Science.gov

Sample records for cat motor cortex

  1. Neural integration of reaching and posture: interhemispheric spike correlations in cat motor cortex.

    PubMed

    Putrino, David; Mastaglia, Frank L; Ghosh, Soumya

    2010-05-01

    To study the interlimb coordination of reaching and postural movements, chronically implanted microelectrodes were used to record single unit activity from the primary motor cortex (MI) of cats during performance of a trained reaching task. Recordings were made from both cerebral hemispheres to record neurons that modulated their activity during reaching (reach-related neurons) and supportive (posture-related neurons) movements of either forelimb. Evidence of temporal associations in the activities of simultaneously recorded reach- and posture-related neurons was evaluated using shuffle-corrected cross correlograms. The spike activity of approximately 34% of reach-related neurons was temporally correlated with the spike activity of simultaneously recorded posture-related neurons in the opposite motor cortex. Significant associations in the spike activity of neurons recorded from homotopic representational areas of the motor cortex in opposite hemispheres have not previously been reported. These interactions may have an important role in the coordination of opposite forelimbs during reaching movements and postural actions. PMID:20165839

  2. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Sirota, Mikhail G; Prilutsky, Boris I; Beloozerova, Irina N

    2015-11-01

    How do cats manage to walk so graciously on top of narrow fences or windowsills high above the ground while apparently exerting little effort? In this study we investigated cat full-body mechanics and the activity of limb muscles and motor cortex during walking along a narrow 5-cm path on the ground. We tested the hypotheses that during narrow walking 1) lateral stability would be lower because of the decreased base-of-support area and 2) the motor cortex activity would increase stride-related modulation because of imposed demands on lateral stability and paw placement accuracy. We measured medio-lateral and rostro-caudal dynamic stability derived from the extrapolated center of mass position with respect to the boundaries of the support area. We found that cats were statically stable in the frontal plane during both unconstrained and narrow-path walking. During narrow-path walking, cats walked slightly slower with more adducted limbs, produced smaller lateral forces by hindlimbs, and had elevated muscle activities. Of 174 neurons recorded in cortical layer V, 87% of forelimb-related neurons (from 114) and 90% of hindlimb-related neurons (from 60) had activities during narrow-path walking distinct from unconstrained walking: more often they had a higher mean discharge rate, lower depth of stride-related modulation, and/or longer period of activation during the stride. These activity changes appeared to contribute to control of accurate paw placement in the medio-lateral direction, the width of the stride, rather than to lateral stability control, as the stability demands on narrow-path and unconstrained walking were similar. PMID:26354314

  3. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex

    NASA Astrophysics Data System (ADS)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2011-12-01

    Epidural electrical stimulation (ECS) of the motor cortex is a developing therapy for neurological disorders. Both placement and programming of ECS systems may affect the therapeutic outcome, but the treatment parameters that will maximize therapeutic outcomes and minimize side effects are not known. We delivered ECS to the motor cortex of anesthetized cats and investigated the effects of electrode placement and stimulation parameters on thresholds for evoking motor responses in the contralateral forelimb. Thresholds were inversely related to stimulation frequency and the number of pulses per stimulus train. Thresholds were lower over the forelimb representation in motor cortex (primary site) than surrounding sites (secondary sites), and thresholds at sites <4 mm away from the primary site were significantly lower than at sites >4 mm away. Electrode location and montage influenced the effects of polarity on thresholds: monopolar anodic and cathodic thresholds were not significantly different over the primary site, cathodic thresholds were significantly lower than anodic thresholds over secondary sites and bipolar thresholds were significantly lower with the anode over the primary site than with the cathode over the primary site. A majority of bipolar thresholds were either between or equal to the respective monopolar thresholds, but several bipolar thresholds were greater than or less than the monopolar thresholds of both the anode and cathode. During bipolar stimulation, thresholds were influenced by both electric field superposition and indirect, synaptically mediated interactions. These results demonstrate the influence of stimulation parameters and electrode location during cortical stimulation, and these effects should be considered during the programming of systems for therapeutic cortical stimulation.

  4. Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: a microstimulation study.

    PubMed

    Bretzner, Frédéric; Drew, Trevor

    2005-07-01

    We used microstimulation to examine the contribution of the motor cortex to the structure and timing of the hindlimb step cycle during locomotion in the intact cat. Stimulation was applied to the hindlimb representation of the motor cortex in 34 sites in three cats using either standard glass-insulated microelectrodes (16 sites in 1 cat) or chronically implanted microwire electrodes (18 sites in 2 cats). Stimulation at just suprathreshold intensities with the cat at rest produced multi-joint movements at a majority of sites (21/34, 62%) but evoked responses restricted to a single joint, normally the ankle, at the other 13/34 (38%) sites. Stimulation during locomotion generally evoked larger responses than the same stimulation at rest and frequently activated additional muscles. Stimulation at all 34 sites evoked phase-dependent responses in which stimulation in swing produced transient increases in activity in flexor muscles while stimulation during stance produced transient decreases in activity in extensors. Stimulation with long (200 ms) trains of stimuli in swing produced an increased level of activity and duration of flexor muscles without producing changes in cycle duration. In contrast, stimulation during stance decreased the duration of the extensor muscle activity and initiated a new and premature period of swing, resetting the step cycle. Stimulation of the pyramidal tract in two of these three cats as well as in two additional ones produced similar effects. The results show that the motor cortex is capable of influencing hindlimb activity during locomotion in a similar manner to that seen for the forelimb. PMID:15788518

  5. The role of the motor cortex in the control of accuracy of locomotor movements in the cat.

    PubMed Central

    Beloozerova, I N; Sirota, M G

    1993-01-01

    1. The impulse activity of single neurones in the motor cortex (MC) was recorded extracellularly, using movable varnish-insulated tungsten microelectrodes, in six adult, freely moving cats. Neuronal activity was recorded while the cats walked on a flat floor, as they stepped over a series of barriers, and as they walked on the flat rungs of a horizontal ladder. The mean discharge rate (mR) and the depth of frequency modulation (dM) in each cell were estimated over 10-100 steps. 2. The activity of ninety-eight MC cells (Including thirteen pyramidal tract neurones (PTNs)) was recorded during stepping over barriers 25 cm apart. The mR in 66% and the dM in 61% of these cells changed by more than 20% during locomotion with barriers compared to locomotion on the flat (an increase was more often the case). 3. The activity of nine cells was recorded during stepping over barriers 12 cm apart, and the activity of twenty-seven cells (including five PTNs) during walking with barriers only 6 cm apart. The mR in 67% and in 59% of the cells, respectively, and the dM in 56% and in 67% of the cells, respectively, were greater in these locomotor tasks than during locomotion on the flat. 4. The activity of twenty cells was recorded during walking and compared in experiments with different distances between barriers. The mR in 50% and the dM in 75% of the neurones progressively increased when the distance between successive barriers was diminished. 5. The discharge rates of thirteen cells were compared in two different locomotor tasks: (i) when the cat stepped over barriers requiring hyperflexion of the limbs and (ii) when it walked on the flat with loads attached to the distal forelimbs causing a hyperactivity of flexor muscles. The activity of nine cells was different during stepping over the barriers compared to locomotion with loadings on the forelimbs. 6. The activity of 108 cells (twenty-four PTNs) was recorded during walking along a horizontal ladder with flat rungs. The mR of

  6. Useful signals from motor cortex

    PubMed Central

    Schwartz, Andrew B

    2007-01-01

    Historically, the motor cortical function has been explained as a funnel to muscle activation. This invokes the idea that motor cortical neurons, or ‘upper motoneurons’, directly cause muscle contraction just like spinal motoneurons. Thus, the motor cortex and muscle activity are inextricably entwined like a puppet master and his marionette. Recently, this concept has been challenged by current experimentation showing that many behavioural aspects of action are represented in motor cortical activity. Although this activity may still be related to muscle activation, the relation between the two is likely to be indirect and complex, whereas the relation between cortical activity and kinematic parameters is simple and robust. These findings show how to extract useful signals that help explain the underlying process that generates behaviour and to harness these signals for potentially therapeutic applications. PMID:17255162

  7. A functional microcircuit for cat visual cortex.

    PubMed Central

    Douglas, R J; Martin, K A

    1991-01-01

    1. We have studied in vivo the intracellular responses of neurones in cat visual cortex to electrical pulse stimulation of the cortical afferents and have developed a microcircuit that simulates much of the experimental data. 2. Inhibition and excitation are not separable events, because individual neurones are embedded in microcircuits that contribute strong population effects. Synchronous electrical activation of the cortex inevitably set in motion a sequence of excitation and inhibition in every neurone we recorded. The temporal form of this response depends on the cortical layer in which the neurone is located. Superficial layer (layers 2+3) pyramidal neurones show a more marked polysynaptic excitatory phase than the pyramids of the deep layers (layers 5+6). 3. Excitatory effects on pyramidal neurones, particularly the superficial layer pyramids, are in general not due to monosynaptic input from thalamus, but polysynaptic input from cortical pyramids. Since the thalamic input is transient it does not provide the major, sustained excitation arriving at any cortical neurone. Instead the intracortical excitatory connections provide the major component of the excitation. 4. The polysynaptic excitatory response would be sustained well after the stimulus, were it not for the suppressive effect of intracortical inhibition induced by the pulse stimulation. 5. Intracellular recording combined with ionophoresis of gamma-aminobutyric acid (GABA) agonists and antagonists showed that intracortical inhibition is mediated by GABAA and GABAB receptors. The GABAA component occurs in the early phase of the impulse response. It is reflected in the strong hyperpolarization that follows the excitatory response and lasts about 50 ms. The GABAB component occurs in the late phase of the response, and is reflected in a sustained hyperpolarization that lasts some 200-300 ms. Both components are seen in all cortical pyramidal neurones. However, the GABAA component appears more powerful

  8. Contributions of cat posterior parietal cortex to visuospatial discrimination.

    PubMed

    Lomber, S G; Payne, B R

    2000-01-01

    The purpose of the present study was to examine the contributions made by cat posterior parietal cortex to the analyses of the relative position of objects in visual space. Two cats were trained on a landmark task in which they learned to report the position of a landmark object relative to a right or left food-reward chamber. Subsequently, three pairs of cooling loops were implanted bilaterally in contact with visuoparietal cortices forming the crown of the middle suprasylvian gyrus (MSg; architectonic area 7) and the banks of the posterior-middle suprasylvian sulcus (pMS sulcal cortex) and in contact with the ventral-posterior suprasylvian (vPS) region of visuotemporal cortex. Bilateral deactivation of pMS sulcal cortex resulted in a profound impairment for all six tested positions of the landmark, yet bilateral deactivation of neither area 7 nor vPS cortex yielded any deficits. In control tasks (visual orienting and object discrimination), there was no evidence for any degree of attentional blindness or impairment of form discrimination during bilateral deactivation of pMS cortex. Therefore, we conclude that bilateral cooling of pMS cortex, but neither area 7 nor vPS cortex, induces a specific deficit in spatial localization as examined with the landmark task. These observations have significant bearing on our understanding of visuospatial processing in cat, monkey, and human cortices. PMID:11153650

  9. Motor Cortex Reorganization across the Lifespan

    ERIC Educational Resources Information Center

    Plowman, Emily K.; Kleim, Jeffrey A.

    2010-01-01

    The brain is a highly dynamic structure with the capacity for profound structural and functional change. Such neural plasticity has been well characterized within motor cortex and is believed to represent one of the neural mechanisms for acquiring and modifying motor behaviors. A number of behavioral and neural signals have been identified that…

  10. How might the motor cortex individuate movements?

    PubMed

    Schieber, M H

    1990-11-01

    The ability to individuate movements--that is, the ability to move one or more body parts independently of the movement or posture of other contiguous body parts--imparts an increasing flexibility to the motor repertoire of higher mammals. The movements used in walking, grasping, or eating contrast greatly with the phylogenetically more recent movements of the same body parts used, respectively, in dancing, playing a musical instrument, or talking. The movements used in the latter functions depend critically on the primary motor cortex (area 4). With advances in our understanding of the output organization of the motor cortex (reviewed recently by Roger Lemon), which have been based largely on studies of the hand area in primates, we can now consider more fully certain problems inherent in moving body parts individually, and some ways in which the motor cortex might accomplish this feat. PMID:1701575

  11. Delayed-alternation performance after selective lesions within the prefrontal cortex of the cat.

    PubMed

    Markowitsch, H J; Pritzel, M; Kessler, J; Guldin, W; Freeman, R B

    1980-02-01

    On the basis of new neuroanatomical findings on relationships between subregions of the mediodorsal thalamic nucleus and the prefrontal cortex of the cat, it was attempted to investigate the relative importance of prefrontal subfields with the aim of obtaining evidence in favor of a functional inequality of different prefrontal subfields. Four areas, named presylvian (PRS), proreal (PR), dorsomedial (DM), and orbito-insular (OI) sectors, were ablated successfully in 30 adult animals. Performance of a 10-sec delayed-alternation task was compared pre- and postoperatively. Furthermore, most of the cats had to learn an extension of this task postoperatively, using a 20-sec delay period, and lastly, these animals were subjected to an extinction test. Significant performance differences were obtained between cats of different groups in all three tasks. Lesions of subregion PR, and even more of subregion PRS, led to severe behavioral deterioration, whereas lesions of subregion OI were without effect, when compared with the behavior of a sham-operated control group. PRS-cats, furthermore, showed motor disturbances during the first postoperative week. The results obtained suggest that it is possible to subdivide the cat's prefrontal cortex functionally. In addition, it is hypothesized that behavioral changes in cats of groups PRS and PR are due to an inability to use kinesthetic information properly. PMID:7284081

  12. Network and external perturbation induce burst synchronisation in cat cerebral cortex

    NASA Astrophysics Data System (ADS)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.

    2016-05-01

    The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.

  13. The left parietal cortex and motor attention.

    PubMed

    Rushworth, M F; Nixon, P D; Renowden, S; Wade, D T; Passingham, R E

    1997-09-01

    The posterior parietal cortex, particularly in the right hemisphere, is crucially important for covert orienting; lesions impair the ability to disengage the focus of covert orienting attention from one potential saccade target to another (Posner, M. I. et al., Journal of Neuroscience, 1984, 4, 1863-1874). We have developed a task where precues allow subjects to covertly prepare subsequent cued hand movements, as opposed to an orienting or eye movement. We refer to this process as motor attention to distinguish it from orienting attention. Nine subjects with lesions that included the left parietal cortex and nine subjects with lesions including the right parietal cortex were compared with control subjects on the task. The left hemisphere subjects showed the same ability as controls to engage attention to a movement when they were forewarned by a valid precue. The left hemisphere subjects, however, were impaired in their ability to disengage the focus of motor attention from one movement to another when the precue was incorrect. The results support the existence of two distinct attentional systems allied to the orienting and limb motor systems. Damage to either system causes analogous problems in disengaging from one orienting/movement target to another. The left parietal cortex, particularly the supramarginal gyrus, is associated with motor attention. All the left hemisphere subjects had ideomotor apraxia and had particular problems performing sequences of movements. We suggest that the well documented left hemisphere and apraxic impairment in movement sequencing is the consequence of a difficulty in shifting the focus of motor attention from one movement in a sequence to the next. PMID:9364496

  14. Neostriatal modulation of motor cortex excitability.

    PubMed

    Ryan, L J; Sanders, D J

    1994-07-18

    The influence of the basal ganglia motor loop on motor cortex function was examined by pharmacologically altering neostriatal activity while monitoring the electrical stimulation thresholds for eliciting movements of the ipsilateral and contralateral motor cortex in ketamine anesthetized rats. Repeated unilateral intraneostriatal infusions (1-3) of the glutamate agonist, kainic acid (0.1 microliter, 75 ng), or glutamate (0.3 microliter, 1.65 micrograms) reliably increased ipsilateral but not contralateral cortical thresholds. Single infusions of kainic acid (0.3 microliter, 150 or 225 ng) elevated ipsilateral cortical thresholds for 30-45 min; with glutamate (0.3 microliter, 1.65 micrograms), the change lasted less than 10 min. Antidromically identified striatonigral projection neurons (n = 8) located approximately 500 microM from the infusion cannula, showed either increased firing (n = 4) for less than 10 min following glutamate infusion or no change from their non-firing state (n = 4). Non-antidromically activated neurons (n = 3) were all excited by the infusion, although an interval of inhibition preceded or followed the excitation in two cases. Infusions (0.3 microliter) of inhibitory agents (GABA, 31 and 310 ng; muscimol 34.2 ng; and DNQX 34.2 ng) did not alter cortical threshold, nor did saline vehicle. Lesion of the ventrolateral but not ventromedial thalamic nucleus prevented the modulation of cortical thresholds following intraneostriatal infusion of 225 ng kainic acid. Thus the neostriatal alteration of cortical thresholds indicates a modulation of cortical excitability via thalamic projections and not the outcome of competing descending cortical and neonstriatal influences converging on motorneurons. These results suggest that tonic feedforward modulation of the motor cortex and the pyramidal tract by the basal ganglia can be inhibitory. PMID:7922571

  15. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  16. Signals from the ventrolateral thalamus to the motor cortex during locomotion

    PubMed Central

    Marlinski, Vladimir; Nilaweera, Wijitha U.; Zelenin, Pavel V.; Sirota, Mikhail G.

    2012-01-01

    The activity of the motor cortex during locomotion is profoundly modulated in the rhythm of strides. The source of modulation is not known. In this study we examined the activity of one of the major sources of afferent input to the motor cortex, the ventrolateral thalamus (VL). Experiments were conducted in chronically implanted cats with an extracellular single-neuron recording technique. VL neurons projecting to the motor cortex were identified by antidromic responses. During locomotion, the activity of 92% of neurons was modulated in the rhythm of strides; 67% of cells discharged one activity burst per stride, a pattern typical for the motor cortex. The characteristics of these discharges in most VL neurons appeared to be well suited to contribute to the locomotion-related activity of the motor cortex. In addition to simple locomotion, we examined VL activity during walking on a horizontal ladder, a task that requires vision for correct foot placement. Upon transition from simple to ladder locomotion, the activity of most VL neurons exhibited the same changes that have been reported for the motor cortex, i.e., an increase in the strength of stride-related modulation and shortening of the discharge duration. Five modes of integration of simple and ladder locomotion-related information were recognized in the VL. We suggest that, in addition to contributing to the locomotion-related activity in the motor cortex during simple locomotion, the VL integrates and transmits signals needed for correct foot placement on a complex terrain to the motor cortex. PMID:21994259

  17. Motor cortex stimulation for neuropathic pain.

    PubMed

    Lazorthes, Y; Sol, J C; Fowo, S; Roux, F E; Verdié, J C

    2007-01-01

    Since the initial publication of Tsubokawa in 1991, epidural motor cortex stimulation (MCS) is increasingly reported as an effective surgical option for the treatment of refractory neuropathic pain although its mechanism of action remains poorly understood. The authors review the extensive literature published over the last 15 years on central and neuropathic pain. Optimal patient selection remains difficult and the value of pharmacological tests or transcranial magnetic stimulation in predicting the efficacy of MCS has not been established. Pre-operative functional magnetic resonance imaging (fMRI), 3-dimensional volume MRI, neuronavigation and intra-operative neurophysiological monitoring have contributed to improvements in the technique for identifying the precise location of the targeted motor cortical area and the correct placement of the electrode array. MCS should be considered as the treatment of choice in post-stroke pain, thalamic pain or facial anesthesia dolorosa. In brachial plexus avulsion pain, it is preferable to propose initially dorsal root entry zone (DREZ)-tomy; MCS may be offered after DREZotomy has failed to control the pain. In our experience, the results of MCS on phantom limb pain are promising. In general, the efficacy of MCS depends on: a) the accurate placement of the stimulation electrode over the appropriate area of the motor cortex, and b) on sophisticated programming of the stimulation parameters. A better understanding of the MCS mechanism of action will probably make it possible to adjust better the stimulation parameters. The conclusions of multicentered randomised studies, now in progress, will be very useful and are likely to promote further research and clinical applications in this field. PMID:17691287

  18. Quantification of motor cortex activity and full-body biomechanics during unconstrained locomotion.

    PubMed

    Prilutsky, Boris I; Sirota, Mikhail G; Gregor, Robert J; Beloozerova, Irina N

    2005-10-01

    Recent progress in the understanding of motor cortex function has been achieved primarily by simultaneously recording motor cortex neuron activity and the movement kinematics of the corresponding limb. We have expanded this approach by combining high-quality cortical single-unit activity recordings with synchronized recordings of full-body kinematics and kinetics in the freely behaving cat. The method is illustrated by selected results obtained from two cats tested while walking on a flat surface. Using this method, the activity of 43 pyramidal tract neurons (PTNs) was recorded, averaged over 10 bins of a locomotion cycle, and compared with full-body mechanics by means of principal component and multivariate linear regression analyses. Patterns of 24 PTNs (56%) and 219 biomechanical variables (73%) were classified into just four groups of inter-correlated variables that accounted for 91% of the total variance, indicating that many of the recorded variables had similar patterns. The ensemble activity of different groups of two to eight PTNs accurately predicted the 10-bin patterns of all biomechanical variables (neural decoding) and vice versa; different small groups of mechanical variables accurately predicted the 10-bin pattern of each PTN (neural encoding). We conclude that comparison of motor cortex activity with full-body biomechanics may be a useful tool in further elucidating the function of the motor cortex. PMID:15888524

  19. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex.

    PubMed

    Kane, Sheryl R; Cogan, Stuart F; Ehrlich, Julia; Plante, Timothy D; McCreery, Douglas B

    2011-01-01

    Penetrating multielectrode arrays with electrode coatings of sputtered iridium oxide (SIROF) have been implanted chronically in cat cortex for periods over 300 days. The ability of these electrodes to inject charge at levels above expected thresholds for neural excitation has been examined in vivo by measurements of voltage transients in response to current-controlled, cathodal stimulation pulsing. The effect of current pulse width from 150 μs to 500 μs and voltage biasing of the electrodes in the interpulse period at two levels, 0.0 V and 0.6 V vs. Ag|AgCl, were also investigated. The results of in vivo characterization of the electrodes by open-circuit potential measurements, cyclic voltammetry and impedance spectroscopy are also reported. PMID:22255562

  20. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated.

    PubMed

    Darian-Smith, C; Gilbert, C D

    1995-03-01

    In primary sensory and motor cortex of adult animals, alteration of input from the periphery leads to changes in cortical topography. These changes can be attributed to processes that are intrinsic to the cortex, or can be inherited from alterations occurring at stages of sensory processing that are antecedent to the primary sensory cortical areas. In the visual system, focal binocular retinal lesions initially silence an area of cortex that represents the region of retina destroyed, but over a period of months this area recovers visually driven activity. The retinotopic map in the recovered area is altered, shifting its representation to the portion of retina immediately surrounding the lesion. This effectively shrinks the representation of the lesioned area of retina, and expands the representation of the lesion surround. To determine the loci along the visual pathway at which the reorganization takes place, we compared the course of topographic alterations in the primary visual cortex and dorsal lateral geniculate nucleus (LGN) of cats and monkeys. At a time when the cortical reorganization is complete, the silent area of LGN persists, indicating that changes in cortical topography are due to alterations that are intrinsic to the cortex. To explore the participation of thalamocortical afferents in the reorganization, we injected a series of retrogradely transported fluorescent tracers into reorganized and surrounding cortex of each animal. Our results show that the thalamocortical arbors do not extend beyond their normal lateral territory and that this physical dimension is insufficient to account for the reorganization. We suggest that the long-range intrinsic horizontal connections are a likely source of visual input into the reorganized cortical area. PMID:7891124

  1. Activity of motor cortex neurons during backward locomotion

    PubMed Central

    Deliagina, T. G.; Orlovsky, G. N.; Karayannidou, A.; Stout, E. E.; Sirota, M. G.; Beloozerova, I. N.

    2011-01-01

    Forward walking (FW) and backward walking (BW) are two important forms of locomotion in quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, whereas cortical activity during BW has never been investigated. The aim of this study was to analyze locomotion-related activity of the motor cortex during BW and compare it with that during FW. For this purpose, we recorded activity of individual neurons in the cat during BW and FW. We found that the discharge frequency in almost all neurons was modulated in the rhythm of stepping during both FW and BW. However, the modulation patterns during BW and FW were different in 80% of neurons. To determine the source of modulating influences (forelimb controllers vs. hindlimb controllers), the neurons were recorded not only during quadrupedal locomotion but also during bipedal locomotion (with either forelimbs or hindlimbs walking), and their modulation patterns were compared. We found that during BW (like during FW), modulation in some neurons was determined by inputs from limb controllers of only one girdle, whereas the other neurons received inputs from both girdles. The combinations of inputs could depend on the direction of locomotion. Most often (in 51% of forelimb-related neurons and in 34% of the hindlimb-related neurons), the neurons received inputs only from their own girdle when this girdle was leading and from both girdles when this girdle was trailing. This reconfiguration of inputs suggests flexibility of the functional roles of individual cortical neurons during different forms of locomotion. PMID:21430283

  2. Dental Occlusal Changes Induce Motor Cortex Neuroplasticity.

    PubMed

    Avivi-Arber, L; Lee, J-C; Sessle, B J

    2015-12-01

    Modification to the dental occlusion may alter oral sensorimotor functions. Restorative treatments aim to restore sensorimotor functions; however, it is unclear why some patients fail to adapt to the restoration and remain with sensorimotor complaints. The face primary motor cortex (face-M1) is involved in the generation and control of orofacial movements. Altered sensory inputs or motor function can induce face-M1 neuroplasticity. We took advantage of the continuous eruption of the incisors in Sprague-Dawley rats and used intracortical microstimulation (ICMS) to map the jaw and tongue motor representations in face-M1. Specifically, we tested the hypothesis that multiple trimming of the right mandibular incisor, to keep it out of occlusal contacts for 7 d, and subsequent incisor eruption and restoration of occlusal contacts, can alter the ICMS-defined features of jaw and tongue motor representations (i.e., neuroplasticity). On days 1, 3, 5, and 7, the trim and trim-recovered groups had 1 to 2 mm of incisal trimming of the incisor; a sham trim group had buccal surface trimming with no occlusal changes; and a naive group had no treatment. Systematic mapping was performed on day 8 in the naive, trim, and sham trim groups and on day 14 in the trim-recovered group. In the trim group, the tongue onset latency was shorter in the left face-M1 than in the right face-M1 (P < .001). In the trim-recovered group, the number of tongue sites and jaw/tongue overlapping sites was greater in the left face-M1 than in the right face-M1 (P = 0.0032, 0.0016, respectively), and the center of gravity was deeper in the left than in the right face-M1 (P = 0.026). Therefore, incisor trimming and subsequent restoration of occlusal contacts induced face-M1 neuroplasticity, reflected in significant disparities between the left and right face-M1 in some ICMS-defined features of the tongue motor representations. Such neuroplasticity may reflect or contribute to subjects' ability to adapt their

  3. The Laryngeal Motor Cortex: Its Organization and Connectivity

    PubMed Central

    Simonyan, Kristina

    2014-01-01

    Our ability to learn and control the motor aspects of complex laryngeal behaviors, such as speech and song, is modulated by the laryngeal motor cortex (LMC), which is situated in the area 4 of the primary motor cortex and establishes both direct and indirect connections with laryngeal motoneurons. In contrast, the LMC in monkeys is located in the area 6 of the premotor cortex, projects only indirectly to laryngeal motoneurons and its destruction has essentially no effect on production of species-specific calls. These differences in cytoarchitectonic location and connectivity may be a result of hominid evolution that led to the LMC shift from the phylogenetically “old” to “new” motor cortex in order to fulfill its paramount function, i.e., voluntary motor control of human speech and song production. PMID:24929930

  4. Differences in Movement Mechanics, Electromyographic, and Motor Cortex Activity Between Accurate and Nonaccurate Stepping

    PubMed Central

    Farrell, Bradley J.; Sirota, Mikhail G.; Prilutsky, Boris I.

    2010-01-01

    What are the differences in mechanics, muscle, and motor cortex activity between accurate and nonaccurate movements? We addressed this question in relation to walking. We assessed full-body mechanics (229 variables), activity of 8 limb muscles, and activity of 63 neurons from the motor cortex forelimb representation during well-trained locomotion with different demands on the accuracy of paw placement in cats: during locomotion on a continuous surface and along horizontal ladders with crosspieces of different widths. We found that with increasing accuracy demands, cats assumed a more bent-forward posture (by lowering the center of mass, rotating the neck and head down, and by increasing flexion of the distal joints) and stepped on the support surface with less spatial variability. On the ladder, the wrist flexion moment was lower throughout stance, whereas ankle and knee extension moments were higher and hip moment was lower during early stance compared with unconstrained locomotion. The horizontal velocity time histories of paws were symmetric and smooth and did not differ among the tasks. Most of the other mechanical variables also did not depend on accuracy demands. Selected distal muscles slightly enhanced their activity with increasing accuracy demands. However, in a majority of motor cortex cells, discharge rate means, peaks, and depths of stride-related frequency modulation changed dramatically during accurate stepping as compared with simple walking. In addition, in 30% of neurons periods of stride-related elevation in firing became shorter and in 20–25% of neurons activity or depth of frequency modulation increased, albeit not linearly, with increasing accuracy demands. Considering the relatively small changes in locomotor mechanics and substantial changes in motor cortex activity with increasing accuracy demands, we conclude that during practiced accurate stepping the activity of motor cortex reflects other processes, likely those that involve

  5. Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping.

    PubMed

    Beloozerova, Irina N; Farrell, Bradley J; Sirota, Mikhail G; Prilutsky, Boris I

    2010-04-01

    What are the differences in mechanics, muscle, and motor cortex activity between accurate and nonaccurate movements? We addressed this question in relation to walking. We assessed full-body mechanics (229 variables), activity of 8 limb muscles, and activity of 63 neurons from the motor cortex forelimb representation during well-trained locomotion with different demands on the accuracy of paw placement in cats: during locomotion on a continuous surface and along horizontal ladders with crosspieces of different widths. We found that with increasing accuracy demands, cats assumed a more bent-forward posture (by lowering the center of mass, rotating the neck and head down, and by increasing flexion of the distal joints) and stepped on the support surface with less spatial variability. On the ladder, the wrist flexion moment was lower throughout stance, whereas ankle and knee extension moments were higher and hip moment was lower during early stance compared with unconstrained locomotion. The horizontal velocity time histories of paws were symmetric and smooth and did not differ among the tasks. Most of the other mechanical variables also did not depend on accuracy demands. Selected distal muscles slightly enhanced their activity with increasing accuracy demands. However, in a majority of motor cortex cells, discharge rate means, peaks, and depths of stride-related frequency modulation changed dramatically during accurate stepping as compared with simple walking. In addition, in 30% of neurons periods of stride-related elevation in firing became shorter and in 20-25% of neurons activity or depth of frequency modulation increased, albeit not linearly, with increasing accuracy demands. Considering the relatively small changes in locomotor mechanics and substantial changes in motor cortex activity with increasing accuracy demands, we conclude that during practiced accurate stepping the activity of motor cortex reflects other processes, likely those that involve integration

  6. Effect of light on the activity of motor cortex neurons during locomotion

    PubMed Central

    Armer, Madison C.; Nilaweera, Wijitha U.; Rivers, Trevor J.; Dasgupta, Namrata M.; Beloozerova, Irina N.

    2013-01-01

    The motor cortex plays a critical role in accurate visually guided movements such as reaching and target stepping. However, the manner in which vision influences the movement-related activity of neurons in the motor cortex is not well understood. In this study we have investigated how the locomotion-related activity of neurons in the motor cortex is modified when subjects switch between walking in the darkness and in light. Three adult cats were trained to walk through corridors of an experimental chamber for a food reward. On randomly selected trials, lights were extinguished for approximately four seconds when the cat was in a straight portion of the chamber's corridor. Discharges of 146 neurons from layer V of the motor cortex, including 51 pyramidal tract cells (PTNs), were recorded and compared between light and dark conditions. It was found that while cats’ movements during locomotion in light and darkness were similar (as judged from the analysis of three-dimensional limb kinematics and the activity of limb muscles), the firing behavior of 49% (71/146) of neurons was different between the two walking conditions. This included differences in the mean discharge rate (19%, 28/146 of neurons), depth of stride-related frequency modulation (24%, 32/131), duration of the period of elevated firing ([PEF], 19%, 25/131), and number of PEFs among stride-related neurons (26%, 34/131). 20% of responding neurons exhibited more than one type of change. We conclude that visual input plays a very significant role in determining neuronal activity in the motor cortex during locomotion by altering one, or occasionally multiple, parameters of locomotion-related discharges of its neurons. PMID:23680161

  7. The auditory representation of speech sounds in human motor cortex

    PubMed Central

    Cheung, Connie; Hamilton, Liberty S; Johnson, Keith; Chang, Edward F

    2016-01-01

    In humans, listening to speech evokes neural responses in the motor cortex. This has been controversially interpreted as evidence that speech sounds are processed as articulatory gestures. However, it is unclear what information is actually encoded by such neural activity. We used high-density direct human cortical recordings while participants spoke and listened to speech sounds. Motor cortex neural patterns during listening were substantially different than during articulation of the same sounds. During listening, we observed neural activity in the superior and inferior regions of ventral motor cortex. During speaking, responses were distributed throughout somatotopic representations of speech articulators in motor cortex. The structure of responses in motor cortex during listening was organized along acoustic features similar to auditory cortex, rather than along articulatory features as during speaking. Motor cortex does not contain articulatory representations of perceived actions in speech, but rather, represents auditory vocal information. DOI: http://dx.doi.org/10.7554/eLife.12577.001 PMID:26943778

  8. Reflections on agranular architecture: predictive coding in the motor cortex

    PubMed Central

    Shipp, Stewart; Adams, Rick A.; Friston, Karl J.

