonstrated that the executioner caspase-7 but not caspase-6 cleaves spectrin at residue Asp-1185 in vitro. This spectrin cleavage by caspases 2, 3 and 7 is inhibited by the Ca2+-dependent binding of calmodulin to spectrin. In contrast, calmodulin binding enhances spectrin cleavage by calpain at residue Tyr-1176. These results indicate that alphaII-spectrin cleavage is highly influenced by Ca2+ homoeostasis and calmodulin, which therefore represent potential regulators of the stability and the plasticity of the spectrin-based skeleton. PMID:14599290

  16. The tumor-modulatory effects of Caspase-2 and Pidd1 do not require the scaffold protein Raidd.

    PubMed

    Peintner, L; Dorstyn, L; Kumar, S; Aneichyk, T; Villunger, A; Manzl, C

    2015-11-01

    The receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD/CRADD) functions as a dual adaptor and is a constituent of different multi-protein complexes implicated in the regulation of inflammation and cell death. Within the PIDDosome complex, RAIDD connects the cell death-related protease, Caspase-2, with the p53-induced protein with a death domain 1 (PIDD1). As such, RAIDD has been implicated in DNA-damage-induced apoptosis as well as in tumorigenesis. As loss of Caspase-2 leads to an acceleration of tumor onset in the Eμ-Myc mouse lymphoma model, whereas loss of Pidd1 actually delays onset of this disease, we set out to interrogate the role of Raidd in cancer in more detail. Our data obtained analyzing Eμ-Myc/Raidd(-/-) mice indicate that Raidd is unable to protect from c-Myc-driven lymphomagenesis. Similarly, we failed to observe a modulatory effect of Raidd deficiency on DNA-damage-driven cancer. The role of Caspase-2 as a tumor suppressor and that of Pidd1 as a tumor promoter can therefore be uncoupled from their ability to interact with the Raidd scaffold, pointing toward the existence of alternative signaling modules engaging these two proteins in this context. PMID:25857265

  17. The tumor-modulatory effects of Caspase-2 and Pidd1 do not require the scaffold protein Raidd

    PubMed Central

    Peintner, L; Dorstyn, L; Kumar, S; Aneichyk, T; Villunger, A; Manzl, C

    2015-01-01

    The receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD/CRADD) functions as a dual adaptor and is a constituent of different multi-protein complexes implicated in the regulation of inflammation and cell death. Within the PIDDosome complex, RAIDD connects the cell death-related protease, Caspase-2, with the p53-induced protein with a death domain 1 (PIDD1). As such, RAIDD has been implicated in DNA-damage-induced apoptosis as well as in tumorigenesis. As loss of Caspase-2 leads to an acceleration of tumor onset in the Eμ-Myc mouse lymphoma model, whereas loss of Pidd1 actually delays onset of this disease, we set out to interrogate the role of Raidd in cancer in more detail. Our data obtained analyzing Eμ-Myc/Raidd−/− mice indicate that Raidd is unable to protect from c-Myc-driven lymphomagenesis. Similarly, we failed to observe a modulatory effect of Raidd deficiency on DNA-damage-driven cancer. The role of Caspase-2 as a tumor suppressor and that of Pidd1 as a tumor promoter can therefore be uncoupled from their ability to interact with the Raidd scaffold, pointing toward the existence of alternative signaling modules engaging these two proteins in this context. PMID:25857265

  18. Mitochondrial Apoptotic Pathway Is Activated by H2O2-Mediated Oxidative Stress in BmN-SWU1 Cells from Bombyx mori Ovary.

    PubMed

    Chen, Peng; Hu, Yan-Fen; Wang, La; Xiao, Wen-Fu; Bao, Xi-Yan; Pan, Chun; Yi, Hua-Shan; Chen, Xiang-Yun; Pan, Min-Hui; Lu, Cheng

    2015-01-01

    Apoptosis is a known regulator of morphogenetic events. In mammals, the critical role of oxidative stress-induced apoptosis has been well-studied; however, in insects the role of oxidative stress in apoptosis is not clear. In a previous study, we showed that apoptosis-related genes are present in the silkworm Bombyx mori, an important lepidopteran insect model. In this study, we evaluated the effect of H2O2-induced oxidative stress on apoptosis, reactive oxygen species (ROS) levels, mitochondrial response, cytochrome c release and apoptosis-related gene expression in the BmN-SWU1 cell line from B. mori ovaries. Our results showed that BmN-SWU1 cells exposed to H2O2 showed cell protuberances, cytoplasmic condensation, apoptotic bodies, DNA ladder formation and caspase activities indicating apoptosis. H2O2-induced apoptosis also increased intracellular ROS level, changed mitochondrial distribution, reduced mitochondrial membrane potential and increased the release of cytochrome c from mitochondria. Furthermore, western blot analysis revealed a significant increase in p53 and cytochrome c expression, and a decrease in Bcl-2 expression compared to the controls. Moreover, quantitative real-time PCR (qRT-PCR) showed an increase in the transcript levels of BmICE, Bmapaf-1 and BmEndoG by 439.5%, 423.9% and 42.2%, respectively, after treatment with 1 μM H2O2 for 24 h. However, the transcript levels of Bmbuffy declined by 41.4% after 24 h of exposure to 1 μM H2O2. These results show that H2O2 treatment induced apoptosis in BmN-SWU1 cells via the mitochondrial apoptotic pathway. Further, it appears that oxidative stress induced by H2O2 activates both caspase-dependent and caspase-independent mitochondrial apoptotic pathways in silkworm cells. Taken together, these findings improve our knowledge of apoptosis in silkworm and the apoptotic pathways in insects. PMID:26225758

  19. Mitochondrial Apoptotic Pathway Is Activated by H2O2-Mediated Oxidative Stress in BmN-SWU1 Cells from Bombyx mori Ovary

    PubMed Central

    Chen, Peng; Hu, Yan-Fen; Wang, La; Xiao, Wen-Fu; Bao, Xi-Yan; Pan, Chun; Yi, Hua-Shan; Chen, Xiang-Yun; Pan, Min-Hui; Lu, Cheng

    2015-01-01

    Apoptosis is a known regulator of morphogenetic events. In mammals, the critical role of oxidative stress-induced apoptosis has been well-studied; however, in insects the role of oxidative stress in apoptosis is not clear. In a previous study, we showed that apoptosis-related genes are present in the silkworm Bombyx mori, an important lepidopteran insect model. In this study, we evaluated the effect of H2O2-induced oxidative stress on apoptosis, reactive oxygen species (ROS) levels, mitochondrial response, cytochrome c release and apoptosis-related gene expression in the BmN-SWU1 cell line from B. mori ovaries. Our results showed that BmN-SWU1 cells exposed to H2O2 showed cell protuberances, cytoplasmic condensation, apoptotic bodies, DNA ladder formation and caspase activities indicating apoptosis. H2O2-induced apoptosis also increased intracellular ROS level, changed mitochondrial distribution, reduced mitochondrial membrane potential and increased the release of cytochrome c from mitochondria. Furthermore, western blot analysis revealed a significant increase in p53 and cytochrome c expression, and a decrease in Bcl-2 expression compared to the controls. Moreover, quantitative real-time PCR (qRT-PCR) showed an increase in the transcript levels of BmICE, Bmapaf-1 and BmEndoG by 439.5%, 423.9% and 42.2%, respectively, after treatment with 1 μM H2O2 for 24 h. However, the transcript levels of Bmbuffy declined by 41.4% after 24 h of exposure to 1 μM H2O2. These results show that H2O2 treatment induced apoptosis in BmN-SWU1 cells via the mitochondrial apoptotic pathway. Further, it appears that oxidative stress induced by H2O2 activates both caspase-dependent and caspase-independent mitochondrial apoptotic pathways in silkworm cells. Taken together, these findings improve our knowledge of apoptosis in silkworm and the apoptotic pathways in insects. PMID:26225758

  20. Oldenlandia diffusa extracts exert antiproliferative and apoptotic effects on human breast cancer cells through ERα/Sp1-mediated p53 activation.

    PubMed

    Gu, Guowei; Barone, Ines; Gelsomino, Luca; Giordano, Cinzia; Bonofiglio, Daniela; Statti, Giancarlo; Menichini, Francesco; Catalano, Stefania; Andò, Sebastiano

    2012-10-01

    Breast cancer is the most frequent tumor and a major cause of death among women. Estrogens play a crucial role in breast tumor growth, which is the rationale for the use of hormonal antiestrogen therapies. Unfortunately, not all therapeutic modalities are efficacious and it is imperative to develop new effective antitumoral drugs. Oldenlandia diffusa (OD) is a well-known medicinal plant used to prevent and treat many disorders, especially cancers. The aim of this study was to investigate the effects of OD extracts on breast cancer cell proliferation. We observed that OD extracts strongly inhibited anchorage-dependent and -independent cell growth and induced apoptosis in estrogen receptor alpha (ERα)-positive breast cancer cells, whereas proliferation and apoptotic responses of MCF-10A normal breast epithelial cells were unaffected. Mechanistically, OD extracts enhance the tumor suppressor p53 expression as a result of an increased binding of ERα/Sp1 complex to the p53 promoter region. Finally, we isolated ursolic and oleanolic acids as the bioactive compounds able to upregulate p53 expression and inhibit breast cancer cell growth. These acids were greatly effective in reducing tamoxifen-resistant growth of a derivative MCF-7 breast cancer cell line resistant to the antiestrogen treatment. Our results evidence how OD, and its bioactive compounds, exert antiproliferative and apoptotic effects selectively in ERα-positive breast cancer cells, highlighting the potential use of these herbal extracts as breast cancer preventive and/or therapeutic agents. PMID:22213398

  1. Estrogen receptor ? mediates the effects of notoginsenoside R1 on endotoxin-induced inflammatory and apoptotic responses in H9c2 cardiomyocytes.

    PubMed

    Zhong, Lei; Zhou, Xing-Lu; Liu, Yan-Song; Wang, Yi-Min; Ma, Fei; Guo, Bao-Liang; Yan, Zhao-Qi; Zhang, Qing-Yuan

    2015-07-01

    Estrogen receptors (ERs) are important for preventing endotoxin-induced myocardial dysfunction. Therefore, plant-derived phytoestrogens, which target ERs may also affect endotoxin-induced toxicity in cardiomyocytes. Our previous study revealed that notoginsenoside-R1 (NG-R1), a predominant phytoestrogen from Panax notoginseng, protects against cardiac dysfunction. However, the effects of NG-R1 on cardiomyocytes and the precise cellular/molecular mechanisms underlying its action remain to be elucidated. In the present study, pretreatment with NG-R1 suppressed the lipopolysaccharide (LPS)-induced degradation of inhibitor of nuclear factor-?B (NF-?B) ?, the activation of NF-?B and caspase-3, and the subsequent myocardial inflammatory and apoptotic responses in H9c2 cardiomyocytes. An increase in the mRNA and protein expression of ER? was also observed in the NG-R1-treated cardiomyocytes. However, the expression pattern of ER? remained unaltered. Furthermore, the cardioprotective properties of NG-R1 against LPS-induced apoptosis and the inflammatory response in cardiomyocytes were attenuated by ICI 182780, a non-selective ER? antagonist, and methyl-piperidino-pyrazole, a selective ER? antagonist. These findings suggested that NG-R1 reduced endotoxin-induced cardiomyocyte apoptosis and the inflammatory response via the activation of ER?. Therefore, NG-R1 exerted direct anti-inflammatory and anti-apoptotic effects on the cardiomyocytes, representing a potent agent for the treatment of myocardial inflammation during septic shock. PMID:25738436

  2. Human and simian immunodeficiency virus-mediated upregulation of the apoptotic factor TRAIL occurs in antigen-presenting cells from AIDS-susceptible but not from AIDS-resistant species.

    PubMed

    Kim, Nayoung; Dabrowska, Alicja; Jenner, Richard G; Aldovini, Anna

    2007-07-01

    Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections lead to AIDS in humans and rhesus macaques (RM), while they are asymptomatic in species naturally infected with SIV, such as chimpanzees, sooty mangabeys (SM), and African green monkeys (AGM). Differential CD4(+) T-cell apoptosis may be responsible for these species-specific differences in susceptibility to disease. To identify factors that influence the different apoptotic responses of these species, we analyzed virus-infected human and nonhuman primate peripheral blood mononuclear cells (PBMC). We found that the apoptotic factor TRAIL was present at higher levels in human and RM PBMC cultures and was mediating, at least in part, CD4(+) T-cell apoptosis in these cultures. The species-specific increase in TRAIL and death receptor expression observed with cultures also occurred in vivo in SIV-infected RM but not in SIV-infected SM. In human and RM myeloid immature dendritic cells and macrophages, the virus-induced expression of TRAIL and other interferon-inducible genes, which did not occur in the same cells from chimpanzee, SM, and AGM, was Tat dependent. Our results link the differential induction of TRAIL in human and nonhuman primate cells to species-specific differences in disease susceptibility. PMID:17494085

  3. Human and Simian Immunodeficiency Virus-Mediated Upregulation of the Apoptotic Factor TRAIL Occurs in Antigen-Presenting Cells from AIDS-Susceptible but Not from AIDS-Resistant Species▿ †

    PubMed Central

    Kim, Nayoung; Dabrowska, Alicja; Jenner, Richard G.; Aldovini, Anna

    2007-01-01

    Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections lead to AIDS in humans and rhesus macaques (RM), while they are asymptomatic in species naturally infected with SIV, such as chimpanzees, sooty mangabeys (SM), and African green monkeys (AGM). Differential CD4+ T-cell apoptosis may be responsible for these species-specific differences in susceptibility to disease. To identify factors that influence the different apoptotic responses of these species, we analyzed virus-infected human and nonhuman primate peripheral blood mononuclear cells (PBMC). We found that the apoptotic factor TRAIL was present at higher levels in human and RM PBMC cultures and was mediating, at least in part, CD4+ T-cell apoptosis in these cultures. The species-specific increase in TRAIL and death receptor expression observed with cultures also occurred in vivo in SIV-infected RM but not in SIV-infected SM. In human and RM myeloid immature dendritic cells and macrophages, the virus-induced expression of TRAIL and other interferon-inducible genes, which did not occur in the same cells from chimpanzee, SM, and AGM, was Tat dependent. Our results link the differential induction of TRAIL in human and nonhuman primate cells to species-specific differences in disease susceptibility. PMID:17494085

  4. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells.

    PubMed

    Zhu, Yue-Yong; Huang, Hong-Yan; Wu, Yin-Lian

    2015-10-01

    Hepatocellular carcinoma (HCC) is an aggressive form of cancer, with high rates of morbidity and mortality, a poor prognosis and limited therapeutic options. The objective of the present study was to demonstrate the anticancer activity of oleanolic acid in HepG2 human HCC cells. Cell viability was evaluated using an MTT assay, following administration of various doses of oleanolic acid. The effect of oleanolic acid on cell cycle phase distribution and mitochondrial membrane potential was evaluated using flow cytometry with propidium iodide and rhodamine‑123 DNA‑binding cationic fluorescent dyes. Fluorescence microscopy was employed to detect morphological changes in HepG2 cells following oleanolic acid treatment. The results revealed that oleanolic acid induced a dose‑dependent, as well as time‑dependent inhibition in the growth of HepG2 cancer cells. Following acridine orange and ethidium bromide staining, treatment with various doses (0, 5, 25 and 50 µM) of oleanolic acid induced typical morphological changes associated with apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and apoptotic body formation. Cell cycle analysis revealed that oleanolic acid induced cell cycle arrest in HepG2 cells at the sub‑G1 (apoptotic) phase of the cell cycle, in a dose‑dependent manner. Staining with Annexin V‑fluorescein isothiocyanate and propidium iodide revealed that apoptosis occurred early in these cells. Oleanolic acid treatment also resulted in fragmentation of nuclear DNA in a dose‑dependent manner, producing the typical features of DNA laddering on an agarose gel. The results also demonstrated that oleanolic acid treatment resulted in a potent loss of mitochondrial membrane potential, which also occurred in a dose‑dependent manner. Therefore, oleanolic acid may be used as a therapeutic agent in the treatment of human HCC. PMID:26151733

  5. Translocation of a Bak C-Terminus Mutant from Cytosol to Mitochondria to Mediate Cytochrome c Release: Implications for Bak and Bax Apoptotic Function

    PubMed Central

    Ferrer, Pedro Eitz; Frederick, Paul; Gulbis, Jacqueline M.

    2012-01-01

    Background One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear. Methodology/Principal Findings To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1. Conclusions/Significance Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax. PMID:22442658

  6. Follicle-stimulating Hormone Regulates Pro-apoptotic Protein Bcl-2-interacting Mediator of Cell Death-Extra Long (BimEL)-induced Porcine Granulosa Cell Apoptosis*

    PubMed Central

    Wang, Xian-Long; Wu, Yi; Tan, Lu-Bin; Tian, Zhen; Liu, Jing-Hao; Zhu, De-Sheng; Zeng, Shen-Ming

    2012-01-01

    The pro-apoptotic protein Bim (B-cell lymphoma-2 (Bcl-2)-interacting modulator of cell death) has recently been identified and shown to promote cell death in response to several stimuli. In this report, we investigated the role of Bim in porcine follicular atresia. Initially, Bim cDNA was cloned and characterized from porcine ovarian tissue. Porcine Bim had three alternative splicing variants (Bim-extra long, Bim-long, and Bim-short), all containing the consensus Bcl-2 homology 3 domain. We then found the Bim-extra long (BimEL) protein, the most abundant isoform of Bim, was strongly expressed and co-localized with apoptotic (TUNEL-positive) granulosa cells from porcine atretic follicles. Furthermore, overexpression of BimEL triggered apoptosis in granulosa cells. In primary granulosa cell cultures under basal conditions, we observed that BimEL expression was dampened by treatment with follicle-stimulating hormone (FSH). The role of the PI3K/Akt pathway in the regulation of repression was clarified by the use of the PI3K inhibitor, LY294002, and by transfection with Akt siRNA. Forkhead Box Protein O3a (FoxO3a), a well defined transcriptional activator of Bim, was phosphorylated at Ser-253 and inactivated after FSH stimulation. Also, FSH abolished FoxO3a nuclear accumulation in response to LY294002. Finally, chromatin immunoprecipitation assays demonstrated that FoxO3a directly bound and activated the bim promoter. Taken together, we conclude that BimEL induces porcine granulosa cell apoptosis during follicular atresia, and its expression is regulated by FSH via the PI3K/Akt/FoxO3a pathway. PMID:22235114

  7. Non-apoptotic and extracellular activity of Granzyme B mediates resistance to Treg suppression by HLA-DRnegCD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6

    PubMed Central

    Bhela, Siddheshvar; Kempsell, Christine; Manohar, Monali; Dominguez-Villar, Margarita; Griffin, Russell; Bhatt, Pooja; Kivisakk-Webb, Pia; Fuhlbrigge, Robert; Kupper, Thomas; Weiner, Howard; Baecher-Allan, Clare

    2015-01-01

    In autoimmune patients, regulatory T cells are increasingly found to be unable to suppress patient-derived T cells, an outcome referred to as Treg resistance. Here we show that CD4 T cells from patients with MS resist suppression by patient derived- or healthy donor derived- ex vivo Tregs. Importantly, we report that Granzyme B (GzmB) contributes to this Treg resistance via a novel, apoptosis-independent mechanism. We show that memory CD4+CD127loFoxP3+ Treg subsets do not express GzmB, while activated, non-regulatory CD4 T cells isolated from patients with MS express higher levels of GzmB than cells from healthy donors. In contrast to the intracellular GzmB that mediates apoptosis, GzmB can be found in extracellular fluids where it is hypothesized to regulate other cellular processes. Here we show that providing extracellular GzmB strongly inhibits Treg suppression, without altering Treg viability. However, if GzmB and GzmB-specific inhibitor are both provided to the co-cultures, Treg suppression occurs. Thus, these data suggest that a novel activity of extracellular GzmB is to regulate Treg suppression. In addition, we find that the suppression-abrogating cytokine, IL-6, augments GzmB expression by human CD4 T cells, and inhibits Treg suppression via this non-apoptotic GzmB-mediated mechanism. Lastly, in examining the mechanism whereby GzmB inhibits Treg function, we show that extracellular GzmB reduces Treg expression of CD39 and PD-L1. Altogether, these data indicate that extracellular GzmB plays an unexpected, non-apoptotic role in regulating Treg suppression and suggest that inactivation of specifically the extracellular activity of GzmB may be an efficacious therapeutic in autoimmunity. PMID:25637022

  8. The anti-apoptotic effect of IGF-1 on tissue resident stem cells is mediated via PI3-kinase dependent secreted frizzled related protein 2 (Sfrp2) release

    SciTech Connect

    Gehmert, Sebastian; Sadat, Sanga; Song Yaohua; Yan Yasheng; Alt, Eckhard

    2008-07-11

    Previous studies suggest that IGF-1 may be used as an adjuvant to stem cell transfer in order to improve cell engraftment in ischemic tissue. In the current study, we investigated the effect of IGF-1 on serum deprivation and hypoxia induced stem cell apoptosis and the possible mechanisms involved. Exposure of adipose tissue derived stem cells (ASCs) to serum deprivation and hypoxia resulted in significant apoptosis in ASC which is partially prevented by IGF-1. IGF-1's anti-apoptotic effect was abolished in ASCs transfected with Sfrp2 siRNA but not by the control siRNA. Using Western blot analysis, we demonstrated that serum deprivation and hypoxia reduced the expression of nuclear {beta}-catenin, which is reversed by IGF-1. IGF-1's effect on {beta}-catenin expression was abolished by the presence of PI3-kinase inhibitor LY294002 or in ASCs transfected with Sfrp2 siRNA. These results suggest that IGF-1, through the release of the Sfrp2, contributes to cell survival by stabilizing {beta}-catenin.

  9. Bag-1 promotes cell survival through c-Myc-mediated ODC upregulation that is not preferred under apoptotic stimuli in MCF-7 cells.

    PubMed

    Ozfiliz, Pelin; Kizilboga, Tugba; Demir, Salih; Alkurt, Gizem; Palavan-Unsal, Narin; Arisan, Elif Damla; Dinler-Doganay, Gizem

    2015-07-01

    Bag-1, Bcl-2 associated athanogene-1, is a multifunctional protein that can regulate a wide variety of cellular processes: proliferation, cell survival, transcription, apoptosis and motility. Bag-1 interacts with various targets in the modulation of these pathways; yet molecular details of Bag-1's involvement in each cellular event are still unclear. We first showed that forced Bag-1 expression promotes cell survival and prevents drug-induced apoptosis in MCF-7 breast cancer cells. Increased mRNA expressions of c-myc protooncogene and ornithine decarboxylase (ODC), biosynthetic enzyme of polyamines, were detected in Bag-1L+ cells, and western blots against the protein product of c-Myc and ODC confirmed these findings. Once ODC, a c-Myc target, gets activated, polyamine biosynthesis increases. We observed enhanced polyamine content in the Bag-1L+ cells. On the contrary, when polyamine catabolic mechanisms were investigated, Bag-1 silencing suppressed biosynthesis of polyamines because of the downregulation of ODC and upregulation of PAO. Exposure of cells to apoptotic inducers enhances the cell death mechanism by producing toxic products such as H2 O2 and aldehydes. Bag-1L+ cells prevented drug-induced PAO activation leading to a decrease in H2 O2 production following cisplatin or paclitaxel treatment. In this line, our results suggested that Bag-1 indirectly affects cell survival through c-Myc activated signalling that causes elevation of ODC levels, leading to an increase of the polyamine content. PMID:26178413

  10. ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer

    PubMed Central

    Zou, Peng; Zhang, Junru; Xia, Yiqun; Kanchana, Karvannan; Guo, Guilong; Chen, Wenbo; Huang, Yi; Wang, Zhe; Yang, Shulin; Liang, Guang

    2015-01-01

    Gastric cancer is one of the leading causes of cancer mortality in the world, and finding novel agents and strategies for the treatment of advanced gastric cancer is of urgent need. Curcumin is a well-known natural product with anti-cancer ability, but is limited by its poor chemical stability. In this study, an analog of curcumin with high chemical stability, WZ35, was designed and evaluated for its anti-cancer effects and underlying mechanisms against human gastric cancer. WZ35 showed much stronger anti-proliferative effects than curcumin, accompanied by dose-dependent induction of cell cycle arrest and apoptosis in gastric cancer cells. Mechanistically, our data showed that WZ35 induced reactive oxygen species (ROS) production, resulting in the activation of both JNK-mitochondrial and ER stress apoptotic pathways and eventually cell apoptosis in SGC-7901 cells. Blockage of ROS production totally reversed WZ35-induced JNK and ER stress activation as well as cancer cell apoptosis. In vivo, WZ35 showed a significant reduction in SGC-7901 xenograft tumor size in a dose-dependent manner. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human gastric cancer treatment. PMID:25714022

  11. In the absence of cellular poly (A) binding protein, the glycolytic enzyme GAPDH translocated to the cell nucleus and activated the GAPDH mediated apoptotic pathway by enhancing acetylation and serine 46 phosphorylation of p53

    SciTech Connect

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-06-03

    Highlights: {yields} PABP knock down and cell apoptosis. {yields} Nuclear translocation of GAPDH in PABP depleted cells. {yields} Role of p53 in apoptosis of PABP depleted cells. {yields} Bax translocation and cytochrome C release and caspase 3 activation following PABP depletion. {yields} Association of p53 with Bcl2 and Bax. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) interacts with 3' poly (A) tract of eukaryotic mRNA and is important for both translation and stability of mRNA. Previously, we have shown that depletion of PABP by siRNA prevents protein synthesis and consequently leads to cell death through apoptosis. In the present investigation, we studied the mechanism of cell apoptosis. We show that in the absence of PABP, the glycolytic enzyme GAPDH translocated to the cell nucleus and activated the GAPDH mediated apoptotic pathway by enhancing acetylation and serine 46 phosphorylation of p53. As a result, p53 translocated to the mitochondria to initiate Bax mediated apoptosis.

  12. Anti Proliferative and Pro Apoptotic Effects of Flavonoid Quercetin Are Mediated by CB1 Receptor in Human Colon Cancer Cell Lines.

    PubMed

    Refolo, Maria Grazia; D'Alessandro, Rosalba; Malerba, Natascia; Laezza, Chiara; Bifulco, Maurizio; Messa, Caterina; Caruso, Maria Gabriella; Notarnicola, Maria; Tutino, Valeria

    2015-12-01

    Quercetin, the major constituent of flavonoid and widely present in fruits and vegetables, is an attractive compound for cancer prevention due to its beneficial anti proliferative effects, showing a crucial role in the regulation of apoptosis and cell cycle signaling. In vitro studies have demonstrated that quercetin specifically influences colon cancer cell proliferation. Our experiments, using human colon adenocarcinoma cells, confirmed the anti proliferative effect of quercetin and gave intriguing new insight in to the knowledge of the mechanisms involved. We observed a significant increase in the expression of the endocannabinoids receptor (CB1-R) after quercetin treatment. CB1-R can be considered an estrogen responsive receptor and quercetin, having a structure similar to that of the estrogens, can interact with CB1-R leading to the regulation of cell growth. In order to clarify the contribution of the CB1-R to the quercetin action, we investigated some of the principal molecular pathways that are inhibited or activated by this natural compound. In particular we detected the inhibition of the major survival signals like the PI3K/Akt/mTOR and an induction of the pro apoptotic JNK/JUN pathways. Interestingly, the metabolism of β-catenin was modified by flavonoid both directly and through activated CB1-R. In all the experiments done, the quercetin action has proven to be reinforced by anandamide (Met-F-AEA), a CB1-R agonist, and partially counteracted by SR141716, a CB1-R antagonist. These findings open new perspectives for anticancer therapeutic strategies. PMID:25893829

  13. Folate Deficiency Triggers an Oxidative-Nitrosative Stress-Mediated Apoptotic Cell Death and Impedes Insulin Biosynthesis in RINm5F Pancreatic Islet β–Cells: Relevant to the Pathogenesis of Diabetes

    PubMed Central

    Wang, Yu-Huei; Chen, Chia-Hui; Mau, Shin-Yi; Ho, Chun-Te; Chang, Pey-Jium; Liu, Tsan-Zon; Chen, Ching-Hsein

    2013-01-01

    It has been postulated that folic acid (folate) deficiency (FD) may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet β cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-κB-dependent iNOS-mediated overproduction of nitric oxide (NO). The latter compound could then trigger depletion of endoplasmic reticulum (ER) calcium (Ca2+) store leading to cytosolic Ca2+ overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular gluthathione (GSH) and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes. PMID:24223745

  14. Chloroacetic acid induced neuronal cells death through oxidative stress-mediated p38-MAPK activation pathway regulated mitochondria-dependent apoptotic signals.

    PubMed

    Chen, Chun-Hung; Chen, Sz-Jie; Su, Chin-Chuan; Yen, Cheng-Chieh; Tseng, To-Jung; Jinn, Tzyy-Rong; Tang, Feng-Cheng; Chen, Kuo-Liang; Su, Yi-Chang; Lee, kuan-I; Hung, Dong-Zong; Huang, Chun-Fa

    2013-01-01

    Chloroacetic acid (CA), a toxic chlorinated analog of acetic acid, is widely used in chemical industries as an herbicide, detergent, and disinfectant, and chemical intermediates that are formed during the synthesis of various products. In addition, CA has been found as a by-product of chlorination disinfection of drinking water. However, there is little known about neurotoxic injuries of CA on the mammalian, the toxic effects and molecular mechanisms of CA-induced neuronal cell injury are mostly unknown. In this study, we examined the cytotoxicity of CA on cultured Neuro-2a cells and investigated the possible mechanisms of CA-induced neurotoxicity. Treatment of Neuro-2a cells with CA significantly reduced the number of viable cells (in a dose-dependent manner with a range from 0.1 to 3mM), increased the generation of ROS, and reduced the intracellular levels of glutathione depletion. CA also increased the number of sub-G1 hypodiploid cells; increased mitochondrial dysfunction (loss of MMP, cytochrome c release, and accompanied by Bcl-2 and Mcl-1 down-regulation and Bax up-regulation), and activated the caspase cascades activations, which displayed features of mitochondria-dependent apoptosis pathway. These CA-induced apoptosis-related signals were markedly prevented by the antioxidant N-acetylcysteine (NAC). Moreover, CA activated the JNK and p38-MAPK pathways, but did not that ERK1/2 pathway, in treated Neuro-2a cells. Pretreatment with NAC and specific p38-MAPK inhibitor (SB203580), but not JNK inhibitor (SP600125) effectively abrogated the phosphorylation of p38-MAPK and attenuated the apoptotic signals (including: decrease in cytotoxicity, caspase-3/-7 activation, the cytosolic cytochrome c release, and the reversed alteration of Bcl-2 and Bax mRNA) in CA-treated Neuro-2a cells. Taken together, these data suggest that oxidative stress-induced p38-MAPK activated pathway-regulated mitochondria-dependent apoptosis plays an important role in CA-caused neuronal cell death. PMID:23103613

  15. Synthetic 1,4-anthracenedione analogs induce cytochrome c release, caspase-9, -3, and -8 activities, poly(ADP-ribose) polymerase-1 cleavage and internucleosomal DNA fragmentation in HL-60 cells by a mechanism which involves caspase-2 activation but not Fas signaling.

    PubMed

    Perchellet, Elisabeth M; Wang, Yang; Weber, Rebeka L; Sperfslage, Bonnie J; Lou, Kaiyan; Crossland, Justin; Hua, Duy H; Perchellet, Jean-Pierre

    2004-02-01

    Synthetic analogs of 1,4-anthraquinone (AQ code number), a compound that mimics the antiproliferative effects of daunorubicin (daunomycin) in the nanomolar range in vitro but has the advantage of blocking nucleoside transport and retaining its efficacy in multidrug-resistant tumor cells, were tested for their ability to induce apoptosis in the HL-60 cell system. AQ10 and, especially, the new lead antiproliferative compounds AQ8 and AQ9 reduce the growth and integrity of wild-type, drug-sensitive, HL-60-S cells more effectively than AQ1, suggesting that various methyl group substituents at C6 may enhance the bioactivity of the parent compound. Internucleosomal DNA fragmentation, a late marker of apoptosis, is similarly induced in a biphasic manner by increasing concentrations of AQ8 and AQ9 at 24 hr. Poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, an early event required for cells committed to apoptosis, is detected within 3-6 hr in HL-60-S cells treated with AQ9. In accord with the fact that the caspases 9 and 3 cascade is responsible for PARP-1 cleavage, the activities of initiator caspase-9 and effector caspase-3 are induced by AQ9 in the same time- and concentration-dependent manners and to the same maximal degrees in both the HL-60-S and multidrug-resistant HL-60-RV cell lines. Interestingly, a 1-hr pulse treatment is sufficient for AQ8 and AQ9 to maximally induce caspase-9 and -3 activities at 6 hr. The release of mitochondrial cytochrome c (Cyt c) is also detected within 3-6hr in HL-60-S cells treated with AQ9, a finding consistent with the fact that Cyt c is the apoptotic trigger that activates caspase-9. Moreover, AQ analogs induce Cyt c release, caspase-9 and -3 activities and PARP-1 cleavage in relation with their abilities to decrease tumor cell growth and integrity, AQ8 and AQ9 being consistently the most effective. Since apical caspases 2 and 8 may both act upstream of mitochondria to promote Cyt c release, it is significant to show that AQ9 maximally induces caspase-2 and -8 activities at 6 and 9 hr, respectively. During AQ8 treatment, the caspase-2 inhibitor benzyloxycarbonyl (z)-Val-Asp-Val-Ala-Asp (VDVAD)-fluoromethyl ketone (fmk) totally blocks caspase-9, -3, and -8 activations, whereas the caspase-8 inhibitor z-Ile-Glu-Thr-Asp-(IETD)-fmk does not prevent caspase-2, -9, and -3 activations, suggesting that AQ-induced caspase-2 activity is an upstream event critical for the activation of the downstream caspases 9 and 3 cascade, including the mitochondrial amplification loop through caspase-8. However, these caspase-2 and -8 inhibitors fail to alter AQ8-induced Cyt c release, suggesting that AQs might also target mitochondria independently from caspase activation. Furthermore, the antagonistic anti-Fas DX2 and ZB4 monoclonal antibodies (mAbs), which block the induction of Cyt c release and caspase-2, -8, and -9 activities by the agonistic anti-Fas CH11 mAb, and the neutralizing anti-Fas ligand (FasL) NOK-1 mAb all fail to inhibit AQ9-induced Cyt c release and caspase-2, -8, and -9 activities, suggesting that the FasL/Fas signaling pathway is not involved in the mechanism by which antiproliferative AQ analogs trigger apoptosis in HL-60 cells. PMID:15037204

  16. (−)-Epigallocatechin-3-Gallate Induces Non-Apoptotic Cell Death in Human Cancer Cells via ROS-Mediated Lysosomal Membrane Permeabilization

    PubMed Central

    Zhang, Yin; Yang, Nai-Di; Zhou, Fan; Shen, Ting; Duan, Ting; Zhou, Jing; Shi, Yin; Zhu, Xin-Qiang; Shen, Han-Ming

    2012-01-01

    (−)-Epigallocatechin-3-gallate (EGCG) is the most extensive studied tea polyphenol for its anti-cancer function. In this study, we report a novel mechanism of action for EGCG-mediated cell death by identifying the critical role of lysosomal membrane permeabilization (LMP). First, EGCG-induced cell death in human cancer cells (both HepG2 and HeLa) was found to be caspase-independent and accompanied by evident cytosolic vacuolization, only observable when cells were treated in serum-free medium. The cytosolic vacuolization observed in EGCG-treated cells was most probably caused by lysosomal dilation. Interestingly, EGCG was able to disrupt autophagic flux at the degradation stage by impairment of lysosomal function, and EGCG-induced cell death was independent of Atg5 or autophagy. The key finding of this study is that EGCG is able to trigger LMP, as evidenced by Lyso-Tracker Red staining, cathepsin D cytosolic translocation and cytosolic acidification. Consistently, a lysosomotropic agent, chloroquine, effectively rescues the cell death via suppressing LMP-caused cytosolic acidification. Lastly, we found that EGCG promotes production of intracellular ROS upstream of LMP and cell death, as evidenced by increased level of ROS in cells treated with EGCG and the protective effects of antioxidant N-acetylcysteine (NAC) against EGCG-mediated LMP and cell death. Taken together, data from our study reveal a novel mechanism underlying EGCG-induced cell death involving ROS and LMP. Therefore, understanding this lysosome-associated cell death pathway shed new lights on the anti-cancer effects of EGCG. PMID:23056433

  17. Transcriptomic Analysis Unveils Correlations between Regulative Apoptotic Caspases and Genes of Cholesterol Homeostasis in Human Brain

    PubMed Central

    Picco, Raffaella; Tomasella, Andrea; Fogolari, Federico; Brancolini, Claudio

    2014-01-01

    Regulative circuits controlling expression of genes involved in the same biological processes are frequently interconnected. These circuits operate to coordinate the expression of multiple genes and also to compensate dysfunctions in specific elements of the network. Caspases are cysteine-proteases with key roles in the execution phase of apoptosis. Silencing of caspase-2 expression in cultured glioblastoma cells allows the up-regulation of a limited number of genes, among which some are related to cholesterol homeostasis. Lysosomal Acid Lipase A (LIPA) was up-regulated in two different cell lines in response to caspase-2 down-regulation and cells silenced for caspase-2 exhibit reduced cholesterol staining in the lipid droplets. We expanded this observation by large-scale analysis of mRNA expression. All caspases were analyzed in terms of co-expression in comparison with 166 genes involved in cholesterol homeostasis. In the brain, hierarchical clustering has revealed that the expression of regulative apoptotic caspases (CASP2, CASP8 CASP9, CASP10) and of the inflammatory CASP1 is linked to several genes involved in cholesterol homeostasis. These correlations resulted in altered GBM (Glioblastoma Multiforme), in particular for CASP1. We have also demonstrated that these correlations are tissue specific being reduced (CASP9 and CASP10) or different (CASP2) in the liver. For some caspases (CASP1, CASP6 and CASP7) these correlations could be related to brain aging. PMID:25330190

  18. Flow cytometry enumeration of apoptotic cancer cells by apoptotic rate.

    PubMed

    Diaz, David; Prieto, Alfredo; Reyes, Eduardo; Barcenilla, Hugo; Monserrat, Jorge; Alvarez-Mon, Melchor

    2015-01-01

    Most authors currently quantify the frequency of apoptotic cells in a given phenotypically defined population after calculating the apoptotic index (AI), i.e., the percentage of apoptotic cells displaying a specific linage antigen (LAg) within a population of cells that remain unfragmented and retain the expression of the LAg. However, this approach has two major limitations. Firstly, apoptotic cells fragment into apoptotic bodies that later disintegrate. Secondly, apoptotic cells frequently lose, partially or even completely, the cell surface expression of the LAg used for the identification of specific cell subsets. This chapter describes a flow cytometry method to calculate the apoptotic rate (AR) that takes into account both cell fragmentation and loss of lineage antigen expression on measurement of apoptosis using flow cytometry ratiometric cell enumeration that emerges as a more accurate method of measurement of the occurrence of apoptosis in normal and tumoral cell cultures. PMID:25308258

  19. Flow cytometry enumeration of apoptotic cancer cells by apoptotic rate.

    PubMed

    Diaz, David; Prieto, Alfredo; Reyes, Eduardo; Barcenilla, Hugo; Monserrat, Jorge; Alvarez-Mon, Melchor

    2008-01-01

    Most authors currently quantify the frequency of apoptotic cells in a given phenotypically defined population after calculating the apoptotic index (AI), that is, the percentage of apoptotic cells displaying a specific lineage antigen (LAg) within a population of cells that remain unfragmented and retain the expression of the LAg. However, this approach has two major limitations. First, apoptotic cells fragment into apoptotic bodies that later disintegrate. Second, apoptotic cells frequently lose, partially or even completely, the cell surface expression of the LAg used for the identification of specific cell subsets. This chapter will describe a flow cytometry method to calculate the apoptotic rate (AR) that takes into account both cell fragmentation and loss of LAg expression on measurement of apoptosis using flow cytometry ratiometric cell enumeration that emerges as a more accurate method of measurement of the occurrence of apoptosis in normal and tumoral cell cultures. PMID:18175809

  20. Combination of Protoporphyrin IX-mediated Sonodynamic Treatment with Doxorubicin Synergistically Induced Apoptotic Cell Death of a Multidrug-Resistant Leukemia K562/DOX Cell Line.

    PubMed

    Wang, Xiaobing; Jia, Yali; Su, Xiaomin; Wang, Pan; Zhang, Kun; Feng, Xiaolan; Liu, Quanhong

    2015-10-01

    The main objective of this study was to evaluate the efficacy of administration of doxorubicin (DOX) in combination with protoporphyrin IX (PpIX)-assisted low-level therapeutic ultrasound (US) in K562/DOX cells as a potential strategy in cancer therapy. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the cytotoxicity of different treatments. Apoptosis was analyzed using annexin V-PE/7-amino-actinomycin D staining. Changes in DNA fragmentation, intracellular reactive oxygen species production, cellular membrane permeability, P-glycoprotein expression and DOX uptake were analyzed with flow cytometry. Under optimal conditions, PpIX-US significantly aggravated DOX-induced K562/DOX cell death, compared with either monotherapy. Synergistic potentiation of DNA damage, generation of reactive oxygen species and P-glycoprotein inhibition were observed. Plasma membrane integrity changed slightly after US exposure, and DOX uptake was notably improved after PpIX-US exposure. The results indicate that PpIX-US could increase the susceptibility of tumors to antineoplastic drugs, suggesting a clinical potential method for sonodynamic therapy-mediated tumor chemotherapy. PMID:26166458

  1. HLA-DR Alpha 2 Mediates Negative Signalling via Binding to Tirc7 Leading to Anti-Inflammatory and Apoptotic Effects in Lymphocytes In Vitro and In Vivo

    PubMed Central

    Schlawinsky, Mirko; Heinemann, Thomas; Schulze, Anke; Höhne, Wolfgang; Krause, Gerd; Kalka-Moll, Wiltrud; Fraser, Patricia; Volk, Hans-Dieter; Löhler, Jürgen; Milford, Edgar L.; Utku, Nalân

    2008-01-01

    Classically, HLA-DR expressed on antigen presenting cells (APC) initiates lymphocyte activation via presentation of peptides to TCR bearing CD4+ T-Cells. Here we demonstrate that HLA-DR alpha 2 domain (sHLA-DRα2) also induces negative signals by engaging TIRC7 on lymphocytes. This interaction inhibits proliferation and induces apoptosis in CD4+ and CD8+ T-cells via activation of the intrinsic pathway. Proliferation inhibition is associated with SHP-1 recruitment by TIRC7, decreased phosphorylation of STAT4, TCR-ζ chain & ZAP70, and inhibition of IFN-γ and FasL expression. HLA-DRα2 and TIRC7 co-localize at the APC-T cell interaction site. Triggering HLA-DR - TIRC7 pathway demonstrates that sHLA-DRα2 treatment inhibits proinflammatory-inflammatory cytokine expression in APC & T cells after lipopolysaccaride (LPS) stimulation in vitro and induces apoptosis in vivo. These results suggest a novel antiproliferative role for HLA-DR mediated via TIRC7, revise the notion of an exclusive stimulatory interaction of HLA-DR with CD4+ T cells and highlights a novel physiologically relevant regulatory pathway. PMID:18270567

  2. Loss of the Birt–Hogg–Dubé tumor suppressor results in apoptotic resistance due to aberrant TGFβ-mediated transcription

    PubMed Central

    Cash, T P; Gruber, J J; Hartman, T R; Henske, E P; Simon, M C

    2011-01-01

    Birt–Hogg–Dubé (BHD) syndrome is an inherited cancer susceptibility disease characterized by skin and kidney tumors, as well as cystic lung disease, which results from loss-of-function mutations in the BHD gene. BHD is also inactivated in a significant fraction of patients with sporadic renal cancers and idiopathic cystic lung disease, and little is known about its mode of action. To investigate the molecular and cellular basis of BHD tumor suppressor activity, we generated mutant Bhd mice and embryonic stem cell lines. BHD-deficient cells exhibited defects in cell-intrinsic apoptosis that correlated with reduced expression of the BH3-only protein Bim, which was similarly observed in all human and murine BHD-related tumors examined. We further demonstrate that Bim deficiency in Bhd−/− cells is not a consequence of elevated mTOR or ERK activity, but results instead from reduced Bim transcription associated with a general loss of TGFβ-mediated transcription and chromatin modifications. In aggregate, this work identifies a specific tumor suppressive mechanism for BHD in regulating TGFβ-dependent transcription and apoptosis, which has implications for the development of targeted therapies. PMID:21258407

  3. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells.

    PubMed

    Jeyaraj, Murugaraj; Rajesh, Manoharan; Arun, Renganathan; MubarakAli, Davoodbasha; Sathishkumar, Gnanasekar; Sivanandhan, Ganeshan; Dev, Gnanajothi Kapil; Manickavasagam, Markandan; Premkumar, Kumpati; Thajuddin, Nooruddin; Ganapathi, Andy

    2013-02-01

    Now-a-days synthesis and characterization of silver nanoparticles (AgNPs) through biological entity is quite interesting to employ AgNPs for various biomedical applications in general and treatment of cancer in particular. This paper presents the green synthesis of AgNPs using leaf extract of Podophyllum hexandrum Royle and optimized with various parameters such as pH, temperature, reaction time, volume of extract and metal ion concentration for synthesis of AgNPs. TEM, XRD and FTIR were adopted for characterization. The synthesized nanoparticles were found to be spherical shaped with average size of 14 nm. Effects of AgNPs were analyzed against human cervical carcinoma cells by MTT Assay, quantification of ROS, RT-PCR and western blotting techniques. The overall result indicates that AgNPs can selectively inhibit the cellular mechanism of HeLa by DNA damage and caspase mediated cell death. This biological procedure for synthesis of AgNPs and selective inhibition of cancerous cells gives an alternative avenue to treat human cancer effectively. PMID:23117153

  4. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger

    PubMed Central

    Insel, Paul A.; Zhang, Lingzhi; Murray, Fiona; Yokouchi, Hiroshi; Zambon, Alexander C.

    2011-01-01

    The second messenger cyclic AMP (cAMP) can either stimulate or inhibit programmed cell death (apoptosis). Here, we review examples of cell types that show pro-apoptotic or anti-apoptotic responses to increases in cAMP. We also show that cells can have both such responses, although predominantly having one or the other. Protein kinase A (PKA)-promoted changes in phosphoylation and gene expression can mediate pro-apoptotic responses, such as in murine S49 lymphoma cells, based on evidence that mutants lacking PKA fail to undergo cAMP-promoted, mitochondria-dependent apoptosis. Mechanisms for the anti-apoptotic response to cAMP likely involve Epac (Exchange protein activated by cAMP), a cAMP-regulated effector that is a guanine nucleotide exchange factor (GEF) for the low molecular weight G-protein, Rap1. Therapeutic approaches that activate PKA-mediated pro-apoptosis or that block Epac-mediated anti-apoptotisis may provide a means to enhance cell killing, such as in certain cancers. By contrast, efforts to block PKA or stimulate Epac have the potential to be useful in diseases settings (such as heart failure) associated with cAMP-promoted apoptosis. PMID:21385327

  5. p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway

    PubMed Central

    Xiao, Li; Nie, Jing; Liu, Fu-you; Ling, Guang-hui; Zhu, Xue-jing; Tang, Wen-bin; Chen, Wen-cui; Xia, Yun-cheng; Zhan, Ming; Ma, Ming-ming; Peng, You-ming; Liu, Hong; Liu, Ying-hong; Kanwar, Yashpal S.

    2010-01-01

    p66Shc, a promoter of apoptosis, modulates oxidative stress response and cellular survival, but its role in the progression of diabetic nephropathy is relatively unknown. In this study, mechanisms by which p66Shc modulates high-glucose (HG)- or angiotensin (ANG) II-induced mitochondrial dysfunction were investigated in renal proximal tubular cells (HK-2 cells). Expression of p66Shc and its phosphorylated form (p-p66Shc, serine residue 36) and apoptosis were notably increased in renal tubules of diabetic mice, suggesting an increased reactive oxygen species production. In vitro, HG and ANG II led to an increased expression of total and p-p66Shc in HK-2 cells. These changes were accompanied with increased production of mitochondrial H2O2, reduced mitochondrial membrane potential, increased translocation of mitochondrial cytochrome c from mitochondria into cytosol, upregulation of the expression of caspase-9, and ultimately reduced cell survival. Overexpression of a dominant-negative Ser36 mutant p66Shc (p66ShcS36A) or treatment of p66Shc- or PKC-β-short interfering RNAs partially reversed these changes. Treatment of HK-2 cells with HG and ANG II also increased the protein-protein association between p-p66Shc and Pin1, an isomerase, in the cytosol, and with cytochrome c in the mitochondria. These interactions were partially disrupted with the treatment of PKC-β inhibitor or Pin1-short interfering RNA. These data suggest that p66Shc mediates HG- and ANG II-induced mitochondrial dysfunctions via PKC-β and Pin1-dependent pathways in renal tubular cells. PMID:20739391

  6. The pro-apoptotic and anti-invasive effects of hypericin-mediated photodynamic therapy are enhanced by hyperforin or aristoforin in HT-29 colon adenocarcinoma cells.