    2013-01-01

    The agranular architecture of motor cortex lacks a functional interpretation. Here, we consider a ‘predictive coding’ account of this unique feature based on asymmetries in hierarchical cortical connections. In sensory cortex, layer 4 (the granular layer) is the target of ascending pathways. We theorise that the operation of predictive coding in the motor system (a process termed ‘active inference’) provides a principled rationale for the apparent recession of the ascending pathway in motor cortex. The extension of this theory to interlaminar circuitry also accounts for a sub-class of ‘mirror neuron’ in motor cortex – whose activity is suppressed when observing an action –explaining how predictive coding can gate hierarchical processing to switch between perception and action. PMID:24157198

  9. Body stability and muscle and motor cortex activity during walking with wide stance.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Beloozerova, Irina N; Sirota, Mikhail G; Prilutsky, Boris I

    2014-08-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  10. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  11. Contribution of different limb controllers to modulation of motor cortex neurons during locomotion

    PubMed Central

    Zelenin, P. V.; Deliagina, T. G.; Orlovsky, G. N.; Karayannidou, A.; Dasgupta, N. M.; Sirota, M. G.; Beloozerova, I. N.

    2011-01-01

    During locomotion, neurons in motor cortex exhibit profound step-related frequency modulation. The source of this modulation is unclear. The aim of this study was to reveal the contribution of different limb controllers (locomotor mechanisms of individual limbs) to the periodic modulation of motor cortex neurons during locomotion. Experiments were conducted in chronically instrumented cats. The activity of single neurons was recorded during regular quadrupedal locomotion (control), as well as when only one pair of limbs (fore, hind, right, or left) was walking while another pair was standing. Comparison of the modulation patterns in these neurons (their discharge profile with respect to the step cycle) during control and different bipedal locomotor tasks revealed several groups of neurons that receive distinct combinations of inputs from different limb controllers. In the majority (73%) of neurons from the forelimb area of motor cortex, modulation during control was determined exclusively by forelimb controllers (right, left or both), while in the minority (27%) hindlimb controllers also contributed. By contrast, only in 30% of neurons from the hindlimb area was modulation determined exclusively by hindlimb controllers (right or both), while in 70% of them, the controllers of forelimbs also contributed. We suggest that such organization of inputs allows the motor cortex to contribute to the right-left limbs coordination within each of the girdles during locomotion, and that it also allows hindlimb neurons to participate in coordination of the movements of the hindlimbs with those of the forelimbs. PMID:21430163

  12. Receptive fields of simple cells in the cat striate cortex

    PubMed Central

    Bishop, P. O.; Coombs, J. S.; Henry, G. H.

    1973-01-01

    1. The excitatory and inhibitory components in the receptive fields of unimodal simple cells in the striate cortex of the cat anaesthetized with nitrous oxide have been described using slits of light and single light-dark edges as stimuli. 2. There is a small excitatory region (excitatory complex) centrally located in the receptive field that is made up of various combinations and spatial arrangements of subliminal excitatory and discharge subregions or centres. 3. The subliminal excitatory centres were revealed by a binocular facilitation technique. The excitability of the cell was raised by repeated stimulation via one eye while the neurone was tested with single edges via the other eye. 4. The subliminal excitatory and discharge centres are each specifically activated by only one type of edge, light-dark or dark-light, and then only in one direction of motion. All the subregions in the excitatory complex have the same optimal stimulus orientation. 5. Inhibitory components in the receptive field were identified by stimulating the cell with bars of light and single edges against an artificial background discharge produced by repeated stimulation separately applied either to the same eye (monocular conditioning) or to the other eye (binocular conditioning). There are powerful inhibitory sidebands to either side of the excitatory complex and these inhibitory regions merge to include the excitatory complex when stimulus orientation is angled away from the optimal. 6. Excitation is highly stimulus specific whereas inhibition is non-specific. 7. The organization of the two receptive fields of a binocularly discharged cell can be closely similar. 8. The attempt is made to translate the concept of subliminal excitatory and discharge centres into specific neural mechanisms involving both the geniculo-cortical input and various intracortical circuits. 9. These new developments call for only minor modifications to the model we have proposed for the organization of the

  13. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex.

    PubMed

    Kane, Sheryl R; Cogan, Stuart F; Ehrlich, Julia; Plante, Timothy D; McCreery, Douglas B; Troyk, Philip R

    2013-08-01

    Penetrating microelectrode arrays with 2000 μm (2) sputtered iridium oxide (SIROF) electrode sites were implanted in cat cerebral cortex, and their long-term electrochemical performance evaluated in vivo by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and current pulsing. Measurements were made from days 33 to 328 postimplantation. The CV-defined charge storage capacity, measured at 50 mV/s, increased linearly with time over the course of implantation for two arrays and was unchanged for one array. A modest decrease in 1 kHz impedance was also observed. These results suggest an ongoing increase in the apparent electrochemical surface area of the electrodes, which is attributed to electrical leakage pathways arising from cracking of Parylene insulation observed by SEM of explanted arrays. During current pulsing with a 0.0 V interpulse bias, the electrodes readily delivered 8 nC/phase in vitro, but some channels approached or exceeded the water reduction potential during in vivo pulsing. The charge injection capacity in vivo increased linearly with the interpulse bias (0-0.6 V Ag\\vert AgCl) from 11.5 to 21.8 nC/ph and with pulse width (150-500 μs) from 8.8 to 14 nC/ph (at 0.0 V bias). These values are lower than those determined from measurements in buffered physiological saline, emphasizing the importance of in vivo measurements in assessing chronic electrode performance. The consequence of current leakage pathways on the charge-injection measurements is also discussed. PMID:23475329

  14. Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation

    ERIC Educational Resources Information Center

    Riek, Stephan; Hinder, Mark R.; Carson, Richard G.

    2012-01-01

    Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…

  15. The motor cortex and its role in phantom limb phenomena.

    PubMed

    Reilly, Karen T; Sirigu, Angela

    2008-04-01

    Limb amputation results in plasticity of connections between the brain and muscles; the cortical motor representation of the missing limb seemingly disappears. The disappearance of the hand's motor representation is, however, difficult to reconcile with evidence that a perceptual representation of the missing limb persists in the form of a phantom limb endowed with sensory and motor qualities. Here, we argue that despite considerable reorganization within the motor cortex of upper-limb amputees, the representation of the amputated hand does not disappear. We hypothesize that two levels of hand-movement representation coexist within the primary motor cortex; at one level, limb movements are specified in terms of arm and hand motor commands, and at another level, limb movements are specified as muscles synergies. We propose that primary motor cortex reorganization after amputation concerns primarily the upper limb's muscular map but not its motor command map and that the integrity of the motor command map underlies the existence of the phantom limb. PMID:17989169

  16. Similarities between GCS and human motor cortex: complex movement coordination

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  17. Physiological characterization of motor unit properties in intact cats.

    PubMed

    O'Donovan, M J; Hoffer, J A; Loeb, G E

    1983-02-01

    Single motor units were isolated in intact cats, by microstimulation through chronically implanted microwires in the L5 ventral roots. Motor unit axonal and mechanical properties were obtained by stimulus-triggered averaging the signals from an implanted femoral nerve recording cuff and patellar tendon force transducer. All unit types were sampled with this technique, and it was also possible to stimulate in isolation an axon whose ventral root spike was recorded during treadmill locomotion. A new technique was described, spike-triggered microstimulation, for verifying the identity of a stimulated and a recorded axon. PMID:6300565

  18. Transcranial static magnetic field stimulation of the human motor cortex.

    PubMed

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-10-15

    The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  19. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    ERIC Educational Resources Information Center

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  20. Seeing fearful body language rapidly freezes the observer's motor cortex.

    PubMed

    Borgomaneri, Sara; Vitale, Francesca; Gazzola, Valeria; Avenanti, Alessio

    2015-04-01

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time similar reductions occur in the human motor cortex and whether they originate from excitatory or inhibitory processes. Using single-pulse and paired-pulse transcranial magnetic stimulation (TMS), here we tested the hypothesis that the observer's motor cortex implements extremely fast suppression of motor readiness when seeing emotional bodies - and fearful body expressions in particular. Participants observed pictures of body postures and categorized them as happy, fearful or neutral while receiving TMS over the right or left motor cortex at 100-125 msec after picture onset. In three different sessions, we assessed corticospinal excitability, short intracortical inhibition (SICI) and intracortical facilitation (ICF). Independently of the stimulated hemisphere and the time of the stimulation, watching fearful bodies suppressed ICF relative to happy and neutral body expressions. Moreover, happy expressions reduced ICF relative to neutral actions. No changes in corticospinal excitability or SICI were found during the task. These findings show extremely rapid bilateral modulation of the motor cortices when seeing emotional bodies, with stronger suppression of motor readiness when seeing fearful bodies. Our results provide neurophysiological support for the evolutionary notions that emotion perception is inherently linked to action systems and that fear-related cues induce an urgent mobilization of motor reactions. PMID:25835523

  1. Motor cortex guides selection of predictable movement targets

    PubMed Central

    Woodgate, Philip J.W.; Strauss, Soeren; Sami, Saber A.; Heinke, Dietmar

    2016-01-01

    The present paper asks whether the motor cortex contributes to prediction-based guidance of target selection. This question was inspired by recent evidence that suggests (i) recurrent connections from the motor system into the attentional system may extract movement-relevant perceptual information and (ii) that the motor cortex cannot only generate predictions of the sensory consequences of movements but may also operate as predictor of perceptual events in general. To test this idea we employed a choice reaching task requiring participants to rapidly reach and touch a predictable or unpredictable colour target. Motor cortex activity was modulated via transcranial direct current stimulation (tDCS). In Experiment 1 target colour repetitions were predictable. Under such conditions anodal tDCS facilitated selection versus sham and cathodal tDCS. This improvement was apparent for trajectory curvature but not movement initiation. Conversely, where no predictability of colour was embedded reach performance was unaffected by tDCS. Finally, the results of a key-press experiment suggested that motor cortex involvement is restricted to tasks where the predictable target colour is movement-relevant. The outcomes are interpreted as evidence that the motor system contributes to the top-down guidance of selective attention to movement targets. PMID:25835319

  2. Primary somatosensory cortex hand representation dynamically modulated by motor output.

    PubMed

    McGeoch, Paul D; Brang, David; Huang, Mingxiong; Ramachandran, V S

    2015-02-01

    The brain's primary motor and primary somatosensory cortices are generally viewed as functionally distinct entities. Here we show by means of magnetoencephalography with a phantom-limb patient, that movement of the phantom hand leads to a change in the response of the primary somatosensory cortex to tactile stimulation. This change correlates with the described conscious perception and suggests a greater degree of functional unification between the primary motor and somatosensory cortices than is currently realized. We suggest that this may reflect the evolution of this part of the human brain, which is thought to have occurred from an undifferentiated sensorimotor cortex. PMID:24433220

  3. Long-term motor cortex stimulation for phantom limb pain.

    PubMed

    Pereira, Erlick A C; Moore, Tom; Moir, Liz; Aziz, Tipu Z

    2015-04-01

    We present the long-term course of motor cortex stimulation to relieve a case of severe burning phantom arm pain after brachial plexus injury and amputation. During 16-year follow-up the device continued to provide efficacious analgesia. However, several adjustments of stimulation parameters were required, as were multiple pulse generator changes, antibiotics for infection and one electrode revision due to lead migration. Steady increases in stimulation parameters over time were required. One of the longest follow-ups of motor cortex stimulation is described; the case illustrates challenges and pitfalls in neuromodulation for chronic pain, demonstrating strategies for maintaining analgesia and overcoming tolerance. PMID:25340991

  4. A little more conversation, a little less action - candidate roles for motor cortex in speech perception

    PubMed Central

    Scott, Sophie K; McGettigan, Carolyn; Eisner, Frank

    2014-01-01

    The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in motor cortex during speech perception, and the motor cortex is strongly activated by many different sound categories. Here, we evaluate alternative roles for the motor cortex in spoken communication and suggest a specific role in sensorimotor processing in conversation. We argue that motor-cortex activation it is essential in joint speech, particularly for the timing of turn-taking. PMID:19277052

  5. Transcranial direct current stimulation of the motor cortex in waking resting state induces motor imagery.

    PubMed

    Speth, Jana; Speth, Clemens; Harley, Trevor A

    2015-11-01

    This study investigates if anodal and cathodal transcranial direct current stimulation (tDCS) of areas above the motor cortex (C3) influences spontaneous motor imagery experienced in the waking resting state. A randomized triple-blinded design was used, combining neurophysiological techniques with tools of quantitative mentation report analysis from cognitive linguistics. The results indicate that while spontaneous motor imagery rarely occurs under sham stimulation, general and athletic motor imagery (classified as athletic disciplines), is induced by anodal tDCS. This insight may have implications beyond basic consciousness research. Motor imagery and corresponding motor cortical activation have been shown to benefit later motor performance. Electrophysiological manipulations of motor imagery could in the long run be used for rehabilitative tDCS protocols benefitting temporarily immobile clinical patients who cannot perform specific motor imagery tasks - such as dementia patients, infants with developmental and motor disorders, and coma patients. PMID:26204566

  6. Neurophotonics applications to motor cortex research: a review

    PubMed Central

    Suter, Benjamin A.; Yamawaki, Naoki; Borges, Katharine; Li, Xiaojian; Kiritani, Taro; Hooks, Bryan M.; Shepherd, Gordon M. G.

    2014-01-01

    Abstract. Neurophotonics methods offer powerful ways to access neuronal signals and circuits. We highlight recent advances and current themes in this area, emphasizing tools for mapping, monitoring, and manipulating excitatory projection neurons and their synaptic circuits in mouse motor cortex. PMID:25553337

  7. Cerebellar Processing of Sensory Inputs Primes Motor Cortex Plasticity

    PubMed Central

    Velayudhan, B.; Hubsch, C.; Pradeep, S.; Roze, E.; Vidailhet, M.; Meunier, S.; Kishore, A.

    2013-01-01

    Plasticity of the human primary motor cortex (M1) has a critical role in motor control and learning. The cerebellum facilitates these functions using sensory feedback. We investigated whether cerebellar processing of sensory afferent information influences the plasticity of the primary motor cortex (M1). Theta-burst stimulation protocols (TBS), both excitatory and inhibitory, were used to modulate the excitability of the posterior cerebellar cortex and to condition an ongoing M1 plasticity. M1 plasticity was subsequently induced in 2 different ways: by paired associative stimulation (PAS) involving sensory processing and TBS that exclusively involves intracortical circuits of M1. Cerebellar excitation attenuated the PAS-induced M1 plasticity, whereas cerebellar inhibition enhanced and prolonged it. Furthermore, cerebellar inhibition abolished the topography-specific response of PAS-induced M1 plasticity, with the effects spreading to adjacent motor maps. Conversely, cerebellar excitation had no effect on the TBS-induced M1 plasticity. This demonstrates the key role of the cerebellum in priming M1 plasticity, and we propose that it is likely to occur at the thalamic or olivo-dentate nuclear level by influencing the sensory processing. We suggest that such a cerebellar priming of M1 plasticity could shape the impending motor command by favoring or inhibiting the recruitment of several muscle representations. PMID:22351647

  8. Modification of motor cortex excitability during muscle relaxation in motor learning.

    PubMed

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Saitoh, Kei; Higashi, Toshio

    2016-01-01

    We postulated that gradual muscle relaxation during motor learning would dynamically change activity in the primary motor cortex (M1) and modify short-interval intracortical inhibition (SICI). Thus, we compared changes in M1 excitability both pre and post motor learning during gradual muscle relaxation. Thirteen healthy participants were asked to gradually relax their muscles from an isometric right wrist extension (30% maximum voluntary contraction; MVC) using a tracking task for motor learning. Single or paired transcranial magnetic stimulation (TMS) was applied at either 20% or 80% of the downward force output during muscle release from 30% MVC, and we compared the effects of motor learning immediately after the 1st and 10th blocks. Motor-evoked potentials (MEPs) from the extensor and flexor carpi radialis (ECR and FCR) were then measured and compared to evaluate their relationship before and after motor learning. In both muscles and each downward force output, motor cortex excitability during muscle relaxation was significantly increased following motor learning. In the ECR, the SICI in the 10th block was significantly increased during the 80% waveform decline compared to the SICI in the 1st block. In the FCR, the SICI also exhibited a greater inhibitory effect when muscle relaxation was terminated following motor learning. During motor training, acquisition of the ability to control muscle relaxation increased the SICI in both the ECR and FCR during motor termination. This finding aids in our understanding of the cortical mechanisms that underlie muscle relaxation during motor learning. PMID:26341320

  9. Robust neuronal dynamics in premotor cortex during motor planning.

    PubMed

    Li, Nuo; Daie, Kayvon; Svoboda, Karel; Druckmann, Shaul

    2016-04-28

    Neural activity maintains representations that bridge past and future events, often over many seconds. Network models can produce persistent and ramping activity, but the positive feedback that is critical for these slow dynamics can cause sensitivity to perturbations. Here we use electrophysiology and optogenetic perturbations in the mouse premotor cortex to probe the robustness of persistent neural representations during motor planning. We show that preparatory activity is remarkably robust to large-scale unilateral silencing: detailed neural dynamics that drive specific future movements were quickly and selectively restored by the network. Selectivity did not recover after bilateral silencing of the premotor cortex. Perturbations to one hemisphere are thus corrected by information from the other hemisphere. Corpus callosum bisections demonstrated that premotor cortex hemispheres can maintain preparatory activity independently. Redundancy across selectively coupled modules, as we observed in the premotor cortex, is a hallmark of robust control systems. Network models incorporating these principles show robustness that is consistent with data. PMID:27074502

  10. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation

    PubMed Central

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease. PMID:25938462

  11. Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury.

    PubMed

    Wrigley, P J; Gustin, S M; Macey, P M; Nash, P G; Gandevia, S C; Macefield, V G; Siddall, P J; Henderson, L A

    2009-01-01

    A debilitating consequence of complete spinal cord injury (SCI) is the loss of motor control. Although the goal of most SCI treatments is to re-establish neural connections, a potential complication in restoring motor function is that SCI may result in anatomical and functional changes in brain areas controlling motor output. Some animal investigations show cell death in the primary motor cortex following SCI, but similar anatomical changes in humans are not yet established. The aim of this investigation was to use voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) to determine if SCI in humans results in anatomical changes within motor cortices and descending motor pathways. Using VBM, we found significantly lower gray matter volume in complete SCI subjects compared with controls in the primary motor cortex, the medial prefrontal, and adjacent anterior cingulate cortices. DTI analysis revealed structural abnormalities in the same areas with reduced gray matter volume and in the superior cerebellar cortex. In addition, tractography revealed structural abnormalities in the corticospinal and corticopontine tracts of the SCI subjects. In conclusion, human subjects with complete SCI show structural changes in cortical motor regions and descending motor tracts, and these brain anatomical changes may limit motor recovery following SCI. PMID:18483004

  12. Pain-related modulation of the human motor cortex.

    PubMed

    Farina, Simona; Tinazzi, Michele; Le Pera, Domenica; Valeriani, Massimiliano

    2003-03-01

    Pain is a complex multi-dimensional phenomenon that influences a wide variety of nervous system functions, including sensory--discriminative, affective--motivational and cognitive--evaluative components. So far, these components have been studied in both patients with chronic pain and in normal subjects in whom pain was induced experimentally. The interaction between pain and motor function is not fully understood, although from everyday life it is known that pain affects movements. The effects of pain on motor control are typically seen as a limited or impaired ability to perform movements. Most studies have dealt with the effects of pain on the spinal cord reflexes, but in recent years, several lines of evidence suggest that the interaction between motor and pain systems in conditions of pain induced experimentally, rather than a simple spinal reflex, is a more complex process that involves also supraspinal brain areas. Although pain-motor interaction shows different features and time course depending on different pain variables, such as duration (tonic versus phasic pain), submodalities (deep versus superficial pain) and location (distal versus proximal pain), a common finding is that pain is able to inhibit the motor cortex. This motor cortex inhibition may act as a sort of motor 'decerebration' so as to allow the spinal motor system to freely develop protective responses to noxious stimulation. Further studies are required to assess the effects of pain on the motor system in patients suffering from chronic pain, in order to develop innovative rational therapeutic strategies to reduce both pain and motor disability. PMID:12635511

  13. Processing deficits in primary visual cortex of amblyopic cats.

    PubMed

    Schmidt, Kerstin E; Singer, Wolf; Galuske, Ralf A W

    2004-04-01

    Early esotropic squint frequently results in permanent visual deficits in one eye, referred to as strabismic amblyopia. The neurophysiological substrate corresponding to these deficits is still a matter of investigation. Electrophysiological evidence is available for disturbed neuronal interactions in both V1 and higher cortical areas. In this study, we investigated the modulation of responses in cat V1 to gratings at different orientations and spatial frequencies (SFs; 0.1-2.0 cycles/degrees) with optical imaging of intrinsic signals. Maps evoked by both eyes were well modulated at most spatial frequencies. The layout of the maps resembled that of normal cats, and iso-orientation domains tended to cross adjacent ocular dominance borders preferentially at right angles. Visually evoked potentials (VEPs) were recorded at SFs ranging from 0.1 to 3.5 cycles/degrees and revealed a consistently weaker eye for the majority of squinting cats. At each SF, interocular differences in VEP amplitudes corresponded well with differences in orientation response and selectivity in the maps. At 0.7-1.3 cycles/ degrees, population orientation selectivity was significantly lower for the weaker eye in cats with VEP differences compared with those with no VEP amplitude differences. In addition, the cutoff SF, above which gratings no longer induced orientation maps, was lower for the weaker eye (> or =1.0 cycles/degrees). These data reveal a close correlation between the loss of visual acuity in amblyopia as assessed by VEPs and the modulation of neuronal activation as seen by optical imaging of intrinsic signals. Furthermore, the results indicate that amblyopia is associated with altered intracortical processing already in V1. PMID:14668297

  14. Motor Cortex Activity Organizes the Developing Rubrospinal System

    PubMed Central

    Williams, Preston T.J.A.

    2015-01-01

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. SIGNIFICANCE STATEMENT Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  15. Re-thinking the role of motor cortex: context-sensitive motor outputs?

    PubMed

    Gandolla, Marta; Ferrante, Simona; Molteni, Franco; Guanziroli, Eleonora; Frattini, Tiziano; Martegani, Alberto; Ferrigno, Giancarlo; Friston, Karl; Pedrocchi, Alessandra; Ward, Nick S

    2014-05-01

    The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top-down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. PMID:24440530

  16. Re-thinking the role of motor cortex: Context-sensitive motor outputs?

    PubMed Central

    Gandolla, Marta; Ferrante, Simona; Molteni, Franco; Guanziroli, Eleonora; Frattini, Tiziano; Martegani, Alberto; Ferrigno, Giancarlo; Friston, Karl; Pedrocchi, Alessandra; Ward, Nick S.

    2014-01-01

    The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top–down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. PMID:24440530

  17. Differential expression of molecular motors in the motor cortex of sporadic ALS.

    PubMed

    Pantelidou, Maria; Zographos, Spyros E; Lederer, Carsten W; Kyriakides, Theodore; Pfaffl, Michael W; Santama, Niovi

    2007-06-01

    The molecular mechanisms underlying the selective neurodegeneration of motor neurons in amyotrophic lateral sclerosis (ALS) are inadequately understood. Recent breakthroughs have implicated impaired axonal transport, mediated by molecular motors, as a key element for disease onset and progression. The current work identifies the expression of 15 kinesin-like motors in healthy human motor cortex, including three novel isoforms. Our comprehensive quantitative mRNA analysis in control and sporadic ALS (SALS) motor cortex specimens detects SALS-specific down-regulation of KIF1Bbeta and novel KIF3Abeta, two isoforms we show to be enriched in the brain, and also of SOD1, a key enzyme linked to familial ALS. This is accompanied by a marked reduction of KIF3Abeta protein levels. In the motor cortex KIF3Abeta localizes in cholinergic neurons, including upper motor neurons. No mutations causing splicing defects or altering protein-coding sequences were identified in the genes of the three proteins. The present study implicates two motor proteins as possible candidates in SALS pathology. PMID:17418584

  18. A systematic review of non-motor rTMS induced motor cortex plasticity

    PubMed Central

    Nordmann, Grégory; Azorina, Valeriya; Langguth, Berthold; Schecklmann, Martin

    2015-01-01

    Motor cortex excitability can be measured by single- and paired-pulse transcranial magnetic stimulation (TMS). Repetitive transcranial magnetic stimulation (rTMS) can induce neuroplastic effects in stimulated and in functionally connected cortical regions. Due to its ability to non-invasively modulate cortical activity, rTMS has been investigated for the treatment of various neurological and psychiatric disorders. However, such studies revealed a high variability of both clinical and neuronal effects induced by rTMS. In order to better elucidate this meta-plasticity, rTMS-induced changes in motor cortex excitability have been monitored in various studies in a pre-post stimulation design. Here, we give a literature review of studies investigating motor cortex excitability changes as a neuronal marker for rTMS effects over non-motor cortical areas. A systematic literature review in April 2014 resulted in 29 articles in which motor cortex excitability was assessed before and after rTMS over non-motor areas. The majority of the studies focused on the stimulation of one of three separate cortical areas: the prefrontal area (17 studies), the cerebellum (8 studies), or the temporal cortex (3 studies). One study assessed the effects of multi-site rTMS. Most studies investigated healthy controls but some also stimulated patients with neuropsychiatric conditions (e.g., affective disorders, tinnitus). Methods and findings of the identified studies were highly variable showing no clear systematic pattern of interaction of non-motor rTMS with measures of motor cortex excitability. Based on the available literature, the measurement of motor cortex excitability changes before and after non-motor rTMS has only limited value in the investigation of rTMS related meta-plasticity as a neuronal state or as a trait marker for neuropsychiatric diseases. Our results do not suggest that there are systematic alterations of cortical excitability changes during rTMS treatment, which calls

  19. Is one motor cortex enough for two hands?

    PubMed

    Fiori, Simona; Staudt, Martin; Pannek, Kerstin; Borghetti, Davide; Biagi, Laura; Scelfo, Danilo; Rose, Stephen E; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-10-01

    We report on a patient with mirror movements sustained by a mono-hemispheric fast control of bilateral hand muscles and normal hand function. Transcranial magnetic stimulation of the right motor cortex evoked contractions of muscles in both hands while no responses were observed from the left hemisphere. Somatosensory-evoked potentials, functional magnetic resonance, and diffusion tractography showed evidence of sensorimotor dissociation and asymmetry of corticospinal projections, suggestive of reorganization after early unilateral left brain lesion. This is the first evidence that, in certain rare conditions, good hand function is possible with ipsilateral corticospinal reorganization, supporting the role of unexplored mechanisms of motor recovery. PMID:26104046

  20. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    PubMed

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-01

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. PMID:26972317

  1. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps.

    PubMed

    Song, Weiguo; Truong, Dennis Q; Bikson, Marom; Martin, John H

    2015-04-01

    Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modify the MCX forelimb motor map. We used a finite-element method model based on coregistered high-resolution rat MRI and microcomputed tomography imaging data to predict spinal current density to target stimulation to the caudal cervical enlargement. We examined the effects of cathodal and anodal tsDCS on the H-reflex and c-tsDCS on responses evoked by intracortical microstimulation (ICMS). To determine if cervical c-tsDCS also modified MCX somatic sensory processing, we examined sensory evoked potentials (SEPs) produced by wrist electrical stimulation and induced changes in ongoing activity. Cervical c-tsDCS enhanced the H-reflex, and anodal depressed the H-reflex. Using cathodal stimulation to examine cortical effects, we found that cervical c-tsDCS immediately modified the forelimb MCX motor map, with decreased thresholds and an expanded area. c-tsDCS also increased SEP amplitude in the MCX. The magnitude of changes produced by c-tsDCS were greater on the motor than sensory response. Cervical c-tsDCS more strongly enhanced forelimb than hindlimb motor representation and had no effect on vibrissal representation. The finite-element model indicated current density localized to caudal cervical segments, informing forelimb motor selectivity. Our results suggest that c-tsDCS augments spinal excitability in a spatially selective manner and may improve voluntary motor function through MCX representational plasticity. PMID:25673738

  2. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps

    PubMed Central

    Song, Weiguo; Truong, Dennis Q.; Bikson, Marom

    2015-01-01

    Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modify the MCX forelimb motor map. We used a finite-element method model based on coregistered high-resolution rat MRI and microcomputed tomography imaging data to predict spinal current density to target stimulation to the caudal cervical enlargement. We examined the effects of cathodal and anodal tsDCS on the H-reflex and c-tsDCS on responses evoked by intracortical microstimulation (ICMS). To determine if cervical c-tsDCS also modified MCX somatic sensory processing, we examined sensory evoked potentials (SEPs) produced by wrist electrical stimulation and induced changes in ongoing activity. Cervical c-tsDCS enhanced the H-reflex, and anodal depressed the H-reflex. Using cathodal stimulation to examine cortical effects, we found that cervical c-tsDCS immediately modified the forelimb MCX motor map, with decreased thresholds and an expanded area. c-tsDCS also increased SEP amplitude in the MCX. The magnitude of changes produced by c-tsDCS were greater on the motor than sensory response. Cervical c-tsDCS more strongly enhanced forelimb than hindlimb motor representation and had no effect on vibrissal representation. The finite-element model indicated current density localized to caudal cervical segments, informing forelimb motor selectivity. Our results suggest that c-tsDCS augments spinal excitability in a spatially selective manner and may improve voluntary motor function through MCX representational plasticity. PMID:25673738

  3. Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array.

    PubMed

    Rousche, P J; Normann, R A

    1999-03-01

    In an effort to assess the safety and efficacy of focal intracortical microstimulation (ICMS) of cerebral cortex with an array of penetrating electrodes as might be applied to a neuroprosthetic device to aid the deaf or blind, we have chronically implanted three trained cats in primary auditory cortex with the 100-electrode Utah Intracortical Electrode Array (UIEA). Eleven of the 100 electrodes were hard-wired to a percutaneous connector for chronic access. Prior to implant, cats were trained to "lever-press" in response to pure tone auditory stimulation. After implant, this behavior was transferred to "lever-presses" in response to current injections via single electrodes of the implanted arrays. Psychometric function curves relating injected charge level to the probability of response were obtained for stimulation of 22 separate electrodes in the three implanted cats. The average threshold charge/phase required for electrical stimulus detection in each cat was, 8.5, 8.6, and 11.6 nC/phase respectively, with a maximum charge/phase of 26 nC/phase and a minimum of 1.5 nC/phase thresholds were tracked for varying time intervals, and seven electrodes from two cats were tracked for up to 100 days. Electrodes were stimulated for no more than a few minutes each day. Neural recordings taken from the same electrodes before and after multiple electrical stimulation sessions were very similar in signal/noise ratio and in the number of recordable units, suggesting that the range of electrical stimulation levels used did not damage neurons in the vicinity of the electrodes. Although a few early implants failed, we conclude that ICMS of cerebral cortex to evoke a behavioral response can be achieved with the penetrating UIEA. Further experiments in support of a sensory cortical prosthesis based on ICMS are warranted. PMID:10188608

  4. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice. PMID:26243304

  5. High-Field Functional Imaging of Pitch Processing in Auditory Cortex of the Cat

    PubMed Central

    Butler, Blake E.; Hall, Amee J.; Lomber, Stephen G.

    2015-01-01

    The perception of pitch is a widely studied and hotly debated topic in human hearing. Many of these studies combine functional imaging techniques with stimuli designed to disambiguate the percept of pitch from frequency information present in the stimulus. While useful in identifying potential “pitch centres” in cortex, the existence of truly pitch-responsive neurons requires single neuron-level measures that can only be undertaken in animal models. While a number of animals have been shown to be sensitive to pitch, few studies have addressed the location of cortical generators of pitch percepts in non-human models. The current study uses high-field functional magnetic resonance imaging (fMRI) of the feline brain in an attempt to identify regions of cortex that show increased activity in response to pitch-evoking stimuli. Cats were presented with iterated rippled noise (IRN) stimuli, narrowband noise stimuli with the same spectral profile but no perceivable pitch, and a processed IRN stimulus in which phase components were randomized to preserve slowly changing modulations in the absence of pitch (IRNo). Pitch-related activity was not observed to occur in either primary auditory cortex (A1) or the anterior auditory field (AAF) which comprise the core auditory cortex in cats. Rather, cortical areas surrounding the posterior ectosylvian sulcus responded preferentially to the IRN stimulus when compared to narrowband noise, with group analyses revealing bilateral activity centred in the posterior auditory field (PAF). This study demonstrates that fMRI is useful for identifying pitch-related processing in cat cortex, and identifies cortical areas that warrant further investigation. Moreover, we have taken the first steps in identifying a useful animal model for the study of pitch perception. PMID:26225563

  6. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  7. Mapping phantom movement representations in the motor cortex of amputees.

    PubMed

    Mercier, Catherine; Reilly, Karen T; Vargas, Claudia D; Aballea, Antoine; Sirigu, Angela

    2006-08-01

    Limb amputation results in plasticity of connections between the brain and muscles, with the cortical motor representation of the missing limb seemingly shrinking, to the presumed benefit of remaining body parts that have cortical representations adjacent to the now-missing limb. Surprisingly, the corresponding perceptual representation does not suffer a similar fate but instead persists as a phantom limb endowed with sensory and motor qualities. How can cortical reorganization after amputation be reconciled with the maintenance of a motor representation of the phantom limb in the brain? In an attempt to answer this question we explored the relationship between the cortical representation of the remaining arm muscles and that of phantom movements. Using transcranial magnetic stimulation (TMS) we systematically mapped phantom movement perceptions while simultaneously recording stump muscle activity in three above-elbow amputees. TMS elicited sensations of movement in the phantom hand when applied over the presumed hand area of the motor cortex. In one subject the amplitude of the perceived movement was positively correlated with the intensity of stimulation. Interestingly, phantom limb movements that the patient could not produce voluntarily were easily triggered by TMS, suggesting that the inability to voluntarily move the phantom is not equivalent to a loss of the corresponding movement representation. We suggest that hand movement representations survive in the reorganized motor area of amputees even when these cannot be directly accessed. The activation of these representations is probably necessary for the experience of phantom movement. PMID:16844715

  8. Kick with the finger: symbolic actions shape motor cortex excitability.

    PubMed

    Betti, Sonia; Castiello, Umberto; Sartori, Luisa

    2015-11-01

    A large body of research indicates that observing actions made by others is associated with corresponding motor facilitation of the observer's corticospinal system. However, it is still controversial whether this matching mechanism strictly reflects the kinematics of the observed action or its meaning. To test this issue, motor evoked potentials induced by single-pulse transcranial magnetic stimulation were recorded from hand and leg muscles while participants observed a symbolic action carried out with the index finger, but classically performed with the leg (i.e., a soccer penalty kick). A control condition in which participants observed a similar (but not symbolic) hand movement was also included. Results showed that motor facilitation occurs both in the observer's hand (first dorsal interosseous) and leg (quadriceps femoris) muscles. The present study provides evidence that both the kinematics and the symbolic value of an observed action are able to modulate motor cortex excitability. The human motor system is thus not only involved in mirroring observed actions but is also finely tuned to their symbolic value. PMID:26354677

  9. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    PubMed

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. PMID:26826448

  10. Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior

    PubMed Central

    Asemi, Avisa; Ramaseshan, Karthik; Burgess, Ashley; Diwadkar, Vaibhav A.; Bressler, Steven L.

    2015-01-01

    Motor control is integral to all types of human behavior, and the dorsal Anterior Cingulate Cortex (dACC) is thought to play an important role in the brain network underlying motor control. Yet the role of the dACC in motor control is under-characterized. Here we aimed to characterize the dACC’s role in adolescent brain network interactions during a simple motor control task involving visually coordinated unimanual finger movements. Network interactions were assessed using both undirected and directed functional connectivity analysis of functional Magnetic Resonance Imaging (fMRI) Blood-Oxygen-Level-Dependent (BOLD) signals, comparing the task with a rest condition. The relation between the dACC and Supplementary Motor Area (SMA) was compared to that between the dACC and Primary Motor Cortex (M1). The directed signal from dACC to SMA was significantly elevated during motor control in the task. By contrast, the directed signal from SMA to dACC, both directed signals between dACC and M1, and the undirected functional connections of dACC with SMA and M1, all did not differ between task and rest. Undirected coupling of dACC with both SMA and dACC, and only the dACC-to-SMA directed signal, were significantly greater for a proactive than a reactive task condition, suggesting that dACC plays a role in motor control by maintaining stimulus timing expectancy. Overall, these results suggest that the dACC selectively modulates the SMA during visually coordinated unimanual behavior in adolescence. The role of the dACC as an important brain area for the mediation of task-related motor control may be in place in adolescence, continuing into adulthood. The task and analytic approach described here should be extended to the study of healthy adults to examine network profiles of the dACC during basic motor behavior. PMID:26089783

  11. Heterogeneous attractor cell assemblies for motor planning in premotor cortex.

    PubMed

    Mattia, Maurizio; Pani, Pierpaolo; Mirabella, Giovanni; Costa, Stefania; Del Giudice, Paolo; Ferraina, Stefano

    2013-07-01

    Cognitive functions like motor planning rely on the concerted activity of multiple neuronal assemblies underlying still elusive computational strategies. During reaching tasks, we observed stereotyped sudden transitions (STs) between low and high multiunit activity of monkey dorsal premotor cortex (PMd) predicting forthcoming actions on a single-trial basis. Occurrence of STs was observed even when movement was delayed or successfully canceled after a stop signal, excluding a mere substrate of the motor execution. An attractor model accounts for upward STs and high-frequency modulations of field potentials, indicative of local synaptic reverberation. We found in vivo compelling evidence that motor plans in PMd emerge from the coactivation of such attractor modules, heterogeneous in the strength of local synaptic self-excitation. Modules with strong coupling early reacted with variable times to weak inputs, priming a chain reaction of both upward and downward STs in other modules. Such web of "flip-flops" rapidly converged to a stereotyped distributed representation of the motor program, as prescribed by the long-standing theory of associative networks. PMID:23825419

  12. Effect of the richness of the environment on the cat visual cortex.

    PubMed

    Beaulieu, C; Colonnier, M

    1987-12-22

    In a recent study of the cat visual cortex, it was shown that there are interindividual differences in the numerical density (Nv) of symmetrical synapses associated with flat vesicles (FS synapses) but not of asymmetrical synapses associated with round vesicles (RA synapses). Since many of the environment-sensitive properties of visual cortex neurons are GABA-dependent, it was suggested that the interindividual differences in FS synapses might be due to environmental factors. To verify this possibility we estimated the Nv of both types of synapses in two groups of six cats, paired by litter and by sex, and raised either in isolation or in a colony from the time of weaning to the age of 8 months. We also measured the Nv of neurons and the thickness of the cortex and made some gross anatomical measurements. The brains of animals raised in the enriched environment are 7% heavier, and their total body weight is 10% greater: The brain-to-body-weight ratio remains unchanged. The total length of the brain is not affected, but the length and width of the cerebral hemispheres are each 5% greater in the enriched cats. As in comparable rat studies, the thickness of the cortex is 4% greater, but in the present study this difference is not significant. The numerical density of neurons is diminished by 17% in enriched animals. This is probably due to a wider separation of neuronal cell bodies in a larger cortical volume, rather than to a loss of neurons. There are no significant changes in the numerical density of RA synapses between the two milieux, but there are nearly twice as many FS synapses per mm3 of tissue in the impoverished cortex. The coefficient of variation of FS synapses, which in the previous study was on the order of 30%, has been reduced to 10% and 7% in enriched and impoverished cats, respectively. We conclude that environmental conditions can lead to selective interindividual differences in the Nv of FS synapses, as seen in our previous study of animals whose

  13. Augmenting Plasticity Induction in Human Motor Cortex by Disinhibition Stimulation.

    PubMed

    Cash, Robin F H; Murakami, Takenobu; Chen, Robert; Thickbroom, Gary W; Ziemann, Ulf

    2016-01-01

    Cellular studies showed that disinhibition, evoked pharmacologically or by a suitably timed priming stimulus, can augment long-term plasticity (LTP) induction. We demonstrated previously that transcranial magnetic stimulation evokes a period of presumably GABA(B)ergic late cortical disinhibition (LCD) in human primary motor cortex (M1). Here, we hypothesized that, in keeping with cellular studies, LCD can augment LTP-like plasticity in humans. In Experiment 1, patterned repetitive TMS was applied to left M1, consisting of 6 trains (intertrain interval, 8 s) of 4 doublets (interpulse interval equal to individual peak I-wave facilitation, 1.3-1.5 ms) spaced by the individual peak LCD (interdoublet interval (IDI), 200-250 ms). This intervention (total of 48 pulses applied over ∼45 s) increased motor-evoked potential amplitude, a marker of corticospinal excitability, in a right hand muscle by 147% ± 4%. Control experiments showed that IDIs shorter or longer than LCD did not result in LTP-like plasticity. Experiment 2 indicated topographic specificity to the M1 hand region stimulated by TMS and duration of the LTP-like plasticity of 60 min. In conclusion, GABA(B)ergic LCD offers a powerful new approach for augmenting LTP-like plasticity induction in human cortex. We refer to this protocol as disinhibition stimulation (DIS). PMID:25100853

  14. Motor cortex excitability changes within 8 hours after ischaemic stroke may predict the functional outcome.

    PubMed

    Di Lazzaro, V; Oliviero, A; Profice, P; Saturno, E; Pilato, F; Tonali, P

    1999-06-01

    Motor evoked potentials after magnetic transcranial stimulation and the excitability of the motor cortex to increasing magnetic stimulus intensities were evaluated in six patients with hemiparesis after ischaemic stroke within 8 hours after stroke. The latencies of motor evoked potentials were normal in all patients. After stimulation of the ischaemic hemisphere we obtained responses comparable with the contralateral ones in two patients (mean NIH score 2 (SD 0)) and this group was completely asymptomatic after 15 days (NIH score 0). In four patients the excitability of the motor cortex involved by the ischaemia was reduced and magnetic motor threshold was higher than that of the spared motor cortex. This finding was associated with a poor motor recovery and the NIH score after 15 days was unchanged (NIH score 1.75 (SD 1.5)). The present data suggest that the evaluation of the excitability of motor cortex may offer a mean of predicting functional outcome following stroke. PMID:10461555

  15. Population response characteristics of intrinsic signals in the cat somatosensory cortex following canine mechanical stimulation.

    PubMed

    Tao, Jianxiang; Wang, Jian; Li, Zhong; Meng, Jianjun; Yu, Hongbo

    2016-08-01

    Intrinsic signal optical imaging has been widely used to measure functional maps in various sensory cortices due to better spatial resolution and sensitivity for detecting cortical neuroplasticity. However, application of this technique in dentistry has not been reported. In this study, intrinsic signal optical imaging was used to investigate mechanically driven responses in the cat somatosensory cortex, when punctate mechanical stimuli were applied to maxillary canines. The global signal and its spatial organization pattern were obtained. Global signal strength gradually increased with stimulus strength. There was no significant difference in response strength between contralateral and ipsilateral mechanical stimulation. A slightly greater response was recorded in the sigmoidal gyrus than in the coronal gyrus. The cat somatosensory cortex activated by sensory inputs from mechanical stimulation of canines lacks both topographical and functional organization. It is not organized into columns that represent sensory input from each tooth or direction of stimulation. These results demonstrate that intrinsic signal optical imaging is a valid tool for investigating neural responses and neuroplasticity in the somatosensory cortex that represents teeth. PMID:27163378

  16. Reduced motor cortex activity during movement preparation following a period of motor skill practice.

    PubMed

    Wright, David J; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  17. Selective Long-term Reorganization of the Corticospinal Projection from the Supplementary Motor Cortex following Recovery from Lateral Motor Cortex Injury

    PubMed Central

    McNeal, David W.; Darling, Warren G.; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; Solon, Kathryn M.; Hynes, Stephanie M.; Pizzimenti, Marc A.; Rotella, Diane; Vanadurongvan, Tyler; Morecraft, Robert J.

    2013-01-01

    Brain injury affecting the frontal motor cortex or its descending axons often causes contralateral upper extremity paresis. Although recovery is variable, the underlying mechanisms supporting favorable motor recovery remain unclear. Since the medial wall of the cerebral hemisphere is often spared following brain injury and recent functional neuroimaging studies in patients indicate a potential role for this brain region in the recovery process, we investigated the long-term effects of isolated lateral frontal motor cortical injury on the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2). Following injury to the arm region of the primary motor (M1) and lateral premotor (LPMC) cortices, upper extremity recovery is accompanied by terminal axon plasticity in the contralateral CSP but not the ipsilateral CSP from M2. Furthermore, significant contralateral plasticity occurs only in lamina VII and dorsally within lamina IX. Thus, selective intraspinal sprouting transpires in regions containing interneurons, flexor-related motor neurons and motor neurons supplying intrinsic hand muscles which all play important roles in mediating reaching and digit movements. Following recovery, subsequent injury of M2 leads to reemergence of hand motor deficits. Considering the importance of the CSP in humans and the common occurrence of lateral frontal cortex injury, these findings suggest that spared supplementary motor cortex may serve as an important therapeutic target that should be considered when designing acute and long-term post-injury patient intervention strategies aimed to enhance the motor recovery process following lateral cortical trauma. PMID:20034062

  18. The changes of c-Fos expression by motor cortex stimulation in the deafferentation pain model.

    PubMed

    Kudo, Kanae; Takahashi, Toshio; Suzuki, Shigeharu

    2014-01-01

    The effect of motor cortex stimulation (MCS) therapy for deafferentation pain was evaluated based on c-Fos, a known pain marker. Nineteen mature cats weighing 1.5-3.5 kg were used. Cats were divided into three groups: a deafferentation pain group in which the left trigeminal ganglion was destroyed, an MCS group in which MCS was used following destruction of the trigeminal ganglion, and a control group. Sites and levels of c-Fos expression were examined immunohistochemically. The percentage of c-Fos-positive cells in the left spinal nucleus of the trigeminus, the bilateral insula, and the bilateral operculum increased in both the deafferentation pain and the MCS groups. There were no statistically significant differences between these groups. In the cingulate gyrus, the percentage of c-Fos-positive cells increased bilaterally in the deafferentation pain group and the MCS group, but the increase was greater in the MCS group. The increase in c-Fos-positive cells in the left spinal nucleus of the trigeminus in the deafferentation group may reflect reported electrical hyperactivity. The cingulate gyrus, insula, and parietal operculum were activated after deafferentation. This change (increase in c-Fos positive cells) is related to the development of deafferentation pain. Pain relief due to MCS is not dependent on the suppression of the activated left spinal nucleus of the trigeminus or the descending analgesic mechanism of the brain stem. Activation of the cingulate gyrus appears to be a factor in the analgesic mechanism of MCS. PMID:24965534

  19. Fast wave propagation in auditory cortex of an awake cat using a chronic microelectrode array

    NASA Astrophysics Data System (ADS)

    Witte, Russell S.; Rousche, Patrick J.; Kipke, Daryl R.

    2007-06-01

    We investigated fast wave propagation in auditory cortex of an alert cat using a chronically implanted microelectrode array. A custom, real-time imaging template exhibited wave dynamics within the 33-microwire array (3 mm2) during ten recording sessions spanning 1 month post implant. Images were based on the spatial arrangement of peri-stimulus time histograms at each recording site in response to auditory stimuli consisting of tone pips between 1 and 10 kHz at 75 dB SPL. Functional images portray stimulus-locked spiking activity and exhibit waves of excitation and inhibition that evolve during the onset, sustained and offset period of the tones. In response to 5 kHz, for example, peak excitation occurred at 27 ms after onset and again at 15 ms following tone offset. Variability of the position of the centroid of excitation during ten recording sessions reached a minimum at 31 ms post onset (σ = 125 µm) and 18 ms post offset (σ = 145 µm), suggesting a fine place/time representation of the stimulus in the cortex. The dynamics of these fast waves also depended on stimulus frequency, likely reflecting the tonotopicity in auditory cortex projected from the cochlea. Peak wave velocities of 0.2 m s-1 were also consistent with those purported across horizontal layers of cat visual cortex. The fine resolution offered by microimaging may be critical for delivering optimal coding strategies used with an auditory prosthesis. Based on the initial results, future studies seek to determine the relevance of these waves to sensory perception and behavior. The work was performed at Department of Bioengineering, Arizona State University, ECG 334 MS-9709 Arizona State University, Tempe, AZ 85287-9709, USA.

  20. Fast wave propagation in auditory cortex of an awake cat using a chronic microelectrode array.

    PubMed

    Witte, Russell S; Rousche, Patrick J; Kipke, Daryl R

    2007-06-01

    We investigated fast wave propagation in auditory cortex of an alert cat using a chronically implanted microelectrode array. A custom, real-time imaging template exhibited wave dynamics within the 33-microwire array (3 mm(2)) during ten recording sessions spanning 1 month post implant. Images were based on the spatial arrangement of peri-stimulus time histograms at each recording site in response to auditory stimuli consisting of tone pips between 1 and 10 kHz at 75 dB SPL. Functional images portray stimulus-locked spiking activity and exhibit waves of excitation and inhibition that evolve during the onset, sustained and offset period of the tones. In response to 5 kHz, for example, peak excitation occurred at 27 ms after onset and again at 15 ms following tone offset. Variability of the position of the centroid of excitation during ten recording sessions reached a minimum at 31 ms post onset (sigma = 125 microm) and 18 ms post offset (sigma = 145 microm), suggesting a fine place/time representation of the stimulus in the cortex. The dynamics of these fast waves also depended on stimulus frequency, likely reflecting the tonotopicity in auditory cortex projected from the cochlea. Peak wave velocities of 0.2 m s(-1) were also consistent with those purported across horizontal layers of cat visual cortex. The fine resolution offered by microimaging may be critical for delivering optimal coding strategies used with an auditory prosthesis. Based on the initial results, future studies seek to determine the relevance of these waves to sensory perception and behavior. PMID:17409481

  1. Concurrent TMS to the primary motor cortex augments slow motor learning

    PubMed Central

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  2. Modulation of the ∽20-Hz motor-cortex rhythm to passive movement and tactile stimulation

    PubMed Central

    Parkkonen, Eeva; Laaksonen, Kristina; Piitulainen, Harri; Parkkonen, Lauri; Forss, Nina

    2015-01-01

    Background Integration of afferent somatosensory input with motor-cortex output is essential for accurate movements. Prior studies have shown that tactile input modulates motor-cortex excitability, which is reflected in the reactivity of the ∽20-Hz motor-cortex rhythm. ∽20-Hz rebound is connected to inhibition or deactivation of motor cortex whereas suppression has been associated with increased motor cortex activity. Although tactile sense carries important information for controlling voluntary actions, proprioception likely provides the most essential feedback for motor control. Methods To clarify how passive movement modulates motor-cortex excitability, we studied with magnetoencephalography (MEG) the amplitudes and peak latencies of suppression and rebound of the ∽20-Hz rhythm elicited by tactile stimulation and passive movement of right and left index fingers in 22 healthy volunteers. Results Passive movement elicited a stronger and more robust ∽20-Hz rebound than tactile stimulation. In contrast, the suppression amplitudes did not differ between the two stimulus types. Conclusion Our findings suggest that suppression and rebound represent activity of two functionally distinct neuronal populations. The ∽20-Hz rebound to passive movement could be a suitable tool to study the functional state of the motor cortex both in healthy subjects and in patients with motor disorders. PMID:25874163

  3. Competing Neural Ensembles in Motor Cortex Gate Goal-Directed Motor Output.

    PubMed

    Zagha, Edward; Ge, Xinxin; McCormick, David A

    2015-11-01

    Unit recordings in behaving animals have revealed the transformation of sensory to motor representations in cortical neurons. However, we still lack basic insights into the mechanisms by which neurons interact to generate such transformations. Here, we study cortical circuits related to behavioral control in mice engaged in a sensory detection task. We recorded neural activity using extracellular and intracellular techniques and analyzed the task-related neural dynamics to reveal underlying circuit processes. Within motor cortex, we find two populations of neurons that have opposing spiking patterns in anticipation of movement. From correlation analyses and circuit modeling, we suggest that these dynamics reflect neural ensembles engaged in a competition. Furthermore, we demonstrate how this competitive circuit may convert a transient, sensory stimulus into a motor command. Together, these data reveal cellular and circuit processes underlying behavioral control and establish an essential framework for future studies linking cellular activity to behavior. PMID:26593093

  4. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice

    PubMed Central

    Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  5. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice.

    PubMed

    Hasan, Mazahir T; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking NMDA receptors in the [corrected] primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  6. Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex.

    PubMed

    Gourévitch, Boris; Eggermont, Jos J

    2007-01-01

    This study shows the neural representation of cat vocalizations, natural and altered with respect to carrier and envelope, as well as time-reversed, in four different areas of the auditory cortex. Multiunit activity recorded in primary auditory cortex (AI) of anesthetized cats mainly occurred at onsets (<200-ms latency) and at subsequent major peaks of the vocalization envelope and was significantly inhibited during the stationary course of the stimuli. The first 200 ms of processing appears crucial for discrimination of a vocalization in AI. The dorsal and ventral parts of AI appear to have different roles in coding vocalizations. The dorsal part potentially discriminated carrier-altered meows, whereas the ventral part showed differences primarily in its response to natural and time-reversed meows. In the posterior auditory field, the different temporal response types of neurons, as determined by their poststimulus time histograms, showed discrimination for carrier alterations in the meow. Sustained firing neurons in the posterior ectosylvian gyrus (EP) could discriminate, among others, by neural synchrony, temporal envelope alterations of the meow, and time reversion thereof. These findings suggest an important role of EP in the detection of information conveyed by the alterations of vocalizations. Discrimination of the neural responses to different alterations of vocalizations could be based on either firing rate, type of temporal response, or neural synchrony, suggesting that all these are likely simultaneously used in processing of natural and altered conspecific vocalizations. PMID:17021022

  7. Motor Cortex Stimulation for Pain Relief: Do Corollary Discharges Play a Role?

    PubMed Central

    Brasil-Neto, Joaquim P.

    2016-01-01

    Both invasive and non-invasive motor cortex stimulation techniques have been successfully employed in the treatment of chronic pain, but the precise mechanism of action of such treatments is not fully understood. It has been hypothesized that a mismatch of normal interaction between motor intention and sensory feedback may result in central pain. Sensory feedback may come from peripheral nerves, vision and also from corollary discharges originating from the motor cortex itself. Therefore, a possible mechanism of action of motor cortex stimulation might be corollary discharge reinforcement, which could counterbalance sensory feedback deficiency. In other instances, primary deficiency in the production of corollary discharges by the motor cortex might be the culprit and stimulation of cortical motor areas might then be beneficial by enhancing production of such discharges. Here we review evidence for a possible role of motor cortex corollary discharges upon both the pathophysiology and the response to motor cortex stimulation of different types of chronic pain. We further suggest that the right dorsolateral prefrontal cortex (DLPC), thought to constantly monitor incongruity between corollary discharges, vision and proprioception, might be an interesting target for non-invasive neuromodulation in cases of chronic neuropathic pain. PMID:27445763

  8. Critical Involvement of the Motor Cortex in the Pathophysiology and Treatment of Parkinson’s Disease

    PubMed Central

    Lindenbach, David; Bishop, Christopher

    2013-01-01

    This review examines the involvement of the motor cortex in Parkinson’s disease (PD), a debilitating movement disorder typified by degeneration of dopamine cells of the substantia nigra. While much of PD research has focused on the caudate/putamen, many aspects of motor cortex function are abnormal in PD patients and in animal models of PD, implicating motor cortex involvement in disease symptoms and their treatment. Herein, we discuss several lines of evidence to support this hypothesis. Dopamine depletion alters regional metabolism in the motor cortex and also reduces interneuron activity, causing a breakdown in intracortical inhibition. This leads to functional reorganization of motor maps and excessive corticostriatal synchrony when movement is initiated. Recent work suggests that electrical stimulation of the motor cortex provides a clinical benefit for PD patients. Based on extant research, we identify a number of unanswered questions regarding the motor cortex in PD and argue that a better understanding of the contribution of the motor cortex to PD symptoms will facilitate the development of novel therapeutic approaches. PMID:24113323

  9. Cue to action processing in motor cortex populations

    PubMed Central

    Donoghue, John P.

    2013-01-01

    The primary motor cortex (MI) commands motor output after kinematics are planned from goals, thought to occur in a larger premotor network. However, there is a growing body of evidence that MI is involved in processes beyond action generation, and neuronal subpopulations may perform computations related to cue-to-action processing. From multielectrode array recordings in awake behaving Macaca mulatta monkeys, our results suggest that early MI ensemble activity during goal-directed reaches is driven by target information when cues are closely linked in time to action. Single-neuron activity spanned cue presentation to movement, with the earliest responses temporally aligned to cue and the later responses better aligned to arm movements. Population decoding revealed that MI's coding of cue direction evolved temporally, likely going from cue to action generation. We confirmed that a portion of MI activity is related to visual target processing by showing changes in MI activity related to the extinguishing of a continuously pursued visual target. These findings support a view that MI is an integral part of a cue-to-action network for immediate responses to environmental stimuli. PMID:24174650

  10. Dissociating Movement from Movement Timing in the Rat Primary Motor Cortex

    PubMed Central

    Knudsen, Eric B.; Powers, Marissa E.

    2014-01-01

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. PMID:25411486

  11. Effect of tactile stimulation on primary motor cortex excitability during action observation combined with motor imagery.

    PubMed

    Tanaka, Megumi; Kubota, Shinji; Onmyoji, Yusuke; Hirano, Masato; Uehara, Kazumasa; Morishita, Takuya; Funase, Kozo

    2015-07-23

    We aimed to investigate the effects of the tactile stimulation to an observer's fingertips at the moment that they saw an object being pinched by another person on the excitability of observer's primary motor cortex (M1) using transcranial magnetic stimulation (TMS). In addition, the above effects were also examined during action observation combined with the motor imagery. Motor evoked potentials (MEP) were evoked from the subjects' right first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles. Electrical stimulation (ES) inducing tactile sensation was delivered to the subjects' first and second fingertips at the moment of pinching action performed by another person. Although neither the ES nor action observation alone had significant effects on the MEP amplitude of the FDI or ADM, the FDI MEP amplitude which acts as the prime mover during pinching was reduced when ES and action observation were combined; however, no such changes were seen in the ADM. Conversely, that reduced FDI MEP amplitude was increased during the motor imagery. These results indicated that the M1 excitability during the action observation of pinching action combined with motor imagery could be enhanced by the tactile stimulation delivered to the observer's fingertips at the moment corresponding to the pinching being observed. PMID:26033185

  12. Neural population dynamics in human motor cortex during movements in people with ALS.

    PubMed

    Pandarinath, Chethan; Gilja, Vikash; Blabe, Christine H; Nuyujukian, Paul; Sarma, Anish A; Sorice, Brittany L; Eskandar, Emad N; Hochberg, Leigh R; Henderson, Jaimie M; Shenoy, Krishna V

    2015-01-01

    The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation. PMID:26099302

  13. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    PubMed Central

    Smith, Jared B.; Alloway, Kevin D.

    2013-01-01

    Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC) and in the primary somatosensory (SI) and secondary somatosensory (SII) cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial agranular (AGm) and lateral agranular (AGl) cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker MI is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor-output region located more medially in AGm proper. PMID:23372545

  14. Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man.

    PubMed Central

    Davey, N J; Romaiguère, P; Maskill, D W; Ellaway, P H

    1994-01-01

    1. Suppression of voluntary muscle activity of hand and arm muscles in response to transcranial magnetic stimulation (TMS) of the motor cortex has been investigated in man. 2. Suppression could be elicited by low levels of TMS without any prior excitatory response. The latency of the suppression was 3-8 ms longer than the excitation observed at a higher stimulus intensity. The duration of the suppression ranged from 8 to 26 ms. 3. A circular stimulating coil was used to determine threshold intensity for excitation and suppression of contraction of thenar muscles in response to TMS at different locations over the motor cortex. The locations for lowest threshold excitation coincided with those for lowest threshold suppression. Suppression was elicited at a lower threshold than excitation at all locations. 4. A figure-of-eight stimulating coil was positioned over the left motor cortex at the lowest threshold point for excitation of the right thenar muscles. The orientation for the lowest threshold excitatory and inhibitory responses was the same for all subjects. That orientation induced a stimulating current travelling in an antero-medial direction. Suppression was invariably elicited at lower thresholds than excitation. 5. When antagonistic muscles (second and third dorsal interosseus) were co-contracted, TMS evoked coincident suppression of voluntary EMG in the two muscles without prior excitation of either muscle. This suggests that the suppression is not mediated via corticospinal activation of spinal interneurones. 6. Test responses to electrical stimulation of the cervical spinal cord were evoked in both relaxed and activated thenar muscles. In the relaxed muscle, prior TMS at an intensity that would suppress voluntary activity failed to influence the test responses, suggesting absence of inhibition at a spinal level. However, in the activated muscle, prior TMS could reduce the test response. This may be explained by disfacilitation of motoneurones due to

  15. Functional Magnetic Resonance Imaging of Motor Cortex: Hemispheric Asymmetry and Handedness

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Gi; Ashe, James; Hendrich, Kristy; Ellermann, Jutta M.; Merkle, Hellmut; Ugurbil, Kamil; Georgopoulos, Apostolos P.

    1993-07-01

    A hemispheric asymmetry in the functional activation of the human motor cortex during contralateral (C) and ipsilateral (I) finger movements, especially in right-handed subjects, was documented with nuclear magnetic resonance imaging at high field strength (4 tesla). Whereas the right motor cortex was activated mostly during contralateral finger movements in both right-handed (C/I mean area of activation = 36.8) and left-handed (C/I = 29.9) subjects, the left motor cortex was activated substantially during ipsilateral movements in left-handed subjects (C/I = 5.4) and even more so in right-handed subjects (C/I = 1.3).

  16. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy.