    PubMed

    Šemeláková, Martina; Mikeš, Jaromír; Jendželovský, Rastislav; Fedoročko, Peter

    2012-12-01

    Photodynamic therapy is a rapidly-developing anti-cancer approach for the treatment of various types of malignant as well as non-malignant diseases. In this study, hypericin-mediated photodynamic therapy (HY-PDT) in sub-optimal dose was combined with hyperforin (HP) or its stable derivative aristoforin (AR) in an effort to improve efficacy on the cellular level. The logic of this combination is based on the fact that both bioactive compounds naturally occur in plants of Hypericum sp. At relatively low concentrations up to 5 μM, hyperforin and aristoforin were able to stimulate onset of apoptosis in HT-29 colon adenocarcinoma cells exposed to HY-PDT, inhibit cell cycle progression, suppress expression of matrixmetalloproteinases-2/-9 together with cell adhesivity, thereby affecting the clonogenic potential of the cells. As the action of aristoforin was more pronounced, in line with our assumption, these changes were also linked in this case with hypericin accumulation and increased ROS generation leading to dissipation of mitochondrial membrane potential in a significant portion of the cells, as well as activation of caspase-3. Comparison of HT-29 cells to another colon adenocarcinoma-derived cell line HCT-116 demonstrated significant differences in sensitivity of different cell lines to PDT, however, accumulated effect of HY-PDT with HP/AR proved similar in both tested cell lines. The presented data may help to elucidate the mechanisms of action for different bioactive constituents of St. John's wort, which are increasingly recognized as being able to regulate a variety of pathobiological processes, thus possessing potential therapeutic properties. PMID:23099482

  7. Progesterone mediates its anti-mitogenic and anti-apoptotic actions in rat granulosa cells through a progesterone-binding protein with gamma aminobutyric acidA receptor-like features.

    PubMed

    Peluso, J J; Pappalardo, A

    1998-05-01

    Progesterone (P4) inhibits small granulosa cell (GC) mitosis and large GC apoptosis. These actions are steroid specific and dose dependent and are inhibited by the progesterone receptor (PR) antagonist, RU-486. However, these cells do not express the nuclear PR but rather an ill-defined P4-binding protein (P4BP). This binding protein could function as a receptor and mediate P4's actions in GCs. Therefore, a series of studies was designed to characterize this P4BP. First, an antibody directed against the ligand-binding site of the nuclear PR was used in a Western blot analysis. This analysis revealed the presence of a 60-kDa P4BP within ovarian and GC lysates as well as within an ovarian membrane preparation. This protein was not observed in lysates of cells derived from the ovarian surface epithelium. In addition, this P4BP was immunoprecipitated by an antibody to the alpha1 chain of the gamma aminobutyric acidA (GABA(A)) receptor, suggesting that the P4BP could be the ovarian GABA(A) receptor. Since activation of the rat ovarian GABA(A) receptor increases intracellular cAMP levels, GCs were cultured with control medium supplemented with either 8-bromo-cAMP (8-br-cAMP), P4, or muscimol (a GABA agonist). Increases in cAMP were detected by monitoring the cAMP-dependent phosphorylation of cAMP response element-binding protein (CREB). Phosphorylated CREB was not observed in control or P4-treated cultures, but it was detected in the majority of both small and large GCs exposed to either 8-br-cAMP or muscimol. Since activation of the GABA(A) receptor with muscimol increases phosphorylated CREB but P4 does not, this study indicates that P4 does not activate the ovarian GABA(A) receptor. However, both bicuculline, a GABA(A) receptor antagonist, and the antibody to PR inhibited P4's ability to prevent both insulin-dependent mitosis and apoptosis. Collectively, these studies suggest that P4 mediates its anti-mitotic and anti-apoptotic effects through this 60-kDa P4BP, which has GABA(A) receptor-like properties and is localized within the surface membrane of GCs. PMID:9603245

  8. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  9. P2X7 Receptor-mediated Scavenger Activity of Mononuclear Phagocytes toward Non-opsonized Particles and Apoptotic Cells Is Inhibited by Serum Glycoproteins but Remains Active in Cerebrospinal Fluid*

    PubMed Central

    Gu, Ben J.; Duce, James A.; Valova, Valentina A.; Wong, Bruce; Bush, Ashley I.; Petrou, Steven; Wiley, James S.

    2012-01-01

    Rapid phagocytosis of non-opsonized particles including apoptotic cells is an important process that involves direct recognition of the target by multiple scavenger receptors including P2X7 on the phagocyte surface. Using a real-time phagocytosis assay, we studied the effect of serum proteins on this phagocytic process. Inclusion of 1–5% serum completely abolished phagocytosis of non-opsonized YG beads by human monocytes. Inhibition was reversed by pretreatment of serum with 1–10 mm tetraethylenepentamine, a copper/zinc chelator. Inhibitory proteins from the serum were determined as negatively charged glycoproteins (pI < 6) with molecular masses between 100 and 300 kDa. A glycoprotein-rich inhibitory fraction of serum not only abolished YG bead uptake but also inhibited phagocytosis of apoptotic lymphocytes or neuronal cells by human monocyte-derived macrophages. Three copper- and/or zinc-containing serum glycoproteins, ceruloplasmin, serum amyloid P-component, and amyloid precursor protein, were identified, and the purified proteins were shown to inhibit the phagocytosis of beads by monocytes as well as phagocytosis of apoptotic neuronal cells by macrophages. Human adult cerebrospinal fluid, which contains very little glycoprotein, had no inhibitory effect on phagocytosis of either beads or apoptotic cells. These data suggest for the first time that metal-interacting glycoproteins present within serum are able to inhibit the scavenger activity of mononuclear phagocytes toward insoluble debris and apoptotic cells. PMID:22461619

  10. Complementary proteomic tools for the dissection of apoptotic proteolysis events.

    PubMed

    Pham, Victoria C; Pitti, Robert; Anania, Veronica G; Bakalarski, Corey E; Bustos, Daisy; Jhunjhunwala, Suchit; Phung, Qui T; Yu, Kebing; Forrest, William F; Kirkpatrick, Donald S; Ashkenazi, Avi; Lill, Jennie R

    2012-05-01

    Proteolysis is a key regulatory event that controls intracellular and extracellular signaling through irreversible changes in a protein's structure that greatly alters its function. Here we describe a platform for profiling caspase substrates which encompasses two highly complementary proteomic techniques--the first is a differential gel based approach termed Global Analyzer of SILAC-derived Substrates of Proteolysis (GASSP) and the second involves affinity enrichment of peptides containing a C-terminal aspartic acid residue. In combination, these techniques have enabled the profiling of a large cellular pool of apoptotic-mediated proteolytic events across a wide dynamic range. By applying this integrated proteomic work flow to analyze proteolytic events resulting from the induction of intrinsic apoptosis in Jurkat cells via etoposide treatment, 3346 proteins were quantified, of which 360 proteins were identified as etoposide-induced proteolytic substrates, including 160 previously assigned caspase substrates. In addition to global profiling, a targeted approach using BAX HCT116 isogenic cell lines was utilized to dissect pre- and post-mitochondrial extrinsic apoptotic cleavage events. By employing apoptotic activation with a pro-apoptotic receptor agonist (PARA), a limited set of apoptotic substrates including known caspase substrates such as BH3 interacting-domain death agonist (BID) and Poly (ADP-ribose) polymerase (PARP)-1, and novel substrates such as Basic Transcription Factor 3, TRK-fused gene protein (TFG), and p62/Sequestosome were also identified. PMID:22432722

  11. The Modulation of Apoptotic Pathways by Gammaherpesviruses

    PubMed Central

    Banerjee, Shuvomoy; Uppal, Timsy; Strahan, Roxanne; Dabral, Prerna; Verma, Subhash C.

    2016-01-01

    Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells. PMID:27199919

  12. Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells

    PubMed Central

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Salga, Muhammad Saleh; Karimian, Hamed; Shams, Keivan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies. PMID:25764970

  13. Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway

    PubMed Central

    Niu, Ning-Kui; Wang, Zi-Li; Pan, Shu-Ting; Ding, Hui-Qiang; Au, Giang HT; He, Zhi-Xu; Zhou, Zhi-Wei; Xiao, Guozhi; Yang, Yin-Xue; Zhang, Xueji; Yang, Tianxin; Chen, Xiao-Wu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Osteosarcoma (OS) is the most common malignant bone tumor occurring mostly in children and adolescents between 10 and 20 years of age with poor response to current therapeutics. Alisertib (ALS, MLN8237) is a selective Aurora kinase A inhibitor that displays anticancer effects on several types of cancer. However, the role of ALS in the treatment of OS remains unknown. This study aimed to investigate the effects of ALS on the cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT) and the underlying mechanisms in two human OS cell lines U-2 OS and MG-63. The results showed that ALS had potent growth inhibitory, pro-apoptotic, pro-autophagic, and EMT inhibitory effects on U-2 OS and MG-63 cells. ALS remarkably induced G2/M arrest and down-regulated the expression levels of cyclin-dependent kinases 1 and 2 and cyclin B1 in both U-2 OS and MG-63 cells. ALS markedly induced mitochondria-mediated apoptosis with a significant increase in the expression of key pro-apoptotic proteins and a decrease in main anti-apoptotic proteins. Furthermore, ALS promoted autophagic cell death via the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways, and activation of 5′-AMP-dependent kinase (AMPK) signaling pathway. Inducers or inhibitors of apoptosis or autophagy simultaneously altered ALS-induced apoptotic and autophagic death in both U-2 OS and MG-63 cells, suggesting a crosstalk between these two primary modes of programmed cell death. Moreover, ALS suppressed EMT-like phenotypes with a marked increase in the expression of E-cadherin but a decrease in N-cadherin in U-2 OS and MG-63 cells. ALS treatment also induced reactive oxygen species (ROS) generation but inhibited the expression levels of sirtuin 1 and nuclear factor-erythroid-2-related factor 2 (Nrf2) in both cell lines. Taken together, these findings show that ALS promotes apoptosis and autophagy but inhibits EMT via PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways with involvement of ROS- and sirtuin 1-associated pathways in U-2 OS and MG-63 cells. ALS is a promising anticancer agent in OS treatment and further studies are needed to confirm its efficacy and safety in OS chemotherapy. PMID:25792811

  14. Apoptotic markers in protozoan parasites

    PubMed Central

    2010-01-01

    The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities. PMID:21062457

  15. Streptococcal pyrogenic exotoxin B inhibits apoptotic cell clearance by macrophages through protein S cleavage

    PubMed Central

    Chen, Chia-Ling; Wu, Yueh-Ying; Lin, Chiou-Feng; Kuo, Chih-Feng; Han, Chia-Li; Wang, Shuying; Chuang, Woei-Jer; Chen, Chiu-Yueh; Wu, Jiunn-Jong; Tsai, Pei-Jane; Liu, Ching-Chuan; Lin, Yee-Shin

    2016-01-01

    Clearance of apoptotic cells by macrophages plays an important role in maintaining tissue homeostasis. Previous study indicated that streptococcal pyrogenic exotoxin B (SPE B) reduces phagocytic activity in group A streptococcus (GAS) infection. Here, we demonstrate that SPE B causes an inhibitory effect on protein S-mediated phagocytosis. In the presence of SPE B, serum- and purified protein S-mediated phagocytosis of apoptotic cells were significantly inhibited. The binding abilities of protein S to apoptotic cells were decreased by treatment with SPE B. Bacterial culture supernatants from GAS NZ131 strain also caused a reduction of protein S binding to apoptotic cells, but speB mutant strain did not. SPE B directly cleaved protein S in vitro and in vivo, whereas a lower level of cleavage occurred in mice infected with a speB isogenic mutant strain. SPE B-mediated initial cleavage of protein S caused a disruption of phagocytosis, and also resulted in a loss of binding ability of protein S-associated C4b-binding protein to apoptotic cells. Taken together, these results suggest a novel pathogenic role of SPE B that initiates protein S degradation followed by the inhibition of apoptotic cell clearance by macrophages. PMID:27181595

  16. Cytosolic retention of phosphorylated extracellular signal-regulated kinase and a Rho-associated kinase-mediated signal impair expression of p21(Cip1/Waf1) in phorbol 12-myristate-13- acetate-induced apoptotic cells.

    PubMed

    Lai, Jin-Mei; Wu, Sulin; Huang, Duen-Yi; Chang, Zee-Fen

    2002-11-01

    In response to treatment with phorbol-12-myristate-13-acetate (PMA), the half-population of erythromyeloblast D2 cells, a cytokine-independent variant of TF-1 cells, displayed adhesion and differentiated into a monocyte/macrophage-like morphology, while the other half-population remained in suspension and underwent apoptosis. Expression of the cell cycle inhibitor p21(Cip1/Waf1) was induced after PMA treatment in the adherent cells but not in the proapoptotic cells. We investigated the mechanism responsible for the impairment of p21(Cip1/Waf1) induction in PMA-induced proapoptotic cells. We demonstrated that in PMA-induced adherent cells, upregulation of p21(Cip1/Waf1) requires the activation and nuclear translocation of phosphorylated extracellular signal-regulated kinase (phospho-ERK). Although ERK was phosphorylated to comparable levels in PMA-induced proapoptotic and adherent cells, nuclear distribution of phospho-ERK was seen only in the adherent, not in the proapoptotic cells. We also found that only PMA-induced proapoptotic cells contained the phosphorylated form of myosin light chain, which is dependent on Rho-associated kinase (ROCK) activation, and that expression of a dominant-active form of ROCK suppressed activation of the p21(Cip1/Waf1) promoter during PMA induction. Finally, we demonstrated that inhibition of ROCK restores nuclear distribution of phospho-ERK and activation of p21(Cip1/Waf1) expression. Based on these findings, we propose that a ROCK-mediated signal is involved in interfering with the process of ERK-mediated p21(Cip1/Waf1) induction in PMA-induced proapoptotic TF-1 and D2 cells. PMID:12370305

  17. Cytosolic Retention of Phosphorylated Extracellular Signal-Regulated Kinase and a Rho-Associated Kinase-Mediated Signal Impair Expression of p21Cip1/Waf1 in Phorbol 12-Myristate-13- Acetate-Induced Apoptotic Cells

    PubMed Central

    Lai, Jin-Mei; Wu, Sulin; Huang, Duen-Yi; Chang, Zee-Fen

    2002-01-01

    In response to treatment with phorbol-12-myristate-13-acetate (PMA), the half-population of erythromyeloblast D2 cells, a cytokine-independent variant of TF-1 cells, displayed adhesion and differentiated into a monocyte/macrophage-like morphology, while the other half-population remained in suspension and underwent apoptosis. Expression of the cell cycle inhibitor p21Cip1/Waf1 was induced after PMA treatment in the adherent cells but not in the proapoptotic cells. We investigated the mechanism responsible for the impairment of p21Cip1/Waf1 induction in PMA-induced proapoptotic cells. We demonstrated that in PMA-induced adherent cells, upregulation of p21Cip1/Waf1 requires the activation and nuclear translocation of phosphorylated extracellular signal-regulated kinase (phospho-ERK). Although ERK was phosphorylated to comparable levels in PMA-induced proapoptotic and adherent cells, nuclear distribution of phospho-ERK was seen only in the adherent, not in the proapoptotic cells. We also found that only PMA-induced proapoptotic cells contained the phosphorylated form of myosin light chain, which is dependent on Rho-associated kinase (ROCK) activation, and that expression of a dominant-active form of ROCK suppressed activation of the p21Cip1/Waf1 promoter during PMA induction. Finally, we demonstrated that inhibition of ROCK restores nuclear distribution of phospho-ERK and activation of p21Cip1/Waf1 expression. Based on these findings, we propose that a ROCK-mediated signal is involved in interfering with the process of ERK-mediated p21Cip1/Waf1 induction in PMA-induced proapoptotic TF-1 and D2 cells. PMID:12370305

  18. PDT-treated apoptotic cells induce macrophage synthesis NO

    NASA Astrophysics Data System (ADS)

    Song, S.; Xing, D.; Zhou, F. F.; Chen, W. R.

    2009-11-01

    Nitric oxide (NO) is a biologically active molecule which has multi-functional in different species. As a second messenger and neurotransmitter, NO is not only an important regulatory factor between cells' information transmission, but also an important messenger in cell-mediated immunity and cytotoxicity. On the other side, NO is involving in some diseases' pathological process. In pathological conditions, the macrophages are activated to produce a large quantity of nitric oxide synthase (iNOS), which can use L-arginine to produce an excessive amount of NO, thereby killing bacteria, viruses, parasites, fungi, tumor cells, as well as in other series of the immune process. In this paper, photofrin-based photodynamic therapy (PDT) was used to treat EMT6 mammary tumors in vitro to induce apoptotic cells, and then co-incubation both apoptotic cells and macrophages, which could activate macrophage to induce a series of cytotoxic factors, especially NO. This, in turn, utilizes macrophages to activate a cytotoxic response towards neighboring tumor cells. These results provided a new idea for us to further study the immunological mechanism involved in damaging effects of PDT, also revealed the important function of the immune effect of apoptotic cells in PDT.

  19. Exploiting death: apoptotic immunity in microbial pathogenesis.

    PubMed

    Ucker, D S

    2016-06-01

    Innate immunity typically is responsible for initial host responses against infections. Independently, nucleated cells that die normally as part of the physiological process of homeostasis in mammals (including humans) suppress immunity. Specifically, the physiological process of cell death (apoptosis) generates cells that are recognized specifically by viable cells of all types and elicit a profound transient suppression of host immunity (termed 'innate apoptotic immunity' (IAI)). IAI appears to be important normally for the maintenance of self-tolerance and for the resolution of inflammation. In addition, pathogens are able to take advantage of IAI through a variety of distinct mechanisms, to enable their proliferation within the host and enhance pathogenicity. For example, the protist pathogen Leishmania amazonensis, at its infective stage, mimics apoptotic cells by expressing apoptotic-like protein determinants on the cell surface, triggering immunosuppression directly. In contrast, the pathogenic bacterium Listeria monocytogenes triggers cell death in host lymphocytes, relying on those apoptotic cells to suppress host immune control and facilitate bacterial expansion. Finally, although the inhibition of apoptotic cell death is a common attribute of many viruses which facilitates their extended replication, it is clear that adenoviruses also reprogram the non-apoptotic dead cells that arise subsequently to manifest apoptotic-like immunosuppressive properties. These three instances represent diverse strategies used by microbial pathogens to exploit IAI, focusing attention on the potency of this facet of host immune control. Further examination of these cases will be revealing both of varied mechanisms of pathogenesis and the processes involved in IAI control. PMID:26943319

  20. Rg1 exhibits neuroprotective effects by inhibiting the endoplasmic reticulum stress-mediated c-Jun N-terminal protein kinase apoptotic pathway in a rat model of Alzheimer's disease.

    PubMed

    Mu, Jun-Shan; Lin, Hang; Ye, Jian-Xin; Lin, Min; Cui, Xiao-Ping

    2015-09-01

    The neuroprotective agents currently used to treat Alzheimer's disease (AD) often only target one aspect of the disease process. Therefore, identifying effective drug targets associated with the pathogenesis of AD is critical for the production of novel AD therapeutic strategies. The present study aimed to investigate the underlying mechanisms of the neuroprotective effects of Rg1 on a rat model of AD. A double transgenic β‑amyloid (Aβ) precursor protein/PS1 rat model was established, which co‑expressed mutations associated with AD. Aβ plaques and neurofibrillary tangles (NFTs) were detected by immunohistochemistry. The detection of the protein expression levels of caspase‑3 and terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling (TUNEL) staining were used to determine the level of apoptosis in the brain tissue. The expression levels of the endoplasmic reticulum (ER) stress biomarker, glucose‑regulated protein 78 (Grp78), and the mitochondrial apoptosis biomarkers, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein (Bax), were analyzed by western blotting. Furthermore, the expression of the proteins associated with the ER stress unfolded protein response (UPR) was determined, in order to examine the levels of ER stress. The mRNA expression of downstream genes of UPR were also detected by reverse transcription‑polymerase chain reaction. The protein expression levels of the apoptosis‑associated phosphorylated‑c‑Jun N‑terminal protein kinase (p‑JNK), caspase‑12 and cAMP response element‑binding transcription factor homologous protein were determined by western blotting. The results of the present study indicated that the accumulation of NFTs and Aβ plaques was significantly decreased in the Rg1‑treated AD rats, compared with untreated AD rats. The expression of caspase‑3 and the number of TUNEL‑positive cells were also significantly decreased in the Rg1‑treated rats, as compared with the AD rats. Furthermore, treatment with Rg1 significantly reduced the expression of Grp78, and triggered inositol‑requiring enzyme‑1 (IRE‑1) and phosphorylated protein kinase RNA‑like ER kinase‑associated ER stress. The IRE‑1 UPR pathway downstream gene, tumor necrosis factor receptor‑associated factor 2, was significantly decreased in rats treated with Rg1, compared with untreated AD rats. Furthermore, the activation of p‑JNK was also inhibited when AD rats were treated with Rg1. In conclusion, Rg1 was shown to function as an important factor that inhibits the accumulation of NFTs and Aβ via inhibition of the ER stress‑mediated pathway. Blocking of this pathway was triggered by the IRE‑1 and TRAF2 pathway, as a result of inhibition of the expression of p‑JNK. PMID:26016457

  1. A Novel Anticancer Agent, 8-Methoxypyrimido[4?,5?:4,5]thieno(2,3-b) Quinoline-4(3H)-One Induces Neuro 2a Neuroblastoma Cell Death through p53-Dependent, Caspase-Dependent and -Independent Apoptotic Pathways

    PubMed Central

    Sahu, Upasana; Sidhar, Himakshi; Ghate, Pankaj S.; Advirao, Gopal M.; Raghavan, Sathees C.; Giri, Ranjit K.

    2013-01-01

    Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido [4?,5?:4,5]thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly (ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells. Collectively, MPTQ-induced neuro 2a cell death is mediated by ATM and p53 activation, and Bax-mediated activation of caspase-dependent and caspase-independent mitochondrial apoptosis pathways. PMID:23824039

  2. Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle

    PubMed Central

    Marzetti, Emanuele; Wohlgemuth, Stephanie Eva; Lees, Hazel Anne; Chung, Hae-Young; Giovannini, Silvia; Leeuwenburgh, Christiaan

    2008-01-01

    Mitochondria-mediated apoptosis represents a central process driving age-related muscle loss. However, the temporal relation between mitochondrial apoptotic signaling and sarcopenia as well as the regulation of release of pro-apoptotic factors from the mitochondria has not been elucidated. In this study, we investigated mitochondrial apoptotic signaling in skeletal muscle of rats across a wide age range. We also investigated whether mitochondrial-driven apoptosis was accompanied by changes in the expression of Bcl-2 proteins and components of the mitochondrial permeability transition pore (mPTP). Analyses were performed on gastrocnemius muscle of 8-, 18-, 29- and 37- month-old male Fischer344×Brown Norway rats (9 per group). Muscle weight declined progressively with advancing age, concomitant with increased apoptotic DNA fragmentation. Cytosolic and nuclear levels of apoptosis inducing factor (AIF) and endonuclease G (EndoG) increased in old and senescent animals. In contrast, cytosolic levels of cytochrome c were unchanged with age. Mitochondrial Bcl-2, Bax and Bid increased dramatically in 37-month-old rats, with no changes in the Bax/Bcl-2 ratio in any of the age groups. Finally, expression of cyclophilin D was enhanced at very old age. Our findings indicate that the mitochondrial caspase-independent apoptotic pathway may play a more prominent role in skeletal muscle loss than caspase-mediated apoptosis. PMID:18579179

  3. Role of microglia in ethanol’s apoptotic action on hypothalamic neuronal cells in primary cultures

    PubMed Central

    Boyadjieva, Nadka I.; Sarkar, Dipak K.

    2010-01-01

    Background Microglia are the major inflammatory cells in the central nervous system and play a role in brain injuries as well as brain diseases. In this study, we determined the role of microglia in ethanol’s apoptotic action on neuronal cells obtained from the mediobasal hypothalamus and maintained in primary cultures. We also tested the effect of cAMP, a signaling molecule critically involved in hypothalamic neuronal survival, on microglia-mediated ethanol’s neurotoxic action. Methods Ethanol’s neurotoxic action was determined on enriched fetal mediobasal hypothalamic neuronal cells with or without microglia cells or ethanol-activated microglia conditioned media. Ethanol’s apoptotic action was determined using nucleosome assay. Microglia activation was determined using OX6 histochemistry and by measuring inflammatory cytokines secretion from microglia in cultures using enzyme-linked immunosorbent assay (ELISA). An immunoneutralization study was conducted to identify the role of a cytokine involved in ethanol’s apoptotic action. Results We show here that ethanol at a dose range of 50 and 100 mM induces neuronal death by an apoptotic process. Ethanol’s ability to induce an apoptotic death of neurons is increased by the presence of ethanol-activated microglia conditioned media. In the presence of ethanol, microglia showed elevated secretion of various inflammatory cytokines, of which TNF-α shows significant apoptotic action on mediobasal hypothalamic neuronal cells. Ethanol’s neurotoxic action was completely prevented by cAMP. The cell-signaling molecule also prevented ethanol-activated microglial production of TNF-α. Immunoneutralization of TNF-α prevented microglia-derived media’s ability to induce neuronal death. Conclusions These results suggest that ethanol’s apoptotic action on hypothalamic neuronal cells might be mediated via microglia, possibly via increased production of TNF-α. Furthermore, cAMP reduces TNF-α production from microglia to prevent ethanol’s neurotoxic action. PMID:20662807

  4. Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1.

    PubMed

    Nevins, Tara A; Harder, Zdena M; Korneluk, Robert G; Holcík, Martin

    2003-02-01

    Many cellular stresses lead to the inhibition of protein synthesis. Despite this, some cellular mRNAs are selectively translated under these conditions. It was suggested that the presence of internal ribosome entry site (IRES) sequences in the 5'-untranslated regions allow these mRNAs to be actively translated despite the overall cessation of protein synthesis. Here we tested the hypothesis that the IRES elements of genes that are involved in the control of cell survival are distinctly regulated by cellular stresses. We show that the transient conditions of cellular stress favor the translation of pro-survival IRES, while the severe apoptotic conditions support translation of pro-death IRES elements. Furthermore, activation of pro-death IRES during the etoposide-induced apoptosis is caspase-dependent and correlates with the expression of apoptotic fragments of two members of the eIF4G translation initiation factor family, p97/DAP5/NAT1 and eIF4GI. Our results suggest that the regulation of IRES translation during stress contributes to the fine-tuning of cell fate. PMID:12458215

  5. Ras Homolog Enriched in Brain (Rheb) Enhances Apoptotic Signaling*

    PubMed Central

    Karassek, Sascha; Berghaus, Carsten; Schwarten, Melanie; Goemans, Christoph G.; Ohse, Nadine; Kock, Gerd; Jockers, Katharina; Neumann, Sebastian; Gottfried, Sebastian; Herrmann, Christian; Heumann, Rolf; Stoll, Raphael

    2010-01-01

    Rheb is a homolog of Ras GTPase that regulates cell growth, proliferation, and regeneration via mammalian target of rapamycin (mTOR). Because of the well established potential of activated Ras to promote survival, we sought to investigate the ability of Rheb signaling to phenocopy Ras. We found that overexpression of lipid-anchored Rheb enhanced the apoptotic effects induced by UV light, TNFα, or tunicamycin in an mTOR complex 1 (mTORC1)-dependent manner. Knocking down endogenous Rheb or applying rapamycin led to partial protection, identifying Rheb as a mediator of cell death. Ras and c-Raf kinase opposed the apoptotic effects induced by UV light or TNFα but did not prevent Rheb-mediated apoptosis. To gain structural insight into the signaling mechanisms, we determined the structure of Rheb-GDP by NMR. The complex adopts the typical canonical fold of RasGTPases and displays the characteristic GDP-dependent picosecond to nanosecond backbone dynamics of the switch I and switch II regions. NMR revealed Ras effector-like binding of activated Rheb to the c-Raf-Ras-binding domain (RBD), but the affinity was 1000-fold lower than the Ras/RBD interaction, suggesting a lack of functional interaction. shRNA-mediated knockdown of apoptosis signal-regulating kinase 1 (ASK-1) strongly reduced UV or TNFα-induced apoptosis and suppressed enhancement by Rheb overexpression. In conclusion, Rheb-mTOR activation not only promotes normal cell growth but also enhances apoptosis in response to diverse toxic stimuli via an ASK-1-mediated mechanism. Pharmacological regulation of the Rheb/mTORC1 pathway using rapamycin should take the presence of cellular stress into consideration, as this may have clinical implications. PMID:20685651

  6. Characterization of MUDENG, a novel anti-apoptotic protein.

    PubMed

    Choi, J-H; Lim, J-B; Wickramanayake, D D; Wagley, Y; Kim, J; Lee, H-C; Seo, H G; Kim, T-H; Oh, J-W

    2016-01-01

    MUDENG (Mu-2-related death-inducing gene, MuD) is revealed to be involved in cell death signaling. Astrocytes, the major glial cell type in the central nervous system, are a source of brain tumors. In this study, we examined MuD expression and function in human astroglioma cells. Stimulation of U251-MG cells with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resulted in a 40% decrease in cell viability and a 33% decrease in MuD protein levels, although not in MuD mRNA levels. To study the functional relevance of MuD expression, stable transfectants expressing high levels of MuD were generated. Stimulation of these transfectants with TRAIL resulted in enhanced cell survival (77% for stable and 46% for control transfectants). Depletion of MuD led to a marked reduction upon TRAIL stimulation in cell viability (22% in MuD-depleted cells and 54% in control cells). In addition, we observed that MuD depletion increased the susceptibility of the cells to TRAIL by enhancing the cleavage of caspase-3/-9 and BH3-interacting domain death agonist (Bid). A unique 25-kDa fragment of B-cell lymphoma 2 (Bcl-2) lacking BH4 was observed 60-180 min post TRAIL treatment in MuD-depleted cells, suggesting that Bcl-2 is converted from its anti-apoptotic form to the truncated pro-apoptotic form. Importantly, the TRAIL-mediated decrease in cell viability in MuD-depleted cells was abrogated upon Bid depletion, indicating that the role of MuD in apoptotic signaling takes place at the Bid and Bcl-2 junction. MuD localizes predominantly in the endoplasmic reticulum and partly in the mitochondria and its amounts are reduced 6 h post TRAIL stimulation, presumably via caspase-3-mediated MuD cleavage. Collectively, these results suggest that MuD, a novel signaling protein, not only possesses an anti-apoptotic function but may also constitute an important target for the design of ideal candidates for combinatorial treatment strategies for glioma cells. PMID:27136675

  7. The Paradoxical Pro- and Anti-apoptotic Actions of GSK3 in the Intrinsic and Extrinsic Apoptosis Signaling Pathways

    PubMed Central

    Beurel, Eléonore; Jope, Richard S.

    2006-01-01

    Few things can be considered to be more important to a cell than its threshold for apoptotic cell death, which can be modulated up or down, but rarely in both directions, by a single enzyme. Therefore, it came as quite a surprise to find that one enzyme, glycogen synthase kinase-3 (GSK3), has the perplexing capacity to either increase or decrease the apoptotic threshold. These apparently paradoxical effects now are known to be due to GSK3 oppositely regulating the two major apoptotic signaling pathways. GSK3 promotes cell death caused by the mitochondrial intrinsic apoptotic pathway, but inhibits the death receptor-mediated extrinsic apoptotic signaling pathway. Intrinsic apoptotic signaling, activated by cell damage, is promoted by GSK3 by facilitation of signals that cause disruption of mitochondria and by regulation of transcription factors that control the expression of anti- or pro-apoptotic proteins. The extrinsic apoptotic pathway entails extracellular ligands stimulating cell-surface death receptors that initiate apoptosis by activating caspase-8, and this early step in extrinsic apoptotic signaling is inhibited by GSK3. Thus, GSK3 modulates key steps in each of the two major pathways of apoptosis, but in opposite directions. Consequently, inhibitors of GSK3 provide protection from intrinsic apoptosis signaling but potentiate extrinsic apoptosis signaling. Studies of this eccentric ability of GSK3 to oppositely influence two types of apoptotic signaling have shed light on important regulatory mechanisms in apoptosis and provide the foundation for designing the rational use of GSK3 inhibitors for therapeutic interventions. PMID:16935409

  8. Ulinastatin inhibits oxidant-induced endothelial hyperpermeability and apoptotic signaling

    PubMed Central

    Li, Guicheng; Li, Tao; Li, Yunfeng; Cai, Shumin; Zhang, Zhiming; Zeng, Zhenhua; Wang, Xingmin; Gao, Youguang; Li, Yunfeng; Chen, Zhongqing

    2014-01-01

    Oxidants are important signaling molecules known to increase endothelial permeability. Studies implicate reactive oxygen species (ROS) and the intrinsic apoptotic signaling cascades as mediators of vascular hyperpermeability. Here we report the protective effects of ulinastatin, a serine protease inhibitor with antiapoptotic properties, against oxidant-induced endothelial monolayer hyperpermeability. HUVECs were respectively pretreated with 10,000 and 50,000 u/l ulinastatin, followed by stimulation of 0.6 mM H2O2. Monolayer permeability was determined by transendothelial electrical resistance (TER); Mitochondrial release of cytochrome c was determined by enzyme-linked immunosorbent assay; Caspase-3 activity was measured by fluorometric assay; Adherens junction protein β-catenin was detected by immunofluorescense staining; Ratio of cell apoptosis was evaluated by Annexin-V/PI double stain assay; Mitochondrial membrane potential (Δψm) was determined with JC-1; Intracellular ATP content was assayed by a commercial kit; Bax and Bcl-2 expression were estimated by western blotting; Intracellular reactive oxygen species (ROS) level was measured by DCFH-DA. H2O2 exposure resulted in endothelial hyperpermeability and ROS formation (P < 0.05). The activation of mitochondrial intrinsic apoptotic signaling pathway was evidenced from BAX up-regulation, Bcl-2 down-regulation, mitochondrial depolarization, an increase in cytochrome c release, and activation of caspase-3 (P < 0.05). UTI (50,000 u/l) attenuated endothelial hyperpermeability, ROS formation, mitochondrial dysfunction, cytochrome c release, activation of caspase-3, and disruption of cell adherens junctions (P < 0.05). Together, these results demonstrate that UTI provides protection against vascular hyperpermeability by modulating the intrinsic apoptotic signaling. PMID:25550770

  9. Therapeutic targets in the mitochondrial apoptotic pathway.

    PubMed

    Häcker, Georg; Paschen, Stefan A

    2007-04-01

    Every cell in the human body has most of the components of the apoptotic apparatus and is thus principally equipped to die by apoptosis. Situations of increased or decreased apoptosis contribute to many forms of human disease, making this pathway an attractive target of therapeutic intervention. The past few years have seen an enormous refinement in the understanding how apoptosis works on a molecular level and the role of mitochondria as a central element in apoptotic signal transduction has become obvious. Here, the authors consider the events that are critical in this mitochondrial pathway, in particular at mitochondria but also upstream and downstream. The authors' opinion is presented on the merits and feasibility of approaches that aim at treating disease by interfering with the mitochondrial apoptotic pathway. PMID:17373881

  10. Functional, morphological, and apoptotic alterations in skeletal muscle of ARC deficient mice.

    PubMed

    Mitchell, Andrew S; Smith, Ian C; Gamu, Daniel; Donath, Stefan; Tupling, A Russell; Quadrilatero, Joe

    2015-03-01

    Apoptotic signaling plays an important role in the development and maintenance of healthy skeletal muscle. However, dysregulation of apoptotic signals in skeletal muscle is associated with atrophy and loss of function. Apoptosis repressor with caspase recruitment domain (ARC) is a potent anti-apoptotic protein that is highly expressed in skeletal muscle; however, its role in this tissue has yet to be elucidated. To investigate whether ARC deficiency has morphological, functional, and apoptotic consequences, skeletal muscle from 18 week-old wild-type and ARC knockout (KO) mice was studied. In red muscle (soleus), we found lower maximum tetanic force, as well as a shift towards a greater proportion of type II fibers in ARC KO mice. Furthermore, the soleus of ARC KO mice exhibited lower total, as well as fiber type-specific cross sectional area in type I and IIA fibers. Interestingly, these changes in ARC KO mice corresponded with increased DNA fragmentation, albeit independent of caspase or calpain activation. However, cytosolic fractions of red muscle from ARC KO mice had higher apoptosis inducing factor content, suggesting increased mitochondrial-mediated, caspase-independent apoptotic signaling. This was confirmed in isolated mitochondrial preparations, as mitochondria from skeletal muscle of ARC KO mice were more susceptible to calcium stress. Interestingly, white muscle from ARC KO mice showed no signs of altered apoptotic signaling or detrimental morphological differences. Results from this study suggest that even under basal conditions ARC influences muscle apoptotic signaling, phenotype, and function, particularly in slow and/or oxidative muscle. PMID:25596718

  11. Apoptotic processes during mammalian preimplantation development.

    PubMed

    Fabian, Dusan; Koppel, Juraj; Maddox-Hyttel, Poul

    2005-07-15

    The paper provides a review of the current state of knowledge on apoptosis during normal preimplantation development based on the literature and on the authors' own findings. Information is focused on the occurrence and the characteristics of spontaneous apoptotic processes. Reports concerning the chronology and the incidence of programmed cell death in mouse, cow, pig and human embryos in early preimplantation stages up to the blastocyst stage are summarized. In addition, specific attributes of the apoptotic process in mammalian preimplantation development are provided, including the description of both morphological and biochemical features of cell death. PMID:15955348

  12. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells.

    PubMed

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-01-01

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5'-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a 'calm down' signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001. PMID:24668173

  13. Evidence for anti-apoptotic roles of proteasome activator 28γ via inhibiting caspase activity.

    PubMed

    Moncsek, Anja; Gruner, Melanie; Meyer, Hannes; Lehmann, Andrea; Kloetzel, Peter-Michael; Stohwasser, Ralf

    2015-09-01

    Proteasome activator PA28γ (REGγ, Ki antigen) has recently been demonstrated to display anti-apoptotic properties via enhancing Mdm2-p53 interaction, thereby facilitating ubiquitination and down-regulation of the tumor suppressor p53. In this study we demonstrate a correlation between cellular PA28γ levels and the sensitivity of cells towards apoptosis in different cellular contexts thereby confirming a role of proteasome activator PA28γ as an anti-apoptotic regulator. We investigated the anti-apoptotic role of PA28γ upon UV-C stimulation in B8 mouse fibroblasts stably overexpressing the PA28γ-encoding PSME3 gene and upon butyrate-induced apoptosis in human HT29 adenocarcinoma cells with silenced PSME3 gene. Interestingly, our results demonstrate that PA28γ has a strong influence on different apoptotic hallmarks, especially p53 phosphorylation and caspase activation. In detail, PA28γ and effector caspases mutually restrict each other. PA28γ is a caspase substrate, if PA28γ levels are low. In contrast, PA28γ overexpression reduces caspase activities, including the caspase-dependent processing of PA28γ. Furthermore, overexpression of PA28γ resulted in a nuclear accumulation of transcriptional active p53. In summary, our findings indicate that even in a p53-dominated cellular context, pro-apoptotic signaling might be overcome by PA28γ-mediated caspase inhibition. PMID:26201457

  14. Pro-apoptotic Bid is required for the resolution of the effector phase of inflammatory arthritis

    PubMed Central

    Scatizzi, John C; Hutcheson, Jack; Bickel, Emily; Haines, G Kenneth; Perlman, Harris

    2007-01-01

    Rheumatoid arthritis is an autoimmune disease characterized by hyperplasia of the synovial lining and destruction of cartilage and bone. Recent studies have suggested that a lack of apoptosis contributes to the hyperplasia of the synovial lining and to the failure in eliminating autoreactive cells. Mice lacking Fas or Bim, two pro-apoptotic proteins that mediate the extrinsic and intrinsic death cascades, respectively, develop enhanced K/BxN serum transfer-induced arthritis. Since the pro-apoptotic protein Bid functions as an intermediate between the extrinsic and intrinsic apoptotic pathways, we examined the role that it plays in inflammatory arthritis. Mice deficient in Bid (Bid-/-) show a delay in the resolution of K/BxN serum transfer-induced arthritis. Bid-/- mice display increased inflammation, bone destruction, and pannus formation compared to wild-type mice. Furthermore, Bid-/- mice have elevated levels of CXC chemokine and IL-1β in serum, which are associated with more inflammatory cells throughout the arthritic joint. In addition, there are fewer apoptotic cells in the synovium of Bid-/- compared to Wt mice. These data suggest that extrinsic and intrinsic apoptotic pathways cooperate through Bid to limit development of inflammatory arthritis. PMID:17509138

  15. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers

    PubMed Central

    LaBelle, James L.; Katz, Samuel G.; Bird, Gregory H.; Gavathiotis, Evripidis; Stewart, Michelle L.; Lawrence, Chelsea; Fisher, Jill K.; Godes, Marina; Pitter, Kenneth; Kung, Andrew L.; Walensky, Loren D.

    2012-01-01

    Cancer cells subvert the natural balance between cellular life and death, achieving immortality through pathologic enforcement of survival pathways and blockade of cell death mechanisms. Pro-apoptotic BCL-2 family proteins are frequently disarmed in relapsed and refractory cancer through genetic deletion or interaction-based neutralization by overexpressed antiapoptotic proteins, resulting in resistance to chemotherapy and radiation treatments. New pharmacologic strategies are urgently needed to overcome these formidable apoptotic blockades. We harnessed the natural killing activity of BCL-2–interacting mediator of cell death (BIM), which contains one of the most potent BH3 death domains of the BCL-2 protein family, to restore BH3-dependent cell death in resistant hematologic cancers. A hydrocarbon-stapled peptide modeled after the BIM BH3 helix broadly targeted BCL-2 family proteins with high affinity, blocked inhibitory antiapoptotic interactions, directly triggered proapoptotic activity, and induced dose-responsive and BH3 sequence–specific cell death of hematologic cancer cells. The therapeutic potential of stapled BIM BH3 was highlighted by the selective activation of cell death in the aberrant lymphoid infiltrates of mice reconstituted with BIM-deficient bone marrow and in a human AML xenograft model. Thus, we found that broad and multimodal targeting of the BCL-2 family pathway can overcome pathologic barriers to cell death. PMID:22622039

  16. Cisplatin-induced apoptotic cell death in Mongolian gerbil cochlea.

    PubMed

    Alam, S A; Ikeda, K; Oshima, T; Suzuki, M; Kawase, T; Kikuchi, T; Takasaka, T

    2000-03-01

    Cisplatin is well known to cause cochleotoxicity. In order to determine the underlying mechanisms of cisplatin-induced cell death in the cochlea, we investigated the apoptotic changes and the expression of bcl-2 family proteins controlling apoptosis. Mongolian gerbils were administered 4 mg/kg/day cisplatin consecutively for 5 days. The cisplatin-treated animals showed a significant deterioration in the responses of both distortion product otoacoustic emissions and the endocochlear potential as compared with those of the age-matched controls, suggesting outer hair cell and stria vascularis dysfunction. The presence of DNA fragmentation revealed by a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling method was recognized in the organ of Corti, the spiral ganglion, and the stria vascularis in the cisplatin-treated animals whereas almost negative results were obtained in the control animals. The nuclear morphology obtained by Hoechst 33342 staining revealed pyknotic and condensed nuclei, confirming the presence of the characteristic features of apoptosis. A significant increase and reduction in the number of bax- and bcl-2-positive cells, respectively, following cisplatin treatment was observed in the cells of the organ of Corti, the spiral ganglion, and the lateral wall. These findings suggest a critical role for bcl-2 family proteins in the regulation of apoptotic cell death induced by cisplatin. The underlying mechanisms of the cisplatin-induced cell death are discussed. PMID:10713493

  17. Degradation of nuclear matrix and DNA cleavage in apoptotic thymocytes.

    PubMed

    Weaver, V M; Carson, C E; Walker, P R; Chaly, N; Lach, B; Raymond, Y; Brown, D L; Sikorska, M

    1996-01-01

    In dexamethasone-treated thymocyte cultures an increase in nuclear proteolytic activity paralleled chromatin fragmentation and the appearance of small apoptotic cells. The elevation of nuclear proteolytic activity was accompanied by site-specific degradation of nuclear mitotic apparatus protein and lamin B, two essential components of the nuclear matrix. Nuclear mitotic apparatus protein phosphorylation and cleavage into 200 and 48 kDa fragments occurred within 30 minutes of dexamethasone treatment. Cleavage of lamin B, which generated a fragment of 46 kDa consistent with the central rod domain of the protein, was also detected after 30 minutes of exposure to the steroid hormone. The level of lamin B phosphorylation did not change as a result of the dexamethasone treatment and the lamina did not solubilize until the later stages of apoptosis. Initial DNA breaks, detected by the terminal transferase-mediated dUTP-biotin nick end labeling assay, occurred throughout the nuclei and solubilization of lamina was not required for this process to commence. The data presented in this paper support a model of apoptotic nuclear destruction brought about by the site-specific proteolysis of key structural proteins. Both the nuclear mitotic apparatus protein and lamin B were specifically targeted by protease(s) at early stages of the cell death pathway, which possibly initiate the cascade of degradative events in apoptosis. PMID:8834789

  18. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    SciTech Connect

    Herbert, Katharine J.; Cook, Anthony L. Snow, Elizabeth T.

    2014-06-15

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.

  19. Delivery of Intracellular-acting Biologics in Pro-Apoptotic Therapies

    PubMed Central

    Li, Hongmei; Nelson, Chris E.; Evans, Brian C.; Duvall, Craig L.

    2013-01-01

    The recent elucidation of molecular regulators of apoptosis and their roles in cellular oncogenesis has motivated the development of biomacromolecular anticancer therapeutics that can activate intracellular apoptotic signaling pathways. Pharmaceutical scientists have employed a variety of classes of biologics toward this goal, including antisense oligodeoxynucleotides, small interfering RNA, proteins, antibodies, and peptides. However, stability in the in vivo environment, tumor-specific biodistribution, cell internalization, and localization to the intracellular microenvironment where the targeted molecule is localized pose significant challenges that limit the ability to directly apply intracellular-acting, pro-apoptotic biologics for therapeutic use. Thus, approaches to improve the pharmaceutical properties of therapeutic biomacromolecules are of great significance and have included chemically modifying the bioactive molecule itself or formulation with auxiliary compounds. Recently, promising advances in delivery of pro-apoptotic biomacromolecular agents have been made using tools such as peptide stapling, cell penetrating peptides, fusogenic peptides, liposomes, nanoparticles, smart polymers, and synergistic combinations of these components. This review will discuss the molecular mediators of cellular apoptosis, the respective mechanisms by which these mediators are dysregulated in cellular oncogenesis, the history and development of both nucleic-acid and amino-acid based drugs, and techniques to achieve intracellular delivery of these biologics. Finally, recent applications where pro-apoptotic functionality has been achieved through delivery of intracellular-acting biomacromolecular drugs will be highlighted. PMID:21348831

  20. Skeletal muscle stem cells express anti-apoptotic ErbB receptors during activation from quiescence

    SciTech Connect

    Golding, Jon P. . E-mail: j.p.golding@open.ac.uk; Calderbank, Emma; Partridge, Terence A.; Beauchamp, Jonathan R.

    2007-01-15

    To be effective for tissue repair, satellite cells (the stem cells of adult muscle) must survive the initial activation from quiescence. Using an in vitro model of satellite cell activation, we show that erbB1, erbB2 and erbB3, members of the EGF receptor tyrosine kinase family, appear on satellite cells within 6 h of activation. We show that signalling via erbB2 provides an anti-apoptotic survival mechanism for satellite cells during the first 24 h, as they progress to a proliferative state. Inhibition of erbB2 signalling with AG825 reduced satellite cell numbers, concomitant with elevated caspase-8 activation and TUNEL labelling of apoptotic satellite cells. In serum-free conditions, satellite cell apoptosis could be largely prevented by a mixture of erbB1, erbB3 and erbB4 ligand growth factors, but not by neuregulin alone (erbB3/erbB4 ligand). Furthermore, using inhibitors specific to discrete intracellular signalling pathways, we identify MEK as a pro-apoptotic mediator, and the erbB-regulated factor STAT3 as an anti-apoptotic mediator during satellite cell activation. These results implicate erbB2 signalling in the preservation of a full compliment of satellite cells as they activate in the context of a damaged muscle.

  1. Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity.

    PubMed

    de Freitas Balanco, J M; Moreira, M E; Bonomo, A; Bozza, P T; Amarante-Mendes, G; Pirmez, C; Barcinski, M A

    2001-11-27

    Programmed cell death by apoptosis of unnecessary or potentially harmful cells is clearly beneficial to multicellular organisms. Proper functioning of such a program demands that the removal of dying cells proceed without an inflammatory reaction. Phosphatidylserine (PS) is one of the ligands displayed by apoptotic cells that participates in their noninflammatory removal when recognized by neighboring phagocytes. PS ligation induces the release of transforming growth factor-beta (TGF-beta), an antiinflammatory cytokine that mediates the suppression of macrophage-mediated inflammation. In Hydra vulgaris, an organism that stands at the base of metazoan evolution, the selective advantage provided by apoptosis lies in the fact that Hydra can survive recycling apoptotic cells by phagocytosis. In unicellular organisms, it has been proposed that altruistic death benefits clonal populations of yeasts and trypanosomatids. Now we show that advantageous features of the apoptotic process can operate without death as the necessary outcome. Leishmania spp are able to evade the killing activity of phagocytes and establish themselves as obligate intracellular parasites. Amastigotes, responsible for disease propagation, similar to apoptotic cells, inhibit macrophage activity by exposing PS. Exposed PS participates in amastigote internalization. Recognition of this moiety by macrophages induces TGF-beta secretion and IL-10 synthesis, inhibits NO production, and increases susceptibility to intracellular leishmanial growth. PMID:11728310

  2. Pro-apoptotic Bid induces membrane perturbation by inserting selected lysolipids into the bilayer

    PubMed Central

    Goonesinghe, Alexander; Mundy, Elizabeth S.; Smith, Melanie; Khosravi-Far, Roya; Martinou, Jean-Claude; Esposti, Mauro D.

    2004-01-01

    Bid is a BH3-only member of the Bcl-2 family that regulates cell death at the level of mitochondrial membranes. Bid appears to link the mitochondrial pathway with the death receptor-mediated pathway of cell death. It is generally assumed that the f.l. (full-length) protein becomes activated after proteolytic cleavage, especially by apical caspases like caspase 8. The cleaved protein then relocates to mitochondria and promotes membrane permeabilization, presumably by interaction with mitochondrial lipids and other Bcl-2 proteins that facilitate the release of apoptogenic proteins like cytochrome c. Although the major action may reside in the C-terminus part, tBid (cleaved Bid), un-cleaved Bid also has pro-apoptotic potential when ectopically expressed in cells or in vitro. This pro-apoptotic action of f.l. Bid has remained unexplained, especially at the biochemical level. In the present study, we show that f.l. (full-length) Bid can insert specific lysolipids into the membrane surface, thereby priming mitochondria for the release of apoptogenic factors. This is most effective for lysophosphatidylcholine species that we report to accumulate in mitochondria during apoptosis induction. A Bid mutant that is not pro-apoptotic in vivo is defective in lysophosphatidylcholine-mediated membrane perturbation in vitro. Our results thus provide a biochemical explanation for the pro-apoptotic action of f.l. Bid. PMID:15500442

  3. Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Yingjie; Wang, Xianwang

    2009-02-01

    Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.

  4. Apoptotic hair cell death after transient cochlear ischemia in gerbils.

    PubMed

    Taniguchi, Masafumi; Hakuba, Nobuhiro; Koga, Kenichiro; Watanabe, Futoshi; Hyodo, Jun; Gyo, Kiyofumi

    2002-12-20

    The mechanisms of cochlear hair cell death following exposure to transient inner ear ischemia were investigated in gerbils histologically. The animals were subjected to ischemic insult by occluding both vertebral arteries for 15 min. Hoechst 33342 nuclear staining showed that inner hair cells (IHCs) underwent sporadic degeneration via nuclear condensation, which peaked 12 hours after the ischemia. Furthermore, nuclear DNA fragmentation was noted by the terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-biotin nick end labeling method. Transmission electron microscopy revealed morphological changes in the IHCs characteristic of apoptosis, including karyopyknosis, chromatin condensation. These findings suggest that apoptotic cell death is the major process in hair cell degeneration in this animal model. PMID:12499849

  5. The N-Terminus of CD14 Acts to Bind Apoptotic Cells and Confers Rapid-Tethering Capabilities on Non-Myeloid Cells

    PubMed Central

    Thomas, Leanne; Bielemeier, Anne; Lambert, Peter A.; Darveau, Richard P.; Marshall, Lindsay J.; Devitt, Andrew

    2013-01-01

    Cell death and removal of cell corpses in a timely manner is a key event in both physiological and pathological situations including tissue homeostasis and the resolution of inflammation. Phagocytic clearance of cells dying by apoptosis is a complex sequential process comprising attraction, recognition, tethering, signalling and ultimately phagocytosis and degradation of cell corpses. A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within this process. The role of myeloid cell CD14 in mediating apoptotic cell interactions with macrophages has long been known though key molecules and residues involved have not been defined. Here we sought to further dissect the function of CD14 in apoptotic cell clearance. A novel panel of THP-1 cell-derived phagocytes was employed to demonstrate that CD14 mediates effective apoptotic cell interactions with macrophages in the absence of detectable TLR4 whilst binding and responsiveness to LPS requires TLR4. Using a targeted series of CD14 point mutants expressed in non-myeloid cells we reveal CD14 residue 11 as key in the binding of apoptotic cells whilst other residues are reported as key for LPS binding. Importantly we note that expression of CD14 in non-myeloid cells confers the ability to bind rapidly to apoptotic cells. Analysis of a panel of epithelial cells reveals that a number naturally express CD14 and that this is competent to mediate apoptotic cell clearance. Taken together these data suggest that CD14 relies on residue 11 for apoptotic cell tethering and it may be an important tethering molecule on so called non-professional phagocytes thus contributing to apoptotic cell clearance in a non-myeloid setting. Furthermore these data establish CD14 as a rapid-acting tethering molecule, expressed in monocytes, which may thus confer responsiveness of circulating monocytes to apoptotic cell derived material. PMID:23936239

  6. IgM Antibodies to Apoptosis-Associated Determinants Recruit C1q and Enhance Dendritic Cell Phagocytosis of Apoptotic Cells1

    PubMed Central

    Chen, Yifang; Park, Yong-Beom; Patel, Ekta; Silverman, Gregg J.

    2015-01-01

    Natural Abs, which arise without known immune exposure, have been described that specifically recognize cells dying from apoptosis, but their role in innate immunity remains poorly understood. Herein, we show that the immune response to neoantigenic determinants on apoptotic thymocytes is dominated by Abs to oxidation-associated Ags, phosphorylcholine (PC), a head group that becomes exposed during programmed cell death, and malondialdehyde (MDA), a reactive aldehyde degradation product of polyunsaturated lipids produced following exposure to reactive oxidation species. While natural Abs to apoptotic cells in naive adult mice were dominated by PC and MDA specificities, the amounts of these Abs were substantially boosted by treatment of mice with apoptotic cells. Moreover, the relative amounts of PC and MDA Abs was affected by VH gene inheritance. Ab interactions with apoptotic cells also mediated the recruitment of C1q, which enhanced apoptotic cell phagocytosis by immature dendritic cells. Significantly, IgM Abs to both PC and MDA were primary factors in determining the efficiency of serum-dependent apoptotic cell phagocytosis. Hence, we demonstrate a mechanism by which certain natural Abs that recognize neoantigens on apoptotic cells, in naive mice and those induced by immune exposure to apoptotic cells, can enhance the functional capabilities of immature dendritic cells for phagocytic engulfment of apoptotic cells. PMID:19414754

  7. Stabilization of apoptotic cells: generation of zombie cells.

    PubMed

    Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A

    2014-01-01

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn(2+) (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy. PMID:25118929

  8. Stabilization of apoptotic cells: generation of zombie cells

    PubMed Central

    Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A

    2014-01-01

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy. PMID:25118929

  9. Apoptotic volume decrease as a geometric determinant for cell dismantling into apoptotic bodies.

    PubMed

    Núñez, R; Sancho-Martínez, S M; Novoa, J M L; López-Hernández, F J

    2010-11-01

    Apoptosis is a mode of cell death through which cells are dismantled and cell remains are packed into small, membrane-bound, sealed vesicles called apoptotic bodies, which are easy to erase by phagocytosis by neighbouring and immune system cells. The end point of the process is to cleanly eliminate damaged or unnecessary cells without disrupting the surrounding tissue or eliciting an inflammatory response. The apoptotic process involves a series of specific events including deoxyribonucleic acid and nuclear fragmentation, protease-driven cleavage of specific substrates, which inhibits key survival functions and reorganizes the cell's structure, externalization of molecules involved in phagocytosis, membrane blebbing and cell shrinkage. Apoptotic volume decrease (AVD) leading to cell shrinkage is a core event in the course of apoptosis, the biological meaning of which has not been clearly ascertained. In this article we argue that volume loss is a geometrical requisite for cell dismantling into apoptotic bodies. This is derived from the cell's volume-to-surface ratio. Indeed, package of the original cell volume into smaller membrane-sealed vesicles requires that either cell membrane surface increase or cell volume decrease. In this sense, AVD provides a reservoir of membrane surface for apoptotic body formation. The strategic situation of AVD in the time course of apoptosis is also discussed in the context of apoptotic body formation. PMID:20706273

  10. Variability in apoptotic response to poliovirus infection.

    PubMed

    Romanova, Lyudmila I; Belov, George A; Lidsky, Peter V; Tolskaya, Elena A; Kolesnikova, Marina S; Evstafieva, Alexandra G; Vartapetian, Andrey B; Egger, Denise; Bienz, Kurt; Agol, Vadim I

    2005-01-20

    In several cell types, poliovirus activates the apoptotic program, implementation of which is suppressed by viral antiapoptotic functions. In such cells, productive infection leads to a necrotic cytopathic effect (CPE), while abortive reproduction, associated with inadequate viral antiapoptotic functions, results in apoptosis. Here, we describe two other types of cell response to poliovirus infection. Murine L20B cells expressing human poliovirus receptor responded to the infection by both CPE and apoptosis concurrently. Interruption of productive infection decreased rather than increased the proportion of apoptotic cells. Productive infection was accompanied by the early efflux of cytochrome c from the mitochondria in a proportion of cells and by activation of DEVD-specific caspases. Inactivation of caspase-9 resulted in a marked, but incomplete, prevention of the apoptotic response of these cells to viral infection. Thus, the poliovirus-triggered apoptotic program in L20B cells was not completely suppressed by the viral antiapoptotic functions. In contrast, human rhabdomyosarcoma RD cells did not develop appreciable apoptosis during productive or abortive infection, exhibiting inefficient efflux of cytochrome c from mitochondria and no marked activation of DEVD-specific caspases. The cells were also refractory to several nonviral apoptosis inducers. Nevertheless, typical caspase-dependent signs of apoptosis in a proportion of RD cells were observed after cessation of viral reproduction. Such "late" apoptosis was also observed in productively infected HeLa cells. In addition, a tiny proportion of all studied cells were TUNEL positive even in the presence of a caspase inhibitor. Degradation of DNA in such cells appeared to be a postmortem phenomenon. Biological relevance of variable host responses to viral infection is discussed. PMID:15629772

  11. Increased expression of apoptotic markers in melanoma.

    PubMed

    Slater, Michael; Scolyer, Richard A; Gidley-Baird, Angus; Thompson, John F; Barden, Julian A

    2003-04-01

    Extensive labelling for the apoptotic markers calcium channel receptor P2X(7) and caspase-3 and telomerase activity was co-localized at a similar intensity in areas affected by superficial spreading melanoma obtained from 80 patients. Labelling for each of these markers also extended 2 microm from the melanoma into the keratinocyte layer of the adjacent normal epidermis. Conversely, the calcium-regulating receptors P2X(1-3) and P2Y(2) (found in normal but not neoplastic skin) were fully de-expressed within 2 microm of the melanoma but fully expressed beyond that distance. The cell adhesion protein E-cadherin (also only present in normal skin) was progressively de-expressed from a point 2 microm from the melanoma until full de-expression within the lesion. These results show that telomerase-induced proliferation and defensive apoptosis are co-localized and simultaneous processes in melanoma tissue. Melanoma cell proliferation appears to overwhelm the apoptotic defence, perhaps due to the anti-apoptotic effects of telomerase. In addition, keratinocyte regulation of the epidermis and dermis is severely compromised by the loss of E-cadherin and P2X(1-3) and P2Y(2) receptors, resulting in a lesion that is aggressive and malignant. PMID:12690296

  12. PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines

    PubMed Central

    Yoon, Y-S; Kim, S-Y; Kim, M-J; Lim, J-H; Cho, M-S; Kang, J L

    2015-01-01

    Changes in macrophage phenotype have been implicated in apoptotic cell-mediated immune modulation via induction of peroxisome proliferator-activated receptor-γ (PPARγ). In this study, we characterized PPARγ induction by apoptotic cell instillation over the course of bleomycin-induced lung injury in C57BL/6 mice. Next, the role of PPARγ activation in resolving lung inflammation and fibrosis was investigated. Our data demonstrate that apoptotic cell instillation after bleomycin results in immediate and prolonged enhancement of PPARγ mRNA and protein in alveolar macrophages and lung. Moreover, PPARγ activity and expression of its target molecules, including CD36, macrophage mannose receptor, and arginase 1, were persistently enhanced following apoptotic cell instillation. Coadministration of the PPARγ antagonist, GW9662, reversed the enhanced efferocytosis, and the reduced proinflammatory cytokine expression, neutrophil recruitment, myeloperoxidase activity, hydroxyproline contents, and fibrosis markers, including type 1 collagen α2, fibronectin and α-smooth muscle actin (α-SMA), in the lung by apoptotic cell instillation. In addition, inhibition of PPARγ activity reversed the expression of transforming growth factor-β (TGF-β), interleukin (IL)-10, and hepatocyte growth factor (HGF). These findings indicate that one-time apoptotic cell instillation contributes to anti-inflammatory and antifibrotic responses via upregulation of PPARγ expression and subsequent activation, leading to regulation of efferocytosis and production of proresolving cytokines. PMID:25586556

  13. Improvement of DC vaccine with ALA-PDT induced immunogenic apoptotic cells for skin squamous cell carcinoma

    PubMed Central

    Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Chen, Wei R.; Wang, Xiuli

    2015-01-01

    Dendritic cell (DC) based vaccines have emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have achieved only limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated using electron microscopy, FACS, and ELISA. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with a mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including morphology maturation (enlargement of dendrites and increase of lysosomes), phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secrete IFN-γ and IL-12, and to induce T cell proliferation). Most interestingly, PDT-induced apoptotic tumor cells are more capable of potentiating maturation of DCs than PDT-treated or freeze/thaw treated necrotic tumor cells. ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumors in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing a DC-based cancer vaccine, which could improve the clinical application of PDT-DC vaccines. PMID:25915530

  14. Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation

    PubMed Central

    Lee, Yoonjung; Byun, Hee Sun; Seok, Jeong Ho; Park, Kyeong Ah; Won, Minho; Seo, Wonhyoung; Lee, So-Ra; Kang, Kidong; Sohn, Kyung-Cheol; Lee, Ill Young; Kim, Hyeong-Geug; Son, Chang Gue; Shen, Han-Ming; Hur, Gang Min

    2016-01-01

    Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades. PMID:27117478

  15. Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    PubMed Central

    Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A

    2013-01-01

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis. PMID:23470534

  16. Angiotensin II-induced p53-dependent cardiac apoptotic cell death: its prevention by metallothionein.

    PubMed

    Liu, Qiuju; Wang, Guanjun; Zhou, Guihua; Tan, Yi; Wang, Xiuli; Wei, Wei; Liu, Lucheng; Xue, Wanli; Feng, Wenke; Cai, Lu

    2009-12-15

    Apoptotic cell death was found to play a critical role in the development of diabetic cardiomyopathy. As one of pathogenic components of diabetes angiotensin II (Ang II) induced cardiac cell death in vitro and in vivo through induction of reactive oxygen and nitrogen species. However, Ang II-induced cell death signaling in the heart remains unclear. The present study was to investigate whether Ang II induces p53 expression and activation and if so, whether Ang II-induced cardiac cell death is p53-dependent, and whether a potent antioxidant metallothionein (MT) prevents Ang II-induced p53 expression, and associate apoptotic cell death signaling. A cardiac cell line (H9c2) was exposed to Ang II. We found that exposure of H9c2 cells to Ang II at 10, 50 and 100 nM for 24 h induced a significant apoptotic effect, measured by DNA fragmentation and cleaved caspase-3. Induction of apoptotic cell death by Ang II can be completely blocked by p53 inhibitor Pitithrin-alpha. Exposure of H9c2 cells to Ang II also significantly increased p53 phosphorylation, DNA double strand breaks and Bax/Bcl-2 ratio. All these effects were not observed in H9c2MT7 cells that forcedly overexpresses human MT-IIA gene, suggesting the preventive effect of antioxidant MT against Ang II-induced p53 activation and its apoptotic death signaling. Furthermore, the in vitro finding was validated in animal models by supplying Ang II to wild-type mice (WT) and MT-TG mice that has cardiac-specifically overexpressed MT gene. Ang II-induced significant up-regulation of p53 expression along with an increase in Bax/Bcl-2 ratio in the hearts of WT mice, but not MT-TG mice. These results suggest that Ang II-induced cardiac apoptotic cell death is mediated by p53 apoptotic signaling pathway, which is related to oxidative stress. Antioxidant MT can completely prevent Ang II-induced p53 activation and associated apoptotic effect in the heart. PMID:19808082

  17. The Apoptotic Pathway as a Therapeutic Target in Sepsis

    PubMed Central

    Wesche-Soldato, Doreen E.; Swan, Ryan Z.; Chung, Chun-Shiang; Ayala, Alfred

    2006-01-01

    Recent research has yielded many interesting and potentially important therapeutic targets in sepsis. Specifically, the effects of antagonistic anti-cytokine therapies (tumor necrosis factor-alpha [TNF-α], interleukin-1 [IL-1]) and anti-endotoxin strategies utilizing antibodies against endotoxin or endotoxin receptor/carrier molecules (anti-CD14 or anti-LPS-binding protein) have been studied. Unfortunately, these approaches often failed clinically, and in many cases, the efficacy of these treatments was dependent on the severity of sepsis. Recently, clinical trials using insulin to lock blood glucose levels and activated protein C treatment have showed that while they provided some survival benefit, their efficacy does not appear to be predicated solely upon anti-inflammatory effects. Here, we will review work done in animal models of polymicrobial sepsis and clinical findings that support the hypothesis that apoptosis in the immune system is a pathologic event in sepsis that can be a therapeutic target. In this respect, experimental studies looking at the septic animal suggest that loss of lymphocytes during sepsis may be due to dysregulated apoptosis and that this appears to be brought on by a variety of mediators effecting ‘intrinsic’ as well as ‘extrinsic’ cell death pathways. From a therapeutic perspective this has provided a number of novel targets for clinically successful current, as well as future therapies, such as caspases (caspase inhibition/protease inhibition), pro-apoptotic protein-expression (via administration and/or over-expression of Bcl-2) and the death receptor family Fas-FasL (via. FasFP [fas fusion protein] and the application of siRNA against a number pro-apoptotic factors). PMID:17430119

  18. Pre-Transplant IgG Reactivity to Apoptotic Cells Correlates with Late kidney Allograft Loss

    PubMed Central

    Gao, Baoshan; Moore, Carolina; Porcheray, Fabrice; Rong, Chunshu; Abidoglu, Cem; DeVito, Julie; Paine, Rosemary; Girouard, Timothy C.; Saidman, Susan L.; Schoenfeld, David; Levin, Bruce; Wong, Waichi; Elias, Nahel; Schuetz, Christian; Rosales, Ivy A.; Fu, Yaowen; Zorn, Emmanuel

    2014-01-01

    Pre-existing serum antibodies have long been associated with graft loss in transplant candidates. While most studies have focused on HLA-specific antibodies, the contribution of non-HLA-reactive antibodies has been largely overlooked. We have recently characterized monoclonal antibodies secreted by B cell clones derived from kidney allograft recipients with rejection that selectively bind to apoptotic cells. Here, we assessed the presence of such antibodies in pre-transplant serum from 300 kidney transplant recipients and examined their contribution to the graft outcomes. Kaplan-Meier survival analysis revealed that patients with high pre-transplant IgG reactivity to apoptotic cells had a significantly increased rate of late graft loss. The effect was only apparent after approximately 1 year post-transplant. Moreover, the association between pre-transplant IgG reactivity to apoptotic cells and graft loss was still significant after excluding patients with high reactivity to HLA. This reactivity was almost exclusively mediated by IgG1 and IgG3 with complement fixing and activating properties. Overall, our findings support the view that IgG reactivity to apoptotic cells contribute to pre-sensitization. Taking these antibodies into consideration alongside anti-HLA antibodies during candidate evaluation would likely improve the transplant risk assessment. PMID:24935695

  19. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    SciTech Connect

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  20. Multiple pathways regulating the anti-apoptotic protein clusterin in breast cancer

    PubMed Central

    Ranney, Melissa K.; Ahmed, Ikhlas S.A.; Potts, Kelly R.; Craven, Rolf J.

    2012-01-01

    Cancer chemotherapy inhibits tumor growth, in part, by triggering apoptosis, and anti-apoptotic proteins reduce the effectiveness of chemotherapy. Clusterin, a chaperone-like protein that binds to apoptotic and DNA repair proteins, is induced by chemotherapy and promotes tumor cell survival. Histone deacetylase inhibitors (HDIs) such as sodium butyrate and suberoylanilide hydroxamic acid (SAHA) are pharmacological agents that induce differentiation and apoptosis in cancer cells by altering chromatin structure, and we have found that combinations of chemotherapeutic drugs such as doxorubicin and HDIs efficiently induce apoptosis, even though they paradoxically induce high levels of clusterin. The hyper-expressed form of clusterin localizes to mitochondria, inhibits cytochrome c release, and is inhibited by the proteasome. When HDIs are used as single agents, clusterin suppresses cytochrome c release and apoptosis. However, doxorubicin/HDI-induced apoptosis is not inhibited by clusterin, and clusterin-resistant apoptosis corresponds with markers of the extrinsic/receptor-mediated apoptotic pathway. Thus, chemotherapy-HDI combinations are capable of overcoming an innate anti-apoptotic pathway of tumor cells, suggesting that chemotherapy-HDI combinations have potential for treating advanced stage breast cancer. PMID:17689225

  1. Apoptotic mechanisms in the pathogenesis of COPD.

    PubMed

    Plataki, Maria; Tzortzaki, Eleni; Rytila, Paula; Demosthenes, Makris; Koutsopoulos, Anastassios; Siafakas, Nikolaos M

    2006-01-01

    COPD is a leading cause of morbidity and mortality, characterized by a chronic abnormal inflammatory response to noxious agents. Apoptosis is a physiologic process, critical to cellular homeostasis, in which cell death follows a programmed sequence of events. Apoptosis has been recognized to play an important role in clinical and experimental models of lung diseases. Abnormal apoptotic events in smokers' and in emphysematous lungs have been shown in epithelial and endotheliallung cells, neutrophils, lymphocytes, and myocytes. Many factors associated with COPD, including cigarette smoke, have the potential to cause apoptosis of alveolar epithelial cells, the main sites of vascular endothelial growth factor (VEGF) production. The decreased expression of VEGF, a known survival factor for endothelial cells, and its receptor, results in lung septal endothelial cell death, leading perhaps to the emphysema observed in COPD. In smokers who develop COPD there is an activation of adaptive immunity, with an infiltration of CD4+ and, especially, CD8 + cells. CD8 + cells are cytotoxic to epithelial cells through the release of granzymes and perforin, which can further induce apoptosis of alveolar cells. Moreover, any reduction in neutrophil apoptosis or dysregulation of macrophage uptake of apoptotic neutrophils could lead to chronic inflammation and tissue injury. Increased rates of T-cell apoptosis may lead to a defective immune response to infective organisms, contributing to the high frequency of infections seen in COPD. Increased apoptosis of skeletal muscle could be responsible for the skeletal muscle atrophy, the main cause of unexplained weight loss in patients with COPD. This paper is a review of the current knowledge on the apoptotic pathways involved in COPD pathogenesis and their interaction with other known contributing factors. PMID:18046893

  2. Apoptotic mechanisms in the pathogenesis of COPD

    PubMed Central

    Plataki, Maria; Tzortzaki, Eleni; Rytila, Paula; Demosthenes, Makris; Koutsopoulos, Anastassios; Siafakas, Nikolaos M

    2006-01-01

    COPD is a leading cause of morbidity and mortality, characterized by a chronic abnormal inflammatory response to noxious agents. Apoptosis is a physiologic process, critical to cellular homeostasis, in which cell death follows a programmed sequence of events. Apoptosis has been recognized to play an important role in clinical and experimental models of lung diseases. Abnormal apoptotic events in smokers’ and in emphysematous lungs have been shown in epithelial and endothelial lung cells, neutrophils, lymphocytes, and myocytes. Many factors associated with COPD, including cigarette smoke, have the potential to cause apoptosis of alveolar epithelial cells, the main sites of vascular endothelial growth factor (VEGF) production. The decreased expression of VEGF, a known survival factor for endothelial cells, and its receptor, results in lung septal endothelial cell death, leading perhaps to the emphysema observed in COPD. In smokers who develop COPD there is an activation of adaptive immunity, with an infiltration of CD4+ and, especially, CD8 + cells. CD8 + cells are cytotoxic to epithelial cells through the release of granzymes and perforin, which can further induce apoptosis of alveolar cells. Moreover, any reduction in neutrophil apoptosis or dysregulation of macrophage uptake of apoptotic neutrophils could lead to chronic inflammation and tissue injury. Increased rates of T-cell apoptosis may lead to a defective immune response to infective organisms, contributing to the high frequency of infections seen in COPD. Increased apoptosis of skeletal muscle could be responsible for the skeletal muscle atrophy, the main cause of unexplained weight loss in patients with COPD. This paper is a review of the current knowledge on the apoptotic pathways involved in COPD pathogenesis and their interaction with other known contributing factors. PMID:18046893

  3. Biophysical investigation of the apoptotic force

    NASA Astrophysics Data System (ADS)

    Toyama, Yusuke; Peralta, Xomalin; Wells, Adrienne; Kiehart, Daniel; Edwards, Glenn

    2009-03-01

    Understanding tissue dynamics during development requires knowledge of how cells produce and respond to forces. We have experimentally shown that apoptosis (programmed cell death, which remodels tissue by eliminating cells) also contributes a significant tissue force that promotes cell sheet fusion during dorsal closure in Drosophila development [Science, 321, 1683 (2008)]. By genetically suppressing (enhancing) apoptosis, we slow (increase) the rate of dorsal closure. These changes correlate with the forces produced by the amnioserosa tissue and the rate of seam formation (zipping) for two advancing sheets of lateral epidermis. This apoptotic force is used to drive cell sheet movements during development, a role not classically attributed to apoptosis.

  4. GSIV serine/threonine kinase can induce apoptotic cell death via p53 and pro-apoptotic gene Bax upregulation in fish cells.

    PubMed

    Reshi, Latif; Wu, Horng-Cherng; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2016-04-01

    Previous studies have shown that GSIV induces apoptotic cell death through upregulation of the pro-apoptotic genes Bax and Bak in Grouper fin cells (GF-1 cells). However, the role of viral genome-encoded protein(s) in this death process remains unknown. In this study, we demonstrated that the Giant seaperch iridovirus (GSIV) genome encoded a serine/threonine kinase (ST kinase) protein, and induced apoptotic cell death via a p53-mediated Bax upregulation approach and a downregulation of Bcl-2 in fish cells. The ST kinase expression profile was identified through Western blot analyses, which indicated that expression started at day 1 h post-infection (PI), increased up to day 3, and then decreased by day 5 PI. This profile indicated the role of ST kinase expression during the early and middle phases of viral replication. We then cloned the ST kinase gene and tested its function in fish cells. The ST kinase was transiently expressed and used to investigate possible novel protein functions. The transient expression of ST kinase in GF-1 cells resulted in apoptotic cell features, as revealed with Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) assays and Hoechst 33258 staining at 24 h (37 %) and 48 h post-transfection (PT) (49 %). Then, through studies on the mechanism of cell death, we found that ST kinase overexpression could upregulate the anti-stress gene p53 and the pro-apoptotic gene Bax at 48 h PT. Interestingly, this upregulation of p53 and Bax also correlated to alterations in the mitochondria function that induced loss of mitochondrial membrane potential (MMP) and activated the initiator caspase-9 and the effector caspase-3 in the downstream. Moreover, when the p53-dependent transcriptional downstream gene was blocked by a specific transcriptional inhibitor, it was found that pifithrin-α not only reduced Bax expression, but also averted cell death in GF-1 cells during the ST kinase overexpression. Taken altogether, these results suggested that aquatic GSIV ST kinase could induce apoptosis via upregulation of p53 and Bax expression, resulting in mitochondrial disruption, which activated a downstream caspases-mediated cell death pathway. PMID:26833308

  5. Anti-apoptotic signalling by the Dot/Icm secretion system of L. pneumophila.

    PubMed

    Abu-Zant, Alaeddin; Jones, Snake; Asare, Rexford; Suttles, Jill; Price, Christopher; Graham, James; Kwaik, Yousef Abu

    2007-01-01

    The Dot/Icm type IV secretion system of Legionella pneumophila triggers robust activation of caspase-3 during early and exponential stages of proliferation within human macrophages, but apoptosis is delayed till late stages of infection, which is novel. As caspase-3 is the executioner of the cell, we tested the hypothesis that L. pneumophila triggers anti-apoptotic signalling within the infected human macrophages to halt caspase-3 from dismantling the cells. Here we show that during early and exponential replication, L. pneumophila-infected human monocyte-derived macrophages (hMDMs) exhibit a remarkable resistance to induction of apoptosis, in a Dot/Icm-dependent manner. Microarray analyses and real-time PCR reveal that during exponential intracellular replication, L. pneumophila triggers upregulation of 12 anti-apoptotic genes that are linked to activation of the nuclear transcription factor kappa-B (NF-kappaB). Our data show that L. pneumophila induces a Dot/Icm-dependent sustained nuclear translocation of the p50 and p65 subunits of NF-kappaB during exponential intracellular replication. Bacterial entry is essential both for the anti-apoptotic phenotype of infected hMDMs and for nuclear translocation of the p65. Using p65-/- and IKKalpha-/- beta-/- double knockout mouse embryonic fibroblast cell lines, we show that nuclear translocation of NF-kappaB is required for the resistance of L. pneumophila-infected cells to apoptosis-inducing agents. In addition, the L. pneumophila-induced nuclear translocation of NF-kappaB requires the activity of IKKalpha and/or IKKbeta. We conclude that although the Dot/Icm secretion system of L. pneumophila elicits an early robust activation of caspase-3 in human macrophages, it triggers a strong anti-apoptotic signalling cascade mediated, at least in part by NF-kappaB, which renders the cells refractory to external potent apoptotic stimuli. PMID:16911566

  6. Organization of the Mitochondrial Apoptotic BAK Pore

    PubMed Central

    Aluvila, Sreevidya; Mandal, Tirtha; Hustedt, Eric; Fajer, Peter; Choe, Jun Yong; Oh, Kyoung Joon

    2014-01-01

    The multidomain pro-apoptotic Bcl-2 family proteins BAK and BAX are believed to form large oligomeric pores in the mitochondrial outer membrane during apoptosis. Formation of these pores results in the release of apoptotic factors including cytochrome c from the intermembrane space into the cytoplasm, where they initiate the cascade of events that lead to cell death. Using the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy, we have determined the conformational changes that occur in BAK when the protein targets to the membrane and forms pores. The data showed that helices ?1 and ?6 disengage from the rest of the domain, leaving helices ?2-?5 as a folded unit. Helices ?2-?5 were shown to form a dimeric structure, which is structurally homologous to the recently reported BAX BH3-in-groove homodimer. Furthermore, the EPR data and a chemical cross-linking study demonstrated the existence of a hitherto unknown interface between BAK BH3-in-groove homodimers in the oligomeric BAK. This novel interface involves the C termini of ?3 and ?5 helices. The results provide further insights into the organization of the BAK oligomeric pores by the BAK homodimers during mitochondrial apoptosis, enabling the proposal of a BAK-induced lipidic pore with the topography of a worm hole. PMID:24337568

  7. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-11-01

    Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

  8. Pseudorabies virus glycoprotein gE triggers ERK1/2 phosphorylation and degradation of the pro-apoptotic protein Bim in epithelial cells.

    PubMed

    Pontes, Maria S; Van Waesberghe, Cliff; Nauwynck, Hans; Verhasselt, Bruno; Favoreel, Herman W

    2016-02-01

    ERK1/2 (Extracellular signal Regulated Kinase 1/2) signaling is a key cellular signaling axis controlling many cellular events, including cell survival. Activation of ERK 1/2 may trigger an anti-apoptotic response, and different viruses have been shown to benefit from this process. We have described recently that the viral glycoprotein gE mediates pseudorabies virus (PRV)-induced activation of ERK 1/2 in T lymphocytes. In the present study, we report that PRV gE-mediated ERK 1/2 phosphorylation also occurs in epithelial cells and that in these cells, gE-mediated ERK 1/2 signaling is associated with degradation of the pro-apoptotic protein Bim. Our results for the first time link the viral glycoprotein gE, an important alphaherpesvirus virulence factor, with the apoptotic signaling pathway. PMID:26721325

  9. Leptin is an anti-apoptotic effector in placental cells involving p53 downregulation.

    PubMed

    Toro, Ayelén Rayen; Maymó, Julieta Lorena; Ibarbalz, Federico Matías; Pérez-Pérez, Antonio; Maskin, Bernardo; Faletti, Alicia Graciela; Sánchez-Margalet, Víctor; Varone, Cecilia Laura

    2014-01-01

    Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1) was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle-signaling proteins, is downregulated in the presence of leptin under serum deprivation. On the other hand, we determined that leptin reduced the phosphorylation of Ser-46 p53 that plays a pivotal role for apoptotic signaling by p53. Our data suggest that the observed anti-apoptotic effect of leptin in placenta is in part mediated by the p53 pathway. In conclusion, we provide evidence that demonstrates that leptin is a trophic factor for trophoblastic cells. PMID:24922063

  10. Antcin B and its ester derivative from Antrodia camphorata induce apoptosis in hepatocellular carcinoma cells involves enhancing oxidative stress coincident with activation of intrinsic and extrinsic apoptotic pathway.

    PubMed

    Hsieh, Yun-Chih; Rao, Yerra Koteswara; Whang-Peng, Jacqueline; Huang, Chi-Ying F; Shyue, Song-Kun; Hsu, Shih-Lan; Tzeng, Yew-Min

    2011-10-26

    The triterpenoids methylantcinate B (MAB) and antcin B (AB), isolated from the medicinal mushroom Antrodia camphorata , have been identified as strong cytotoxic agents against various type of cancer cells; however, the mechanisms of MAB- and AB-induced cytotoxicity have not been adequately explored. This study investigated the roles of caspase cascades, reactive oxygen species (ROS), DNA damage, mitochondrial disruption, and Bax and Bcl-2 proteins in MAB- and AB-induced apoptosis of hepatocellular carcinoma (HCC) HepG2 cells. Here, we showed that MAB and AB induced apoptosis in HepG2 cells, as characterized by increased DNA fragmentation, cleavage of PARP, sub-G1 population, chromatin condensation, loss of mitochondrial membrane potential, and release of cytochrome c. Increasing the levels of caspase-2, -3, -8, and -9 activities was involved in MAB- and AB-induced apoptosis, and they could be attenuated by inhibitors of specific caspases, indicating that MAB and AB triggered the caspase-dependent apoptotic pathway. Additionally, the enhanced apoptotic effect correlates with high expression of Fas, Fas ligand, as well as Bax and decreased protein levels of Bcl-(XL) and Bcl-2, suggesting that both the extrinsic and intrinsic apoptosis pathways were involved in the apoptotic processes. Incubation of HepG2 cells with antioxidant enzymes superoxide dismutase and catalase and antioxidants N-acetylcysteine and ascorbic acid attenuated the ROS generation and apoptosis induced by MAB and AB, which indicate that ROS plays a pivotal role in cell death. NADPH oxidase activation was observed in MAB- and AB-stimulated HepG2 cells; however, inhibition of such activation by diphenylamine significantly blocked MAB- and AB-induced ROS production and increased cell viability. Taken together, our results provide the first evidence that triterpenoids MAB and AB induced a NADPH oxidase-provoked oxidative stress and extrinsic and intrinsic apoptosis as a critical mechanism of cause cell death in HCC cells. PMID:21916504

  11. Protective effects of melittin on transforming growth factor-{beta}1 injury to hepatocytes via anti-apoptotic mechanism

    SciTech Connect

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun; Park, Yoon-Yub; Han, Sang-Mi; Park, Kwan-kyu

    2011-10-15

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytes were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.

  12. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand

    PubMed Central

    Venkatarame Gowda Saralamma, Venu; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-01-01

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies’ results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer. PMID:26393583

  13. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    PubMed

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-01-01

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer. PMID:26393583

  14. Circulating IgM Requires Plasma Membrane Disruption to Bind Apoptotic and Non-Apoptotic Nucleated Cells and Erythrocytes

    PubMed Central

    Hesketh, Emily E.; Dransfield, Ian; Kluth, David C.; Hughes, Jeremy

    2015-01-01

    Autoimmunity is associated with defective phagocytic clearance of apoptotic cells. IgM deficient mice exhibit an autoimmune phenotype consistent with a role for circulating IgM antibodies in apoptotic cell clearance. We have extensively characterised IgM binding to non-apoptotic and apoptotic mouse thymocytes and human Jurkat cells using flow cytometry, confocal imaging and electron microscopy. We demonstrate strong specific IgM binding to a subset of Annexin-V (AnnV)+PI (Propidium Iodide)+ apoptotic cells with disrupted cell membranes. Electron microscopy studies indicated that IgM+AnnV+PI+ apoptotic cells exhibited morphologically advanced apoptosis with marked plasma membrane disruption compared to IgM-AnnV+PI+ apoptotic cells, suggesting that access to intracellular epitopes is required for IgM to bind. Strong and comparable binding of IgM to permeabilised non-apoptotic and apoptotic cells suggests that IgM bound epitopes are 'apoptosis independent' such that IgM may bind any cell with profound disruption of cell plasma membrane integrity. In addition, permeabilised erythrocytes exhibited significant IgM binding thus supporting the importance of cell membrane epitopes. These data suggest that IgM may recognize and tag damaged nucleated cells or erythrocytes that exhibit significant cell membrane disruption. The role of IgM in vivo in conditions characterized by severe cell damage such as ischemic injury, sepsis and thrombotic microangiopathies merits further exploration. PMID:26121639

  15. Genes of the Mitochondrial Apoptotic Pathway in Mytilus galloprovincialis

    PubMed Central

    Figueras, Antonio; Novoa, Beatriz

    2013-01-01

    Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress. PMID:23626691

  16. Genes of the mitochondrial apoptotic pathway in Mytilus galloprovincialis.

    PubMed

    Estévez-Calvar, Noelia; Romero, Alejandro; Figueras, Antonio; Novoa, Beatriz

    2013-01-01

    Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress. PMID:23626691

  17. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    SciTech Connect

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee; Choi, Hyeong-Jwa; Na, Tae-Young; Nemeno, Judee Grace E.; Lee, Jeong Ik; Yoon, Taek Joon; Choi, In-Soo; Lee, Minyoung; Lee, Jae-Seon; Kang, Young-Sun

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  18. The regulation of apoptotic cell death.

    PubMed

    Amarante-Mendes, G P; Green, D R

    1999-09-01

    Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment). Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement). The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution). Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial). PMID:10464379

  19. The Anti-Apoptotic Role of Neuroglobin

    PubMed Central

    Brittain, Thomas

    2012-01-01

    The small heme-protein neuroglobin is expressed at high concentrations in certain brain neurons and in the rod cells of the retina. This paper reviews the many studies which have recently identified a protective role for neuroglobin, in a wide range of situations involving apoptotic cell death. The origins of this protective mechanism are discussed in terms of both experimental results and computational modeling of the intrinsic pathway of apoptosis, which shows that neuroglobin can intervene in this process by a reaction with released mitochondrial cytochrome c. An integrated model, based on the various molecular actions of both neuroglobin and cytochrome c, is developed, which accounts for the cellular distribution of neuroglobin. PMID:24710547

  20. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4(+) effector memory T cells.

    PubMed

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo. PMID:26111522

  1. Human cells display reduced apoptotic function relative to chimpanzee cells.

    PubMed

    Arora, Gaurav; Mezencev, Roman; McDonald, John F

    2012-01-01

    Previously published gene expression analyses suggested that apoptotic function may be reduced in humans relative to chimpanzees and led to the hypothesis that this difference may contribute to the relatively larger size of the human brain and the increased propensity of humans to develop cancer. In this study, we sought to further test the hypothesis that humans maintain a reduced apoptotic function relative to chimpanzees by conducting a series of apoptotic function assays on human, chimpanzee and macaque primary fibroblastic cells. Human cells consistently displayed significantly reduced apoptotic function relative to the chimpanzee and macaque cells. These results are consistent with earlier findings indicating that apoptotic function is reduced in humans relative to chimpanzees. PMID:23029431

  2. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    SciTech Connect

    Zeilstra, Jurrit; Joosten, Sander P.J.; Wensveen, Felix M.; Dessing, Mark C.; Schuetze, Denise M.; Eldering, Eric; Spaargaren, Marcel; Pals, Steven T.

    2011-03-04

    Research highlights: {yields} Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. {yields} Expression profiling of apoptosis-related genes in Apc{sup Min/+} mice revealed the differential expression of pro-apoptotic Bok and Bax. {yields} APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. {yields} Blocking of {beta}-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or {beta}-catenin causes constitutively active {beta}-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc{sup Min/+} mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of {beta}-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which uncontrolled epithelial cell proliferation in the stem cell compartment can be counterbalanced by an increased propensity to undergo cell death.

  3. Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells.

    PubMed

    Ordoez, Raquel; Fernndez, Anna; Prieto-Domnguez, Nstor; Martnez, Laura; Garca-Ruiz, Carmen; Fernndez-Checa, Jos C; Mauriz, Jos L; Gonzlez-Gallego, Javier

    2015-09-01

    Autophagy is a process that maintains homeostasis during stress, although it also contributes to cell death under specific contexts. Ceramides have emerged as important effectors in the regulation of autophagy, mediating the crosstalk with apoptosis. Melatonin induces apoptosis of cancer cells; however, its role in autophagy and ceramide metabolism has yet to be clearly elucidated. This study was aimed to evaluate the effect of melatonin administration on autophagy and ceramide metabolism and its possible link with melatonin-induced apoptotic cell death in hepatocarcinoma (HCC) cells. Melatonin (2 mm) transiently induced autophagy in HepG2 cells through JNK phosphorylation, characterized by increased Beclin-1 expression, p62 degradation, and LC3II and LAMP-2 colocalization, which translated in decreased cell viability. Moreover, ATG5 silencing sensitized HepG2 cells to melatonin-induced apoptosis, suggesting a dual role of autophagy in cell death. Melatonin enhanced ceramide levels through both de novo synthesis and acid sphingomyelinase (ASMase) stimulation. Serine palmitoyltransferase (SPT) inhibition with myriocin prevented melatonin-induced autophagy and ASMase inhibition with imipramine-impaired autophagy flux. However, ASMase inhibition partially protected HepG2 cells against melatonin, while SPT inhibition significantly enhanced cell death. Findings suggest a crosstalk between SPT-mediated ceramide generation and autophagy in protecting against melatonin, while specific ASMase-induced ceramide production participates in melatonin-mediated cell death. Thus, dual blocking of SPT and autophagy emerges as a potential strategy to potentiate the apoptotic effects of melatonin in liver cancer cells. PMID:25975536

  4. Unc93b Induces Apoptotic Cell Death and Is Cleaved by Host and Enteroviral Proteases

    PubMed Central

    Harris, Katharine G.; Coyne, Carolyn B.

    2015-01-01

    Unc93b is an endoplasmic reticulum (ER)-resident transmembrane protein that serves to bind and traffic toll-like receptors (TLRs) from the ER to their appropriate subcellular locations for ligand sensing. Because of its role in TLR trafficking, Unc93b is necessary for an effective innate immune response to coxsackievirus B3 (CVB), a positive-sense single stranded RNA virus belonging to the enterovirus family. Here, we show that Unc93b is cleaved by a CVB-encoded cysteine protease (3Cpro) during viral replication. Further, we define a role for Unc93b in the induction of apoptotic cell death and show that expression of wild-type Unc93b, but not a mutant incapable of binding TLRs or exiting the ER (H412R), induces apoptosis. Furthermore, we show that cellular caspases activated during apoptosis directly cleave Unc93b. Interestingly, we show that the 3Cpro- and caspase-mediated cleavage of Unc93b both occur within ten amino acids in the distal N-terminus of Unc93b. Mechanistically, neither caspase-mediated nor 3Cpro-mediated cleavage of Unc93b altered its trafficking function, inhibited its role in facilitating TLR3 or TLR8 signaling, or altered its apoptosis-inducing effects. Taken together, our studies show that Unc93b is targeted by both viral- and host cell-specific proteases and identify a function of Unc93b in the induction of apoptotic cell death. PMID:26509685

  5. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    PubMed Central

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS).We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. PMID:25034532

  6. Autophagy exacerbates caspase-dependent apoptotic cell death after short times of starvation.

    PubMed

    Mattiolo, Paolo; Yuste, Victor J; Boix, Jacint; Ribas, Judit

    2015-12-15

    Autophagy is generally regarded as a mechanism to promote cell survival. However, autophagy can occasionally be the mechanism responsible of cell demise. We have found that a concomitant depletion of glucose, nutrients and growth factors provoked cell death in a variety of cell lines. This death process was contingent upon caspase activation and was mediated by BAX/BAK proteins, thus indicating its apoptotic nature and the engagement of an intrinsic pathway. In order to abrogate autophagy, 3-methyladenine (3-MA), BECLIN-1 siRNA and Atg5 knock-out (Tet-Off type) approaches were alternatively employed. Irrespective of the procedure, at short times of starvation, we found that the ongoing autophagy was sensitizing cells to the permeabilization of the mitochondrial outer membrane (MOMP), caspase activation and, therefore, apoptosis. On the contrary, at longer times of starvation, autophagy displayed its characteristic pro-survival effect on cells. As far as we know, we provide the first experimental paradigm where time is the only variable determining the final outcome of autophagy. In other words, we have circumscribed in time the shift transforming autophagy from a cell death to a protection mechanism. Moreover, at short times, starvation-driven autophagy exacerbated the apoptotic cell death caused by several antitumor agents. In agreement with this fact, their apoptotic effects were greatly diminished by autophagy inhibition. The implications of these facts in tumor biology will be discussed. PMID:26441250

  7. Bcl-xL promotes metastasis independent of its anti-apoptotic activity.

    PubMed

    Choi, Soyoung; Chen, Zhengming; Tang, Laura H; Fang, Yuanzhang; Shin, Sandra J; Panarelli, Nicole C; Chen, Yao-Tseng; Li, Yi; Jiang, Xuejun; Du, Yi-Chieh Nancy

    2016-01-01

    Bcl-xL suppresses mitochondria-mediated apoptosis and is frequently overexpressed in cancer to promote cancer cell survival. Bcl-xL also promotes metastasis. However, it is unclear whether this metastatic function is dependent on its anti-apoptotic activity in the mitochondria. Here we demonstrate that Bcl-xL promotes metastasis independent of its anti-apoptotic activity. We show that apoptosis-defective Bcl-xL mutants and an engineered Bcl-xL targeted to the nucleus promote epithelial-mesenchymal transition, migration, invasion and stemness in pancreatic neuroendocrine tumour (panNET) and breast cancer cell lines. However, Bcl-xL proteins targeted to the mitochondria or outside of the nucleus do not have these functions. We confirm our findings in spontaneous and xenograft mouse models. Furthermore, Bcl-xL exerts metastatic function through epigenetic modification of the TGFβ promoter to increase TGFβ signalling. Consistent with these findings, we detect nuclear Bcl-xL in human metastatic panNETs. Taken together, the metastatic function of Bcl-xL is independent of its anti-apoptotic activity and its residence in the mitochondria. PMID:26785948

  8. Anti-apoptotic effects of suppressor of cytokine signaling 3 and 1 in psoriasis

    PubMed Central

    Madonna, S; Scarponi, C; Pallotta, S; Cavani, A; Albanesi, C

    2012-01-01

    Because of their genetically determined capacity to respond to pro-inflammatory stimuli, keratinocytes have a crucial role in the pathogenesis of psoriasis. Upon IFN-? and TNF-? exposure, psoriatic keratinocytes express exaggerated levels of inflammatory mediators, and show aberrant hyperproliferation and terminal differentiation. The thickening of psoriasic skin also results from a peculiar resistance of keratinocytes to cytokine-induced apoptosis. In this study, we investigated on the molecular mechanisms concurring to the resistance of psoriatic keratinocytes to cell death, focusing on the role having suppressor of cytokine signaling (SOCS)1 and SOCS3, two molecules abundantly expressed in IFN-?/TNF-?-activated psoriatic keratinocytes, in sustaining anti-apoptotic pathways. We found that SOCS1 and SOCS3 suppress cytokine-induced apoptosis by sustaining the activation of the PI3K/AKT pathway in keratinocytes. The latter determines the activation of the anti-apoptotic NF-?B cascade and, in parallel, the inhibition of the pro-apoptotic BAD function in keratinocytes. For the first time, we report that phosphorylated AKT and phosphorylated BAD are strongly expressed in lesional psoriatic skin, compared with healthy or not lesional skin, and they strictly correlate to the high expression of SOCS1 and SOCS3 molecules in the psoriatic epidermis. Finally, the depletion of SOCS1 and SOCS3, as well as the chemical inactivation of PI3K activity in psoriatic keratinocytes, definitively unveils the role of PI3K/AKT cascade on the resistance of diseased keratinocytes to apoptosis. PMID:22739986

  9. The Arf GAP CNT-2 regulates the apoptotic fate in C. elegans asymmetric neuroblast divisions

    PubMed Central

    Singhvi, Aakanksha; Teuliere, Jerome; Talavera, Karla; Cordes, Shaun; Ou, Guangshuo; Vale, Ronald D.; Prasad, Brinda C.; Clark, Scott G.; Garriga, Gian

    2011-01-01

    Summary During development, all cells make the decision to live or die. While the molecular mechanisms that execute the apoptotic program are well defined, less is known about how cells decide whether to live or die. In C. elegans, this decision is linked to how cells divide asymmetrically [1, 2]. Several classes of molecules are known to regulate asymmetric cell divisions in metazoans, yet these molecules do not appear to control C. elegans divisions that produce apoptotic cells [3]. We identified CNT-2, an Arf GAP protein of the AGAP family, as a novel regulator of this type of neuroblast division. Loss of CNT-2 altered daughter cell size and caused the apoptotic cell to adopt the fate of its sister cell, resulting in extra neurons. CNT-2’s Arf GAP activity was essential for its function in these divisions. The N-terminus of CNT-2, which contains a GTPase-like domain that defines the AGAP class of Arf GAPs, negatively regulates CNT-2’s function. We provide evidence that CNT-2 regulates receptor-mediated endocytosis and consider the implications of its role in asymmetric cell divisions. PMID:21596567

  10. Non-apoptotic role for caspase-7 in hair follicles and the surrounding tissue.

    PubMed

    Vesela, Barbora; Svandova, Eva; Vanden Berghe, Tom; Tucker, Abigail S; Vandenabeele, Peter; Matalova, Eva

    2015-10-01

    Hair follicles are unique organs undergoing regular cycles of proliferation, differentiation, and apoptosis. The final step of apoptosis is, in general, mediated by executioner caspases comprising caspase-3, -6 and -7. Despite their commonly accepted apoptotic function, executioner caspases also participate in non-apoptotic processes. In the present study, we investigated activation (cleavage) of caspase-7 in mouse hair follicles and surrounding tissue during embryonic development into adulthood. Casp7 (-/-) mice were examined to understand the effect of caspase-7 deficiency in the skin. The activated form of caspase-7 was observed during embryonic hair follicle development, as well as in the first hair cycle. In general, activation of caspase-7 did not correlate with apoptosis and activation of caspase-3, except during physiological hair follicle regression. Notably, cleaved caspase-7 was observed in mast cells and its deficiency in the adult skin resulted in increased mast cell number. Our study shows for the first time activated caspase-7 in hair follicles and mast cells and indicates its non-apoptotic roles in the skin. PMID:26253163

  11. Bcl-xL promotes metastasis independent of its anti-apoptotic activity

    PubMed Central

    Choi, Soyoung; Chen, Zhengming; Tang, Laura H.; Fang, Yuanzhang; Shin, Sandra J.; Panarelli, Nicole C.; Chen, Yao-Tseng; Li, Yi; Jiang, Xuejun; Du, Yi-Chieh Nancy

    2016-01-01

    Bcl-xL suppresses mitochondria-mediated apoptosis and is frequently overexpressed in cancer to promote cancer cell survival. Bcl-xL also promotes metastasis. However, it is unclear whether this metastatic function is dependent on its anti-apoptotic activity in the mitochondria. Here we demonstrate that Bcl-xL promotes metastasis independent of its anti-apoptotic activity. We show that apoptosis-defective Bcl-xL mutants and an engineered Bcl-xL targeted to the nucleus promote epithelial–mesenchymal transition, migration, invasion and stemness in pancreatic neuroendocrine tumour (panNET) and breast cancer cell lines. However, Bcl-xL proteins targeted to the mitochondria or outside of the nucleus do not have these functions. We confirm our findings in spontaneous and xenograft mouse models. Furthermore, Bcl-xL exerts metastatic function through epigenetic modification of the TGFβ promoter to increase TGFβ signalling. Consistent with these findings, we detect nuclear Bcl-xL in human metastatic panNETs. Taken together, the metastatic function of Bcl-xL is independent of its anti-apoptotic activity and its residence in the mitochondria. PMID:26785948

  12. Analysis of apoptotic pathways by multiparametric flow cytometry: application to HIV infection.

    PubMed

    Lecoeur, Hervé; Melki, Marie-Thérèse; Saïdi, Héla; Gougeon, Marie-Lise

    2008-01-01

    Flow cytometry analysis of apoptosis allows the detection, at the single cell level, of essential features of apoptotic cells. They include alterations in plasma membrane integrity, detected with the 7-aminoactinomycin D assay, translocation of phosphatidylserine from the inner to the outer layer of the plasma membrane analyzed with the annexin-V/PI assay, DNA strand breaks in apoptotic nuclei measured with the in situ nick translation and terminal deoxynucleotidyl transferase dUTP-mediated nick end labeling assays, and morphological modifications evidenced with FSC/SSC criteria. In addition, mitochondrial events such as the drop in transmembrane potential DeltaPsi(m) can be detected with the cationic lipophilic dye 3,3'-dihexyloxacarbocyanine iodide and downregulation of the Bcl-2 molecule by specific intracellular staining. Multiparametric flow cytometry combines all these approaches for a thorough sequential analysis of apoptosis, especially for heterogenous populations such as human peripheral mononuclear cells. Several examples of combined staining of apoptotic cells are shown on peripheral blood lymphocytes from chronically HIV-infected patients, prone to undergo premature apoptosis. PMID:18662564

  13. Domain-specific c-Myc ubiquitylation controls c-Myc transcriptional and apoptotic activity

    PubMed Central

    Zhang, Qin; Spears, Erick; Boone, David N.; Li, Zhaoliang; Gregory, Mark A.; Hann, Stephen R.