    PubMed

    Chen, Joyce L; Schlaug, Gottfried

    2016-01-01

    Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery. PMID:26980052

  17. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy

    PubMed Central

    Chen, Joyce L; Schlaug, Gottfried

    2016-01-01

    Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery. PMID:26980052

  18. Interactions between Pain and the Motor Cortex: Insights from Research on Phantom Limb Pain and Complex Regional Pain Syndrome

    PubMed Central

    Léonard, Guillaume

    2011-01-01

    ABSTRACT Purpose: Pain is a significantly disabling problem that often interacts with other deficits during the rehabilitation process. The aim of this paper is to review evidence of interactions between pain and the motor cortex in order to attempt to answer the following questions: (1) Does acute pain interfere with motor-cortex activity? (2) Does chronic pain interfere with motor-cortex activity, and, conversely, does motor-cortex plasticity contribute to chronic pain? (3) Can the induction of motor plasticity by means of motor-cortex stimulation decrease pain? (4) Can motor training result in both motor-cortex reorganization and pain relief? Summary of Key Points: Acute experimental pain has been clearly shown to exert an inhibitory influence over the motor cortex, which can interfere with motor learning capacities. Current evidence also suggests a relationship between chronic pain and motor-cortex reorganization, but it is still unclear whether one causes the other. However, there is growing evidence that interventions aimed at normalizing motor-cortex organization can lead to pain relief. Conclusions: Interactions between pain and the motor cortex are complex, and more studies are needed to understand these interactions in our patients, as well as to develop optimal rehabilitative strategies. PMID:22654236

  19. Effects of general depressant drugs on the electrical responses of isolated slabs of cat's cerebral cortex.

    PubMed

    Frank, G B; Jhamandas, K

    1970-08-01

    1. In the neuronally isolated cortex of the cat, local application of diphenhydramine, promethazine, gammahydroxybutyrate, gammabutyrolactone, gamma aminobutyric acid, hyoscine and pethidine, and the intravenous injection of diazepam and meprobamate depressed or abolished the surface negative and surface positive response to direct stimulation and raised the stimulus threshold of the positive burst response. These effects were the same as previously demonstrated for general and local anaesthetics on the same preparation.2. Chlorpromazine produced a similar depression in small concentrations but caused spontaneous activity in higher concentrations.3. In contrast to local application, pethidine when given by intravenous injection in a high dose produced convulsant activity in the isolated cortical slab. The possibility was suggested that the convulsant activity was produced by a metabolite of pethidine.4. The results of this investigation suggest that the central depression produced by a number of structurally unrelated drugs is indicative of an anaesthetic-like property of these drugs. PMID:5485146

  20. Responses of bradykinin sensitive tooth-pulp driven neurons in cat cerebral cortex.

    PubMed

    Iwata, K; Itoga, H; Muramatsu, H; Toda, K; Sumino, R

    1987-01-01

    The properties of single cortical neurons responding to electrical stimulation of the tooth-pulp and to intrapulpal application of bradykinin were studied in the cat. The activities of tooth-pulp driven neurons (TPNs) were recorded from the middle and anterior parts of the coronal gyrus of the cerebral cortex. Bradykinin-sensitive tooth-pulp driven neurons (BK-TPNs) were located in layer IV of area 3b of the anterior part of the coronal gyrus. These neurons had a large cutaneous oro-facial receptive field and received a nociceptive input from the facial skin as well as from the tooth-pulp. The BK-TPNs had a higher threshold and longer latency to electrical stimulation than TPNs insensitive to bradykinin (non BK-TPNs). These findings suggest that BK-TPNs in this cortical area may be involved in sensory processing of noxious information from trigeminal regions. PMID:3595787

  1. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats

    PubMed Central

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session. PMID:27314672

  2. Stimulation of primary motor cortex for intractable deafferentation pain.

    PubMed

    Saitoh, Y; Yoshimine, T

    2007-01-01

    The stimulation of the primary motor cortex (M1) has proved to be an effective treatment for intractable deafferentation pain. This treatment started in 1990, and twenty-eight studies involving 271 patients have been reported so far. The patients who have been operated on were suffering from post-stroke pain (59%), trigeminal neuropathic pain, brachial plexus injury, spinal cord injury, peripheral nerve injury and phantom-limb pain. The method of stimulation was: a) epidural, b) subdural, and c) within the central sulcus. Overall, considering the difficulty in treating central neuropathic pain, trigeminal neuropathic pain and certain types of refractory peripheral pain, the electrical stimulation of M1 is a very promising technique; nearly 60% of the treated patients improved with a higher than 50% pain relief after several months of follow-up and sometimes of a few years in most reports. The mechanism of pain relief by the electrical stimulation of M1 has been under investigation. Recently, repetitive transcranial magnetic stimulation (rTMS) of M1 has been reported to be effective on deafferentation pain. In the future, rTMS may take over from electrical stimulation as a treatment for deafferentation pain. PMID:17691289

  3. Motor cortex stimulation for Parkinson's disease: a modelling study

    NASA Astrophysics Data System (ADS)

    Zwartjes, Daphne G. M.; Heida, Tjitske; Feirabend, Hans K. P.; Janssen, Marcus L. F.; Visser-Vandewalle, Veerle; Martens, Hubert C. F.; Veltink, Peter H.

    2012-10-01

    Chronic motor cortex stimulation (MCS) is currently being investigated as a treatment method for Parkinson's disease (PD). Unfortunately, the underlying mechanisms of this treatment are unclear and there are many uncertainties regarding the most effective stimulation parameters and electrode configuration. In this paper, we present a MCS model with a 3D representation of several axonal populations. The model predicts that the activation of either the basket cell or pyramidal tract (PT) type axons is involved in the clinical effect of MCS. We propose stimulation protocols selectively targeting one of these two axon types. To selectively target the basket cell axons, our simulations suggest using either cathodal or bipolar stimulation with the electrode strip placed perpendicular rather than parallel to the gyrus. Furthermore, selectivity can be increased by using multiple cathodes. PT type axons can be selectively targeted with anodal stimulation using electrodes with large contact sizes. Placing the electrode epidurally is advisable over subdural placement. These selective protocols, when practically implemented, can be used to further test which axon type should be activated for clinically effective MCS and can subsequently be applied to optimize treatment. In conclusion, this paper increases insight into the neuronal population involved in the clinical effect of MCS on PD and proposes strategies to improve this therapy.

  4. Pallidal stimulation suppresses pathological dysrhythmia in the parkinsonian motor cortex

    PubMed Central

    Turner, Robert S.

    2015-01-01

    Although there is general consensus that deep brain stimulation (DBS) yields substantial clinical benefit in patients with Parkinson's disease (PD), the therapeutic mechanism of DBS remains a matter of debate. Recent studies demonstrate that DBS targeting the globus pallidus internus (GPi-DBS) suppresses pathological oscillations in firing rate and between-cell spike synchrony in the vicinity of the electrode but has negligible effects on population-level firing rate or the prevalence of burst firing. The present investigation examines the downstream consequences of GPi-DBS at the level of the primary motor cortex (M1). Multielectrode, single cell recordings were conducted in the M1 of two parkinsonian nonhuman primates (Macaca fasicularis). GPi-DBS that induced significant reductions in muscular rigidity also reduced the prevalence of both beta (12–30 Hz) oscillations in single unit firing rates and of coherent spiking between pairs of M1 neurons. In individual neurons, GPi-DBS-induced increases in mean firing rate were three times more common than decreases; however, averaged across the population of M1 neurons, GPi-DBS induced no net change in mean firing rate. The population-level prevalence of burst firing was also not affected by GPi-DBS. The results are consistent with the hypothesis that suppression of both pathological, beta oscillations and synchronous activity throughout the cortico-basal ganglia network is a major therapeutic mechanism of GPi-DBS. PMID:25652922

  5. The importance of being agranular: a comparative account of visual and motor cortex

    PubMed Central

    Shipp, Stewart

    2005-01-01

    The agranular cortex is an important landmark—anatomically, as the architectural flag of mammalian motor cortex, and historically, as a spur to the development of theories of localization of function. But why, exactly, do agranularity and motor function go together? To address this question, it should be noted that not only does motor cortex lack granular layer four, it also has a relatively thinner layer three. Therefore, it is the two layers which principally constitute the ascending pathways through the sensory (granular) cortex that have regressed in motor cortex: simply stated, motor cortex does not engage in serial reprocessing of incoming sensory data. But why should a granular architecture not be demanded by the downstream relay of motor instructions through the motor cortex? The scant anatomical evidence available regarding laminar patterns suggests that the pathways from frontal and premotor areas to the primary motor cortex actually bear a greater resemblance to the descending, or feedback connections of sensory cortex that avoid the granular layer. The action of feedback connections is generally described as ‘modulatory’ at a cellular level, or ‘selective’ in terms of systems analysis. By contrast, ascending connections may be labelled ‘driving’ or ‘instructive’. Where the motor cortex uses driving inputs, they are most readily identified as sensory signals instructing the visual location of targets and the kinaesthetic state of the body. Visual signals may activate motor concepts, e.g. ‘mirror neurons’, and the motor plan must select the appropriate muscles and forces to put the plan into action, if the decision to move is taken. This, perhaps, is why ‘driving’ motor signals might be inappropriate—the optimal selection and its execution are conditional upon both kinaesthetic and motivational factors. The argument, summarized above, is constructed in honour of Korbinian Brodmann's centenary, and follows two of the fundamental

  6. Spectral Integration Plasticity in Cat Auditory Cortex Induced by Perceptual Training

    PubMed Central

    Keeling, M. Diane; Calhoun, Barbara M.; Krüger, Katharina; Polley, Daniel B.; Schreiner, Christoph E.

    2008-01-01

    We investigated the ability of cats to discriminate differences between vowel-like spectra, assessed their discrimination ability over time, and compared spectral receptive fields in primary auditory cortex (AI) of trained and untrained cats. Animals were trained to discriminate changes in the spectral envelope of a broad-band harmonic complex in a 2-alternative forced choice procedure. The standard stimulus was an acoustic grating consisting of a harmonic complex with a sinusoidally modulated spectral envelope ('ripple spectrum'). The spacing of spectral peaks was conserved at 1, 2, or 2.66 peaks/octave. Animals were trained to detect differences in the frequency location of energy peaks, corresponding to changes in the spectral envelope phase. Average discrimination thresholds improved continuously during the course of the testing from phase-shifts of 96° at the beginning to 44° after 4–6 months of training. Responses of AI single units and small groups of neurons to pure tones and ripple spectra were modified during perceptual discrimination training with vowel-like ripple stimuli. The transfer function for spectral envelope frequencies narrowed and the tuning for pure tones sharpened significantly in discriminant versus naive animals. By contrast, control animals that used the ripple spectra only in a lateralization task showed broader ripple transfer functions and narrower pure-tone tuning than naïve animals. PMID:17896103

  7. Dopaminergic modulation of motor maps in rat motor cortex: an in vivo study.

    PubMed

    Hosp, J A; Molina-Luna, K; Hertler, B; Atiemo, C Osei; Luft, A R

    2009-03-17

    While the primary motor cortex (M1) is know to receive dopaminergic projections, the functional role of these projections is poorly characterized. Here, it is hypothesized that dopaminergic signals modulate M1 excitability and somatotopy, two features of the M1 network relevant for movement execution and learning. To test this hypothesis, movement responses evoked by electrical stimulation using an electrode grid implanted epidurally over the caudal motor cortex (M1) were assessed before and after an intracortical injection of D1- (R-(+),8-chloro,7-hydroxy,2,3,4,5,-tetra-hydro,3-methyl,5-phenyl,1-H,3-benzazepine maleate, SCH 23390) or D2-receptor (raclopride) antagonists into the M1 forelimb area of rats. Stimulation mapping of M1 was repeated after 24 h. D2-inhibition reduced the size of the forelimb representation by 68.5% (P<0.001). Movements thresholds, i.e., minimal currents required to induce movement responses increased by 37.5% (P<0.001), and latencies increased by 35.9% (P<0.01). Twenty-4 h after the injections these effects were reversed. No changes were observed with D1-antagonist or vehicle. By enhancing intracortical excitability and signal transduction, D2-mediated dopaminergic signaling may affect movement execution, e.g. by enabling task-related muscle activation synergies, and learning. PMID:19162136

  8. The Changes of c-Fos Expression by Motor Cortex Stimulation in the Deafferentation Pain Model

    PubMed Central

    KUDO, Kanae; TAKAHASHI, Toshio; SUZUKI, Shigeharu

    2014-01-01

    The effect of motor cortex stimulation (MCS) therapy for deafferentation pain was evaluated based on c-Fos, a known pain marker. Nineteen mature cats weighing 1.5–3.5 kg were used. Cats were divided into three groups: a deafferentation pain group in which the left trigeminal ganglion was destroyed, an MCS group in which MCS was used following destruction of the trigeminal ganglion, and a control group. Sites and levels of c-Fos expression were examined immunohistochemically. The percentage of c-Fos-positive cells in the left spinal nucleus of the trigeminus, the bilateral insula, and the bilateral operculum increased in both the deafferentation pain and the MCS groups. There were no statistically significant differences between these groups. In the cingulate gyrus, the percentage of c-Fos-positive cells increased bilaterally in the deafferentation pain group and the MCS group, but the increase was greater in the MCS group. The increase in c-Fos-positive cells in the left spinal nucleus of the trigeminus in the deafferentation group may reflect reported electrical hyperactivity. The cingulate gyrus, insula, and parietal operculum were activated after deafferentation. This change (increase in c-Fos positive cells) is related to the development of deafferentation pain. Pain relief due to MCS is not dependent on the suppression of the activated left spinal nucleus of the trigeminus or the descending analgesic mechanism of the brain stem. Activation of the cingulate gyrus appears to be a factor in the analgesic mechanism of MCS. PMID:24965534

  9. Photoacoustic imaging of functional domains in primary motor cortex in rhesus macaques

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Zhang, Hongyu; Cheney, Paul; Yang, Xinmai

    2012-02-01

    Functional detection in primate brains has particular advantages because of the similarity between non-human primate brain and human brain and the potential for relevance to a wide range of conditions such as stroke and Parkinson's disease. In this research, we used photoacoustic imaging (PAI) technique to detect functional changes in primary motor cortex of awake rhesus monkeys. We observed strong increases in photoacoustic signal amplitude during both passive and active forelimb movement, which indicates an increase in total hemoglobin concentration resulting from activation of primary motor cortex. Further, with PAI approach, we were able to obtain depthresolved functional information from primary motor cortex. The results show that PAI can reliably detect primary motor cortex activation associated with forelimb movement in rhesus macaques with a minimal-invasive approach.

  10. Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence

    PubMed Central

    Schomers, Malte R.; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann

    2015-01-01

    Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., “pool” or “tool”). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed “tool” relative to “pool” responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. PMID:25452575

  11. Vestibular, cochlear and trigeminal projections to the cortex in the anterior suprasylvian sulcus of the cat

    PubMed Central

    Landgren, S.; Silfvenius, H.; Wolsk, D.

    1967-01-01

    1. Cats anaesthetized with chloralose were used. Potentials evoked by electrical stimulation of the vestibular, cochlear, facial, trigeminal and chorda tympani nerves were recorded with micro-electrodes in the cortex in the anterior syprasylvian sulcus. 2. Negative focal potentials with a latency of 3 msec were evoked by stimulation of the contralateral and ipsilateral vestibular nerves. These potentials were located in the lower and upper banks of the sulcus at a level just caudal to the projection of the Group I muscle afferents to the lower bank. 3. The cochlear projections were located mainly in the lower bank partially overlapping the vestibular and the Group I fields. 4. Trigeminal responses were recorded in both banks of the sulcus but were of largest amplitude and shortest latency rostrally in the upper bank. The potentials evoked by the chorda tympani had a similar distribution but were of low amplitude. 5. The hypothesis is suggested, that the cortex in the anterior suprasylvian sulcus plays a role in the orientation of the body and head towards auditory stimuli. PMID:4860992

  12. Neuronal responses in cat primary auditory cortex to natural and altered species-specific calls.

    PubMed

    Gehr, D D; Komiya, H; Eggermont, J J

    2000-12-01

    We investigated how natural and morphed cat vocalizations are represented in primary auditory cortex (AI). About 40% of the neurons showed time-locked responses to major peaks in the vocalization envelope, 60% only responded at the onset. Simultaneously recorded multi-unit (MU) activity of these peak-tracking neurons on separate electrodes was significantly more synchronous during stimulation than under silence. Thus, the representation of the vocalizations is likely synchronously distributed across the cortex. The sum of the responses to the low and high frequency part of the meow, with the boundary at 2.5 kHz, was larger than the neuronal response to the natural meow itself, suggesting that strong lateral inhibition is shaping the response to the natural meow. In this sense, the neurons are combination-sensitive. The frequency-tuning properties and the response to amplitude-modulated tones of the MU recordings can explain the responses to natural, and temporally and spectrally altered vocalizations. Analysis of the mutual information in the firing rate suggests that the activity of at least 95 recording sites in AI would be needed to reliably distinguish between the nine different vocalizations. This suggests that a distributed representation based on temporal stimulus aspects may be more efficient than one based on firing rate. PMID:11077191

  13. Effect of Contrast on Visual Spatial Summation in Different Cell Categories in Cat Primary Visual Cortex

    PubMed Central

    Chen, Ke; Ding, Ai-Min; Liang, Xiao-Hua; Zhang, Li-Peng; Wang, Ling; Song, Xue-Mei

    2015-01-01

    Multiple cell classes have been found in the primary visual cortex, but the relationship between cell types and spatial summation has seldom been studied. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. In this study, we classified V1 cells into fast-spiking units (FSUs) and regular-spiking units (RSUs) and then examined spatial summation at high and low contrast. Our results revealed that the excitatory classical receptive field and the suppressive non-classical receptive field expanded at low contrast for both FSUs and RSUs, but the expansion was more marked for the RSUs than for the FSUs. For most V1 neurons, surround suppression varied as the contrast changed from high to low. However, FSUs exhibited no significant difference in the strength of suppression between high and low contrast, although the overall suppression decreased significantly at low contrast for the RSUs. Our results suggest that the modulation of spatial summation by stimulus contrast differs across populations of neurons in the cat primary visual cortex. PMID:26636580

  14. A linear model fails to predict orientation selectivity of cells in the cat visual cortex.

    PubMed Central

    Volgushev, M; Vidyasagar, T R; Pei, X

    1996-01-01

    1. Postsynaptic potentials (PSPs) evoked by visual stimulation in simple cells in the cat visual cortex were recorded using in vivo whole-cell technique. Responses to small spots of light presented at different positions over the receptive field and responses to elongated bars of different orientations centred on the receptive field were recorded. 2. To test whether a linear model can account for orientation selectivity of cortical neurones, responses to elongated bars were compared with responses predicted by a linear model from the receptive field map obtained from flashing spots. 3. The linear model faithfully predicted the preferred orientation, but not the degree of orientation selectivity or the sharpness of orientation tuning. The ratio of optimal to non-optimal responses was always underestimated by the model. 4. Thus non-linear mechanisms, which can include suppression of non-optimal responses and/or amplification of optimal responses, are involved in the generation of orientation selectivity in the primary visual cortex. PMID:8930828

  15. Spectrotemporal receptive fields during spindling and non-spindling epochs in cat primary auditory cortex.

    PubMed

    Britvina, T; Eggermont, J J

    2008-07-17

    It was often thought that synchronized rhythmic epochs of spindle waves disconnect thalamo-cortical system from incoming sensory signals. The present study addresses this issue by simultaneous extracellular action potential and local field potential (LFP) recordings from primary auditory cortex of ketamine-anesthetized cats during spindling activity. We compared cortical spectrotemporal receptive fields (STRF) obtained during spindling and non-spindling epochs. The basic spectro-temporal parameters of "spindling" and "non-spindling" STRFs were similar. However, the peak-firing rate at the best frequency was significantly enhanced during spindling epochs. This enhancement was mainly caused by the increased probability of a stimulus to evoke spikes (effectiveness of stimuli) during spindling as compared with non-spindling epochs. Augmented LFPs associated with effective stimuli and increased single-unit pair correlations during spindling epochs suggested higher synchrony of thalamo-cortical inputs during spindling that resulted in increased effectiveness of stimuli presented during spindling activity. The neuronal firing rate, both stimulus-driven and spontaneous, was higher during spindling as compared with non-spindling epochs. Overall, our results suggests that thalamic cells during spindling respond to incoming stimuli-related inputs and, moreover, cause more powerful stimulus-related or spontaneous activation of the cortex. PMID:18515012

  16. Multisynaptic projections from the ventrolateral prefrontal cortex to hand and mouth representations of the monkey primary motor cortex.

    PubMed

    Miyachi, Shigehiro; Hirata, Yoshihiro; Inoue, Ken-ichi; Lu, Xiaofeng; Nambu, Atsushi; Takada, Masahiko

    2013-07-01

    Different sectors of the prefrontal cortex have distinct neuronal connections with higher-order sensory areas and/or limbic structures and are related to diverse aspects of cognitive functions, such as visual working memory and reward-based decision-making. Recent studies have revealed that the prefrontal cortex (PF), especially the lateral PF, is also involved in motor control. Hence, different sectors of the PF may contribute to motor behaviors with distinct body parts. To test this hypothesis anatomically, we examined the patterns of multisynaptic projections from the PF to regions of the primary motor cortex (MI) that represent the arm, hand, and mouth, using retrograde transsynaptic transport of rabies virus. Four days after rabies injections into the hand or mouth region, particularly dense neuron labeling was observed in the ventrolateral PF, including the convexity part of ventral area 46. After the rabies injections into the mouth region, another dense cluster of labeled neurons was seen in the orbitofrontal cortex (area 13). By contrast, rabies labeling of PF neurons was rather sparse in the arm-injection cases. The present results suggest that the PF-MI multisynaptic projections may be organized such that the MI hand and mouth regions preferentially receive cognitive information for execution of elaborate motor actions. PMID:23664864

  17. Phrenic nerve afferent activation of neurons in the cat SI cerebral cortex.

    PubMed

    Davenport, Paul W; Reep, Roger L; Thompson, Floyd J

    2010-03-01

    Stimulation of respiratory afferents elicits neural activity in the somatosensory region of the cerebral cortex in humans and animals. Respiratory afferents have been stimulated with mechanical loads applied to breathing and electrical stimulation of respiratory nerves and muscles. It was hypothesized that stimulation of the phrenic nerve myelinated afferents will activate neurons in the 3a and 3b region of the somatosensory cortex. This was investigated in cats with electrical stimulation of the intrathoracic phrenic nerve and C(5) root of the phrenic nerve. The somatosensory cortical response to phrenic afferent stimulation was recorded from the cortical surface, contralateral to the phrenic nerve, ispilateral to the phrenic nerve and with microelectrodes inserted into the cortical site of the surface dipole. Short-latency, primary cortical evoked potentials (1 degrees CEP) were recorded with stimulation of myelinated afferents of the intrathoracic phrenic nerve in the contralateral post-cruciate gyrus of all animals (n = 42). The mean onset and peak latencies were 8.5 +/- 5.7 ms and 21.8 +/- 9.8 ms, respectively. The rostro-caudal surface location of the 1 degrees CEP was found between the rostral edge of the post-cruciate dimple (PCD) and the rostral edge of the ansate sulcus, medio-lateral location was between 2 mm lateral to the sagittal sulcus and the lateral end of the cruciate sulcus. Histological examination revealed that the 1 degrees CEP sites were recorded over areas 3a and 3b of the SI somatosensory cortex. Intracortical activation of 16 neurons with two patterns of neural activity was recorded: (1) short-latency, short-duration activation of neurons and (2) long-latency, long-duration activation of neurons. Short-latency neurons had a mean onset latency of 10.4 +/- 3.1 ms and mean burst duration of 10.1 +/- 3.2 ms. The short-latency units were recorded at an average depth of 1.7 +/- 0.5 mm below the cortical surface. The long-latency neurons had a

  18. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions

    PubMed Central

    Pigarev, Ivan N.; Levichkina, Ekaterina V.

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex. PMID:27547179

  19. Cross-correlations between three units in cat primary auditory cortex.

    PubMed

    Eggermont, Jos J; Munguia, Raymundo; Shaw, Gregory

    2013-10-01

    Here we use a modification of the Joint-Peri-Stimulus-Time histogram (JPSTH) to investigate triple correlations between cat auditory cortex neurons. The modified procedure allowed the decomposition of the xy-pair correlation into a part that is due to the correlation of the x and y units with the trigger unit, and a remaining 'pair correlation'. We analyzed 16 sets of 15-minute duration stationary spontaneous recordings in primary auditory cortex (AI) with between 11 and 14 electrodes from 2 arrays of 8 electrodes each that provided spontaneous firing rates above 0.22 sp/s and for which reliable frequency-tuning curves could be obtained and the characteristic frequency (CF) was estimated. Thus we evaluated 11,282 conditional cross-correlation functions. The predictor for the conditional cross-correlation, calculated on the assumption that the trigger unit had no effect on the xy-pair correlation but using the same fraction of xy spikes, was equal to the conventional pair-wise correlation function between units xy. The conditional correlation of the xy-pair due to correlation of the x and/or y unit with the trigger unit decreased with the geometric mean distance of the xy pair to the trigger unit, but was independent of the pair cross-correlation coefficient. The conditional pair correlation coefficient was estimated at 78% of the measured pair correlation coefficient. Assuming a geometric decreasing effect of activities of units on other electrodes on the conditional correlation, we estimated the potential contribution of a large number of contributing units on the measured pair correlation at 35-50 of that correlation. This suggests that conventionally measured pair correlations in auditory cortex under ketamine anesthesia overestimate the 'true pair correlation', likely resulting from massive common input, by potentially up to a factor 2. PMID:23933479

  20. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.

    PubMed

    Pigarev, Ivan N; Levichkina, Ekaterina V

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex. PMID:27547179

  1. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    PubMed

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  2. Dopaminergic Meso-Cortical Projections to M1: Role in Motor Learning and Motor Cortex Plasticity

    PubMed Central

    Hosp, Jonas A.; Luft, Andreas R.

    2013-01-01

    Although the architecture of a dopaminergic (DA) system within the primary motor cortex (M1) was well characterized anatomically, its functional significance remained obscure for a long time. Recent studies in rats revealed that the integrity of DA fibers in M1 is a prerequisite for successful acquisition of motor skills. This essential contribution of DA for motor learning is plausible as it modulates M1 circuitry at multiple levels thereby promoting plastic changes that are required for information storage: at the network level, DA increases cortical excitability and enhances the stability of motor maps. At the cellular level, DA induces the expression of learning-related genes via the transcription factor c-Fos. At the level of synapses, DA is required for the formation of long-term potentiation, a mechanism that likely is a fingerprint of a motor memory trace within M1. DA fibers innervating M1 originate within the midbrain, precisely the ventral tegmental area (VTA) and the medial portion of substantia nigra (SN). Thus, they could be part of the meso-cortico-limbic pathway – a network that provides information about saliency and motivational value of an external stimulus and is commonly referred as “reward system.” However, the behavioral triggers of the release of dopamine in M1 are not yet identified. As alterations in DA transmission within M1 occur under various pathological conditions such as Parkinson disease or ischemic and traumatic brain injury, a deeper understanding of the interaction of VTA/SN and M1 may reveal a deeper insight into a large spectrum of neurological disorders. PMID:24109472

  3. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    PubMed Central

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  4. Subthalamic Nucleus Stimulation Modulates Motor Cortex Oscillatory Activity in Parkinson's Disease

    ERIC Educational Resources Information Center

    Devos, D.; Labyt, E.; Derambure, P.; Bourriez, J. L.; Cassim, F.; Reyns, N.; Blond, S.; Guieu, J. D.; Destee, A.; Defebvre, L.

    2004-01-01

    In Parkinson's disease, impaired motor preparation has been related to an increased latency in the appearance of movement-related desynchronization (MRD) throughout the contralateral primary sensorimotor (PSM) cortex. Internal globus pallidus (GPi) stimulation improved movement desynchronization over the PSM cortex during movement execution but…

  5. Role of Hyperactive Cerebellum and Motor Cortex in Parkinson’s Disease

    PubMed Central

    Yu, Hong; Sternad, Dagmar; Corcos, Daniel M.; Vaillancourt, David E.

    2007-01-01

    Previous neuroimaging studies have found hyperactivation in the cerebellum and motor cortex and hypoactivation in the basal ganglia in patients with Parkinson’s disease (PD) but the relationship between the two has not been established. This study examined whether cerebellar and motor cortex hyperactivation is a compensatory mechanism for hypoactivation in the basal ganglia or is a pathophysiological response that is related to the signs of the disease. Using a BOLD contrast fMRI paradigm PD patients and healthy controls performed automatic and cognitively controlled thumb pressing movements. Regions of interest analysis quantified the BOLD activation in motor areas, and correlations between the hyperactive and hypoactive regions were performed, along with correlations between the severity of upper limb rigidity and BOLD activation. There were three main findings. First, the putamen, supplementary motor area (SMA) and pre-SMA were hypoactive in PD patients. The left and right cerebellum and the contralateral motor cortex were hyperactive in PD patients. Second, PD patients had a significant negative correlation between the BOLD activation in the ipsilateral cerebellum and the contralateral putamen. The correlation between the putamen and motor cortex was not significant. Third, the BOLD activation in the motor cortex was positively correlated with the severity of upper limb rigidity, but the BOLD activation in the cerebellum was not correlated with rigidity. Further, the activation in the motor cortex was not correlated with upper extremity bradykinesia. These findings provide new evidence supporting the hypothesis that hyperactivation in the ipsilateral cerebellum is a compensatory mechanism for the defective basal ganglia. Our findings also provide the first evidence from neuroimaging that hyperactivation in the contralateral primary motor cortex is not a compensatory response but is directly related to upper limb rigidity. PMID:17223579

  6. Developmental changes in motor cortex activity as infants develop functional motor skills.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition. PMID:27096281

  7. Laminar and regional distribution of galanin binding sites in cat and monkey visual cortex determined by in vitro receptor autoradiography

    SciTech Connect

    Rosier, A.M.; Vandesande, F.; Orban, G.A. )

    1991-03-08

    The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites, while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.

  8. [Interaction between neurons of the frontal cortex and hippocampus during the realization of choice of food reinforcement quality in cats].

    PubMed

    Merzhanova, G Kh; Dolbakian, E E; Khokhlova, V N

    2003-01-01

    Six cats were subjected to the procedure of appetitive instrumental conditioning (with light as a conditioned stimuls) by the method of the "active choice" of reinforcement quality. Short-delay conditioned bar-press responses were rewarded with bread-meat mixture, and the delayed responses were reinforced by meat. The animals differed in behavior strategy: four animals preferred the bar-pressing with a long delay (the so-called "self-control" group), and two cats preferred the bar-pressing with a short delay (the so-called "impulsive" group). Multiunit activity in the frontal cortex and hippocampus (CA3) was recorded via chronically implanted nichrome wire semimicroelectrodes. An interaction between the neighboring neurons in the frontal cortex and hippocampus (within local neural networks) and between the neurons of the frontal cortex and hippocampus (distributed neural networks in frontal-hippocampal and hippocampal-frontal directions) was evaluated by means of statistical crosscorrelation analysis of spike trains. Crosscorrelations between neuronal spike trains in the delay range of 0-100 ms were explored. It was shown that the number of crosscorrelations between the neuronal discharges both in the local and distributed networks was significantly higher in the "self-control" cats. It was suggested that the local and distributed neural networks of the frontal cortex and hippocampus are involved in the system of brain structures which determine the behavioral strategy of animals in the "self-control" group. PMID:12889201

  9. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat.

    PubMed Central

    Martin, K A; Whitteridge, D

    1984-01-01

    We have studied the neuronal circuitry and structure-function relationships of single neurones in the striate visual cortex of the cat using a combination of electrophysiological and anatomical techniques. Glass micropipettes filled with horseradish peroxidase were used to record extracellularly from single neurones. After studying the receptive field properties, the afferent inputs of the neurones were studied by determining their latency of response to electrical stimulation at different positions along the optic pathway. Some cells were thus classified as receiving a mono- or polysynaptic input from afferents of the lateral geniculate nucleus (l.g.n.), via X- or Y-like retinal ganglion cells. Two striking correlations were found between dendritic morphology and receptive field type. All spiny stellate cells, and all star pyramidal cells in layer 4A, had receptive fields with spatially separate on and off subfields (S-type receptive fields). All the identified afferent input to these, the major cell types in layer 4, was monosynaptic from X- or Y-like afferents. Neurones receiving monosynaptic X- or Y-like input were not strictly segregated in layer 4 and the lower portion of layer 3. Nevertheless the X- and Y-like l.g.n. fibres did not converge on any of the single neurones so far studied. Monosynaptic input from the l.g.n. afferents was not restricted to cells lying within layers 4 and 6, the main termination zones of the l.g.n. afferents, but was also received by cells lying in layers 3 and 5. The projection pattern of cells receiving monosynaptic input differed widely, depending on the laminar location of the cell soma. This suggests the presence of a number of divergent paths within the striate cortex. Cells receiving indirect input from the l.g.n. afferents were located mainly within layers 2, 3 and 5. Most pyramidal cells in layer 3 had axons projecting out of the striate cortex, while many axons of the layer 5 pyramids did not. The layer 5 cells showed

  10. Activation of the motor cortex during phasic rapid eye movement sleep.

    PubMed

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio; Nobili, Lino

    2016-02-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. PMID:26575212

  11. [Treatment of central and neuropathic facial pain by chronic stimulation of the motor cortex: value of neuronavigation guidance systems for the localization of the motor cortex].