    2013-01-01

    The oncogenic transcription factor c-Myc causes transformation and tumorigenesis, but it can also induce apoptotic cell death. Although tumor suppressors are necessary for c-Myc to induce apoptosis, the pathways and mechanisms are unclear. To further understand how c-Myc switches from an oncogenic protein to an apoptotic protein, we examined the mechanism of p53-independent c-Myc–induced apoptosis. We show that the tumor suppressor protein ARF mediates this switch by inhibiting ubiquitylation of the c-Myc transcriptional domain (TD). Whereas TD ubiquitylation is critical for c-Myc canonical transcriptional activity and transformation, inhibition of ubiquitylation leads to the induction of the noncanonical c-Myc target gene, Egr1, which is essential for efficient c-Myc–induced p53-independent apoptosis. ARF inhibits the interaction of c-Myc with the E3 ubiquitin ligase Skp2. Overexpression of Skp2, which occurs in many human tumors, inhibits the recruitment of ARF to the Egr1 promoter, leading to inhibition of c-Myc–induced apoptosis. Therapeutic strategies could be developed to activate this intrinsic apoptotic activity of c-Myc to inhibit tumorigenesis. PMID:23277542

  14. Phagocytosis of apoptotic cells by neutrophil granulocytes: diminished proinflammatory neutrophil functions in the presence of apoptotic cells.

    PubMed

    Esmann, Lars; Idel, Christian; Sarkar, Arup; Hellberg, Lars; Behnen, Martina; Möller, Sonja; van Zandbergen, Ger; Klinger, Matthias; Köhl, Jörg; Bussmeyer, Uta; Solbach, Werner; Laskay, Tamás

    2010-01-01

    Neutrophil granulocytes are rapidly recruited from the bloodstream to the site of acute inflammation where they die in large numbers. Because release of toxic substances from dead neutrophils can propagate the inflammatory response leading to tissue destruction, clearance of dying inflammatory neutrophils has a critical function in the resolution of the inflammatory response. Apoptotic neutrophils are phagocytosed primarily by macrophages, provided these cells are present in adequate numbers. However, macrophages are rare at sites of acute inflammation, whereas the number of neutrophils can be extremely high. In the current study, in vitro experiments with human neutrophils were carried out to investigate whether neutrophils can ingest apoptotic neutrophils. We show that naïve granulocytes isolated from venous blood have a limited capacity to phagocytose apoptotic cells. However, exposure to activating stimuli such as LPS, GM-CSF and/or IFN-gamma results in enhanced phagocytosis of apoptotic cells. The efficient uptake of apoptotic cells by neutrophils was found to depend on the presence of heat labile serum factors. Importantly, the contact to or uptake of apoptotic cells inhibited neutrophil functions such as respiratory burst and the release of the proinflammatory cytokines TNF-alpha and interferon-inducible protein-10. Contact to apoptotic cells, however, induced the secretion of IL-8 and growth-related oncogene-alpha, which was independent of NF-kappaB and p38 MAPK but involved C5a and the ERK1/2 pathway. The data suggest that activated neutrophils participate in the clearance of apoptotic cells. In addition, because apoptotic cells inhibit proinflammatory functions of neutrophils, uptake of apoptotic cells by neutrophils contributes to the resolution of inflammation. PMID:19949068

  15. Parkin Promotes Degradation of the Mitochondrial Pro-Apoptotic ARTS Protein

    PubMed Central

    Kemeny, Stav; Dery, Dikla; Loboda, Yelena; Rovner, Marshall; Lev, Tali; Zuri, Dotan; Finberg, John P. M.; Larisch, Sarit

    2012-01-01

    Parkinson’s disease (PD) is associated with excessive cell death causing selective loss of dopaminergic neurons. Dysfunction of the Ubiquitin Proteasome System (UPS) is associated with the pathophysiology of PD. Mutations in Parkin which impair its E3-ligase activity play a major role in the pathogenesis of inherited PD. ARTS (Sept4_i2) is a mitochondrial protein, which initiates caspase activation upstream of cytochrome c release in the mitochondrial apoptotic pathway. Here we show that Parkin serves as an E3-ubiquitin ligase to restrict the levels of ARTS through UPS-mediated degradation. Though Parkin binds equally to ARTS and Sept4_i1 (H5/PNUTL2), the non-apoptotic splice variant of Sept4, Parkin ubiquitinates and degrades only ARTS. Thus, the effect of Parkin on ARTS is specific and probably related to its pro-apoptotic function. High levels of ARTS are sufficient to promote apoptosis in cultured neuronal cells, and rat brains treated with 6-OHDA reveal high levels of ARTS. However, over-expression of Parkin can protect cells from ARTS-induced apoptosis. Furthermore, Parkin loss-of-function experiments reveal that reduction of Parkin causes increased levels of ARTS and apoptosis. We propose that in brain cells in which the E3-ligase activity of Parkin is compromised, ARTS levels increase and facilitate apoptosis. Thus, ARTS is a novel substrate of Parkin. These observations link Parkin directly to a pro-apoptotic protein and reveal a novel connection between Parkin, apoptosis, and PD. PMID:22792159

  16. Live Imaging of Apoptotic Cell Clearance during Drosophila Embryogenesis

    PubMed Central

    Shklyar, Boris; Shklover, Jeny; Kurant, Estee

    2013-01-01

    The proper elimination of unwanted or aberrant cells through apoptosis and subsequent phagocytosis (apoptotic cell clearance) is crucial for normal development in all metazoan organisms. Apoptotic cell clearance is a highly dynamic process intimately associated with cell death; unengulfed apoptotic cells are barely seen in vivo under normal conditions. In order to understand the different steps of apoptotic cell clearance and to compare 'professional' phagocytes - macrophages and dendritic cells to 'non-professional' - tissue-resident neighboring cells, in vivo live imaging of the process is extremely valuable. Here we describe a protocol for studying apoptotic cell clearance in live Drosophila embryos. To follow the dynamics of different steps in phagocytosis we use specific markers for apoptotic cells and phagocytes. In addition, we can monitor two phagocyte systems in parallel: 'professional' macrophages and 'semi-professional' glia in the developing central nervous system (CNS). The method described here employs the Drosophila embryo as an excellent model for real time studies of apoptotic cell clearance. PMID:23979068

  17. Apoptosis and apoptotic mimicry in Leishmania: an evolutionary perspective.

    PubMed

    El-Hani, Charbel N; Borges, Valéria M; Wanderley, João L M; Barcinski, Marcello A

    2012-01-01

    Apoptotic death and apoptotic mimicry are defined respectively as a non-accidental death and as the mimicking of an apoptotic-cell phenotype, usually by phosphatidylserine (PS) exposure. In the case of the murine infection by Leishmania spp, apoptotic death has been described in promastigotes and apoptotic mimicry in amastigotes. In both situations they are important events of the experimental murine infection by this parasite. In the present review we discuss what features we need to consider if we want to establish if a behavior shown by Leishmania is altruistic or not: does the behavior increases the fitness of organisms other than the one showing it? Does this behavior have a cost for the actor? If we manage to show that a given behavior is costly for the actor and beneficial for the recipient of the action, we will be able to establish it as altruistic. From this perspective, we can argue that apoptotic-like death and apoptotic mimicry are both altruistic with the latter representing a weaker altruistic behavior than the former. PMID:22912937

  18. Apoptotic Genes are Differentially Expressed in Aged Gingival Tissue

    PubMed Central

    González, O.A.; Stromberg, A.J.; Huggins, P.M.; Gonzalez-Martinez, J.; Novak, M.J.; Ebersole, J.L.

    2011-01-01

    Cellular and molecular changes of the periodontium associated with a higher prevalence of oral diseases (e.g., chronic periodontitis) in aged populations have received little attention. Since impaired apoptosis during aging appears to be related to chronic inflammatory disorders, we hypothesized that the expression of genes associated with apoptotic processes are altered in aged healthy and periodontitis-affected gingival tissue. Ontology analysis of 88 genes related to apoptotic pathways was performed in gingival biopsies of healthy and periodontitis sites from young, adult, and aged non-human primates (Macaca mulatta), using the GeneChip® Rhesus Macaque Genome Array. Lower expression of anti-apoptotic and higher expression of pro-apoptotic genes were associated with healthy gingival tissue from young compared with aged animals. Few differences in gene expression were observed in healthy gingival tissue between adult and aged animals. Comparison between healthy and periodontitis gingival tissues showed that the up- or down-regulated apoptotic genes in diseased gingival tissue are different in adults compared with aged animals. These results suggest that apoptotic events normally occurring in gingival tissues could be reduced in aging,and unique aspects of apoptotic pathways are potentially involved in the pathophysiology of perio-dontal disease in adult vs. aged gingival tissues. PMID:21471327

  19. Apoptosis and apoptotic mimicry in Leishmania: an evolutionary perspective

    PubMed Central

    El-Hani, Charbel N.; Borges, Valéria M.; Wanderley, João L. M.; Barcinski, Marcello A.

    2012-01-01

    Apoptotic death and apoptotic mimicry are defined respectively as a non-accidental death and as the mimicking of an apoptotic-cell phenotype, usually by phosphatidylserine (PS) exposure. In the case of the murine infection by Leishmania spp, apoptotic death has been described in promastigotes and apoptotic mimicry in amastigotes. In both situations they are important events of the experimental murine infection by this parasite. In the present review we discuss what features we need to consider if we want to establish if a behavior shown by Leishmania is altruistic or not: does the behavior increases the fitness of organisms other than the one showing it? Does this behavior have a cost for the actor? If we manage to show that a given behavior is costly for the actor and beneficial for the recipient of the action, we will be able to establish it as altruistic. From this perspective, we can argue that apoptotic-like death and apoptotic mimicry are both altruistic with the latter representing a weaker altruistic behavior than the former. PMID:22912937

  20. Disturbances of apoptotic cell clearance in systemic lupus erythematosus

    PubMed Central

    2011-01-01

    Systemic lupus erythematosus is a multifactorial autoimmune disease with an as yet unknown etiopathogenesis. It is widely thought that self-immunization in systemic lupus is driven by defective clearance of dead and dying cells. In lupus patients, large numbers of apoptotic cells accumulate in various tissues including germinal centers. In the present review, we discuss the danger signals released by apoptotic cells, their triggering of inflammatory responses, and the breakdown of B-cell tolerance. We also review the pathogenic role of apoptotic cell clearance in systemic lupus erythematosus. PMID:21371352

  1. Role of mitotic, pro-apoptotic and anti-apoptotic factors in human kidney development.

    PubMed

    Carev, Dominko; Krnić, Dragan; Saraga, Marijan; Sapunar, Damir; Saraga-Babić, Mirna

    2006-05-01

    The expression pattern of mitotic Ki-67 and anti-apoptotic bcl-2 proteins, as well as apoptotic caspase-3 and p53 proteins, were investigated in the human mesonephros and metanephros of 5-9 week-old human conceptuses. Apoptotic cells were additionally detected using the terminal deoxynucleotidyl transferase (TdT) nick-end labelling (TUNEL) method. Between the 5th and 7th developmental weeks Ki-67, caspase-3 and TUNEL-positive cells characterized all mesonephric structures, indicating importance of cell proliferation in the growth of the mesonephros and role of apoptosis in nephrogenesis. From the 7th week on, p53 and bcl-2 positive cells appeared in the mesonephros as well. Regressive changes in the mesonephros could be regulated by activation of p53, while bcl-2 could contribute to selective survival of some tubules giving rise to adult structures. In the early human metanephros (5-7 weeks), Ki-67 positive cells characterized all metanephric structures, indicating a role of cell proliferation in branching of the ureteric bud and in nephron formation. During the same period bcl-2, caspase-3 and TUNEL-positive cells were found only in the metanephric mesenchyme and nephrons. Bcl-2 protein probably protected nephrons from apoptosis, while caspase-3 protein controlled cell death in the mesenchyme. At later stages (7-9-weeks), appearance of p53-expressing cells could participate in further morphogenesis of the metanephric collecting system. The factors investigated had a spatially and temporally restricted pattern of appearance in developing kidneys. Changes in that pattern might lead to serious disturbances of kidney formation and function in early childhood. PMID:16568307

  2. Screening of pro-apoptotic genes upregulated in an experimental street rabies virus-infected neonatal mouse brain.

    PubMed

    Ubol, Sukathida; Kasisith, Jitra; Pitidhammabhorn, Dhanesh; Tepsumethanol, Veera

    2005-01-01

    Rabies virus (RABV) is able to induce apoptotic death of target cells. The molecular pathway of RABV-induced cell death is partially known. In the present study, cDNA array analysis was used as a tool to screen for pro-apoptotic genes that may be involved in RABV induction. RNA was extracted from the infected CNS and from mock-infected controls. When the mean gene expression was compared between the infected group and controls, 21 potential apoptotic genes were identified that exhibited more than 2.5-fold difference in their expression levels. These 21 genes can be grouped into two groups, those genes that participate in the commitment phase and those that play a role as executioners. Examples of genes in commitment phase were death receptors (Fas-L receptor, TNF-receptor), lysosomal proteases, calpain, caspase-1, signaling molecules (ERK, p38MAPK) and bcl-2 family members. Cytochrome c and caspase-3 were representatives of executioners. Based on types of genes activated during the commitment phase, two independent apoptotic mechanisms may be activated in response to the RV infection. The first is immune-mediated death which may operate through the receptor-ligand pathway activated by caspase-1 and the pro-inflammatory cytokine, IL-1beta. The other mechanism is a protease-mediated process which involves lysosomal proteases and calcium-dependent neutral proteases. These two stimulating pathways were followed by Bad, Bak, Bid activation and subsequently the upregulation of cytochrome c and caspase-3. In addition, mobilization of K+ ion and other accessory apoptotic genes such as annexins and clusterin were also upregulated. PMID:15905604

  3. The pro-apoptotic role of autophagy in breast cancer

    PubMed Central

    Suman, S; Das, T P; Reddy, R; Nyakeriga, A M; Luevano, J E; Konwar, D; Pahari, P; Damodaran, C

    2014-01-01

    Background: Autophagy is a catabolic process that has a vital role in cancer progression and treatment. Current chemotherapeutic agents, which target autophagy, result in growth inhibition in many cancer types. In this study, we examined the role of autophagy in breast cancer (BCa) patients as well as BCa cell lines. Methods: Tissue microarray was used to detect the expression of an autophagy marker, LC3B in BCa patients (normal/hyperplasia=8; grade-I=15, grade-II=84, and grade-III=27) and BCa cell lines. To modulate the activation of autophagy, we used novel herbal compound nimocinol acetate (NA) in BCa cell lines and the anticancer activity was measured by phenotypic and molecular analysis. Results: LC3B is highly expressed in tumours as compared with normal tissues. Activation of LC3B in NA-treated BCa (MCF-7 and MDA-MB-231) cells was evident as compared with other autophagy makers. Further, our results confirmed that NA-transcriptionally regulates LC3B (as confirmed by mRNA levels and reporter assay), which resulted in the formation of acidic autophagy vesicles and autolysosomes in BCa cells. Nimocinol acetate inhibited mTOR-mediated pro-survival signalling that resulted in inhibition of growth in BCa cells without affecting normal breast epithelial cells. Downregulation of LC3B expression by siRNA significantly inhibited the anticancer effects of NA in BCa cells. Conclusions: Together, our results suggest that LC3B is highly expressed in BCa tissues and increasing the threshold of LC3B activation dictates the pro-apoptotic function, which in turn, suppresses the growth of BCa cells. Nimocinol acetate could be a potential agent for treatment of BCa. PMID:24945999

  4. Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apoptosis, one form of programmed cell death (PCD), plays an important role in mediating plant adaptive responses to the environment. Recent studies suggest that expression of animal anti-apoptotic genes in transgenic plants may be an efficient way of enhancing stress resistance in economically impo...

  5. Cobra venom cytotoxins; apoptotic or necrotic agents?

    PubMed

    Ebrahim, Karim; Shirazi, Farshad H; Mirakabadi, Abbas Zare; Vatanpour, Hossein

    2015-12-15

    Organs homeostasis is controlled by a dynamic balance between cell proliferation and apoptosis. Failure to induction of apoptosis has been implicated in tumor development. Cytotoxin-I (CTX-I) and cytotoxin-II (CTX-II) are two physiologically active polypeptides found in Caspian cobra venom. Anticancer activity and mechanism of cell death induced by these toxins have been studied. The toxins were purified by different chromatographic steps and their cytotoxicity and pattern of cell death were determined by MTT, LDH release, acridine orange/ethidium bromide (AO/EtBr) double staining, flow cytometric analysis, caspase-3 activity and neutral red assays. The IC50 of CTX-II in MCF-7, HepG2, DU-145 and HL-60 was 4.1 ± 1.3, 21.2 ± 4.4, 9.4 ± 1.8 μg/mL and 16.3 ± 1.9 respectively while the IC50 of this toxin in normal MDCK cell line was 54.5 ± 3.9 μg/mL. LDH release suddenly increase after a specific toxins concentrations in all cell lines. AO/EtBr double staining, flow cytometric analysis and caspase-3 activity assay confirm dose and time-dependent induction of apoptosis by both toxins. CTX-I and CTX-II treated cells lost their lysosomal membrane integrity and couldn't uptake neutral red day. CTX-I and CTX-II showed significant anticancer activity with minimum effects on normal cells and better IC50 compared to current anticancer drug; cisplatin. They induce their apoptotic effect via lysosomal pathways and release of cathepsins to cytosol. These effects were seen in limited rage of toxins concentrations and pattern of cell death rapidly changes to necrosis by increase in toxin's concentration. In conclusion, significant apoptogenic effects of these toxins candidate them as a possible anticancer agent. PMID:26482932

  6. Optical determination of intracellular water in apoptotic cells

    PubMed Central

    Model, Michael A; Schonbrun, Ethan

    2013-01-01

    Intracellular water plays a critical role in apoptotic and necrotic cell death. We describe a method for quantifying cell water by application of two previously described variants of transmission microscopy. By taking two axially displaced brightfield images, the phase shift of the transmitted wave was computed using the transport-of-intensity equation. At the same time, cell thickness was determined by transmission through an externally applied dye (‘transmission-through-dye’ microscopy); switching between these two imaging modalities was accomplished by simply changing the illumination wavelength. The sets of data thus obtained allow computation of the refractive index and cell water content within individual cells. The method was illustrated using cells treated with apoptotic agents staurosporine and actinomycin D and with necrosis inducer ionomycin. Water imaging allows discrimination between apoptotic volume decrease due to dehydration from that due to detachment of apoptotic bodies and can be used on samples where cell volume determination alone would be difficult or insufficient. PMID:24127617

  7. Severe apoptotic enteropathy caused by methotrexate treatment for rheumatoid arthritis.

    PubMed

    Toquet, Ségolène; Nguyen, Yohan; Sabbagh, Adel; Djerada, Zoubir; Boulagnon, Camille; Bani-Sadr, Firouzé

    2016-03-01

    The folic acid antagonist methotrexate is a cornerstone treatment of rheumatoid arthritis. Its use is limited chiefly by gastrointestinal toxicity, which is among the main reasons for methotrexate discontinuation. Here, we report the case of a 40-year-old man on chronic methotrexate therapy in whom life-threatening apoptotic enteropathy with watery diarrhea and hypovolemic shock developed after he was switched from the oral to the intramuscular route, with no change in dosage. Colonic biopsies suggested drug-induced colitis, showing a nonspecific, mildly inflammatory infiltrate of lymphocytes and plasma cells, dilated damaged crypts, and a marked increase in basal crypt apoptosis (>20 apoptotic bodies/100 crypts). Clinicians should be aware that methotrexate can cause life-threatening apoptotic enteropathy. Increased basal crypt apoptosis in colonic biopsies with more than 5 apoptotic bodies/100 crypts should routinely suggest drug-induced enteropathy. PMID:26494588

  8. Cannabidiol induced a contrasting pro-apoptotic effect between freshly isolated and precultured human monocytes

    SciTech Connect

    Wu, Hsin-Ying; Chang, An-Chi; Wang, Chia-Chi; Kuo, Fu-Hua; Lee, Chi-Ya; Liu, Der-Zen; Jan, Tong-Rong

    2010-08-01

    It has been documented that cannabidiol (CBD) induced apoptosis in a variety of transformed cells, including lymphocytic and monocytic leukemias. In contrast, a differential sensitivity between normal lymphocytes and monocytes to CBD-mediated apoptosis has been reported. The present study investigated the pro-apoptotic effect of CBD on human peripheral monocytes that were either freshly isolated or precultured for 72 h. CBD markedly enhanced apoptosis of freshly isolated monocytes in a time- and concentration-dependent manner, whereas precultured monocytes were insensitive. By comparison, both cells were sensitive to doxorubicin-induced apoptosis. CBD significantly diminished the cellular thiols and glutathione in freshly isolated monocytes. The apoptosis induced by CBD was abrogated in the presence of N-acetyl-{sub L}-cysteine, a precursor of glutathione. In addition, precultured monocytes contained a significantly greater level of glutathione and heme oxygenase-1 (HO-1) compared to the freshly isolated cells. The HO-1 competitive inhibitor zinc protoporphyrin partially but significantly restored the sensitivity of precultured monocytes to CBD-mediated apoptosis. Collectively, our results demonstrated a contrasting pro-apoptotic effect of CBD between precultured and freshly isolated monocytes, which was closely associated with the cellular level of glutathione and the antioxidative capability of the cells.

  9. Cannabidiol induced a contrasting pro-apoptotic effect between freshly isolated and precultured human monocytes.

    PubMed

    Wu, Hsin-Ying; Chang, An-Chi; Wang, Chia-Chi; Kuo, Fu-Hua; Lee, Chi-Ya; Liu, Der-Zen; Jan, Tong-Rong

    2010-08-01

    It has been documented that cannabidiol (CBD) induced apoptosis in a variety of transformed cells, including lymphocytic and monocytic leukemias. In contrast, a differential sensitivity between normal lymphocytes and monocytes to CBD-mediated apoptosis has been reported. The present study investigated the pro-apoptotic effect of CBD on human peripheral monocytes that were either freshly isolated or precultured for 72h. CBD markedly enhanced apoptosis of freshly isolated monocytes in a time- and concentration-dependent manner, whereas precultured monocytes were insensitive. By comparison, both cells were sensitive to doxorubicin-induced apoptosis. CBD significantly diminished the cellular thiols and glutathione in freshly isolated monocytes. The apoptosis induced by CBD was abrogated in the presence of N-acetyl-L-cysteine, a precursor of glutathione. In addition, precultured monocytes contained a significantly greater level of glutathione and heme oxygenase-1 (HO-1) compared to the freshly isolated cells. The HO-1 competitive inhibitor zinc protoporphyrin partially but significantly restored the sensitivity of precultured monocytes to CBD-mediated apoptosis. Collectively, our results demonstrated a contrasting pro-apoptotic effect of CBD between precultured and freshly isolated monocytes, which was closely associated with the cellular level of glutathione and the antioxidative capability of the cells. PMID:20471992

  10. ANTI-APOPTOTIC ACTIONS OF VASOPRESSIN IN H32 NEURONS INVOLVE MAP KINASE TRANSACTIVATION AND BAD PHOSPHORYLATION

    PubMed Central

    Chen, Jun; Volpi, Simona; Aguilera, Greti

    2008-01-01

    Vasopressin (VP) secreted within the brain modulates neuronal function acting as a neurotransmitter. Based on the observation that VP prevented serum deprivation-induced cell death in the neuronal cell line, H32, which expresses endogenous V1 receptors, we tested the hypothesis that VP has anti-apoptotic properties. Flow cytometry experiments showed that 10nM VP prevented serum deprivation-induced cell death and annexin V binding. Serum deprivation increased caspase-3 activity in a time and serum concentration dependent manner, and VP prevented these effects through interaction with receptors of V1 subtype. The signaling pathways mediating the anti-apoptotic effect of VP involve mitogen activated protein (MAP) kinase and extracellular signal-regulated kinases (ERK), Ca2+/calmodulin dependent kinase (CaMK) and protein kinase C (PKC). Western blot analyses revealed time-dependent decreases of Bad phosphorylation and increases in cytosolic levels of cytochrome c following serum deprivation, effects which were prevented by 10nM VP. These data demonstrate that activation of endogenous V1 VP receptors prevents serum deprivation-induced apoptosis, through phosphorylation-inactivation of the pro-apoptotic protein, Bad, and consequent decreases in cytosolic cytochome c and caspase-3 activation. The data suggest that VP has anti-apoptotic activity in neurons and that VP may act as a neuroprotective agent in the brain. PMID:18402937

  11. Low expression of pro-apoptotic Bcl-2 family proteins sets the apoptotic threshold in Waldenström macroglobulinemia.

    PubMed

    Gaudette, B T; Dwivedi, B; Chitta, K S; Poulain, S; Powell, D; Vertino, P; Leleu, X; Lonial, S; Chanan-Khan, A A; Kowalski, J; Boise, L H

    2016-01-28

    Waldenström macroglobulinemia (WM) is a proliferative disorder of IgM-secreting, lymphoplasmacytoid cells that inhabit the lymph nodes and bone marrow. The disease carries a high prevalence of activating mutations in MyD88 (91%) and CXCR4 (28%). Because signaling through these pathways leads to Bcl-xL induction, we examined Bcl-2 family expression in WM patients and cell lines. Unlike other B-lymphocyte-derived malignancies, which become dependent on expression of anti-apoptotic proteins to counter expression of pro-apoptotic proteins, WM samples expressed both pro- and anti-apoptotic Bcl-2 proteins at low levels similar to their normal B-cell and plasma cell counterparts. Three WM cell lines expressed pro-apoptotic Bcl-2 family members Bim or Bax and Bak at low levels, which determined their sensitivity to inducers of intrinsic apoptosis. In two cell lines, miR-155 upregulation, which is common in WM, was responsible for the inhibition of FOXO3a and Bim expression. Both antagonizing miR-155 to induce Bim and proteasome inhibition increased the sensitivity to ABT-737 in these lines indicating a lowering of the apoptotic threshold. In this manner, treatments that increase pro-apoptotic protein expression increase the efficacy of agents treated in combination in addition to direct killing. PMID:25893290

  12. Surface code—biophysical signals for apoptotic cell clearance

    NASA Astrophysics Data System (ADS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M.; Chaurio, Ricardo; Janko, Christina; Herrmann, Martin; Muñoz, Luis E.

    2013-12-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.

  13. Rho kinase regulates fragmentation and phagocytosis of apoptotic cells.

    PubMed

    Orlando, Kelly A; Stone, Nicole L; Pittman, Randall N

    2006-01-01

    During the execution phase of apoptosis, a cell undergoes cytoplasmic and nuclear changes that prepare it for death and phagocytosis. The end-point of the execution phase is condensation into a single apoptotic body or fragmentation into multiple apoptotic bodies. Fragmentation is thought to facilitate phagocytosis; however, mechanisms regulating fragmentation are unknown. An isoform of Rho kinase, ROCK-I, drives membrane blebbing through its activation of actin-myosin contraction; this raises the possibility that ROCK-I may regulate other execution phase events, such as cellular fragmentation. Here, we show that COS-7 cells fragment into a number of small apoptotic bodies during apoptosis; treating with ROCK inhibitors (Y-27632 or H-1152) prevents fragmentation. Latrunculin B and blebbistatin, drugs that interfere with actin-myosin contraction, also inhibit fragmentation. During apoptosis, ROCK-I is cleaved and activated by caspases, while ROCK-II is not activated, but rather translocates to a cytoskeletal fraction. siRNA knock-down of ROCK-I but not ROCK-II inhibits fragmentation of dying cells, consistent with ROCK-I being required for apoptotic fragmentation. Finally, cells dying in the presence of the ROCK inhibitor Y-27632 are not efficiently phagocytized. These data show that ROCK plays an essential role in fragmentation and phagocytosis of apoptotic cells. PMID:16259978

  14. Proteases in Fas-mediated apoptosis.

    PubMed

    Zhivotovsky, B; Burgess, D H; Schlegel, J; Pörn, M I; Vanags, D; Orrenius, S

    1997-01-01

    Involvement of a unique family of cysteine proteases in the multistep apoptotic process has been documented. Cloning of several mammalian genes identifies some components of this cellular response. However, it is currently unclear which protease plays a role as a signal and/or effector of apoptosis. We summarize contributions to the data concerning proteases in Fas-mediated apoptosis. PMID:9015753

  15. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells

    SciTech Connect

    Nicolaou, Katerina A.; Liapis, Vasilis; Evdokiou, Andreas; Constantinou, Constantina; Magiatis, Prokopios; Skaltsounis, Alex L.; Koumas, Laura; Costeas, Paul A.; Constantinou, Andreas I.

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer The effects of 6BIO and 7BIO are evaluated against five breast cancer cell lines. Black-Right-Pointing-Pointer 6BIO induces a caspase dependent apoptotic effect via the intrinsic pathway. Black-Right-Pointing-Pointer 7BIO promotes G{sub 2}/M cells cycle arrest. Black-Right-Pointing-Pointer 7BIO triggers a caspase-8 mediated apoptotic pathway. Black-Right-Pointing-Pointer 7BIO triggers and a caspase independent pathway. -- Abstract: Indirubin derivatives gained interest in recent years for their anticancer and antimetastatic properties. The objective of the present study was to evaluate and compare the anticancer properties of the two novel bromo-substituted derivatives 6-bromoindirubin-3 Prime -oxime (6BIO) and 7-bromoindirubin-3 Prime -oxime (7BIO) in five different breast cancer cell lines. Cell viability assays identified that 6BIO and 7BIO are most effective in preventing the proliferation of the MDA-MB-231-TXSA breast cancer cell line from a total of five breast cancer cell lined examined. In addition it was found that the two compounds induce apoptosis via different mechanisms. 6BIO induces caspase-dependent programmed cell death through the intrinsic (mitochondrial) caspase-9 pathway. 7BIO up-regulates p21 and promotes G{sub 2}/M cell cycle arrest which is subsequently followed by the activation of two different apoptotic pathways: (a) a pathway that involves the upregulation of DR4/DR5 and activation of caspase-8 and (b) a caspase independent pathway. In conclusion, this study provides important insights regarding the molecular pathways leading to cell cycle arrest and apoptosis by two indirubin derivatives that can find clinical applications in targeted cancer therapeutics.

  16. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons

    PubMed Central

    2012-01-01

    Background Exposure to ethanol during early development triggers severe neuronal death by activating multiple stress pathways and causes neurological disorders, such as fetal alcohol effects or fetal alcohol syndrome. This study investigated the effect of ethanol on intracellular events that predispose developing neurons for apoptosis via calcium-mediated signaling. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, mitochondrial dysfunction, altered calcium homeostasis and apoptosis-related proteins have been implicated in ethanol neurotoxicity. The present study was designed to evaluate the neuroprotective mechanisms of metformin (Met) and thymoquinone (TQ) during ethanol toxicity in rat prenatal cortical neurons at gestational day (GD) 17.5. Results We found that Met and TQ, separately and synergistically, increased cell viability after ethanol (100 mM) exposure for 12 hours and attenuated the elevation of cytosolic free calcium [Ca2+]c. Furthermore, Met and TQ maintained normal physiological mitochondrial transmembrane potential (??M), which is typically lowered by ethanol exposure. Increased cytosolic free [Ca2+]c and lowered mitochondrial transmembrane potential after ethanol exposure significantly decreased the expression of a key anti-apoptotic protein (Bcl-2), increased expression of Bax, and stimulated the release of cytochrome-c from mitochondria. Met and TQ treatment inhibited the apoptotic cascade by increasing Bcl-2 expression. These compounds also repressed the activation of caspase-9 and caspase-3 and reduced the cleavage of PARP-1. Morphological conformation of cell death was assessed by TUNEL, Fluoro-Jade-B, and PI staining. These staining methods demonstrated more cell death after ethanol treatment, while Met, TQ or Met plus TQ prevented ethanol-induced apoptotic cell death. Conclusion These findings suggested that Met and TQ are strong protective agents against ethanol-induced neuronal apoptosis in primary rat cortical neurons. The collective data demonstrated that Met and TQ have the potential to ameliorate ethanol neurotoxicity and revealed a possible protective target mechanism for the damaging effects of ethanol during early brain development. PMID:22260211

  17. Dual-functional bio-derived nanoparticulates for apoptotic antitumor therapy.

    PubMed

    Ding, Yang; Wang, Yazhe; Opoku-Damoah, Yaw; Wang, Cheng; Shen, Lingjia; Yin, Lifang; Zhou, Jianping

    2015-12-01

    The application of bio-derived nanoparticulates has gained a remarkable degree of interest as a promising sustained-release, site-targeted and completely biodegradable delivery system for chemotherapeutics. We hereby introduce a dual-functionalized biomimetic nanovector, cell-penetrating peptide (CPP)-anchored recombinant high density lipoproteins (cp-rHDL), which affords high payload and improved targeting of gambogic acid (GA), a therapeutic agent for apoptotic antitumor therapy. GA-loaded cp-rHDL nanoparticles (cp-rHDL/GA) consisted of hydrophobic core modulating GA, apolipoprotein A-I (apo A-I) for attractive integrating and tumor-homing, and lipophilic anchored R6H4 (RRRRRRHHHH, a pH-responsive CPP) offering a pH-controlled penetrating potential. Upon stepwise incubation with apo A-I and R6H4, cp-rHDL/GA presented several merits, including desirable physicochemical properties, superior biostability, and favorable buffering capacity resulting in proton sponge effect. Synergistic intracellular mechanism for scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, and pH-responsive R6H4 associated endocytotic pathway with rapid endo-lysosomal escape was also observed. This tailored cp-rHDL/GA displayed remarkable cytotoxicity and apoptotic effect via triggering p53 pathway, and provided approximately 5-fold increase in IC50 compared to free GA. Moreover, this rational biomimetic therapeutic strategy attained superior tumor accumulation and significant inhibition of tumor growth in HepG2 xenograft tumor animal models without measurable adverse effect. Results of this study demonstrated that bio-derived cp-rHDL/GA presents pH-responsive penetrating potential and efficient cellular internalization. This dual-functionalization model will open an avenue for exploration of multi-functional bio-derived drug delivery, thereby rendering potential broad applications in apoptotic anticancer therapy. PMID:26344366

  18. CDIP1-BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under ER stress

    PubMed Central

    Chu, Kiki; Hwang, So-Young; Yoon, Kyoung Wan; Byun, Sanguine; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W.

    2013-01-01

    SUMMARY Resolved ER stress response is essential for intracellular homeostatic balance, but unsettled ER stress can lead to apoptosis. Here, we show that a pro-apoptotic p53 target, CDIP1, acts as a key signal transducer of ER stress-mediated apoptosis. We identify BAP31, B-cell receptor-associated protein 31, as an interacting partner of CDIP1. Upon ER stress, CDIP1 is induced and enhances an association with BAP31 at the ER membrane. We also show that CDIP1 binding to BAP31 is required for BAP31 cleavage upon ER stress and for BAP31-Bcl-2 association. The recruitment of Bcl-2 to the BAP31-CDIP1 complex, as well as CDIP1-dependent tBid and caspase-8 activation, contributes to BAX oligomerization. Genetic knockout of CDIP1 in mice leads to impaired response to ER stress-mediated apoptosis. Together, our data demonstrate that the CDIP1/BAP31-mediated regulation of mitochondrial apoptosis pathway represents a novel mechanism for establishing an ER-mitochondrial cross-talk for ER stress-mediated apoptosis signaling. PMID:24139803

  19. VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria

    PubMed Central

    De Stefani, D; Bononi, A; Romagnoli, A; Messina, A; De Pinto, V; Pinton, P; Rizzuto, R

    2012-01-01

    Voltage-dependent anion channels (VDACs) are expressed in three isoforms, with common channeling properties and different roles in cell survival. We show that VDAC1 silencing potentiates apoptotic challenges, whereas VDAC2 has the opposite effect. Although all three VDAC isoforms are equivalent in allowing mitochondrial Ca2+ loading upon agonist stimulation, VDAC1 silencing selectively impairs the transfer of the low-amplitude apoptotic Ca2+ signals. Co-immunoprecipitation experiments show that VDAC1, but not VDAC2 and VDAC3, forms complexes with IP3 receptors, an interaction that is further strengthened by apoptotic stimuli. These data highlight a non-redundant molecular route for transferring Ca2+ signals to mitochondria in apoptosis. PMID:21720385

  20. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2).

    PubMed

    Ahamed, Maqusood; Ali, Daoud; Alhadlaq, Hisham A; Akhtar, Mohd Javed

    2013-11-01

    Increasing use of nickel oxide nanoparticles (NiO NPs) necessitates an improved understanding of their potential impact on human health. Previously, toxic effects of NiO NPs have been investigated, mainly on airway cells. However, information on effect of NiO NPs on human liver cells is largely lacking. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and induction of apoptotic response in human liver cells (HepG2) due to NiO NPs exposure. Prepared NiO NPs were crystalline and spherical shaped with an average diameter of 44 nm. NiO NPs induced cytotoxicity (cell death) and ROS generation in HepG2 cells in dose-dependent manner. Further, ROS scavenger vitamin C reduced cell death drastically caused by NiO NPs exposure indicating that oxidative stress plays an important role in NiO NPs toxicity. Micronuclei induction, chromatin condensation and DNA damage in HepG2 cells treated with NiO NPs suggest that NiO NPs induced cell death via apoptotic pathway. Quantitative real-time PCR analysis showed that following the exposure of HepG2 cells to NiO NPs, the expression level of mRNA of apoptotic genes (bax and caspase-3) were up-regulated whereas the expression level of anti-apoptotic gene bcl-2 was down-regulated. Moreover, activity of caspase-3 enzyme was also higher in NiO NPs treated cells. To the best of our knowledge this is the first report demonstrating that NiO NPs caused cytotoxicity via ROS and induced apoptosis in HepG2 cells, which is likely to be mediated through bax/bcl-2 pathway. This work warrants careful assessment of Ni NPs before their commercial and industrial applications. PMID:24139157

  1. β-Amyloid protein (Aβ) and human amylin regulation of apoptotic genes occurs through the amylin receptor.

    PubMed

    Jhamandas, Jack H; Mactavish, David

    2012-01-01

    Deposition of amyloid-beta (Aβ) protein, a 39-43 amino acid peptide, in the brain is a major pathological feature of Alzheimer's disease (AD). We have previously provided evidence that in primary cultures of rat basal forebrain and human fetal neurons (HFNs), neurotoxic effects of oligomeric Aβ are expressed through the amylin receptor. In this study, we utilized RT-PCR arrays to compare RNA expression levels of 84 markers for pro and anti- apoptotic signalling pathways following exposure of HFNs to either Aβ(1-42) (20 μM) or human amylin (2 μM). Oligomeric Aβ(1-42) or human amylin was applied to HFNs alone or after pre-treatment of cultures with the amylin receptor antagonist, AC253. Changes in RNA levels were then quantified and compared to each other in order to identify increases or decreases in gene expression of apoptotic markers. Applications of Aβ(1-42) or human amylin, but not the inactive inverse sequence Aβ(42-1) or rat amylin, resulted in a time-dependent marked increase in mediators of apoptosis including a 10- to 30-fold elevations in caspases 3, 6, 9, BID and XIAP levels. Amylin receptor antagonists, AC253 (10 μM) or AC187 (10 μM), significantly attenuated the induction of several pro-apoptotic mediators up-regulated following exposure to Aβ(1-42) or human amylin and increased the expression of several anti-apoptotic markers. These data allow us to identify key elements in the Aβ-induced apoptosis that are blocked by antagonism of the amylin receptor and further support the potential for amylin receptor blockade as a potential therapeutic avenue in AD. PMID:21947943

  2. Opium induces apoptosis in Jurkat cells via promotion of pro-apoptotic and inhibition of anti-apoptotic molecules

    PubMed Central

    Arababadi, Mohammad Kazemi; Asadikaram, Gholamreza

    2016-01-01

    Objective(s): The aim of this study was to determine the important molecules involved in apoptosis induction by opium in Jurkat cell line. Materials and Methods: Jurkat cells were incubated 48 hrs with 2.86×10-5 g/ml concentration of opium and apoptosis as well as expression levels of related molecules were measured. Results: Our results demonstrated that 50.3±0.2 percent of opium treated Jurkat cells were revealed apoptotic features. The levels of mRNA of several pro-apoptotic and anti-apoptotic molecules were increased and decreased, respectively, in the opium treated cells. The results also demonstrated that expression levels of BCL2, DFFA and NOL3 as anti-apoptotic molecules were increased in the opium treated cells. Conclusion: It seems that opium induces apoptosis in Jurkat cells via both intrinsic and extrinsic pathways. Although opium induces apoptosis in the cells but increased expression of some anti-apoptotic molecules may be a normal resistance of the cell for death. PMID:27081468

  3. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells.

    PubMed

    Wang, S; He, M-f; Chen, Y-h; Wang, M-y; Yu, X-M; Bai, J; Zhu, H-y; Wang, Y-y; Zhao, H; Mei, Q; Nie, J; Ma, J; Wang, J-f; Wen, Q; Ma, L; Wang, Y; Wang, X-n

    2013-01-01

    A cell-in-cell process refers to the invasion of one living cell into another homotypic or heterotypic cell. Different from non-apoptotic death processes of internalized cells termed entosis or cannibalism, we previously reported an apoptotic cell-in-cell death occurring during heterotypic cell-in-cell formation. In this study, we further demonstrated that the apoptotic cell-in-cell death occurred only in internalized immune killer cells expressing granzyme B (GzmB). Vacuole wrapping around the internalized cells inside the target cells was the common hallmark during the early stage of all cell-in-cell processes, which resulted in the accumulation of reactive oxygen species and subsequent mitochondrial injury of encapsulated killer or non-cytotoxic immune cells. However, internalized killer cells mediated rapid bubbling of the vacuoles with the subsequent degranulation of GzmB inside the vacuole of the target cells and underwent the reuptake of GzmB by killer cells themselves. The confinement of GzmB inside the vacuole surpassed the lysosome-mediated cell death occurring in heterotypic or homotypic entosis processes, resulting in a GzmB-triggered caspase-dependent apoptotic cell-in-cell death of internalized killer cells. On the contrary, internalized killer cells from GzmB-deficient mice underwent a typical non-apoptotic entotic cell-in-cell death similar to that of non-cytotoxic immune cells or tumor cells. Our results thus demonstrated the critical involvement of immune cells with cytotoxic property in apoptotic cell-in-cell death, which we termed as emperitosis taken from emperipolesis and apoptosis. Whereas entosis or cannibalism may serve as a feed-on mechanism to exacerbate and nourish tumor cells, emperitosis of immune killer cells inside tumor cells may serve as an in-cell danger sensation model to prevent the killing of target cells from inside, implying a unique mechanism for tumor cells to escape from immune surveillance. PMID:24113190

  4. Apoptotic Susceptibility to DNA Damage of Pluripotent Stem Cells Facilitates Pharmacologic Purging of Teratoma Risk

    PubMed Central

    Smith, Alyson J.; Nelson, Natalie G.; Oommen, Saji; Hartjes, Katherine A.; Folmes, Clifford D.; Terzic, Andre

    2012-01-01

    Pluripotent stem cells have been the focus of bioengineering efforts designed to generate regenerative products, yet harnessing therapeutic capacity while minimizing risk of dysregulated growth remains a challenge. The risk of residual undifferentiated stem cells within a differentiated progenitor population requires a targeted approach to eliminate contaminating cells prior to delivery. In this study we aimed to validate a toxicity strategy that could selectively purge pluripotent stem cells in response to DNA damage and avoid risk of uncontrolled cell growth upon transplantation. Compared with somatic cell types, embryonic stem cells and induced pluripotent stem cells displayed hypersensitivity to apoptotic induction by genotoxic agents. Notably, hypersensitivity in pluripotent stem cells was stage-specific and consistently lost upon in vitro differentiation, with the mean half-maximal inhibitory concentration increasing nearly 2 orders of magnitude with tissue specification. Quantitative polymerase chain reaction and Western blotting demonstrated that the innate response was mediated through upregulation of the BH3-only protein Puma in both natural and induced pluripotent stem cells. Pretreatment with genotoxic etoposide purged hypersensitive pluripotent stem cells to yield a progenitor population refractory to teratoma formation upon transplantation. Collectively, this study exploits a hypersensitive apoptotic response to DNA damage within pluripotent stem cells to decrease risk of dysregulated growth and augment the safety profile of transplant-ready, bioengineered progenitor cells. PMID:23197662

  5. Cadmium-Induced Oxidative Stress and Apoptotic Changes in the Testis of Freshwater Crab, Sinopotamon henanense

    PubMed Central

    Wang, Lan; Xu, Tuan; Lei, Wen-wen; Liu, Dong-mei; Li, Ying-jun; Xuan, Rui-jing; Ma, Jing-jin

    2011-01-01

    Cadmium (Cd), one of the most toxic environmental and industrial pollutants, is known to exert gonadotoxic and spermiotoxic effects. In the present study, we examined the toxic effect of Cd on the testis of freshwater crab, Sinopotamon henanense. Crabs were exposed to different Cd concentrations (from 0 to 116.00 mgL?1) for 7 d. Oxidative stress and apoptotic changes in the testes were detected. The activities of SOD, GPx and CAT initially increased and subsequently decreased with increasing Cd concentrations, which was accompanied with the increase in malondialdehyde (MDA) and H2O2 content in a concentration-dependent manner. Typical morphological characteristic and physiological changes of apoptosis were observed using a variety of methods (HE staining, AO/EB double fluorescent staining, Transmission Electron Microscope observation and DNA fragmentation analysis), and the activities of caspase-3 and caspase-9 were increased in a concentration-dependent manner after Cd exposure. These results led to the conclusion that Cd could induced oxidative damage as well as apoptosis in the testis, and the apoptotic processes may be mediated via mitochondria-dependent apoptosis pathway by regulating the activities of caspase-3 and caspase-9. PMID:22132153

  6. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy.