    PubMed

    Nguyen, J P; Lefaucheur, J P; Le Guerinel, C; Fontaine, D; Nakano, N; Sakka, L; Eizenbaum, J F; Pollin, B; Keravel, Y

    2000-11-01

    Thirty two patients with refractory central and neuropathic pain of peripheral origin were treated by chronic stimulation of the motor cortex between May 1993 and January 1997. The mean follow-up was 27. 3 months. The first 24 patients were operated according to the technique described by Tsubokawa. The last 13 cases (8 new patients and 5 reinterventions) were operated by a technique including localization by superficial CT reconstruction of the central region and neuronavigator guidance. The position of the central sulcus was confirmed by the use of intraoperative somatosensory evoked potentials. The somatotopic organisation of the motor cortex was established peroperatively by studying the motor responses at stimulation of the motor cortex through the dura. Ten of the 13 patients with central pain (77%) and nine of the 12 patients with neuropathic facial pain had experienced substantial pain relief (75%). One of the 3 patients with post-paraplegia pain was clearly improved. A satisfactory result was obtained in one patient with pain related to plexus avulsion and in one patient with pain related to intercostal herpes zoster. None of the patients developed epileptic seizures. The position of the stimulating poles effective on pain corresponded to the somatotopic representation of the motor cortex. The neuronavigator localization and guidance technique proved to be most useful identifying the appropriate portion of the motor gyrus. It also allowed the establishment of reliable correlations between electrophysiological-clinical and anatomical data which may be used to improve the clinical results and possibly to extend the indications of this technique. PMID:11084480

  12. There's more than one way to scan a cat: imaging cat auditory cortex with high-field fMRI using continuous or sparse sampling.

    PubMed

    Hall, Amee J; Brown, Trecia A; Grahn, Jessica A; Gati, Joseph S; Nixon, Pam L; Hughes, Sarah M; Menon, Ravi S; Lomber, Stephen G

    2014-03-15

    When conducting auditory investigations using functional magnetic resonance imaging (fMRI), there are inherent potential confounds that need to be considered. Traditional continuous fMRI acquisition methods produce sounds >90 dB which compete with stimuli or produce neural activation masking evoked activity. Sparse scanning methods insert a period of reduced MRI-related noise, between image acquisitions, in which a stimulus can be presented without competition. In this study, we compared sparse and continuous scanning methods to identify the optimal approach to investigate acoustically evoked cortical, thalamic and midbrain activity in the cat. Using a 7 T magnet, we presented broadband noise, 10 kHz tones, or 0.5 kHz tones in a block design, interleaved with blocks in which no stimulus was presented. Continuous scanning resulted in larger clusters of activation and more peak voxels within the auditory cortex. However, no significant activation was observed within the thalamus. Also, there was no significant difference found, between continuous or sparse scanning, in activations of midbrain structures. Higher magnitude activations were identified in auditory cortex compared to the midbrain using both continuous and sparse scanning. These results indicate that continuous scanning is the preferred method for investigations of auditory cortex in the cat using fMRI. Also, choice of method for future investigations of midbrain activity should be driven by other experimental factors, such as stimulus intensity and task performance during scanning. PMID:24389047

  13. [Effects of ketamine and urethane on stimulation-induced c-fos expression in neurons of cat visual cortex].

    PubMed

    Wang, Ke; Zhu, Hui; Chen, Cui-Yun; Li, Peng; Jin, Cai-Hong; Wang, Zi-Lu; Jiang, San; Hua, Tian-Miao

    2013-12-01

    The effects of ketamine and urethane on neuronal activities remain in debate. As a member of immediate early genes family, the expression of c-fos is stimulation dependent and could be treated as an index to evaluate the strength of neural activities. In this study, SABC immunohistochemical techniques were applied to compare the c-fos expression in neurons of the primary visual cortex (V1) of cats and therefore, to evaluate the effects of acute anesthesia with ketamine HCl and uethane on inhibiting neural activities. Our results showed that compared with control cats, there were no significant differences with the average densities of Nissl-stained V1 neurons in each cortical layers of either urethane or ketamine anesthetized cats. In urethane anesthetized cats, neither the average densities nor the immunoreactive intensities of c-fos positive V1 neurons showed significant difference with that of control ones. However, both the average densities and immunoreactive intensities of c-fos positive V1 neurons in ketamine anesthetized cats decreased significantly compared with that of control and urethane anesthetized cats. These results suggested that ketamine has strong inhibitory effects on the activities of visual cortical neurons, whereas urethane did not. PMID:24415690

  14. Short-latency projections to the cat cerebral cortex from skin and muscle afferents in the contralateral forelimb

    PubMed Central

    Oscarsson, O.; Rosén, I.

    1966-01-01

    1. The potentials evoked in the first sensorimotor area on stimulation of muscle and skin nerves in the contralateral forelimb were recorded in preparations with either the dorsal funiculus (DF) or the spinocervical tract (SCT) interrupted. 2. The short-latency, surface-positive potentials in these preparations are mediated by the remaining path, either the DF or SCT. 3. Cutaneous afferents project through both paths to two discrete areas which correspond to the classical sensory and motor cortices (Fig. 10 A and B). The projection areas are not identical: the DF path seems to activate most effectively the sensory cortex; and the SCT path, most effectively the motor cortex. 4. The potentials evoked from cutaneous nerves have a similar latency in the two areas. On stimulation of the superficial radial nerve the latency was about 4·5 msec in preparations with intact DF, and about 5·3 msec in preparations with intact SCT. 5. High threshold muscle afferents project to the same areas as the cutaneous afferents. 6. Group I muscle afferents project, exclusively through the DF path, to an area distinct from the two cutaneous projection areas (Fig. 10C). It occupies a caudal part of the motor cortex and an intermediate zone between the sensory and motor cortices. 7. The projection areas are compared with the recent cytoarchitectonic map of Hassler & Muhs-Clement (1964) (Fig. 10D). 8. It is suggested that the afferent projections to the motor cortex and the intermediate zone are used in the integration of movements elicited from the cortex. The general similarity in the organization of afferent paths to the motor cortex and the cerebellum is pointed out. PMID:5937410

  15. L-dopa methyl ester attenuates amblyopia-induced neuronal injury in visual cortex of amblyopic cat.

    PubMed

    Li, Rong; Liang, Tao; Chen, Zhaoni; Zhang, Shijun; Lin, Xing; Huang, Renbin

    2013-09-15

    In the present study, we aimed to assess the potential anti-amblyopic effects of L-dopa methyl ester (LDME) on visual cortex area 17 in an amblyopic feline model induced by monocular vision deprivation. After LDME administration, pathophysiologic and ultrastructural observations were utilized to examine the morphological changes of nerve cells in visual cortex area 17. Dopamine (DA) and its metabolite contents in visual cortex area 17 were investigated through HPLC analysis. Apoptotic cells in visual cortex area 17 were evaluated by TUNEL assay. Additionally, the c-fos expression both at gene and protein levels was assessed using RT-PCR and immunohistochemistry analyses, respectively. The contents of DA and its metabolites were elevated in visual cortex area 17. Neuronal rejuvenation which occurred in visual cortex area 17 was observed through anatomical and physiological assessments. Similarly, TUNEL results showed that neuronal apoptosis was inhibited in the visual cortex of amblyopic cats by both L-dopa and LDME therapies. Meanwhile, the c-fos expression was notably up-regulated at both the mRNA and protein levels by the treatments. These findings suggested that LDME treatment could effectively increase DA and its metabolite contents, and restrain the apoptotic process, as well as elevate the c-fos expression in nerve cells of visual cortex area 17. Taken together, LDME might ameliorate the functional cytoarchitecture in visual cortex area 17 through mechanisms that elevate DA content and increase endogenous c-fos expression, as well as inhibit neuronal lesion in visual cortex tissue. PMID:23774688

  16. Oxidative metabolic activity of cerebral cortex after fluid-percussion head injury in the cat.

    PubMed

    Duckrow, R B; LaManna, J C; Rosenthal, M; Levasseur, J E; Patterson, J L

    1981-05-01

    To assess the metabolic and vascular effects of head trauma, fluid-percussion pressure waves were transmitted to the brains of anesthetized, paralyzed, and artificially ventilated cats. Changes in the redox state of cytochrome a,a3, and relative local blood volume were measured in situ by dual-wavelength reflection spectrophotometry of the cortical surface viewed through an acrylic cranial window implanted within the closed skull. Initial fluid-percussion impacts of 0.5 to 2.8 atm peak pressure produced consistent transient oxidation of cytochrome a,a3 and increases of cortical blood volume. These changes occurred despite the presence of transient posttraumatic hypotension i some cases. Also, impact-induced alterations of vascular tone occurred, independent of the presence or absence of transient hypertension in the posttraumatic period. These data demonstrate that hypoxia does not play a role in the immediate posttraumatic period in cerebral cortex, and are consistent with the idea that after injury there is increased cortical energy conservation. These data also support the concept that head trauma alters the relationship of metabolism and cerebral circulation in the period immediately after injury. PMID:7229699

  17. A technique for preparing in vitro slices of cat's visual cortex for electrophysiological experiments.

    PubMed

    Kato, H; Ogawa, T

    1981-06-01

    A technique for the preparation and in vitro maintenance of slices of neocortex from cats anesthetized with Nembutal has been described in detail. The visual cortex (posterior lateral gyrus) was cut in slices in situ using a knife consisting of two razor blades with separation of 0.7--1.0 mm. An artificially-defined medium was sprayed abundantly over the brain throughout the slicing procedures. Slices thus obtained were immediately placed between nylon meshes and incubated in a well-oxygenated medium. For recording, one of the slices was transferred to an experimental chamber in which a medium was bubbled and circulated with a gas mixture (5% CO2 in O2) introduced through a glass filter fitted at the bottom. Slices thus treated gave large evoked potentials in response to stimulation of the white matter and high-frequency injury discharges as a macroelectrode was inserted into the tissue. They also allowed stable and high-quality intracellular recordings from single neurons. PMID:7253698

  18. Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex

    PubMed Central

    Atencio, Craig A.; Schreiner, Christoph E.

    2012-01-01

    Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions - for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed. PMID:22384036

  19. The Motor Cortex Communicates with the Kidney (JN-BC-0406-12)

    PubMed Central

    Levinthal, David J.; Strick, Peter L.

    2012-01-01

    We used retrograde transneuronal transport of rabies virus from the rat kidney to identify the areas of the cerebral cortex that are potential sources of central commands for the neural regulation of this organ. Our results indicate that multiple motor and non-motor areas of the cerebral cortex contain output neurons that indirectly influence kidney function. These cortical areas include the primary motor cortex (M1), the rostromedial motor area (M2), the primary somatosensory cortex (S1), the insula and other regions surrounding the rhinal fissure and the medial prefrontal cortex (mPFC). The vast majority of the output neurons from the cerebral cortex were located in two cortical areas, M1 (68%) and M2 (15%). If the visceromotor functions of M1 and M2 reflect their skeletomotor functions, then the output to the kidney from each cortical area could make a unique contribution to autonomic control. The output from M1 could add precision and organ-specific regulation to descending visceromotor commands, whereas the output from M2 could add anticipatory processing which is essential for allostatic regulation. We also found that the output from M1 and M2 to the kidney originates predominantly from the trunk representations of these two cortical areas. Thus, a map of visceromotor representation appears to be embedded within the classic somatotopic map of skeletomotor representation. PMID:22573695

  20. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    PubMed

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  1. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    PubMed

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset. PMID:25879955

  2. Sexual motivation is reflected by stimulus-dependent motor cortex excitability

    PubMed Central

    Schecklmann, Martin; Engelhardt, Kristina; Konzok, Julian; Rupprecht, Rainer; Greenlee, Mark W.; Mokros, Andreas; Langguth, Berthold

    2015-01-01

    Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one’s sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavior. PMID:25556214

  3. Functional lateralization in cingulate cortex predicts motor recovery after basal ganglia stroke.

    PubMed

    Li, Yao; Chen, Zengai; Su, Xin; Zhang, Xiaoliu; Wang, Ping; Zhu, Yajing; Xu, Qun; Xu, Jianrong; Tong, Shanbao

    2016-02-01

    The basal ganglia (BG) is involved in higher order motor control such as movement planning and execution of complex motor synergies. Neuroimaging study on stroke patients specifically with BG lesions would help to clarify the consequence of BG damage on motor control. In this paper, we performed a longitudinal study in the stroke patients with lesions in BG regions across three motor recovery stages, i.e., less than 2week (Session 1), 1-3m (Session 2) and more than 3m (Session 3). The patients showed an activation shift from bilateral hemispheres during early sessions (<3m) to the ipsilesional cortex in late session (>3m), suggesting a compensation effect from the contralesional hemisphere during motor recovery. We found that the lateralization of cerebellum(CB) for affected hand task correlated with patients' concurrent Fugl-Meyer index (FMI) in Session 2. Moreover, the cingulate cortex lateralization index in Session 2 was shown to significantly correlate with subsequent FMI change between Session 3 and Session 2, which serves as a prognostic marker for motor recovery. Our findings consolidated the close interactions between BG and CB during the motor recovery after stroke. The dominance of activation in contralateral cingulate cortex was associated with a better motor recovery, suggesting the important role of ipsilesional attention modulation in the early stage after BG stroke. PMID:26742641

  4. Action Verbs and the Primary Motor Cortex: A Comparative TMS Study of Silent Reading, Frequency Judgments, and Motor Imagery

    ERIC Educational Resources Information Center

    Tomasino, Barbara; Fink, Gereon R.; Sparing, Roland; Dafotakis, Manuel; Weiss, Peter H.

    2008-01-01

    Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS[subscript M1] vs. TMS[subscript vertex]) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation…

  5. Suppression of Abdominal Motor Activity during Swallowing in Cats and Humans

    PubMed Central

    Pitts, Teresa; Gayagoy, Albright G.; Rose, Melanie J.; Poliacek, Ivan; Condrey, Jillian A.; Musslewhite, M. Nicholas; Shen, Tabitha Y.; Davenport, Paul W.; Bolser, Donald C

    2015-01-01

    Diseases affecting pulmonary mechanics often result in changes to the coordination of swallow and breathing. We hypothesize that during times of increased intrathoracic pressure, swallow suppresses ongoing expiratory drive to ensure bolus transport through the esophagus. To this end, we sought to determine the effects of swallow on abdominal electromyographic (EMG) activity during expiratory threshold loading in anesthetized cats and in awake-healthy adult humans. Expiratory threshold loads were applied to recruit abdominal motor activity during breathing, and swallow was triggered by infusion of water into the mouth. In both anesthetized cats and humans, expiratory cycles which contained swallows had a significant reduction in abdominal EMG activity, and a greater percentage of swallows were produced during inspiration and/or respiratory phase transitions. These results suggest that: a) spinal expiratory motor pathways play an important role in the execution of swallow, and b) a more complex mechanical relationship exists between breathing and swallow than has previously been envisioned. PMID:26020240

  6. Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease

    PubMed Central

    Lalchandani, Rupa R.; Cui, Yuting; Shu, Yu; Xu, Tonghui; Ding, Jun B.

    2015-01-01

    SUMMARY Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of novel motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here, we utilized mouse models of PD and 2-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex. We further discovered that dopamine D1 and D2 receptor signaling were linked to selectively and distinctly regulating these aberrant changes in structural and functional plasticity. Our findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD. PMID:26237365

  7. Cortical Connections of Functional Zones in Posterior Parietal Cortex and Frontal Cortex Motor Regions in New World Monkeys

    PubMed Central

    Stepniewska, Iwona; Kaas, Jon H.

    2011-01-01

    We examined the connections of posterior parietal cortex (PPC) with motor/premotor cortex (M1/PM) and other cortical areas. Electrical stimulation (500 ms trains) delivered to microelectrode sites evoked movements of reach, defense, and grasp, from distinct zones in M1/PM and PPC, in squirrel and owl monkeys. Tracer injections into M1/PM reach, defense, and grasp zones showed dense connections with M1/PM hand/forelimb representations. The densest inputs outside of frontal cortex were from PPC zones. M1 zones were additionally connected with somatosensory hand/forelimb representations in areas 3a, 3b, and 1 and the somatosensory areas of the upper bank of the lateral sulcus (S2/PV). Injections into PPC zones showed primarily local connections and the densest inputs outside of PPC originated from M1/PM zones. The PPC reach zone also received dense inputs from cortex caudal to PPC, which likely relayed visual information. In contrast, the PPC grasp zone was densely connected with the hand/forelimb representations of areas 3a, 3b, 1, and S2/PV. Thus, the dorsal parietal–frontal network involved in reaching was preferentially connected to visual cortex, whereas the more ventral network involved in grasping received somatosensory inputs. Additional weak interlinks between dissimilar zones (e.g., PPC reach and PPC grasp) were apparent and may coordinate actions. PMID:21263034

  8. Reversible worsening of Parkinson disease motor symptoms after oral intake of Uncaria tomentosa (cat's claw).

    PubMed

    Cosentino, Carlos; Torres, Luis

    2008-01-01

    Uncaria tomentosa (UT), also known as cat's claw, isa Peruvian Rubiaceae species widely used in traditional medicine for the treatment of a wide range of health problems. There is no report about the use, safety, and efficacy of UT in neurological disorders. We describe reversible worsening of motor signs in a patient with Parkinson disease after oral intake of UT, and some possible explanations are discussed. PMID:18836348

  9. Multiple representations of information in the primary auditory cortex of cats. I. Stability and change in slow components of unit activity after conditioning with a click conditioned stimulus.

    PubMed

    Woody, C D; Zotova, E; Gruen, E

    2000-06-16

    Recordings of activity were made from 647 single units of the A(I) cortex of awake cats to evaluate behavioral state-dependent changes in the population response to a 70-dB click. Averages of PST histograms of unit activity were used to assess the changes in response. This report focuses on slow components of the responses disclosed by averages employing bin widths of 16 ms. Responses were compared before and after a Pavlovian blink CR was produced by forward pairing of click conditioned stimuli (CSs) with USs. A backward-paired 70-dB hiss was presented as a discriminative stimulus. Studies were also done after backward pairing of the click CSs (backward conditioning) that produced weak sensitization instead of a conditioned response. There were four main findings. First, components of activity elicited 32-160 ms after presenting the hiss decreased significantly after conditioning and after backward conditioning. The decreases after conditioning represented the most pronounced changes in activity evoked by either clicks or hisses in this behavioral state. Second, baseline firing decreased after both conditioning and backward conditioning. The direction of baseline change was opposite that found in adjacent cortical regions and in A(I) cortex after operant conditioning employing an acoustic cue. Third, prior to conditioning, unit activity in response to the hiss declined before the sound of the hiss reached its peak or terminated. This decrease was thought to represent a habituatory adaptation of response to a prolonged acoustic stimulus. This type of habituation to a lengthy stimulus has been recognized, behaviorally, but has not been observed previously in the activity of units of the auditory receptive cortex. Fourth, the percentage of click responsive units did not change significantly after the click was used as a CS for conditioning, and despite the accompanying changes in baseline activity, the absolute levels of activity summed in the first 16 ms after click

  10. Thalamocortical Connections of Functional Zones in Posterior Parietal Cortex and Frontal Cortex Motor Regions in New World Monkeys

    PubMed Central

    Stepniewska, Iwona; Burish, Mark J.; Kaas, Jon H.

    2010-01-01

    Posterior parietal cortex (PPC) links primate visual and motor systems and is central to visually guided action. Relating the anatomical connections of PPC to its neurophysiological functions may elucidate the organization of the parietal–frontal network. In owl and squirrel monkeys, long-duration electrical stimulation distinguished several functional zones within the PPC and motor/premotor cortex (M1/PM). Multijoint forelimb movements reminiscent of reach, defense, and grasp behaviors characterized each functional zone. In PPC, functional zones were organized parallel to the lateral sulcus. Thalamocortical connections of PPC and M1/PM zones were investigated with retrograde tracers. After several days of tracer transport, brains were processed, and labeled cells in thalamic nuclei were plotted. All PPC zones received dense inputs from the lateral posterior nucleus and the anterior pulvinar. PPC zones received additional projections from ventral lateral (VL) divisions of motor thalamus, which were also the primary source of input to M1/PM. Projections to PPC from rostral motor thalamus were sparse. Dense projections from ventral posterior (VP) nucleus of somatosensory thalamus distinguished the rostrolateral grasp zone from the other PPC zones. PPC connections with VL and VP provide links to cerebellar nuclei and the somatosensory system, respectively, that may integrate PPC functions with M1/PM. PMID:20080929

  11. Motor imagery in REM sleep is increased by transcranial direct current stimulation of the left motor cortex (C3).

    PubMed

    Speth, Jana; Speth, Clemens

    2016-06-01

    This study investigates if anodal transcranial direct current stimulation (tDCS) of areas above the motor cortex (C3) influences the quantity and quality of spontaneous motor imagery experienced in REM sleep. A randomized triple-blinded design was used, combining neurophysiological techniques with a tool of quantitative mentation report analysis developed from cognitive linguistics and generative grammar. The results indicate that more motor imagery, and more athletic motor imagery, is induced by anodal tDCS in comparison to cathodal and sham tDCS. This insight may have implications beyond basic consciousness research. Motor imagery in REM sleep has been hypothesized to serve the rehearsal of motor movements, which benefits later motor performance. Electrophysiological manipulations of motor imagery in REM sleep could in the long run be used for rehabilitative tDCS protocols benefitting temporarily immobile clinical patients, especially those who cannot perform specific motor imagery tasks - such as dementia patients, infants with developmental and motor disorders, and coma patients. PMID:27079954

  12. High-field fMRI reveals tonotopically-organized and core auditory cortex in the cat.

    PubMed

    Hall, Amee J; Lomber, Stephen G

    2015-07-01

    As frequency is one of the most basic elements of sound, it is not surprising that the earliest stages of auditory cortical processing are tonotopically organized. In cats, there are four known tonotopically organized cortical areas: the anterior (AAF), posterior (PAF), and ventral posterior (VPAF) auditory fields and primary auditory cortex (A1). Electrophysiological and anatomical evidence have suggested that AAF and A1 form core auditory cortex. The purpose of this investigation was to determine if high-field functional magnetic resonance imaging (fMRI) could be used to define the borders of all four tonotopically organized areas, identify core auditory cortex, and demonstrate tonotopy similar to that found using more invasive techniques. Five adult cats were examined. Eight different pure tones or one broad-band noise (BBN) stimuli were presented in a block paradigm during continuous fMRI scanning. Analysis was performed on each animal individually using conservative familywise error thresholds. Group analysis was performed by extracting data from fMRI analysis software and performing a battery of statistical tests. In auditory cortex, a reversal of the tonotopic gradient is known to occur at the borders between tonotopically organized areas. Therefore, high and low tones were used to delineate these borders. Activations in response to BBN as opposed to tonal stimulation demonstrated that core auditory cortex consists of both A1 and AAF. Finally, tonotopy was identified in each of the four known tonotopically organized areas. Therefore, we conclude that fMRI is effective at defining all four tonotopically organized cortical areas and delineating core auditory cortex. PMID:25776742

  13. Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI.

    PubMed

    Brown, Trecia A; Joanisse, Marc F; Gati, Joseph S; Hughes, Sarah M; Nixon, Pam L; Menon, Ravi S; Lomber, Stephen G

    2013-01-01

    Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex. PMID:23000258

  14. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats.

    PubMed

    Combs, Hannah L; Jones, Theresa A; Kozlowski, Dorothy A; Adkins, DeAnna L

    2016-04-15

    Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI. PMID:26421759

  15. Motor Cortex Plasticity during Unilateral Finger Movement with Mirror Visual Feedback.

    PubMed

    Kumru, Hatice; Albu, Sergiu; Pelayo, Raul; Rothwell, John; Opisso, Eloy; Leon, Daniel; Soler, Dolor; Tormos, Josep Maria

    2016-01-01

    Plasticity is one of the most important physiological mechanisms underlying motor recovery from brain lesions. Rehabilitation methods, such as mirror visual feedback therapy, which are based on multisensory integration of motor, cognitive, and perceptual processes, are considered effective methods to induce cortical reorganization. The present study investigated 3 different types of visual feedback (direct, mirrored, and blocked visual feedback: DVF, MVF, and BVF, resp.) on M1 cortex excitability and intracortical inhibition/facilitation at rest and during phasic unimanual motor task in 11 healthy individuals. The excitability of the ipsilateral M1 cortex and the intracortical facilitation increased during motor task performance in the DVF and MVF but not in the BVF condition. In addition, MVF induced cortical disinhibition of the ipsilateral hemisphere to the index finger performing the motor task, which was greater when compared to the BVF and restricted to the homologue first dorsal interosseous muscle. The visual feedback is relevant to M1 cortex excitability modulation but the MVF plays a crucial role in promoting changes in intracortical inhibition in comparison to BVF. Altogether, it can be concluded that a combination of motor training with MVF therapy may induce more robust neuroplastic changes through multisensory integration that is relevant to motor rehabilitation. PMID:26881121

  16. Motor Cortex Plasticity during Unilateral Finger Movement with Mirror Visual Feedback

    PubMed Central

    Kumru, Hatice; Albu, Sergiu; Pelayo, Raul; Rothwell, John; Opisso, Eloy; Leon, Daniel; Soler, Dolor; Tormos, Josep Maria

    2016-01-01

    Plasticity is one of the most important physiological mechanisms underlying motor recovery from brain lesions. Rehabilitation methods, such as mirror visual feedback therapy, which are based on multisensory integration of motor, cognitive, and perceptual processes, are considered effective methods to induce cortical reorganization. The present study investigated 3 different types of visual feedback (direct, mirrored, and blocked visual feedback: DVF, MVF, and BVF, resp.) on M1 cortex excitability and intracortical inhibition/facilitation at rest and during phasic unimanual motor task in 11 healthy individuals. The excitability of the ipsilateral M1 cortex and the intracortical facilitation increased during motor task performance in the DVF and MVF but not in the BVF condition. In addition, MVF induced cortical disinhibition of the ipsilateral hemisphere to the index finger performing the motor task, which was greater when compared to the BVF and restricted to the homologue first dorsal interosseous muscle. The visual feedback is relevant to M1 cortex excitability modulation but the MVF plays a crucial role in promoting changes in intracortical inhibition in comparison to BVF. Altogether, it can be concluded that a combination of motor training with MVF therapy may induce more robust neuroplastic changes through multisensory integration that is relevant to motor rehabilitation. PMID:26881121

  17. Cats

    MedlinePlus

    ... found on the skin of people and animals. Methicillin-resistant Staphylococcus aureus (MRSA) is the same bacterium that has become resistant to some antibiotics. Cats and other animals often can carry MRSA ...

  18. "How Did I Make It?": Uncertainty about Own Motor Performance after Inhibition of the Premotor Cortex.

    PubMed

    Bolognini, Nadia; Zigiotto, Luca; Carneiro, Maíra Izzadora Souza; Vallar, Giuseppe

    2016-07-01

    Optimal motor performance requires the monitoring of sensorimotor input to ensure that the motor output matches current intentions. The brain is thought to be equipped with a "comparator" system, which monitors and detects the congruence between intended and actual movement; results of such a comparison can reach awareness. This study explored in healthy participants whether the cathodal transcranial direct current stimulation (tDCS) of the right premotor cortex (PM) and right posterior parietal cortex (PPC) can disrupt performance monitoring in a skilled motor task. Before and after tDCS, participants underwent a two-digit sequence motor task; in post-tDCS session, single-pulse TMS (sTMS) was applied to the right motor cortex, contralateral to the performing hand, with the aim of interfering with motor execution. Then, participants rated on a five-item questionnaire their performance at the motor task. Cathodal tDCS of PM (but not sham or PPC tDCS) impaired the participants' ability to evaluate their motor performance reliably, making them unconfident about their judgments. Congruently with the worsened motor performance induced by sTMS, participants reported to have committed more errors after sham and PPC tDCS; such a correlation was not significant after PM tDCS. In line with current computational and neuropsychological models of motor control and awareness, the present results show that a mechanism in the PM monitors and compares intended versus actual movements, evaluating their congruence. Cathodal tDCS of the PM impairs the activity of such a "comparator," disrupting self-confidence about own motor performance. PMID:26967945

  19. Tau Accumulation in Primary Motor Cortex of Variant Alzheimer's Disease with Spastic Paraparesis.

    PubMed

    Lyoo, Chul Hyoung; Cho, Hanna; Choi, Jae Yong; Hwang, Mi Song; Hong, Sang Kyoon; Kim, Yun Joong; Ryu, Young Hoon; Lee, Myung Sik

    2016-02-16

    We studied topographic distribution of tau and amyloid-β in a patient with variant Alzheimer's disease with spastic paraparesis (VarAD) by comparing AD patients. The proband developed progressive memory impairment, dysarthria, and spastic paraparesis at age 23. Heterozygous missense mutation (L166P) was found in exon 6 of presenilin-1 gene. The proband showed prominently increased amyloid binding in striatum and cerebellum and asymmetrical tau binding in the primary sensorimotor cortex contralateral to the side more affected by spasticity. We suspect that upper motor neuron dysfunctions may be attributed to excessive abnormal tau accumulation rather than amyloid-β in the primary motor cortex. PMID:26890779

  20. Discharges of pyramidal tract and other motor cortical neurones during locomotion in the cat.

    PubMed Central

    Armstrong, D M; Drew, T

    1984-01-01

    A method is described for chronically implanting fine flexible microwires into cat motor cortex, which permitted extracellular recordings to be made from 165 single neurones. Most units were recordable for 12 h and some for up to 2 days. Of the neurones tested, 57% were shown to project to the medullary pyramid (pyramidal tract neurones, p.t.n.s). Antidromic latencies corresponded to a range of conduction velocities from 63 to 9 m/s. In the animal at rest neurones discharged at rates from 0.5 to 44 impulses/s. During locomotion at 0.5 m/s (a slow walk) 56% of cells discharged faster than at rest and 80% showed frequency modulations time-locked to the step cycle. Most fired one discrete burst of impulses per step or one peak period superimposed on a maintained discharge. In different cells peak activity occurred at widely different times during the step cycle. A few cells peaked twice per step. Peak rates (averaged over twenty steps) ranged from 10 to over 120 impulses/s, the values for most slow-axon p.t.n.s (conduction velocity less than 21 m/s) being lower than for any of the fast-axon p.t.n.s. For locomotion at speeds between 0.37 and 1.43 m/s a roughly linear relationship existed between discharge rate and speed in 14% of cells. However, the changes were modest and in most cells both mean rate and peak rate were unrelated to speed. In some cells discharge phasing was fixed (relative to the step cycle in the contralateral forelimb); in others there were progressive phase shifts (or more complex changes) as speed increased. During locomotion up a 10 degrees incline discharge phasings were the same as on the flat in all of the twenty-seven neurones studied and most showed no substantial change in mean rate or peak rate (although there were substantial increases in limb muscle electromyogram amplitudes). Images Plate 1 PMID:6699782

  1. Rate and synchronization measures of periodicity coding in cat primary auditory cortex.

    PubMed

    Eggermont, J J

    1991-11-01

    Periodicity coding was studied in primary auditory cortex of the ketamine anesthetized cat by simultaneously recording with two electrodes from up to 6 neural units in response to one second long click trains presented once per 3 s. Trains with click rates of 1, 2, 4, 8, 16 and 32/s were used and the responses of the single units were quantified by both rate measures (entrainment and rate modulation transfer function, rMTF) and synchronization measures (vector strength VS and temporal modulation transfer functions, tMTF). The rate measures resulted in low-pass functions of click rate and the synchrony measures resulted in band-pass functions of click rate. Limiting rates (-6 dB point of maximum response) were in the range of 3-24 Hz depending on the measure used. Best modulating frequencies were in the range of 5-8 Hz again depending on the synchrony measure used. It appeared that especially the VS was highly sensitive to spontaneous firing rate, duration of the post click suppression and the size of the rebound response after the suppression. These factors were dominantly responsible for the band-pass character of the VS-rate function and the peak VS frequency was nearly identical to the inverse of the suppression period. It is concluded that the use of the VS and to a lesser extent also the tMTF as the sole measure for the characterization of periodicity coding is not recommended in cases where there is a strong suppression of spontaneous activity. The combination of entrainment and tMTF appeared to characterize the periodicity coding in an unambiguous way. PMID:1769910

  2. Two visual areas located in the middle suprasylvian gyrus (cytoarchitectonic field 7) of the cat's cortex.

    PubMed

    Pigarev, I N; Rodionova, E I

    1998-08-01

    Neuronal properties and topographic organization of the middle suprasylvian gyrus (cortical cytoarchitectonic field 7) were studied in three behaving cats with painlessly fixed heads. Two main neuronal types were found within this field. Type 1 neurons occupied the lateral part of the field and bordered representation of directionally selective neurons of the lateral suprasylvian visual area by vertical retinal meridian. Type 1 neurons had elongated and radially oriented receptive fields located in the lower part of contralateral visual field. Type 1 neurons preferred stimuli moving out or to the centre of gaze at a low or moderate speed, and many of them were depth selective. The responses were enhanced by attention, oriented to the presented stimulus. Medial part of the field 7 along the border with the area V3 was occupied by neurons with not elongated receptive fields (type 2). These neurons preferred moderate and high speeds of motion, and gratings of proper spatial frequency and orientation were effective stimuli for them. Border between representations of type 2 and type 1 neurons coincided with projection of horizontal retinal meridian. At the rostral and caudal borders of the field 7 abrupt changes of neuronal properties took place. Neurons which abutted field 7 anteriorly and posteriorly resembled hypercomplex cells and their small receptive fields were located in the central part of the visual field. Topographical considerations and receptive field properties allowed us to conclude that the medial part of the field 7 (included type 2 neurons) is functionally equivalent to the area V4 in the cortex of primates, while the lateral part (type 1 neurons) may correspond to the area V4T. PMID:9639267

  3. Laminar Diversity of Dynamic Sound Processing in Cat Primary Auditory Cortex

    PubMed Central

    Schreiner, Christoph E.