    PubMed

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y; Schenke-Layland, Katja

    2014-01-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes. PMID:24732136

  7. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens

    PubMed Central

    Andersen, Mads Hald

    2010-01-01

    Anti-apoptotic members of the Bcl-2 family (Bcl-2, Bcl-X(L) and Mcl-2) are pivotal regulators of apoptotic cell death. They are all highly overexpressed in cancers of different origin in which they enhance the survival of the cancer cells. Consequently, they represent prime candidates for anti-cancer therapy and specific antisense oligonucleotides or small molecule inhibitors have shown broad anti-cancer activities in pre-clinical models and are currently tested in clinical trials. In addition, immune-mediated tumor destruction is emerging as an interesting modality to treat cancer patients. Notably, spontaneous cellular immune responses against the Bcl-2 family proteins have been identified as frequent features in cancer patients underscoring that these proteins are natural targets for the immune system. Thus, Bcl-2 family may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies, alone or in the combination with conventional therapy. Here, we summarize the current knowledge of Bcl-2 family proteins as T-cell antigens, which has set the stage for the first explorative trial using these antigens in therapeutic vaccinations against cancer, and discuss future opportunities. PMID:21304176

  8. Apoptotic and anti-proliferative effects of all-trans retinoic acid

    SciTech Connect

    Zamora, Monica; Ortega, Juan Alberto; Alana, Lide; Vinas, Octavi; Mampel, Teresa . E-mail: tmampel@ub.edu

    2006-06-10

    We examined the apoptotic and anti-proliferative effects of all-trans retinoic acid (atRA) in HeLa cells. Our results demonstrated that HeLa cells were more sensitive to the anti-proliferative effects of atRA than to its apoptotic effects. Furthermore, we demonstrated that caspase inhibition attenuates cell death but does not alter the atRA-dependent reduction in cell proliferation, which suggests that atRA-induced apoptosis is independent of the arrest in cell proliferation. To check whether ANT proteins mediated these atRA effects, we transiently transfected cells with expression vectors encoding for individual ANT (adenine nucleotide translocase 1-3). Our results revealed that ANT1 and ANT3 over-expressing HeLa cells increased their atRA sensitivity. Thus, our results not only demonstrate the different functional activities of ANT isoforms, but also contribute to a better understanding of the properties of atRA as an anti-tumoral agent used in cancer therapy.

  9. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy

    PubMed Central

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

    2014-01-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes. PMID:24732136

  10. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

    2014-04-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes.

  11. Dendritic effect of ligand-coated nanoparticles: enhanced apoptotic activity of silica-berberine nanoconjugates.

    PubMed

    Halimani, Mahantappa; Chandran, S Prathap; Kashyap, Sudhir; Jadhav, V M; Prasad, B L V; Hotha, Srinivas; Maiti, Souvik

    2009-02-17

    We describe the synthesis and biological characterization of a novel prototype, namely, silica nanoconjugates bearing a covalently linked berberine, a plant alkaloid known to have antiproliferative activity. The effect of synthesized nanoconjugates on cell proliferation, the cell cycle profile, and apoptosis in the human cervical carcinoma cell line (HeLa), human hepatocellular liver carcinoma cell line (HepG2), and human embryonic kidney (HEK) 293T cell line has been studied and compared with the results obtained for free berberine. Our results show that all the nanoconjugates display higher antiproliferative activity than free berberine. The ability of these nanoconjugates to inhibit cellular proliferation is mediated by the cell cycle arrest at the G1 phase. Moreover, silica nanoconugates caused selective apoptotic arrest with a higher efficiency than free berberine followed by apoptotic cell death as shown by quantitative fluorescence-activated cell sorting analyses. Efficiency of the nanoconjugates increases upon an increase in the linker chain length, demonstrating the distinct role of the spacer chain that conjugates nanoparticles and ligands. The actual reason to show enhanced efficiency by the nanoconjugates has not been elucidated in the present study; however, we hypothesize that an increase in local concentration due to the confinement of a ligand on the nanosurface ("dendritic" effect) might have led to the observed effect. PMID:19146398

  12. Monitoring circulating apoptotic cells by in-vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Wei, Xunbin; Tan, Yuan; Chen, Yun; Zhang, Li; Li, Yan; Liu, Guangda; Wu, Bin; Wang, Chen

    2008-02-01

    Chemotherapies currently constitute one main venue of cancer treatment. For a large number of adult and elderly patients, however, treatment options are poor. These patients may suffer from disease that is resistant to conventional chemotherapy or may not be candidates for curative therapies because of advanced age or poor medical conditions. To control disease in these patients, new therapies must be developed that are selectively targeted to unique characteristics of tumor cell growth and metastasis. A reliable early evaluation and prediction of response to the chemotherapy is critical to its success. Chemotherapies induce apoptosis in tumor cells and a portion of such apoptotic cancer cells may be present in the circulation. However, the fate of circulating tumor cells is difficult to assess with conventional methods that require blood sampling. We report the in situ measurement of circulating apoptotic cells in live animals using in vivo flow cytometry, a novel method that enables real-time detection and quantification of circulating cells without blood extraction. Apoptotic cells are rapidly cleared from the circulation with a half-life of ~10 minutes. Real-time monitoring of circulating apoptotic cells can be useful for detecting early changes in disease processes, as well as for monitoring response to therapeutic intervention.

  13. Regulation of Apoptotic Endonucleases by EndoG

    PubMed Central

    Zhdanov, Dmitry D.; Fahmi, Tariq; Wang, Xiaoying; Apostolov, Eugene O.; Sokolov, Nikolai N.; Javadov, Sabzali

    2015-01-01

    Cells contain several apoptotic endonucleases, which appear to act simultaneously before and after cell death by destroying the host cell DNA. It is largely unknown how the endonucleases are being induced and whether they can regulate each other. This study was performed to determine whether apoptotic mitochondrial endonuclease G (EndoG) can regulate expression of other apoptotic endonucleases. The study showed that overexpression of mature EndoG in kidney tubular epithelial NRK-52E cells can increase expression of caspase-activated DNase (CAD) and four endonucleases that belong to DNase I group including DNase I, DNase X, DNase IL2, and DNase γ, but not endonucleases of the DNase 2 group. The induction of DNase I-type endonucleases was associated with DNA degradation in promoter/exon 1 regions of the endonuclease genes. These results together with findings on colocalization of immunostained endonucleases and TUNEL suggest that DNA fragmentation after EndoG overexpression was caused by DNase I endonucleases and CAD in addition to EndoG itself. Overall, these data provide first evidence for the existence of the integral network of apoptotic endonucleases regulated by EndoG. PMID:25849439

  14. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases.

    PubMed

    Dlamini, Zodwa; Tshidino, Shonisani C; Hull, Rodney

    2015-01-01

    Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets. PMID:26580598

  15. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    PubMed Central

    Dlamini, Zodwa; Tshidino, Shonisani C.; Hull, Rodney

    2015-01-01

    Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets. PMID:26580598

  16. Macrophage migration inhibitory factor interacts with HBx and inhibits its apoptotic activity

    SciTech Connect

    Zhang Shimeng; Lin Ruxian; Zhou Zhe; Wen Siyuan; Lin Li; Chen Suhong; Shan Yajun; Cong Yuwen; Wang Shengqi . E-mail: sqwang@nic.bmi.ac.cn

    2006-04-07

    HBx, a transcriptional transactivating protein of hepatitis B virus (HBV), is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the precise molecular mechanism remains largely elusive. We used the yeast two-hybrid system to identify that HBx interacts with MIF directly. Macrophage migration inhibitory factor (MIF) is implicated in the regulation of inflammation, cell growth, and even tumor formation. The interaction between HBx and MIF was verified with co-immunoprecipitation, GST pull-down, and cellular colocalization. The expression of MIF was up-regulated in HBV particle producing cell 2.2.15 compared with HepG2 cell. Both HBx and MIF cause HepG2 cell G /G{sub 1} phase arrest, proliferation inhibition, and apoptosis. However, MIF can counteract the apoptotic effect of HBx. These results may provide evidence to explain the link between HBV infection and hepatocellular carcinoma.

  17. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores.

    PubMed

    Salvador-Gallego, Raquel; Mund, Markus; Cosentino, Katia; Schneider, Jale; Unsay, Joseph; Schraermeyer, Ulrich; Engelhardt, Johann; Ries, Jonas; Garca-Sez, Ana J

    2016-02-15

    Bax is a key regulator of apoptosis that, under cell stress, accumulates at mitochondria, where it oligomerizes to mediate the permeabilization of the mitochondrial outer membrane leading to cytochrome c release and cell death. However, the underlying mechanism behind Bax function remains poorly understood. Here, we studied the spatial organization of Bax in apoptotic cells using dual-color single-molecule localization-based super-resolution microscopy. We show that active Bax clustered into a broad distribution of distinct architectures, including full rings, as well as linear and arc-shaped oligomeric assemblies that localized in discrete foci along mitochondria. Remarkably, both rings and arcs assemblies of Bax perforated the membrane, as revealed by atomic force microscopy in lipid bilayers. Our data identify the supramolecular organization of Bax during apoptosis and support a molecular mechanism in which Bax fully or partially delineates pores of different sizes to permeabilize the mitochondrial outer membrane. PMID:26783362

  18. PTD-XIAP protects against cerebral ischemia by anti-apoptotic and transcriptional regulatory mechanisms.

    PubMed

    Guégan, Christelle; Braudeau, Jérôme; Couriaud, Cécile; Dietz, Gunnar P H; Lacombe, Pierre; Bähr, Mathias; Nosten-Bertrand, Marika; Onténiente, Brigitte

    2006-04-01

    Caspases play a major role in the infarction process that follows occlusion of cerebral arteries and are important targets for stroke therapy. We have generated three fusion proteins that link various domains of the X chromosome-linked inhibitor of apoptosis (XIAP), a potent caspase inhibitor, to the protein transduction domain (PTD) of HIV-1/Tat, and have tested their efficacy after distal occlusion of the middle cerebral artery (dMCAO) in mice. PTD-XIAP failed to accumulate in brain structures after intravenous (iv) delivery, but properly transduced cortical cells when applied topically. Shorter constructs efficiently targeted the lesion after iv delivery. All proteins retained their caspase inhibitory activity and significantly reduced infarct volumes. PTD-XIAP reversed long-term impairments in the water maze test. Sequential activation of transcription factors was observed, suggesting that the effects of XIAP are mediated by both direct inhibition of apoptotic mechanisms and secondary regulation of transcription factors involved in neuronal survival. PMID:16361106

  19. Baicalin Reverses Depressive-Like Behaviours and Regulates Apoptotic Signalling Induced by Olfactory Bulbectomy.

    PubMed

    Yu, Hai-Yang; Yin, Zhu-Jun; Yang, Shui-Jin; Ma, Shi-Ping; Qu, Rong

    2016-03-01

    Apoptosis is thought to be involved in neurological disorders including major depression. In this study, we examined whether the polyphenolic compound baicalin could decrease apoptosis in the olfactory bulbectomy (OBX) depression rat model. OBX rats exhibited decreased performance in depression-like behavioural tests and showed evidence of increased oxidative stress, decreased synaptophysin expression, and hippocampal apoptosis. Treatment with baicalin (20 and 40 mg/kg) significantly reversed all of these changes. Baicalin modulated the levels or activity of malondialdehyde, superoxide dismutase, and glutathione peroxidase and prevented apoptotic protease-activating factor-1 expression, effectively suppressing caspase-mediated apoptosis signalling cascades. Our results demonstrate that baicalin has potent antidepressant activity, likely because of its ability to suppress apoptosis. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26681067

  20. AICAR Enhances the Phagocytic Ability of Macrophages towards Apoptotic Cells through P38 Mitogen Activated Protein Kinase Activation Independent of AMP-Activated Protein Kinase.

    PubMed

    Quan, Hui; Kim, Joung-Min; Lee, Hyun-Jung; Lee, Seong-Heon; Choi, Jeong-Il; Bae, Hong-Beom

    2015-01-01

    Recent studies have suggested that 5-aminoimidazole-4-carboxamide-1-?-D-ribofuranoside (AICAR) increases macrophage phagocytosis through adenosine monophosphate-activated protein kinase (AMPK). However, little information is available on the effects of AICAR on the clearance of apoptotic cells by macrophages, known as efferocytosis, which is essential in maintaining tissue homeostasis and resolving inflammation. AICAR increased p38 MAPK activation and the phagocytosis of apoptotic cells by macrophages, which were inhibited by the p38 MAPK inhibitor, SB203580, the TGF-beta-activated kinase 1 (TAK1) inhibitor, (5Z)-7-oxozeaenol, and siRNA-mediated knock-down of p38?. AICAR increased phosphorylation of Akt, but the inhibition of PI3K/Akt activity using LY294002 did not affect the AICAR-induced changes in efferocytosis in macrophages. CGS15943, a non-selective adenosine receptor antagonist, did not affect AICAR-induced changes in efferocytosis, but dipyridamole, an adenosine transporter inhibitor, diminished the AICAR-mediated increases in efferocytosis. AICAR-induced p38 MAPK phosphorylation was not inhibited by the AMPK inhibitor, compound C, or siRNA-mediated knock-down of AMPK?1. Inhibition of AMPK using compound C or 5'-iodotubercidin did not completely block AICAR-mediated increases in efferocytosis. Furthermore, AICAR also increased the removal of apoptotic neutrophils or thymocytes in mouse lungs. These results reveal a novel mechanism by which AICAR increases macrophage-mediated phagocytosis of apoptotic cells and suggest that AICAR may be used to treat efferocytosis-related inflammatory conditions. PMID:26020972

  1. AICAR Enhances the Phagocytic Ability of Macrophages towards Apoptotic Cells through P38 Mitogen Activated Protein Kinase Activation Independent of AMP-Activated Protein Kinase

    PubMed Central

    Lee, Hyun-Jung; Lee, Seong-Heon; Choi, Jeong-Il; Bae, Hong-Beom

    2015-01-01

    Recent studies have suggested that 5-aminoimidazole-4-carboxamide-1-?-D-ribofuranoside (AICAR) increases macrophage phagocytosis through adenosine monophosphate-activated protein kinase (AMPK). However, little information is available on the effects of AICAR on the clearance of apoptotic cells by macrophages, known as efferocytosis, which is essential in maintaining tissue homeostasis and resolving inflammation. AICAR increased p38 MAPK activation and the phagocytosis of apoptotic cells by macrophages, which were inhibited by the p38 MAPK inhibitor, SB203580, the TGF-beta-activated kinase 1 (TAK1) inhibitor, (5Z)-7-oxozeaenol, and siRNA-mediated knock-down of p38?. AICAR increased phosphorylation of Akt, but the inhibition of PI3K/Akt activity using LY294002 did not affect the AICAR-induced changes in efferocytosis in macrophages. CGS15943, a non-selective adenosine receptor antagonist, did not affect AICAR-induced changes in efferocytosis, but dipyridamole, an adenosine transporter inhibitor, diminished the AICAR-mediated increases in efferocytosis. AICAR-induced p38 MAPK phosphorylation was not inhibited by the AMPK inhibitor, compound C, or siRNA-mediated knock-down of AMPK?1. Inhibition of AMPK using compound C or 5-iodotubercidin did not completely block AICAR-mediated increases in efferocytosis. Furthermore, AICAR also increased the removal of apoptotic neutrophils or thymocytes in mouse lungs. These results reveal a novel mechanism by which AICAR increases macrophage-mediated phagocytosis of apoptotic cells and suggest that AICAR may be used to treat efferocytosis-related inflammatory conditions. PMID:26020972

  2. The peculiar apoptotic behavior of skeletal muscle cells.

    PubMed

    Salucci, Sara; Burattini, Sabrina; Baldassarri, Valentina; Battistelli, Michela; Canonico, Barbara; Valmori, Aurelio; Papa, Stefano; Falcieri, Elisabetta

    2013-08-01

    Apoptosis plays an active role in maintaining skeletal muscle homeostasis. Its deregulation is involved in several skeletal muscle disorders such as dystrophies, myopathies, disuse and sarcopenia. The aim of this work was to study in vitro the apoptotic behavior induced by etoposide, staurosporine and hydrogen peroxide in the C2C12 skeletal muscle cell line, comparing myoblast vs myotube sensitivity, investigated by means of morphological and cytofluorimetric analyses. Myotubes appeared more resistant than myoblasts to apoptotic induction. In myoblasts treated with etoposide, nuclei with chromatin condensation were observed, in the presence of a diffuse DNA fragmentation, as shown by confocal microscopy. The latter also appeared in myotubes, where apoptotic and normal nuclei coexisted inside the same syncytium. After staurosporine treatment, myobalsts evidenced late apoptotic features and a high number of TUNEL-positive nuclei. Secondary necrosis appeared in myotubes, where myonuclei with cleaved DNA again coexisted with normal myonuclei. After H₂O₂ exposure, myotubes, differently from myoblasts, showed a poor sensitivity to cell death. Intriguingly, autophagic granules appeared abundantly in myotubes after each treatment. In myotubes, mitochondria were better preserved than in myoblasts since those which were damaged were probably degraded through autophagic processes. These findings demonstrate a scarce sensitivity of myotubes to apoptotic stimuli due to acquisition of an apoptosis-resistant phenotype during differentiation. The presence of nuclear-dependent "territorial" death domains in the syncytium could explain a slower death of myotubes compared to mononucleated cells. In addition, autophagy could preserve and protect muscle cell integrity against chemical stimuli, making C2C12 cells, in particular myotubes, more resistant to apoptosis induction. PMID:23400589

  3. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes.

    PubMed

    Huang, F P; Platt, N; Wykes, M; Major, J R; Powell, T J; Jenkins, C D; MacPherson, G G

    2000-02-01

    This study identifies a dendritic cell (DC) subset that constitutively transports apoptotic intestinal epithelial cell remnants to T cell areas of mesenteric lymph nodes in vivo. Rat intestinal lymph contains two DC populations. Both populations have typical DC morphology, are major histocompatibility complex class II(hi), and express OX62, CD11c, and B7. CD4(+)/OX41(+) DCs are strong antigen-presenting cells (APCs). CD4(-)/OX41(-) DCs are weak APCs and contain cytoplasmic apoptotic DNA, epithelial cell-restricted cytokeratins, and nonspecific esterase (NSE)(+) inclusions, not seen in OX41(+) DCs. Identical patterns of NSE electrophoretic variants exist in CD4(-)/OX41(-) DCs, intestinal epithelial cells, and mesenteric node DCs but not in other DC populations, macrophages, or tissues. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL)-positive DCs and strongly NSE(+) DCs are present in intestinal lamina propria. Peyer's patches and mesenteric but not other lymph nodes contain many strongly NSE(+) DCs in interfollicular and T cell areas. Similar DCs are seen in the ileum and in T cell areas of mesenteric nodes in gnotobiotic rats. These results show that a distinct DC subset constitutively endocytoses and transports apoptotic cells to T cell areas and suggest a role for these DCs in inducing and maintaining peripheral self-tolerance. PMID:10662789

  4. Bak apoptotic pores involve a flexible C-terminal region and juxtaposition of the C-terminal transmembrane domains.

    PubMed

    Iyer, S; Bell, F; Westphal, D; Anwari, K; Gulbis, J; Smith, B J; Dewson, G; Kluck, R M

    2015-10-01

    Bak and Bax mediate apoptotic cell death by oligomerizing and forming a pore in the mitochondrial outer membrane. Both proteins anchor to the outer membrane via a C-terminal transmembrane domain, although its topology within the apoptotic pore is not known. Cysteine-scanning mutagenesis and hydrophilic labeling confirmed that in healthy mitochondria the Bak α9 segment traverses the outer membrane, with 11 central residues shielded from labeling. After pore formation those residues remained shielded, indicating that α9 does not line a pore. Bak (and Bax) activation allowed linkage of α9 to neighboring α9 segments, identifying an α9:α9 interface in Bak (and Bax) oligomers. Although the linkage pattern along α9 indicated a preferred packing surface, there was no evidence of a dimerization motif. Rather, the interface was invoked in part by Bak conformation change and in part by BH3:groove dimerization. The α9:α9 interaction may constitute a secondary interface in Bak oligomers, as it could link BH3:groove dimers to high-order oligomers. Moreover, as high-order oligomers were generated when α9:α9 linkage in the membrane was combined with α6:α6 linkage on the membrane surface, the α6-α9 region in oligomerized Bak is flexible. These findings provide the first view of Bak carboxy terminus (C terminus) membrane topology within the apoptotic pore. PMID:25744027

  5. TNFα induces ABCA1 through NF-κB in macrophages and in phagocytes ingesting apoptotic cells

    PubMed Central

    Gerbod-Giannone, Marie-Christine; Li, Yankun; Holleboom, Adriaan; Han, Seongah; Hsu, Li-Chung; Tabas, Ira; Tall, Alan R.

    2006-01-01

    Recent evidence suggests that tumor necrosis factor α (TNFα) signaling in vascular cells can have antiatherogenic consequences, but the mechanisms are poorly understood. TNFα is released by free cholesterol-loaded apoptotic macrophages, and the clearance of these cells by phagocytic macrophages may help to limit plaque development. Macrophage cholesterol uptake induces ATP-binding cassette (ABC) transporter ABCA1 promoting cholesterol efflux to apolipoprotein A-I and reducing atherosclerosis. We show that TNFα induces ABCA1 mRNA and protein in control and cholesterol-loaded macrophages and enhances cholesterol efflux to apolipoprotein A-I. The induction of ABCA1 by TNFα is reduced by 65% in IκB kinase β-deficient macrophages and by 30% in p38α-deficient macrophages, but not in jun kinase 1 (JNK1)- or JNK2-deficient macrophages. To evaluate the potential pathophysiological significance of these observations, we fed TNFα-secreting free cholesterol-loaded apoptotic macrophages to a healthy macrophage monolayer (phagocytes). ABCA1 mRNA and protein were markedly induced in the phagocytes, a response that was mediated both by TNFα signaling and by liver X receptor activation. Thus, TNFα signals primarily through NF-κB to induce ABCA1 expression in macrophages. In atherosclerotic plaques, this process may help phagocytic macrophages to efflux excess lipids derived from the ingestion of cholesterol-rich apoptotic corpses. PMID:16492740

  6. Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization but partially affects its apoptotic activity

    SciTech Connect

    Lee, Y.-H.; Cheng, C.-M.; Chang, Y.-F.; Wang, T.-Y.; Yuo, C.-Y.; E-mail: m815006@kmu.edu.tw

    2007-03-09

    Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in human tumor cells but not in normal cells. In addition, Apoptin also exhibits tumor-specific nuclear localization and tumor-specific phosphorylation on threonine 108 (T108). Here, we studied the effects of T108 phosphorylation on the tumor-specific nuclear localization and apoptotic activity of Apoptin. We first showed that a hemagglutinin (HA)-tagged Apoptin, but not the green fluorescent protein-fused Apoptin used in many previous studies, exhibited the same intracellular distribution pattern as native Apoptin. We then made and analyzed an HA-Apoptin mutant with its T108 phosphorylation site abolished. We found that Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization and abolishing the T108 phosphorylation of Apoptin does affect its apoptotic activity in tumor cells but only partially. Our results support the previous finding that Apoptin contains two distinct apoptosis domains located separately at the N- and C-terminal regions and suggest that the T108 phosphorylation may only be required for the apoptotic activity mediated through the C-terminal apoptosis domain.

  7. Cardioprotective activity of urocortin by preventing caspase-independent, non-apoptotic death in cultured neonatal rat cardiomyocytes exposed to ischemia

    SciTech Connect

    Takatani-Nakase, Tomoka; Takahashi, Koichi

    2010-11-12

    Research highlights: {yields} Ischemia induces high level of iPLA{sub 2} resulting in caspase-independent myocyte death. {yields} Urocortin causes iPLA{sub 2} down-regulation leading to avoidance of non-apoptotic death. {yields} The survival-promoting effect of urocortin is abrogated by CRH receptor antagonist. -- Abstract: Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemia caused elevation of the phospholipase A{sub 2} (iPLA{sub 2}) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of {approx}10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA{sub 2}, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.

  8. Manipulating the apoptotic pathway: potential therapeutics for cancer patients

    PubMed Central

    Bates, Darcy J P; Lewis, Lionel D

    2013-01-01

    This review summarizes the current state of scientific understanding of the apoptosis pathway, with a focus on the proteins involved in the pathway, their interactions and functions. This forms the rationale for detailing the preclinical and clinical pharmacology of drugs that modulate the pivotal proteins in this pathway, with emphasis on drugs that are furthest advanced in clinical development as anticancer agents. There is a focus on describing drugs that modulate three of the most promising targets in the apoptosis pathway, namely antibodies that bind and activate the death receptors, small molecules that inhibit the anti-apoptotic Bcl-2 family proteins, and small molecules and antisense oligonucleotides that inactivate the inhibitors of apoptosis, all of which drive the equilibrium of the apoptotic pathway towards apoptosis. These structurally different yet functionally related groups of drugs represent a promising novel approach to anticancer therapeutics whether used as monotherapy or in combination with either classical cytotoxic or other molecularly targeted anticancer agents. PMID:23782006

  9. Clearing the Dead: Apoptotic Cell Sensing, Recognition, Engulfment, and Digestion

    PubMed Central

    Hochreiter-Hufford, Amelia; Ravichandran, Kodi S.

    2013-01-01

    Clearance of apoptotic cells is the final stage of programmed cell death. Uncleared corpses can become secondarily necrotic, promoting inflammation and autoimmunity. Remarkably, even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. Recently, significant progress has been made in understanding the steps involved in prompt cell clearance in vivo. These include the sensing of corpses via “find me” signals, the recognition of corpses via “eat me” signals and their cognate receptors, the signaling pathways that regulate cytoskeletal rearrangement necessary for engulfment, and the responses of the phagocyte that keep cell clearance events “immunologically silent.” This study focuses on our understanding of these steps. PMID:23284042

  10. The major apoptotic pathway activated and suppressed by poliovirus.

    PubMed

    Belov, George A; Romanova, Lyudmila I; Tolskaya, Elena A; Kolesnikova, Marina S; Lazebnik, Yuri A; Agol, Vadim I

    2003-01-01

    Cells respond to poliovirus infection by switching on the apoptotic program, implementation of which is usually suppressed by viral antiapoptotic functions. We show here that poliovirus infection of HeLa cells or derivatives of MCF-7 cells was accompanied by the efflux of cytochrome c from mitochondria. This efflux occurred during both abortive infection (e.g., interrupted by guanidine-HCl and ending with apoptosis) and productive infection (leading to cytopathic effect). The former type of infection, but not the latter, was accompanied by truncation of the proapoptotic protein Bid. The virus-triggered cytochrome c efflux was suppressed by overexpression of Bcl-2. Both abortive and productive infections also resulted in a decreased level of procaspase-9, as revealed by Western blotting. In the former case, this decrease was accompanied by the accumulation of a protein with the electrophoretic mobility of active caspase-9. In contrast, in the productively infected cells, the latter protein was absent but caspase-9-related polypeptides with altered mobility could be detected. Both caspase-9 and caspase-3 were shown to be essential for the development of such hallmarks of virus-induced apoptosis as chromatin condensation, DNA degradation, and nuclear fragmentation. These and some other results suggest the following scenario. Poliovirus infection activates the apoptotic pathway, involving mitochondrial damage, cytochrome c efflux, and consecutive activation of caspase-9 and caspase-3. The apoptotic signal appears to be amplified by a loop which includes secondary processing of Bid. The implementation of the apoptotic program in productively infected cells may be suppressed, however, by the viral antiapoptotic functions, which act at a step(s) downstream of the cytochrome c efflux. The suppression appears to be caused, at least in part, by aberrant processing and degradation of procaspase-9. PMID:12477809

  11. A mathematical model for apoptotic switch in Drosophila

    NASA Astrophysics Data System (ADS)

    Ziraldo, Riccardo; Ma, Lan

    2015-10-01

    Apoptosis is an evolutionarily-conserved process of autonomous cell death. The molecular switch mechanism underlying the fate decision of apoptosis in mammalian cells has been intensively studied by mathematical modeling. In contrast, the apoptotic switch in invertebrates, with highly conserved signaling proteins and pathway, remains poorly understood mechanistically and calls for theoretical elucidation. In this study, we develop a mathematical model of the apoptosis pathway in Drosophila and compare the switch mechanism to that in mammals. Enumeration of the elementary reactions for the model demonstrates that the molecular interactions among the signaling components are considerably different from their mammalian counterparts. A notable distinction in network organization is that the direct positive feedback from the effector caspase (EC) to the initiator caspase in mammalian pathway is replaced by a double-negative regulation in Drosophila. The model is calibrated by experimental input-output relationship and the simulated trajectories exhibit all-or-none bimodal behavior. Bifurcation diagrams confirm that the model of Drosophila apoptotic switch possesses bistability, a well-recognized feature for an apoptosis system. Since the apoptotic protease activating factor-1 (APAF1) induced irreversible activation of caspase is an essential and beneficial property for the mammalian apoptotic switch, we perform analysis of the bistable caspase activation with respect to the input of DARK protein, the Drosophila homolog of APAF1. Interestingly, this bistable behavior in Drosophila is predicted to be reversible. Further analysis suggests that the mechanism underlying the systems property of reversibility is the double-negative feedback from the EC to the initiator caspase. Using theoretical modeling, our study proposes plausible evolution of the switch mechanism for apoptosis between organisms.

  12. Histopathological, Ultrastructural and Apoptotic Changes in Diabetic Rat Placenta

    PubMed Central

    Gül, Mehmet; Bayat, Nuray; Çetin, Aslı; Kepekçi, Remziye Aysun; Şimşek, Yavuz; Kayhan, Başak; Turhan, Uğur; Otlu, Ali

    2015-01-01

    Background: The exchange of substances between mother and fetus via the placenta plays a vital role during development. A number of developmental disorders in the fetus and placenta are observed during diabetic pregnancies. Diabetes, together with placental apoptosis, can lead to developmental and functional disorders. Aims: Histological, ultrastructural and apoptotic changes were investigated in the placenta of streptozotocin (STZ) induced diabetic rats. Study Design: Animal experimentation. Methods: In this study, a total of 12 female Wistar Albino rats (control (n=6) and diabetic (n=6)) were used. Rats in the diabetic group, following the administration of a single dose of STZ, showed blood glucose levels higher than 200 mg/dL after 72 hours. When pregnancy was detected after the rats were bred, two pieces of placenta and the fetuses were collected on the 20th day of pregnancy by cesarean incision under ketamine/ xylazine anesthesia from in four rats from the control and diabetic groups. Placenta tissues were processed for light microscopy and transmission electron microscopy (TEM). Hematoxylin-eosin (HE) and periodic acid Schiff-diastase (PAS-D) staining for light microscopic and caspase-3 staining for immunohistochemical investigations were performed for each placenta. Electron microscopy was performed on thin sections contrasted with uranyl acetate and lead nitrate. Results: Weight gain in the placenta and fetuses of diabetic rats and thinning of the decidual layer, thickening of the hemal membrane, apoptotic bodies, congestion in intervillous spaces, increased PAS-D staining in decidual cells and caspase-3 immunoreactivity were observed in the diabetic group. After the ultrastructural examination, the apoptotic appearance of the nuclei of trophoblastic cells, edema and intracytoplasmic vacuolization, glycogen accumulation, dilation of the endoplasmic reticulum and myelin figures were observed. In addition, capillary basement membrane thickening, capillary endothelial cells chromatin condensation in the nucleus and corrugation of the nucleus were found. Conclusion: Diabetes causes histomorphometric, ultrastructural and apoptotic changes in rat placenta. PMID:26185719

  13. Apoptotic Death of Cancer Stem Cells for Cancer Therapy

    PubMed Central

    He, Ying-Chun; Zhou, Fang-Liang; Shen, Yi; Liao, Duan-Fang; Cao, Deliang

    2014-01-01

    Cancer stem cells (CSCs) play crucial roles in tumor progression, chemo- and radiotherapy resistance, and recurrence. Recent studies on CSCs have advanced understanding of molecular oncology and development of novel therapeutic strategies. This review article updates the hypothesis and paradigm of CSCs with a focus on major signaling pathways and effectors that regulate CSC apoptosis. Selective CSC apoptotic inducers are introduced and their therapeutic potentials are discussed. These include synthetic and natural compounds, antibodies and recombinant proteins, and oligonucleotides. PMID:24823879

  14. Apoptotic lymphocytes induce progenitor cell mobilization after exercise.

    PubMed

    Mooren, Frank C; Krüger, Karsten

    2015-07-15

    There is evidence that apoptotic cells and their components have immunmodulatory properties and signaling function. The present study investigated first whether exercise-induced apoptosis and exercise-induced mobilization of progenitor cells are similarly affected by subjects' training status and, second, whether the appearance of dying cells in the circulation might mobilize progenitor cells. CD1 SWISS mice were subjected to a 10-wk endurance training using free wheel running or served as untrained controls. Mice of both groups performed an intensive exercise test after the training period at a velocity corresponding to 80% maximal oxygen uptake for 30 min. Cells from blood and bone marrow were analyzed, and apoptosis and number of progenitor cells determined via flow cytometry. In a second experiment, apoptotic cells were transferred into recipient mice, and mobilization of progenitor cells was analyzed while vital cells served as controls. In untrained animals, the exhaustive exercise was followed by an enhanced rate of annexin V positive CD3(+) cells in blood and bone marrow (P < 0.05), whereas no increase was found in trained mice. Similarly, exercise mobilized Sca-1(+)/c-kit(+) and Sca-1(+)/Flk(+) cells in untrained (P < 0.05) but not trained mice. Furthermore, application of apoptotic cells and their supernatant mobilized Sca-1(+)/c-kit(+) cells into the blood (P < 0.05), whereas Sca-1(+)/Flk(+) cells were not affected. The present study demonstrated that both lymphocyte apoptosis, as well as mobilization of progenitor cells are similarly related to training status. Furthermore, apoptotic cells seem to induce signals that effectively mobilize hematopoietic progenitor cells. The relevance of this effect for the adaptation to exercise stimuli remains to be shown. PMID:26023229

  15. Carbon disulfide induces rat testicular injury via mitochondrial apoptotic pathway.

    PubMed

    Guo, Yinsheng; Wang, Wei; Dong, Yu; Zhang, Zhen; Zhou, Yijun; Chen, Guoyuan

    2014-08-01

    Carbon disulfide (CS2), one of the most important volatile organic chemicals, was shown to have serious impairment to male reproductive system. But the underline mechanism is still unclear. In the present study, we aim to investigate the male germ cell apoptosis induced by CS2 exposure alone and by co-administration with cyclosporin A (CsA), which is the inhibitor of membrane permeability transition pore (MPTP). It was shown that CS2 exposure impaired ultrastructure of germ cells, increased the numbers of apoptotic germ cells, accumulated intracellular level of calcium, elevated ROS level, and increased activities of complexes of respiratory chain. Meanwhile, exposure to CS2 dramatically decreased the mitochondrial transmembrane potential (ΔΨm) and levels of ATP and MPTP opening. Exposure to CS2 can also cause a significantly dose-dependent increase in the expression levels of Bax, Cytc, Caspase-9, and Caspase-3, but decreased the expression level of Bcl-2. Moreover, co-administration of CsA with CS2 can reverse or alleviate the above apoptotic damage effects of CS2 on testicular germ cells. Taken together, our findings suggested that CS2 can cause damage to testicular germ cells via mitochondrial apoptotic pathway, and MPTP play a crucial role in this process. PMID:24582363

  16. Apoptotic cell signaling in cancer progression and therapy

    PubMed Central

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2011-01-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed. PMID:21340093

  17. In non-transformed cells Bak activates upon loss of anti-apoptotic Bcl-XL and Mcl-1 but in the absence of active BH3-only proteins.

    PubMed

    Senft, D; Weber, A; Saathoff, F; Berking, C; Heppt, M V; Kammerbauer, C; Rothenfusser, S; Kellner, S; Kurgyis, Z; Besch, R; Häcker, G

    2015-01-01

    Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak. PMID:26610208

  18. In non-transformed cells Bak activates upon loss of anti-apoptotic Bcl-XL and Mcl-1 but in the absence of active BH3-only proteins

    PubMed Central

    Senft, D; Weber, A; Saathoff, F; Berking, C; Heppt, M V; Kammerbauer, C; Rothenfusser, S; Kellner, S; Kurgyis, Z; Besch, R; Häcker, G

    2015-01-01

    Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak. PMID:26610208

  19. Apoptotic neurodegeneration in the context of traumatic injury to the developing brain.

    TOXLINE Toxicology Bibliographic Information

    Bittigau P; Sifringer M; Felderhoff-Mueser U; Ikonomidou C

    2004-10-01

    Head trauma is the leading cause of death and disability in the pediatric population. Some recent studies on neuropathological and biochemical features of traumatic injury to the developing brain revealed interesting aspects and potential targets for future research. Trauma triggers both excitotoxic and apoptotic neurodegeneration in the developing rat brain. Apoptotic neurodegeneration occurs in a delayed fashion over several days and contributes in an age-dependent fashion to neuropathologic outcome following head trauma, with the immature brain being exceedingly sensitive. Biochemical studies indicate that both the extrinsic and the intrinsic apoptotic pathways are involved in pathogenesis of apoptotic cell death following trauma in the developing brain and that caspase inhibition ameliorates apoptotic neurodegeneration in an infant head trauma model. Given the major contribution of apoptotic neurodegeneration to neuropathologic outcome following trauma to the developing brain, interference with apoptotic pathways may comprise a potential therapeutic target in pediatric traumatic brain injury.

  20. Apoptotic neurodegeneration in the context of traumatic injury to the developing brain.

    PubMed

    Bittigau, Petra; Sifringer, Marco; Felderhoff-Mueser, Ursula; Ikonomidou, Chrysanthy

    2004-10-01

    Head trauma is the leading cause of death and disability in the pediatric population. Some recent studies on neuropathological and biochemical features of traumatic injury to the developing brain revealed interesting aspects and potential targets for future research. Trauma triggers both excitotoxic and apoptotic neurodegeneration in the developing rat brain. Apoptotic neurodegeneration occurs in a delayed fashion over several days and contributes in an age-dependent fashion to neuropathologic outcome following head trauma, with the immature brain being exceedingly sensitive. Biochemical studies indicate that both the extrinsic and the intrinsic apoptotic pathways are involved in pathogenesis of apoptotic cell death following trauma in the developing brain and that caspase inhibition ameliorates apoptotic neurodegeneration in an infant head trauma model. Given the major contribution of apoptotic neurodegeneration to neuropathologic outcome following trauma to the developing brain, interference with apoptotic pathways may comprise a potential therapeutic target in pediatric traumatic brain injury. PMID:15581279

  1. Key role for Bak activation and Bak-Bax interaction in the apoptotic response to vinblastine.

    PubMed

    Upreti, Meenakshi; Chu, Rong; Galitovskaya, Elena; Smart, Sherri K; Chambers, Timothy C

    2008-07-01

    Microtubule inhibitors such as vinblastine cause mitotic arrest and subsequent apoptosis through the intrinsic mitochondrial pathway. However, although Bcl-2 family proteins have been implicated as distal mediators, their precise role is largely unknown. In this study, we investigated the role of Bak in vinblastine-induced apoptosis. Bak was mainly monomeric in untreated KB-3 cells, and multimers corresponding to dimer, trimer, and higher oligomers were observed after vinblastine treatment. The oligomeric Bak species were strongly diminished in cells stably overexpressing Bcl-xL. Immunoprecipitation with a conformation-dependent Bak antibody revealed that vinblastine induced Bak activation. Reciprocal immunoprecipitations indicated that vinblastine induced the interaction of active Bak with active Bax. Furthermore, Bcl-xL overexpression prevented Bak and Bax interaction and strongly inhibited apoptosis, whereas Bcl-2 overexpression did not prevent Bak-Bax interaction and only weakly inhibited apoptosis. The relative contributions of Bak and Bax were investigated using fibroblasts deficient in one or both of these proteins; double knockouts were highly resistant compared with single knockouts, with vinblastine sensitivities in the order of Bak(+)/Bax(+) > Bak(+)/Bax(-) > Bak(-)/Bax(+) > Bak(-)/Bax(-). These results highlight Bak as a key mediator of vinblastine-induced apoptosis and show for the first time activation and oligomerization of Bak by an antimitotic agent. In addition, our results suggest that the interaction of the activated forms of Bak and Bax represents a key distal step in the apoptotic response to this important chemotherapeutic drug. PMID:18645031

  2. The Extrathyronine Actions of Iodine as Antioxidant, Apoptotic, and Differentiation Factor in Various Tissues

    PubMed Central

    Anguiano, Brenda; Delgado, Guadalupe

    2013-01-01

    Background Seaweed is an important dietary component and a rich source of iodine in several chemical forms in Asian communities. Their high consumption of this element (25 times higher than in Western countries) has been associated with the low incidence of benign and cancerous breast and prostate disease in Japanese people. Summary We review evidence showing that, in addition to being a component of the thyroid hormone, iodine can be an antioxidant as well as an antiproliferative and differentiation agent that helps to maintain the integrity of several organs with the ability to take up iodine. In animal and human studies, molecular iodine (I2) supplementation exerts a suppressive effect on the development and size of both benign and cancerous neoplasias. Investigations by several groups have demonstrated that these effects can be mediated by a variety of mechanisms and pathways, including direct actions, in which the oxidized iodine dissipates the mitochondrial membrane potential, thereby triggering mitochondrion-mediated apoptosis, and indirect effects through iodolipid formation and the activation of peroxisome proliferator–activated receptors type gamma, which, in turn, trigger apoptotic or differentiation pathways. Conclusions We propose that the International Council for the Control of Iodine Deficient Disorders recommend that iodine intake be increased to at least 3 mg/day of I2 in specific pathologies to obtain the potential extrathyroidal benefits described in the present review. PMID:23607319

  3. Counteraction of Apoptotic and Inflammatory Effects of Adriamycin in the Liver Cell Culture by Clinopitolite.

    PubMed

    Yapislar, Hande; Taskin, Eylem; Ozdas, Sule; Akin, Demet; Sonmez, Emine

    2016-04-01

    Growing evidence has been reported on adriamycin (ADR) hepatotoxicity in literature. Hepatotoxicity caused by the use of drugs has a serious undesirable effect in the cure of cancer patients that needs to be eliminated. The exact mechanism of ADR on non-cancerous tissue still remains to be a mystery. The zeolite (clinoptilolite) minerals form a complex group of aluminosilicates that often occur as accessory minerals in intermediate and basic rocks. In light of this information, we investigated the possible anti-inflammatory and anti-apoptotic effects of clinoptilolite in ADR that is inducing the toxicity in primary liver cell culture. Primary liver cell culture from rat was used in the study. We had three experiment groups including the following: (1) cells treated only with 50 μM ADR for 24 h, (2) cells treated with the 50 μM ADR for 24 h and then treated with 10(-4) M zeolite for 1 h, and (3) cells were incubated with 50 μM ADR for 24 h and then incubated with 10(-4) M zeolite for 24 h to test its long-term effects. After that, western blotting was performed in order to evaluate protein expression levels of several inflammation markers including IL-1β, tumor necrosis factor (TNF)-α, and nuclear factor kappa B (NF-κB), and immunohistochemistry was carried out to detect apoptosis in liver cell culture. Also, TdT-dUTP Terminal Nick-End Labeling (TUNEL) method was used for detecting apoptosis. We found elevated levels of inflammatory protein and apoptotic markers in ADR-administered cells (p < 0.05). Inflammatory and apoptotic markers decreased significantly after treated with zeolite (p < 0.05). The present study was pointed out that ADR causes hepatotoxicity via apoptosis and/or inflammation processes resulting from initiator NF-κB and TNF which causes proinflammatory mediators such as IL-1β. Elevation of inflammation might give rise to trigger apoptosis. Clinoptilolite counteracted the apoptosis and inflammation induced by ADR arising from the decrease in NF-κB, TNF-α, and IL-1β protein levels. PMID:26306587

  4. Localization of dynein light chains 1 and 2 and their pro-apoptotic ligands.

    PubMed

    Day, Catherine L; Puthalakath, Hamsa; Skea, Gretchen; Strasser, Andreas; Barsukov, Igor; Lian, Lu-Yun; Huang, David C S; Hinds, Mark G

    2004-02-01

    The dynein and myosin V motor complexes are multi-protein structures that function to transport molecules and organelles within the cell. DLC (dynein light-chain) proteins, found as components of both dynein and myosin V motor complexes, connect the complexes to their cargoes. One of the roles of these motor complexes is to selectively sequester the pro-apoptotic 'BH3-only' (Bcl-2 homology 3-only) proteins, Bim (Bcl-2-interacting mediator of cell death) and Bmf (Bcl-2-modifying factor), and so regulate their cell death-inducing function. In vivo DLC2 is found exclusively as a component of the myosin V motor complex and Bmf binds DLC2 selectively. On the other hand, Bim interacts with DLC1 (LC8), an integral component of the dynein motor complex. The two DLCs share 93% sequence identity yet show unambiguous in vivo specificity for their respective BH3-only ligands. To investigate this specificity the three-dimensional solution structure of DLC2 was elucidated using NMR spectroscopy. In vitro structural and mutagenesis studies show that Bmf and Bim have identical binding characteristics to recombinant DLC2 or DLC1. Thus the selectivity shown by Bmf and Bim for binding DLC1 or DLC2, respectively, does not reside in their DLC-binding domains. Remarkably, mutational analysis of DLC1 and DLC2 indicates that a single surface residue (residue 41) determines the specific localization of DLCs with their respective motor complexes. These results suggest a molecular mechanism for the specific compartmentalization of DLCs and their pro-apoptotic cargoes and implicate other protein(s) in defining the specificity between the cargoes and the DLC proteins. PMID:14561217

  5. Localization of dynein light chains 1 and 2 and their pro-apoptotic ligands.

    PubMed Central

    Day, Catherine L; Puthalakath, Hamsa; Skea, Gretchen; Strasser, Andreas; Barsukov, Igor; Lian, Lu-Yun; Huang, David C S; Hinds, Mark G

    2004-01-01

    The dynein and myosin V motor complexes are multi-protein structures that function to transport molecules and organelles within the cell. DLC (dynein light-chain) proteins, found as components of both dynein and myosin V motor complexes, connect the complexes to their cargoes. One of the roles of these motor complexes is to selectively sequester the pro-apoptotic 'BH3-only' (Bcl-2 homology 3-only) proteins, Bim (Bcl-2-interacting mediator of cell death) and Bmf (Bcl-2-modifying factor), and so regulate their cell death-inducing function. In vivo DLC2 is found exclusively as a component of the myosin V motor complex and Bmf binds DLC2 selectively. On the other hand, Bim interacts with DLC1 (LC8), an integral component of the dynein motor complex. The two DLCs share 93% sequence identity yet show unambiguous in vivo specificity for their respective BH3-only ligands. To investigate this specificity the three-dimensional solution structure of DLC2 was elucidated using NMR spectroscopy. In vitro structural and mutagenesis studies show that Bmf and Bim have identical binding characteristics to recombinant DLC2 or DLC1. Thus the selectivity shown by Bmf and Bim for binding DLC1 or DLC2, respectively, does not reside in their DLC-binding domains. Remarkably, mutational analysis of DLC1 and DLC2 indicates that a single surface residue (residue 41) determines the specific localization of DLCs with their respective motor complexes. These results suggest a molecular mechanism for the specific compartmentalization of DLCs and their pro-apoptotic cargoes and implicate other protein(s) in defining the specificity between the cargoes and the DLC proteins. PMID:14561217

  6. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-{alpha}2b peptide

    SciTech Connect

    Blank, Viviana C.; Pena, Clara; Roguin, Leonor P.

    2010-02-15

    In the search of mimetic peptides of the interferon-{alpha}2b molecule (IFN-{alpha}2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-{alpha}2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-{alpha}2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

  7. RGDechi-hCit: αvβ3 Selective Pro-Apoptotic Peptide as Potential Carrier for Drug Delivery into Melanoma Metastatic Cells

    PubMed Central

    Del Gatto, Annarita; Di Gaetano, Sonia; Guarnieri, Daniela; Saviano, Michele; Zaccaro, Laura

    2014-01-01

    αvβ3 integrin is an important tumor marker widely expressed on the surface of cancer cells. Recently, we reported some biological features of RGDechi-hCit, an αvβ3 selective peptide antagonist. In the present work, we mainly investigated the pro-apoptotic activity of the molecule and its ability to penetrate the membrane of WM266 cells, human malignant melanoma cells expressing high levels of αvβ3 integrin. For the first time we demonstrated the pro-apoptotic effect and the ability of RGDechi-hCit to enter into cell overexpressing αvβ3 integrin mainly by clathrin- and caveolin-mediated endocytosis. Furthermore, we deepened and confirmed the selectivity, anti-adhesion, and anti-proliferative features of the peptide. Altogether these experiments give insight into the biological behavior of RGDechi-hCit and have important implications for the employment of the peptide as a new selective carrier to deliver drugs into the cell and as a therapeutic and diagnostic tool for metastatic melanoma. Moreover, since the peptide shows a pro-apoptotic effect, a great perspective could be the development of a new class of selective systems containing RGDechi-hCit and pro-apoptotic molecules or other therapeutic agents to attain a synergic action. PMID:25248000

  8. Investigation of the mechanism and apoptotic pathway induced by 4β cinnamido linked podophyllotoxins against human lung cancer cells A549.

    PubMed

    Kamal, Ahmed; Nayak, V Lakshma; Bagul, Chandrakant; Vishnuvardhan, M V P S; Mallareddy, Adla

    2015-11-01

    Apoptosis is essential for normal development and the maintenance of homeostasis. It plays a necessary role to protect against carcinogenesis by eliminating damaged cells. Many studies have demonstrated that the dysregulation of apoptosis results in cancer and this provides an approach to develop therapeutic agents via inducing apoptosis. In our previous studies 4β-cinnamido linked podophyllotoxin conjugates were synthesized and evaluated for their cytotoxic activity in a panel of five human cancer cell lines and the new molecules like 17a and 17f were considered as potential leads. The cytotoxic activity was comparable to etoposide. These observations prompted us to investigate the mechanism underplaying the cytotoxic activity and apoptotic pathway induced by these compounds in human lung cancer cells A459. The results of the present study revealed that these compounds exhibited DNA topoisomerase IIα inhibition and induced mitochondrial mediated apoptosis. It was further confirmed by Mitochondrial membrane potential, Cytochrome c release, cleavage of poly (ADP-ribose) polymerase (PARP), Reactive oxygen species (ROS) generation, regulation of antiapoptotic protein Bcl-2 and pro apoptotic protein Bax studied by Western blot analysis. Annexin V-FITC assay also suggested that these compounds induced cell death by apoptosis. Pretreatment with N-acetyl-L-cysteine (NAC) prevented the generation of ROS. Further, pretreatment with NAC significantly inhibited 17a and 17f induced apoptosis, suggesting that ROS are the key mediators for 17a and 17f induced apoptosis. These data indicate that these compounds might induce apoptosis in A549 cells through a ROS mediated mitochondrial dysfunction pathway. Moreover, these compounds did not significantly inhibit the noncancerous human embryonic kidney cells, HEK-293. Docking studies also elucidate the potential of these molecules to bind to the DNA topoisomerase II. Podophyllotoxin analogs were investigated for their mechanism and apoptotic pathway against lung cancer cell line, A549. These podophyllotoxin analogs inhibited DNA topoisomerase IIα and induced mitochondrial mediated apoptosis in lung cancer cell line, A549. Western blot analysis suggested that these compounds inhibited the DNA topoisomerase IIα. Studies like, Measurement of mitochondrial membrane potential (∆Ψm), Generation of intracellular reactive oxygen species (ROS) and Annexin V-FITC assay suggested that these compounds induced mitochondrial mediated apoptosis. Pretreatment with N-acetyl-L-cysteine (NAC) suggested that ROS plays a role in 17a and 17f induced apoptosis. Further the apoptotic effect of these compounds was confirmed by western blot analysis of pro apoptotic protein Bax and antiapoptotic protein Bcl-2, Cytochrome c release and cleavage of poly (ADP-ribose) polymerase (PARP). Moreover, these compounds did not significantly inhibit the noncancerous human embryonic kidney cells, HEK-293. PMID:26386574

  9. Apoptotic Cell Localization in Preantral and Antral Follicles in Relation to Non-cyclic and Cyclic Gilts.

    PubMed

    Phoophitphong, D; Srisuwatanasagul, S; Koonjaenak, S; Tummaruk, P

    2016-06-01

    The objective of this study was to determine apoptotic cell localization in preantral and antral follicles of porcine ovaries. Additionally, the proportion of cells undergoing apoptosis was also compared between delayed puberty gilts and normal cyclic gilts. Ovarian tissues were obtained from 34 culled gilts with age and weight of 270.1 ± 3.9 days and 143.8 ± 2.4 kg, respectively. The gilts were classified according to their ovarian appearance as 'non-cyclic' (n = 7) and 'cyclic' (n = 27) gilts. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay was used to determine apoptotic cell expression in different compartments of the ovarian tissue sections. All apparent preantral (n = 110) and antral (n = 262) follicles were evaluated using image analysis software. It was found that apoptotic cells were expressed in both granulosa (22.2%) and theca cell layers (21.3%) of the follicles in the porcine ovaries. The proportion of apoptotic cells in the granulosa layer in the follicles was positively correlated with that in the theca layer (r = 0.90, p < 0.001). Apoptosis did not differ significantly between preantral and antral follicles in either granulosa (27.8% and 26.4%, p > 0.05) or theca cell layers (28.6% and 26.5%, p > 0.05). The proportion of apoptotic cells in non-cyclic gilts was higher than cyclic gilts in both granulosa (31.7% and 22.6%, p < 0.001) and theca cell layers (34.8% and 20.2%, p < 0.001). This study indicated that apoptosis of the granulosa and theca cell layers in the follicles was more pronounced in the ovarian tissue of delayed puberty gilts than cyclic gilts. This implied that apoptosis could be used as a biologic marker for follicular development/function and also that apoptosis was significantly associated with anoestrus or delayed puberty in gilts, commonly observed in tropical climates. PMID:27080320

  10. PEGylated apoptotic protein-loaded PLGA microspheres for cancer therapy

    PubMed Central

    Byeon, Hyeong Jun; Kim, Insoo; Choi, Ji Su; Lee, Eun Seong; Shin, Beom Soo; Youn, Yu Seok

    2015-01-01

    The aim of the current study was to investigate the antitumor potential of poly (D,L-lactic-co-glycolic acid) microspheres (PLGA MSs) containing polyethylene glycol (PEG)-conjugated (PEGylated) tumor necrosis factor–related apoptosis-inducing ligand (PEG-TRAIL). PEG-TRAIL PLGA MSs were prepared by using a water-in-oil-in-water double-emulsion method, and the apoptotic activities of supernatants released from the PLGA MSs at days 1, 3, and 7 were examined. The antitumor effect caused by PEG-TRAIL PLGA MSs was evaluated in pancreatic Mia Paca-2 cell-xenografted mice. PEG-TRAIL PLGA MS was found to be spherical and 14.4±1.06 μm in size, and its encapsulation efficiency was significantly greater than that of TRAIL MS (85.7%±4.1% vs 43.3%±10.9%, respectively). The PLGA MS gradually released PEG-TRAIL for 14 days, and the released PEG-TRAIL was shown to have clear apoptotic activity in Mia Paca-2 cells, whereas TRAIL released after 1 day had a negligible activity. Finally, PEG-TRAIL PLGA MS displayed remarkably greater antitumor efficacy than blank or TRAIL PLGA MS in Mia Paca-2 cell-xenografted mice in terms of tumor volume and weight, apparently due to increased stability and well-retained apoptotic activity of PEG-TRAIL in PLGA MS. We believe that this PLGA MS system, combined with PEG-TRAIL, should be considered a promising candidate for treating pancreatic cancer. PMID:25632232

  11. Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing.

    PubMed

    Singh, B N; Upreti, D K; Singh, B R; Pandey, G; Verma, S; Roy, S; Naqvi, A H; Rawat, A K S

    2015-04-01

    Quorum sensing (QS) regulates group behaviors of Candida albicans such as biofilm, hyphal growth, and virulence factors. The sesquiterpene alcohol farnesol, a QS molecule produced by C. albicans, is known to regulate the expression of virulence weapons of this fungus. Fluconazole (FCZ) is a broad-spectrum antifungal drug that is used for the treatment of C. albicans infections. While FCZ can be cytotoxic at high concentrations, our results show that at much lower concentrations, quercetin (QC), a dietary flavonoid isolated from an edible lichen (Usnea longissima), can be implemented as a sensitizing agent for FCZ-resistant C. albicans NBC099, enhancing the efficacy of FCZ. QC enhanced FCZ-mediated cell killing of NBC099 and also induced cell death. These experiments indicated that the combined application of both drugs was FCZ dose dependent rather than QC dose dependent. In addition, we found that QC strongly suppressed the production of virulence weapons-biofilm formation, hyphal development, phospholipase, proteinase, esterase, and hemolytic activity. Treatment with QC also increased FCZ-mediated cell death in NBC099 biofilms. Interestingly, we also found that QC enhances the anticandidal activity of FCZ by inducing apoptotic cell death. We have also established that this sensitization is reliant on the farnesol response generated by QC. Molecular docking studies also support this conclusion and suggest that QC can form hydrogen bonds with Gln969, Thr1105, Ser1108, Arg1109, Asn1110, and Gly1061 in the ATP binding pocket of adenylate cyclase. Thus, this QS-mediated combined sensitizer (QC)-anticandidal agent (FCZ) strategy may be a novel way to enhance the efficacy of FCZ-based therapy of C. albicans infections. PMID:25645848

  12. Quercetin Sensitizes Fluconazole-Resistant Candida albicans To Induce Apoptotic Cell Death by Modulating Quorum Sensing

    PubMed Central

    Singh, B. R.; Pandey, G.; Verma, S.; Roy, S.; Naqvi, A. H.

    2015-01-01

    Quorum sensing (QS) regulates group behaviors of Candida albicans such as biofilm, hyphal growth, and virulence factors. The sesquiterpene alcohol farnesol, a QS molecule produced by C. albicans, is known to regulate the expression of virulence weapons of this fungus. Fluconazole (FCZ) is a broad-spectrum antifungal drug that is used for the treatment of C. albicans infections. While FCZ can be cytotoxic at high concentrations, our results show that at much lower concentrations, quercetin (QC), a dietary flavonoid isolated from an edible lichen (Usnea longissima), can be implemented as a sensitizing agent for FCZ-resistant C. albicans NBC099, enhancing the efficacy of FCZ. QC enhanced FCZ-mediated cell killing of NBC099 and also induced cell death. These experiments indicated that the combined application of both drugs was FCZ dose dependent rather than QC dose dependent. In addition, we found that QC strongly suppressed the production of virulence weapons—biofilm formation, hyphal development, phospholipase, proteinase, esterase, and hemolytic activity. Treatment with QC also increased FCZ-mediated cell death in NBC099 biofilms. Interestingly, we also found that QC enhances the anticandidal activity of FCZ by inducing apoptotic cell death. We have also established that this sensitization is reliant on the farnesol response generated by QC. Molecular docking studies also support this conclusion and suggest that QC can form hydrogen bonds with Gln969, Thr1105, Ser1108, Arg1109, Asn1110, and Gly1061 in the ATP binding pocket of adenylate cyclase. Thus, this QS-mediated combined sensitizer (QC)-anticandidal agent (FCZ) strategy may be a novel way to enhance the efficacy of FCZ-based therapy of C. albicans infections. PMID:25645848

  13. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts.

    PubMed

    McCoy, Francis; Darbandi, Rashid; Chen, Si-Ing; Eckard, Laura; Dodd, Keela; Jones, Kelly; Baucum, Anthony J; Gibbons, Jennifer A; Lin, Sue-Hwa; Colbran, Roger J; Nutt, Leta K

    2013-03-29

    The metabolism of the Xenopus laevis egg provides a cell survival signal. We found previously that increased carbon flux from glucose-6-phosphate (G6P) through the pentose phosphate pathway in egg extracts maintains NADPH levels and calcium/calmodulin regulated protein kinase II (CaMKII) activity to phosphorylate caspase 2 and suppress cell death pathways. Here we show that the addition of G6P to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase 2 by protein phosphatase 1. Thus, G6P sustains the phosphorylation of caspase 2 by CaMKII at Ser-135, preventing the induction of caspase 2-mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways. PMID:23400775

  14. Human Immunodeficiency Virus Type 1 Tat Induces Apoptosis and Increases Sensitivity to Apoptotic Signals by Up-Regulating FLICE/Caspase-8

    PubMed Central

    Bartz, Steven R.; Emerman, Michael

    1999-01-01

    Apoptosis contributes to the loss of CD4 cells during human immunodeficiency virus type 1 (HIV-1) infection. Although the product of the env gene, gp160/gp120, is known to play a role in cell death mediated by HIV-1, the role of other HIV-1 genes in the process is unclear. We found that HIV-1 lacking the env gene (HIVΔenv) still induced apoptosis in T-cell lines and primary CD4 T cells. The ability to induce apoptosis was attributable to Tat, a viral regulatory protein. Tat induction of apoptosis was separate from the transactivation function of Tat, required expression of the second exon of Tat, and was associated with the increased expression and activity of caspase-8 (casp-8), a signaling molecule in apoptotic pathways. Moreover, induction of apoptosis could be prevented by treating cells with an inhibitor of casp-8. In addition, we show that HIV-1Δenv infection and Tat expression increased the sensitivity of cells to Fas-mediated apoptosis, an apoptotic pathway that signals via casp-8. The up-regulation of casp-8 by HIV-1 Tat expression may contribute to the increased apoptosis and sensitivity to apoptotic signals observed in the cells of HIV-1-infected persons. PMID:9971775

  15. Akt attenuates apoptotic death through phosphorylation of H2A under hydrogen peroxide-induced oxidative stress in PC12 cells and hippocampal neurons

    PubMed Central

    Park, Ji Hye; Kim, Chung Kwon; Lee, Sang Bae; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Although the essential role of protein kinase B (PKB)/Akt in cell survival signaling has been clearly established, the mechanism by which Akt mediates the cellular response to hydrogen peroxide (H2O2)-induced oxidative stress remains unclear. We demonstrated that Akt attenuated neuronal apoptosis through direct association with histone 2A (H2A) and phosphorylation of H2A at threonine 17. At early time points during H2O2 exposure of PC12 cells and primary hippocampal neurons, when the cells can tolerate the level of DNA damage, Akt was activated and phosphorylated H2A, leading to inhibition of apoptotic death. At later time points, Akt delivered the NAD+-dependent protein deacetylase Sirtuin 2 (Sirt 2) to the vicinity of phosphorylated H2A in response to irreversible DNA damage, thereby inducing H2A deacetylation and subsequently leading to apoptotic death. Ectopically expressed T17A-substituted H2A minimally interacted with Akt and failed to prevent apoptosis under oxidative stress. Thus Akt-mediated H2A phosphorylation has an anti-apoptotic function in conditions of H2O2-induced oxidative stress in neurons and PC12 cells. PMID:26899247

  16. Mediation Analysis

    PubMed Central

    MacKinnon, David P.; Fairchild, Amanda J.; Fritz, Matthew S.

    2010-01-01

    Mediating variables are prominent in psychological theory and research. A mediating variable transmits the effect of an independent variable on a dependent variable. Differences between mediating variables and confounders, moderators, and covariates are outlined. Statistical methods to assess mediation and modern comprehensive approaches are described. Future directions for mediation analysis are discussed. PMID:16968208

  17. The Bax/Bcl-2 apoptotic pathway is not responsible for the increase in apoptosis in the RU486-treated rat uterus during early pregnancy.

    PubMed

    Theron, Kathrine E; Penny, Clement B; Hosie, Margot J

    2013-12-01

    An increase in apoptotic activity has been observed in both the rabbit and the rat endometria following treatment with RU486. The aim of this study was to assess whether Bax and Bcl-2 signaling, in response to RU486, could be crucial role players mediating apoptosis in the rat uterus during early pregnancy. RU486 is a partial progesterone (P4) and estrogen receptor antagonist, functioning to actively silence P4 receptor gene-associated transcription. Although an increase in apoptosis as a result of RU486 administration has been previously reported in rabbits, the specific apoptotic factors and pathways involved in driving this process have not yet been established. Immunofluorescent techniques were used to determine protein expression levels of both Bax and Bcl-2 in RU486-treated endometria at days 4.5, 5.5 and 6.5 of pregnancy. The Bax/Bcl-2 index was used to determine the overall pro- or anti-apoptotic setting at each day of pregnancy, following RU486 administration. Changes in the Bax and Bcl-2 gene expression levels as a consequence of RU486 administration were evaluated using RT-qPCR. Both the protein and gene expression analyses suggest that RU486 induces a change toward an overall anti-apoptotic signal within the Bax/Bcl-2 pathway. These results suggest that the observed increase in apoptosis following RU486 administration is not driven by a shift in the Bax/Bcl-2 ratio toward cell death, when the P4 and estrogen receptors are partially inactivated by RU486, but is possibly regulated by another apoptotic pathway. PMID:24287037

  18. Macrophages programmed by apoptotic cells inhibit epithelial-mesenchymal transition in lung alveolar epithelial cells via PGE2, PGD2, and HGF

    PubMed Central

    Yoon, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Park, Young Mi; Kang, Jihee Lee

    2016-01-01

    Apoptotic cell clearance results in the release of growth factors and the action of signaling molecules involved in tissue homeostasis maintenance. Here, we investigated whether and how macrophages programmed by apoptotic cells inhibit the TGF-β1-induced Epithelial-mesenchymal transition (EMT) process in lung alveolar epithelial cells. Treatment with conditioned medium derived from macrophages exposed to apoptotic cells, but not viable or necrotic cells, inhibited TGF-β1-induced EMT, including loss of E-cadherin, synthesis of N-cadherin and α-smooth muscle actin, and induction of EMT-activating transcription factors, such as Snail1/2, Zeb1/2, and Twist1. Exposure of macrophages to cyclooxygenase (COX-2) inhibitors (NS-398 and COX-2 siRNA) or RhoA/Rho kinase inhibitors (Y-27632 and RhoA siRNA) and LA-4 cells to antagonists of prostaglandin E2 (PGE2) receptor (EP4 [AH-23848]), PGD2 receptors (DP1 [BW-A868C] and DP2 [BAY-u3405]), or the hepatocyte growth factor (HGF) receptor c-Met (PHA-665752), reversed EMT inhibition by the conditioned medium. Additionally, we found that apoptotic cell instillation inhibited bleomycin-mediated EMT in primary mouse alveolar type II epithelial cells in vivo. Our data suggest a new model for epithelial cell homeostasis, by which the anti-EMT programming of macrophages by apoptotic cells may control the progressive fibrotic reaction via the production of potent paracrine EMT inhibitors. PMID:26875548

  19. Macrophages programmed by apoptotic cells inhibit epithelial-mesenchymal transition in lung alveolar epithelial cells via PGE2, PGD2, and HGF.

    PubMed

    Yoon, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Park, Young Mi; Kang, Jihee Lee

    2016-01-01

    Apoptotic cell clearance results in the release of growth factors and the action of signaling molecules involved in tissue homeostasis maintenance. Here, we investigated whether and how macrophages programmed by apoptotic cells inhibit the TGF-β1-induced Epithelial-mesenchymal transition (EMT) process in lung alveolar epithelial cells. Treatment with conditioned medium derived from macrophages exposed to apoptotic cells, but not viable or necrotic cells, inhibited TGF-β1-induced EMT, including loss of E-cadherin, synthesis of N-cadherin and α-smooth muscle actin, and induction of EMT-activating transcription factors, such as Snail1/2, Zeb1/2, and Twist1. Exposure of macrophages to cyclooxygenase (COX-2) inhibitors (NS-398 and COX-2 siRNA) or RhoA/Rho kinase inhibitors (Y-27632 and RhoA siRNA) and LA-4 cells to antagonists of prostaglandin E2 (PGE2) receptor (EP4 [AH-23848]), PGD2 receptors (DP1 [BW-A868C] and DP2 [BAY-u3405]), or the hepatocyte growth factor (HGF) receptor c-Met (PHA-665752), reversed EMT inhibition by the conditioned medium. Additionally, we found that apoptotic cell instillation inhibited bleomycin-mediated EMT in primary mouse alveolar type II epithelial cells in vivo. Our data suggest a new model for epithelial cell homeostasis, by which the anti-EMT programming of macrophages by apoptotic cells may control the progressive fibrotic reaction via the production of potent paracrine EMT inhibitors. PMID:26875548

  20. Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient

    NASA Technical Reports Server (NTRS)

    Sun, E.; Gao, Y.; Chen, J.; Roberts, A. I.; Wang, X.; Chen, Z.; Shi, Y.

    2004-01-01

    Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance.

  1. Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient.

    PubMed

    Sun, E; Gao, Y; Chen, J; Roberts, A I; Wang, X; Chen, Z; Shi, Y

    2004-12-01

    Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance. PMID:15375386

  2. Development of novel cyclic peptides as pro-apoptotic agents.

    PubMed

    Brindisi, Margherita; Maramai, Samuele; Brogi, Simone; Fanigliulo, Emanuela; Butini, Stefania; Guarino, Egeria; Casagni, Alice; Lamponi, Stefania; Bonechi, Claudia; Nathwani, Seema M; Finetti, Federica; Ragonese, Francesco; Arcidiacono, Paola; Campiglia, Pietro; Valenti, Salvatore; Novellino, Ettore; Spaccapelo, Roberta; Morbidelli, Lucia; Zisterer, Daniela M; Williams, Clive D; Donati, Alessandro; Baldari, Cosima; Campiani, Giuseppe; Ulivieri, Cristina; Gemma, Sandra

    2016-07-19

    Our recent finding that paclitaxel behaves as a peptidomimetic of the endogenous protein Nur77 inspired the design of two peptides (PEP1 and PEP2) reproducing the effects of paclitaxel on Bcl-2 and tubulin, proving the peptidomimetic nature of paclitaxel. Starting from these peptide-hits, we herein describe the synthesis and the biological investigation of linear and cyclic peptides structurally related to PEP2. While linear peptides (2a,b, 3a,b, 4, 6a-f) were found inactive in cell-based assays, biological analysis revealed a pro-apoptotic effect for most of the cyclic peptides (5a-g). Cellular permeability of 5a (and also of 2a,b) on HL60 cells was assessed through confocal microscopy analysis. Further cellular studies on a panel of leukemic cell lines (HL60, Jurkat, MEC, EBVB) and solid tumor cell lines (breast cancer MCF-7 cells, human melanoma A375 and 501Mel cells, and murine melanoma B16F1 cells) confirmed the pro-apoptotic effect of the cyclic peptides. Cell cycle analysis revealed that treatment with 5a, 5c, 5d or 5f resulted in an increase in the number of cells in the sub-G0/G1 peak. Direct interaction with tubulin (turbidimetric assay) and with microtubules (immunostaining experiments) was assessed in vitro for the most promising compounds. PMID:27150036

  3. Interaction of Late Apoptotic and Necrotic Cells with Vitronectin

    PubMed Central

    Stepanek, Ondrej; Brdicka, Tomas; Angelisova, Pavla; Horvath, Ondrej; Spicka, Jiri; Stockbauer, Petr; Man, Petr; Horejsi, Vaclav

    2011-01-01

    Background Vitronectin is an abundant plasma glycoprotein identified also as a part of extracellular matrix. Vitronectin is substantially enriched at sites of injured, fibrosing, inflamed, and tumor tissues where it is believed to be involved in wound healing and tissue remodeling. Little is known about the mechanism of vitronectin localization into the damaged tissues. Methodology/Principal Findings 2E12 antibody has been described to bind a subset of late apoptotic cells. Using immunoisolation followed by mass spectrometry, we identified the antigen recognized by 2E12 antibody as vitronectin. Based on flow cytometry, we described that vitronectin binds to the late apoptotic and necrotic cells in cell cultures in vitro as well as in murine thymus and spleen in vivo. Confocal microscopy revealed that vitronectin binds to an intracellular cytoplasmic structure after the membrane rupture. Conclusions/Significance We propose that vitronectin could serve as a marker of membrane disruption in necrosis and apoptosis for flow cytometry analysis. Moreover, we suggest that vitronectin binding to dead cells may represent one of the mechanisms of vitronectin incorporation into the injured tissues. PMID:21573223

  4. In vitro apoptotic and DNA damaging potential of nanobarium oxide.

    PubMed

    Alarifi, Saud; Ali, Daoud; Al-Bishri, Widad

    2016-01-01

    Barium oxide nanoparticles (BaONPs) are an important industrial compound and are widely used in polymers and paints. In this study, apoptotic and genotoxic effects of BaONPs in mouse embryonic fibroblast (L929) cells were determined by using single-cell gel test. In vitro cytotoxicity assays were performed to assess BaONPs' toxicity in L929 cells. Mild cytotoxicity was observed in L929 cells due to BaONPs. BaONPs increased lipid peroxidation, catalase, and superoxide dismutase levels and lowered glutathione levels in L929 cells. This was accompanied by concomitant generation of reactive oxygen species and activation of caspase-3 in BaONPs-treated L929 cells. On the other hand, when we exposed L929 cells to BaONPs for 24 and 48 hours (comet assay), there was a duration- and dose-dependent increase in DNA impairment detected in the single-cell gel test. Thus, BaONPs exhibit genotoxic and apoptotic effects in L929 cells, most likely due to initiation of oxidative damage. PMID:26834473

  5. In vitro apoptotic and DNA damaging potential of nanobarium oxide

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Al-Bishri, Widad

    2016-01-01

    Barium oxide nanoparticles (BaONPs) are an important industrial compound and are widely used in polymers and paints. In this study, apoptotic and genotoxic effects of BaONPs in mouse embryonic fibroblast (L929) cells were determined by using single-cell gel test. In vitro cytotoxicity assays were performed to assess BaONPs’ toxicity in L929 cells. Mild cytotoxicity was observed in L929 cells due to BaONPs. BaONPs increased lipid peroxidation, catalase, and superoxide dismutase levels and lowered glutathione levels in L929 cells. This was accompanied by concomitant generation of reactive oxygen species and activation of caspase-3 in BaONPs-treated L929 cells. On the other hand, when we exposed L929 cells to BaONPs for 24 and 48 hours (comet assay), there was a duration- and dose-dependent increase in DNA impairment detected in the single-cell gel test. Thus, BaONPs exhibit genotoxic and apoptotic effects in L929 cells, most likely due to initiation of oxidative damage. PMID:26834473

  6. Tumor-targeting novel manganese complex induces ROS-mediated apoptotic and autophagic cancer cell death

    PubMed Central

    LIU, JIA; GUO, WENJIE; LI, JING; LI, XIANG; GENG, JI; CHEN, QIUYUN; GAO, JING

    2015-01-01

    In this study, the antitumor activity of the novel manganese (II) compound, Adpa-Mn {[(Adpa)Mn(Cl)(H2O)] (Adpa=bis(2-pyridylmethyl)amino-2-propionic acid)}, and its possible mechanisms of action were investigated. In vitro, the growth inhibitory effects of Adpa-Mn (with IC50 values lower than 15 μM) on tumor cell lines were examined by MTT assay. We found that this compound was more selective against cancer cells than the popular chemotherapeutic reagent, cisplatin. We then found that Adpa-Mn achieved its selectivity against cancer cells through the transferrin (Tf)-transferrin receptor (TfR) system, which is highly expressed in tumor cells. Furthermore, Adpa-Mn induced both apoptosis and autophagy, as indicated by chromatin condensation, the activation of poly(ADP-ribose) polymerase (PARP), Annexin V/prop-idium iodide staining, an enhanced fluorescence intensity of monodansylcadaverine (MDC), as well as the elevated expression of the autophagy-related protein, microtubule-associated protein 1 light chain 3 (LC3). In addition, Adpa-Mn induced the generation of intracellular reactive oxygen species (ROS) and its anticancer effects were significantly reduced following pre-treatment with the antioxidant, N-acetyl cysteine, indicating that ROS triggered cell death. In vivo, the induction of apoptosis and autophagy in tumor tissue was confirmed following treatment with Adpa-Mn, which contributed to its significant antitumor activity against hepatocellular carcinoma (Hep-A cell) xenografts at 10 mg/kg. Taken together, these data suggest the possible use of Adpa-Mn as a novel anticancer drug. PMID:25604962

  7. Senescence may mediate conversion of tau phosphorylation-induced apoptotic escape to neurodegeneration.

    PubMed

    Wang, Jian-Zhi; Wang, Zhi-Hao

    2015-08-01

    Neurodegeneration is the characteristic pathology in the brains of Alzheimer's disease (AD). However, the nature and molecular mechanism leading to the degeneration are not clarified. Given that only the neurons filled with neurofibrillary tangles survive to the end stage of the disease and the major component of the tangles is the hyperphosphorylated tau proteins, it is conceivable that tau hyperphosphorylation must play a crucial role in AD neurodegeneration. We have demonstrated that tau hyperphosphorylation renders the cells more resistant to the acute apoptosis. The molecular mechanisms involve substrate competition of tau and β-catenin for glycogen synthase kinase 3β (GSK-3β); activation of Akt; preservation of Bcl-2 and suppression of Bax, cytosolic cytochrome-c, and caspase-3 activity; and upregulation of unfolded protein response (UPR), i.e., up-regulating phosphorylation of PERK, eIF2 and IRE1 with an increased cleavage of ATF6 and ATF4. On the other hand, tau hyperphosphorylation promotes its intracellular accumulation and disrupts axonal transport; hyperphosphorylated tau also impairs cholinergic function and inhibits proteasome activity. These findings indicate that tau hyperphosphorylation and its intracellular accumulation play dual role in the evolution of AD. We speculate that transient tau phosphorylation helps cells abort from an acute apoptosis, while persistent tau hyperphosphorylation/accumulation may trigger cell senescence that eventually causes a chronic neurodegeneration. Therefore, the nature of "AD neurodegeneration" may represent a new type of tau-regulated chronic neuron death; and the stage of cell senescence may provide a broad window for the intervention of AD. PMID:25777063

  8. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells

    SciTech Connect

    Dieudonne, Marie-Noelle; Bussiere, Marianne; Dos Santos, Esther; Leneveu, Marie-Christine; Giudicelli, Yves . E-mail: biochip@wanadoo.fr; Pecquery, Rene

    2006-06-23

    It is well established that obesity is a risk factor for breast cancer and that blood levels of adiponectin, a hormone mainly secreted by white adipocytes, are inversely correlated with the body fat mass. As adiponectin elicits anti-proliferative effects in some cell types, we tested the hypothesis that adiponectin could influence human breast cancer MCF-7 cell growth. Here we show that MCF-7 cells express adiponectin receptors and respond to human recombinant adiponectin by reducing their growth, AMPkinase activation, and p42/p44 MAPkinase inactivation. Further, we demonstrate that the anti-proliferative effect of adiponectin involves activation of cell apoptosis and inhibition of cell cycle. These findings suggest that adiponectin could act in vivo as a paracrine/endocrine growth inhibitor towards mammary epithelial cells. Moreover, adipose adiponectin production being strongly reduced in obesity, this study may help to explain why obesity is a risk factor of developing breast cancers.

  9. Traditional Mediation.

    ERIC Educational Resources Information Center

    Hafner, Arthur W.; And Others

    1992-01-01

    Four articles address traditional mediation in library services, including the librarian as mediator, the reference librarian as information intermediary, recommitment to patrons' information needs, and mediation in reference service to extend patron success. (87 references) (LRW)

  10. Protopine, a novel microtubule-stabilizing agent, causes mitotic arrest and apoptotic cell death in human hormone-refractory prostate cancer cell lines.

    PubMed

    Chen, Chun-Han; Liao, Cho-Hwa; Chang, Ya-Ling; Guh, Jih-Hwa; Pan, Shiow-Lin; Teng, Che-Ming

    2012-02-01

    In this study, we investigated the anticancer effect of protopine on human hormone-refractory prostate cancer (HRPC) cells. Protopine exhibited an anti-proliferative effect by induction of tubulin polymerization and mitotic arrest, which ultimately led to apoptotic cell death. The data suggest that protopine increased the activity of cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex and that contributed to cell apoptosis by modulating mitochondria-mediated signaling pathways, such as Bcl-2 phosphorylation and Mcl-1 down-regulation. In conclusion, the data suggest that protopine is a novel microtubule stabilizer with anticancer activity in HRPC cells through apoptotic pathway by modulating Cdk1 activity and Bcl-2 family of proteins. PMID:22033245

  11. Stim1, PKCδ and RasGRP proteins set a threshold for pro-apoptotic Erk signaling during B cell development

    PubMed Central

    Limnander, Andre; Depeille, Philippe; Freedman, Tanya S.; Liou, Jen; Leitges, Michael; Kurosaki, Tomohiro; Roose, Jeroen P.; Weiss, Arthur

    2013-01-01

    Clonal deletion of autoreactive B cells is crucial to prevent autoimmunity, but the signaling mechanisms that regulate this checkpoint remain undefined. Here we characterized a previously unrecognized Ca2+-driven Erk activation pathway, which was pro-apoptotic and biochemically distinct from DAG-induced Erk activation. This pathway required PKCδ and RasGRP proteins and depended on Stim1 concentrations, which control the magnitude of Ca2+ entry. Developmental regulation of these proteins was associated with selective activation of the pathway in B cells prone to negative selection. This checkpoint was impaired in PKCδ-deficient mice, which developed B cell autoimmunity. Conversely, Stim1 overexpression conferred a competitive disadvantage to developing B cells. These findings establish Ca2+-dependent Erk signaling as a critical pro-apoptotic pathway that mediates B cell negative selection. PMID:21441934

  12. Memantine blocks mitochondrial OPA1 and cytochrome c release, and subsequent apoptotic cell death in glaucomatous retina

    PubMed Central

    Ju, Won-Kyu; Kim, Keun-Young; Angert, Mila; Duong-Polk, Karen X.; Lindsey, James D.; Ellisman, Mark H.; Weinreb, Robert N.

    2009-01-01

    Purpose To determine whether intraocular pressure (IOP) elevation alters OPA1 expression and triggers OPA1 release, as well as whether the uncompetitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist memantine blocks OPA1 release and subsequent apoptotic cell death in glaucomatous DBA/2J mouse retina. Methods Preglaucomatous DBA/2J mice received memantine (5 mg/kg, i.p. injection, twice a day for 3 months) and IOP in the eyes was measured monthly. RGC loss was counted following Fluoro-Gold labeling. OPA1, Dnm1, Bcl-2 and Bax mRNA were measured by Taqman qPCR. OPA1 protein was assessed by immunohistochemistry and Western blot. Apoptotic cell death was assessed by TUNEL staining. Results Memantine treatment significantly increased RGC survival in glaucomatous DBA/2J mice. Memantine treatment increased the 75 kDa OPA1 isoform but did not alter the 80 and 90 kDa isoforms. The isoforms of OPA1 were significantly increased in the cytosol of the vehicle-treated glaucomatous retinas but were significantly decreased in memantine-treated glaucomatous retinas. OPA1 immunoreactivity was decreased in the photoreceptors of both vehicle- and memantine-treated glaucomatous retinas but was increased in the outer plexiform layer of only the memantine-treated glaucomatous retinas. Memantine blocked apoptotic cell death in the GCL, increased Bcl-2 gene expression, and decreased Bax gene expression. Conclusions OPA1 release from mitochondria in glaucomatous mouse retina is inhibited by blockade of glutamate receptor activation. Because this OPA1 effect was accompanied by increased Bcl-2 expression, decreased Bax expression and apoptosis blockade, glutamate receptor activation in the glaucomatous retina may involve a distinct mitochondria-mediated cell death pathway. PMID:18936150

  13. Molecular analysis of functional redundancy among anti-apoptotic Bcl-2 proteins and its role in cancer cell survival

    PubMed Central

    Eichhorn, Joshua M.; Alford, Sarah E.; Sakurikar, Nandini; Chambers, Timothy C.

    2014-01-01

    Bcl-2 family proteins act as essential regulators and mediators of intrinsic apoptosis. Several lines of evidence suggest that the anti-apoptotic members of the family, including Bcl-2, Bcl-xL and Mcl-1, exhibit functional redundancy. However, the current evidence is largely indirect, and based mainly on pharmacological data using small-molecule inhibitors. In order to study compensation and redundancy of anti-apoptotic Bcl-2 proteins at the molecular level, we used a combined knockdown/overexpression strategy to essentially replace the function of one member with another. The results show that HeLa cells are strictly dependent on Mcl-1 for survival and correspondingly refractory to the Bcl-2/Bcl-xL inhibitor ABT-263, and remain resistant to ABT-263 in the context of Bcl-xL overexpression because endogenous Mcl-1 continues to provide the primary guardian role. However, if Mcl-1 is knocked down in the context of Bcl-xL overexpression, the cells become Bcl-xL-dependent and sensitive to ABT-263. We also show that Bcl-xL compensates for loss of Mcl-1 by sequestration of two key pro-apoptotic Bcl-2 family members, Bak and Bim, normally bound to Mcl-1, and that Bim is essential for cell death induced by Mcl-1 knockdown. To our knowledge, this is the first example where cell death induced by loss of Mcl-1 was rescued by the silencing of a single BH3-only Bcl-2 family member. In colon carcinoma cell lines, Bcl-xL and Mcl-1 also play compensatory roles, and Mcl-1 knockdown sensitizes cells to ABT-263. The results, obtained employing a novel strategy of combining knockdown and overexpression, provide unique molecular insight into the mechanisms of compensation by pro-survival Bcl-2 family proteins. PMID:24556425

  14. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment.

    PubMed

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5mg/kg body weight compared to free Curcumin at 35mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. PMID:26612707

  15. COMPUTATIONAL MODELING OF SIGNALING PATHWAYS MEDIATING CELL CYCLE AND APOPTOTIC RESPONSES TO IONIZING RADIATION MEDIATED DNA DAMAGE

    EPA Science Inventory

    Demonstrated of the use of a computational systems biology approach to model dose response relationships. Also discussed how the biologically motivated dose response models have only limited reference to the underlying molecular level. Discussed the integration of Computational S...

  16. Atorvastatin induced hepatic oxidative stress and apoptotic damage via MAPKs, mitochondria, calpain and caspase12 dependent pathways.

    PubMed

    Pal, Sankhadeep; Ghosh, Manoranjan; Ghosh, Shatadal; Bhattacharyya, Sudip; Sil, Parames C

    2015-09-01

    Atorvastatin (ATO), a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, is used widely for the treatment of hypercholesterolemia and hypertriglyceridemia. Application of this drug has now been made somehow limited because of ATO associated several acute and chronic side effects. The present study has been carried out to investigate the dose-dependent hepatic tissue toxicity in ATO induced oxidative impairment and cell death in mice. Administration of ATO enhanced ALT, ALP level, increased reactive oxygen species (ROS) production and altered the pro oxidant-antioxidant status of liver by reducing intracellular GSH level, anti-oxidant enzymes activities and increasing intracellular lipid peroxidation. Our experimental evidence suggests that ATO markedly decreased mitochondrial membrane potential, disturbed the Bcl-2 family protein balance, enhanced cytochrome c release in the cytosol, increased the levels of Apaf1, caspase-9, -3, cleaved PARP protein and ultimately led to apoptotic cell death. Besides, ATO distinctly increased the phosphorylation of p38, JNK, and ERK MAPKs, enhanced Caspase12 and calpain level. Histological studies also support the dose-dependent toxic effect of ATO in these organs pathophysiology. These results reveal that ATO induces hepatic tissue toxicity via MAPKs, mitochondria and ER dependent signaling pathway, in which calcium ions and ROS act as the pivotal mediators of the apoptotic signaling. PMID:26051349

  17. High-Content Analysis of Pro-Apoptotic EphA4 Dependence Receptor Functions using Small Molecule Libraries

    PubMed Central

    Nelersa, Claudiu M.; Barreras, Henry; Runko, Erik; Ricard, Jerome; Shi, Yan; Bixby, John L.; Lemmon, Vance P.; Liebl, Daniel J.

    2015-01-01

    Small molecule compounds (SMCs) can provide an inexpensive and selective approach to modifying biological responses. High-content analysis (HCA) of SMC libraries can help identify candidate molecules that inhibit or activate cellular responses. In particular, regulation of cell death has important implications for many pathological conditions. Dependence receptors are a new classification of pro-apoptotic membrane receptors that, unlike classic death receptors, initiate apoptotic signals in the absence of their ligands. EphA4 has recently been identified as a dependence receptor that may have important functions in conditions as disparate as cancer biology and CNS injury and disease. To screen potential candidate SMCs that inhibit or activate EphA4-induced cell death, HCA of a SMC library was performed using stable EphA4-expressing NIH3T3 cells. Our results describe a high-content method for screening dependence receptor-signaling pathways, and demonstrate that several candidate SMCs can inhibit EphA4-mediated cell death. PMID:22492230

  18. X-linked Inhibitor of Apoptosis Protein promotes the degradation of its antagonist, the pro-apoptotic ARTS protein.

    PubMed

    Bornstein, Bavat; Edison, Natalia; Gottfried, Yossi; Lev, Tali; Shekhtman, Anna; Gonen, Hedva; Rajalingam, Krishnaraj; Larisch, Sarit

    2012-03-01

    ARTS (Sept4_i2) is a mitochondrial pro-apoptotic tumor suppressor protein. In response to apoptotic signals, ARTS translocates to the cytosol where it promotes caspase activation through caspase de-repression and proteasome mediated degradation of X-linked Inhibitor of Apoptosis Protein (XIAP). Here we show that XIAP regulates the levels of ARTS by serving as its ubiquitin ligase, thereby providing a potential feedback mechanism to protect against unwanted apoptosis. Using both in vitro and in vivo ubiquitination assays we found that ARTS is directly ubiquitinated by XIAP. Moreover, we found that XIAP-induced ubiquitination and degradation is prevented by removal of the first four amino acids in the N-terminus of ARTS, which contains a single lysine residue at position 3. Thus, this lysine at position 3 is a likely target for ubiquitination by XIAP. Importantly, although the stabilized ARTS lacking its first 4 residues binds XIAP as well as the full length ARTS, it is more potent in promoting apoptosis than the full length ARTS. This suggests that increased stability of ARTS has a significant effect on its ability to induce apoptosis. Collectively, our data reveal a mutual regulatory mechanism by which ARTS and XIAP control each other's levels through the ubiquitin proteasome system. PMID:22185822

  19. Tolerance strategies employing antigen-coupled apoptotic cells and carboxylated PLG nanoparticles for the treatment of type 1 diabetes.

    PubMed

    Prasad, Suchitra; Xu, Dan; Miller, Stephen D

    2012-01-01

    The development of therapies that specifically target autoreactive immune cells for the prevention and treatment of type 1 diabetes (T1D) without inducing generalized immunosuppression that often compromises the host's ability to clear non-self antigen is highly desired. This review discusses the mechanisms and potential therapeutic applications of antigen-specific T cell tolerance techniques using syngeneic apoptotic cellular carriers and synthetic nanoparticles that are covalently cross-linked to diabetogenic peptides or proteins through ethylene carbodiimide (ECDI) to prevent and treat T1D. Experimental models have demonstrated that intravenous injection of autoantigen decorated splenocytes and biodegradable nanoparticles through ECDI fixation effectively induce and maintain antigen-specific T cell abortive activation and anergy by T cell intrinsic and extrinsic mechanisms. The putative mechanisms include, but are not limited to, the uptake and processing of antigen-coupled nanoparticles or apoptotic cellular carriers for tolerogenic presentation by host splenic antigen-presenting cells, the induction of regulatory T cells, and the secretion of immune-suppressive cytokines, such as IL-10 and TGF-β. The safety profile and efficacy of this approach in preclinical animal models of T1D, including non-obese diabetic (NOD), BDC2.5 transgenic, and humanized mice, have been extensively investigated, and will be the focus of this review. Translation of this approach to clinical trials of T1D and other T cell-mediated autoimmune diseases will also be reviewed in this chapter. PMID:23804269

  20. Genotoxic stress/p53-induced DNAJB9 inhibits the pro-apoptotic function of p53

    PubMed Central

    Lee, H J; Kim, J M; Kim, K H; Heo, J I; Kwak, S J; Han, J A

    2015-01-01

    DNAJB9 is a recently isolated member of the molecular chaperone gene family, whose precise function is largely unknown. In the present study, we have identified DNAJB9 as an inducible gene of the tumor suppressor p53. DNAJB9 expression was induced by p53 or genotoxic stress in a p53-dependent manner, which was mediated by the Ras/Raf/ERK pathway. In addition, depletion of DNAJB9 by using siRNAs greatly increased genotoxic stress/p53-induced apoptosis, suggesting that DNAJB9 inhibits the pro-apoptotic function of p53. We also found that DNAJB9 physically interacts with p53 through its J domain, through which it inhibits the pro-apoptotic function of p53. Moreover, DNAJB9 colocalized with p53 in both cytoplasm and nucleus under genotoxic conditions. Together, these results demonstrate that DNAJB9 is a downstream target of p53 that belongs to the group of negative feedback regulators of p53. PMID:25146923

  1. Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticules.

    PubMed

    Li, Na; Duan, Yanmei; Hong, Mengmeng; Zheng, Lei; Fei, Min; Zhao, Xiaoyang; Wang, Jue; Cui, Yaling; Liu, Huiting; Cai, Jingwei; Gong, Songjie; Wang, Han; Hong, Fashui

    2010-06-01

    Nanoparticulate titanium dioxide (TiO(2)) has been demonstrated to decrease immunity of mice, but very little is known about the injury of spleen involved immunomodulation and its molecular mechanism. In order to understand the spleen injury induced by intraperitoneal injection of TiO(2) nanoparticules (NPs) for consecutive 45 days, the spleen pathological changes, apoptosis, the expression levels of the apoptotic genes and their proteins, and oxidative stress in the mouse spleen were investigated. The results demonstrated that TiO(2) NPs had obvious accumulation in the mouse spleen, leading to congestion and lymph nodule proliferation of spleen tissue, and splenocyte apoptosis. TiO(2) NPs effectively activated caspase-3 and -9, decreased the Bcl-2 the levels of gene and protein, and increase the levels of Bax, and cytochrome c genes and their protein expression, promoted ROS accumulation. Taken together, this study indicated that TiO(2) NPs-induced apoptosis in the mouse splenocyte via mitochondrial-mediated pathway. These findings provide strong evidence that the TiO(2) NPs can induce the spleen pathological changes, apoptosis, leading to the reduction of immunity of mice. PMID:20381595

  2. Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus.