    2010-01-01

    For primary auditory cortex (AI) laminae, there is little evidence of functional specificity despite clearly expressed cellular and connectional differences. Natural sounds are dominated by dynamic temporal and spectral modulations and we used these properties to evaluate local functional differences or constancies across laminae. To examine the layer-specific processing of acoustic modulation information, we simultaneously recorded from multiple AI laminae in the anesthetized cat. Neurons were challenged with dynamic moving ripple stimuli and we subsequently computed spectrotemporal receptive fields (STRFs). From the STRFs, temporal and spectral modulation transfer functions (tMTFs, sMTFs) were calculated and compared across layers. Temporal and spectral modulation properties often differed between layers. On average, layer II/III and VI neurons responded to lower temporal modulations than those in layer IV. tMTFs were mainly band-pass in granular layer IV and became more low-pass in infragranular layers. Compared with layer IV, spectral MTFs were broader and their upper cutoff frequencies higher in layers V and VI. In individual penetrations, temporal modulation preference was similar across layers for roughly 70% of the penetrations, suggesting a common, columnar functional characteristic. By contrast, only about 30% of penetrations showed consistent spectral modulation preferences across layers, indicative of functional laminar diversity or specialization. Since local laminar differences in stimulus preference do not always parallel the main flow of information in the columnar cortical microcircuit, this indicates the influence of additional horizontal or thalamocortical inputs. AI layers that express differing modulation properties may serve distinct roles in the extraction of dynamic sound information, with the differing information specific to the targeted stations of each layer. PMID:19864440

  4. Binocular interaction fields of single units in the cat striate cortex

    PubMed Central

    Bishop, P. O.; Henry, G. H.; Smith, C. J.

    1971-01-01

    1. Based on average response histograms to an optimal stimulus, binocular interaction field plots were obtained from twenty-five simple neurones in the striate cortex of the cat. Each binocularly activated cell has two interaction fields, one for each eye. The binocular interaction field for one eye plots the changes in the amplitude of the response from the other eye as the two receptive fields of the binocularly activated cell are moved across one another, first into and then out of alignment in the plane of the optimal stimulus (tangent screen). 2. The binocular interaction field provides an important clue to the nature of the spatial organization of the excitatory and inhibitory regions of the monocular receptive field. The commonest type of receptive field organization has regions of inhibition (inhibitory side bands) to either side of the discharge centre in the direction at right angles to the optimal stimulus orientation. As well as inhibition, there are subliminal excitatory effects. 3. Binocular interaction fields differ with the various cell types, i.e. cells that are discharged only from the one eye, cells binocularly discharged with very weak or absent monocular responses and cells showing binocularly opposite direction selectivity. 4. Marked facilitation to an optimal stimulus occurs when the two receptive fields of a binocularly activated neurone are in accurate alignment. Facilitation switches to depression for very small degrees of receptive field misalignment in a direction at right angles to the optimal stimulus orientation. These observations are of importance in relation to mechanisms for binocular single vision and depth discrimination. PMID:4934209

  5. Responses of neurones in the cat's visual cerebral cortex to relative movement of patterns

    PubMed Central

    Burns, B. Delisle; Gassanov, U.; Webb, A. C.

    1972-01-01

    1. We have investigated the responses of single neurones in the visual cerebral cortex of the unanaesthetized, isolated cat's forebrain to excitation of one retina with patterned light. The responses of twenty-six cells to the relative movement of two patterns in the visual field have been recorded. 2. We used several forms of relative movement for stimulation, but all of them involved a change in the separation of two parallel and straight light-dark edges. 3. Responses to this form of stimulation were compared with the responses of the same cells to simple movement, that is, movement of the same patterns without change of distance between their borders. 4. All cells showed a response to relative movement that differed from their response to simple movement. 5. The time-locked phasic response differed in 54% of the cells tested. Of cells responding in this way, 83% of tests produced an increased phasic response. 6. Relative movement brought about changes in the mean frequency of discharge in 96% of the cells tested. 82% of these cells responded with an increased rate of firing. 7. Movement relative to a coarse background pattern affected more neurones and produced a greater change in their behaviour than did movement relative to a fine-grained pattern. 8. The neurones tested represented the central part of the visual field (0-10°); while all were affected by relative movement, those representing points furthest from the optic axis appeared to be most susceptible (we found no correlation between size of receptive field and distance from the optic axis). PMID:5083167

  6. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys.

    PubMed

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2009-11-11

    Classically, the spinothalamic (ST) system has been viewed as the major pathway for transmitting nociceptive and thermoceptive information to the cerebral cortex. There is a long-standing controversy about the cortical targets of this system. We used anterograde transneuronal transport of the H129 strain of herpes simplex virus type 1 in the Cebus monkey to label the cortical areas that receive ST input. We found that the ST system reaches multiple cortical areas located in the contralateral hemisphere. The major targets are granular insular cortex, secondary somatosensory cortex and several cortical areas in the cingulate sulcus. It is noteworthy that comparable cortical regions in humans consistently display activation when subjects are acutely exposed to painful stimuli. We next combined anterograde transneuronal transport of virus with injections of a conventional tracer into the ventral premotor area (PMv). We used the PMv injection to identify the cingulate motor areas on the medial wall of the hemisphere. This combined approach demonstrated that each of the cingulate motor areas receives ST input. Our meta-analysis of imaging studies indicates that the human equivalents of the three cingulate motor areas also correspond to sites of pain-related activation. The cingulate motor areas in the monkey project directly to the primary motor cortex and to the spinal cord. Thus, the substrate exists for the ST system to have an important influence on the cortical control of movement. PMID:19906970

  7. Modulation of motor cortex excitability by physical similarity with an observed hand action.

    PubMed

    Désy, Marie-Christine; Théoret, Hugo

    2007-01-01

    The passive observation of hand actions is associated with increased motor cortex excitability, presumably reflecting activity within the human mirror neuron system (MNS). Recent data show that in-group ethnic membership increases motor cortex excitability during observation of culturally relevant hand gestures, suggesting that physical similarity with an observed body part may modulate MNS responses. Here, we ask whether the MNS is preferentially activated by passive observation of hand actions that are similar or dissimilar to self in terms of sex and skin color. Transcranial magnetic stimulation-induced motor evoked potentials were recorded from the first dorsal interosseus muscle while participants viewed videos depicting index finger movements made by female or male participants with black or white skin color. Forty-eight participants equally distributed in terms of sex and skin color participated in the study. Results show an interaction between self-attributes and physical attributes of the observed hand in the right motor cortex of female participants, where corticospinal excitability is increased during observation of hand actions in a different skin color than that of the observer. Our data show that specific physical properties of an observed action modulate motor cortex excitability and we hypothesize that in-group/out-group membership and self-related processes underlie these effects. PMID:17912350

  8. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices. PMID:20144922

  9. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex.

    PubMed

    Coffman, Keith A; Dum, Richard P; Strick, Peter L

    2011-09-20

    The cerebellum has a medial, cortico-nuclear zone consisting of the cerebellar vermis and the fastigial nucleus. Functionally, this zone is concerned with whole-body posture and locomotion. The vermis classically is thought to be included within the "spinocerebellum" and to receive somatic sensory input from ascending spinal pathways. In contrast, the lateral zone of the cerebellum is included in the "cerebro-cerebellum" because it is densely interconnected with the cerebral cortex. Here we report the surprising result that a portion of the vermis receives dense input from the cerebral cortex. We injected rabies virus into lobules VB-VIIIB of the vermis and used retrograde transneuronal transport of the virus to define disynaptic inputs to it. We found that large numbers of neurons in the primary motor cortex and in several motor areas on the medial wall of the hemisphere project to the vermis. Thus, our results challenge the classical view of the vermis and indicate that it no longer should be considered as entirely isolated from the cerebral cortex. Instead, lobules VB-VIIIB represent a site where the cortical motor areas can influence descending control systems involved in the regulation of whole-body posture and locomotion. We argue that the projection from the cerebral cortex to the vermis is part of the neural substrate for anticipatory postural adjustments and speculate that dysfunction of this system may underlie some forms of dystonia. PMID:21911381

  10. Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex

    PubMed Central

    Neymotin, Samuel A.; Dura-Bernal, Salvador; Lakatos, Peter; Sanger, Terence D.; Lytton, William W.

    2016-01-01

    A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails. PMID:27378922

  11. Representation of the Speech Effectors in the Human Motor Cortex: Somatotopy or Overlap?

    ERIC Educational Resources Information Center

    Takai, Osamu; Brown, Steven; Liotti, Mario

    2010-01-01

    Somatotopy within the orofacial region of the human motor cortex has been a central concept in interpreting the results of neuroimaging and transcranial magnetic stimulation studies of normal and disordered speech. Yet, somatotopy has been challenged by studies showing overlap among the effectors within the homunculus. In order to address this…

  12. Frontal and motor cortex contributions to response inhibition: evidence from electrocorticography.

    PubMed

    Fonken, Yvonne M; Rieger, Jochem W; Tzvi, Elinor; Crone, Nathan E; Chang, Edward; Parvizi, Josef; Knight, Robert T; Krämer, Ulrike M

    2016-04-01

    Changes in the environment require rapid modification or inhibition of ongoing behavior. We used the stop-signal paradigm and intracranial recordings to investigate response preparation, inhibition, and monitoring of task-relevant information. Electrocorticographic data were recorded in eight patients with electrodes covering frontal, temporal, and parietal cortex, and time-frequency analysis was used to examine power differences in the beta (13-30 Hz) and high-gamma bands (60-180 Hz). Over motor cortex, beta power decreased, and high-gamma power increased during motor preparation for both go trials (Go) and unsuccessful stops (US). For successful stops (SS), beta increased, and high-gamma was reduced, indexing the cancellation of the prepared response. In the middle frontal gyrus (MFG), stop signals elicited a transient high-gamma increase. The MFG response occurred before the estimated stop-signal reaction time but did not distinguish between SS and US trials, likely signaling attention to the salient stop stimulus. A postresponse high-gamma increase in MFG was stronger for US compared with SS and absent in Go, supporting a role in behavior monitoring. These results provide evidence for differential contributions of frontal subregions to response inhibition, including motor preparation and inhibitory control in motor cortex and cognitive control and action evaluation in lateral prefrontal cortex. PMID:26864760

  13. The Somatotopy of Speech: Phonation and Articulation in the Human Motor Cortex

    ERIC Educational Resources Information Center

    Brown, Steven; Laird, Angela R.; Pfordresher, Peter Q.; Thelen, Sarah M.; Turkeltaub, Peter; Liotti, Mario

    2009-01-01

    A sizable literature on the neuroimaging of speech production has reliably shown activations in the orofacial region of the primary motor cortex. These activations have invariably been interpreted as reflecting "mouth" functioning and thus articulation. We used functional magnetic resonance imaging to compare an overt speech task with tongue…

  14. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study

    PubMed Central

    Stern, William M.; Desikan, Mahalekshmi; Hoad, Damon; Jaffer, Fatima; Strigaro, Gionata; Sander, Josemir W.; Rothwell, John C.; Sisodiya, Sanjay M.

    2016-01-01

    Background Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. Methods We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. Results One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. Conclusions We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity. PMID:26999520

  15. Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex.

    PubMed

    Neymotin, Samuel A; Dura-Bernal, Salvador; Lakatos, Peter; Sanger, Terence D; Lytton, William W

    2016-01-01

    A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails. PMID:27378922

  16. Influence of the amount of use on hand motor cortex representation: effects of immobilization and motor training.

    PubMed

    Ngomo, S; Leonard, G; Mercier, C

    2012-09-18

    Converging evidence from animal and human studies has revealed that increased or decreased use of an extremity can lead to changes in cortical representation of the involved muscles. However, opposite experimental manipulations such as immobilization and motor training have sometimes been associated with similar cortical changes. Therefore, the behavioral relevance of these changes remains unclear. The purpose of this study was to observe the effect of the amount of use on hand muscle motor cortex representation by contrasting the effect of unspecific motor training and immobilization. Nine healthy volunteers were tested prior and after a 4-day exposure to two experimental conditions using a randomized cross-over design: a motor training condition (to play Guitar Hero 2h/day with the tested (nondominant) hand on the fret board) and an immobilization condition (to wear an immobilization splint 24h/day). Before and after each condition, motor cortex representation of the nondominant first dorsal interosseous (FDI) muscle was mapped using image-guided transcranial magnetic stimulation (TMS). At the behavioral level, results show that the training condition led to a 20% improvement in the trained task, while the immobilization condition resulted in a 36% decrease in the FDI maximal voluntary contraction. At the neurophysiological level, corticospinal excitability (e.g. Motor-evoked potential amplitude) was found to be decreased in response to immobilization, while no change was observed in response to motor training. No change was found for other TMS variables (motor thresholds or map location/volume/area) in either condition. In conclusion, our results indicate that a 4-day decrease, but not increase, in the amount of use of nondominant hand muscles is sufficient to induce a change in corticospinal excitability. The lack of a training effect might be explained by the use of an unspecific task (that is nevertheless representative of "real-life" training situations) and

  17. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. PMID:22608205

  18. [THE DISTRIBUTION OF CORTICO-THALAMIC PROJECTIONS OF DIFFERENT OF DIFFERENT SOMATOTOPIC REPRESENTATIONS OF PRIMARY MOTOR AND SENSORY CORTEX].

    PubMed

    Ipekchyan, N M; Badalyan, S A

    2016-01-01

    The peculiarities of localization and distribution of cortico-thalamic efferents of different somatotopical representations of primary motor (MI) and sensory (SI) cortex were studied in cat brain. MI efferent fibers (4y, 6ab areas) preferentially projected to ventral posterolateral and medial (VPL, VPM), ventrolateral (VL), and reticular (R) nuclei, localized in rostral part of the thalamus (T), as opposed to SI (areas 1, 2, 3a, 3b), which projected preferentially to caudal part of T, VPL, VPM and R nuclei. Latero-medial organization of cortico-thalamic connections was demonstrated, with predominant localization of cortical representation of hindlimbs in the lateral part of VPL, of forelimbs--in the medial part of VPL, of face and head--also in VM and VPM. Quantitative analysis of the distribution of corticothalamic efferents of different somatotopical representations of MI has demonstrated the most extensive, massive connections with T nuclei (VPL, VL, R) of the motor representation of forelimb, followed by the representation of hindlimb, trunk and, finally, the minimal projection of the representation of face and head. As opposed to motor representation of the forelimb and also of the face and head, with uniform distribution of fibers in VPL, VL and R, the number of efferents of motor representation of hindlimb, passing in VL, was almost 2.5 time lower than in VPL and R, whereas the representation of trunk had the predominant projection to VL. Dominant cortico-thalamic connection suggests greater involvement of T nuclei studied in the realization of functional specialization of certain somatotopical representations of MI. PMID:27487657

  19. Length and width tuning of neurons in the cat's primary visual cortex.

    PubMed

    DeAngelis, G C; Freeman, R D; Ohzawa, I

    1994-01-01

    1. The classically defined receptive field of a visual neuron is the area of visual space over which the cell responds to visual stimuli. It is well established, however, that the discharge produced by an optimal stimulus can be modulated by the presence of additional stimuli that by themselves do not produce any response. This study examines inhibitory influences that originate from areas located outside of the classical (i.e., excitatory) receptive field. Previous work has shown that for some cells the response to a properly oriented bar of light becomes attenuated when the bar extends beyond the receptive field, a phenomenon known as end-inhibition (or length tuning). Analogously, it has been shown that increasing the number of cycles of a drifting grating stimulus may also inhibit the firing of some cells, an effect known as side-inhibition (or width tuning). Very little information is available, however, about the relationship between end- and side-inhibition. We have examined the spatial organization and tuning characteristics of these inhibitory effects by recording extracellularly from single neurons in the cat's striate cortex (Area 17). 2. For each cortical neuron, length and width tuning curves were obtained with the use of rectangular patches of drifting sinusoidal gratings that have variable length and width. Results from 82 cells show that the strengths of end- and side-inhibition tend to be correlated. Most cells that exhibit clear end-inhibition also show a similar degree of side-inhibition. For these cells, the excitatory receptive field is surrounded on all sides by inhibitory zones. Some cells exhibit only end- or side-inhibition, but not both. Data for 28 binocular cells show that length and width tuning curves for the dominant and nondominant eyes tend to be closely matched. 3. We also measured tuning characteristics of end- and side-inhibition. To obtain these data, the excitatory receptive field was stimulated with a grating patch having

  20. Position-specific adaptation in complex cell receptive fields of the cat striate cortex.

    PubMed

    Marlin, S; Douglas, R; Cynader, M

    1993-06-01

    1. Responses of complex cells in cat striate cortex were studied with flashed light slit stimuli. The responses to slits flashed in different positions in the receptive field were assessed quantitatively before and after periods of prolonged stimulation of one small region of the receptive field. This type of prolonged stimulation resulted in reduced responsivity over a limited zone within the complex cell receptive field. 2. The adaptation-induced responsivity decrement was generally observed in both the ON and OFF response profiles but could also be restricted to one or the other. In general, the magnitude of the response decrements was greatest in the ON response profiles. The adaptation-induced response decrement did not necessarily spread throughout the receptive field but was restricted to a small region surrounding the adapted receptive field position (RFP). Adaptation spread equally widely across the ON and OFF response profiles despite the smaller adaptation effects in the OFF profile. 3. The adaptation effects from repeated stimulation at a single RFP did not spread symmetrically across the receptive field, and a given cell's preferred direction of motion indicated the direction of the asymmetric spread of the adaptation. RFPs that would be stimulated by a light slit originating at the point of adaptation and moving in the preferred direction (preferred side) showed greater adaptation-induced response decrements than did RFPs that would be stimulated by a light slit moving in the opposite direction from the point of adaptation (nonpreferred side). There was significant enhancement of responses at some RFPs on the non-preferred side of the point of adaptation. This asymmetric spread of adaptation could be caused by adaptation of inhibitory connections that contribute to complex cell direction selectivity. 4. The asymmetry of adaptation was significantly different for the ON and OFF response profiles. The asymmetric spread of adaptation for the ON response

  1. Spatial summation in the receptive fields of simple cells in the cat's striate cortex.

    PubMed Central

    Movshon, J A; Thompson, I D; Tolhurst, D J

    1978-01-01

    1. We have examined the responses of simple cells in the cat's atriate cortex to visual patterns that were designed to reveal the extent to which these cells may be considered to sum light-evoked influences linearly across their receptive fields. We used one-dimensional luminance-modulated bars and grating as stimuli; their orientation was always the same as the preferred orientation of the neurone under study. The stimuli were presented on an oscilloscope screen by a digital computer, which also accumulated neuronal responses and controlled a randomized sequence of stimulus presentations. 2. The majority of simple cells respond to sinusoidal gratings that are moving or whose contrast is modulated in time in a manner consistent with the hypothesis that they have linear spatial summation. Their responses to moving gratings of all spatial frequencies are modulated in synchrony with the passage of the gratings' bars across their receptive fields, and they do not produce unmodulated responses even at the highest spatial frequencies. Many of these cells respond to temporally modulated stationary gratings simply by changing their response amplitude sinusoidally as the spatial phase of the grating the grating is varied. Nonetheless, their behavior appears to indicate linear spatial summation, since we show in an Appendix that the absence of a 'null' phase in a visual neurone need not indicate non-linear spatial summation, and further that a linear neurone lacking a 'null' phase should give responses of the form that we have observed in this type of simple cell. 3. A minority of simple cells appears to have significant non-linearities of spatial summation. These neurones respond to moving gratings of high spatial frequency with a partially or totally unmodulated elevation of firing rate. They have no 'null' phases when tested with stationary gratings, and reveal their non-linearity by giving responses to gratings of some spatial phases that are composed partly or wholly of

  2. Motor cortex representation of the upper-limb in individuals born without a hand.

    PubMed

    Reilly, Karen T; Sirigu, Angela

    2011-01-01

    The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics) led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1) whether we could evoke phantom sensations, and 2) whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex. PMID:21494663

  3. Temporal plasticity involved in recovery from manual dexterity deficit after motor cortex lesion in macaque monkeys.

    PubMed

    Murata, Yumi; Higo, Noriyuki; Hayashi, Takuya; Nishimura, Yukio; Sugiyama, Yoko; Oishi, Takao; Tsukada, Hideo; Isa, Tadashi; Onoe, Hirotaka

    2015-01-01

    The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H2 (15)O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period. PMID:25568105

  4. Linear summation of outputs in a balanced network model of motor cortex

    PubMed Central

    Capaday, Charles; van Vreeswijk, Carl

    2015-01-01

    Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis. PMID:26097452

  5. The somatotopy of speech: Phonation and articulation in the human motor cortex

    PubMed Central

    Brown, Steven; Laird, Angela R.; Pfordresher, Peter Q.; Thelen, Sarah M.; Turkeltaub, Peter; Liotti, Mario

    2010-01-01

    A sizable literature on the neuroimaging of speech production has reliably shown activations in the orofacial region of the primary motor cortex. These activations have invariably been interpreted as reflecting “mouth” functioning and thus articulation. We used functional magnetic resonance imaging to compare an overt speech task with tongue movement, lip movement, and vowel phonation. The results showed that the strongest motor activation for speech was the somatotopic larynx area of the motor cortex, thus reflecting the significant contribution of phonation to speech production. In order to analyze further the phonatory component of speech, we performed a voxel-based meta-analysis of neuroimaging studies of syllable-singing (11 studies) and compared the results with a previously-published meta-analysis of oral reading (11 studies), showing again a strong overlap in the larynx motor area. Overall, these findings highlight the under-recognized presence of phonation in imaging studies of speech production, and support the role of the larynx motor cortex in mediating the “melodicity” of speech. PMID:19162389

  6. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain.

    PubMed

    Karl, A; Birbaumer, N; Lutzenberger, W; Cohen, L G; Flor, H

    2001-05-15

    Phantom limb pain (PLP) in amputees is associated with reorganizational changes in the somatosensory system. To investigate the relationship between somatosensory and motor reorganization and phantom limb pain, we used focal transcranial magnetic stimulation (TMS) of the motor cortex and neuroelectric source imaging of the somatosensory cortex (SI) in patients with and without phantom limb pain. For transcranial magnetic stimulation, recordings were made bilaterally from the biceps brachii, zygomaticus, and depressor labii inferioris muscles. Neuroelectric source imaging of the EEG was obtained after somatosensory stimulation of the skin overlying face and hand. Patients with phantom limb pain had larger motor-evoked potentials from the biceps brachii, and the map of outputs was larger for muscles on the amputated side compared with the intact side. The optimal scalp positions for stimulation of the zygomaticus and depressor labii inferioris muscles were displaced significantly more medially (toward the missing hand representation) in patients with phantom limb pain only. Neuroelectric source imaging revealed a similar medial displacement of the dipole center for face stimulation in patients with phantom limb pain. There was a high correlation between the magnitude of the shift of the cortical representation of the mouth into the hand area in motor and somatosensory cortex and phantom limb pain. These results show enhanced plasticity in both the motor and somatosensory domains in amputees with phantom limb pain. PMID:11331390

  7. [Overlapping of optical answers for cross-like figures and oriented bars in the cats primary visual cortex].

    PubMed

    Ivanov, R S; Liamzin, D R; Bondar', I V; Kulikov, M A; Shevelev, I A

    2010-01-01

    For the first time by the optical method the population activity of neurons in cat primary visual cortex was observed simultaneously for detectors participating in analysis of first-order (orientation) and second-order (line intersection) features. The maps for cross-like figures and oriented single bars were compared. The comparative analysis allowed us to estimate the degree of overlapping of the activated regions and parts of cortex that were free from overlap. Overlapping zones provided the evidence for the fact that neuronal detectors for line intersections are located in the same neuronal columns as neurons detecting orientations. Differences were observed between maps for vertically oriented and oblique crosses. Those differences were pronounced not only in topography but also in degree of overlapping of activity zones. This may evidence on different contribution of neurons detecting basic and intermediate orientations. PMID:20469587

  8. [Quality of neuronal signal registered in the monkey motor cortex with chronically implanted multiple microwires].

    PubMed

    Bondar', I V; Vasil'eva, L N; Badakva, A M; Miller, N V; Zobova, L N; Roshchin, V Iu

    2014-01-01

    Disconnection of central and peripheral parts of motor system leads to severe forms of disability. However, current research of brain-computer interfaces will solve the problem of rehabilitation of patients with motor disorders in future. Chronic recordings of single-unit activity in specialized areas of cerebral cortex could provide appropriate control signal for effectors with multiple degrees of freedom. In present article we evaluated the quality of chronic single-unit recordings in the primary motor cortex of awake behaving monkeys obtained with bundles of multiple microwires. Action potentials of proper quality were recorded from single units during three months. In some cases up to 7 single units could be extracted on a channel. Recording quality stabilized after 40 days since electrodes were implanted. Ultimately, functionality of multiple electrodes bundle makes it highly usable and reliable instrument for obtaining of control neurophysiologic signal from populations of neurons for brain-computer interfaces. PMID:25710068

  9. Acute motor and sensory polyganglioradiculoneuritis in a cat: clinical and histopathological findings.

    PubMed

    Gutierrez-Quintana, Rodrigo; Cuesta-Garcia, Nerea; Wessmann, Annette; Johnston, Pamela; Penderis, Jacques

    2015-02-01

    Polyneuropathies can have a variety of clinical presentations and tend to be rare in cats. In this report we describe a 6-year-old domestic shorthair cat with an acute and rapidly progressive onset of lower motor neuron and sensory signs affecting the spinal and cranial nerves. Histopathological examination revealed moderate-to-severe multifocal inflammatory infiltrates at the ventral and dorsal nerve roots, and dorsal spinal ganglia at the level of the L4 and cauda equina. The type and severity of inflammation varied between nerve roots, being composed of mainly neutrophils in some and mainly lymphocytes and macrophages in others. Immunohistochemistry showed a combination of neutrophils, macrophages and lymphocytes infiltrating the nerve roots and ganglia. The majority of the lymphocytes were T lymphocytes; only a few B lymphocytes were seen. Neurons within the affected ganglia showed central chromatolysis and necrosis. Wallerian-like degeneration and demyelination were observed in the nerve roots. A sensory and motor polyganglioradiculoneuritis was diagnosed. An autoimmune process similar to the acute motor and sensory neuropathy subtype of Guillain-Barré syndrome in humans or an infection by an unidentified agent were considered most likely. PMID:24782456

  10. Intracortical inhibition and facilitation in different representations of the human motor cortex.

    PubMed

    Chen, R; Tam, A; Bütefisch, C; Corwell, B; Ziemann, U; Rothwell, J C; Cohen, L G

    1998-12-01

    Intracortical inhibition and facilitation in different representations of the human motor cortex. J. Neurophysiol. 80: 2870-2881, 1998. Intracortical inhibition (ICI) and intracortical facilitation (ICF) of the human motor cortex can be studied with paired transcranial magnetic stimulation (TMS). Plastic changes and some neurological disorders in humans are associated with changes in ICI and ICF. Although well characterized in the hand representation, it is not known if ICI and ICF vary across different body part representations. Therefore we studied ICI and ICF in different motor representations of the human motor cortex. The target muscles were rectus abdominus (RA), biceps brachii (BB), abductor pollicis brevis (APB), quadriceps femoris (QF), and abductor hallucis (AH). For each muscle, we measured the rest and active motor thresholds (MTs), the motor-evoked potential (MEP) stimulus-response curve (MEP recruitment), ICI, and ICF. The effects of different interstimulus intervals (ISIs) were studied with a conditioning stimulus (CS) intensity of 80% active MT. The effects of different CS intensities were studied at ISI of 2 ms for ICI and ISI of 15 ms for ICF. MT was lowest for APB, followed by BB, AH, and QF, and was highest for RA. Except for BB, MEP recruitment was generally steeper for muscles with lower MT. ICI and ICF were present in all the motor representations tested. The stimulus intensity necessary to elicit ICI was consistently lower than that required to elicit ICF, suggesting that they are mediated by separate mechanisms. Despite wide differences in MT and MEP recruitment, the absolute CS intensities (expressed as percentage of the stimulator's output) required to elicit ICI and ICF appear unrelated to MT and MEP recruitment in the different muscles tested. These findings suggest that the intracortical mechanisms for inhibition and facilitation in different motor representations are not related to the strength of corticospinal projections. PMID

  11. Quantitative Susceptibility Mapping of the Motor Cortex in Amyotrophic Lateral Sclerosis and Primary Lateral Sclerosis

    PubMed Central

    Schweitzer, Andrew D.; Liu, Tian; Gupta, Ajay; Zheng, Karen; Seedial, Stephen; Shtilbans, Alexander; Shahbazi, Mona; Lange, Dale; Wang, Yi; Tsiouris, A. John

    2016-01-01

    Objective Diagnosis of amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) is often difficult due to absence of disease biomarkers. Our aim was to investigate quantitative susceptibility mapping (QSM) of the motor cortex as a potential quantitative biomarker for the diagnosis of ALS and PLS. Materials and Methods Utilizing an institutional review board approved retrospective database, QSM images for 16 patients with upper motor neuron disease (12 with ALS and 4 with PLS; mean age 56.3; 56% male) and 23 control patients (mean age 56.6; 57% male) were reviewed. Two neuroradiologists, blinded to diagnosis, qualitatively assessed QSM, T2, T2*, and T2 FLAIR-weighted images. Relative motor cortex susceptibility (RMCS) was quantitatively calculated by subtracting adjacent white matter/CSF signal intensity from mean motor cortex susceptibility on the axial image most representative of the hand lobule, and receiver operating characteristic (ROC) analysis was performed. The Fisher’s exact and Student’s t tests were used to evaluate for statistical differences between the groups. Results Qualitatively, QSM had higher diagnostic accuracy than T2, T2*, or T2 FLAIR for the diagnosis of ALS/PLS. Quantitatively, RMCS was found to be significantly higher in patients with motor neuron disease than in control patients (46.0 and 35.0, respectively; p<0.001). ROC analysis demonstrated an area-under-the-curve of 0.88 (p<0.0001) and an optimal cutoff value of 40.5 ppb for distinguishing between control and ALS/PLS patients (sensitivity, 87.5%; specificity, 87.0%). Conclusions QSM is a sensitive and specific quantitative biomarker of iron deposition in the motor cortex in ALS and PLS. PMID:25905946

  12. Goal or movement? Action representation within the primary motor cortex.

    PubMed

    Cavallo, Andrea; Bucchioni, Giulia; Castiello, Umberto; Becchio, Cristina

    2013-11-01

    Although facilitation of the cortico-spinal system during action observation is widely accepted, it remains controversial whether this facilitation reflects a replica of the observed movements or the goal of the observed motor acts. In the present transcranial magnetic stimulation study, we recorded motor evoked potentials from two hand muscles (first dorsal interosseous and abductor digiti minimi) while 22 healthy participants observed a hand reaching towards and grasping a bottle. To test for alternative coding levels (goal vs. movement), three relevant aspects were systematically manipulated: the type of observed movement (precision grip or whole hand grasping), situational context (bottle positioned in front of or behind a wall-like barrier), and processing stage (transcranial magnetic stimulation pulse delivered at the onset of the movement or at the moment of contact between the fingers and the object). At movement onset, motor evoked potential responses reflected the program necessary to achieve the action goal within the situational context. During movement observation, however, the type of observed movement was taken into account and a transition towards a movement-related modulation was observed. These results suggest that, rather than being exclusive alternatives, goal coding and movement coding may relate to different processing stages. PMID:23961848

  13. Constructing Visual Perception of Body Movement with the Motor Cortex

    PubMed Central

    Orgs, Guido; Dovern, Anna; Hagura, Nobuhiro; Haggard, Patrick; Fink, Gereon R.; Weiss, Peter H.

    2016-01-01

    The human brain readily perceives fluent movement from static input. Using functional magnetic resonance imaging, we investigated brain mechanisms that mediate fluent apparent biological motion (ABM) perception from sequences of body postures. We presented body and nonbody stimuli varying in objective sequence duration and fluency of apparent movement. Three body postures were ordered to produce a fluent (ABC) or a nonfluent (ACB) apparent movement. This enabled us to identify brain areas involved in the perceptual reconstruction of body movement from identical lower-level static input. Participants judged the duration of a rectangle containing body/nonbody sequences, as an implicit measure of movement fluency. For body stimuli, fluent apparent motion sequences produced subjectively longer durations than nonfluent sequences of the same objective duration. This difference was reduced for nonbody stimuli. This body-specific bias in duration perception was associated with increased blood oxygen level-dependent responses in the primary (M1) and supplementary motor areas. Moreover, fluent ABM was associated with increased functional connectivity between M1/SMA and right fusiform body area. We show that perceptual reconstruction of fluent movement from static body postures does not merely enlist areas traditionally associated with visual body processing, but involves cooperative recruitment of motor areas, consistent with a “motor way of seeing”. PMID:26534907

  14. Motor units in cross-reinnervated fast and slow twitch muscle of the cat.

    PubMed Central

    Bagust, J; Lewis, D M; Westerman, R A

    1981-01-01

    1. Isometric contractile properties of motor units were measured in cross-reinnervated fast (flexor digitorum longus) and slow (soleus) twitch muscles of the cat. All but one cross was at least 95% pure. 2. There was a reduction in the number of motor units in all muscles, but totals remained about equal in cross-reinnervated soleus and flexor digitorum longus. 3. Motor unit tensions (mean and maximum values) were higher in cross-reinnervated soleus than in cross-reinnervated flexor digitorum longus, reversing the differences between normal muscles. This was due to increases in muscle mass and in the tension developed per unit cross-sectional area. There were motor unit tensions larger and smaller than those seen in normal muscle, but the range was comparable with that seen in self-reinnervated muscle. 4. The changes in twitch time to peak of whole muscle following cross-reinnervations resulted from a change over the whole range of motor units. The conversion of soleus was less complete than that of flexor digitorum longus, and the time to peak of its fastest motor unit was twice as long as any seen in normal flexor digitorum longus. 5. In neither of the cross-reinnervated muscles were the fast contracting motor units larger than the slow contracting ones, and in cross-reinnervated soleus they were smaller. 6. Axonal conduction velocity was correlated with motor unit tension in both muscles and with twitch time to peak in cross-reinnervated flexor digitorum longus, but in all cases less clearly than in normal muscles. 7. The ratio of twitch to tetanic tension increased with increasing twitch time to peak, as in normal muscles. PMID:7277217

  15. Reversible Deactivation of Motor Cortex Reveals Functional Connectivity with Posterior Parietal Cortex in the Prosimian Galago (Otolemur garnettii)

    PubMed Central

    Cooke, Dylan F.; Stepniewska, Iwona; Miller, Daniel J.; Kaas, Jon H.

    2015-01-01

    We examined the functional macrocircuitry of frontoparietal networks in the neocortex of prosimian primates (Otolemur garnettii) using a microfluidic thermal regulator to reversibly deactivate selected regions of motor cortex (M1). During deactivation of either forelimb or mouth/face movement domains within M1, we used long-train intracortical microstimulation techniques to evoke movements from the rostral division of posterior parietal cortex (PPCr). We found that deactivation of M1 movement domains in most instances abolished movements evoked in PPCr. The most common effect of deactivating M1 was to abolish evoked movements in a homotopic domain in PPCr. For example, deactivating M1 forelimb lift domains resulted in loss of evoked movement in forelimb domains in PPCr. However, at some sites, we also observed heterotopic effects; deactivating a specific domain in M1 (e.g., forelimb lift) resulted in loss of evoked movement in a different movement domain in PPCr (e.g., hand-to-mouth or eye-blink). At most sites examined in PPCr, rewarming M1 resulted in a reestablishment of the baseline movement at the same amplitude as that observed before cooling. However, at some sites, reactivation did not result in a return to baseline movement or to the full amplitude of the baseline movement. We discuss our findings in the context of frontoparietal circuits and how they may subserve a repertoire of ecologically relevant behaviors. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) of primates integrates sensory information used to guide movements. Different modules within PPC and motor cortex (M1) appear to control various motor behaviors (e.g., reaching, defense, and feeding). How these modules work together may vary across species and may explain differences in dexterity and even the capacity for tool use. We investigated the functional connectivity of these modules in galagos, a prosimian primate with relatively simple frontoparietal circuitry. By deactivating a

  16. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    PubMed Central

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  17. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2015-05-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  18. State- and Trait-Related Alterations of Motor Cortex Excitability in Tinnitus Patients

    PubMed Central

    Schecklmann, Martin; Landgrebe, Michael; Kleinjung, Tobias; Frank, Elmar; Rupprecht, Rainer; Sand, Philipp G.; Eichhammer, Peter; Hajak, Göran; Langguth, Berthold

    2014-01-01

    Chronic tinnitus is a brain network disorder with involvement of auditory and non-auditory areas. Repetitive transcranial magnetic stimulation (rTMS) over the temporal cortex has been investigated for the treatment of tinnitus. Several small studies suggest that motor cortex excitability is altered in people with tinnitus. We retrospectively analysed data from 231 patients with chronic tinnitus and 120 healthy controls by pooling data from different studies. Variables of interest were resting motor threshold (RMT), short-interval intra-cortical inhibition (SICI), intra-cortical facilitation (ICF), and cortical silent period (CSP). 118 patients were tested twice - before and after ten rTMS treatment sessions over the left temporal cortex. In tinnitus patients SICI and ICF were increased and CSP was shortened as compared to healthy controls. There was no group difference in RMT. Treatment related amelioration of tinnitus symptoms were correlated with normalisations in SICI. These findings confirm earlier studies of abnormal motor cortex excitability in tinnitus patients. Moreover our longitudinal data suggest that altered SICI may reflect a state parameter, whereas CSP and ICF may rather mirror a trait-like predisposing factor of tinnitus. These findings are new and innovative as they enlarge the knowledge about basic physiologic and neuroplastic processes in tinnitus. PMID:24409317

  19. The effect of speech distortion on the excitability of articulatory motor cortex.

    PubMed

    Nuttall, Helen E; Kennedy-Higgins, Daniel; Hogan, John; Devlin, Joseph T; Adank, Patti

    2016-03-01

    It has become increasingly evident that human motor circuits are active during speech perception. However, the conditions under which the motor system modulates speech perception are not clear. Two prominent accounts make distinct predictions for how listening to speech engages speech motor representations. The first account suggests that the motor system is most strongly activated when observing familiar actions (Pickering and Garrod, 2013). Conversely, Wilson and Knoblich's account asserts that motor excitability is greatest when observing less familiar, ambiguous actions (Wilson and Knoblich, 2005). We investigated these predictions using transcranial magnetic stimulation (TMS). Stimulation of the lip and hand representations in the left primary motor cortex elicited motor evoked potentials (MEPs) indexing the excitability of the underlying motor representation. MEPs for lip, but not for hand, were larger during perception of distorted speech produced using a tongue depressor, relative to naturally produced speech. Additional somatotopic facilitation yielded significantly larger MEPs during perception of lip-articulated distorted speech sounds relative to distorted tongue-articulated sounds. Critically, there was a positive correlation between MEP size and the perception of distorted speech sounds. These findings were consistent with predictions made by Wilson & Knoblich (Wilson and Knoblich, 2005), and provide direct evidence of increased motor excitability when speech perception is difficult. PMID:26732405

  20. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    PubMed Central

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  1. The Prefrontal Cortex Achieves Inhibitory Control by Facilitating Subcortical Motor Pathway Connectivity

    PubMed Central

    Hughes, Laura E.; Anderson, Michael C.; Rowe, James B.

    2015-01-01

    Communication between the prefrontal cortex and subcortical nuclei underpins the control and inhibition of behavior. However, the interactions in such pathways remain controversial. Using a stop-signal response inhibition task and functional imaging with analysis of effective connectivity, we show that the lateral prefrontal cortex influences the strength of communication between regions in the frontostriatal motor system. We compared 20 generative models that represented alternative interactions between the inferior frontal gyrus, presupplementary motor area (preSMA), subthalamic nucleus (STN), and primary motor cortex during response inhibition. Bayesian model selection revealed that during successful response inhibition, the inferior frontal gyrus modulates an excitatory influence of the preSMA on the STN, thereby amplifying the downstream polysynaptic inhibition from the STN to the motor cortex. Critically, the strength of the interaction between preSMA and STN, and the degree of modulation by the inferior frontal gyrus, predicted individual differences in participants' stopping performance (stop-signal reaction time). We then used diffusion-weighted imaging with tractography to assess white matter structure in the pathways connecting these three regions. The mean diffusivity in tracts between preSMA and the STN, and between the inferior frontal gyrus and STN, also predicted individual differences in stopping efficiency. Finally, we found that white matter structure in the tract between preSMA and STN correlated with effective connectivity of the same pathway, providing important cross-modal validation of the effective connectivity measures. Together, the results demonstrate the network dynamics and modulatory role of the prefrontal cortex that underpin individual differences in inhibitory control. PMID:25589771

  2. Neuronal injury in the motor cortex after chronic stroke and lower limb motor impairment: a voxel-based lesion symptom mapping study

    PubMed Central

    Reynolds, Alexandria M.; Peters, Denise M.; Vendemia, Jennifer M. C.; Smith, Lenwood P.; Sweet, Raymond C.; Baylis, Gordon C.; Krotish, Debra; Fritz, Stacy L.

    2014-01-01

    Many studies have examined motor impairments using voxel-based lesion symptom mapping, but few are reported regarding the corresponding relationship between cerebral cortex injury and lower limb motor impairment analyzed using this technique. This study correlated neuronal injury in the cerebral cortex of 16 patients with chronic stroke based on a voxel-based lesion symptom mapping analysis. Neuronal injury in the corona radiata, caudate nucleus and putamen of patients with chronic stroke could predict walking speed. The behavioral measure scores were consistent with motor deficits expected after damage to the cortical motor system due to stroke. These findings suggest that voxel-based lesion symptom mapping may provide a more accurate prognosis of motor recovery from chronic stroke according to neuronal injury in cerebral motor cortex. PMID:25206888

  3. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    PubMed Central

    Di Lazzaro, Vincenzo; Pellegrino, Giovanni; Di Pino, Giovanni; Ranieri, Federico; Lotti, Fiorenza; Florio, Lucia; Capone, Fioravante

    2016-01-01

    The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization. We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH) and unaffected hemisphere (UH) by measuring resting and active motor threshold (AMT) and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS) of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI), to evidence hemispheric asymmetry. AMT differed significantly between AH and UH only in the male group (p = 0.004), not in females (p > 0.200), and both LIAMT and LIRMT were significantly higher in males than in females (respectively p = 0.033 and p = 0.042). LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery. PMID:26858590

  4. Assessment of corticospinal function in spinal cord injury using transcranial motor cortex stimulation: a review.

    PubMed

    McKay, W B; Stokic, D S; Dimitrijevic, M R

    1997-08-01

    Other than clinical examination, few methods exist for assessing the functional condition of descending long tracts of the spinal cord in humans. This review covers neurophysiological examination of the corticospinal system using transcranial electrical and magnetic motor cortex stimulation. The neurophysiological basis for the motor evoked potentials (MEPs) and the differences between the two methods are discussed followed by a review of their use in individuals with spinal cord injury (SCI). Transcranial motor cortex stimulation is used to monitor descending spinal cord tract condition during spinal surgeries and could be useful for assessing central nervous system trauma, especially in the unconscious multitrauma patient. In the chronic phase of SCI, recordings of MEPs have enabled the estimation of central conduction times that relate to the condition of axons passing through the injured segment of the spinal cord. They were found to correlate well with clinical examination scores but as predictors of outcome, the reports have been mixed. The use of transcranial motor cortex stimulation to modify segmental reflexes and in combination with volitional attempts have also provided evidence of conduction across the lesion in paralyzed SCI subjects. However, MEPs can be absent in some SCI individuals who may be able to volitionally activate muscles below the level of the spinal cord lesion. Such findings are useful in elucidating the neural mechanisms underlying the performance of a volitional movement and may serve to guide and monitor the effects of future treatments for paralysis in SCI and other neurological disorders. PMID:9300564

  5. Photoacoustic detection of functional responses in the motor cortex of awake behaving monkey during forelimb movement

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Zhang, Hongyu; Cheney, Paul D.; Yang, Xinmai

    2012-11-01

    Photoacoustic (PA) imaging was applied to detect the neuronal activity in the motor cortex of an awake, behaving monkey during forelimb movement. An adult macaque monkey was trained to perform a reach-to-grasp task while PA images were acquired through a 30-mm diameter implanted cranial chamber. Increased PA signal amplitude results from an increase in regional blood volume and is interpreted as increased neuronal activity. Additionally, depth-resolved PA signals enabled the study of functional responses in deep cortical areas. The results demonstrate the feasibility of utilizing PA imaging for studies of functional activation of cerebral cortex in awake monkeys performing behavioral tasks.

  6. Laminar differences in receptive field properties of cells in cat primary visual cortex

    PubMed Central

    Gilbert, Charles D.

    1977-01-01

    1. Cells in area 17 of the cat visual cortex were studied with a view towards correlating receptive field properties with layering. A number of receptive field parameters were measured for all units, and nearly every unit was marked with a microlesion to determine accurately the layer in which it was found. 2. Cells were defined as simple or complex by mapping with stationary stimuli, using the criteria of Hubel & Wiesel (1962). Complex cells fell into two groups: those that showed summation for increased slit length (standard complex) and those that did not (special complex). 3. The simple cells were located in the deep part of layer 3, in layer 4, and in layer 6. This corresponds to the distribution of afferents from the dorsal layers of the lateral geniculate nucleus. In these cortical layers the simple cells differed primarily with respect to their receptive field size, cells in layer 4 having the smallest, layer 3 intermediate, and layer 6 the largest fields. Layer 4 was the only layer in which simple cells showed end-inhibition (a reduction in response to slits extending beyond the excitatory portion of the receptive field). 4. The standard complex cells were found in all layers, but were quite scarce in layer 4. As with the simple cells, field size varied with layer: in layer 2+3 they had small to intermediate field sizes, in layer 5 intermediate, and in layer 6 very large. Layer 6 cells showed summation for slits of increased length up to very large values, and responded best when the slits were centred in the receptive field. The only standard complex cells that showed end-inhibition were those in layer 2+3, and these were similar to the layer 4 simple cells in terms of proportion of end-inhibited units and degree of end-inhibition. 5. The special complex cells, originally described by Palmer & Rosenquist (1974), were found in two tiers: the upper one at the layer 3/layer 4 border and the lower one in layer 5. They were different from the standard complex

  7. Receptive field organization of complex cells in the cat's striate cortex.

    PubMed Central

    Movshon, J A; Thompson, I D; Tolhurst, D J

    1978-01-01

    1. All complex cells in the cat's striate cortex exhibit gross non-linearities of spatial summation when tested with sinusoidal grating stimuli. Their responses to moving gratings of all but the lowest spatial frequencies are usually dominated by a component that is not modulated by the passage of the bars of the grating across the receptive field. They give responses to temporally modulated stationary gratings that consist mostly of even harmonics of the stimulus frequency and that vary little in amplitude or wave form as the spatial phase of the grating is varied. 2. We compared complex cells' receptive fields with their sensitivity to sinusoidal gratings of different spatial frequencies. Qualitatively, the receptive fields are usually two to five times wider than the bars of the gratings that stimulate them most effectively. Quantitatively, the receptive field profiles of complex cells are invariably broader than those predicted by Fourier synthesis of their spatial frequency tuning curves, and in particular lack predicted spatially antagonistic regions. 3. We further examined the receptive field organization of these cells, using pairs of stationary lines flashed synchronously on their receptive fields. If both lines are of the same polarity (bright or dark), complex cells respond to the paired stimulus much less well than they do to either of its component bars, unless the bars are separated by less than about one quarter of the width of the receptive field. If the lines are of opposite polarity, one bright and one dark, the opposite situation obtains: closely spaced bars elicit small responses, while paired bars of larger separation are much more effective. In either case, the results are independent in general character of the absolute positions of the stimuli within the receptive field; rather, they depend in a manner characteristic of each cell on the relative positions of the two bars. 4. The two-line interaction profile that plots the change in a complex

  8. Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract.

    PubMed

    Gerloff, C; Cohen, L G; Floeter, M K; Chen, R; Corwell, B; Hallett, M

    1998-07-01

    1. The ability of the primary motor cortex (M1) to modulate motor responses in ipsilateral hand muscles seems to be important for normal motor control and potentially also for recovery after brain lesions. It is not clear which pathways mediate this ipsilateral modulation. Transcallosal connections have been proposed, but are known to be sparse between cortical hand motor representations in primates. The present study was performed to determine whether descending ipsilateral modulation of motor responses might also be mediated below the cortical level in humans. 2. A paired-pulse protocol was used, in which motor-evoked potentials (MEPs) were produced by cortical transcranial magnetic stimulation (cTMS) or by electrical stimulation of the pyramidal tract at the level of the pyramidal decussation (pdTES), in both preactivated and relaxed hand muscles. Paired stimuli were applied at various interstimulus intervals (ISIs) between 2 and 100 ms. The conditioning stimulus (CS) was always magnetic, and delivered to the M1 ipsilateral to the target hand, prior to the test stimulus (TS). The magnetic TS was delivered to the M1 contralateral to the target hand; the electrical TS was applied through electrodes placed over the mastoid process bilaterally. Further experiments included cortical electrical stimulation and H-reflexes. The MEP amplitudes were averaged separately for each ISI and the control condition (no CS), and expressed as a percentage of the unconditioned response. 3. Conditioning stimulation of the ipsilateral M1 resulted in significant inhibition of magnetically evoked MEPs, and also of MEPs produced by pdTES. Inhibition occurred at ISIs between 6 and 50 ms, and was observed in preactivated and relaxed muscles. Higher CS intensities caused greater inhibition of both cTMS- and pdTES-evoked MEPs. 4. While the conditioning effects on magnetically evoked muscle responses could be explained by a transcallosal mechanism, the effects on pdTES-evoked MEPs cannot

  9. An Additional Motor-Related Field in the Lateral Frontal Cortex of Squirrel Monkeys

    PubMed Central

    Duric, Vanja; Barbay, Scott; Frost, Shawn B.; Stylianou, Antonis; Nudo, Randolph J.

    2008-01-01

    Our earlier efforts to document the cortical connections of the ventral premotor cortex (PMv) revealed dense connections with a field rostral and lateral to PMv, an area we called the frontal rostral field (FR). Here, we present data collected in FR using electrophysiological and anatomical methods. Results show that FR contains an isolated motor representation of the forelimb that can be differentiated from PMv based on current thresholds and latencies to evoke electromyographic activity using intracortical microstimulation techniques. In addition, FR has a different pattern of cortical connections compared with PMv. Together, these data support that FR is an additional, previously undescribed motor-related area in squirrel monkeys. PMID:18424778

  10. Mechanical studies on the retractor bulbi muscle and its motor units in the cat

    PubMed Central

    Lennerstrand, Gunnar

    1974-01-01

    1. For a description of some of the mechanical properties of the retractor bulbi muscle in the cat, the isometric tension development was studied in one of the four slips of the muscle and in single retractor bulbi motor units. 2. The motor units and the muscle were activated by stimulating their motoneurones of origin in the abducens nucleus. 3. All twenty-eight motor units studied were of the same fast, twitch type, which fatigued quickly. Similarities between the motor units and the muscle with regard to isometric tension development strongly suggest that the retractor bulbi is composed exclusively of this type of motor unit. 4. On an average the motor unit had a twitch rise time of 9·2 msec and a half-decay time of 11·4 msec. The twitch tension was 36·7 mg. At stimulation with 175 pulses/sec or above the tetanus fused. The maximal tetanic tension developed was 440 mg and the maximal rate of tension rise was 24·5 g/sec. To prolonged tetanic stimulation most of the units fatigued completely within 10-15 sec. 5. In a slip of the muslce similar values were obtained for contraction time, half-decay time, fusion frequency and fatigability. Tetanic tension reached 11·7 g and the maximal speed of tetanic contraction was 255 g/sec. 6. As in other extrinsic eye muscles a linear relation was found between length and tension in the activated retractor bulbi. An increase in activation induced a parallel shift in the curves to higher tension values but the slopes of the curves remained unchanged. The average slope value was 1·7 g/mm. PMID:4818515

  11. The incidence of bifurcation among corticocortical connections from area 17 in the developing visual cortex of the cat.

    PubMed

    Price, D J; Ferrer, J M

    1993-03-01

    In newborn kittens, cells in the striate cortex (visual area 17) that project to area 18 (part of extrastriate cortex) are distributed with uniform density in the superficial and in the deep layers. During postnatal weeks 2-3, some of these corticocortical connections are removed to generate an adult-like projection in which association cells are clustered mainly in the superficial layers of area 17. Axonal elimination, without cell death, is the major factor sculpting patches of corticocortical cells in superficial layers. In adult cats, few cells in area 17 (approximately 5%) have axons that bifurcate to multiple extrastriate areas. We have studied the possibility that the early exuberant innervation of area 18 by neurons in area 17 is largely from the transient collaterals of axons that also project to other visual areas. Kittens aged 2-21 days were each injected with a pair of retrogradely transported tracers, either diamidino yellow and fast blue, or diamidino yellow and a carbocyanine dye, at retinotopically corresponding points in area 18 and either area 19 or the posteromedial lateral suprasylvian cortex (PMLS). As for injections in area 18, those in area 19 and PMLS in kittens aged < or = 5 days labelled cells in continuous bands in area 17; in older kittens neurons projecting from area 17 to extrastriate regions were in patches, mainly in superficial layers. In each animal, the labelling from the two injections overlapped by 51-92%.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8261103

  12. Effects of morphine, physostigmine and raphe nuclei stimulation on 5-hydroxytryptamine release from the cerebral cortex of the cat.

    PubMed Central

    Aiello-Malmberg, P; Bartolini, A; Bartolini, R; Galli, A

    1979-01-01

    1. The release of 5-hydroxytryptamine (5-HT) from the cerebral cortex and caudate nucleus of brainstem-transected cats and from the cerebral cortex of rats anaesthetized with urethane was determined by radioenzymatic and biological assay. 2. The stimulation of nucleus linearis intermedius of raphe doubles the basal 5-HT release in the caudate nucleus and increases it 3 fold in the cerebral cortex. The effects of the electrical stimulation of the raphe are potentiated by chlorimipramine. 3. Brain 5-HT release is greatly increased by morphine hydrochloride (6 mg/kg i.v.) and by physostigmine (100 microgram/kg i.v.), but not by DL-DOPA (50 mg/kg i.v.). 4. It is suggested that the 5-HT releasing action of physostigmine can contribute to some of its pharmacological effects such as the analgesic effect so far attributed exclusively to its indirect cholinomimetic activity. 5. The 5-HT releasing action of physostigmine seems unrelated to its anticholinesterase activity. PMID:435680

  13. Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex

    PubMed Central

    Takahashi, Kazutaka; Kim, Sanggyun; Coleman, Todd P.; Brown, Kevin A.; Suminski, Aaron J.; Best, Matthew D.; Hatsopoulos, Nicholas G.

    2015-01-01

    Aggregate signals in cortex are known to be spatiotemporally organized as propagating waves across the cortical surface, but it remains unclear whether the same is true for spiking activity in individual neurons. Furthermore, the functional interactions between cortical neurons are well documented but their spatial arrangement on the cortical surface has been largely ignored. Here we use a functional network analysis to demonstrate that a subset of motor cortical neurons in non-human primates spatially coordinate their spiking activity in a manner that closely matches wave propagation measured in the beta oscillatory band of the local field potential. We also demonstrate that sequential spiking of pairs of neuron contains task-relevant information that peaks when the neurons are spatially oriented along the wave axis. We hypothesize that the spatial anisotropy of spike patterning may reflect the underlying organization of motor cortex and may be a general property shared by other cortical areas. PMID:25994554

  14. Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex.

    PubMed

    Takahashi, Kazutaka; Kim, Sanggyun; Coleman, Todd P; Brown, Kevin A; Suminski, Aaron J; Best, Matthew D; Hatsopoulos, Nicholas G

    2015-01-01

    Aggregate signals in cortex are known to be spatiotemporally organized as propagating waves across the cortical surface, but it remains unclear whether the same is true for spiking activity in individual neurons. Furthermore, the functional interactions between cortical neurons are well documented but their spatial arrangement on the cortical surface has been largely ignored. Here we use a functional network analysis to demonstrate that a subset of motor cortical neurons in non-human primates spatially coordinate their spiking activity in a manner that closely matches wave propagation measured in the beta oscillatory band of the local field potential. We also demonstrate that sequential spiking of pairs of neuron contains task-relevant information that peaks when the neurons are spatially oriented along the wave axis. We hypothesize that the spatial anisotropy of spike patterning may reflect the underlying organization of motor cortex and may be a general property shared by other cortical areas. PMID:25994554

  15. Representation of the speech effectors in the human motor cortex: somatotopy or overlap?

    PubMed

    Takai, Osamu; Brown, Steven; Liotti, Mario

    2010-04-01

    Somatotopy within the orofacial region of the human motor cortex has been a central concept in interpreting the results of neuroimaging and transcranial magnetic stimulation studies of normal and disordered speech. Yet, somatotopy has been challenged by studies showing overlap among the effectors within the homunculus. In order to address this dichotomy, we performed four voxel-based meta-analyses of 54 functional neuroimaging studies of non-speech tasks involving respiration, lip movement, tongue movement, and swallowing, respectively. While the centers of mass of the clusters supported the classic homuncular view of the motor cortex, there was significant variability in the locations of the activation-coordinates among studies, resulting in an overlapping arrangement. This "somatotopy with overlap" might reflect the intrinsic functional interconnectedness of the oral effectors for speech production. PMID:20171727

  16. Dorsal premotor cortex is involved in switching motor plans

    PubMed Central

    Pastor-Bernier, Alexandre; Tremblay, Elsa; Cisek, Paul

    2012-01-01

    Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on

  17. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex

    PubMed Central

    Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai

    2016-01-01

    Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats—while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. PMID:27193420

  18. Hemispheric asymmetry in cerebrovascular reactivity of the human primary motor cortex: an in vivo study at 7 T.

    PubMed

    Driver, Ian D; Andoh, Jamila; Blockley, Nicholas P; Francis, Susan T; Gowland, Penny A; Paus, Tomáš

    2015-05-01

    Current functional MRI (fMRI) approaches assess underlying neuronal activity through monitoring the related local variations in cerebral blood oxygenation, blood volume and blood flow. This vascular response is likely to vary across brain regions and across individuals, depending on the composition of the local vascular bed and on the vascular capacity to dilate. The most widely used technique uses the blood oxygen level dependent (BOLD) fMRI signal, which arises from a complex combination of all of these factors. The model of handedness provides a case where one brain region (dominant motor cortex) is known to have a stronger BOLD response over another (non-dominant motor cortex) during hand motor task performance. We predict that this is accompanied by a higher vascular reactivity in the dominant motor cortex, when compared with the non-dominant motor cortex. Precise measurement of end-tidal CO2 and a novel sinusoidal CO2 respiratory challenge were combined with the high sensitivity and finer spatial resolution available for fMRI at 7 T to measure BOLD cerebrovascular reactivity (CVR) in eight healthy male participants. BOLD CVR was compared between the left (dominant) and right (non-dominant) primary motor cortices of right-handed adults. Hemispheric asymmetry in vascular reactivity was predicted and observed in the primary motor cortex (left CVR = 0.60 ± 0.15%/mm Hg; right CVR = 0.47 ± 0.08%/mm Hg; left CVR > right CVR, P = 0.04), the first reported evidence of such a vascular difference. These findings demonstrate a cerebral vascular asymmetry between the left and right primary motor cortex. The origin of this asymmetry largely arises from the contribution of large draining veins. This work has implications for future motor laterality studies that use BOLD, and it is also suggestive of a vascular plasticity in the human primary motor cortex. PMID:25788020

  19. Dual-Channel Circuit Mapping Reveals Sensorimotor Convergence in the Primary Motor Cortex

    PubMed Central

    Lin, John Y.; Guo, Caiying

    2015-01-01

    Cortical cells integrate synaptic input from multiple sources, but how these different inputs are distributed across individual neurons is largely unknown. Differences in input might account for diverse responses in neighboring neurons during behavior. We present a strategy for comparing the strengths of multiple types of input onto the same neuron. We developed methods for independent dual-channel photostimulation of synaptic inputs using ChR2 together with ReaChR, a red-shifted channelrhodopsin. We used dual-channel photostimulation to probe convergence of sensory information in the mouse primary motor cortex. Input from somatosensory cortex and thalamus converges in individual neurons. Similarly, inputs from distinct somatotopic regions of the somatosensory cortex are integrated at the level of single motor cortex neurons. We next developed a ReaChR transgenic mouse under the control of both Flp- and Cre-recombinases that is an effective tool for circuit mapping. Our approach to dual-channel photostimulation enables quantitative comparison of the strengths of multiple pathways across all length scales of the brain. PMID:25762684

  20. Fezf2 expression in layer 5 projection neurons of mature mouse motor cortex.

    PubMed

    Tantirigama, Malinda L S; Oswald, Manfred J; Clare, Alison J; Wicky, Hollie E; Day, Robert C; Hughes, Stephanie M; Empson, Ruth M

    2016-03-01

    The mature cerebral cortex contains a wide diversity of neuron phenotypes. This diversity is specified during development by neuron-specific expression of key transcription factors, some of which are retained for the life of the animal. One of these key developmental transcription factors that is also retained in the adult is Fezf2, but the neuron types expressing it in the mature cortex are unknown. With a validated Fezf2-Gfp reporter mouse, whole-cell electrophysiology with morphology reconstruction, cluster analysis, in vivo retrograde labeling, and immunohistochemistry, we identify a heterogeneous population of Fezf2(+) neurons in both layer 5A and layer 5B of the mature motor cortex. Functional electrophysiology identified two distinct subtypes of Fezf2(+) neurons that resembled pyramidal tract projection neurons (PT-PNs) and intratelencephalic projection neurons (IT-PNs). Retrograde labeling confirmed the former type to include corticospinal projection neurons (CSpPNs) and corticothalamic projection neurons (CThPNs), whereas the latter type included crossed corticostriatal projection neurons (cCStrPNs) and crossed-corticocortical projection neurons (cCCPNs). The two Fezf2(+) subtypes expressed either CTIP2 or SATB2 to distinguish their physiological identity and confirmed that specific expression combinations of key transcription factors persist in the mature motor cortex. Our findings indicate a wider role for Fezf2 within gene expression networks that underpin the diversity of layer 5 cortical projection neurons. PMID:26234885

  1. Sensory nerve crush and regeneration and the receptive fields and response properties of neurons in the primary somatosensory cerebral cortex of cats.

    PubMed

    Brandenberg, G A; Mann, M D

    1989-03-01

    Extracellular recordings were made of activity evoked in neurons of the forepaw focus of somatosensory cerebral cortex by electrical stimulation of each paw in control cats and cats that had undergone crush injury of all cutaneous sensory nerves to the contralateral forepaw 31 to 63 days previously. Neurons responding only to stimulation of the contralateral forepaw were classified as sa; neurons responding to stimulation of both forepaws were classified as sb; neurons responding to stimulation of both contralateral paws were classified as sc; and neurons responding to stimulation of at least three paws were classified as m. The ratio sa:sb:sc:m neurons was 46:3:0:0 in control cats and 104:15:3:26 in cats that had undergone nerve crush 1-2 months prior to study. sa neurons from experimental cats had depth distributions similar to those in controls and responded to contralateral forepaw stimulation with more spikes per discharge, longer latency, and higher threshold than sa neurons in control cats. m neurons from experimental cats were distributed deeper in the cortex than sa neurons, and, when compared to experimental sa neurons, they responded with longer latency and poorer frequency-following ability; however, the number of spikes per discharge and threshold were not significantly different. The appearance of wide-field neurons in this tissue may be explained in terms of strengthening of previously sub-threshold inputs to neurons in the somatosensory system. If the neurons in sensory cortex play a requisite role in cutaneous sensations and if changes similar to those reported here occur and persist in human cortex after nerve crush, then "complete" recovery of sensation in such patients may occur against a background of changed cortical neuronal responsiveness. PMID:2920791

  2. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes

    PubMed Central

    Borgomaneri, Sara; Gazzola, Valeria

    2014-01-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor excitability during observation and categorization of positive, neutral and negative pictures from the International Affective Picture System database. Motor-evoked potentials (MEPs) from TMS of the left motor cortex were recorded from hand muscles, at 150 and 300 ms after picture onset. In the early temporal condition we found an increase in hand motor excitability that was specific for the perception of negative pictures. This early negative bias was predicted by interindividual differences in the disposition to experience aversive feelings (personal distress) in interpersonal emotional contexts. In the later temporal condition, we found that MEPs were similarly increased for both positive and negative pictures, suggesting an increased reactivity to emotionally arousing scenes. By highlighting the temporal course of motor excitability during perception of emotional pictures, our study provides direct neurophysiological support for the evolutionary notions that emotion perception is closely linked to action systems and that emotionally negative events require motor reactions to be more urgently mobilized. PMID:23945998

  3. Motor Readiness Increases Brain Connectivity Between Default-Mode Network and Motor Cortex: Impact on Sampling Resting Periods from fMRI Event-Related Studies.