    PubMed

    Li, Hao; Fu, Yang-Xin; Wu, Qi; Zhou, Yong; Crossman, David K; Yang, PingAr; Li, Jun; Luo, Bao; Morel, Laurence M; Kabarowski, Janusz H; Yagita, Hideo; Ware, Carl F; Hsu, Hui-Chen; Mountz, John D

    2015-07-01

    Systemic lupus erythematosus (SLE) is a severe autoimmune disease that is associated with increased circulating apoptotic cell autoantigens (AC-Ags) as well as increased type I IFN signaling. Here, we describe a pathogenic mechanism in which follicular translocation of marginal zone (MZ) B cells in the spleens of BXD2 lupus mice disrupts marginal zone macrophages (MZMs), which normally clear AC debris and prevent follicular entry of AC-Ags. Phagocytosis of ACs by splenic MZMs required the megakaryoblastic leukemia 1 (MKL1) transcriptional coactivator-mediated mechanosensing pathway, which was maintained by MZ B cells through expression of membrane lymphotoxin-α1β2 (mLT). Specifically, type I IFN-induced follicular shuttling of mLT-expressing MZ B cells disengaged interactions between these MZ B cells and LTβ receptor-expressing MZMs, thereby downregulating MKL1 in MZMs. Loss of MKL1 expression in MZMs led to defective F-actin polymerization, inability to clear ACs, and, eventually, MZM dissipation. Aggregation of plasmacytoid DCs in the splenic perifollicular region, follicular translocation of MZ B cells, and loss of MKL1 and MZMs were also observed in an additional murine lupus model and in the spleens of patients with SLE. Collectively, the results suggest that lupus might be interrupted by strategies that maintain or enhance mechanosensing signaling in the MZM barrier to prevent follicular entry of AC-Ags. PMID:26098211

  3. Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells

    PubMed Central

    Bontempo, Paola; Mita, Luigi; Doto, Antonella; Miceli, Marco; Nebbioso, Angela; Lepore, Ilaria; Franci, GianLuigi; Menafra, Roberta; Carafa, Vincenzo; Conte, Mariarosaria; De Bellis, Floriana; Manzo, Fabio; Di Cerbo, Vincenzo; Benedetti, Rosaria; D'Amato, Loredana; Marino, Maria; Bolli, Alessandro; Del Pozzo, Giovanna; Diano, Nadia; Portaccio, Marianna; Mita, Gustavo D; Vietri, Maria Teresa; Cioffi, Michele; Nola, Ernesto; Dell'Aversana, Carmela; Sica, Vincenzo; Molinari, Anna Maria; Altucci, Lucia

    2009-01-01

    Background: BPA (bisphenol A or 2,2-bis(4-hydroxy-phenol)propane) is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound. Methods: Cell cycle, apoptosis and differentiation analyses; western blots. Results: BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA. Conclusion: BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis. PMID:19538739

  4. Apoptotic effects of Photofrin-Diomed 630-PDT on SHEEC human esophageal squamous cancer cells

    PubMed Central

    Gao, Shegan; Zhang, Mengxi; Zhu, Xiaojuan; Qu, Zhifeng; Shan, Tanyou; Xie, Xuanhu; Wang, Ying; Feng, Xiaoshan

    2015-01-01

    Photodynamic therapy (PDT) using photofrin-II is a clinically effective treatment for both non-neoplastic and neoplastic diseases. Herein, we performed an in vitro experiment to study the anti-tumor effect and mechanisms of photofrin-II mediated PDT for esophageal squamous cell carcinoma (ESCC) cell line, SHEEC. In this study, human ESCC cell line SHEEC and parental normal cell line SHEE were used. The anti-tumor effect of PDT was determined by evaluating cell viability using CCK-8 assay, apoptosis and generation of reactive oxygen species (ROS). PDT induced significant apoptosis in SHEEC and SHEE cells in a time- and photofrin-II dose-dependent manner. Furthermore, PDT treatment induced significant death of SHEEC, instead of SHEE cells. The apoptotic outcome was accompanied by concurrent generation of ROS. In summary, PDT shed light on therapy of ESCC, functioning as a useful tool for ESCC clinical treatment, providing a better understanding of Photofrin-Diomed 630-PDT in SHEEC cells. PMID:26628993

  5. Serotonin activates cell survival and apoptotic death responses in cultured epithelial thyroid cells.

    PubMed

    Cerulo, Giuliana; Tafuri, Simona; De Pasquale, Valeria; Rea, Silviana; Romano, Simona; Costagliola, Anna; Della Morte, Rossella; Avallone, Luigi; Pavone, Luigi Michele

    2014-10-01

    Anatomic and physiological interactions between central serotonergic system and thyroid gland are well established. However, the effects of locally available serotonin on the thyroid functions are poorly known. Here, we first demonstrate the expression of serotonin transporter SERT and 5-HT2A receptor subtype in rat thyroid epithelial cell line FRT both at mRNA and protein levels. In order to investigate the molecular mechanisms of serotonin action, FRT cells were exposed to increasing concentrations of the amine. Low concentrations of serotonin (up to 5 μM) enhanced FRT cell growth, and ERK1/2 and SMAD2/3 phosphorylation. Cell exposure to the selective 5-HT2A receptor agonist DOI recapitulated the effects of 5-HT on ERK1/2 phosphorylation. By contrast, administration of M100907, a specific 5-HT2A receptor inhibitor, prevented 5-HT induced ERK1/2 activation. On the other hand, high doses of serotonin (50 μM up to 1 mM) activated a caspase-3 mediated apoptosis of cells. Overall, our findings demonstrate that low levels of serotonin, interacting with 5-HT2A receptor, are able to activate proliferative signals in the thyroid epithelial cells, while high levels of serotonin cause pro-apoptotic responses, thus suggesting an active role of the amine in the thyroid functions and disorders. PMID:24997405

  6. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation

    PubMed Central

    Moncunill-Massaguer, Cristina; Saura-Esteller, José; Pérez-Perarnau, Alba; Palmeri, Claudia Mariela; Núñez-Vázquez, Sonia; Cosialls, Ana M.; González-Gironès, Diana M.; Pomares, Helena; Korwitz, Anne; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; Langer, Thomas; Iglesias-Serret, Daniel; Gil, Joan

    2015-01-01

    We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa−/−/Bim−/− MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway. PMID:26497683

  7. Apoptotic Mechanisms of Peroxisome ProliferatorActivated Receptor-? Activation in Acinar Cells During Acute Pancreatitis

    PubMed Central

    Xu, Ping; Lou, Xiao-Li; Chen, Cheng

    2016-01-01

    Objective The objective of this study was to determine the mechanism by which activation of peroxisome proliferatoractivated receptor-? promotes apoptosis of acinar cells in pancreatitis. Methods AR42j cells pretreated with the peroxisome proliferatoractivated receptor-? agonist pioglitazone were activated by cerulein as an in vitro model of acute pancreatitis. Inflammatory cytokines and amylase were detected by enzyme-linked immunosorbent assay. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis was measured by flow cytometry and terminal deoxynucleotidyl transferasemediated dUTP nick end labeling staining. Activity of caspases was determined. Bax and Bcl-2 levels were assayed by Western blot. Results Cytokines, amylase, and cellular proliferation decreased in pioglitazone-pretreated cells. Pioglitazone increased the activity of caspases 3, 8, and 9 in cerulein-activated AR42j cells as well as in the pancreas of rats 3 hours after induction of severe acute pancreatitis. Acinar cell apoptosis was induced by reducing the mitochondrial membrane potential in the pioglitazone group. Pioglitazone increased expression of proapoptotic Bax proteins and decreased antiapoptotic Bcl-2 in cerulein-induced AR42j cells and decreased Bcl-2 levels in pancreatic tissue of severe acute pancreatitis rats 1 and 3 hours after induction. Conclusion Pioglitazone may promote apoptosis of acinar cells through both intrinsic and extrinsic apoptotic pathways in acute pancreatitis. PMID:26495791

  8. Selective apoptotic cell death effects of oral cancer cells treated with destruxin B

    PubMed Central

    2014-01-01

    Background Recent studies have revealed that destruxins (Dtx) have potent cytotoxic activities on individual cancer cells, however, data on oral cancer cells especial human are absent. Methods Destruxin B (DB) was isolated and used to evaluate the selective cytotoxicity with human oral cancer cell lines, GNM (Neck metastasis of gingival carcinoma) and TSCCa (Tongue squamous cell carcinoma) cells, and normal gingival fibroblasts (GF) were also included as controls. Cells were tested with different concentrations of DB for 24, 48, and 72 h by MTT assay. Moreover, the mechanism of cytotoxicity was investigated using caspase-3 Immunofluorescence, annexin V/PI staining, and the expression of caspase-3, Bax, and Bcl-2 by western blotting after treated with different concentrations of DB for 72 h as parameters for apoptosis analyses. Results The results show that DB exhibited significant (p < 0.01) and selective time- and dose-dependent inhibitory effects on GNM and TSCCa cells viability but not on GF cells. The data suggested that DB is capable to induce tumor specific growth inhibition in oral GNM and TSCCa cancer cells via Bax/Bcl-2-mediated intrinsic mitochondrial apoptotic pathway in time- and dose-dependent manners. Conclusions This is the first report on the anti-proliferation effect of DB in oral cancer cells. The results reported here may offer further evidences to the development of DB as a potential complementary chemotherapeutic target for oral cancer complications. PMID:24972848

  9. An unfractionated fucoidan from Ascophyllum nodosum: extraction, characterization, and apoptotic effects in vitro.

    PubMed

    Foley, Sarah A; Szegezdi, Eva; Mulloy, Barbara; Samali, Afshin; Tuohy, Maria G

    2011-09-23

    An unfractionated fucoidan was extracted from the brown alga Ascophyllum nodosum. Extraction of fucoidan from seaweed was carried out using an innovative low-chemical process. A combinational approach involving compositional analysis, HPAEC, IR analysis, GPC, and NMR was employed to elucidate the composition and structure of an unfractionated fucoidan from A. nodosum. This fucoidan is composed mainly of fucose (52.1%), and also galactose (6.1%), glucose (21.3%), and xylose (16.5%). Sulfate content was determined to be 19%. GPC data indicated a polydisperse fucoidan containing two main size fractions (47 and 420 kDa). NMR analyses revealed a fucoidan displaying broad, complex signals as expected for such a high molecular weight and heterogeneous polymer with resonances consistent with a fucoidan isolated previously from A. nodosum. The effects of fucoidan on the apoptosis of human colon carcinoma cells and fucoidan-mediated signaling pathways were also investigated. Fucoidan decreased cell viability and induced apoptosis of HCT116 colon carcinoma cells. Fucoidan treatment of HCT116 cells induced activation of caspases-9 and -3 and the cleavage of PARP, led to apoptotic morphological changes, and altered mitochondrial membrane permeability. These results detail the structure and biological activity of an unfractionated fucoidan from A. nodosum. PMID:21875034

  10. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation.

    PubMed

    Moncunill-Massaguer, Cristina; Saura-Esteller, José; Pérez-Perarnau, Alba; Palmeri, Claudia Mariela; Núñez-Vázquez, Sonia; Cosialls, Ana M; González-Gironès, Diana M; Pomares, Helena; Korwitz, Anne; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; Langer, Thomas; Iglesias-Serret, Daniel; Gil, Joan

    2015-12-01

    We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa(-/-)/Bim(-/-) MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway. PMID:26497683

  11. Apoptotic activity and Treg cells in tissue lesions of patients with leprosy.

    PubMed

    Quaresma, Juarez Antonio Simões; Esteves, Paulo Cardoso; de Sousa Aarão, Tinara Leila; de Sousa, Jorge Rodrigues; da Silva Pinto, Denise; Fuzii, Hellen Thais

    2014-11-01

    In order to understand the apoptotic response and the participation of Treg cells in the spectral clinical evolution of leprosy, this study evaluated the immunohistochemical expression of caspase-3 and FoxP3 in skin lesions of leprosy patients with the polar forms of the disease. Forty-nine patients with a confirmed diagnosis of the disease were selected, including 27 with the TT form and 22 with the LL form. Quantitative analysis of caspase-3 immunostaining showed a higher expression of this mediator in the LL form (3.409 ± 0.6517 cells/mm(2); p = 0.0001). Immunostaining for the transcription factor FoxP3 was higher in the LL form (3.891 ± 0.9294 cells/mm(2); p = 0.0001). A moderate correlation between the two markers was observed in the TT form (r = 0.5214; p = 0.005). It can be concluded that Treg cells and apoptosis play an effective role for the host defense response, inducing mechanisms involved in the activation of cascades that interfere with the control of the immune response and cell homeostasis. PMID:25128092

  12. Artocarpus communis Induces Autophagic Instead of Apoptotic Cell Death in Human Hepatocellular Carcinoma Cells.

    PubMed

    Tzeng, Cheng-Wei; Tzeng, Wen-Sheng; Lin, Liang-Tzung; Lee, Chiang-Wen; Yen, Ming-Hong; Yen, Feng-Lin; Lin, Chun-Ching

    2015-01-01

    For centuries, natural plant extracts have played an important role in traditional medicine for curing and preventing diseases. Studies have revealed that Artocarpus communis possess various bioactivities, such as anti-inflammation, anti-oxidant, and anticancer activities. A. communis offers economic value as a source of edible fruit, yields timber, and is widely used in folk medicines. However, little is known about its molecular mechanisms of anticancer activity. Here, we demonstrate the antiproliferative activity of A. communis methanol extract (AM) and its dichloromethane fraction (AD) in two human hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. Colony assay showed the long-term inhibitory effect of both extracts on cell growth. DNA laddering and immunoblotting analyses revealed that both extracts did not induce apoptosis in the hepatoma cell lines. AM and AD-treated cells demonstrated different cell cycle distribution compared to UV-treated cells, which presented apoptotic cell death with high sub-G1 ratio. Instead, acridine orange staining revealed that AM and AD triggered autophagosome accumulation. Immunoblotting showed a significant expression of autophagy-related proteins, which indicated the autophagic cell death (ACD) of hepatoma cell lines. This study therefore demonstrates that A. communis AM and its dichloromethane fraction can induce ACD in HCC cells and elucidates the potential of A. communis extracts for development as anti tumor therapeutic agents that utilize autophagy as mechanism in mediating cancer cell death. PMID:25967668

  13. Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus

    PubMed Central

    Li, Hao; Fu, Yang-Xin; Wu, Qi; Zhou, Yong; Crossman, David K.; Yang, PingAr; Li, Jun; Luo, Bao; Morel, Laurence M.; Kabarowski, Janusz H.; Yagita, Hideo; Ware, Carl F.; Hsu, Hui-Chen; Mountz, John D.

    2015-01-01

    Systemic lupus erythematosus (SLE) is a severe autoimmune disease that is associated with increased circulating apoptotic cell autoantigens (AC-Ags) as well as increased type I IFN signaling. Here, we describe a pathogenic mechanism in which follicular translocation of marginal zone (MZ) B cells in the spleens of BXD2 lupus mice disrupts marginal zone macrophages (MZMs), which normally clear AC debris and prevent follicular entry of AC-Ags. Phagocytosis of ACs by splenic MZMs required the megakaryoblastic leukemia 1 (MKL1) transcriptional coactivator–mediated mechanosensing pathway, which was maintained by MZ B cells through expression of membrane lymphotoxin-α1β2 (mLT). Specifically, type I IFN–induced follicular shuttling of mLT-expressing MZ B cells disengaged interactions between these MZ B cells and LTβ receptor–expressing MZMs, thereby downregulating MKL1 in MZMs. Loss of MKL1 expression in MZMs led to defective F-actin polymerization, inability to clear ACs, and, eventually, MZM dissipation. Aggregation of plasmacytoid DCs in the splenic perifollicular region, follicular translocation of MZ B cells, and loss of MKL1 and MZMs were also observed in an additional murine lupus model and in the spleens of patients with SLE. Collectively, the results suggest that lupus might be interrupted by strategies that maintain or enhance mechanosensing signaling in the MZM barrier to prevent follicular entry of AC-Ags. PMID:26098211

  14. Glyphosate induced cell death through apoptotic and autophagic mechanisms.

    PubMed

    Gui, Ya-xing; Fan, Xiao-ning; Wang, Hong-mei; Wang, Gang; Chen, Sheng-di

    2012-01-01

    Herbicides have been recognized as the main environmental factor associated with human neurodegenerative disorders such as Parkinson's disease(PD). Previous studies indicated that the exposure to glyphosate, a widely used herbicide, is possibly linked to Parkinsonism, however the underlying mechanism remains unclear. We investigated the neurotoxic effects of glyphosate in differentiated PC12 cells and discovered that it inhibited viability of differentiated PC12 cells in dose-and time-dependent manners. Furthermore, the results showed that glyphosate induced cell death via autophagy pathways in addition to activating apoptotic pathways. Interestingly, deactivation of Beclin-1 gene attenuated both apoptosis and autophagy in glyphosate treated differentiated PC12 cells, suggesting that Beclin-1 gene is involved in the crosstalk between the two mechanisms. PMID:22504123

  15. Radiation-induced formation of apoptotic bodies in rat thymus

    SciTech Connect

    Ohyama, H.; Yamada, T.; Ohkawa, A.; Watanabe, I.

    1985-01-01

    The process of interphase death of thymocytes in whole-body X-irradiated rats were studied. Cell size distribution analysis indicates that cell fragments (=apoptotic bodies) appeared in the thymus and increased in number depending on dose (200-1000 R) and time (2-6 hr) after irradiation with corresponding decrease in normal-size thymocytes. Occurrence of nuclear fragmentation in association with the cellular fragmentation was proved with cytofluorometric determination of DNA content in individual cells. Scanning electron microscopic observations also revealed extensive fragmentation of cells in the irradiated rat thymus. The results show clearly that cells as well as nuclei fragments rapidly into smaller pieces of various sizes in the irradiated rat thymus as commonly observed with apoptosis.

  16. Roles of microRNA-1 in hypoxia-induced apoptotic insults to neuronal cells.

    PubMed

    Chang, Chia-Yu; Lui, Tai-Ngar; Lin, Jia-Wei; Lin, Yi-Ling; Hsing, Chung-Hsi; Wang, Jhi-Joung; Chen, Ruei-Ming

    2016-01-01

    Hypoxia is a common occurrence in brain tumors and traumatic brain injury. microRNA (miR)-1 participates in the regulation of brain development and neuronal function. Interestingly, miR-1 can mediate ischemia-induced injury to cardiomyocytes. This study was designed to evaluate the roles of miR-1 in hypoxia-induced insults to neurons and the possible mechanisms. Exposure of neuro-2a cells to oxygen/glucose deprivation (OGD) or cobalt chloride decreased cell viability and induced cell apoptosis in time-dependent manners. In parallel, OGD caused augmentation of cellular Bax and cytochrome c levels, a reduction in the mitochondrial membrane potential (MMP), activation of caspase-3, and fragmentation of DNA. miR-1 was induced in neuro-2a cells by OGD. Knocking down miR-1 expression using specific antisense inhibitors significantly alleviated OGD-induced neuronal death. Administration of OGD to neuro-2a cells induced heat-shock protein (HSP)-70 messenger (m)RNA and protein expressions. A bioinformatic search revealed that miR-1-specific binding elements exist in the 3'-untranslated region of HSP-70 mRNA. Overexpression of miR-1 simultaneously attenuated OGD-induced HSP-70 mRNA and protein expressions. In comparison, knocking down miR-1 expression synergistically enhanced OGD-induced HSP-70 mRNA. As to the mechanism, reducing miR-1 expression lowered OGD-induced alterations in the MMP, caspase-3 activation, DNA fragmentation, and cell apoptosis. Taken together, this study shows that miR-1 can target HSP-70 expression and consequently mediate hypoxia-induced apoptotic insults to neuro-2a cells via an intrinsic Bax-mitochondrion-caspase protease pathway. PMID:25238743

  17. ARMS depletion facilitates UV irradiation induced apoptotic cell death in melanoma.

    PubMed

    Liao, Yi-Hua; Hsu, Su-Ming; Huang, Pei-Hsin

    2007-12-15

    Tumor cells often aberrantly reexpress molecules that mediate proper embryonic development for advantageous growth or survival. Here, we report that ankyrin repeat-rich membrane spanning (ARMS), a transmembrane protein abundant in the developing and adult neural tissues, is overexpressed in melanoma, a tumor ontogenetically originating from neural crest. Immunohistochemical study of 79 melanocytic lesions showed significantly increased expression of ARMS in primary malignant melanomas (92.9%) and metastatic melanoma (60.0%) in comparison with benign nevocellular nevi (26.7%). To investigate the role of ARMS in melanoma formation, murine B16F0 melanoma cells with stable knockdown of ARMS were established by RNA interference. Down-regulation of ARMS resulted in significant inhibition of anchorage-independent growth in soft agar and restrictive growth of melanoma in severe combined immunodeficient mice. Importantly, depletion of ARMS facilitated UVB-induced apoptosis in melanoma cells through inactivation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK. Addition of MEK inhibitor PD98059 further sensitized ARMS-depleted melanoma cells to UVB-induced apoptosis, whereas constitutively active MEK rescued ARMS-depleted cells from apoptosis. We further showed that BRAF, a downstream signaling molecule of ARMS in ERK pathway, is not mutated as a constitutively active form in acral lentiginous melanoma; in contrast, BRAF(T1799A) mutation, which leads to constitutive activation of ERK signaling, was detected in 57.1% of superficial spreading melanoma. Our study suggests that overexpression of ARMS per se serves as one mechanism to promote melanoma formation by preventing stress-induced apoptotic death mediated by the MEK/ERK signaling pathway, especially in acral lentiginous melanoma, most of which does not harbor BRAF mutation. PMID:18089783

  18. Pro-apoptotic gene regulation in the Caribbean fruit fly, Anastrepha suspensa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptional activation of pro-apoptotic genes in response to cytotoxic stimuli is a conserved feature of the cell death pathway proposed for metazoans. However, understanding the extent of this conservation in insects, as well as other organisms, has been limited by the lack of known pro-apoptot...

  19. Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen.

    PubMed

    McGaha, Tracy L; Chen, Yunying; Ravishankar, Buvana; van Rooijen, Nico; Karlsson, Mikael C I

    2011-05-19

    Marginal zone macrophages (MZMs) are a small subset of specialized splenic macrophages known to interact with apoptotic material entering the spleen from circulation. To evaluate whether MZMs regulate immunity to apoptotic material we depleted MZMs and assessed innate and adaptive immune responses to apoptotic cells administered systemically. MZM depletion altered the spatial localization of apoptotic cells, which accumulated in T-cell areas of the lymphoid follicles. MZM depletion also enhanced phagocytosis of apoptotic cells by red pulp (CD68(+)F4/80(+)) macrophages, which expressed increased CD86, MHCII, and CCR7. MZM depletion led to increased production of proinflammatory cytokines and enhanced lymphocyte responsiveness to apoptotic cell antigens. Furthermore, we found that MZM depletion accelerated autoimmune disease progression in mice genetically prone to systemic lupus erythematosus and caused significant mortality in wild-type mice repeatedly exposed to exogenous apoptotic thymocytes. These findings support the hypothesis that MZMs are central in the clearance of apoptotic cells to minimize the immunogenicity of autoantigens. PMID:21444914

  20. Penicillium antifungal protein (PAF) is involved in the apoptotic and autophagic processes of the producer Penicillium chrysogenum.

    PubMed

    Kovács, Barbara; Hegedűs, Nikoletta; Bálint, Mihály; Szabó, Zsuzsa; Emri, Tamás; Kiss, Gréta; Antal, Miklós; Pócsi, István; Leiter, Eva

    2014-09-01

    PAF, which is produced by the filamentous fungus Pencicillium chrysogenum, is a small antifungal protein, triggering ROS-mediated apoptotic cell death in Aspergillus nidulans. In this work, we provide information on the function of PAF in the host P. chrysogenum considering that carbon-starving cultures of the Δpaf mutant strain showed significantly reduced apoptosis rates in comparison to the wild-type (wt) strain. Moreover, the addition of PAF to the Δpaf strain resulted in a twofold increase in the apoptosis rate. PAF was also involved in the regulation of the autophagy machinery of this fungus, since several Saccharomyces cerevisiae autophagy-related ortholog genes, e.g. those of atg7, atg22 and tipA, were repressed in the deletion strain. This phenomenon was accompanied by the absence of autophagosomes in the Δpaf strain, even in old hyphae. PMID:25261948

  1. Induction of apoptotic cellular death in lymphatic tissues of cattle experimentally infected with different strains of rinderpest virus.

    PubMed

    Stolte, M; Haas, L; Wamwayi, H M; Barrett, T; Wohlsein, P

    2002-07-01

    The presence, type, and extent of cellular death in lymphatic tissues of cattle experimentally infected with rinderpest virus strains of different virulence was investigated morphologically. Cells with DNA strand breaks were identified in histological sections of palatine tonsil, spleen, and mesenteric and mandibular lymph nodes by the TUNEL (terminal desoxynucleotidyl transferase-mediated dUTP nick end labelling) assay. In addition, representative samples of lymphatic tissues were examined by transmission electron microscopy. The results indicated that cellular disassembly in lymphatic tissues was caused by both apoptosis and oncosis. Cells with DNA strand breaks were observed in follicular and parafollicular areas of lymphatic tissues and their numbers were determined. A significant correlation was found between the number of TUNEL-positive cells and viral virulence. These results suggest that, in addition to oncosis, apoptotic cellular death in lymphatic tissues contributes substantially to the pathogenesis of rinderpest. PMID:12354541

  2. Apoptotic abscess imaging with 99mTc-HYNIC-rh-Annexin-V.

    PubMed

    Penn, David L; Kim, Christopher; Zhang, Kaijun; Mukherjee, Archana; Devakumar, Devadhas; Jungkind, Donald; Thakur, Mathew L

    2010-01-01

    Abscess formation causes systemic and localized up-regulation of neutrophil [polymorphonuclear leukocytes (PMNs)] signaling pathways. In the abscess, following bacterial ingestion or PMN activation by inflammatory mediators, PMN apoptosis is elevated and leads to the externalization of phosphatidylserine. Annexin-V (AnxV) has been shown to have high affinity to externalized phosphatidylserine. We hypothesized that (99m)Tc-AnxV will target high densities of apoptotic PMNs and image abscesses. AnxV, conjugated with hydrazinenicaotinamide (HYNIC), was labeled with reduced (99m)TcO(4)(-) and its purity was determined by instant thin-layer chromatography. Apoptosis was induced in isolated human PMNs by incubation in 2% saline for 17 and 22 h at 37 degrees C. PMNs were then incubated with (99m)Tc-HYNIC-AnxV and associated (99m)Tc was determined. Abscesses were induced in mice by intramuscular injection of bacteria or turpentine. Following intravenous administration of (99m)Tc-HYNIC-AnxV, mice were imaged and tissue distribution studied at 4 and 24 h. Radiochemical purity of (99m)Tc-HYNIC-AnxV was 84.9+/-8.11%. At 17 h, (99m)Tc-HYNIC-AnxV bound to apoptotic PMNs was 71.6+/-0.01% and 48.6+/-0.01% for experimental and control cells, respectively (P=.002). At 22 h, experimental cells retained 74.9+/-0.02% and control cells retained 47.2+/-0.02% (P=.005). (99m)Tc-HYNIC-AnxV associated with bacterial abscesses was 1.25+/-0.09 and 3.75+/-0.83 percent injected dose per gram (%ID/g) at 4 and 24 h compared to turpentine abscesses which was 1.02+/-0.16 and 0.72+/-0.17 %ID/g at 4 (P

  3. Cooperative binding of Annexin A5 to phosphatidylserine on apoptotic cell membranes

    NASA Astrophysics Data System (ADS)

    Janko, Christina; Jeremic, Ivica; Biermann, Mona; Chaurio, Ricardo; Schorn, Christine; Muñoz, Luis E.; Herrmann, Martin

    2013-12-01

    Healthy cells exhibit an asymmetric plasma membrane with phosphatidylserine (PS) located on the cytoplasmic leaflet of the plasma membrane bilayer. Annexin A5-FITC, a PS binding protein, is commonly used to evaluate apoptosis in flow cytometry. PS exposed by apoptotic cells serves as a major ‘eat-me’ signal for phagocytes. Although exposition of PS has been observed after alternative stimuli, no clearance of viable, PS exposing cells has been detected. Thus, besides PS exposure, membranes of viable and apoptotic cells might exhibit specific characteristics. Here, we show that Annexin A5 binds in a cooperative manner to different types of dead cells. Shrunken apoptotic cells thereby showed the highest Hill coefficient values. Contrarily, parafomaldehyde fixation of apoptotic cells completely abrogates the cooperativity effect seen with dead and dying cells. We tend to speculate that the cooperative binding of Annexin A5 to the membranes of apoptotic cells reflects higher fluidity of the exposed membranes facilitating PS clustering.

  4. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction.

    PubMed

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Lee, Bong Hee; Ryu, Do Gon; Kwon, Kang Beom; Ryter, Stefan W; Chung, Hun Taeg

    2013-03-01

    Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases. PMID:23415873

  5. Apoptotic and anti-metastatic effects of the whole skin of Venenum bufonis in A549 human lung cancer cells

    PubMed Central

    PARK, JEONG-SEOK; SHIN, DONG YEOK; LEE, YEON-WEOL; CHO, CHONG-KWAN; KIM, GI YOUNG; KIM, WUN-JAE; YOO, HWA-SEUNG; CHOI, YUNG HYUN

    2012-01-01

    In the present study, the effects of the whole skin of Venenum bufonis on apoptotic and anti-invasive activity in A549 human lung cancer cells were investigated. Treatment with extract of the whole skin of V. bufonis (SVB) resulted in a significant decrease in cell growth of A549 cells, depending on dosage, which was associated with apoptosis induction, as proved by chromatin condensation and accumulation of apoptotic fraction. SVB treatment induced expression of death receptor-related proteins, such as death receptor 4, which further triggered activation of caspase-8 and cleavage of Bid. In addition, the increase in apoptosis by SVB treatment was correlated with dysfunction of mitochondria, activation of caspase-9 and -3, downregulation of IAP family proteins, such as XIAP, cIAP-1 and cIAP-2, and concomitant degradation of activated caspase-3-specific target proteins, such as poly (ADP-ribose) polymerase and β-catenin proteins. However, z-DEVD-fmk, a caspase-3-specific inhibitor, blocked SVB-induced apoptosis and increased the survival rate of SVB-treated cells, indicating that activation of caspase-3 plays a key role in SVB-induced apoptosis. In addition, within concentrations that were not cytotoxic to A549 cells, SVB induced marked inhibition of cell motility and invasiveness. Activities of matrix metalloproteinase (MMP)-2 and MMP-9 in AGS cells were dose-dependently inhibited by treatment with SVB, and this was also correlated with a decrease in expression of their mRNA and proteins, and upregulation of tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 mRNA expression. Further studies are needed; however, the results indicated that SVB induces apoptosis of A549 cells through a signaling cascade of death receptor-mediated extrinsic as well as mitochondria-mediated intrinsic caspase pathways. Our data also demonstrated that MMPs are critical targets of SVB-induced anti-invasiveness in A549 cells. PMID:22200726

  6. Gastroprotective effect of nymphayol isolated from Nymphaea stellata (Willd.) flowers: contribution of antioxidant, anti-inflammatory and anti-apoptotic activities.

    PubMed

    Antonisamy, Paulrayer; Subash-Babu, Pandurangan; Alshatwi, Ali A; Aravinthan, Adithan; Ignacimuthu, Savarimuthu; Choi, Ki Choon; Kim, Jong-Hoon

    2014-12-01

    Gastric ulcer is an illness that affects a great number of people worldwide. The goal of the present research was to assess the anti-ulcerogenic activity of nymphayol (NYM), isolated from Nymphaea stellata, against an ethanol-induced ulcer model in rats. Administration of ethanol elevates the levels of the ulcer index (UI) along with causing tremendous increases in lipid peroxidation and myeloperoxidase (MPO) and significant decreases in gastric mucus, catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and prostaglandin E2 (PGE2). However, the NYM- (45 mg/kg) pretreated animals showed considerable increases in antioxidants, gastric mucus, and PGE2 level and significant decreases in UI, lipid peroxidation, and MPO level. Pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) were increased and the level of interleukin-10 (IL-10), an anti-inflammatory cytokine, was decreased in ethanol-induced ulcerated animals, and these inequalities were amended by NYM pretreatment. Pro-apoptotic markers including caspase-8, caspase-9, and caspase-3 were decreased and Bcl-2, an anti-apoptotic marker, was increased through NYM pretreatment, as compared with the ethanol-induced ulcer group. Pretreatment with indomethacin, SC560, rofecoxib, and Nω-Nitro-L-arginine methyl ester (L-NAME) considerably prevented the ulcer protective activity of NYM (45 mg/kg), indicating the involvement of cyclooxygenase (COX) and nitric oxide synthase (NOS) in NYM-mediated gastroprotection against ethanol-induced ulcer. These outcomes suggest that the gastroprotective effect of NYM might be mediated by adjustment of inflammatory mediators and apoptotic markers and increasing antioxidants. PMID:25289771

  7. Mediation Analysis with Multiple Mediators

    PubMed Central

    VanderWeele, T.J.; Vansteelandt, S.

    2014-01-01

    Recent advances in the causal inference literature on mediation have extended traditional approaches to direct and indirect effects to settings that allow for interactions and non-linearities. In this paper, these approaches from causal inference are further extended to settings in which multiple mediators may be of interest. Two analytic approaches, one based on regression and one based on weighting are proposed to estimate the effect mediated through multiple mediators and the effects through other pathways. The approaches proposed here accommodate exposure-mediator interactions and, to a certain extent, mediator-mediator interactions as well. The methods handle binary or continuous mediators and binary, continuous or count outcomes. When the mediators affect one another, the strategy of trying to assess direct and indirect effects one mediator at a time will in general fail; the approach given in this paper can still be used. A characterization is moreover given as to when the sum of the mediated effects for multiple mediators considered separately will be equal to the mediated effect of all of the mediators considered jointly. The approach proposed in this paper is robust to unmeasured common causes of two or more mediators. PMID:25580377

  8. Protective Role of Malvidin-3-Glucoside on Peroxynitrite-Induced Damage in Endothelial Cells by Counteracting Reactive Species Formation and Apoptotic Mitochondrial Pathway

    PubMed Central

    Paixão, Joana; Dinis, Teresa C. P.; Almeida, Leonor M.

    2012-01-01

    The health-promoted benefits of anthocyanins, including vascular protective effects and antiatherogenic properties, have now been recognized, but the involved molecular mechanisms have not been well elucidated. Following our previous work on cytoprotective mechanisms of some anthocyanins against apoptosis triggered by peroxynitrite in endothelial cells, here we investigated the protective role of malvidin-3-glucoside, a major dietary anthocyanin, on such deleterious process, by exploring the interference on cellular reactive species formation and on apoptotic mitochondrial pathway. Preincubation of cells with 25 μM malvidin-3-glucoside protected efficiently endothelial cells from peroxynitrite-promoted apoptotic death, an effect which may be partially mediated by its ability to decrease the formation of reactive species after cell aggression, as assessed by the dichlorodihydrofluorescein diacetate assay and by carbonyl groups formation. Moreover, malvidin-3-glucoside inhibited mitochondrial apoptotic signaling pathways induced by peroxynitrite, by counteracting mitochondrial membrane depolarization, the activation of caspase-3 and -9, and the increase in the expression of the proapoptotic Bax protein. Altogether, our data expands our knowledge about the molecular mechanisms underlying the vascular protection afforded by malvidin-3-glucoside, and anthocyanins in general, in the context of prevention of endothelial dysfunction and atherosclerosis. PMID:22792413

  9. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

    PubMed Central

    Thakur, Anita; Alam, Md. Jahangir; Ajayakumar, MR; Ghaskadbi, Saroj; Sharma, Manish; Goswami, Shyamal K.

    2015-01-01

    Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE) is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose) generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose) sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses. PMID:26070033

  10. ERK1/2 acts as a switch between necrotic and apoptotic cell death in ether phospholipid edelfosine-treated glioblastoma cells.

    PubMed

    Melo-Lima, Sara; Lopes, Maria C; Mollinedo, Faustino

    2015-01-01

    Glioblastoma is characterized by constitutive apoptosis resistance and survival signaling expression, but paradoxically is a necrosis-prone neoplasm. Incubation of human U118 glioblastoma cells with the antitumor alkylphospholipid analog edelfosine induced a potent necrotic cell death, whereas apoptosis was scarce. Preincubation of U118 cells with the selective MEK1/2 inhibitor U0126, which inhibits MEK1/2-mediated activation of ERK1/2, led to a switch from necrosis to caspase-dependent apoptosis following edelfosine treatment. Combined treatment of U0126 and edelfosine totally inhibited ERK1/2 phosphorylation, and led to RIPK1 and RelA/NF-κB degradation, together with a strong activation of caspase-3 and -8. This apoptotic response was accompanied by the activation of the intrinsic apoptotic pathway with mitochondrial transmembrane potential loss, Bcl-xL degradation and caspase-9 activation. Inhibition of ERK phosphorylation also led to a dramatic increase in edelfosine-induced apoptosis when the alkylphospholipid analog was used at a low micromolar range, suggesting that ERK phosphorylation acts as a potent regulator of apoptotic cell death in edelfosine-treated U118 cells. These data show that inhibition of MEK1/2-ERK1/2 signaling pathway highly potentiates edelfosine-induced apoptosis in glioblastoma U118 cells and switches the type of edelfosine-induced cell death from necrosis to apoptosis. PMID:25749008

  11. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells.

    PubMed

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs. PMID:23899527

  12. Reduced association of anti-apoptotic protein Mcl-1 with E3 ligase Mule increases the stability of Mcl-1 in breast cancer cells

    PubMed Central

    Pervin, S; Tran, A; Tran, L; Urman, R; Braga, M; Chaudhuri, G; Singh, R

    2011-01-01

    Background: Mechanisms that increase resistance to apoptosis help promote cellular transformation. Cancer cells have deregulated apoptotic pathways, where increased expression and stability of anti-apoptotic proteins Mcl-1 and Bcl-2 increases resistance to apoptosis. Pathways that increase the stability of proteins in cancer cells remain poorly understood. Methods: Using human mammary epithelial and established breast cancer cell lines, we assessed the mechanisms that increase the stability of anti-apoptotic proteins in breast cancer cells by caspase assay, western blot, small-inhibitory RNA treatment and immunoprecipitation. Results: While breast cancer cells were resistant to de novo inhibition of protein synthesis, a rapid proteosome-mediated degradation of Mcl-1 and Bcl-2 induced apoptosis in mammary epithelial cells. Although Mule, an E3 ligase that targets Mcl-1 for degradation was expressed in mammary epithelial and breast cancer cell lines, rapid increase of polyubiquitinated Mcl-1 and Bcl-2 was detected only in mammary epithelial cells. Only transient formation of the Mule–Mcl-1 complex was detected in breast cancer cells. Downregulation of pERK1/2 in breast cancer cells reduced Mcl-1 levels and increased Mcl-1/Mule complex. Conclusion: Our findings suggest that reduced Mule/Mcl-1 complex has a significant role in increasing the stability of Mcl-1 in breast cancer cells and increased resistance to apoptosis. PMID:21730980

  13. Diallyl disulfide enhances carbon ion beams-induced apoptotic cell death in cervical cancer cells through regulating Tap73 /ΔNp73.

    PubMed

    Di, Cuixia; Sun, Chao; Li, Hongyan; Si, Jing; Zhang, Hong; Han, Lu; Zhao, Qiuyue; Liu, Yang; Liu, Bin; Miao, Guoying; Gan, Lu; Liu, Yuanyuan

    2015-01-01

    Diallyl disulfide (DADS), extracted from crushed garlic by steam-distillation, has been reported to provide the anticancer activity in several cancer types. However, the effect of DADS on high-LET carbon beams - induced cell death remains unknown. Therefore, we used human cervical cancer cells to elucidate the molecular effects of this diallyl sulfide. Radiotherapy remains the mainstay of treatment, especially in advanced cervical cancer and there is still space to improve the radiosensitivity to reduce radiation dosage. In this study, we found that radiation effects evoked by high-LET carbon beam was marked by inhibition of cell viability, cell cycle arrest, significant rise of apoptotic cells, regulation of transcription factor, such as p73, as well as alterations of crucial mediator of the apoptosis pathway. We further demonstrated that pretreatment of 10 µM DADS in HeLa cells exposed to radiation resulted in decrease in cell viability and increased radiosensitivity. Additionally, cells pretreated with DADS obviously inhibited the radiation-induced G2/M phase arrest, but promoted radiation-induced apoptosis. Moreover, combination DADS and the radiation exacerbated the activation of apoptosis pathways through up-regulated ration of pro-apoptotic Tap73 to anti-apoptotic ΔNp73, and its downstream proteins, such as FASLG, and APAF1. Taken together, these results suggest that DADS is a potential candidate as radio sensitive agent for cervical cancer. PMID:26505313

  14. Establishment of a specific cell death induction system in Bombyx mori by a transgene with the conserved apoptotic regulator, mouse Bcl-2-associated X protein (mouse Bax).

    PubMed

    Sumitani, M; Sakurai, T; Kasashima, K; Kobayashi, S; Uchino, K; Kanzaki, R; Tamura, T; Sezutsu, H

    2015-12-01

    The induction of apoptosis in vivo is a useful tool for investigating the functions and importance of particular tissues. B-cell leukaemia/lymphoma 2-associated X protein (Bax) functions as a pro-apoptotic factor and induces apoptosis in several organisms. The Bax-mediated apoptotic system is widely conserved from Caenorhabditis elegans to humans. In order to establish a tissue-specific cell death system in the domestic silkworm, Bombyx mori, we constructed a transgenic silkworm that overexpressed mouse Bax (mBax) in particular tissues by the Gal4-upstream activation sequence system. We found that the expression of mBax induced specific cell death in the silk gland, fat body and sensory cells. Fragmentation of genomic DNA was observed in the fat body, which expressed mBax, thereby supporting apoptotic cell death in this tissue. Using this system, we also demonstrated that specific cell death in sensory cells attenuated the response to the sex pheromone bombykol. These results show that we successfully established a tissue-specific cell death system in vivo that enabled specific deficiencies in particular tissues. The inducible cell death system may provide useful means for industrial applications of the silkworm and possible utilization for other species. PMID:26426866

  15. Multisite phosphorylation of c-Jun at threonine 91/93/95 triggers the onset of c-Jun pro-apoptotic activity in cerebellar granule neurons

    PubMed Central

    Reddy, C E; Albanito, L; De Marco, P; Aiello, D; Maggiolini, M; Napoli, A; Musti, A M

    2013-01-01

    Cerebellar granule cell (CGC) apoptosis by trophic/potassium (TK) deprivation is a model of election to study the interplay of pro-apoptotic and pro-survival signaling pathways in neuronal cell death. In this model, the c-Jun N-terminal kinase (JNK) induces pro-apoptotic genes through the c-Jun/activator protein 1 (AP-1) transcription factor. On the other side, a survival pathway initiated by lithium leads to repression of pro-apoptotic c-Jun/AP-1 target genes without interfering with JNK activity. Yet, the mechanism by which lithium inhibits c-Jun activity remains to be elucidated. Here, we used this model system to study the regulation and function of site-specific c-Jun phosphorylation at the S63 and T91/T93 JNK sites in neuronal cell death. We found that TK-deprivation led to c-Jun multiphosphorylation at all three JNK sites. However, immunofluorescence analysis of c-Jun phosphorylation at single cell level revealed that the S63 site was phosphorylated in all c-Jun-expressing cells, whereas the response of T91/T93 phosphorylation was more sensitive, mirroring the switch-like apoptotic response of CGCs. Conversely, lithium prevented T91T93 phosphorylation and cell death without affecting the S63 site, suggesting that T91T93 phosphorylation triggers c-Jun pro-apoptotic activity. Accordingly, a c-Jun mutant lacking the T95 priming site for T91/93 phosphorylation protected CGCs from apoptosis, whereas it was able to induce neurite outgrowth in PC12 cells. Vice versa, a c-Jun mutant bearing aspartate substitution of T95 overwhelmed lithium-mediate protection of CGCs from TK-deprivation, validating that inhibition of T91/T93/T95 phosphorylation underlies the effect of lithium on cell death. Mass spectrometry analysis confirmed multiphosphorylation of c-Jun at T91/T93/T95 in cells. Moreover, JNK phosphorylated recombinant c-Jun at T91/T93 in a T95-dependent manner. On the basis of our results, we propose that T91/T93/T95 multiphosphorylation of c-Jun functions as a sensitivity amplifier of the JNK cascade, setting the threshold for c-Jun pro-apoptotic activity in neuronal cells. PMID:24113186

  16. Multisite phosphorylation of c-Jun at threonine 91/93/95 triggers the onset of c-Jun pro-apoptotic activity in cerebellar granule neurons.

    PubMed

    Reddy, C E; Albanito, L; De Marco, P; Aiello, D; Maggiolini, M; Napoli, A; Musti, A M

    2013-01-01

    Cerebellar granule cell (CGC) apoptosis by trophic/potassium (TK) deprivation is a model of election to study the interplay of pro-apoptotic and pro-survival signaling pathways in neuronal cell death. In this model, the c-Jun N-terminal kinase (JNK) induces pro-apoptotic genes through the c-Jun/activator protein 1 (AP-1) transcription factor. On the other side, a survival pathway initiated by lithium leads to repression of pro-apoptotic c-Jun/AP-1 target genes without interfering with JNK activity. Yet, the mechanism by which lithium inhibits c-Jun activity remains to be elucidated. Here, we used this model system to study the regulation and function of site-specific c-Jun phosphorylation at the S63 and T91/T93 JNK sites in neuronal cell death. We found that TK-deprivation led to c-Jun multiphosphorylation at all three JNK sites. However, immunofluorescence analysis of c-Jun phosphorylation at single cell level revealed that the S63 site was phosphorylated in all c-Jun-expressing cells, whereas the response of T91/T93 phosphorylation was more sensitive, mirroring the switch-like apoptotic response of CGCs. Conversely, lithium prevented T91T93 phosphorylation and cell death without affecting the S63 site, suggesting that T91T93 phosphorylation triggers c-Jun pro-apoptotic activity. Accordingly, a c-Jun mutant lacking the T95 priming site for T91/93 phosphorylation protected CGCs from apoptosis, whereas it was able to induce neurite outgrowth in PC12 cells. Vice versa, a c-Jun mutant bearing aspartate substitution of T95 overwhelmed lithium-mediate protection of CGCs from TK-deprivation, validating that inhibition of T91/T93/T95 phosphorylation underlies the effect of lithium on cell death. Mass spectrometry analysis confirmed multiphosphorylation of c-Jun at T91/T93/T95 in cells. Moreover, JNK phosphorylated recombinant c-Jun at T91/T93 in a T95-dependent manner. On the basis of our results, we propose that T91/T93/T95 multiphosphorylation of c-Jun functions as a sensitivity amplifier of the JNK cascade, setting the threshold for c-Jun pro-apoptotic activity in neuronal cells. PMID:24113186

  17. c-FLIP, A MASTER ANTI-APOPTOTIC REGULATOR

    PubMed Central

    Safa, A.R.

    2016-01-01

    Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) is a master anti-apoptotic regulator and resistance factor that suppresses tumor necrosis factor-α (TNF-α), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, as well as apoptosis triggered by chemotherapy agents in malignant cells. c-FLIP is expressed as long (c-FLIPL), short (c-FLIPS), and c-FLIPR splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 and TRAIL receptor 5 (DR5) in a ligand-dependent and -independent fashion and forms an apoptosis inhibitory complex (AIC). This interaction in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. c-FLIPL and c-FLIPS are also known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective and pro-survival signaling proteins including Akt, ERK, and NF-kB. Upregulation of c-FLIP has been found in various tumor types, and its silencing has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIPL in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIPL and c-FLIPS splice variants have been found, and much effort is focused on developing other c-FLIP-targeted cancer therapies. This review focuses on (1) the anti-apoptotic role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and chemotherapy drug resistance, (2) the molecular mechanisms and factors that regulate c-FLIP expression, and (3) modulation of c-FLIP expression and function to eliminate cancer cells or increase the efficacy of anticancer agents. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”. PMID:23070002

  18. Drug-induced apoptotic neurodegeneration in the developing brain.

    PubMed

    Olney, John W; Wozniak, David F; Jevtovic-Todorovic, Vesna; Farber, Nuri B; Bittigau, Petra; Ikonomidou, Chysanthy

    2002-10-01

    Physiological cell death (PCD), a process by which redundant or unsuccessful neurons are deleted by apoptosis (cell suicide) from the developing central nervous system, has been recognized as a natural phenomenon for many years. Whether environmental factors can interact with PCD mechanisms to increase the number of neurons undergoing PCD, thereby converting this natural phenomenon into a pathological process, is an interesting question for which new answers are just now becoming available. In a series of recent studies we have shown that 2 major classes of drugs (those that block NMDA glutamate receptors and those that promote GABAA receptor activation), when administered to immature rodents during the period of synaptogenesis, trigger widespread apoptotic neurodegeneration throughout the developing brain. In addition, we have found that ethanol, which has both NMDA antagonist and GABAmimetic properties, triggers a robust pattern of apoptotic neurodegeneration, thereby deleting large numbers of neurons from many different regions of the developing brain. These findings provide a more likely explanation than has heretofore been available for the reduced brain mass and lifelong neurobehavioral disturbances associated with the human fetal alcohol syndrome (FAS). The period of synaptogenesis, also known as the brain growth spurt period, occurs in different species at different times relative to birth. In rats and mice it is a postnatal event, but in humans it extends from the sixth month of gestation to several years after birth. Thus, there is a period in pre- and postnatal human development, lasting for several years, during which immature CNS neurons are prone to commit suicide if exposed to intoxicating concentrations of drugs with NMDA antagonist or GABAmimetic properties. These findings are important, not only because of their relevance to the FAS, but because there are many agents in the human environment, other than ethanol, that have NMDA antagonist or GABAmimetic properties. Such agents include drugs that may be abused by pregnant mothers (ethanol, phencyclidine [angel dust], ketamine [Special K], nitrous oxide [laughing gas], barbiturates, benzodiazepines), and many medicinals used in obstetric and pediatric neurology (anticonvulsants), and anesthesiology (all general anesthetics are either NMDA antagonists or GABAmimetics). PMID:12408236

  19. Repeated low-dose 17β-estradiol treatment prevents activation of apoptotic signaling both in the synaptosomal and cellular fraction in rat prefrontal cortex following cerebral ischemia.