    PubMed

    Bazán, Paulo Rodrigo; Biazoli, Claudinei Eduardo; Sato, João Ricardo; Amaro, Edson

    2015-12-01

    The default-mode network (DMN) has been implicated in many conditions. One particular function relates to its role in motor preparation. However, the possibly complex relationship between DMN activity and motor preparation has not been fully explored. Dynamic interactions between default mode and motor networks may compromise the ability to evaluate intrinsic connectivity using resting period data extracted from task-based experiments. In this study, we investigated alterations in connectivity between the DMN and the motor network that are associated with motor readiness during the intervals between motor task trials. fMRI data from 20 normal subjects were acquired under three conditions: pure resting state; resting state interleaved with brief, cued right-hand movements at constant intervals (lower readiness); and resting state interleaved with the same movements at unpredictable intervals (higher readiness). The functional connectivity between regions of motor and DMNs was assessed separately for movement periods and intertask intervals. We found a negative relationship between the DMN and the left sensorimotor cortex during the task periods for both motor conditions. Furthermore, during the intertask intervals of the unpredictable condition, the DMN showed a positive relationship with right sensorimotor cortex and a negative relation with the left sensorimotor cortex. These findings indicate a specific modulation on motor processing according to the state of motor readiness. Therefore, connectivity studies using task-based fMRI to probe DMN should consider the influence of motor system modulation when interpreting the results. PMID:26414865

  4. Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy

    PubMed Central

    Rangel, Maria Luíza Sales; Sanchez, Tiago Arruda; Moreira, Filipe Azaline; Hoefle, Sebastian; Souto, Inaiacy Bittencourt; da Cunha, Antônio José Ledo Alves

    2015-01-01

    Background Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS). Methods In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05. Findings Dynamometry performance of the patients’ most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy. Conclusion Decreased

  5. Disruption of functional organization within the primary motor cortex in children with autism.

    PubMed

    Nebel, Mary Beth; Joel, Suresh E; Muschelli, John; Barber, Anita D; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H

    2014-02-01

    Accumulating evidence suggests that motor impairments are prevalent in autism spectrum disorder (ASD), relate to the social and communicative deficits at the core of the diagnosis and may reflect abnormal connectivity within brain networks underlying motor control and learning. Parcellation of resting-state functional connectivity data using spectral clustering approaches has been shown to be an effective means of visualizing functional organization within the brain but has most commonly been applied to explorations of normal brain function. This article presents a parcellation of a key area of the motor network, the primary motor cortex (M1), a key area of the motor control network, in adults, typically developing (TD) children and children with ASD and introduces methods for selecting the number of parcels, matching parcels across groups and testing group differences. The parcellation is based solely on patterns of connectivity between individual M1 voxels and all voxels outside of M1, and within all groups, a gross dorsomedial to ventrolateral organization emerged within M1 which was left-right symmetric. Although this gross organizational scheme was present in both groups of children, statistically significant group differences in the size and segregation of M1 parcels within regions of the motor homunculus corresponding to the upper and lower limbs were observed. Qualitative comparison of the M1 parcellation for children with ASD with that of younger and older TD children suggests that these organizational differences, with a lack of differentiation between lower limb/trunk regions and upper limb/hand regions, may be due, at least in part, to a delay in functional specialization within the motor cortex. PMID:23118015

  6. The neural response to transcranial magnetic stimulation of the human motor cortex. II. Thalamocortical contributions.

    PubMed

    Van Der Werf, Ysbrand D; Sadikot, Abbas F; Strafella, Antonio P; Paus, Tomás

    2006-11-01

    Beta oscillations (15-30 Hz) constitute an important electrophysiological signal recorded in the resting state over the human precentral gyrus. The brain circuitry involved in generating the beta oscillations is not well understood but appears to involve both cortical and subcortical structures. We have shown that single pulses of transcranial magnetic stimulation (TMS) applied over the primary motor cortex consistently elicit a brief beta oscillation. Reducing the local cortical excitability using low-frequency repetitive TMS does not change the amplitude of the induced beta oscillation (Van Der Werf and Paus in Exp Brain Res DOI 10.1007/s00221-006-0551-2). Here, we investigated the possible involvement of the thalamus in the cortically expressed beta response to single-pulse TMS. We included eight patients with Parkinson's disease who had undergone unilateral surgical lesioning of the ventrolateral nucleus of the thalamus. We administered 50 single pulses of TMS, at an intensity of 120% of resting motor threshold, over the left and right primary motor cortex and, at the same time, recorded the electroencephalogram (EEG) using a 60-electrode cap. We were able to perform analyses on seven EEG data sets and found that stimulation of the unoperated hemisphere (with thalamus) resulted in higher amplitudes of the single-trial induced beta oscillations than in the operated hemisphere (with thalamotomy). The beta oscillation obtained in response to pulses applied over the unoperated hemisphere was also higher than that obtained in healthy controls. We suggest that (1) the beta oscillatory response to pulses of TMS applied over the primary motor cortex is higher in Parkinson's disease patients, (2) thalamotomy serves to reduce the abnormally high TMS-induced beta oscillations, and (3) the motor thalamus facilitates the cortically generated oscillation, through cortico-subcortico-cortical feedback loops. PMID:16832683

  7. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter.

    PubMed

    Neef, Nicole E; Hoang, T N Linh; Neef, Andreas; Paulus, Walter; Sommer, Martin

    2015-03-01

    The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23-44) and 13 adults who stutter (four females, nine males, aged 21-55) were asked to build verbs with the verbal prefix 'auf'. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a negative

  8. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter

    PubMed Central

    Hoang, T. N. Linh; Neef, Andreas; Paulus, Walter; Sommer, Martin

    2015-01-01

    The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23–44) and 13 adults who stutter (four females, nine males, aged 21–55) were asked to build verbs with the verbal prefix ‘auf’. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a

  9. Cortico-cortical activity between the primary and supplementary motor cortex: An intraoperative near-infrared spectroscopy study

    PubMed Central

    Fukuda, Masafumi; Takao, Tetsuro; Hiraishi, Tetsuya; Aoki, Hiroshi; Ogura, Ryosuke; Sato, Yosuke; Fujii, Yukihiko

    2015-01-01

    Background: The supplementary motor area (SMA) makes multiple reciprocal connections to many areas of the cerebral cortices, such as the primary motor cortex (PMC), anterior cingulate cortex, and various regions in the parietal somatosensory cortex. In patients with SMA seizures, epileptic discharges from the SMA rapidly propagate to the PMC. We sought to determine whether near-infrared spectroscopy (NIRS) is able to intraoperatively display hemodynamic changes in epileptic network activities between the SMA and the PMC. Case Descriptions: In a 60-year-old male with SMA seizures, we intraoperatively delivered a 500 Hz, 5-train stimulation to the medial cortical surface and measured the resulting hemodynamic changes in the PMC by calculating the oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentration changes during stimulation. No hemodynamic changes in the lateral cortex were observed during stimulation of the medial surface corresponding to the foot motor areas. In contrast, both HbO2 and HbR increased in the lateral cortex corresponding to the hand motor areas when the seizure onset zone was stimulated. In the premotor cortex and the lateral cortex corresponding to the trunk motor areas, hemodynamic changes showed a pattern of increased HbO2 with decreased HbR. Conclusions: This is the first reported study using intraoperative NIRS to characterize the epileptic network activities between the SMA and PMC. Our intraoperative NIRS procedure may thus be useful in monitoring the activities of cortico-cortical neural pathways such as the language system. PMID:25883836

  10. Motor organization of positive and negative emotional vocalization in the cat midbrain periaqueductal gray.

    PubMed

    Subramanian, Hari H; Arun, Mridula; Silburn, Peter A; Holstege, Gert

    2016-06-01

    Neurochemical microstimulation in different parts of the midbrain periaqueductal gray (PAG) in the cat generates four different types of vocalization, mews, howls, cries, and hisses. Mews signify positive vocal expression, whereas howls, hisses, and cries signify negative vocal communications. Mews were generated in the lateral column of the intermediate PAG and howls and hisses in the ventrolateral column of the intermediate PAG. Cries were generated in two regions, the lateral column of the rostral PAG and the ventrolateral column of the caudal PAG. To define the specific motor patterns belonging to mews, howls, and cries, the following muscles were recorded during these vocalizations: larynx (cricothyroid, thyroarytenoid, and posterior cricoarytenoid), tongue (genioglossus), jaw (digastric), and respiration (diaphragm, internal intercostal, external abdominal oblique, and internal abdominal oblique) muscles. Furthermore, the frequency, intensity, activation cascades, and turns and amplitude analyses of the electromyograms (EMGs) during these vocalizations were analyzed. The results show that each type of vocalization consists of a specific, circumscribed motor coordination. The nucleus retroambiguus (NRA) in the caudal medulla serves as the final premotor interneuronal output system for vocalization. NRA neurochemical microstimulation also generated vocalizations (guttural sounds). Analysis of the EMGs demonstrated that these vocalizations consist of only small parts of the emotional voalizations generated by neurochemical stimulation in the PAG. These results demonstrate that motor organization of positive and negative emotional vocal expressions are segregated in the PAG and that the PAG uses the NRA as a tool to gain access to the motoneurons generating vocalization. PMID:26235936

  11. Influence of Baclofen on Laryngeal and Spinal Motor Drive During Cough in the Anesthetized Cat

    PubMed Central

    Castillo, Daniel; Pitts, Teresa

    2016-01-01

    Objectives/Hypothesis The antitussive properties of (±) baclofen on laryngeal muscle activities have not been determined. The hypothesis of this study was that administration of (±) baclofen would suppress upper airway muscle motor activity in a dose-dependent manner during cough. Study Design This is a prospective, preclinical, hypothesis-driven, paired design. Methods Electromyograms of the parasternal, rectus abdominis, thyroarytenoid, posterior cricoarytenoid, and thyrohyoid were measured, along with esophageal pressure. Cough was elicited by mechanical stimulation of the lumen of the intrathoracic trachea in spontaneously breathing cats. Results Baclofen (±) (3–10 µg kg−1 i.a.) induced decreases in the electromyogram amplitude of the rectus abdominis motor drive during coughing, the inspiratory and active expiratory (E1) phases of cough, and cough number per epoch. There was no effect of (±) baclofen on the EMG amplitudes of any of the laryngeal muscles, the parasternal, or the duration of the passive expiratory (E2) phase. Conclusions Results from the present study indicate differential control mechanisms for laryngeal and inspiratory motor drive during cough, providing evidence of a control system regulating laryngeal activity and inspiratory spinal drive that is divergent from the control of expiratory spinal motoneurons. PMID:23670824

  12. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections.

    PubMed

    Mohammed, Hisham; Jain, Neeraj

    2014-02-15

    In primates, the motor cortex consists of at least seven different areas, which are involved in movement planning, coordination, initiation, and execution. However, for rats, only the primary motor cortex has been well described. A rostrally located second motor area has been proposed, but its extent, organization, and even definitive existence remain uncertain. Only a rostral forelimb area (RFA) has been definitively described, besides few reports of a rostral hindlimb area. We have previously proposed existence of a second whisker area, which we termed the rostral whisker area (RWA), based on its differential response to intracortical microstimulation compared with the caudal whisker area (CWA) in animals under deep anesthesia (Tandon et al. [2008] Eur J Neurosci 27:228). To establish that RWA is distinct from the caudally contiguous CWA, we determined sources of thalamic inputs to the two proposed whisker areas. Sources of inputs to RFA, caudal forelimb area (CFA), and caudal hindlimb region were determined for comparison. The results show that RWA and CWA can be distinguished based on differences in their thalamic inputs. RWA receives major projections from mediodorsal and ventromedial nuclei, whereas the major projections to CWA are from the ventral anterior, ventrolateral, and posterior nuclei. Moreover, the thalamic nuclei that provide major inputs to RWA are the same as for RFA, and the nuclei projecting to CWA are same as for CFA. The results suggest that rats have a second rostrally located motor area with RWA and RFA as its constituents. PMID:23853077

  13. Spinal cord injury affects I-wave facilitation in human motor cortex.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Bathke, Arne C; Orioli, Andrea; Schwenker, Kerstin; Frey, Vanessa; Golaszewski, Stefan; Brigo, Francesco; Trinka, Eugen

    2015-07-01

    Transcranial magnetic stimulation (TMS) is a useful non-invasive approach for studying cortical physiology. To further clarify the mechanisms of cortical reorganization after spinal cord injury (SCI), we used a non-invasive paired TMS protocol for the investigation of the corticospinal I-waves, the so-called I-wave facilitation, in eight patients with cervical SCI. We found that the pattern of I-wave facilitation significantly differs between SCI patients with normal and abnormal central motor conduction (CMCT), and healthy controls. The group with normal CMCT showed increased I-wave facilitation, while the group with abnormal CMCT showed lower I-wave facilitation compared to a control group. The facilitatory I-wave interaction occurs at the level of the motor cortex, and the mechanisms responsible for the production of I-waves are under control of GABA-related inhibition. Therefore, the findings of our small sample preliminary study provide further physiological evidence of increased motor cortical excitability in patients with preserved corticospinal projections. This is possibly due to decreased GABAergic intracortical inhibition. The excitability of networks producing short-interval intracortical facilitation could increase after SCI as a mechanism to enhance activation of residual corticospinal tract pathways and thus compensate for the impaired ability of the motor cortex to generate appropriate voluntary movements. Finally, the I-wave facilitation technique could be used in clinical neurorehabilitation as an additional method of assessing and monitoring function in SCI. PMID:26151771

  14. [Primary motor cortex as one of the levels of the construction of movements].

    PubMed

    Pavlova, O G

    2014-01-01

    The data obtained during the recent decades led to revision of the dominant in neurophysiology view of primary motor cortex as "the cord area" which transfers the motor commands to the spinal cord. Contrary to this point of view, it was shown that MI primates neurons participate in all stages of organization of motor behavior and that the final postures of complex coordinated movements are represented in the MI map. Characteristics of movements controlled by MI revealed by currently available methods were predicted and explained by N.A. Bernstein about 70 years ago. According to his concept, there are some levels of the construction of movements that exist in the central nervous system. Area 4 (i.e. MI), which is one of them, appeared on the definite stage of evolution for resolving the particular movement tasks. In support of this conception we are showing that: 1) MI controls the movements that differ from the movements of other levels by their characteristics (the mode of operating and the sense content); 2) some voluntary movements can be executed without participation of MI; 3) different motor areas of the cortex are coupled with different aspects of movement behavior. PMID:25975137

  15. Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex.

    PubMed

    An, Shuming; Kilb, Werner; Luhmann, Heiko J

    2014-08-13

    Self-generated neuronal activity originating from subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neural activity patterns and role of primary motor cortex (M1) in these early movements are still unknown. Combining voltage-sensitive dye imaging (VSDI) with simultaneous extracellular multielectrode recordings in postnatal day 3 (P3)-P5 rat primary somatosensory cortex (S1) and M1 in vivo, we observed that tactile forepaw stimulation induced spindle bursts in S1 and gamma and spindle bursts in M1. Approximately 40% of the spontaneous gamma and spindle bursts in M1 were driven by early motor activity, whereas 23.7% of the M1 bursts triggered forepaw movements. Approximately 35% of the M1 bursts were uncorrelated to movements and these bursts had significantly fewer spikes and shorter burst duration. Focal electrical stimulation of layer V neurons in M1 mimicking physiologically relevant 40 Hz gamma or 10 Hz spindle burst activity reliably elicited forepaw movements. We conclude that M1 is already involved in somatosensory information processing during early development. M1 is mainly activated by tactile stimuli triggered by preceding spontaneous movements, which reach M1 via S1. Only a fraction of M1 activity transients trigger motor responses directly. We suggest that both spontaneously occurring and sensory-evoked gamma and spindle bursts in M1 contribute to the maturation of corticospinal and sensorimotor networks required for the refinement of sensorimotor coordination. PMID:25122889

  16. A fibronectin-like molecule is present in the developing cat cerebral cortex and is correlated with subplate neurons

    PubMed Central

    1988-01-01

    The subplate is a transient zone of the developing cerebral cortex through which postmitotic neurons migrate and growing axons elongate en route to their adult positions within the cortical plate. To learn more about the cellular interactions that occur in this zone, we have examined whether fibronectins (FNs), a family of molecules known to promote migration and elongation in other systems, are present during the fetal and postnatal development of the cat's cerebral cortex. Three different anti-FN antisera recognized a single broad band with an apparent molecular mass of 200-250 kD in antigen-transfer analyses (reducing conditions) of plasma-depleted (perfused) whole fetal brain or synaptosome preparations, indicating that FNs are present at these ages. This band can be detected as early as 1 mo before birth at embryonic day 39. Immunohistochemical examination of the developing cerebral cortex from animals between embryonic day 46 and postnatal day 7 using any of the three antisera revealed that FN-like immunoreactivity is restricted to the subplate and the marginal zones, and is not found in the cortical plate. As these zones mature into their adult counterparts (the white matter and layer 1 of the cerebral cortex), immunostaining gradually disappears and is not detectable by postnatal day 70. Previous studies have shown that the subplate and marginal zones contain a special, transient population of neurons (Chun, J. J. M., M. J. Nakamura, and C. J. Shatz. 1987. Nature (Lond.). 325:617-620). The FN-like immunostaining in the subplate and marginal zone is closely associated with these neurons, and some of the immunostaining delineates them. Moreover, the postnatal disappearance of FN-like immunostaining from the subplate is correlated spatially and temporally with the disappearance of the subplate neurons. When subplate neurons are killed by neurotoxins, FN-like immunostaining is depleted in the lesioned area. These observations show that an FN-like molecule is

  17. Interplay of orientation selectivity and the power of low- and high-gamma bands in the cat primary visual cortex.

    PubMed

    Bharmauria, Vishal; Bachatene, Lyes; Ouelhazi, Afef; Cattan, Sarah; Chanauria, Nayan; Etindele-Sosso, Faustin Armel; Rouat, Jean; Molotchnikoff, Stéphane

    2016-05-01

    Gamma oscillations are ubiquitous in brain and are believed to be inevitable for information processing in brain. Here, we report that distinct bands (low, 30-40Hz and high gamma, 60-80Hz) of stimulus-triggered gamma oscillations are systematically linked to the orientation selectivity index (OSI) of neurons in the cat primary visual cortex. The gamma-power is high for the highly selective neurons in the low-gamma band, whereas it is high for the broadly selective neurons in the high-gamma band. We suggest that the low-gamma band is principally implicated in feed-forward excitatory flow, whereas the high-gamma band governs the flow of this excitation. PMID:27033667

  18. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    PubMed Central

    Stephan, Marianne A.; Brown, Rachel; Lega, Carlotta; Penhune, Virginia

    2016-01-01

    The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools. PMID:27242414

  19. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex.

    PubMed

    Stephan, Marianne A; Brown, Rachel; Lega, Carlotta; Penhune, Virginia

    2016-01-01

    The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools. PMID:27242414

  20. Impairment of Auditory-Motor Timing and Compensatory Reorganization after Ventral Premotor Cortex Stimulation

    PubMed Central

    Kornysheva, Katja; Schubotz, Ricarda I.

    2011-01-01

    Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation. PMID:21738657

  1. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation

    PubMed Central

    Ramanathan, Dhakshin S.; Gulati, Tanuj; Ganguly, Karunesh

    2015-01-01

    Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM) sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized) did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning. PMID:26382320

  2. Influence of repetitive peripheral magnetic stimulation on neural plasticity in the motor cortex related to swallowing.

    PubMed

    Momosaki, Ryo; Kakuda, Wataru; Yamada, Naoki; Abo, Masahiro

    2016-09-01

    The aim of this study was to evaluate the effect of repetitive peripheral magnetic stimulation at two different frequencies (20 and 30 Hz) on cortical excitability in motor areas related to swallowing in healthy individuals. The study participants were 10 healthy normal volunteers (two women and eight men, age range 25-36 years). Repetitive peripheral magnetic stimulation was applied to the submandibular muscle using a parabolic coil at the site where contraction of the suprahyoid muscles was elicited. Stimulation was continued for 10 min (total 1200 pulses) at 20 Hz on 1 day and at 30 Hz on another day, with the stimulation strength set at 90% of the intensity that elicited pain. The motor-evoked potential amplitude of suprahyoid muscles was assessed before, immediately after, and 30 min after stimulation. Stimulations at both 20 and 30 Hz significantly increased motor-evoked potential amplitude (P<0.05), with the increase maintained until 30 min after stimulation. The motor-evoked potential amplitude immediately after stimulation was not significantly different between the 20 and 30 Hz frequencies. The results indicated that repetitive magnetic stimulation increased motor-evoked potential amplitude of swallowing muscles, suggesting facilitation of the motor cortex related to swallowing in healthy individuals. PMID:27262135

  3. Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex.

    PubMed

    Kraus, Dominic; Gharabaghi, Alireza

    2016-01-01

    Motor maps acquired with transcranial magnetic stimulation (TMS) are evolving as a biomarker for monitoring disease progression or the effects of therapeutic interventions. High test-retest reliability of this technique for long observation periods is therefore required to differentiate daily or weekly fluctuations from stable plastic reorganization of corticospinal connectivity. In this study, a novel projection, interpolation, and coregistration technique, which considers the individual gyral anatomy, was applied in healthy subjects for biweekly acquired TMS motor maps over a period of twelve weeks. The intraclass correlation coefficient revealed long-term reliability of motor maps with relevant interhemispheric differences. The sensorimotor cortex and nonprimary motor areas of the dominant hemisphere showed more extended and more stable corticospinal connectivity. Long-term correlations of the MEP amplitudes at each stimulation site revealed mosaic-like clusters of consistent corticospinal excitability. The resting motor threshold, centre of gravity, and mean MEPs across all TMS sites, as highly reliable cortical map parameters, could be disentangled from more variable parameters such as MEP area and volume. Cortical TMS motor maps provide high test-retest reliability for long-term monitoring when analyzed with refined techniques. They may guide restorative interventions which target dormant corticospinal connectivity for neurorehabilitation. PMID:27610248

  4. Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex

    PubMed Central

    Kraus, Dominic

    2016-01-01

    Motor maps acquired with transcranial magnetic stimulation (TMS) are evolving as a biomarker for monitoring disease progression or the effects of therapeutic interventions. High test-retest reliability of this technique for long observation periods is therefore required to differentiate daily or weekly fluctuations from stable plastic reorganization of corticospinal connectivity. In this study, a novel projection, interpolation, and coregistration technique, which considers the individual gyral anatomy, was applied in healthy subjects for biweekly acquired TMS motor maps over a period of twelve weeks. The intraclass correlation coefficient revealed long-term reliability of motor maps with relevant interhemispheric differences. The sensorimotor cortex and nonprimary motor areas of the dominant hemisphere showed more extended and more stable corticospinal connectivity. Long-term correlations of the MEP amplitudes at each stimulation site revealed mosaic-like clusters of consistent corticospinal excitability. The resting motor threshold, centre of gravity, and mean MEPs across all TMS sites, as highly reliable cortical map parameters, could be disentangled from more variable parameters such as MEP area and volume. Cortical TMS motor maps provide high test-retest reliability for long-term monitoring when analyzed with refined techniques. They may guide restorative interventions which target dormant corticospinal connectivity for neurorehabilitation. PMID:27610248

  5. Cochlear implant use following neonatal deafness influences the cochleotopic organization of the primary auditory cortex in cats

    PubMed Central

    Fallon, James B; Dexter, R. F. Irvine; Shepherd, Robert K.

    2008-01-01

    Electrical stimulation of spiral ganglion neurons in deafened cochlea, via a cochlear implant, provides a means of investigating the effects of the removal and subsequent restoration of afferent input on the functional organization of the primary auditory cortex (AI). We neonatally deafened seventeen cats before the onset of hearing, thereby abolishing virtually all afferent input from the auditory periphery. In seven animals, the auditory pathway was chronically reactivated with environmentally-derived electrical stimuli presented via a multi-channel intracochlear electrode array implanted at eight weeks of age. Electrical stimulation was provided by a clinical cochlear implant that was used continuously for periods of up to seven months. In ten long-term deafened cats and three age-matched normal hearing controls, an intracochlear electrode array was implanted immediately prior to cortical recording. We recorded from a total of 812 single unit and multi-unit clusters in AI of all cats as adults, using a combination of single tungsten and multi-channel silicon electrode arrays. The absence of afferent activity in the long-term deafened animals had little effect on the basic response properties of AI neurons but resulted in complete loss of the normal cochleotopic organization of AI. This effect was almost completely reversed by chronic reactivation of the auditory pathway via the cochlear implant. We hypothesize that maintenance or re-establishment of a cochleotopically organized AI by activation of a restricted sector of the cochlea – as demonstrated in the present study - contributes to the remarkable clinical performance observed among human patients implanted at a young age. PMID:18972570

  6. The Effect of Aerobic Exercise on Neuroplasticity within the Motor Cortex following Stroke

    PubMed Central

    Murdoch, Kate; Buckley, Jonathan D.; McDonnell, Michelle N.

    2016-01-01

    Background Aerobic exercise is associated with enhanced plasticity in the motor cortex of healthy individuals, but the effect of aerobic exercise on neuroplasticity following a stroke is unknown. Objective The aim of this study was to compare corticomotoneuronal excitability and neuroplasticity in the upper limb cortical representation following a single session of low intensity lower limb cycling, or a rest control condition. Methods We recruited chronic stroke survivors to take part in three experimental conditions in a randomised, cross-over design. Corticomotoneuronal excitability was examined using transcranial magnetic stimulation to elicit motor evoked potentials in the affected first dorsal interosseus muscle. Following baseline measures, participants either cycled on a stationary bike at a low exercise intensity for 30 minutes, or remained resting in a seated position for 30 minutes. Neuroplasticity within the motor cortex was then examined using an intermittent theta burst stimulation (iTBS) paradigm. During the third experimental condition, participants cycled for the 30 minutes but did not receive any iTBS. Results Twelve participants completed the study. We found no significant effect of aerobic exercise on corticomotoneuronal excitability when compared to the no exercise condition (P > 0.05 for all group and time comparisons). The use of iTBS did not induce a neuroplastic-like response in the motor cortex with or without the addition of aerobic exercise. Conclusions Our results suggest that following a stroke, the brain may be less responsive to non-invasive brain stimulation paradigms that aim to induce short-term reorganisation, and aerobic exercise was unable to induce or improve this response. PMID:27018862

  7. Computational modelling of movement-related beta-oscillatory dynamics in human motor cortex.

    PubMed

    Bhatt, Mrudul B; Bowen, Stephanie; Rossiter, Holly E; Dupont-Hadwen, Joshua; Moran, Rosalyn J; Friston, Karl J; Ward, Nick S

    2016-06-01

    Oscillatory activity in the beta range, in human primary motor cortex (M1), shows interesting dynamics that are tied to behaviour and change systematically in disease. To investigate the pathophysiology underlying these changes, we must first understand how changes in beta activity are caused in healthy subjects. We therefore adapted a canonical (repeatable) microcircuit model used in dynamic causal modelling (DCM) previously used to model induced responses in visual cortex. We adapted this model to accommodate cytoarchitectural differences between visual and motor cortex. Using biologically plausible connections, we used Bayesian model selection to identify the best model of measured MEG data from 11 young healthy participants, performing a simple handgrip task. We found that the canonical M1 model had substantially more model evidence than the generic canonical microcircuit model when explaining measured MEG data. The canonical M1 model reproduced measured dynamics in humans at rest, in a manner consistent with equivalent studies performed in mice. Furthermore, the changes in excitability (self-inhibition) necessary to explain beta suppression during handgrip were consistent with the attenuation of sensory precision implied by predictive coding. These results establish the face validity of a model that can be used to explore the laminar interactions that underlie beta-oscillatory dynamics in humans in vivo. Our canonical M1 model may be useful for characterising the synaptic mechanisms that mediate pathophysiological beta dynamics associated with movement disorders, such as stroke or Parkinson's disease. PMID:26956910

  8. The effects of acute alcohol exposure on the response properties of neurons in visual cortex area 17 of cats

    SciTech Connect

    Chen Bo; Xia Jing; Li Guangxing; Zhou Yifeng

    2010-03-15

    Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and direction selectivity of neurons are influenced by acute alcohol exposure in vivo, we used the extracellular single-unit recording technique to examine the response properties of neurons in primary visual cortex (A17) of adult cats. We found that alcohol reduces spontaneous activity, visual evoked unit responses, the signal-to-noise ratio, and orientation selectivity of A17 cells. In addition, small but detectable changes in both the preferred orientation/direction and the bandwidth of the orientation tuning curve of strongly orientation-biased A17 cells were observed after acute alcohol administration. Our findings may provide physiological evidence for some alcohol-related deficits in visual function observed in behavioral studies.

  9. 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke

    PubMed Central

    Brodie, Sonia M.; Meehan, Sean; Borich, Michael R.; Boyd, Lara A.

    2014-01-01

    Sensory feedback is critical for motor learning, and thus to neurorehabilitation after stroke. Whether enhancing sensory feedback by applying excitatory repetitive transcranial magnetic stimulation (rTMS) over the ipsilesional primary sensory cortex (IL-S1) might enhance motor learning in chronic stroke has yet to be investigated. The present study investigated the effects of 5 Hz rTMS over IL-S1 paired with skilled motor practice on motor learning, hemiparetic cutaneous somatosensation, and motor function. Individuals with unilateral chronic stroke were pseudo-randomly divided into either Active or Sham 5 Hz rTMS groups (n = 11/group). Following stimulation, both groups practiced a Serial Tracking Task (STT) with the hemiparetic arm; this was repeated for 5 days. Performance on the STT was quantified by response time, peak velocity, and cumulative distance tracked at baseline, during the 5 days of practice, and at a no-rTMS retention test. Cutaneous somatosensation was measured using two-point discrimination. Standardized sensorimotor tests were performed to assess whether the effects might generalize to impact hemiparetic arm function. The active 5 Hz rTMS + training group demonstrated significantly greater improvements in STT performance {response time [F(1, 286.04) = 13.016, p < 0.0005], peak velocity [F(1, 285.95) = 4.111, p = 0.044], and cumulative distance [F(1, 285.92) = 4.076, p = 0.044]} and cutaneous somatosensation [F(1, 21.15) = 8.793, p = 0.007] across all sessions compared to the sham rTMS + training group. Measures of upper extremity motor function were not significantly different for either group. Our preliminary results suggest that, when paired with motor practice, 5 Hz rTMS over IL-S1 enhances motor learning related change in individuals with chronic stroke, potentially as a consequence of improved cutaneous somatosensation, however no improvement in general upper extremity function was observed. PMID:24711790

  10. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology

    PubMed Central

    Caumo, Wolnei; Deitos, Alícia; Carvalho, Sandra; Leite, Jorge; Carvalho, Fabiana; Dussán-Sarria, Jairo Alberto; Lopes Tarragó, Maria da Graça; Souza, Andressa; Torres, Iraci Lucena da Silva; Fregni, Felipe

    2016-01-01

    The central sensitization syndrome (CSS) encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA)] to an absence of tissue injuries such as the one presented in fibromyalgia (FM) and myofascial pain syndrome (MPS). First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by transcranial magnetic stimulation (TMS), namely motor evoked potential (MEP), cortical silent period (CSP), short intracortical inhibition (SICI) and short intracortical facilitation (SICF). Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS), could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM) paradigm. Third, we explored whether brain-derived neurotrophic factor (BDNF) had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n = 114), aged 19–65 years old with disability by chronic pain syndromes (CPS): FM (n = 19), MPS (n = 54), OA (n = 27) and healthy subjects (n = 14). We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on numerical pain scale [NPS (0–10)] during CPM-task. The adjusted mean (SD) on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18) vs. 0.55 (0.32)], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0–10)during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and