    PubMed

    Stanojlović, Miloš; Zlatković, Jelena; Guševac, Ivana; Grković, Ivana; Mitrović, Nataša; Zarić, Marina; Horvat, Anica; Drakulić, Dunja

    2015-01-01

    Disturbance in blood circulation is associated with numerous pathological conditions characterized by cognitive decline and neurodegeneration. Activation of pro-apoptotic signaling previously detected in the synaptosomal fraction may underlie neurodegeneration in the prefrontal cortex of rats submitted to permanent bilateral common carotid arteries occlusion (two-vessel occlusion, 2VO). 17β-Estradiol (E) exerts potent neuroprotective effects in the brain affecting, among other, ischemia-induced pathological changes. As most significant changes in rats submitted to 2VO were observed on 7th day following the insult, of interest was to examine whether 7 day treatment with low dose of E (33.3 µg/kg/day) prevents formerly reported neurodegeneration and may represent additional therapy during the early post-ischemic period. Role of E treatment on apoptotic pathway was monitored on Bcl-2 family members, cytochrome c, caspase 3 and PARP protein level in the synaptosomal (P2) fraction of the prefrontal cortex. Furthermore, changes of these proteins were examined in the cytosolic, mitochondrial and nuclear fraction, with the emphasis on potential involvement of extracellular signal-regulated kinases (ERK) and protein kinase B (Akt) activation and their role in nuclear translocation of transcriptional nuclear factor kappa B (NF-kB) associated with alteration of Bax and Bcl-2 gene expression. The extent of cellular damage was determined using DNA fragmentation and Fluoro-Jade B staining. The absence of activation of apoptotic cascade both in the P2 and cell accompanied with decreased DNA fragmentation and number of degenerating neurons clearly indicates that E treatment ensures the efficient protection against ischemic insult. Moreover, E-mediated modulation of pro-apoptotic signaling in the cortical cellular fractions involves cooperative activation of ERK and Akt, which may be implicated in the observed prevention of neurodegenerative changes. PMID:25777481

  20. Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway

    SciTech Connect

    Ramanathan, Mathura P.; Chambers, Jerome A.; Pankhong, Panyupa; Chattergoon, Michael; Attatippaholkun, Watcharee; Dang, Kesen; Shah, Neelima; Weiner, David B. . E-mail: dbweiner@mail.med.upenn.edu

    2006-02-05

    The West Nile Virus (WNV) non-structural proteins 2B and 3 (NS2B-NS3) constitute the proteolytic complex that mediates the cleavage and processing of the viral polyprotein. NS3 recruits NS2B and NS5 proteins to direct protease and replication activities. In an effort to investigate the biology of the viral protease, we cloned cDNA encoding the NS2B-NS3 proteolytic complex from brain tissue of a WNV-infected dead crow, collected from the Lower Merion area (Merion strain). Expression of the NS2B-NS3 gene cassette induced apoptosis within 48 h of transfection. Electron microscopic analysis of NS2B-NS3-transfected cells revealed ultra-structural changes that are typical of apoptotic cells including membrane blebbing, nuclear disintegration and cytoplasmic vacuolations. The role of NS3 or NS2B in contributing to host cell apoptosis was examined. NS3 alone triggers the apoptotic pathways involving caspases-8 and -3. Experimental results from the use of caspase-specific inhibitors and caspase-8 siRNA demonstrated that the activation of caspase-8 was essential to initiate apoptotic signaling in NS3-expressing cells. Downstream of caspase-3 activation, we observed nuclear membrane ruptures and cleavage of the DNA-repair enzyme, PARP in NS3-expressing cells. Nuclear herniations due to NS3 expression were absent in the cells treated with a caspase-3 inhibitor. Expression of protease and helicase domains themselves was sufficient to trigger apoptosis generating insight into the apoptotic pathways triggered by NS3 from WNV.

  1. 3,4-dihydroxyphenylethanol attenuates spatio-cognitive deficits in an Alzheimer's disease mouse model: modulation of the molecular signals in neuronal survival-apoptotic programs.

    PubMed

    Arunsundar, Mohanasundaram; Shanmugarajan, Thukani Sathanantham; Ravichandran, Velayutham

    2015-02-01

    Alzheimer's disease (AD), the most common type of dementia, is a devastating neurodegenerative disease characterized by progressive neuro-cognitive dysfunction. In our study, we investigated the potential of 3,4-dihydroxyphenylethanol (DOPET), a dopamine metabolite, and also a polyphenol from olive oil, in ameliorating soluble oligomeric amyloid β1-42 plus ibotenic acid (oA42i)-induced neuro-behavioral dysfunction in C57BL/6 mice. The results depicted that intracerebroventricular injection of oA42i negatively altered the spatial reference and working memories in mice, whereas DOPET treatment significantly augmented the spatio-cognitive abilities against oA42i. Upon investigation of the underlying mechanisms, oA42i-intoxicated mice displayed significantly activated death kinases including JNK- and p38-MAPKs with concomitantly inhibited ERK-MAPK/RSK2, PI3K/Akt1, and JAK2/STAT3 survival signaling pathways in the hippocampal neurons. Conversely, DOPET treatment reversed these dysregulated signaling mechanisms comparable to the sham-operated mice. Notably, oA42i administration altered the Bcl-2/Bad levels and activated the caspase-dependent mitochondria-mediated apoptotic pathway involving cytochrome c, apoptotic protease activating factor-1, and caspase-9/3. In contrary, DOPET administration stabilized the dysregulated activities of these apoptotic/anti-apoptotic markers and preserved the mitochondrial ultra-architecture. Besides, we observed that oA42i intoxication substantially down-regulated the expression of genes involved in the regulation of survival and memory functions including sirtuin-1, cyclic AMP response element-binding protein (CREB), CREB-target genes (BDNF, c-Fos, Nurr1, and Egr1) and a disintegrin and metalloprotease 10. Fascinatingly, DOPET treatment significantly diminished these aberrations when compared to the oA42i group. Taken together, these results accentuate that DOPET may be a multipotent agent to combat AD. PMID:25274193

  2. A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation

    PubMed Central

    Moss, David K.; Betin, Virginie M.; Malesinski, Soazig D.; Lane, Jon D.

    2006-01-01

    Summary Dramatic changes in cellular dynamics characterise the apoptotic execution phase, culminating in fragmentation into membrane-bound apoptotic bodies. Previous evidence suggests that actin-myosin plays dominant roles in apoptotic cellular remodelling, while all other cytoskeletal elements dismantle. We have used fixed and live-cell imaging to confirm that interphase microtubules rapidly depolymerise at the start of the execution phase. At around this time, pericentriolar components (pericentrin, ninein and γ-tubulin) are lost from the centrosomal region. Subsequently, however, extensive non-centrosomal bundles of densely packed, dynamic microtubules rapidly assemble throughout the cytoplasm in all cell-lines tested. These microtubules play important roles in the peripheral relocation of chromatin in the dying cell, because nocodazole treatment restricts the dispersal of condensed apoptotic chromatin into surface blebs, and causes the withdrawal of chromatin fragments back towards the cell centre. Importantly, nocodazole and taxol are both potent inhibitors of apoptotic fragmentation in A431 cells, implicating dynamic microtubules in apoptotic body formation. Live-cell imaging studies indicate that fragmentation is accompanied by the extension of rigid microtubule-rich spikes that project through the cortex of the dying cell. These structures enhance interactions between apoptotic cells and phagocytes in vitro, by providing additional sites for attachment to neighbouring cells. PMID:16723742

  3. Fatty acids enhance membrane permeabilization by pro-apoptotic Bax.

    PubMed Central

    Epand, Raquel F; Martinou, Jean-Claude; Montessuit, Sylvie; Epand, Richard M

    2004-01-01

    Fatty acids are known promoters of apoptosis. In the present study, the direct role of fatty acids with regard to their ability to cause membrane permeabilization by Bax was explored. Addition of fatty acids to liposomes in the presence of cations greatly enhanced the permeabilizing activity of Bax, a pro-apoptotic Bcl-2 protein. This provides a putative mechanism for the role of fatty acids in apoptosis. It is not a result of detergent-like properties of fatty acids, since a different micelle-forming amphiphile, dilysocardiolipin, was strongly inhibitory. We also demonstrate that there is a synergistic effect on Bax-induced permeabilization between Ca(2+) and Mg(2+), both on the binding of Bax to liposomes as well as on the induction of the leakage of liposomal contents. Micromolar concentrations of Ca(2+) added externally or submicromolar concentrations of free Ca(2+) present in the medium were sufficient to promote Bax-induced permeabilization synergistically with externally added Mg(2+). These results indicate that Bax can induce leakage from liposomes at ion concentrations resembling those found physiologically. The synergistic effects of Ca(2+) and Mg(2+) were observed with liposomes with different lipid compositions. Thus the action of Bax is strongly modulated by the presence of bivalent cations that can act synergistically, as well as by micelle-forming lipid components that can be either stimulatory or inhibitory. PMID:14535847

  4. A review on antiproliferative and apoptotic activities of natural honey.

    PubMed

    Jaganathan, Saravana Kumar; Balaji, Arunpandian; Vellayappan, Muthu Vignesh; Asokan, Manjesh Kumar; Subramanian, Aruna Priyadharshni; John, Agnes Aruna; Supriyanto, Eko; Razak, Saiful Izwan Abd; Marvibaigi, Mohsen

    2015-01-01

    Recent statistics revealed that cancer is one among the main reasons for death throughout the world. Several treatments are available but still there is no cure when it is detected at late stages. One of the treatment modes for cancer is chemotherapy which utilizes anticancer drugs in order to eradicate the cancer cells by apoptosis. Apoptosis is a programmed cell death through which body maintains homeostasis or kills cancer cells by utilizing its cell machinery. Recent researches have concluded that dietary agents have a putative role in instituting apoptosis of cancer cells. Honey, one of the victuals rich in antioxidants, has a long-standing exposure to humans and its role in cancer prevention and treatment is a topic of current interest. Various researchers have been experimenting honey against different cancers and provided valuable insights about the apoptosis induced by the honey. This review will highlight the recent findings of apoptotic mechanism involved in different cancer cells. Further it also reports antitumor activity of honey in some animal models. Hence it is high-time to initiate more preclinical trials as well as clinical experiments which would further add to the knowledge of anticancer nature of honey and also endorse honey as a potential candidate in the war against cancer. PMID:25052987

  5. TCTP protects from apoptotic cell death by antagonizing bax function.

    PubMed

    Susini, L; Besse, S; Duflaut, D; Lespagnol, A; Beekman, C; Fiucci, G; Atkinson, A R; Busso, D; Poussin, P; Marine, J-C; Martinou, J-C; Cavarelli, J; Moras, D; Amson, R; Telerman, A

    2008-08-01

    Translationally controlled tumor protein (TCTP) is a potential target for cancer therapy. It functions as a growth regulating protein implicated in the TSC1-TSC2 -mTOR pathway or a guanine nucleotide dissociation inhibitor for the elongation factors EF1A and EF1Bbeta. Accumulating evidence indicates that TCTP also functions as an antiapoptotic protein, through a hitherto unknown mechanism. In keeping with this, we show here that loss of tctp expression in mice leads to increased spontaneous apoptosis during embryogenesis and causes lethality between E6.5 and E9.5. To gain further mechanistic insights into this apoptotic function, we solved and refined the crystal structure of human TCTP at 2.0 A resolution. We found a structural similarity between the H2-H3 helices of TCTP and the H5-H6 helices of Bax, which have been previously implicated in regulating the mitochondrial membrane permeability during apoptosis. By site-directed mutagenesis we establish the relevance of the H2-H3 helices in TCTP's antiapoptotic function. Finally, we show that TCTP antagonizes apoptosis by inserting into the mitochondrial membrane and inhibiting Bax dimerization. Together, these data therefore further confirm the antiapoptotic role of TCTP in vivo and provide new mechanistic insights into this key function of TCTP. PMID:18274553

  6. Non-apoptotic functions of caspase-7 during osteogenesis

    PubMed Central

    Svandova, E; Lesot, H; Vanden Berghe, T; Tucker, A S; Sharpe, P T; Vandenabeele, P; Matalova, E

    2014-01-01

    Caspase-3 and -7 are generally known for their central role in the execution of apoptosis. However, their function is not limited to apoptosis and under specific conditions activation has been linked to proliferation or differentiation of specialised cell types. In the present study, we followed the localisation of the activated form of caspase-7 during intramembranous (alveolar and mandibular bones) and endochondral (long bones of limbs) ossification in mice. In both bone types, the activated form of caspase-7 was detected from the beginning of ossification during embryonic development and persisted postnatally. The bone status was investigated by microCT in both wild-type and caspase-7-deficient adult mice. Intramembranous bone in mutant mice displayed a statistically significant decrease in volume while the mineral density was not altered. Conversely, endochondral bone showed constant volume but a significant decrease in mineral density in caspase-7 knock-out mice. Cleaved caspase-7 was present in a number of cells that did not show signs of apoptosis. PCR array analysis of the mandibular bone of caspase-7-deficient versus wild-type mice pointed to a significant decrease in mRNA levels for Msx1 and Smad1 in early bone formation. These observations might explain the decrease in the alveolar bone volume of adult knock-out mice. In conclusion, this study is the first to report a non-apoptotic function of caspase-7 in osteogenesis and also demonstrates further specificities in endochondral versus intramembranous ossification. PMID:25118926

  7. Non-apoptotic cell death associated with perturbations of macropinocytosis

    PubMed Central

    Maltese, William A.; Overmeyer, Jean H.

    2015-01-01

    Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed “methuosis,” from the Greek methuo (to drink to intoxication). It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms. PMID:25762935

  8. Lysosomal photodamage induces cell death via mitochondrial apoptotic pathway

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xian-wang; Li, Hui

    2009-11-01

    Lysosomal photosensitizers have been used in photodynamic therapy (PDT). Combination of such photosensitizers and light causes lysosomal photodamage, inducing cell death. The lysosomal disruption can lead to apoptosis but its signaling pathways remain to be elucidated. In this study, we selected N-aspartyl chlorin e6 (NPe6), an effective photosensitizer which preferentially accumulates in lysosomes, to study the mechanism of apoptosis caused by lysosomal photodamage. Apoptosis in living human lung adenocarcinoma cells treated by NPe6-PDT was studied using real-time single-cell analysis. In this study, the fluorescence probes Cyto c-GFP and DsRed-Mit were used to detect the spatial and temporal changes of cytochrome c in real-time in sub-cell level; the Rhodamine 123 dyes were used to monitor the changes of mitochondrial membrane potential. The results showed that, after PDT treatment,the mitochondrial membrane potential decreased, and cytochrome c released from mitochondria; The caspase-3 was activated obviously. These results suggested that lysosomal photodamage activates mitochondrial apoptotic pathway to induce cell death.

  9. Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis

    PubMed Central

    2013-01-01

    Background Here, we evaluated the hypothesis that CD8+ T cell responses to caspase-cleaved antigens derived from effector T cells undergoing apoptosis, may contribute to multiple sclerosis (MS) immunopathology. Methods The percentage of autoreactive CD8+ T effector cells specific for various apoptotic T cell-associated self-epitopes (apoptotic epitopes) were detected in the peripheral blood and cerebrospinal fluid (CSF) by both enzyme-linked immunospot and dextramers of class I molecules complexed with relevant apoptotic epitopes. Moreover, the capacity of dextramer+ CD8+ T cells to produce interferon (IFN)-γ and/or interleukin (IL)-17 in response to the relevant apoptotic epitopes was evaluated by the intracellular cytokine staining. Cross-presentation assay of apoptotic T cells by dendritic cells was also evaluated ex vivo. Results We found that polyfunctional (IFN-γ and/or IL-17 producing) autoreactive CD8+ T cells specific for apoptotic epitopes were represented in MS patients with frequencies significantly higher than in healthy donors. These autoreactive CD8+ T cells with a strong potential to produce IFN-γ or IL-17 in response to the relevant apoptotic epitopes were significantly accumulated in the CSF from the same patients. In addition, the frequencies of these autoreactive CD8+ T cells correlated with the disease disability. Cross-presentation assay revealed that caspase-cleaved cellular proteins are required to activate apoptotic epitope-specific CD8+ T cells ex vivo. Conclusion Taken together, these data indicate that apoptotic epitope-specific CD8+ T cells with strong inflammatory potential are recruited at the level of the inflammatory site, where they may be involved in MS immunopathology through the production of high levels of inflammatory cytokines. PMID:23890271

  10. C1q Binding to and Uptake of Apoptotic Lymphocytes by Human Monocyte-derived Macrophages

    PubMed Central

    Benoit, Marie E.; Clarke, Elizabeth V.; Tenner, Andrea J.

    2016-01-01

    To characterize macrophage gene expression profiles during the uptake of autologous apoptotic cells, we developed a unique, more physiologic system using primary human monocyte derived macrophages purified via a nonactivating isolation procedure (and in the absence of contaminating platelets, which can release stimulating signals if activated) and autologous lymphocytes as a source of apoptotic cells. The use of autologous cells as the apoptotic target rather than transformed cell lines avoids antigenic stimulation from “nonself” structures at the HLA level but also from “altered self” signals due to the transformation inherent in cell lines.

  11. Pre-operative radio-chemotherapy enhances apoptotic cell death in oral squamous cell carcinoma.

    PubMed

    Doi, R; Makino, T; Adachi, H; Ryoke, K; Ito, H

    1998-09-01

    The effect of pre-operative radio-chemotherapy (RCT) has been examined in a total of 15 oral squamous cell carcinomas (SCCs), in terms of apoptosis (cell loss) and proliferation. All the patients received pre-operative radiation at a dosage of 30 or 40 Gy, as well as anticancer agents including tagaful (FT), 5-fluorouracil (5-FU), bleomycin (BLM) and peplomycin (PEP). Surgical specimens were obtained before and after RCT, and serial sections were prepared for immunohistochemistry for p53 oncoprotein and Ki-67 antigen, as well as for terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL). TUNEL indices (TI; percentage of TUNEL-positive cells in the tumor cells) before and after RCT were 1.2+/-1.1 and 4.7+/-2.9 in the nine well-differentiated oral SCCs, and 1.0+/-0.7 and 3.9+/-2.1 in the six poorly differentiated SCCs, respectively. Similarly, Ki-67 indices (KI; percentage of Ki-67 antigen-positive cells in tumor cells) before and after RCT were 31.1+/-14.2 and 15.8+/-11.1 in the former, and 37.1+/-7.8 and 8.7+/- 13.4 in the latter, respectively. Thus, pre-operative RCT enhanced apoptotic cell death and abated proliferative activity significantly (P<0.05), regardless of histological differentiation. Enhancement of apoptosis was more prominent in the group treated with FT or 5-FU than with BLM or PEP. Oral SCC with >20% of nuclear p53-positive tumor cells was noted in six cases. Enhanced TI and abadement of KI did not differ among the p53-positive and -negative tumors. PMID:9736427

  12. Tyrosine Phosphorylation of Caspase-8 Abrogates Its Apoptotic Activity and Promotes Activation of c-Src

    PubMed Central

    Tsang, Jennifer LY; Jia, Song Hui; Parodo, Jean; Plant, Pamela; Lodyga, Monika; Charbonney, Emmanuel; Szaszi, Katalin; Kapus, Andras; Marshall, John C.

    2016-01-01

    Src family tyrosine kinases (SFKs) phosphorylate caspase-8A at tyrosine (Y) 397 resulting in suppression of apoptosis. In addition, the phosphorylation of caspase-8A at other sites including Y465 has been implicated in the regulation of caspase-8 activity. However, the functional consequences of these modifications on caspase-8 processing/activity have not been elucidated. Moreover, various Src substrates are known to act as potent Src regulators, but no such role has been explored for caspase-8. We asked whether the newly identified caspase-8 phosphorylation sites might regulate caspase-8 activation and conversely, whether caspase-8 phosphorylation might affect Src activity. Here we show that Src phosphorylates caspase-8A at multiple tyrosine sites; of these, we have focused on Y397 within the linker region and Y465 within the p12 subunit of caspase-8A. We show that phosphomimetic mutation of caspase-8A at Y465 prevents its cleavage and the subsequent activation of caspase-3 and suppresses apoptosis. Furthermore, simultaneous phosphomimetic mutation of caspase-8A at Y397 and Y465 promotes the phosphorylation of c-Src at Y416 and increases c-Src activity. Finally, we demonstrate that caspase-8 activity prevents its own tyrosine phosphorylation by Src. Together these data reveal that dual phosphorylation converts caspase-8 from a pro-apoptotic to a pro-survival mediator. Specifically, tyrosine phosphorylation by Src renders caspase-8 uncleavable and thereby inactive, and at the same time converts it to a Src activator. This novel dynamic interplay between Src and caspase-8 likely acts as a potent signal-integrating switch directing the cell towards apoptosis or survival. PMID:27101103

  13. Proteins Associated with the Exon Junction Complex Also Control the Alternative Splicing of Apoptotic Regulators

    PubMed Central

    Michelle, Laetitia; Cloutier, Alexandre; Toutant, Johanne; Shkreta, Lulzim; Thibault, Philippe; Durand, Mathieu; Garneau, Daniel; Gendron, Daniel; Lapointe, Elvy; Couture, Sonia; Le Hir, Hervé; Klinck, Roscoe; Elela, Sherif Abou; Prinos, Panagiotis

    2012-01-01

    Several apoptotic regulators, including Bcl-x, are alternatively spliced to produce isoforms with opposite functions. We have used an RNA interference strategy to map the regulatory landscape controlling the expression of the Bcl-x splice variants in human cells. Depleting proteins known as core (Y14 and eIF4A3) or auxiliary (RNPS1, Acinus, and SAP18) components of the exon junction complex (EJC) improved the production of the proapoptotic Bcl-xS splice variant. This effect was not seen when we depleted EJC proteins that typically participate in mRNA export (UAP56, Aly/Ref, and TAP) or that associate with the EJC to enforce nonsense-mediated RNA decay (MNL51, Upf1, Upf2, and Upf3b). Core and auxiliary EJC components modulated Bcl-x splicing through different cis-acting elements, further suggesting that this activity is distinct from the established EJC function. In support of a direct role in splicing control, recombinant eIF4A3, Y14, and Magoh proteins associated preferentially with the endogenous Bcl-x pre-mRNA, interacted with a model Bcl-x pre-mRNA in early splicing complexes, and specifically shifted Bcl-x alternative splicing in nuclear extracts. Finally, the depletion of Y14, eIF4A3, RNPS1, SAP18, and Acinus also encouraged the production of other proapoptotic splice variants, suggesting that EJC-associated components are important regulators of apoptosis acting at the alternative splicing level. PMID:22203037

  14. Inhibition of mTOR-dependent autophagy sensitizes leukemic cells to cytarabine-induced apoptotic death.

    PubMed

    Bosnjak, Mihajlo; Ristic, Biljana; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Perovic, Vladimir; Bogdanovic, Andrija; Paunovic, Verica; Markovic, Ivanka; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response. PMID:24714637

  15. Cell cycle regulation and apoptotic cell death in experimental colon carcinogenesis: intervening with cyclooxygenase-2 inhibitors.

    PubMed

    Saini, Manpreet Kaur; Sanyal, Sankar Nath

    2015-01-01

    Relative imbalance in the pathways regulating cell cycle, cell proliferation, or cell death marks a prerequisite for neoplasm. C-phycocyanin, a biliprotein from Spirulina platensis and a selective COX-2 inhibitor along with piroxicam, a traditional nonsteroidal antiinflammatory drug was used to investigate the role of cell cycle regulatory proteins and proinflammatory transcription factor NFκB in 1,2-dimethylhydrazine dihydrochloride (DMH)-induced rat colon carcinogenesis. Cell cycle regulators [cyclin D1, cyclin E, cyclin dependent kinase 2 (CDK2), CDK4, and p53], NFκB (p65) pathway, and proliferating cell nuclear antigen (PCNA) were evaluated by gene and protein expression, whereas apoptosis was studied by terminal deoxynucleotidyl transferase dUTP nick end labeling and apoptotic bleb assay. Molecular docking of ligand protein interaction was done to validate the in vivo results. Cyclin D1, cyclin E, CDK2, and CDK4 were overexpressed in DMH, whereas piroxicam and c-phycocyanin promoted the cell cycle arrest by downregulating them. Both drugs mediated apoptosis through p53 activation. Piroxicam and c-phycocyanin also stimulated antiproliferation by restraining PCNA expression and reduced cell survival via inhibiting NFκB (p65) pathway. Molecular docking revealed that phycocyanobilin (a chromophore of c-phycocyanin) interact with DNA binding site of NFκB. Inhibition of cyclin/CDK complex by piroxicam and c-phycocyanin affects the expression of p53 in colon cancer followed by downregulation of NFκB and PCNA levels, thus substantiating the antineoplastic role of these agents. PMID:25825916

  16. Manganese Nanoparticle Activates Mitochondrial Dependent Apoptotic Signaling and Autophagy in Dopaminergic Neuronal Cells

    PubMed Central

    Ngwa, Hilary Afeseh; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-01-01

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles (~25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25–400 µg/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase Cδ (PKCδ), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. PMID:21856324

  17. Tumor-specific apoptotic gene targeting overcomes radiation resistance in esophageal adenocarcinoma

    SciTech Connect

    Chang, Joe Y. . E-mail: jychang@mdanderson.org; Zhang Xiaochun; Komaki, Ritsuko; Cheung, Rex; Fang Bingliang

    2006-04-01

    Purpose: To overcome radiation resistance in esophageal adenocarcinoma by tumor-specific apoptotic gene targeting using tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Methods and Materials: Adenoviral vector Ad/TRAIL-F/RGD with a tumor-specific human telomerase reverse transcription promoter was used to transfer TRAIL gene to human esophageal adenocarcinoma and normal human lung fibroblastic cells (NHLF). Activation of apoptosis was analyzed by Western blot, fluorescent activated cell sorting, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate labeling (TUNEL) assay. A human esophageal adenocarcinoma mouse model was treated with intratumoral injections of Ad/TRAIL-F/RGD plus local radiotherapy. Results: The combination of Ad/TRAIL-F/RGD and radiotherapy increased the cell-killing effect in all esophageal adenocarcinoma cell lines but not in NHLF cells. This combination also significantly reduced clonogenic formation (p < 0.05) and increased sub-G1 deoxyribonucleic acid accumulation in cancer cells (p < 0.05). Activation of apoptosis by Ad/TRAIL-F/RGD plus radiotherapy was demonstrated by activation of caspase-9, caspase-8, and caspase-3 and cleaved poly (adenosine diphosphate-ribose) polymerase in vitro and TUNEL assay in vivo. Combined Ad/TRAIL-F/RGD and radiotherapy dramatically inhibited tumor growth and prolonged mean survival in the esophageal adenocarcinoma model to 31.6 days from 16.7 days for radiotherapy alone and 21.5 days for Ad/TRAIL-F/RGD alone (p < 0.05). Conclusions: The combination of tumor-specific TRAIL gene targeting and radiotherapy enhances the effect of suppressing esophageal adenocarcinoma growth and prolonging survival.

  18. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  19. Straw blood cell count, growth, inhibition and comparison to apoptotic bodies

    PubMed Central

    Wu, Yonnie; Henry, David C; Heim, Kyle; Tomkins, Jeffrey P; Kuan, Cheng-Yi

    2008-01-01

    Background Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress in vitro. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis. Results There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC) is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6~1.1 (?m/hr) and 3.8 (?m3/hr), respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R2 = 0.7). Conclusion Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK). Tubular transformation is a programmed cell survival process that diverges from apoptosis. SBCs may be an important indicator of intrinsic aging-related stress. PMID:18492269

  20. The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats.

    PubMed

    Koçtürk, S; Kayatekin, B M; Resmi, H; Açikgöz, O; Kaynak, C; Ozer, E

    2008-03-01

    The purposes of this study were to investigate the effects of strenuous exercise on apoptosis of the gastrocnemius and soleus muscle fibers and clarify the role of oxidative metabolism in the strenuous exercise-induced apoptosis. The experiment was designed with 49 (n = 49) male, 24-week-old, L. Wistar albino rats. Strenuous exercise model was applied to 42 (n = 42) rats and seven (n = 7) rats served as rested controls. All rats were randomly assigned to one of the following groups (n = 7): rested control (C), immediately after exercise (0 h) and 3, 6, 12, 24, and 48 h after exercise. Apoptotic nuclei were shown by single stranded DNA (ssDNA) determination. Oxidative damage in mitochondrial fractions of the muscle tissues was evaluated by malondialdehyde (MDA) levels and reduced/oxidized glutathione (GSH/GSSG) ratios. Caspase-9, -8 and -3 activities and the level of cytochrome c (Cyt c) were measured in the cytosolic fractions of muscle tissues to follow mitochondrial-dependent (intrinsic) or ligand-mediated death receptor (extrinsic) pathways of apoptosis. Plasma interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) levels were also determined. Based on our results, apoptosis is significantly triggered in muscle fibers by strenuous exercise (P < 0.05). Apoptosis in the soleus muscle tissues mostly depends on the intrinsic pathway and may be triggered by increased oxidative stress. In contrast, extrinsic pathway of apoptosis was predominant in the gastrocnemius muscle and increases of TNF-alpha and IL-6 may play a significant role. PMID:18030491

  1. The apoptotic initiator caspase-8: its functional ubiquity and genetic diversity during animal evolution.

    PubMed

    Sakamaki, Kazuhiro; Shimizu, Kouhei; Iwata, Hiroaki; Imai, Kenichiro; Satou, Yutaka; Funayama, Noriko; Nozaki, Masami; Yajima, Mamiko; Nishimura, Osamu; Higuchi, Mayura; Chiba, Kumiko; Yoshimoto, Michi; Kimura, Haruna; Gracey, Andrew Y; Shimizu, Takashi; Tomii, Kentaro; Gotoh, Osamu; Akasaka, Koji; Sawasaki, Tatsuya; Miller, David J

    2014-12-01

    The caspases, a family of cysteine proteases, play multiple roles in apoptosis, inflammation, and cellular differentiation. Caspase-8 (Casp8), which was first identified in humans, functions as an initiator caspase in the apoptotic signaling mediated by cell-surface death receptors. To understand the evolution of function in the Casp8 protein family, casp8 orthologs were identified from a comprehensive range of vertebrates and invertebrates, including sponges and cnidarians, and characterized at both the gene and protein levels. Some introns have been conserved from cnidarians to mammals, but both losses and gains have also occurred; a new intron arose during teleost evolution, whereas in the ascidian Ciona intestinalis, the casp8 gene is intronless and is organized in an operon with a neighboring gene. Casp8 activities are near ubiquitous throughout the animal kingdom. Exogenous expression of a representative range of nonmammalian Casp8 proteins in cultured mammalian cells induced cell death, implying that these proteins possess proapoptotic activity. The cnidarian Casp8 proteins differ considerably from their bilaterian counterparts in terms of amino acid residues in the catalytic pocket, but display the same substrate specificity as human CASP8, highlighting the complexity of spatial structural interactions involved in enzymatic activity. Finally, it was confirmed that the interaction with an adaptor molecule, Fas-associated death domain protein, is also evolutionarily ancient. Thus, despite structural diversity and cooption to a variety of new functions, the ancient origins and near ubiquitous distribution of this activity across the animal kingdom emphasize the importance and utility of Casp8 as a central component of the metazoan molecular toolkit. PMID:25205508

  2. Analysis of apoptotic cell death in human hair follicles in vivo and in vitro.

    PubMed

    Soma, T; Ogo, M; Suzuki, J; Takahashi, T; Hibino, T

    1998-12-01

    We analyzed changes of growth and apoptotic cell death in human hair follicles. In anagen hair follicles, terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate-biotin nick labeling-positive cells were observed in the keratogenous zone of the upper bulb matrix, the inner root sheath, and the companion layer of the outer root sheath. DNA ladder formation was also detected in anagen hair follicles. In catagen hair follicles, the lower bulb matrix cells around the dermal papilla and the outer layer cells of the outer root sheath became strongly positive, showing that apoptosis in catagen hair is distinct from that in anagen hair. We also confirmed the mRNA expression of four caspases (caspase-1, caspase-3, caspase-4, and caspase-7) in anagen hair follicles by reverse transcriptase-polymerase chain reaction and in situ hybridization. When human anagen hair follicles were cultured in the presence of transforming growth factor-beta or tumor necrosis factor-alpha in the serum-free medium, transforming growth factor-beta but not tumor necrosis factor-alpha induced catagen-like morphologic changes, which were indistinguishable from normal catagen hair follicles. Tumor necrosis factor-alpha, however, strongly inhibited the elongation of the hair shaft in a dose-dependent manner, accompanied by abnormal morphology and increased cell death in the bulb matrix cells. Our results suggest that apoptosis in hair follicles involves two different types. One is related to the terminal differentiation of follicular epithelial cells in anagen hair. The other occurs as a major driving force to eliminate the distinct portion of epithelial components in catagen hair. Furthermore, this study strongly indicates that the transforming growth factor-beta pathway is involved in the induction of catagen phase in human hair cycle. PMID:9856801

  3. CDK4 inhibition and doxorubicin mediate breast cancer cell apoptosis through Smad3 and survivin

    PubMed Central

    Tarasewicz, Elizabeth; Hamdan, Randala; Straehla, Joelle; Hardy, Ashley; Nunez, Omar; Zelivianski, Stanislav; Dokic, Danijela; Jeruss, Jacqueline S

    2014-01-01

    Cyclin D1/CDK4 activity is upregulated in up to 50% of breast cancers and CDK4-mediated phosphorylation negatively regulates the TGFβ superfamily member Smad3. We sought to determine if CDK4 inhibition and doxorubicin chemotherapy could impact Smad3-mediated cell/colony growth and apoptosis in breast cancer cells. Parental and cyclin D1-overexpressing MCF7 cells were treated with CDK4 inhibitor, doxorubicin, or combination therapy and cell proliferation, apoptosis, colony formation, and expression of apoptotic proteins were evaluated using an MTS assay, TUNEL staining, 3D Matrigel assay, and apoptosis array/immunoblotting. Study cells were also transduced with WT Smad3 or a Smad3 construct resistant to CDK4 phosphorylation (5M) and colony formation and expression of apoptotic proteins were assessed. Treatment with CDK4 inhibitor/doxorubicin combination therapy, or transduction with 5M Smad3, resulted in a similar decrease in colony formation. Treating cyclin D overexpressing breast cancer cells with combination therapy also resulted in the greatest increase in apoptosis, resulted in decreased expression of anti-apoptotic proteins survivin and XIAP, and impacted subcellular localization of pro-apoptotic Smac/DIABLO. Additionally, transduction of 5M Smad3 and doxorubicin treatment resulted in the greatest change in apoptotic protein expression. Collectively, this work showed the impact of CDK4 inhibitor-mediated, Smad3-regulated tumor suppression, which was augmented in doxorubicin-treated cyclin D-overexpressing study cells. PMID:25006666

  4. CDK4 inhibition and doxorubicin mediate breast cancer cell apoptosis through Smad3 and survivin.

    PubMed

    Tarasewicz, Elizabeth; Hamdan, Randala; Straehla, Joelle; Hardy, Ashley; Nunez, Omar; Zelivianski, Stanislav; Dokic, Danijela; Jeruss, Jacqueline S

    2014-10-01

    Cyclin D1/CDK4 activity is upregulated in up to 50% of breast cancers and CDK4-mediated phosphorylation negatively regulates the TGFβ superfamily member Smad3. We sought to determine if CDK4 inhibition and doxorubicin chemotherapy could impact Smad3-mediated cell/colony growth and apoptosis in breast cancer cells. Parental and cyclin D1-overexpressing MCF7 cells were treated with CDK4 inhibitor, doxorubicin, or combination therapy and cell proliferation, apoptosis, colony formation, and expression of apoptotic proteins were evaluated using an MTS assay, TUNEL staining, 3D Matrigel assay, and apoptosis array/immunoblotting. Study cells were also transduced with WT Smad3 or a Smad3 construct resistant to CDK4 phosphorylation (5M) and colony formation and expression of apoptotic proteins were assessed. Treatment with CDK4 inhibitor/doxorubicin combination therapy, or transduction with 5M Smad3, resulted in a similar decrease in colony formation. Treating cyclin D overexpressing breast cancer cells with combination therapy also resulted in the greatest increase in apoptosis, resulted in decreased expression of anti-apoptotic proteins survivin and XIAP, and impacted subcellular localization of pro-apoptotic Smac/DIABLO. Additionally, transduction of 5M Smad3 and doxorubicin treatment resulted in the greatest change in apoptotic protein expression. Collectively, this work showed the impact of CDK4 inhibitor-mediated, Smad3-regulated tumor suppression, which was augmented in doxorubicin-treated cyclin D-overexpressing study cells. PMID:25006666

  5. The Apoptotic Mechanism of Action of the Sphingosine Kinase 1 Selective Inhibitor SKI-178 in Human Acute Myeloid Leukemia Cell Lines

    PubMed Central

    Dick, Taryn E.; Hengst, Jeremy A.; Fox, Todd E.; Colledge, Ashley L.; Kale, Vijay P.; Sung, Shen-Shu; Sharma, Arun; Amin, Shantu; Loughran, Thomas P.; Kester, Mark; Wang, Hong-Gang

    2015-01-01

    We previously developed SKI-178 (N′-[(1E)-1-(3,4-dimethoxyphenyl)ethylidene]-3-(4-methoxxyphenyl)-1H-pyrazole-5-carbohydrazide) as a novel sphingosine kinase-1 (SphK1) selective inhibitor and, herein, sought to determine the mechanism-of-action of SKI-178–induced cell death. Using human acute myeloid leukemia (AML) cell lines as a model, we present evidence that SKI-178 induces prolonged mitosis followed by apoptotic cell death through the intrinsic apoptotic cascade. Further examination of the mechanism of action of SKI-178 implicated c-Jun NH2-terminal kinase (JNK) and cyclin-dependent protein kinase 1 (CDK1) as critical factors required for SKI-178–induced apoptosis. In cell cycle synchronized human AML cell lines, we demonstrate that entry into mitosis is required for apoptotic induction by SKI-178 and that CDK1, not JNK, is required for SKI-178–induced apoptosis. We further demonstrate that the sustained activation of CDK1 during prolonged mitosis, mediated by SKI-178, leads to the simultaneous phosphorylation of the prosurvival Bcl-2 family members, Bcl-2 and Bcl-xl, as well as the phosphorylation and subsequent degradation of Mcl-1. Moreover, multidrug resistance mediated by multidrug-resistant protein1 and/or prosurvival Bcl-2 family member overexpression did not affect the sensitivity of AML cells to SKI-178. Taken together, these findings highlight the therapeutic potential of SKI-178 targeting SphK1 as a novel therapeutic agent for the treatment of AML, including multidrug-resistant/recurrent AML subtypes. PMID:25563902

  6. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways.

    PubMed

    Ravichandran, Kodi S

    2011-10-28

    Prompt and efficient clearance of apoptotic cells is necessary to prevent secondary necrosis of dying cells and to avoid immune responses to autoantigens. Recent studies have shed light on how apoptotic cells through soluble "find-me" signals advertise their presence to phagocytes at the earliest stages of cell death. Phagocytes sense the find-me signal gradient, and in turn the presence of dying cells, and migrate to their vicinity. The apoptotic cells also expose specific "eat-me" signals on their surface that are recognized by phagocytes through specific engulfment receptors. This review covers the recent progress in the areas of find-me and eat-me signals and how these relate to prompt and immunologically silent clearance of apoptotic cells. PMID:22035837

  7. COMPARISON OF CELLULAR AND NUCLEAR FLOW CYTOMETRIC TECHNIQUES FOR DISCRIMINATING APOPTOTIC SUBPOPULATIONS

    EPA Science Inventory

    We compared cellular flow cytometric methods employing carboxyfluorescein (CF), Hoechst 33342, and Hoechst 33258 with a nuclear method in their ability to discriminate apoptotic subpopulations in rat thymocyte cultures exposed to dexamethasone r tributyltin. n the nuclear techniq...

  8. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells

    SciTech Connect

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-11-15

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles ({approx} 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25-400 {mu}g/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase C{delta} (PKC{delta}), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: Black-Right-Pointing-Pointer Mn nanoparticles activate mitochondrial cell death signaling in dopaminergic neuron. Black-Right-Pointing-Pointer Mn nanoparticles activate caspase-mediated proteolytic cleavage of PKC{delta} cascade. Black-Right-Pointing-Pointer Mn nanoparticles induce autophagy in dopaminergic neuronal cells. Black-Right-Pointing-Pointer Mn nanoparticles induce loss of TH{sup +} neurons in primary mesencephalic cultures. Black-Right-Pointing-Pointer Study emphasizes neurotoxic risks of Mn nanoparticles to nigral dopaminergic system.

  9. The BRCA1 tumor suppressor binds to inositol 1,4,5-trisphosphate receptors to stimulate apoptotic calcium release.

    PubMed

    Hedgepeth, Serena C; Garcia, M Iveth; Wagner, Larry E; Rodriguez, Ana M; Chintapalli, Sree V; Snyder, Russell R; Hankins, Gary D V; Henderson, Beric R; Brodie, Kirsty M; Yule, David I; van Rossum, Damian B; Boehning, Darren

    2015-03-13

    The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein. PMID:25645916

  10. The BRCA1 Tumor Suppressor Binds to Inositol 1,4,5-Trisphosphate Receptors to Stimulate Apoptotic Calcium Release*

    PubMed Central

    Hedgepeth, Serena C.; Garcia, M. Iveth; Wagner, Larry E.; Rodriguez, Ana M.; Chintapalli, Sree V.; Snyder, Russell R.; Hankins, Gary D. V.; Henderson, Beric R.; Brodie, Kirsty M.; Yule, David I.; van Rossum, Damian B.; Boehning, Darren

    2015-01-01

    The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein. PMID:25645916

  11. The Apoptotic Effect of Plant Based Nanosilver in Colon Cancer Cells is a p53 Dependent Process Involving ROS and JNK Cascade.

    PubMed

    Satapathy, Shakti Ranjan; Mohapatra, Purusottam; Das, Dipon; Siddharth, Sumit; Kundu, Chanakya Nath

    2015-04-01

    Here, we report the p53 dependent mitochondria-mediated apoptotic mechanism of plant derived silver-nanoparticle (PD-AgNPs) in colorectal cancer cells (CRCs). PD-AgNPs was synthesized by reduction of AgNO3 with leaf extract of a medicinal plant periwinkle and characterized. Uptake of PD-AgNPs (ξ - 2.52 ± 4.31 mV) in HCT116 cells was 3 fold higher in comparison to synthetic AgNPs (ξ +2.293 ± 5.1 mV). A dose dependent increase in ROS production, activated JNK and decreased mitochondrial membrane potential (MMP) were noted in HCT116 but not in HCT116 p53(-/-) cells after PD-AgNP exposure. PD-AgNP-mediated apoptosis in CRCs is a p53 dependent process involving ROS and JNK cascade. PMID:25359126

  12. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability.

    PubMed

    Fricker, M; O'Prey, J; Tolkovsky, A M; Ryan, K M

    2010-01-01

    Puma is a potent BH3-only protein that antagonises anti-apoptotic Bcl-2 proteins, promotes Bax/Bak activation and has an essential role in multiple apoptotic models. Puma expression is normally kept very low, but can be induced by several transcription factors including p53, p73, E2F1 and FOXO3a, whereby it can induce an apoptotic response. As Puma can to bind and inactivate all anti-apoptotic members of the Bcl-2 family, its activity must be tightly controlled. We report here, for the first time, evidence that Puma is subject to post-translational control through phosphorylation. We show that Puma is phosphorylated at multiple sites, with the major site of phosphorylation being serine 10. Replacing serine 10 with alanine causes reduced Puma turnover and enhanced cell death. Interestingly, Puma turnover occurs through the proteasome, and substitution of serine 10 causes elevated Puma levels independently of macroautophagy, Bcl-2 family member binding, caspase activity and apoptotic death. We conclude, therefore, that phosphorylation of Puma at serine 10 promotes Puma turnover, represses Puma's cell death potential and promotes cell survival. Owing to the highly pro-apoptotic nature of Puma, these studies highlight an important additional regulatory step in the determination of cellular life or death. PMID:21364664

  13. Apoptotic Cells Induce NF-κB and Inflammasome Negative Signaling

    PubMed Central

    Grau, Amir; Tabib, Adi; Grau, Inna; Reiner, Inna; Mevorach, Dror

    2015-01-01

    As they undergo phagocytosis, most early apoptotic cells negatively regulate proinflammatory signaling and were suggested as a major mechanism in the resolution of inflammation. The dextran sulfate sodium model is generally viewed as an epithelial damage model suited to investigate innate immune responses. Macrophages primed with LPS and subsequently exposed to DSS secrete high levels of IL-1β in an NLRP3-, ASC-, and caspase-1-dependent manner. The aim of this research was to test the therapeutic effect of a single dose of apoptotic cells in a DSS-colitis model and to explore possible mechanisms. Primary peritoneal macrophages, the DSS mice model, and Nlrp3-deficient mice, were used to assess the effect apoptotic cells on colitis. Immunohistochemistry, flow-cytometer, and western blots helped to explore the effect and mechanisms. Using a variety of NLRP3 triggering mechanisms, we show that apoptotic cells negatively regulate NF-κB and NLRP3 activation in primary peritoneal macrophages, at pre- and post-transcription levels, via inhibition of reactive oxygen species, lysosomal stabilization, and blocking K+ efflux. This property of apoptotic cells is demonstrated in a dramatic clinical, histological, and immunological amelioration of DSS colitis in Balb/c and B6 mice following a single administration of apoptotic cells. PMID:25822487

  14. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion.

    PubMed

    Hochreiter-Hufford, Amelia E; Lee, Chang Sup; Kinchen, Jason M; Sokolowski, Jennifer D; Arandjelovic, Sanja; Call, Jarrod A; Klibanov, Alexander L; Yan, Zhen; Mandell, James W; Ravichandran, Kodi S

    2013-05-01

    Skeletal muscle arises from the fusion of precursor myoblasts into multinucleated myofibres. Although conserved transcription factors and signalling proteins involved in myogenesis have been identified, upstream regulators are less well understood. Here we report an unexpected discovery that the membrane protein BAI1, previously linked to recognition of apoptotic cells by phagocytes, promotes myoblast fusion. Endogenous BAI1 expression increased during myoblast fusion, and BAI1 overexpression enhanced myoblast fusion by means of signalling through ELMO/Dock180/Rac1 proteins. During myoblast fusion, a fraction of myoblasts within the population underwent apoptosis and exposed phosphatidylserine, an established ligand for BAI1 (ref. 3). Blocking apoptosis potently impaired myoblast fusion, and adding back apoptotic myoblasts restored fusion. Furthermore, primary human myoblasts could be induced to form myotubes by adding apoptotic myoblasts, even under normal growth conditions. Mechanistically, apoptotic cells did not directly fuse with the healthy myoblasts, rather the apoptotic cells induced a contact-dependent signalling with neighbours to promote fusion among the healthy myoblasts. In vivo, myofibres from Bai1(-/-) mice are smaller than those from wild-type littermates. Muscle regeneration after injury was also impaired in Bai1(-/-)mice, highlighting a role for BAI1 in mammalian myogenesis. Collectively, these data identify apoptotic cells as a new type of cue that induces signalling via the phosphatidylserine receptor BAI1 to promote fusion of healthy myoblasts, with important implications for muscle development and repair. PMID:23615608

  15. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission

    PubMed Central

    Gao, Ying; Li, Shuai; Xu, Dan; Wang, Junjun; Sun, Yeqing

    2015-01-01

    Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation. PMID:26286471

  16. The Effects of Middle Cerebral Artery Occlusion on Central Nervous System Apoptotic Events in Normal and Diabetic Rats

    PubMed Central

    Britton, Mark; Rafols, Jose; Alousi, Sarah

    2003-01-01

    Apoptosis and neural degeneration are characteristics of cerebral ischemia and brain damage. Diabetes is associated with worsening of brain damage following ischemic events. In this study, the authors characterize the influence of focal cerebral ischemia, induced by middle cerebral artery occlusion, on 2 indexes of apoptosis,TUNEL(terminal deoxynucleotidyl transferase–mediated deoxyuridine 5-triphosphate nick end-labeling) staining and caspase- 3 immunohistochemistry. Diabetes was induced in normal rats using streptozotocin and maintained for 5 to 6 weeks. The middle cerebral artery of both normal and diabetic rats was occluded and maintained from 24 or 48 hours. Sham-operated normal and diabetic animals served as controls. Following 24 to 48 hours of occlusion, the animals were sacrificed and the brains were removed, sectioned, and processed for TUNEL staining or caspase-3 immunohistochemistry. Middle cerebral artery occlusion in normal rats was associated with an increase in the number of both TUNEL-positive and caspase-3– positive cells in selected brain regions (hypothalamic preoptic area, piriform cortex, and parietal cortex) when compared to nonoccluded controls. Diabetic rats without occlusion showed significant increases in both TUNEL-positive and caspase-3–positive cells compared to normal controls. Middle cerebral artery occlusion in diabetic rats resulted in increases in TUNEL-positive as well as caspase-3–positive cells in selected regions, above those seen in nonoccluded diabetic rats. Both TUNEL staining and caspase-3 immunohistochemistry revealed that the number of apoptotic cells in diabetic animals tended to be greatest in the preoptic area and parietal cortex. The authors conclude that focal cerebral ischemia is associated with a significant increase in apoptosis in nondiabetic rats, and that diabetes alone or diabetes plus focal ischemia are associated with significant increases in apoptotic cells. PMID:12745666

  17. Simultaneous induction of apoptotic, autophagic, and necrosis-like cell death by monoclonal antibodies recognizing chicken transferrin receptor

    SciTech Connect

    Ohno, Yoshiya; Yagi, Hideki; Nakamura, Masanori; Masuko, Kazue; Hashimoto, Yoshiyuki; Masuko, Takashi

    2008-03-21

    Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in the cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death.

  18. The Chinese herbal formula Liuwei dihuang protects dopaminergic neurons against Parkinson's toxin through enhancing antioxidative defense and preventing apoptotic death.

    PubMed

    Tseng, Yu-Ting; Chang, Fang-Rong; Lo, Yi-Ching

    2014-04-15

    Liuwei dihuang (LWDH), a widely used traditional Chinese medicine (TCM), has been employed as an anti-aging prescription to improve declined function. Parkinson's disease (PD) is a common adult-onset neurodegenerative disorder characterized by the degeneration of dopaminergic nigrostriatal neurons with complex pathological mechanisms, including oxidative stress. Increasing evidence indicate that TCM has the